UNIVERSITE DU QUEBEC

THESE

PRESENTEE A L'UNIVERSITE DU QUEBEC A TROIS-RIVIERES COMME EXIGENCE PARTIELLE POUR L'OBTENTION DU DOCTORAT ES SCIENCES (ENERGIE)

> PAR JEAN-MARIE St-ARNAUD

B.A. B.Sp. SCIENCES (PHYSIQUE) M.Sc. (PHYSIQUE)

DETERMINATION DIRECTE DE LA CONTRIBUTION D'INTERACTIONS MOLECULAIRES A L'INDICE DE REFRACTION DU CO₂, C₂H₄, CH₄ ET SF₆

Université du Québec à Trois-Rivières

Service de la bibliothèque

<u>Avertissement</u>

L'auteur de ce mémoire ou de cette thèse a autorisé l'Université du Québec à Trois-Rivières à diffuser, à des fins non lucratives, une copie de son mémoire ou de sa thèse.

Cette diffusion n'entraîne pas une renonciation de la part de l'auteur à ses droits de propriété intellectuelle, incluant le droit d'auteur, sur ce mémoire ou cette thèse. Notamment, la reproduction ou la publication de la totalité ou d'une partie importante de ce mémoire ou de cette thèse requiert son autorisation. A mon épouse Marielle et à mes filles Julie et Marie dont la patience et l'encouragement furent un soutien et un stimulant précieux au cours de ce travail.

,

.

REMERCIEMENTS

Les travaux expérimentaux reliés à cette thèse furent réalisés dans les locaux du Laboratoire sur les Diélectriques sis au département de Physique de l'Université du Québec à Trois-Rivières.

Je désire remercier mon directeur, Docteur Tapan K. Bose, professeur au département de ^Physique, pour son dévouement manifesté dans la direction de ce travail. Ses conseils, suggestions et son soutien m'ont guidé et encouragé tout au long des travaux expérimentaux et de la rédaction de la thèse.

Mes remerciements s'adressent aussi à tous mes collègues du département de Physique à Trois-Rivières qui, en plus de me permettre de réaliser le présent travail, m'ont soutenu par leurs conseils et commentaires.

Le personnel de l'atelier de mécanique et celui de l'atelier d'électronique de l'Université du Québec à Trois-Rivières méritent mes remerciements les plus sincères. En plus d'exécuter un ouvrage de haute qualité, ils n'ont pas hésité à me dépanner dans les cas urgents. Je veux remercier aussi le personnel du centre de calcul, en particulier le Docteur Jerzy Sochanski pour l'aide fournie dans la programmation. Je désire aussi remercier la direction de l'INRS-Energie pour m'avoir donné la possibilité de poursuivre mes études de doctorat. Mes remerciements s'adressent aussi à tous les membres de l'équipe de recherche du Laboratoire sur les Diélectriques, plus particulièrement à messieurs Richard Chahine et Serge Kirouac.

Les budgets nécessaires au maintien de l'équipe de recherche et à l'apport de nouveau matériel furent fournis par le Conseil de la Recherche en Sciences Naturelles et en Génie, par le Ministère de l'Education du Québec (FCAC) et par l'Université du Québec à Trois-Rivières (FIR). Je désire témoigner de ma gratitude à ces organismes.

Ma reconnaissance s'adresse également à Raynald Gauvin pour la réalisation des dessins et à Madame Manon Ledoux pour sa dextérité et sa patience dans la dactylographie de ce travail.

RESUME

Nous avons mesuré avec précision le second coefficient du viriel de l'indice de réfraction (B_R) pour les gaz multipolaires suivants: CO_2 , C_2H_4 , CH_4 et SF_6 . Le coefficient " B_R ", qui est associé à l'interaction entre paires de dipôles induits par le champ externe, est obtenu par la relation de Lorentz-Lorenz

$$L - L = \frac{n^2 - 1}{n^2 + 2} \frac{1}{d} = A_R + B_R d + \dots$$

où "n" est l'indice de réfraction à une densité "d".

Nos valeurs de B_R furent obtenues selon une méthode directe développée pour la première fois par Buckingham et al et adaptée par nous au domaine de l'indice de réfraction à haute pression. Notre méthode consiste à mesurer la somme des chemins optiques de 2 cellules quasi-identiques dont une est remplie de gaz et l'autre vide. Quand on ouvre le passage entre les 2 cellules, la densité diminue de moitié et on mesure une seconde fois la somme des chemins optiques. Comme la partie linéaire de la densité reste la même avant et après l'expansion, le changement des chemins optiques nous donne directement la mesure de l'imperfection de l'indice de réfraction d'un gaz. L'étude d'interactions moléculaires pour les systèmes multipolaires consiste à mesurer précisément B_R et B_ϵ , le second coefficient du viriel diélectrique. On sait que B_ϵ , qui donne une indication de l'interaction entre 2 molécules, consiste en 2 termes d'interaction dont l'un (B_R) dépend du champ externe et l'autre (B_{OR}) dépend du champ moléculaire de telle sorte que $B_\epsilon = B_R + B_{OR}$. La comparaison entre nos mesures de B_R et celles faites par Bose et al pour B_ϵ nous a permis de comparer B_{OR} avec l'absorption intégrée dans l'infrarouge (B_{IR}) et dans l'infrarouge lointain (B_{FIR}). Ce type de comparaison nous a conduit à régler les contradictions qui existaient auparavant dans la littérature pour les molécules C_2H_4 et SF₆. La connaissance de B_{OR} nous a ensuite mené à déterminer la valeur du moment multipolaire.

La majorité de nos valeurs mesurées de ${\rm B}_{\rm R}$ ne concordent pas avec les valeurs calculées selon la théorie classique.

Nous avons aussi mesuré à basse pression (maximum de 15 atmosphères) la valeur de A_R, le premier coefficient du viriel de l'indice de réfraction, qui est représenté par

$$A_R = \frac{4\pi N_A}{3} \alpha_e$$

où α_e est la polarisabilité électronique et N_A est le nombre d'Avogadro. La comparaison entre A_e, le premier coefficient du viriel diélectrique qui est donné par

$$A_{\varepsilon} = \frac{4\pi N_{A}}{3} (\alpha_{e} + \alpha_{at})$$

et A_R nous a permis de déduire la polarisabilité atomique (α_{at}) et la polarisabilité électronique (α_e) des gaz étudiés.

TABLE DES MATIERES

REMERCIEMENTS	iii
RESUME	v
ABLE DES MATIERES	vii
ISTE DES FIGURES	xii
ISTE DES TABLEAUX	xv
NTRODUCTION	1
CHAPITRE I: THEORIE	4
.1 Lien entre B_R et B_{ε}	4
.2 Théorie classique	6
1.2.1 Origine de B _R	6
1.2.2 Dérivation de B _R	11
.3 Théories quantiques	14
1.3.1 Effet de longue portée	14
1.3.2 Effets de courte portée	15
.4 Situation actuelle de la théorie sur B $_{\sf R}$	18
.5 Liste des ouvrages cités dans l'introduction et le Chapitre I	20

СНАР	ITRE II: M	METHODES EXPERIMENTALES POUR LA DETERMINATION	
	<u>[</u>	DIRECTE DE B _R	22
2.1	Quelques n	néthodes expérimentales courantes pour obtenir B _R	22
	2.1.1	Equation de Lorentz-Lorenz	22
	2.1.2	Mesure de l'indice de réfraction et de la pression	23
	2.1.3	Principe de la méthode de l'expansion	24
	2.1.3.1	Notre adaptation	28
	2.1.3.2	Adaptation de Buckingham et Graham	30
2.2	Détails de	e notre méthode expérimentale pour déterminer direc-	
	tement B _R		32
	2.2.1	Approche théorique	32
	2.2.2	Approche expérimentale	35
	2.2.2.1	Expansion du gaz de la cellule A vers la cellule B	35
	2.2.2.2	Expansion du gaz de la cellule B vers la cellule A	38
2.3	Déterminat	tion de A _R et de B _p	41
	2.3.1	A _R	41
	2.3.2	B _p	42
2.4	Liste des	ouvrages cités dans le chapitre II	43
СНАР	ITRE III:	EQUIPEMENT EXPERIMENTAL	44
3.1	Descriptio	on du montage	44
3.2	Descriptio	on de composantes	46
	3.2.1	Les cellules optiques	46
	3.2.1.1	Construction	46

. .

ix

0 0 1 0	
3.2.1.2	Mesure de la longueur des cellules 49
3.2.1.3	Déformations
3.2.1.3.1	Déformations mécaniques
	A) Fenêtres optiques
	i) Déformation 51
	ii) Compression
	B) Elongation des boulons
	C) Déflexion du bout des cellules 55
	D) Elongation du corps de la cellule
	E) Elongation moyenne d'une cellule en fonction
	de la pression
3.2.1.3.2	Dilatations thermiques
3.2.1.4	Variation du parcours optique sous l'effet combiné
	de la pression et de la température 60
3.2.2	Enceinte des cellules (bain) 61
3.2.3	Table de granit
3.2.4	Interféromètre-laser 64
3.2.4.1	Description du laser
3.2.4.2	Description de l'interféromètre 67
3.2.4.3	Principes de fonctionnement de l'interféromètre-
	laser
3.2.5	Détecteur précis de pression (D.P.P.) 74
3.2.5.1	Principes de fonctionnement
3.2.5.2	Calibration

3.3	Facteurs influençant l'indice de réfraction	79
	3.3.1 Introduction	79
	3.3.2 Contrôle de température	79
	3.3.2.1 Enceinte des cellules	79
	3.3.2.2 Enceinte entre le bain et l'interféromètre-laser .	80
	3.3.2.3 Pièce	84
3.4	Autres facteurs d'influence sur les mesures	84
	3.4.1 Fuite	84
	3.4.2 Vapeur d'eau et d'huile	85
3.5	Liste des ouvrages cités dans le chapitre III	87
СНАР	ITRE IV: <u>RESULTATS EXPERIMENTAUX</u>	88
4.1	Mesure du rapport de volume des cellules	88
4.2	Corrections dues aux déformations des cellules	89
4.3	Pureté des gaz	89
4.4	Résultats	91
	4.4.1 Mesures de A _R	91
	4.4.2 Mesures de B _n	110
	4.4.2.1 Rappel de la procédure	110
	4.4.2.2 Résultats détaillés	112
4.5	Polarisabilité électronique et atomique	128
4.6	Liste des ouvrages cités dans le chapitre IV	131

х

хi

CHAPI	TRE V:	DISCUSSION	33
5.1	Introduc	tion	33
5.2	Systèmes	quadrupolaires	37
	5.2.1	CO ₂ 1	39
	5.2.2	^C 2 ^H 4 · · · · · · · · · · · · · · · · · · ·	40
5.3	Système (octupolaire (CH ₄)	44
5.4	Système	hexadecapolaire (SF ₆)1	47
5.5	Liste des	s ouvrages cités dans le chapitre V	50
APPEN	NDICE A:	EXEMPLE DE CALCUL POUR LA DETERMINATION DE A _R 1	52
APPEN	NDICE B:	EXEMPLE DE CALCUL POUR LA DETERMINATION DE B _R 1	63
APPEN	DICE C:	PROGRAMME DES MOINDRES CARRES	69
APPEN	DICE D:	<u>L'INCERTITUDE DE B</u> R	83
APPEN	DICE E:	EFFET DE LA DISPERSION SUR AR ET BR	85

LISTE DES FIGURES

FIGURE

2.1	Disposition des cellules pour la méthode de l'expansion proposée par Buckingham et al ⁸	26
2.2	Disposition des cellules pour notre méthode dans la me- sure directe de B _R	27
3.1	Notre montage pour la mesure directe de B _R	45
3.2	Coupe d'une cellule	47
3.3	Vue du bout d'une cellule	48
3.4	Jauge pour la mesure de la longueur des cellules	49
3.5	Fenêtre optique et son support	52
3.6	Déflexion du bout de la cellule	55
3.7	Vue de l'extrémité du bain	62
3.8	Ajustement de la distance entre les miroirs du laser pour obtenir le mode TEM _{oo}	65

3.9	Faisceau à double fréquence à la sortie du laser	66
3.10	Interféromètre d.c.; déclenchement du compteur	69
3.11	Illustration du principe de fonctionement de l'inter- féromètre-laser	72
3.12	Courbe de stabilité de l'interféromètre-laser	73
3.13	Fonctionnement du détecteur précis de pression (D.P.P.) dans le mode servo	75
3.14	Calibration du détecteur précis de pression (D.P.P.) par rapport au référentiel calibré de pression (R.C.P.).	77
3.15	Variation type de la température dans le bain (enceinte des cellules) sur une période de 12 heures	81
3.16	Variation type de la température dans la boîte (enceinte entre le bain et l'interféromètre-laser) sur une pério- de de ll heures	82
3.17	Variation type de la température dans la pièce sur une période de ll heures	83
4.1	Equation de Lorentz-Lorenz du CH ₄ gazeux en fonction de P/RT à 303 K	98

PAGE

.

•

4.2	Equation de Lorentz-Lorenz du C ₂ H ₄ gazeux en fonction de P/RT à 303 K	103
4.3	Equation de Lorentz-Lorenz du CO ₂ gazeux en fonction de P/RT à 323 K	106
4.4	Equation de Lorentz-Lorenz du SF ₆ gazeux en fonction de P/RT à 323 K	109
4.5	Courbe de $[D_A/(n_1-1)+D_B/(n_2-1)]$ en fonction des indices de réfraction $[(n_1-1) + (n_2-1)]$ pour le CH_4 gazeux à 303 K	118
4.6	Courbe de $[D_A/(n_1-1) + D_B/(n_2-1)]$ en fonction des indices de réfraction $[(n_1-1) + (n_2-1)]$ pour le C_2H_4 gazeux à 303 K	121
4.7	Courbe de $[D_A/(n_1-1) + D_B/(n_2-1)]$ en fonction des indi- ces de réfraction $[(n_1-1) + (n_2-1)]$ pour le CO_2 gazeux à 323 K	124
4.8	Courbe de $[D_A/(n_1-1) + D_B/(n_2-1)]$ en fonction des indi- ces de réfraction $[(n_1-1) + (n_2-1)]$ pour le SF ₆ gazeux à 323 K	127

LISTE DES TABLEAUX

.

ТΑ	BL	.EA	U
		_	~

3.1	Déformation (X) d'une fenêtre en fonction de la pres- sion (P)	53
3.2	Compression ∆e(P) d'une fenêtre en fonction de la pres- sion (P)	54
3.3	Elongation "∆L" d'un boulon en fonction de la pression (P)	55
3.4	Déflexion (Y) du bout de la cellule en fonction de la pression (P)	56
3.5	Elongation (Δ L) du corps de la cellule en fonction de la pression (P)	57
3.6	Elongation mécanique moyenne (∆L _M) d'une cellule en fonction de la pression (P)	58

3.7	Dilatation thermique (F-2D) des corps des cellules	
	(F) et des fenêtres (D)	59
3.8	Variation totale de longueur des cellules en fonction de	
	la température et de la pression maximum	60
3.9	Liste des appareils utilisés au cours de l'expérience	86
4.1	Impuretés dans les gaz étudiés	90
4.2	Premier coefficient du viriel de l'indice de réfraction (A _R)	93
4.3	Deuxième coefficient du viriel de la pression (B $_{ m p}$)	94
4.4	Détermination de A _R : nombre de franges (k) observées à	
	une pression (P) pour le CH ₄ gazeux à 303 K	
	(Série A210476)	95
4.5	Détermination de A _R : nombre de franges (k) observées à	
	une pression (P) pour le CH ₄ gazeux à 303 K	
	(Série A280476)	96
4.6	Détermination de A _R : nombre de franges (k) observées à	
	une pression (P) pour le CH ₄ gazeux à 303 K	
	(Série AB150476)	97
4.7	Détermination de A _R : nombre de franges (k) observées à	
	une pression (P) pour le C ₂ H ₄ gazeux à 303 K	
	(Série AB170876)	99

TABLEAU

Ρ	A	G	E
---	---	---	---

4.8	Détermination de A _R : nombre de franges (k) observées à	
	une pression (P) pour le C ₂ H ₄ gazeux à 303 K	
	(Série AB180876)	100
4.9	Détermination de A _R : nombre de franges (k) observées à	
	une pression (P) pour le C ₂ H ₄ gazeux à 303 K	
	(Série AB260876)	101
4.10	Détermination de A _R : nombre de franges (k) observées à	
	pression (P) pour le C ₂ H ₄ gazeux à 303 K	
	(Série AB100876)	102
4.11	Détermination de A _R : nombre de franges (k) observées à	
	une pression (P) pour le CO ₂ gazeux à 323 K	
		104
4.12	Détermination de A _R : nombre de franges (k) observées à	
	une pression (P) pour le CO ₂ gazeux à 323 K	
	(Série AB020678)	105
4.13	Détermination de A _R : nombre de franges (k) observées à	
	une pression (P) pour le SF ₆ gazeux à 323 K	
	(Série AB160578)	107
4.14	Détermination de A _R : nombre de franges (k) observées à	
	une pression (P) pour le SF ₆ gazeux à 323 K	
	(Série AB180578)	108

TABLEAU

4.15	Deuxième coefficient du viriel de l'indice de réfraction	115
4.16	Nombre de franges observées lors de la rentrée et de	116
	R du CH ₄ gazeux a 303 K +	110
4.17	Valeurs utilisées pour calculer le polynôme et déduire le B _R du CH ₄ gazeux à 303 K	117
4.18	Nombre de franges observées lors de la rentrée et de	
	l'expansion pour la mesure de B _R du C ₂ H ₄ gazeux à 303 K.	119
4.19	Valeurs utilisées pour calculer le polynôme et déduire le B _R du C ₂ H ₄ gazeux à 303 K	120
4.20	Nombre de franges observées lors de la rentrée et de l'expansion pour la mesure de B _R du CO ₂ gazeux à 323 K .	122
4.21	Valeurs utilisées pour calculer le polynôme et déduire le B _R du CO ₂ gazeux à 323 K	123
4.22	Nombre de franges observées lors de la rentrée et de l'expansion pour la mesure de B _R du SF ₆ gazeux à 323 K .	125
4.23	Valeurs utilisées pour calculer le polynôme et déduire le B _R du SF ₆ gazeux à 323 K	126
4.24	Polarisabilité atomique et électronique du CH ₄ et C ₂ H ₄ gaseux	129

TABLEAU

.

•

4.25	Polarisabilité atomique et électronique du SF ₆ et du CO ₂	
	gazeux	130
5.1	Paramètres de viscosité et potentiel de Lennard-Jones	
	utilisés pour calculer les B _R selon la théorie DDI et les	
	comparer avec nos valeurs mesurées de B _R	135
5.2	Comparaison des diverses valeurs de B en cm ⁶ /mole ²	136
5.3	Valeurs de B _e , B _R et B _{OR} = B _e - B _R et valeurs du moment	
	quadrupolaire (θ _l) du CO ₂	138
5.4	Valeurs de $B_{\epsilon}^{}$, $B_{K}^{}$ et $B_{OR}^{}$ = $B_{\epsilon}^{}$ - $B_{R}^{}$ et valeurs du moment	
	quadrupolaire (0) du C ₂ H ₄	141
5.5	Valeurs de B_{ϵ} , B_{R} et B_{OR} = B_{ϵ} - B_{R} et valeurs du moment	
	octupolaire (Ω) du CH ₄	145
5.6	Valeurs de B_{ϵ} , B_{R} et $B_{OR} = B_{\epsilon} - B_{R}$ du SF ₆	148

xix

INTRODUCTION

L'indice de réfraction d'un gaz sous pression constitue une source très riche d'informations sur la structure moléculaire et les interactions moléculaires. Tout comme pour d'autres propriétés d'équilibre, on peut élaborer une théorie basée sur la mécanique statistique pour associer l'indice de réfraction à la polarisabilité et aux interactions moléculaires.

Une première approche en ce sens a été faite par Lorentz¹ et Lorenz² qui ont associé la polarisabilité à la densité "d" et à l'indice de réfraction "n" par la relation

$$\frac{n^2 - 1}{n^2 + 2} \frac{1}{d} = \frac{4}{3} \pi N_A \alpha_e$$
 (I-1)

où α_{e} est la polarisabilité électronique et $N_{A}^{}$ est le nombre d'Avogadro.

L'équation (I-1) est vérifiée pour de faibles densités, mais aux densités élevées où les interactions moléculaires deviennent importantes, l'équation (I-1) doit être modifiée. Il est donc nécessaire de faire un développement en série de puissance de la densité pour la partie de droite de l'équation (I-1). On obtient alors

$$L - L = \frac{n^2 - 1}{n^2 + 2} \frac{1}{d} = A_R + B_R d + C_R d^2 + \dots$$
 (I-2)

où A_R le premier coefficient du viriel de l'indice de réfraction représente l'interaction d'une molécule avec le champ externe, B_R , le second coefficient du viriel de l'indice de réfraction est le terme d'interaction entre 2 molécules et C_R , le troisième coefficient du viriel de l'indice de réfraction mesure l'interaction entre 3 molécules.

Notre objectif est d'étudier les premier et deuxième coefficients du viriel de l'indice de réfraction de molécules ayant des moments multipolaires. Pour déterminer ces moments, il est nécessaire de connaître précisément 2 paramètres: B_R , et B_{ϵ} le deuxième coefficient du viriel diélectrique.

Au cours des 15 dernières années, des mesures directes de B $_{\varepsilon}$ pour des molécules multipolaires ont été réalisées par Cole et al^{3,4,5} ainsi que par Bose et al^{6,7,8}. L'absence de mesures précises de B_R n'a cependant pas permis de connaître exactement la contribution du champ moléculaire, connaissance qui entraîne aussi une détermination du moment multipolaire.

Jusqu'à présent, les valeurs de B_R ont été obtenues de manière absolue, i.e par la mesure de l'indice de réfraction (n) en fonction de la densité (d). Or, étant donné la difficulté de bien mesurer "d", l'incertitude sur la mesure peut facilement atteindre 1% ou plus. Cette petite incertitude sur "d"peut alors conduire à une incertitude de 100% sur B_R dans une mesure absolue. Nous avons écarté cette difficulté liée à "d" en faisant une mesure différentielle qui mène à la détermination directe de B_R . Par ce procédé, nous réduisons énormément les incertitudes sur B_R .

Nous avons étudié des molécules non polaires et non atomiques pour lesquelles une mesure précise de B $_{\epsilon}$ existe déjà comme CO $_2$, C $_2$ H $_4$, CH $_4$ et SF $_6$.

2.

Le présent travail comprend 5 chapitres. La théorique classique et la théorie quantique concernant B_R font l'objet du chapitre I. Dans le chapitre II, nous faisons un rappel critique des méthodes courantes pour déterminer B_R . Nous exposons ensuite la méthode de l'expansion et nous complétons par la présentation de notre approche théorique et expérimentale en vue de déterminer directement B_R . Dans le chapitre III, nous expliquons les diverses composantes de notre montage alors que le chapitre IV a pour objet la présentation de nos résultats expérimentaux. Le chapitre V est consacré à une discussion générale de nos résultats en fonction de la théorie tant classique que quantique.

Le travail est complété par 5 appendices. Dans les appendices A et B, nous présentons un exemple de calcul de quelques paramètres de base et les rapports de l'ordinateur pour la détermination de A_R et B_R . A l'appendice C, on a le programme des moindres carrés. L'appendice D est consacré à une discussion de l'incertitude sur B_R et nous analysons dans l'appendice E, l'effet de la dispersion sur A_R et B_R .

CHAPITRE I

THEORIE

1.1 <u>LIEN ENTRE BRET B</u>

Les mesures précises de la constante diélectrique (ε) et de l'indice de réfraction (n) d'un gaz sous pression sont un réservoir très valable d'informations sur la structure moléculaire et les interactions moléculaires. Notre discussion sera limitée aux molécules non-dipolaires.

Pour un gaz, on peut toujours exprimer la constante diélectrique sous la forme d'une expansion du viriel en fonction de la densité (d). On obtient alors l'équation de Clausius⁹-Mossotti¹⁰

$$C - M = \frac{\varepsilon - 1}{\varepsilon + 2} \frac{1}{d} = A_{\varepsilon} + B_{\varepsilon}d + C_{\varepsilon}d^{2} + \dots \qquad (1.1)$$

où A_{ϵ} , B_{ϵ} et C_{ϵ} se nomment premier, deuxième et troisième coefficients du viriel diélectrique. Le coefficient A_{ϵ} est associé à l'interaction d'une molécule avec le champ externe. Le second coefficient B_{ϵ} représente la contribution de l'interaction de paires des moments induits. De son côté, C_{ϵ} est lié à l'interaction de 3 molécules. Pour les gaz atomiques qui ne possèdent ni moment dipolaire permanent ni moment multipolaire, B_{ϵ} représente l'interaction du second ordre entre paires de molécules, interaction due aux moments induits par le champ externe. Puisque cet effet est causé par l'induction du champ externe, on le représente dans la littérature par B_{ind} qui, strictement parlant, est égal à B_R+B_{IR} , où B_{IR} est présent dans la région de l'infrarouge. Le calcul théorique montre que B_{IR} est négligeable pour toutes les molécules que nous avons étudiées sauf pour le cas du SF₆. Pour la discussion d'ordre général, nous continuerons à supposer que B_{ind} correspond à B_R et le cas spécial du SF₆ sera traité au chapitre V. Pour un gaz multipolaire, le second coefficient du viriel diélectrique comprendra 2 termes: B_R et B_{OR} . Ce dernier terme représente la contribution de l'interaction de paires de moments induits par le champ multipolaire ou, si l'on préfère, par le champ moléculaire.

Etant donné que la mesure de B_{ϵ} à basse fréquence est la somme de 2 termes ($B_{\epsilon}=B_{R}+B_{0R}$), il est souhaitable de séparer ces effets dans le but de donner une interprétation raisonnable des résultats expérimentaux. Partant du fait que $n^{2}=\epsilon$, il est possible d'écrire l'équivalent optique (l'expression Lorentz-Lorenz) de l'équation C-M:

$$L - L = \frac{n^2 - 1}{n^2 + 2} \frac{1}{d} = A_R + B_R d + C_R d^2 + \dots$$
(1.2)

ce qui conduit à mesurer l'indice de réfraction du gaz en fonction de la densité. A_R , B_R et C_R ont déjà été définis dans l'introduction. Du fait que B_{OR} est d'origine moléculaire, il n'apporte aucune contribution dans la région des fréquences du visible. Ainsi, des mesures séparées de B_e et B_R pourraient, en principe, nous permettre d'identifier l'effet d'interaction dû au champ moléculaire et l'effet dû au champ externe. Notons qu'il est possible de déterminer directement B_{OR} en obtenant le spectre des collisions induites dans la région de l'infrarouge lointain. La mesure dans l'infrarouge lointain est reliée aux mesures à l'équilibre de la constante diélectrique et de l'indice de réfraction par la relation

$$3(B_{\varepsilon} - B_{R}) = 3B_{or} = \frac{2c}{\pi} \circ \int_{\nu}^{\infty} \frac{\alpha(\nu)}{\nu^{2}} d\nu \qquad (1.3)$$

où $\alpha(v)$ représente l'absorption, v le nombre d'onde et c la vitesse de lumière.

1.2 THEORIE CLASSIQUE

1.2.1 ORIGINE DE B

Buckingham et Pople¹¹ ont déduit les premier et second coefficients du viriel diélectrique à partir de la mécanique statistique classique. Buckingham¹² a fait de même pour les premier et deuxième coefficients du viriel de l'indice de réfraction.

Pour un milieu diélectrique homogène isotrope et de forme sphérique, la polarisation <u>P</u> est donnée par

$$4\pi \underline{P} = (\varepsilon - 1) \underline{E} \tag{1.4}$$

où ε est la constante diélectrique du milieu et <u>E</u> est le champ électrique moyen dans le diélectrique. Ordinairement, en mécanique statistique, on préfère travailler avec le champ externe <u>E</u> qui est le champ agissant sur la molécule dans le cas sphérique. La relation entre <u>E</u> et <u>E</u> dépent directement de la forme de l'échantillon. Ainsi, pour un échantillon ayant la forme d'une sphère, on a

$$\underline{E} = \frac{3}{\varepsilon + 2} \underline{E}_{0} \tag{1.5}$$

La liaison entre les équations (1.4) et (1.5) permet d'écrire

$$4\pi \underline{P} = 3 \frac{\varepsilon - 1}{\varepsilon + 2} \underline{E}_{0}$$
(1.6)

Sachant que le moment dipolaire macroscopique <u>M</u> d'un diélectrique est donné par $\underline{PV}_{m} = \underline{M}(E_{o})$ où V_{m} est le volume molaire, on peut remplacer <u>P</u> dans l'expression (1.6) par

$$\frac{\varepsilon_{-1}}{\varepsilon_{+2}} V_{m} = \frac{4\pi}{3} \frac{\langle M(\underline{E}_{0}) \rangle}{E_{0}} = \frac{4\pi}{3} \left(\frac{\partial \langle M(\underline{E}_{0}) \rangle}{\partial E_{0}} \right)$$
(1.7)

La dérivée dans le terme de droite doit être prise à la limite $E_0 \rightarrow 0$ dans le but d'obtenir le terme linéaire de la réponse de E_0 .

$$< M(\underline{E}_{0}) > = \frac{\int [\underline{M}(\tau, \underline{E}_{0}) \cdot \underline{e}] \exp\{-[U(\tau) - \underline{M}(\tau, \underline{E}_{0}) \cdot \underline{E}_{0}]/kT\} d\tau}{\int \exp\{-[U(\tau) - \underline{M}(\tau, \underline{E}_{0}) \cdot \underline{E}_{0}]/kT\} d\tau}$$
(1.8)

où $\underline{M}(\tau, \underline{E}_0)$ est le moment dipolaire macroscopique de l'échantillon dans une configuration particulière spécifiée par un choix judicieux des coordonnées τ , U est l'énergie potentielle due aux forces intermoléculaires et <u>e</u> est un vecteur unitaire dans la direction de \underline{E}_0 . L'intégrale $\int d\tau$ doit être prise sur toutes les directions et sur toutes les orientations des molécules. En insérant (1.8) dans (1.7), la dérivée nous donne

$$\frac{\varepsilon - 1}{\varepsilon + 2} V_{m} = \frac{4\pi}{3} \frac{\int \left[\left(\frac{\partial \underline{M}}{\partial E_{0}} \right) + \frac{e}{\partial E_{0}} + \frac{1}{kT} \left(\underline{M} \cdot \underline{e} \right)^{2} \right] \exp(-U/kT) d\tau}{\int \exp(-U/kT) d\tau}$$
(1.9)

$$= \frac{4\pi}{3} \quad [<(\frac{\partial \underline{M}}{\partial E_0}), \quad \underline{e} > + \frac{1}{3kT} < M^2 >] \quad (1.10)$$

Arrêtons-nous à la signification physique des termes de la partie de droite de l'expression précédente. Le premier représente l'effet du champ externe qui polarise les molécules et le second donne l'effet statistique des dipôles permanents et induits qui tendent à s'aligner dans la direction du champ externe. Ces dipôles recherchent la position d'énergie minimum. Ce terme est très important pour les molécules ayant un moment dipolaire permanent mais n'est pas nécessairement nul pour ceiles qui n'en ont pas.

En posant que le moment total \underline{M} est la somme des moments de chaque molécule, on aura

$$\underline{M} = \sum_{i=1}^{N_{A}} \underline{\mu}_{i}$$
(1.11)

8.1

où N_A est le nombre d'Avogadro. En tenant compte de (1.11), l'équation (1.10) s'écrit:

$$\frac{\varepsilon-1}{\varepsilon+2} V_{m} = \frac{4\pi N_{A}}{3} \left[< \left(\frac{\partial \mu_{1}}{\partial E_{o}} \right)_{E_{o}} = 0 \cdot \frac{e}{2} + \frac{1}{3kT} \sum_{i=1}^{N_{A}} \langle \mu_{1} \cdot \mu_{i} \rangle \right]$$
(1.12)

Par une comparaison de cette équation avec la fonction C - M(1.1) on obtient la valeur de A_e en traitant chaque molécule individuellement $(V_m \rightarrow \infty)$. De l'expression (1.12), on a

$$A_{e} = \frac{4\pi N_{A}}{3} \left(\alpha_{0} + \frac{\mu_{0}^{2}}{3kT} \right)$$
(1.13)

où $\alpha_{_{U}}$ est la polarisabilité totale moyenne d'une molécule et $\mu_{_{O}}$ est son moment dipolaire permanent. Pour les molécules non-polaires qui nous intéressent, nous aurons $\mu_{_{O}}$ =0 et la valeur de A_{_{_{E}} sera

$$A_{\varepsilon} = \frac{4\pi N_{A}}{3} \alpha_{0} \qquad (1.14)$$

En ce qui concerne A_R , le traitement pour les molécules non-polaires est identique à A_{ϵ} . Partant de l'équation de Lorentz-Lorenz (1.2) au lieu de l'équation de Clausius-Mossotti (1.1), on¹² obtient pour A_R une expression similaire à A_{ϵ} :

$$A_{R} = \frac{4\pi N_{A}}{3} \alpha_{e}$$
(1.15)

où α_e représente la polarisabilité électronique parce que l'indice de réfraction est mesurée à une fréquence dans le visible.

$$B_{\varepsilon} = \lim_{V_{m} \to \infty} \{V_{m} [\frac{\varepsilon - 1}{\varepsilon + 2} \quad V_{m} - A_{\varepsilon}]\}$$
(1.16)
$$= \lim_{V_{m} \to \infty} \frac{4\pi N_{A} V_{m}}{3} \{[<\frac{\partial \underline{\mu}}{\partial E_{0}} \cdot \underline{e} > -\alpha_{0}]$$

$$+ \frac{1}{3kT} [\sum_{i=1}^{N} < \underline{\mu}_{1} \cdot \underline{\mu}_{i} > -\mu_{0}^{2}]\}$$
(1.17)

Pour un V_m suffisamment grand, la probabilité qu'une molécule autre que la molécule de référence ($i \neq l$), ayant ses propres coordonnées de translation et de rotation τ_i dans un élément de volume $d\tau_i$ soit dans le voisinage de la molécule l est

$$(\Omega V_m)^{-1} \exp (-U_{1i}/kT) d\tau_i$$
 (1.18)

où U_{li} est le potentiel intermoléculaire et $\Omega V_m = \int d\tau_i$ est définie de telle sorte que Ω doit être l'intégrale sur toutes les coordonnées angulaires. La probabilité qu'une troisième molécule soit présente est proportionnelle à V_m^{-2} et elle ne contribue pas à B_e. Pour B_e, on me considère que la molécule 2, i.e. l'interaction entre 2 molécules. On aura alors

$$\sum_{j} \underline{\nu}_{j} \cdot \underline{\nu}_{j} = \underline{\nu}_{j} \cdot \underline{\nu}_{j} + \underline{\nu}_{j} \cdot \underline{\nu}_{2} = \underline{\nu}_{j} \cdot (\underline{\nu}_{1} + \underline{\nu}_{2})$$
(1.19)

En conséquence, la probabilité totale d'avoir une interaction entre la molécule l et la molécule 2 ou 3 ou ...N sera:

$$B_{e} = \frac{4\pi N_{A}^{2}}{\Omega} \int \{ \left[\left(\frac{\partial \underline{\mu}_{1}}{\partial E_{0}} \right) \cdot \underline{e} - \alpha_{0} \right] + \frac{1}{3kT} \left[\underline{\mu}_{1} \cdot \left(\underline{\mu}_{1} + \underline{\mu}_{2} \right) - \mu_{0}^{2} \right] \} \exp \{ -U_{12}/kT \} d\tau_{2}$$
(1.20)

où U₁₂ est l'énergie potentielle d'interaction entre les molécules l et 2 alors que d_{τ_2} représente la configuration de la molécule 2.

Si on écrit l'expression (1.20) dans une forme plus symétrique, on aura:

$$B_{\varepsilon} = \frac{4\pi N_{A}^{2}}{3\Omega} \int \{ \left[\frac{1}{2} \left(\frac{\partial (\mu_{1} + \mu_{2})}{\partial E_{0}} \right) \cdot \underline{e} - \alpha_{0} \right] + \frac{1}{3kT} \left[\frac{1}{2} \left(\frac{\mu_{1} + \mu_{2}}{2} \right)^{2} - \mu_{0}^{2} \right] \} \exp \{ -U_{12}/kT \} d\tau_{2}$$
(1.21)

La dérivation d'expressions pour C_{e} et les termes d'ordre plus élevé suit le même cheminement et conduit à des expressions comprenant un moment dipolaire, la polarisabilité et un potentiel intermoléculaire pour 3 molécules ou plus.

Si on limite le restant du développement à des molécules non-polaires ($\mu_{0}=0$), B_{_{\rm E}} s'écrit

$$B_{\varepsilon} = \frac{4\pi N_{A}^{2}}{3\Omega} \int \{ \left[\frac{1}{2} \left(\frac{\partial \left(\underline{\mu}_{1} + \underline{\mu}_{2}\right)}{\partial E_{0}} \right) \cdot \underline{e} \right) - \alpha_{0} \right]$$

+ $\frac{1}{6kT} \left(\underline{\mu}_{1} + \underline{\mu}_{2}\right)^{2} \} \exp \left(-U_{12}/kT\right) d\tau_{2}$ (1.22)

Cette dernière expression nous informe que B_{ε} comprend 2 parties: la première est produite par l'interaction entre les moments dipolaires induits par le champ externe alors que la seconde existe seulement lorsqu'une paire de molécules en interaction possède un moment dipolaire résultant en l'absence de tout champ externe.

Dans la suite du développement de B $_{\epsilon}$, nous allons d'abord limiter notre discussion aux gaz atomiques.

1.2.2 DERIVATION DE BR

Du point de vue théorique, le second coefficient du viriel diélectrique présente un intérêt particulier dans le cas des gaz atomiques. En effet, étant donné que ces gaz ne possèdent pas de moment multipolaire, le second coefficient du viriel diélectrique, B_{ϵ} , défini dans l'équation (1.22) est similaire au second coefficient du viriel de l'indice de réfraction, B_{R} . Il devient alors très intéressant de vérifier si B_{R} calculé d'après la mécanique statistique classique est identique aux valeurs expérimentales obtenues pour les gaz atomiques.

Puisque B_R est donnée par la première partie de l'équation (1.22) on a

$$B_{R} = \frac{4\pi N_{A}^{2}}{3\Omega} \int \{ [\frac{1}{2} (\frac{\partial (\mu_{1} + \mu_{2})}{\partial E_{0}} \cdot \underline{e}) - \alpha_{0}] \exp (-U_{12}/kT) \} d_{\tau_{12}}$$
(1.23)

Le terme $\langle \frac{\partial(\mu_1 + \mu_2)}{\partial E_0} \rangle$. <u>e</u>> peut être calculé en employant l'approximation du dipôle ponctuel et en utilisant le modèle classique dipôle-dipôle induit (DDI).

Si on suppose que la polarisabilité moléculaire est isotrope, le moment dipolaire \underline{u}_1 de la molécule l sera

$$\underline{\mu}_{1} = \alpha(\underline{E}_{0} + \underline{F}_{1}) \tag{1.24}$$

où \underline{F}_1 est le champ agissant au centre de la molécule l et dû aux autres moments dipolaires. Puisque B_R est associé aux interactions des paires de molécules, considérons une autre molécule qui aura un moment

$$\underline{\mu}_2 = \alpha(\underline{E}_0 + \underline{F}_2) \tag{1.25}$$

Dans un système cartésien d'axes, considérons que l'axe Z joint les centres des molécules et, en utilisant le champ dû au dipole ponctuel, on a

$$\mu_{1} = \left(\frac{\alpha E_{ox}}{1 + \alpha R^{-3}}, \frac{\alpha E_{oy}}{1 + \alpha R^{-3}}, \frac{\alpha E_{oz}}{1 - 2\alpha R^{-3}} \right)$$
(1.26)

où R est la distance intermoléculaire. On obtient une expression similaire pour $\mu_2.$ On a

$$\left(\frac{\partial \mu_{1}}{\partial E_{0}}\right) \cdot \underline{e} = \frac{\alpha}{1+\alpha R^{-3}} \left(e_{x}^{2} + e_{y}^{2}\right) + \frac{\alpha}{1-2\alpha R^{-3}} e_{z}^{2}$$
 (1.27)

Si on prend la moyenne sur toutes les directions de \underline{e} du champ incident, on déduit:

$$\left\langle \left(\begin{array}{c} \frac{\partial \underline{u}_{1}}{\partial \overline{E}_{0}} \right) \cdot \underline{e} - \alpha_{0} \right\rangle = \alpha - \alpha_{0} + \frac{2\alpha^{3}R^{-6}}{(1+\alpha R^{-3})(1-2\alpha R^{-3})}$$
(1.28)

où α_0 est la polarisabilité moyenne d'une molécule isolée. Si on remplace le dénominateur dans l'expression (1.28) par l'unité, l'équation (1.23) peut s'écrire

$$B_{R} = \frac{4\pi N_{A}^{2}}{3\Omega} \int \{ (\alpha - \alpha_{0}) + 2\alpha^{3}R^{-6} \} \exp [-U_{12}/kT] d\tau_{2}$$
(1.29)

2

Puisque α n'est pas bien définie comme fonction de R, si on suppose $\alpha \cong \alpha_0$ l'expression pour B_R devient

$$B_{R} = \frac{4\pi N_{A}^{2}}{3\Omega} \int 2\alpha_{0}^{3} R^{-6} \exp(-U_{12}/kT) d_{\tau_{2}}$$
(1.30)

L'expression (1.30) a été dérivée par Buckingham¹². Kirkwood¹³ et Yvon¹⁴ furent les premiers à obtenir une expression de B_R similaire à (1.30) en supposant le potentiel comme une sphère rigide. L'expression (1.30) permet d'utiliser toute forme de potentiel pour une paire de molécules. Buckingham et Pople¹⁵ ont calculé B_R en utilisant un potentiel réaliste, soit le potentiel de Lennard-Jones 6-12. Ce potentiel est défini par l'expression analytique suivante:

$$U(R) = 4\epsilon_{0} \left[\left(\frac{R_{0}}{R} \right)^{12} - \left(\frac{R_{0}}{R} \right)^{6} \right]$$
 (1.31)

où ε_0 a les dimensions de l'énergie et représente la profondeur du puits de potentiel alors que R₀ a les dimensions d'une longueur et représente le diamètre moléculaire. Dans la notation de Buckingham-Pople, B_R s'écrit

$$B_{R} = \frac{8\pi^{2}N_{A}^{2}\alpha_{0}^{3}}{9R_{0}^{3}}y^{-4}H_{6}(y) \qquad (1.32)$$

où y=2 $(\epsilon_0/kT)^{\frac{1}{2}}$ alors que la fonction H_n(y), tabulée par Buckingham et Pople,¹⁵ est définie par

$$_{0}\int_{0}^{\infty} R^{-n} \exp[-U(R)/kT] R^{2}dR = \frac{1}{12} R_{0}^{3-n}y^{-4}H_{n}(y)$$
 (1.33)

1.3 THEORIES QUANTIQUES

Dans l'expression (1.32), tous les paramètres sont positifs ce qui entraîne que B_R est obligatoirement positif pour tous les gaz. Or, dans le cas des gaz atomiques qui eux ne possèdent pas de moment multipolaire, Orcutt et Cole¹⁶ obtiennent pour les gaz légers (He, Ne) une valeur expérimentale négative alors que pour les gaz lourds (Ar , Kr) on a une valeur expérimentale qui, bien que positive, est plus faible que la valeur prédite par la théorie classique.

1.3.1 EFFET DE LONGUE PORTEE

On peut expliquer ce désaccord en notant que l'approximation dipôle-dipôle induit (DDI) néglige à la fois les interactions de courte et de longue portée sur la polarisabilité moléculaire. Les calculs de l'effet de longue portée sur la variation de polarisabilité moléculaire ($\Delta \alpha$) ont d'abord été entrepris avec succès par Jansen et Mazur¹⁷. Ceux-ci ont appliqué l'approximation de la double perturbation au produit des fonctions d'onde des 2 molécules et ils ont obtenu une valeur positive de $\Delta \alpha$ dans le cas de l'hélium et du néon. Jansen et Mazur ont calculé que l'effet de la variation de polarisabilité est, dans le cas de l'hélium, du même ordre de grandeur que l'effet DDI calculé d'après la mécanique statistique classique. Récemment, Certain et Fortune^{18,19} ont entrepris un calcul plus élaboré de l'effet de dispersion pour une paire d'hélium. Au lieu de procéder comme Jansen et Mazur qui ont séparé l'effet sur la polarisabilité et l'effet DDI, Certain et Fortune ont plutôt considéré l'ensemble des 2 effets précédents et ce, pour un diatome d'hélium. Ils ont calculé l'accroissement de polarisabilité suivant les techniques traditionnelles de variation et ils ont obtenu un résultat positif. Cependant, la valeur calculée est environ 4 fois plus grande que celle obtenue suivant le modèle classique. Les calculs très précis de Certain et Fortune confirment que l'inclusion de l'effet quantique de longue portée rend B_p encore plus positif par rapport au calcul DDI.

1.3.2 EFFETS DE COURTE PORTEE

D'après ce que nous venons de constater, il est évident que l'approximation DDI et l'effet de l'interaction de longue portée sur la polarisabilité d'une paire sont en désaccord avec les valeurs expérimentales de B_R pour tous les gaz. On doit donc tenir compte des interactions de courte portée comme les effets de chevauchement et d'échange.

Pour les gaz atomiques, B_R dans l'expression (1.21) peut être écrit en termes de l'augmentation de polarisabilité de la façon suivante:

$$(B_{R})_{atom.} = \frac{4\pi N_{A}^{2}}{3} \circ \int^{\infty} [(\frac{1}{2}\alpha_{12} - \alpha_{0}) \exp(-U_{12}/kT)] 4\pi R^{2} dR \qquad (1.34)$$

$$= \frac{8\pi^2 N_A^2}{3} \sqrt[6]{\pi^2} \left[\frac{1}{3} (\alpha_{11} + 2\alpha_{\perp}) - 2\alpha_0 \right] \exp(-U_{12}/kT) R^2 dR \quad (1.35)$$

16.

$$= \frac{8\pi^2 N_A^2}{3} \int_{0}^{\infty} [\alpha(R) \exp(-U_{12}/kT)] R^2 dR \qquad (1.36)$$

où
$$\alpha_{12} = \begin{bmatrix} \frac{\partial(\underline{\mu}_1 + \underline{\mu}_2)}{\partial E_0} \end{bmatrix} \cdot \underbrace{\underline{e}}_{E_0 = 0}$$
 (1.37)

est le tenseur de polarisabilité des atomes en interaction alors que $\alpha_{||}$ et α_{\perp} en sont respectivement les composantes parallèle et perpendiculaire à la distance internucléaire et $\alpha(R)$ est l'accreissement de polarisabilité.

Les premiers travaux sur les interactions de courte portée sont ceux de De Boer et al²⁰. Ceux-ci ont simulé l'effet d'interactions répulsives en examinant le changement de polarisabilité d'un atome d'hydrogène comprimé dans une petite boîte sphérique. Cette simulation a donné lieu à une diminution de la polarisabilité. Plus tard, DuPré et McTague²¹ ont employé le premier état triple excité de l'hydrogène (3 Σ) comme modèle de collision par paires d'atomes de gaz rares. Ils ont calculé $\alpha(R)$ en fonction de la distance et ont trouvé que le changement de polarisabilité était négatif à des distances intermédiaires. C'était le premier calcul à illustrer que B_R pouvait devenir négatif. Cependant, en raison de la nature très approximative de leur fonction d'onde, leurs calculs devenaient très imprécis pour de très courtes distances internucléaires. Lim, Linder et Kromhout²² ont eux aussi examiné les contributions de courte portée à la polarisabilité de 2 atomes pour diverses distances
en se basant sur la technique des perturbations de Hartree-Fock. Ils ont trouvé que les effets de chevauchement et d'échange ne donnaient pas une valeur négative observée expérimentalement pour le B_R de l'hélium.

Etant donné que les calculs précédents ne fournissaient pas la valeur exacte de la polarisabilité pour les atomes séparés d'hélium, O'Brien et al²³ ont entrepris des calculs plus précis suivant la technique Hartree-Fock. Ils ont alors obtenu le signe exact pour le B_R de l'hélium. Ce signe négatif a été obtenu expérimentalement d'abord par Orcutt et Cole¹⁶, et fut ensuite mesuré avec plus de précision par Kirouac et Bose²⁴ et par Vidal et Lallemand²⁵. O'Brien et al ont même calculé que pour une distance plus grande qu'une distance critique spécifique ($R_c \cong 8$ unités atomiques dans le cas d'une paire He), l'accroissement de polarisabilité est presque similaire à l'expression classique DDI.

On peut donc conclure qu'il faut séparer (B_R)_{at} en 2 parties: la première correspond au chevauchement à courte portée alors que le second correspond à la dispersion de longue portée.

$$(B_R)_{at} = B_R^{CH} + B_R^{DIS}$$
(1.38)

où

$$B_{R}^{CH} = \frac{8\pi^{2}}{3} N_{A_{0}}^{2} \int_{\alpha}^{R_{c}} \alpha(R) \exp(-U_{12}/kT)R^{2} dR \qquad (1.39)$$

$$B_{R}^{DIS} = \frac{8\pi^{2}}{3} N_{A}^{2} \Gamma_{R_{c}} \int_{c}^{\infty} \left(\frac{1}{R^{4}}\right) \exp\left(-U_{12}/kT\right) dR \qquad (1.40)$$

où $\Gamma = 4\alpha_0^3$ pour l'effet classique dipole-dipole induit. Si on inclut l'interaction de longue portée sur la polarisabilité, Γ doit être différent. Ainsi, pour l'hélium, Certain et Fortune ont obtenu pour Γ une expression rigoureuse dans la région de dispersion. Cette expression donne $\Gamma = 18,9 \alpha_0^3$. Dans la région de chevauchement, O'Brien et al ont utilisé avec succès la technique de perturbation de Hartree-Fock. D'autre part, Heller et al²⁶ ont calculé B_R à partir de l'approximation d'un gaz d'électrons. Leur approche semiquantique a l'avantage de tenir compte de la distorsion électronique à une très courte distance internucléaire. Ils obtiennent un accord acceptable avec les résultats expérimentaux pour le B_p de l'hélium, du néon et de l'argon.

1.4 SITUATION ACTUELLE DE LA THEORIE SUR BR

Jusqu'à présent, c'est l'approximation du gaz d'électrons, mise de l'avant par Heller et al²⁶ qui paraît la plus juste. Elle donne le même signe et la même grandeur que la valeur expérimentale de B_R pour l'hélium, le bon signe et le bon ordre de grandeur pour B_R dans le cas du néon et de l'argon. Elle doit cependant être modifié pour donner le bon ordre de grandeur dans le cas des gaz atomiques lourds. Elle n'a pas encore été employée pour déterminer le B_R des molécules.

Depuis l'approximation du gaz d'électrons, d'autres approches ont été tentées mais chacune renferme quelques défauts majeurs. Parmi ces approches, retenons celle de Oxtoby et Gelbart²⁷. Ceux-ci supposent que la matière polarisable est distribuée partout dans l'atome et non localisée dans le noyau. Leurs calculs suivant Hartree-Fock donnent une valeur de B_R très négative. Clarke et al²⁸, qui ont repris le travail de Oxtoby et Gelbart, ont obtenu une valeur de B_R moins négative dans le cas de l'hélium.

18.

Clarke et al croient que Oxtoby et Gelbart ont sous-estimé l'anisotropie de polarisabilité.

On vient de constater que les plus récentes théories quantiques ne peuvent, dans la plupart des cas, calculer la valeur exacte de B_R observée. Pour les molécules qui font l'objet du présent travail [CO₂, C₂H₄, CH₄ et SF₆], il n'existe, à notre connaissance, aucun calcul quantique sur B_R . Seule la valeur calculée selon le modèle classique DDI peut nous servir de référence.

1.5 LISTE DES OUVRAGES CITES DANS L'INTRODUCTION ET LE CHAPITRE I

- 1- J.A. Lorentz, Wiedem Ann. 9, 641 (1880)
- 2- L.Lorenz, Wiedem Ann. 11, 70 (1880)
- 3- D.R. Johnston et R.H. Cole, J. Chem. Phys. 36, 318 (1962)
- 4- R.H. Orcutt et R.H. Cole, Physica 31, 1779 (1965)
- 5- T.K. Bose et R.H. Cole, J. Chem. Phys. 52, 140 (1970)
- 6- T.K. Bose, J.S. Sochanski et R.H. Cole, J. Chem. Phys. 57, 3592 (1972)
- 7- S. Kirouac et T.K. Bose, J.Chem. Phys. 59, 3043 (1973)
- 8- C. Hosticka et T.K. Bose, J. Chem. Phys. 60, 1318 (1974)
- 9- R. Clausius, Die Mechanische Wärmtheorie, Vol. II, Braunchwerch (1879)
- 10- P.F. Mossotti, Bibl. Univ. Modena 6, 193 (1847)
- 11- A.D. Buckingham et J.A. Pople, Trans. Faraday Soc. 51, 1029 (1955)
- 12- A.D. Buckingham, Trans Faraday Soc. <u>52</u>, 747 (1956)
- 13- J.G. Kirkwood, J. Chem. Phys. 4, 592 (1936)
- 14- J. Yvon, Comp. Rendu Hebd. Sceances Acad. Sci. Paris, 202, 35 (1936)
- 15- A.D. Buckingham et J.A. Pople, Trans. Faraday Soc. 51, 1173 (1955)
- 16- R.H. Orcutt et R.H. Cole, J. Chem. Phys. 46, 697 (1967)

- 17- L. Jansen et P. Mazur, Physica 21, 193 (1955)
- 18- P.R. Certain et P.J. Fortune, J.Chem. Phys. 55, 5818 (1971)
- 19- P.J. Fortune et P.R. Certain, J. Chem. Phys. 61, 2620 (1974)
- 20- J.De Boer, F. Van der Moessen et C.A. Ten Seldem, Physica 19, 265 (1953)
- 21- D.B. DuPré et J.P. McTague, J. Chem. Phys. 50, 2024 (1969)
- 22- T.K. Lim, B. Linder et R.A. Kromhout, J. Chem. Phys. 52, 3821 (1970)
- 23- E.F. O'Brien, V.P. Gutshick, V. McKoy et J.P. McTague, Phys. Rev. <u>A8</u>, 690 (1973)
- 24- S. Kirouac et T.K. Bose, J. Chem. Phys. 64, 1580 (1976)
- 25- D. Vidal et M. Lallemand, J. Chem. Phys. <u>64</u>, 4293 (1976)
- 26- D.F. Heller, R.A. Harris et W.M.Gelbart, J. Chem. Phys. <u>62</u>, 1947 (1975)
- 27- D.W. Oxtoby et W.M. Gelbart, Mol. Phys. <u>29</u>, 1569 (1975); <u>30</u>, 535 (1975)
- 28- K.L. Clarke, P.A. Madden et A.D. Buckingham, Mol. Phys. 36, 30] (1978)

CHAPITRE II

METHODES EXPERIMENTALES POUR LA DETERMINATION DIRECTE DE BR.

2.1 <u>QUELQUES METHODES EXPERIMENTALES COURANTES POUR OBTENIR B</u>R.

2.1.1 EQUATION DE LORENTZ-LORENZ.

Ce sont L. Lorenz¹ et J.A. Lorentz² qui, en 1880, ont proposé d'associer l'indice de réfraction (n) d'un fluide et sa densité molaire (d) par la relation suivante:

L.L. =
$$\frac{n^2 - 1}{n^2 + 2} \frac{1}{d} = \frac{4\pi N A^{\alpha} e}{3}$$
 (2.1)

où N_A est le nombre d'Avogadro et α_e est la polarisabilité électronique d'une molécule isolée.

L'équation (2.1) est valable seulement à très basse pression (faible densité). Avec l'augmentation de la pression jusqu'à quelques atmosphères, on peut observer que $\frac{n^2-1}{n^2+2}$ $\frac{1}{d}$ n'est plus une constante. Pour remédier à cet écart, la correction apportée fut de faire un développement du viriel de la partie de droite et d'exprimer l'équation L.L. par l'expression suivante :

L.L.=
$$\frac{n^2 - 1}{n^2 + 2} \frac{1}{d} = A_R + B_R d + C_R d^2 + \dots$$
 (2.2)

Dans cette dernière expression, les coefficients ${\rm A}_{\rm R},~{\rm B}_{\rm R}$ et ${\rm C}_{\rm R}$ ont été définis dans l'introduction.

On va d'abord élaborer la méthode traditionnelle pour la détermination du deuxième coefficient du viriel de l'indice de réfraction. Cette méthode consiste à mesurer l'indice de réfraction en fonction de la pression.

2.1.2 MESURE DE L'INDICE DE REFRACTION ET DE LA PRESSION.

Pour un gaz parfait, l'expression pour une mole de gaz est:

$$PV = RT$$
 (2.3)

et elle conduit à une première approximation de la densité (d):

Une expansion du viriel de l'équation (2.3) donne

$$\frac{P}{RT} = d + B_{p}d^{2} + \dots$$
(2.5)

où B $_{\rm p}$ est le deuxième coefficient du viriel de pression. L'équation précédente mène à une seconde approximation de la densité:

$$d \cong \frac{P}{RT} - B_p \left(\frac{P}{RT}\right)^2 + \dots \qquad (2.6)$$

Maintenant, si on introduit cette dernière approximation de la densité dans l'équation (2.2), on obtient

$$\frac{n^2 - 1}{n^2 + 2} = A_R + (B_R - A_R B_p) (P/RT) + \dots$$
(2.7)

Une mise en graphique de $\frac{n^2-1}{n^2+2} \frac{RT}{P}$ en fonction de P/RT permet de déterminer A_R par l'intercepte et B_R - A_RB_p par la pente à l'origine. Le coefficient représentant la pente comprend 2 termes dont l'un est petit vis-à-vis l'autre. En effet, pour les gaz que nous avons étudiés, le terme B_R contribue entre 0,4% et 2,5% à l'expression totale B_R - A_RB_p. En conséquence, une incertitude très faible sur B_R-A_RB_p peut conduire à une incertitude fort grande sur B_R si on désire déterminer B_R à partir de la connaissance de B_R-A_RB_p. Une autre source non négligeable d'incertitude vient du fait que, dans la littérature³, les mesures du deuxième coefficient du viriel de pression, B_p, présentent des écarts allant de 1% pour le C0₂ à 20% pour le C₂H₄.

2.1.3 PRINCIPE DE LA METHODE DE L'EXPANSION.

La méthode de l'expansion cyclique a été appliquée pour la première fois dans le domaine diélectrique par Cole et ses collaborateurs^{4,5,6,7}. Nous avons adopté la méthode d'expansion modifiée par Buckingham et al⁸ pour notre mesure directe de B_p .

La méthode de Buckingham et al consiste à mesurer d'abord la capacité totale C₁ de 2 cellules identiques placées en parallèles (voir la figure 2.1), une des cellules étant remplie de gaz à une densité "d" alors que la seconde est sous vide. En ouvrant la valve entre les 2 cellules, on mesure la capacité totale C_2 des cellules. Comme la densité, après l'expansion, est d/2 dans chaque cellule, le changement de capacité (C_1-C_2) est dû aux interactions moléculaires. En effet, la partie linéaire de la densité ne varie pas (d/2 + d/2 = d) tandis que la partie quadratique et celles d'ordres supérieurs varient. Malheureusement, cette détermination directe du deuxième coefficient du viriel diélectrique est erronée en raison des effets d'écarts de volume et de capacitance géométrique des cellules.

Pour annuler ces effets, Buckingham et al suggèrent de faire une seconde expansion à partir de la cellule B. On mesure maintenant la capacité C_3 qui correspond à la situation où la cellule B est remplie de gaz à la même densité "d" et la cellule A est vide. Après l'expansion, on obtient la capacité C_4 . La somme

$$(C_1 - C_2) + (C_3 - C_4)$$
 (2.8)

élimine complètement les erreurs dues aux écarts de volume et de capacitance géométrique des cellules et représente la contribution directe des interactions moléculaires.

Figure 2.1: Disposition des cellules pour la mâthode de l'expansion proposée par Buckingham et al⁸.

<u>Figure 2.2</u>: Disposition des cellules pour notre méthode dans la mesure directe de B_R .

2.1.3.1 NOTRE ADAPTATION

Deux cellules optiques quasi identiques sont placées en série dans un des bras d'un interféromètre de Michelson. La cellule "A" est alors remplie de gaz pour obtenir, après équilibre thermodynamique, un indice de réfraction n_1 . On ouvre ensuite la valve entre les 2 cellules (voir la figure 2.2) et on mesure le nouvel indice de réfraction n_2 du gaz contenu dans les 2 cellules à une densité d/2. La variation $(n_1 - n_2)$ observée est due à la fois aux interactions moléculaires et aux écarts de volume et de longueur des cellules. Cette procédure expérimentale élimine entièrement le coefficient A_R .

Pour séparer la contribution des interactions moléculaires de celle due aux écarts de volume et de longueur, nous retenons le processus suivant. Après la première expansion donnant $n_1 - n_2$, nous évacuons les 2 cellules. Nous remplissons cette fois la cellule B pour obtenir un indice de réfraction n_3 qui est quasi identique à n_1 . Après, nous faisons l'expansion du gaz de la cellule B vers la cellule A et nous mesurons, à l'équilibre thermodynamique, l'indice de réfraction n_4 . A nouveau, la différence $n_3 - n_4$ est due tant aux interactions moléculaires qu'aux écarts de volume et de longueur des cellules. On note cependant que les 2 expansions se font en sens inverse à partir d'une même densité. En conséquence, la somme

$$(n_1 - n_2) + (n_3 - n_4)$$
 (2.9)

donne une idée exacte de la contribution des interactions moléculaires car les contributions causées par les écarts de volume et de longueur des cellules s'annulent entièrement dans l'addition des mesures réalisées en sens inverse. Pour déterminer B_R avec une incertitude minimale, nous proposons de mesurer l'indice de réfraction à plusieurs pressions différentes. Nous sommes ainsi en position de faire un graphique de la variation d'indice de réfraction en fonction de l'indice de réfraction initiale. Par la méthode des moindres carrés (voir appendice C), nous pouvons déduire directement B_p .

Pour augmenter la contribution des divers types d'interactions moléculaires, nous préférons travailler à haute pression. Au cours de nos travaux, nous n'avons pas dépassé la pression de 200 atmosphères qui est bien en dessous de la limite maximum de nos cellules. A cette pression, la contribution des interactions entre 3 molécules pourrait être suffisamment forte chez certains gaz pour qu'il nous soit possible d'obtenir $C_{\rm R}$.

Pour représenter la densité en fonction de l'indice de réfraction, on peut développer la série suivante:

$$n - 1 = A_n d + B_n d^2 + C_n d^3 + \dots$$
 (2.10)

Comme on peut déterminer l'indice de réfraction avec une précision de 5 parties dans 10^7 et comme les coefficients A_n et B_n peuvent être connus avec une grande précision, on peut remplacer la mesure de la densité par

$$d \cong \frac{n-1}{A_n} - \frac{B_n}{A_n} \left(\frac{n-1}{A_n}\right)^2 + \dots$$
 (2.11)

A la section 2.2, nous expliquerons en détail comment nous procédons pour déduire directement B_R uniquement à partir de la mesure de l'indice de réfraction. Notre processus expérimental est d'abord conçu pour mesurer directement B_R qui représente l'interaction entre 2 molécules. Il permet aussi d'obtenir C_R lorsque la contribution des interactions entre 3 molécules est suffisamment importante. Nous déterminons la densité à partir de la mesure de l'indice de réfraction.

2.1.3.2 ADAPTATION DE BUCKINGHAM ET GRAHAM.

En se basant sur la méthode de l'expansion, Buckingham et Graham⁹ proposent de mesurer directement B_R selon le procédé suivant.

Ils suggèrent de placer en série dans un bras d'un interféromètre à polarisation 2 cellules optiques quasi identiques. En maintenant la cellule B sous vide, l'admission du gaz dans la cellule A entraîne une différence de phase δ_1 . Le passage du gaz de la cellule A vers la cellule B conduit à enregistrer une nouvelle variation de phase δ_2 . En conséquence, l'écart $\delta_1 - \delta_2$ est dû à la fois aux interactions moléculaires et aux écarts de volume et de longueur des cellules. La densité initiale est connue à partir d'une mesure très précise de la pression.

Pour éliminer les effets causés par les écarts de volume et de longueur, Buckingham et Graham choisissent le procédé suivant. Après avoir évacué la cellule A, on obtient une variation de phase δ_3 . Ensuite, on ouvre la valve entre les 2 cellules et on note une nouvelle variation de phase δ_4 . A nouveau, la différence $\delta_3 - \delta_4$ est associée aux interactions moléculaires et aux écarts de volume et de longueur des cellules. Notant que la différence $\delta_3 - \delta_4$ a été observée à une densité qui est la moitié de la densité liée à $\delta_1 - \delta_2$, Buckingham et Graham éliminent les effets associés aux écarts en faisant la somme

$$(\delta_1 - \delta_2) + 2(\delta_3 - \delta_4).$$
 (2.12)

Cette dernière relation leur permet d'obtenir directement la valeur de B_p .

Buckingham et Graham furent les premiers à rapporter dans la littérature une méthode pour mesurer directement le deuxième coefficient du viriel de l'indice de réfraction. Ils utilisent un interféromètre à polarisation alors que nous employons un interféromètre-laser de type Michelson.

Les différences principales entre notre méthode et celle de Buckingham-Graham se situent à 2 niveaux:

- a) en raison de la faible épaisseur (2,5 mm) des fenêtres de leurs cellules optiques, ils sont limités à une pression maximale de l'ordre de 5 atmosphères (pression maximale rapportée pour leurs mesures) alors que notre limite est de 300 atmosphères. La différence de pression fait que nous favorisons davantage les contributions des divers types d'interactions.
- b) ils choisissent de répéter leurs mesures à partir d'une même pression initiale et obtiennent B_R comme la valeur moyenne sur quelques expériences. Nous mesurons l'indice de réfraction à diverses pressions et déduisons B_R à partir d'un graphique. Ce procédé nous permet de séparer B_R des autres coefficients alors que Buckingham et Graham ne peuvent pas le faire. En effet, si la contribution du troisième coefficient du viriel de l'indice de réfraction (C_R) est présente à basse pression, nous sommes capables de distinguer entre les contributions de B_R et celles de C_R . Cette distinction est possible parce que

nous n'assignons pas toutes les interactions comme venant de B_R . Nous les représentons par un polynôme de telle sorte que la méthode des moindres carrés nous permet d'obtenir B_R par la pente à l'origine.

2.2 <u>DETAILS DE NOTRE METHODE EXPERIMENTALE POUR DETERMINER DIRECTE-</u> <u>MENT B_R</u>.

2.2.1 APPROCHE THEORIQUE.

Les coefficients du viriel de l'indice de réfraction sont donnés par l'équation modifiée de Lorentz-Lorenz:

L.L. =
$$\frac{n^2 - 1}{n^2 + 2} \frac{1}{d} = A_R + B_R d + C_R d^2 + \dots$$
 (2.13)

où les paramètres d, n, A_R , B_R et C_R ont été définis dans l'introduction.

Le développement de (n-1) d^{-1} en fonction de la densité donne:

$$(n-1)d^{-1} = A_n + B_nd + C_nd^2 + \dots$$
 (2.14)

où A_n , B_n et C_n se nomment premier, deuxième et troisième coef-

ficient du viriel de réfraction. L'équation (2.14) est à la base de nos mesures de l'indice de réfraction alors que nous désirons obtenir la valeur de B_R dans l'expression (2.13).

Nous associons les coefficients de l'expression (2.13) à ceux de l'expression (2.14) de la façon décrite ci-après.

L'équation (2.14) peut aussi s'écrire:

$$n = 1 + [A_n d + B_n d^2 + C_n d^3] + \dots$$
 (2.15)

$$n^{2} = \{1 + [A_{n}d + B_{n}d^{2} + C_{n}d^{3}]\}^{2} + \dots$$
 (2.16)

$$n^{2}-1 = 2[A_{n}d+B_{n}d^{2}+C_{n}d^{3}] + [A_{n}d+B_{n}d^{2}+C_{n}d^{3}]^{2} + \dots$$
 (2.17)

$$n^{2}-1 = 2[A_{n}d + B_{n}d^{2} + C_{n}d^{3}] + A_{n}^{2}d^{2} + 2A_{n}B_{n}d^{3} + (2A_{n}C_{n} + B_{n}^{2})d^{4}$$

+
$$2B_n c_n d^5 + c_n^2 d^6 + \dots$$
 (2.18)

Négligeant les termes supérieurs à d³, nous avons

$$(n^{2}-1)(1/d) = 2A_{n} + (2B_{n} + A_{n}^{2})d + (2C_{n} + 2A_{n}B_{n})d^{2} + \dots (2.19)$$

D'autre part, l'équation (2.13) peut elle aussi se transformer. En faisant

$$1 - \left(\frac{n^2 - 1}{n^2 + 2}\right) = 1 - \left[A_R d + B_R d^2 + C_R d^3 + \dots\right]$$
(2.20)

$$\frac{3}{n^2+2} = 1 - [A_R d + B_R d^2 + C_R d^3 + ...]$$
(2.21)

nous obtenons

$$\frac{n^2 + 2}{3} = \frac{1}{1 - [A_R d + B_R d^2 + C_R d^3 + \dots]}$$
(2.22)

Comme le terme $[A_R d + B_R d^2 + C_R d^3 + ...]$ est petit vis-à-vis l, nous pouvons apporter l'approximation

$$\frac{n^{2}+2}{3} \approx 1 + [A_{R}d + B_{R}d^{2} + C_{R}d^{3} + \dots] + [A_{R}d + B_{R}d^{2} + C_{R}d^{3} + \dots]^{2} + [A_{R}d + B_{R}d^{2} + C_{R}d^{3} + \dots]^{3} + \dots$$
(2.23)

Si nous développons cette dernière expression, nous obtenons, en négligeant les termes supérieurs à d³:

$$(n^{2}-1)(1/d) = 3A_{R} + 3(B_{R}+A_{R}^{2})d + 3(C_{R}+2A_{R}B_{R}+A_{R}^{3})d^{2} + \dots$$
 (2.24)

Comparant terme à terme les équations (2.19) et (2.24) nous avons

$$2 A_n = 3 A_R$$
 (2.25)

$$2B_n + A_n^2 = 3B_R + 3A_R^2$$
 (2.26)

$$2C_n + 2A_nB_n = 3C_R + 6A_RB_R + 3A_R^3$$
 (2.27)

d'où nous déduisons que

$$A_{\rm R} = (2/3) A_{\rm n}$$
 (2.28)

de (2.26) et (2.28), nous obtenons

$$B_R = (2/3)B_n - (1/9)A_n^2$$
 (2.29)

et nous avons le coefficient C_R par l'expression

$$C_R = (2/3)C_n - (2/9)A_nB_n - (4/27)A_n^3$$
 (2.30)

C'est l'expression (2.29) qui doit retenir notre attention. Nous notons que pour déterminer B_R , il nous faut connaître A_n , le premier coefficient du viriel de réfraction. Nous expliquerons à la section 2.3 le processus expérimental pour obtenir A_n .

2.2.2 APPROCHE EXPERIMENTALE

Soit 2 cellules A et B (voir la figure 2.2) quasi identiques dont les volumes sont respectivement de V_A et V_B et que nous définissons par rapport à un volume moyen V de la façon suivante:

$$V_{A} = V(1 + \delta) \tag{2.31}$$

$$V_{\rm B} = V(1 - \delta)$$
 (2.32)

donc

$$\frac{V_A + V_B}{2} = V \tag{2.33}$$

et & est petit vis-à-vis l'unité.

De même nous définissons que les longueurs des cellules A et B sont respectivement

$$\ell_{A} = \ell(1 + \Delta) \tag{2.34}$$

$$\ell_{\mathsf{R}} = \ell(1 - \Delta) \tag{2.35}$$

$$\frac{\ell_{\rm A} + \ell_{\rm B}}{2} = \ell \tag{2.36}$$

où ∆ est petit vis-à-vis l'unité.

2.2.2.1. EXPANSION DU GAZ DE LA CELLULE A VERS LA CELLULE B.

La cellule A contient initialement un gaz à une densité d_1 et un indice de réfraction n_1 alors que la cellule B est sous vide. Nous avons alors

$$n_1 - 1 = A_n d_1 + B_n d_1^2 + C_n d_1^3 + \dots$$
 (2.37)

En faisant le passage du gaz de la cellule A vers la cellule B, l'indice de réfraction n_{12} du gaz contenu dans les 2 cellules devient

$$n_{12} - 1 = A_n \frac{d_1}{2} + B_n (\frac{d_1}{2})^2 + C_n (\frac{d_1}{2})^3$$
 (2.38)

Sachant que la densité d se définie comme le nombre de molécules par unité de volume, on a

$$d_{1} = \frac{N}{V_{A}} = \frac{N}{V(1+\delta)} \cong \frac{N(1-\delta)}{V}$$
(2.39)

$$d_1^2 = \left(\frac{N}{V_A}\right)^2 = \frac{N^2}{V^2(1+\delta)^2} \cong \left(\frac{N}{V}\right)^2 (1-2\delta)$$
(2.40)

si on néglige δ^2 devant δ .

D'autre part, du point de vue interférence, l'indice de réfraction est donné, dans notre cas, par l'expression

$$n - 1 = \frac{k\lambda}{4L}$$
 (2.41)

où k est le nombre de franges comptées, en multiples de $\lambda/4$, par notre interféromètre-laser pour un passage aller et retour du faisceau dans une cellule de longueur L. Le paramètre λ représente la longueur d'onde, dans le vide, émise par le laser (632,8 nm).

En conséquence, pour une entrée du gaz dans la cellule A, nous avons

$$(n_{1}-1) = \frac{k_{1}\lambda}{4\iota(1+\Delta)} = A_{n}(\frac{N}{V})(1-\delta) + B_{n}(\frac{N}{V})^{2}(1-2\delta) + C_{n}(\frac{N}{V})^{3}(1-3\delta)$$
(2.42)

En réalisant le passage du gaz de la cellule A vers la cellule B l'indice de réfraction sera:

$$(n_{12}-1) = \frac{k_{12}\lambda}{4(\ell_A+\ell_B)} = A_n d_{12} + B_n d_{12}^2 + C_n d_{12}^3 + \dots$$
 (2.44)

$$= \frac{1}{2} - \frac{k_{12}\lambda}{4k} = A_n \left(\frac{N}{2V}\right) + B_n \left(\frac{N}{2V}\right)^2 + C_n \left(\frac{N}{2V}\right)^3 + \dots \quad (2.45)$$

Or, nous sommes intéressés à connaître la variation d'indice de réfraction lors du passage. Définissons

$$D_{A} = (n_{1}-1)(1+\Delta) - 2(n_{12}-1)$$
(2.46)

Des équations (2.42) et (2.45), on obtient

$$D_{A} = A_{n}(\frac{N}{V})(\Delta - \delta) + \frac{B_{n}}{2}(\frac{N}{V})^{2}[1+2(\Delta - 2\delta)] + \frac{C_{n}}{4}(\frac{N}{V})^{3}[3+4(\Delta - 3\delta)] + \dots$$
(2.47)

comme (N/V) \cong (1+ δ)d₁, on obtient

.

$$D_{A} = A_{n}(\Delta - \delta)(1 + \delta)d_{1} + \frac{B_{n}}{2}(1 + \delta)^{2}[1 + 2(\Delta - 2\delta)]d_{1}^{2}$$
$$+ \frac{C_{n}}{4}(1 + \delta)^{3}[3 + 4(\Delta - 3\delta)]d_{1}^{3} + \dots \qquad (2.48)$$

En négligeant les termes d'ordres supérieurs à δ , nous avons

$$D_{A} = A_{n}(\Delta - \delta)d_{1} + \frac{B_{n}}{2} [1 + 2(\Delta - \delta)]d_{1}^{2} + \frac{C_{n}}{4} [3 + (4\Delta - 3\delta)]d_{1}^{3} + \dots$$
(2.49)

Les 2 approximations successives dans l'équation (2.37) nous conduisent à: $d_{1} \cong \frac{n_{1}-1}{A_{n}} - \frac{B_{n}}{A_{n}} \left(\frac{n_{1}-1}{A_{n}}\right)^{2} + \dots \qquad (2.50)$ Il s'ensuit que

$$D_{A} = A_{n}(\Delta - \delta) \left[\frac{n_{1} - 1}{A_{n}} - \frac{B_{n}}{A_{n}}\left(\frac{n_{1} - 1}{A_{n}}\right)^{2}\right] + \frac{B_{n}}{2}\left[1 + 2(\Delta - \delta)\right]$$

$$\left[\frac{n_{1} - 1}{A_{n}} - \frac{B_{n}}{A_{n}}\left(\frac{n_{1} - 1}{A_{n}}\right)^{2}\right]^{2} + \frac{C_{n}}{4}\left[3 + (4\Delta - 3\delta)\right] \left[\frac{n_{1} - 1}{A_{n}} - \frac{B_{n}}{A_{n}}\left(\frac{n_{1} - 1}{A_{n}}\right)^{2}\right]^{3}$$

$$+ \cdots \qquad (2.51)$$

En négligeant les termes supérieurs à $(n_1-1)^3$, nous obtenons

$$D_{A} = (n_{1}-1)(\Delta-\delta) - \frac{2(\Delta-\delta)B_{n}}{2A_{n}^{2}} (n_{1}-1)^{2} + \frac{B_{n}}{2A_{n}^{2}} (n_{1}-1)^{2} + \frac{2(\Delta-\delta)B_{n}}{2A_{n}^{2}} (n_{1}-1)^{2} - \frac{B_{n}^{2}}{A_{n}^{4}} (n_{1}-1)^{3} - \frac{2B_{n}^{2}}{A_{n}^{4}} (\Delta-\delta) (n_{1}-1)^{3} + \frac{3C_{n}}{4A_{n}^{3}} (n_{1}-1)^{3} + \frac{C_{n}}{4A_{n}^{3}} (4\Delta-3\delta)(n-1)^{3} + \dots$$
(2.52)

D'où on déduit

$$\frac{D_{A}}{n_{1}-1} = (\Delta - \delta) + \frac{B_{n}}{2A_{n}^{2}}(n_{1}-1) + \left\{\frac{C_{n}}{4A_{n}^{3}}[3 + (4\Delta - 3\delta)] - \frac{B_{n}^{2}}{A_{n}^{4}}[1 + 2(\Delta - \delta)]\right\}(n_{1}-1)^{2} + \dots$$
(2.53)

2.2.2.2 EXPANSION DU GAZ DE LA CELLULE B VERS LA CELLULE A

En procédant par symétrie avec les équations du passage du gaz de la cellule A vers la cellule B, nous obtenons pour la rentrée dans la cellule B:

$$(n_2 - 1)(1 - \Delta) = \frac{k_2 \lambda}{4\ell} = [1 + (\delta - \Delta)] \quad A_n(\frac{N}{V}) + [1 + (2\delta - \Delta)] \quad B_n(\frac{N}{V})^2$$

$$+ [1 + (3\delta - \Delta)] \quad C_n(\frac{N}{V})^3 + \dots$$

$$(2.54)$$

Le passage du gaz de la cellule B vers la cellule A donne l'indice de réfraction suivant:

$$n_{21} - 1 = \frac{1}{2} \left(\frac{k_{21}\lambda}{4k} \right) = A_n \left(\frac{N}{2V} \right) + B_n \left(\frac{N}{2V} \right)^2 + C_n \left(\frac{N}{2V} \right)^3 + \dots$$
 (2.55)

La différence d'indice de réfraction entre la rentrée et le passage donne lieu à la définition

$$D_{B} = (n_{2} - 1) (1 - \Delta) - 2(n_{21} - 1)$$
(2.56)

D'où il suit que

$$D_{B} = A_{n}(\frac{N}{V})(\delta-\Delta) + B_{n}(\frac{N}{V})^{2}[1+(2\delta-\Delta)] + \frac{C_{n}}{4}(\frac{N}{V})^{3}[3+4(3\delta-\Delta)] + \dots$$
(2.57)

Puisque (N/V) = (1 - δ)d₂, on a

$$D_{B} = A_{n}(\delta - \Delta)d_{2} + \frac{B_{n}}{2} [1 + 2(\delta - \Delta)]d_{2}^{2} + \frac{C_{n}}{4} [3 + (3\delta - 4\Delta)]d_{2}^{3} + \dots (2.58)$$

or

$$d_2 = \frac{n_2 - 1}{A_n} - \frac{B_n}{A_n} \left(\frac{n_2 - 1}{A_n}\right)^2 + \dots$$
 (2.59)

Si on introduit (2.59) dans (2.58), on obtient, en négligeant les termes supérieurs à $\left(n_2^{-1}\right)^3$

$$\frac{D_{B}}{n_{2}-1} = (\delta - \Delta) + \frac{B_{n}}{2A_{n}^{2}} (n_{2}-1) + \left\{ \frac{C_{n}}{4A_{n}^{3}} [3 + (3\delta - 4\Delta)] - \frac{B_{n}^{2}}{A_{n}^{4}} [1 + 2(\delta - \Delta)] \right\} (n_{2}-1)^{2}$$

$$+ \dots \qquad (2.60)$$

Si on fait la sommation des effets pour les passages en sens inverse, on obtient:

$$\frac{D_{A}}{n_{1}-1} + \frac{D_{B}}{n_{2}-1} = \frac{B_{n}}{2A_{n}^{2}} [(n_{1}-1)+(n_{2}-1)] \\
+ \left\{ \frac{C_{n}}{4A_{n}^{3}} [3+(4\Delta-3\delta)] - \frac{B_{n}^{2}}{A_{n}^{4}} [1+2(\Delta-\delta)] \right\} (n_{1}-1)^{2} \\
+ \left\{ \frac{C_{n}}{4A_{n}^{3}} [3+(3\delta-4\Delta)] - \frac{B_{n}^{2}}{A_{n}^{4}} [1+2(\delta-\Delta)] \right\} (n_{2}-1)^{2} + \dots$$
(2.61)

Or, pour une même pression, on a, à toute fin pratique, n₁-l ≅ n₂-l. En conséquence, l'équation précédente peut s'écrire

$$\frac{D_{A}}{n_{1}-1} + \frac{D_{B}}{n_{2}-1} = \frac{B_{n}}{2A_{n}^{2}} [(n_{1}-1)+(n_{2}-1)] + [\frac{3C_{n}}{4A_{n}^{3}} - \frac{B_{n}^{2}}{A_{n}^{4}}] [(n_{1}-1)^{2}+(n_{2}-1)^{2}] + \dots$$

$$(2.62)$$

Cette dernière équation représente un polynôme qui ne contient aucun terme en δ ou Δ . Donc, nous éliminons totalement les effets dus aux variations de volume et de longueur des cellules. Le coefficient de $[(n_1-1) + (n_2-1)]$ permet d'obtenir B_R par la relation

$$B_{R} = (2/3)B_{n} - (1/9)A_{n}^{2}$$
(2.63)

et A_n est tiré de la relation

$$A_{\rm R} = (2/3) A_{\rm n}$$
 (2.64)

après une mesure, à basse pression, de l'indice de réfraction "n" en fonction de la pression.

2.3 DETERMINATION DE AR ET DE BP.

2.3.1 <u>A</u>R

On vient de montrer que la connaissance de B_R implique la mesure de B_n et A_n . On a démontré qu'il est possible de déduire directement B_n . Il nous faut donc obtenir la valeur de A_n .

De l'équation (2.25), on a

$$A_{\rm R} = (2/3) A_{\rm n}$$
 (2.65)

D'autre part, l'équation modifiée de Lorentz-Lorenz

$$\frac{n^2 - 1}{n^2 + 2} \frac{1}{d} = A_R + B_R d + \dots$$
(2.66)

nous permet d'établir un lien entre "n" et "d". Or, comme nous voulons déterminer la densité à partir de la mesure de la pression, nous retenons la double approximation sur la densité. Cette approximation que nous avons établie à l'équation (2.6), nous l'insérons dans l'équation (2.66) pour obtenir

$$\frac{n^2 - 1}{n^2 + 2} \frac{RT}{P} = A_R + (B_R - A_R B_P) P/RT + \dots$$
(2.67)

Ainsi, le graphique de $\frac{n^2-1}{n^2+2} \frac{RT}{p}$ en fonction de P/RT donne A_R comme intercepte. Cette méthode est très juste quant à la détermination de A_R parce que le premier coefficient du viriel de l'indice de réfraction contribue entre 89% et 99% au terme de droite dans l'équation (2.67) à une pression de 12 atmosphères. Cette contribution fut vérifiée pour les gaz que nous avons étudiés. Toutes nos mesures furent faites à des pressions inférieures à 12 atmosphères.

L'incertitude sur A_R est faible en raison de la petite incertitude (<u>+</u> 0,015%) liée à notre détecteur précis de pression décrit à la section 3.2.5 et de celle (<u>+</u>0,02⁰C) de notre thermomètre.

2.3.2 <u>B</u>p

Comme nous l'avons signalé auparavant à la section 2.1.2, le coefficient ($B_R - A_R B_P$) peut être employé pour obtenir B_P . En effet, ayant déjà déterminer B_R par la relation (2.62), la méthode précédente nous permet d'abord d'obtenir A_R . Ainsi, en posant "m" comme le coefficient de P/RT, nous pouvons obtenir B_P par l'expression

$$-B_{\rm P} = \frac{m - B_{\rm R}}{A_{\rm R}}$$
(2.68)

Puisque le terme "m" est très grand par rapport au terme B_R , ce dernier influence peu dans la détermination de B_p par cette procédure. L'incertitude sur B_p est, à toute fin pratique, égale à l'incertitude sur la pente.

2.4 LISTE DES OUVRAGES CITES DANS LE CHAPITRE II .

- 1- L. Lorenz, Wiedem Ann., 11, 70 (1880)
- 2- J.A. Lorentz, Wiedem Ann., 9, 641 (1880)
- 3- J.H. Dymond et E.B. Smith, <u>The virial coefficients of gases</u>, Clarendon Press, Oxford (1969)
- 4- D.R. Johnston, G.J. Oudemans et R.H. Cole, J. Chem. Phys. 33, 1310 (1960)
- 5- R.H. Orcutt et R.H. Cole, Physica 31, 1779 (1965)
- 6- R.H. Orcutt et R.H. Cole, J. Chem. Phys. 46, 697 (1967)
- 7- T.K. Bose et R.H. Cole, J. Chem. Phys. 52, 140 (1970)
- 8- A.D. Buckingham, R.H. Cole et H. Sutter, J. Chem. Phys. 52, 5960 (1970)
- 9- A.D. Buckingham et C. Graham, Proc. Roy. Soc. London, A336, 275 (1974)

٠

CHAPITRE III

EQUIPEMENT EXPERIMENTAL

3.1 DESCRIPTION DU MONTAGE

Le montage comprend deux parties principales: les cellules optiques et l'interféromètre-laser. Nous décrivons ce montage à l'aide de la figure 3.1.

Les 2 cellules optiques identiques A et B, sont placées en série sur un même axe optique. Elles sont immergées dans une enceinte (E) à température contrôlée. Le faisceau lumineux émis par le laser traverse les 4 fenêtres identiques (C). Après incidence sur le réflecteur (D) à prisme trilatéral (cube corner), le faisceau revient vers le laser en traversant à nouveau les fenêtres. Les faisceaux incident et réfléchi sont parallèles et distants de 2,5 cm. Une seconde enceinte (G) à température contrôlée se situe entre les cellules et le laser. Ce dernier est lié à une table (I) ajustable suivant l'horizontale et la verticale. Chacune des pièces citées plus haut est fixée sur la table de granit (F) pour annuler les déplacements des pièces les unes par rapport aux autres.

<u>Figure 3.1</u>: Notre montage pour la mesure directe de B_R. Voir le texte pour les symboles.

La table de granit repose elle-même sur 4 chambres à air (M). Notons qu'en aucun endroit le faisceau lumineux n'est en contact avec le liquide caloporteur. En effet, des joints disposés entre les cellules ainsi qu'entre les cellules et les parois de l'enceinte (E) assurent l'étanchéité. Un compresseur manuel (H) permet d'atteindre les pressions supérieures à celle du cylindre de gaz. Le vide requis pour nos travaux est obtenu à l'aide d'une pompe mécanique. Un détecteur précis de pression (D.P.P.), préalablement calibré, nous permet de connaître la qualité du vide ou la pression inférieure à 1,373 x 10³ kPa.

3.2 DESCRIPTION DE COMPOSANTES

3.2.1 LES CELLULES OPTIQUES

3.2.1.1 CONSTRUCTION

Les cellules optiques furent construites suivant nos spécifications par American Instruments Company (Aminco). La figure 3.2 représente une coupe d'une cellule. Les dimensions principales y sont indiquées.

Le bout (1) de la cellule est retenu au corps (4) par 6 boulons (2) dont la disposition est illustrée à la figure 3.3. Un boulon maintient fermement la ligne d'amené du gaz dans son orifice (6). Il en est de même pour la ligne d'évacuation. Les 4 fenêtres optiques (3) identiques sont construites en quartz ultrasil et planes à $\lambda/10$. Un joint (7) en "teflon" s'appuyant sur le corps de la cellule empêche le bris de la fenêtre quand le bout (1) s'appuie sur elle lors du serrage des 6 boulons. Un isolant (8) en "Buna-N", disposé entre 2 bagues d'acier (9) identiques, assure l'étanchéité des fenêtres tant sous vide qu'à haute pression.

Figure 3.2: Coupe d'une cellule.

47.

Figure 3.3: Vue du bout d'une cellule.

Les bouts \bigcirc d'une cellule sont construits en acier inoxydable du type 17-4 PH alors que les autres parties sont fabriquées en acier inoxydable du type 316. Le bout de chaque cellule est percé de 2 orifices (voir figure 3.3) dont la disposition répond à la géométrie des faisceaux incident et réfléchi. Chaque cellule est fabriquée pour une pression maximum de 3,103 x 10⁴ kPa (300 atmosphères).

3.2.1.2 MESURE DE LA LONGUEUR DES CELLULES

Nous avons mesuré, à la température de la pièce et à la pression atmosphérique, la longueur de chaque cellule. Nous avons d'abord fait construire à l'atelier de mécanique une jauge en acier inoxydable constituée de 2 pièces (A et B) entrant l'une dans l'autre. La figure 3.4 donne la coupe transversale et les dimensions de cette jauge.

Figure 3.4: Jauge pour la mesure de la longueur des cellules.

Pour mesurer la longueur d'une cellule, nous procédons de la façon suivante. Nous démontons un bout de la cellule fixée suivant l'horizontale. Nous insérons dans la cellule la jauge en faisant d'abord pénétrer la partie A. La partie B dépasse la cellule de quelques millimètres. Nous boulonnons le bout avec précaution tout en maintenant fermement la cellule. Après une attente d'environ 10 minutes dans le but de s'assurer que toutes les pièces sont à la même température, nous enlevons les boulons du même bout et sortons avec précaution la jauge. A l'aide d'un micromètre gradué au 0,0002 cm,nous mesurons la distance entre les points C et D.

Nous avons mesuré la longueur de chaque cellule au moins 10 fois. Nous obtenons, pour la cellule A, une longueur moyenne de 6,2938 \pm 0,0005 cm. alors que la cellule B donne 6,3091 \pm 0,0005 cm. Nous avons retenu ces valeurs de longueur comme référence à 21,5°C. Nos mesures concordent, dans les limites d'incertitude, avec celles faites par Aminco.

3.2.1.3 DEFORMATIONS

Les cellules sont soumises à 2 types de déformation: une déformation mécanique causée par la variation de pression s'ajoute à une déformation thermique produite par le maintien du montage à une température audessus de celle de la pièce.

La théorie exacte pour déterminer les déformations thermiques est bien connue. Dans le cas des déformations mécaniques telles que la déformation des fenêtres, l'étirement des boulons, la déformation des bouts de la cellule et l'allongement du corps de la cellule, nous avons fait les calculs que nous détaillons ci-après.

50.

3.2.1.3.1 DEFORMATIONS MECANIQUES

A) FENETRES OPTIQUES

La théorie classique ^{1,2} des plaques minces prévoit, comme hypothèse de base, que le rapport épaisseur/diamètre, doit être de l'ordre ou inférieur à 0,1. Or, chaque fenêtre possède une épaisseur de 1,7463 ± 0,0004 cm et un diamètre de 2,8486 ± 0,0004 cm donnant ainsi un rapport de 0,61. Donc, il est évident que nous ne pouvons appliquer comme telle la théorie classique.

Une formulation différente avancée par Roark³ suppose que le rapport épaisseur/diamètre peut atteindre 0,25. Pour évaluer la déformation de la fenêtre sous pression, nous avons retenu la formulation de Roark tout en étant conscient que nos calculs donneront une déformation supérieure à la valeur réelle. Nous aurons cependant une approximation valable.

DEFORMATION

La configuration exacte de la fenêtre et de son support est donnée à la figure 3.5 (voir aussi les figures 3.2 et 3.3). Notant une symétrie de la fenêtre par rapport à son centre, nous utilisons une formule³ (numéro 6, page 217) qui nous donne la déformation maximale au point A.

Figure 3.5: Fenêtre optique et son support.

$$X_{\max} = -\frac{3W(m^2 - 1)a^2}{16\pi Fm^2 t^3}$$
(3.1)

où "W" est la force uniforme sur la surface de la fenêtre, "a" est son rayon, "t" est l'épaisseur de la fenêtre, "m=1/v", "v" est le coefficient de Poisson et "E" est le module de Young. Comme $W=P\pi a^2$, où "P" est la pression, nous obtenons pour le quartz⁴ répondant à E=7,31 x 10⁷ kPa, t=1,7463 cm, a=0,7144 cm et v=0,16 les résultats compilés au tableau 3.1. Ces déformations sont donc très faibles par rapport à l'incertitude (±5,0 x 10⁻⁴ cm) admise sur la longueur de la cellule à la température de la pièce.
Déformation (X) d'une fenêtre en fonction de la pression (P).

	1
P(x 10 ⁻³ kPa)	X(x 10 ⁶ cm)
6,895	0,8430
7,998	0,9778
13,790	1,6860
20,685	2,5289

ii) COMPRESSION

La relation⁵ donnant l'épaisseur e(P) d'une plaque en fonction de la pression (P) est:

$$e(P) = e_0 \left[1 - \frac{P}{3B}\right]$$
(3.2)

où e_o est l'épaisseur initiale et B est le module de rigidité (Bulk modulus). Pour la fenêtre en quartz répondant à e_o=1,7463 cm et B=3,654 x 10^7 kPa/cm², nous avons les résultats rapportés au tableau 3.2. Les variations d'épaisseur Δ e pour une fenêtre sont inférieures à l'incertitude sur la longueur des cellules.

Compression $\Delta e(P)$ d'une fenêtre en fonction de la pression (P).

P(x 10 ⁻³ kPa)	e(P) (cm)	∆e(x 10 ⁴ cm)
0,000	1,7463	0
6,895	1,7462	1
7,998	1,7462	1
13,790	1,7461	2
20,685	1,7460	3

ELONGATION DES BOULONS

B)

En supposant un point neutre entre le corps de la ceilule et la plaque de bout, la variation de longueur (Δ L) d'un boulon ayant une longueur efficace (L), une surface A et un module de Young⁵ (E) est en fonction de la force (F) exercée sur les boulons:

$$\Delta L = FL/AE \tag{3.3}$$

Sachant qu'une pression (P) est exercée sur la surface (S) d'une fenêtre, la force (F) agissant sur chacun des boulons sera F=PS/6. Si L=3,175 cm, E=2,141 x 10^8 kPa/cm², A=1,979 cm² et S=3,807 cm², 1'élongation (Δ L) d'un boulon en fonction de la pression est résumée au tableau 3.3.

Elongation " Δ L" d'un boulon en fonction de la pression (P).

P(x 10 ⁻³ kPa)	∆L(x 10 ⁵ cm)
6,895	3,5038
7,998	4,0640
13,790	7,0076
20,685	10,5114

C) DEFLEXION DU BOUT DES CELLULES

Le bout d'une cellule possède un rapport épaisseur/diamètre effectif de l'ordre de 0,52. Encore là, on peut apporter une approximation de la déformation en utilisant une formule de Roark³. L'approximation consiste à remplacer les 2 trous de rayon r_o par un seul de rayon $2r_o$. On se retrouve avec la configuration suivante:

FIGURE 3.6: Déflexion du bout de la cellule.

La pression P est appliquée uniformément sur les bords du trou. Le déplacement maximum³ y est donné par la relation suivante:

$$Y = \frac{3W(m^2-1)}{4\pi m^2 Et^3} \left[a^2 - b^2 - \frac{4a^2b^2}{a^2 - b^2} \left(\log \frac{a}{b} \right)^2 \right]$$
(3.4)

où W=P π b², b=2r_o, m=1/v,v est le coefficient de Poisson, E est le module de Young et t est l'épaisseur de la plaque. Pour l'acier inoxydable 17-4, nous avons⁴ E=1,965 x 10⁸ kPa et v=0,44. La plaque possède une épaisseur de 3,175 cm, un rayon effectif de 3,048 cm et le trou a un rayon de 0,913 cm. Nous parlons de rayon effectif parce que nous considérons la déflexion à partir des boulons de serrage. Pour nos pressions de travail, les résultats sont indiqués au tableau 3.4. La déflexion est négligeable vis-à-vis l'incertitude sur la longueur des cellules.

TABLEAU 3.4

Déflexion (Y) du bout de la cellule en fonction de la pression (P).

P(x 10 ⁻³ kPa)	Y(x 10 ⁶ cm)
6,895	4,1
7,998	4,7
13,790	8,2
20,685	12,3

D) ELONGATION DU CORPS DE LA CELLULE

La relation donnant l'élongation (△L) d'une pièce de longueur "L", de surface "A", de module de Young "E" sous l'effet d'une force F telle que F=PS où "P" est la pression appliquée sur la fenêtre de surface "S", est⁵:

$$\Delta L = FL/EA \tag{3.5}$$

En considérant des longueurs de 6,2938 cm et 6,3091 cm respectivement pour les cellules A et B, une surface de 72,2057 cm² et un module de Young de 2,034 x 10^8 kPa/cm², nous avons les élongations ΔL_{AC} et ΔL_{BC} énumérées au tableau 3.5.

Ces élongations sont inférieures à l'incertitude sur la longueur de la cellule.

TABLEAU 3.5

Elongation " Δ L" du corps de la cellule en fonction de la pression (P).

P(x 10 ⁻³ kPa)	∆L _{AC} (x 10 ⁵ cm)	△L _{BC} (x 10 ⁵ cm)
6,895	1,1462	1,1490
7,998	1,3290	1,3328
13,790	2,2924	2,2980
20,685	3,4386	3,4470

E)

ELONGATION MOYENNE D'UNE CELLULE EN FONCTION DE LA PRESSION

Posant que "A" est la variation de longueur du corps de la cellule sous l'effet de la pression, "B" est le changement d'épaisseur de la fenêtre, "C" est la déformation de la fenêtre, "D" est l'élongation des boulons et "F" est la déformation du bout à la hauteur du faisceau, l'élongation moyenne (ΔL_M) de la cellule sous l'effet de la pression est représentée par la relation:

$$\Delta L_{M} = A + 2B + 2C + 2D + 2F \qquad (3.6)$$

Le tableau 3.6 donne un résumé sur l'élongation mécanique qui est de l'ordre de grandeur de l'incertitude admise sur la longueur de la cellule.

TABLEAU 3.6

Elongation mécanique moyenne (ΔL_M) d'une cellule en fonction de la pression (P).

		Ą	В	C .	D	F	ΔL _M
Pression	Con	rps .	Fenê compres- sion	tres defor- mation	.Boulons	Bouts	Elong. moy.
(10 ³ kPa)	(x10 ⁵ cm)		(x10 ⁵ cm)	(x10 ⁵ cm)	(x10 ⁵ cm)	(x10 ⁵ cm)	(×10 ⁴ cm)
	^{∆L} AC	ΔL _{BC}					
6,875	1,1462	1,1490	10,00	0,08	3,50	0,41	2,91
7,998	1,329 1,3328		12,00	0,10	4,06	0,47	3,46
13,790	2,2924	2,2980	20,00	0,17	7,01	0,82	5,83
20,685	3,4386 3,4470		30,00	0,25	10,51	11,23	8,74

3.2.1.3.2 DILATATIONS THERMIQUES

Les dilatations thermiques concernent principalement le corps de la cellule et les fenêtres en quartz. Ces dilatations agissent directement sur le parcours optique.

Sachant que les distances ont été mesurées à la température de la pièce, soit 21,5 ± 0,3^oC, nous utiliserons cette dernière valeur comme température de référence. Pour le CH_4 et le C_2H_4 , la température du montage est de 29,85 ± 0,02^oC alors que pour le SF_6 elle est de 49,85 ± 0,02^oC et de 49,72 ± 0,02^oC pour le CO_2 .

Les dimensions des cellules et des fenêtres étant connues et notant que les coefficients de dilatation thermique de l'acier inoxydable $3^{2}6^{4}$ et du quartz⁴ sont respectivement de 1,51 x 10^{-5} cm/cm⁻⁰C et de 5,5 x 10^{-7} cm/cm⁻⁰C, nous obtenons les élongations énumérées au tableau 3.7.

TABLEAU 3.7

Dilatation thermique (F-2D) des corps des cellules (F) et des fenêtres (D).

	D	F		F -	2D
T (±0,02K)	Fenêtres (x10 ⁶ cm)	Cell.A (x10 ⁴ cm)	Cell.B (x10 ⁴ cm)	Cell.A (x10 ⁴ cm)	Cell.B (x10 ⁴ cm)
303,00	8,0195	7,9460	7,9654	7,7856	7,8050
322,87	27,1030	26,8730	26,9380	26,3309	26,3959
323,00	27,6978	26,9780	27,0440	26,4340	26,4900

3.2.1.4 <u>VARIATION DU PARCOURS OPTIQUE SOUS L'EFFET COMBINE DE LA</u> PRESSION ET DE LA TEMPERATURE

Nous résumons, dans le tableau 3.8 l'accroissement de parcours optique ΔL sous l'effet combiné de la pression maximale et de la température de travail et ce, pour les cellules A et B.

TABLEAU 3.8

Variation totale de longueur des cellules en

fonction de la température et de la pression maximum.

GAZ	Т	Р	۵LA	۵LB	L _A (corr)	L _B (corr)
	(±0,02K)	(x10 ⁻³ kPa)	(x10 ³ cm)	(x10 ³ cm)	(cm)	(cm)
CH4	303,00	20,875	1,6526	1,6545	6,2955	6,3108
C2H4	303,00	6,875	1,0696	1,0715	6,2949	6,3102
SF ₆	323,00	6,875	2,9344	2,9400	6,2967	6,3120
C02	322,87	7,998	2,9791	2,9856	6,2968	6,3121

Toutes les variations maximales de parcours optiques sont supérieures à l'incertitude de 5 x 10^{-4} cm admise sur la mesure de la longueur. Les corrections requises ont été apportées pour chaque gaz.

3.2.2 ENCEINTE DES CELLULES (BAIN)

Le bain est construit en aluminium de 6,35 mm d'épaisseur et prend la forme d'un tube de 32 cm de diamètre et de 53 cm de long. La figure 3.7 nous donne une vue de l'extrémité du bain. Ce dernier possède, dans sa partie supérieure, une ouverture rectangulaire de 21 cm x 38 cm, surmontée d'un collet de 10 cm de haut. Le but de cette ouverture est de permettre le passage des tubes d'entrée et de sortie du gaz, des valves de contrôle, des 3 agitateurs, de l'élément chauffant, de la sonde du contrôleur de température et du thermomètre. Toutes les pièces énumérées, à l'exclusion des agitateurs, sont fixées sur les parois du bain.

Le bain est fermé à ses 2 extrémités par des couverts en aluminium de 1,0 cm d'épaisseur. Chacun des couverts est pré-aligné au moyen de tiges guides (position indiquée par un cercle sur la figure 3.7). Un des couverts possède un orifice de 5,0 cm de diamètre dans le but de permettre le passage des faisceaux lumineux. Le second possède un trou usiné pour l'alignement du réflecteur laser dans l'axe du faisceau incident. La forme circulaire a été retenue dans le but de réduire au minimum les gradients de température dans le bain. Pour assurer un alignement optimum des cellules sur un même axe, nous avons retenu, pour les supports, la forme illustrée à la figure 3.7.

La forme interne de chaque support s'adapte, à 0,003 cm près, à la forme externe des cellules, soit un cercle de 9,900 cm de diamètre. A l'extérieur du support, nous avons 3 branches disposées à 120⁰ l'une de l'autre, une des branches étant suivant la verticale au centre du bain. Chaque branche est boulonnée au cylindre du bain (voir figure 3.7).

Figure 3.7: Vue de l'extrémité du bain.

Pour s'assurer que les 4 supports possèdent le même rayon interne par rapport à un axe commun, les supports ont d'abord été fixés dans le bain. Ensuite, à l'aide d'un tour, chaque support a été usiné pour obtenir le même alignement. Le bain et ses supports furent fabriqués à l'atelier mécanique de l'Université du Québec à Trois-Rivières.

Pour éviter que les faisceaux lumineux n'entrent en contact avec le liquide caloporteur, nous avons construit 3 joints étanches. Un se situe entre la première cellule et le couvert du côté du laser alors que le second est entre les 2 cellules. Enfin, le troisième est placé entre la deuxième cellule et le couvert du côté du réflecteur. Ces joints sont en aluminium et une rondelle en "Buna-N" assure l'étanchéité requise.

Le bain est boulonné sur un trépied ajustable suivant la verticale. Les 4 vis disposées deux à deux suivant l'horizontale assurent la fixation du bain sur la table de granit.

3.2.3 TABLE DE GRANIT

La table de granit de 120 cm de long, 60 cm de large et de 5 cm d'épaisseur, repose sur 4 chambres à air de 37 cm de diamètre externe et de 15 cm de diamètre interne. C'est sur cette table que sont fixés les enceintes et l'interféromètre-laser. Ainsi, les pièces ne peuvent bouger les unes par rapport aux autres.

La table et ses chambres à air agissent comme système anti-vibration dans le but d'atténuer au maximum les oscillations tant internes qu'externes. Après plusieurs essais, nous avons constaté que l'interféromètre n'enregistrait aucune vibration car le compte demeurait stable lorsqu'il y avait déplacement de personnes dans le voisinage immédiat du montage.

3.2.4 INTERFEROMETRE-LASER

Pour la mesure de l'indice de réfraction du gaz, nous employons l'interféromètre-laser modèle 5525A de Hewlett-Packard. L'instrument comprend 2 parties principales: un laser et un interféromètre.

3.2.4.1 DESCRIPTION DU LASER

Le laser fonctionne dans un seul mode longitudinal et un seul mode transversal. Le mode transverse fondamental, TEM₀₀, est obtenu en ajustant la distance entre les miroirs disposés à chaque extrémité du tube (voir figure 3.8). A une distance approximative de 13 cm, on favorise aussi un seul mode longitudinal fort, les autres modes étant faibles. La cavité du laser contient un mélange hélium-néon de telle sorte qu'il émet une lumière cohérente dans le visible (632,8 nm).

Pour réduire au minimum l'influence de la turbulence atmosphérique sur le faisceau, il y a mélange de 2 signaux optiques de fréquences légèrement différentes.

Une séparation, par effet Zeeman, de la ligne spectrale principale permet d'obtenir les 2 fréquences désirées. En effet, en appliquant un champ magnétique dans l'axe du laser libre de toute anisotropie de polarisation, le faisceau de sortie contient 2 fréquences. L'une a une polarisation circulaire gauche alors que la seconde possède une polarisation circulaire droite. En ajustant convenablement l'intensité du champ magnétique, la différence de fréquences obtenue est de l'ordre de l,8 MHz pour un signal de l'ordre de 5 x 10^{14} Hz (voir figure 3.9).

Figure 3.8: Ajustement de la distance entre les miroirs du laser pour obtenir. le mode TEMoo

ŝ

Figure 3.9: Faisceau à double fréquence à la sortie du laser.

En résumé, le laser émet un signal dans le domaine du visible (632,8 nm). Ce signal comporte deux fréquences séparées de 1,8 MHz et ayant des polarisations circulaires inverses. C'est ce signal qui se présente à l'entrée de l'interféromètre.

3.2.4.2 DESCRIPTION DE L'INTERFEROMETRE

L'interféromètre utilisé est du type Michelson. Rappelons que ce type d'interféromètre sépare, au moyen d'un miroir semi-transparent, le faisceau incident en 2 parties d'égale intensité. Après séparation, les faisceaux se dirigent sur des miroirs disposés à 90° l'un par rapport à l'autre. Les faisceaux réfléchis se recombinent sur la séparatrice. Si la différence de chemin optique entre les 2 faisceaux est modifiée, on assiste à un défilement de franges au point de superposition. La différence de chemin optique peut être produite soit en déplaçant un des miroirs, soit en variant la densité du milieu dans un des bras du Michelson. Connaissant la longueur d'onde principale (λ) et le nombre de franges (k), il est possible de déduire le déplacement du miroir ($\Delta = 2k\lambda$) ou la variation de l'indice de réfraction (n) du milieu. Si "L" est la longueur de la cellule dans laquelle on désire mesurer l'indice de réfraction, on aura:

$$n - l = \frac{k\lambda}{2L}$$
(3.7)

Notre appareil transforme le Michelson classique en un instrument électronique. En effet, en plaçant une photodétectrice à la sortie du Michelson, le signal lumineux est transformé en signal électronique. Par la suite, un compteur électronique dénombre les franges et donne un affichage numérique.

Pour mettre efficacement ce principe en pratique, 3 améliorations doivent être apportées à l'interféromètre classique.

Parce que l'alignement des miroirs est très critique, il faut d'abord les remplacer par des réflecteurs à prisme trilatéral (Cube corner). Ces derniers possèdent la capacité de produire un faisceau réfléchi parallèle au faisceau incident et ce, peu importe l'angle du réflecteur par rapport aux faisceaux. Si on doit mesurer de grands déplacements, il faut connaître avec une grande précision la longueur d'onde de la source. En plus, on désire mesurer avec une longueur d'onde unique. Seule la lumière émise par un laser satisfait en même temps à ces 2 critères.

Comme notre procédé expérimental consiste à faire pénétrer et à faire sortir du gaz d'une cellule de faible volume (24 cm³), nous devons tenir compte de l'effet Joule-Thomson. Cet effet provoque une légère variation de température à l'intérieur de la cellule. Notre mesure finale se prenant à l'équilibre thermodynamique, le système électronique doit être capable de détecter le sens du mouvement des franges.

Pour ce faire, le procédé conventionnel consiste à séparer un des faisceaux optiques en 2 parties et à introduire un retard de phase de 90° dans l'une des parties. Après recombinaison, on détecte chaque partie sur une cellule. Ainsi, les 2 cellules capteront chacune un signal variant sinusoïdalement si le miroir se déplace. La différence de phase entre les signaux sera de 90° . Ces signaux, après amplification dc, déclenchent un compteur suivant le sens, positif ou négatif, du déplacement des franges.

Figure 3.10: Interféromètre d.c.; déclenchement du compteur.

Si un interféromètre est couplé à un laser et opère suivant la procédure précitée, un problème fondamental subsiste. La figure 3.10a illustre le signal de sortie d'une photocellule lorsqu'un des miroirs est en mouvement. On y note que les variations d'intensité se centrent autour des niveaux de déclenchement du compteur. Mais, si l'intensité de la source lumineuse ou l'intensité de l'un des faisceaux varie, les variations d'intensité des signaux risquent de ne pas croiser les niveaux de déclenchement tel que l'illustre la figure 3.10b. Ainsi, un tel système perdra des informations. Cette perte peut aussi être produite par le vieillissement de la source. D'autre part, la turbulence de l'air produit à coup sûr une telle variation d'intensité. La variation rapide d'intensité ne peut alors être suivie par un ajustement automatique du niveau de déclenchement.

L'interféromètre-laser utilisé élimine totalement ce problème en fonctionnant suivant le principe de l'hétérodyne. La source lumineuse est le laser à double fréquence décrit antérieurement. L'avantage d'un tel système à 2 fréquences est que l'information sur la distance est véhiculée par un train d'ondes ac plutôt que par un train dc. Contrairement aux amplificateurs dc, les amplificateurs ac ne sont pas sensibles aux variations des niveaux dc de leur entrée. Les signaux ac sont produits suivant le principe du MF hétérodyne des récepteurs radio. Le signal ac est engendré en mélangeant 2 signaux optiques de fréquences légèrement différentes (1,8 MHz). C'est la source laser, décrite à la section 3.4.2.1, qui émet le signal à double fréquence de polarisation circulaire inverse.

3.2.4.3 PRINCIPES DE FONCTIONNEMENT DE L'INTERFEROMETRE-LASER

Le laser émet un faisceau de lumière cohérente dans le rouge (632,8 nm). Après élargissement et collimation, une partie du faisceau est dévié vers une photodétectrice de référence comme le laisse voir la figure Le signal pénètre ensuite dans le Michelson. Sur la séparatrice, le faisceau à double fréquence est dirigé vers le prisme trilatéral interne dans le bras fixe du Michelson. Un filtre polarisant conserve la fréquence f₂ dans ce bras. Le signal transmis par la séparatrice traverse un autre filtre polarisant et, porteur de la fréquence f1, il se dirige vers le prisme trilatéral du second bras. Les signaux de retour se mélangent sur la séparatrice qui dirige les signaux superposés (f2+f1±∆f1) vers la photodétectrice de mesure. Ce mélange de signaux donne lieu à un patron de franges que capte la photodétectrice de mesure. Si le réflecteur mobile est fixe et que la densité du milieu est constante, le taux de battement entre les signaux est exactement la différence des signaux, soit 1,8 MHz. L'information transmise par la photodétectrice de mesure est comparée avec le signal capté par la photodétectrice de référence. Le signal de celle-ci se situe à 1,8 MHz. Les signaux de chaque photodétectrice sont doublés et comptés dans un compteur réversible avant d'être dirigés dans un soustracteur. Si tout est stable, le soustracteur donne un compte nul. Si le réflecteur est déplacé dans un sens ou dans l'autre, un accroissement ou une diminution de la différence de fréquence de battement produira des comptes nets positifs ou négatifs associés à l'accroissement ou à la diminution du chemin optique. La variation de la densité du milieu produira le même effet global. Le compte résultant est ensuite transmis à un calculateur qui convertit le signal en unités de mesure facilement identifiables et assure l'affichage numérique. Un enregis-

Figure 3.11: Illustration du principe de fonctionnement de l'interféromètre-laser.

101010408 (Parts 244444)

Figure 3.12: Courbe de stabilité de l'interféromètre-laser.

treur numérique (HP-5055A) permet de conserver les données expérimentales.

Un tel système possède une résolution de 10^{-8} m et une précision de 5 parties dans 10^{7} . Une horloge interne permet d'afficher la vitesse de déplacement du réflecteur externe.

Le système comprenant l'interféromètre-laser et les cellules sous vide se stabilise dans un temps de 4 heures environ. La figure 3.12 illustre la courbe de lecture de l'interféromètre en fonction du temps lorsque l'interféromètre est mis en opération au "temps zéro". On constate que l'interféromètre suit très bien les variations de température dans la pièce lorsque celle-ci est contrôlée à 21,2 \pm 0,3⁰C.

3.2.5 LE DETECTEUR PRECIS DE PRESSION (D.P.P.)

3.2.5.1 PRINCIPES DE FONCTIONNEMENT

Le détecteur précis de pression (D.P.P.) que nous avons utilisé est le modèle 145-01 de Texas Instruments. Cet appareil comprend 5 parties principales: une capsule de type Bourdon, un module de poursuite, un module de pression nulle, un amplificateur et un moteur à rétroaction. Cet assemblage tend à annuler la différence de pression entre l'intérieur et l'extérieur du tube Bourdon (voir la figure 3.13).

La capsule Bourdon est une enceinte où un orifice permet d'y faire le vide ou d'y maintenir une pression donnée dite pression de référence. Dans l'axe central de cette capsule, il y a un tube en quartz enroulé suivant une spirale. Le D.P.P. a une précision de $\pm 0,07$ Pa sur une gamme de pression allant de 0 à 1,38 x 10^3 kPa. Le tube, à l'intérieur de la capsule, doit avoir une grande élasticité. De plus, l'enroulement hélicoidal

Figure 3.13: Fonctionnement du détecteur précis de pression (D.P.P.) dans le mode servo.

très serré augmente la longueur du tube. Ce faisant, la précision de lecture est aussi bonne à basse qu'à haute pression. Le quartz ayant une grande élasticité est le matériel idéal à employer dans une capsule opérant entre O et 1,38 x 10³ kPa, région où la déformation du quartz n'est pas permanente.

Un miroir plan est fixé à l'extrémité fermée du tube en quartz. L'autre bout du tube est ouvert pour permettre l'entrée du gaz. Sous l'effet de la différence de pression entre l'intérieur et l'extérieur du tube, celuici tourne, communiquant ainsi son mouvement au miroir. Ce dernier étant éclairé par un rayon lumineux, le faisceau réfléchi est dévié proportionnellement à la différence de pression. Le tube est maintenu à une température constante à l'intérieur de la capsule.

Un module de poursuite comprenant entre autre une table tournante sur 360⁰ et un transducteur optique poursuit le faisceau réfléchi. Cette poursuite est contrôlée par le module de pression nulle qui, après amplification du signal, actionne un moteur à rétroaction. Ce dernier a une double fonction. Il assure la rotation de la table tout en entraînant un compteur numérique indiquant la différence de pression entre l'intérieur et l'extérieur du tube de quartz.

Dans nos expériences, nous avons maintenu le vide dans le référentiel de pression de telle sorte que nous avons toujours mesuré la pression absolue.

3.2.5.2 CALIBRATION

Comme il était requis de connaître la pression exacte, nous avons calibré notre D.P.P. . Pour ce faire, nous avons employé un référentiel de

Figure 3.14: Calibration du détecteur précis de pression (D.P.P.) par rapport au référentiel calibré de pression (R.C.P.).

pression calibrée (R.P.C.) fabriqué par Compudyne Corporation. Le modèle PPS-500 que nous avons utilisé a une précision de l'ordre de 0,015% sur les lectures.

Pour la calibration, nous avons placé en série le détecteur précis de pression et le référentiel de pression. Nous avons utilisé de l'argon lors de la calibration et avons effectué nos mesures à température constante dans la pièce (21,2 \pm 0,3⁰C). Notre calibration fut faite en ayant la pression atmosphérique comme référentiel. La disposition expérimentale est illustrée à la figure 3.14.

Le référentiel de pression calibré (R.P.C.) consiste en un système de 2 pièces; un cylindre et un piston. Le piston glisse dans le cylindre en raison d'une différence de rayon de l'ordre de 5 x 10^{-5} cm. La calibration se réalise en équilibrant une masse connue précisement sur une surface connue avec la pression dans le D.P.P. et la chambre de pression du R.P.C. La masse connue est un ensemble de disques gradués avec une précision de 0,005%. Ces disques sont disposés sur le piston. Lorsque l'ensemble s'approche de l'équilibre, on met en marche une table tournante qui entraîne le cylindre durant un temps "t" dans une direction et durant le même temps dans l'autre direction. Ce mouvement bidirectionnel a pour but d'annuler l'effet d'entraînement (drag effect) produit par le mouvement de rotation dans une seule direction.

La construction du piston et du cylindre est telle que le piston glisse dans le cylindre de haut en bas grâce à la lubrification produite par le gaz s'échappant dans l'espace entre le cylindre et le piston. L'ensemble oscillant de haut en bas grâce à la lubrification se stabilise rapide-

ment autour d'un point d'équilibre. On atteint ainsi l'équilibre entre la pression dans le D.P.P. et celle dans le R.P.C. .

3.3 FACTEURS INFLUENCANT L'INDICE DE REFRACTION

3.3.1 INTRODUCTION

L'indice de réfraction d'un gaz est, par ordre d'importance, fonction de la température, de la pression et de l'humidité du milieu dans lequel on mesure l'indice.

Dans le cas qui nous intéresse, le faisceau lumineux circule dans la pièce sur une distance d'environ 15 cm avant de pénétrer dans les cellules.

Les variations d'humidité dans la pièce sont minimes durant nos expériences et n'influencent pratiquement pas nos lectures. Nous avons noté, à chaque mesure, la pression atmosphérique dans la pièce et avons apporté les corrections requises sur l'interféromètre-laser. En effet, celui-ci possède un compensateur pour les variations de pression dans la pièce par rapport à la pression d'une atmosphère. Une fois cette compensation entrée manuellement dans le système, une correction automatique s'effectue sur le compte des franges.

3.3.2 CONTROLE DE TEMPERATURE

3.3.2.1 ENCEINTE DES CELLULES

La température y est contrôlée au moyen d'un système comprenant un contrôleur proportionnel de température, un élément chauffant de 750 watts et une sonde à résistance de platine. Dans le cas du CH_4 et du C_2H_4 , nous avons conservé l'eau à 29,85 ± 0,02°C alors que la pièce était maintenue à 21,2 ± 0,3°C. Nous avons compensé l'évaporation de l'eau au moyen d'un système qui gardait constant le niveau d'eau. Pour le SF₆ et le CO₂ qui possèdent des températures critiques plus élevées, nous avons opéré respectivement à 49,85 ± 0,02°C et à 49,72 ± 0,02°C. Pour ces 2 derniers gaz, nous avons opté pour le polyéthy-lène glycol car son taux d'évaporation est très faible par rapport à l'eau et il peut ainsi être chauffé sans problème d'évaporation jusqu'à 100°C.

La figure 3.15 illustre une variation type de la température dans l'enceinte des cellules pour une période de l2 heures. On constate que la température se maintient, dans le cas du SF_6 , à 49,84 ± 0,02^OC. Les écarts de température ne perturbent pas nos mesures car elles sont en deçà de la précision de nos lectures.

3.3.2.2 ENCEINTE ENTRE LE BAIN ET L'INTERFEROMETRE-LASER

Une distance approximative de 10 cm existe entre l'enceinte des cellules et le laser. Nous avons contrôlé la température de cet espace afin d'éviter les gradients de température le long du faisceau circulant dans l'air libre. Un contrôleur proportionnel de température, une sonde à résistance de platine placée dans le voisinage des faisceaux et 2 ampoules électriques de 25 watts disposées symétriquement par rapport aux faisceaux constituent le système de contrôle de température de cette enceinte. Celle-ci est fabriquée avec du contre-plaqué dont l'intérieur est recouvert de papier d'aluminium. Ce système maintient la température à 36,32 ± 0,06⁰C durant une période de 11 heures dans le cas du SF₆. La figure 3.16 laisse voir une courbe de la température en fonction du temps dans l'enceinte entre le bain et le laser.

1.1

Figure 3.15: Variation type de la température dans le bain (enceinte des cellules) sur une période de 12 heures.

8

.

<u>Figure 3.16:</u> Variation type de la température dans la boîte (enceinte entre le bain et l'interféromètre-laser) sur une période de ll heures.

4

NEWLITERSCRAPT STORES

				+									の目前																				1
•	Î	Te	n,	pé	rat	ure	2 0	275	la	P	ièc	e.		13															-	-			-
21,5				1			-1	++	1	-							1		1	H,											11		
				-							+	1		H			H							11			-					1	1
	· · · · · · · · · · · · · · · · · · ·					+			11								1								1			11		1.			
2.1,3										-	-		T	1-1-1							-							H					
	-/				11-						H					1				in the second			-										
		$\left\{\right\}$	$\left\{ \right\}$				+	#		개	1					A#	H			Ť	7								H				-
211	-	V		ļļ	1	-									V							11											
				-			4						1	14	-											-	-						
					-		-					1						-								- 	-		-				
							Т,	21	2 ±	0,3	• 0	-						+	1		1						-				- 1	+++	
20,9						12						+	-				6	++					8	1				10					1;
												-				E C														H	e v.i	es.	_
						-										1									-				-		+++++++++++++++++++++++++++++++++++++++		
										加速		1.4				1 1 1 1	1										-						

Figure 3.17: Variation type de la température dans la pièce sur une période de 11 heures.

3.3.2.3 <u>PIECE</u>

Entre le laser et l'interféromètre, le rayon lumineux circule à l'air libre. Il est ainsi dépendant des écarts de température de la pièce. Il en est de même à la sortie de l'interféromètre. Le parcours optique total dans la pièce est de l'ordre de 10 cm. Nous avons jugé nécessaire de contrôler la température dans la pièce pour effectuer nos mesures à une température de référence, soit $21,50 \pm 0,02^{\circ}$ C. Ce référentiel de température correspond au maximum des écarts de température dans la pièce. La figure 3.17 illustre ces écarts lors d'essais préliminaires. On constate que la température, pour la période étudiée, est de l'ordre de $21,2 \pm 0,3^{\circ}$ C.

Pour la prise des mesures de température en fonction du temps (voir les figures 3.15, 3.16 et 3.17), nous utilisons le thermomètre HP-2801A et l'enregistreur numérique HP-5055A. Le thermomètre employé est un thermomètre ayant 2 sondes à cristal de quartz. Cet appareil possède une résolution de $0,001^{\circ}$ C sur l'échelle utilisée mais une précision de $\pm 0,02^{\circ}$ C, sur toute lecture absolue. La calibration de l'appareil est certifiée par le National Bureau of Standards (N.B.S.) des Etats-Unis d'Amérique.

Dans le cas des autres mesures de température, nous travaillons avec un thermomètre à triple sondes à résistance de platine. Ce thermomètre Cole Palmer 8502-20 possède une résolution de $0,01^{\circ}$ C et une précision de $\pm 0,05^{\circ}$ C. Ces critères satisfont à nos exigences.

3.4 AUTRES FACTEURS D'INFLUENCE SUR LES MESURES

3.4.1 FUITE

Toutes les pièces furent vérifiées avant et après la mise en

en place de ces pièces sur le montage. Nous avons d'abord vérifié les pièces sous vide à l'aide d'un détecteur de fuite. Le taux de fuite était partout inférieur à 1,0 x 10^{-9} cc/sec., la limite de résolution du détecteur à spectromètre de masse sensible à l'hélium. Par la suite, nous avons maintenu une pression de 2,069 x 10^3 kPa d'hélium dans les tubes et les cellules. Encore là, le taux de fuite était inférieur à la limite de résolution du détecteur.

Durant nos opérations de mesure, l'interféromètre-laser nous permettait de vérifier rapidement l'étanchéité des cellules.

3.4.2 VAPEUR D'EAU ET D'HUILE

Toutes les pièces en contact avec le gaz ont été nettoyées, avant le montage, selon le processus suivant: nous avons d'abord fait un lavage complet avec de l'acétone (CH_3COCH_3). Nous avons ensuite employé du trichloroéthylène ($CHCL:CCL_2$) pour enlever toute trace d'huile. Finalement, pour éliminer la vapeur d'eau, nous avons chauffé, sous vide continu, les pièces à une température de l'ordre de $120^{\circ}C$ durant une douzaine d'heures. Ce procédé fut appliqué aux cellules, aux lignes de gaz et aux valves.

Nous avons nettoyé et chauffé les cellules de la même manière à chaque fois que nous les avons réparées pour éliminer les fuites.

Liste des appareils utilisés au cours de l'expérience.

Agitateurs (3), modèle 14-518-75, Fisher Baromètre à mercure de type Fortin, modèle S40743, Fisher Cellules (2), 0-3000 psi, American Instrument Company Compresseur manuel, modèle 50-6-15, High Pressure Equipment Contrôleur proportionnel de température (2), modèle 15-177-50, Fisher Contrôleur de température "arrêt-marche", Dependaterm Détecteur de fuites, modèle NRC 925-20, Norton Détecteur précis de pression, modèle 145-01, Texas Instruments Ltd Elément chauffant de 650 watts Enregistreur numérique, modèle 5055A, Hewlett-Packard Hygromètre, modèle S41561, Fisher Interféromètre-laser, modèle 5525A, Hewlett-Packard Pompe mécanique, modèle D-12, Leybold Standard de pression, modèle PPS-500, Compudyne Corporation Thermomètre numérique, modèle 2801A, Hewlett-Packard Thermomètre numérique, modèle 2802A, Hewlett-Packard Thermomètre numérique, modèle 8502-20, Cole-Palmer Valves modèles 44-13106 ou 44-13121 ou 44-13141, American Instruments Company

3.5 LISTE DES OUVRAGES CITES DANS LE CHAPITRE III

•

- 1- Landau L.D. et Lifschitz E.M., <u>Theory of Elasticity</u>, Pergamon Press, London (1959).
- 2- Timoshenko S. et Wornowsky-Krieger S., <u>Theory of Plates and Shells</u>, McGraw-Hill, New-York (1959).
- 3- Roark R.J., Formulas for Stress and Strain, McGraw-Hill, New-York (1965).
- 4- <u>Handbook of Chemistry and Physics</u>, Chemical Rubber Co., 50è édition, Cleveland (1969).
- 5- Peterson A.C., <u>Applied Mechanics Strength of Materials</u>, Allyn and Beacon Inc., Boston (1969).

CHAPITRE IV

RESULTATS EXPERIMENTAUX

4.1 MESURE DU RAPPORT DE VOLUME DES CELLULES

Pour connaître le rapport de volume des cellules, nous avons utilisé la technique de l'expansion dugaz d'une cellule à l'autre en employant de l'argon à une pression maximale de 1,38 x 10³ kPa. L'argon fut retenu parce que son deuxième coefficient viriel de pression est très faible.

Nous basant sur le fait qu'à basse pression

$$PV = RT (1 + \frac{B_p}{V})$$
 (4.1)

nous avons mesuré la pression (P) et la température (T) du gaz après équilibre thermodynamique dans une cellule. Par la suite, nous avons fait l'expansion du gaz de la cellule A vers la cellule B et avons mesuré à nouveau la pression à la même température. Nous avons ensuite recommencé la même procédure mais en partant de la cellule B.

En effectuant le lien entre ces mesures nous pouvons établir le rapport de volume des cellules. Nous avons obtenu
$$\frac{V_A}{V_B} = 0,9986 \pm 0,0005$$

pour une série de 3 mesures.

4.2 CORRECTIONS DUES AUX DEFORMATIONS DES CELLULES

Pour chacun des gaz étudiés, nous avons mesuré avec une incertitude de \pm 0,02^OC la température du bain. Nous avons pu ainsi déduire l'écart de température par rapport au référentiel de 21,5^OC et calculer la déformation thermique de chaque cellule (voir la section 3.2.1.3.2). Pour les pressions supérieures à 1,38 x 10³ kPa, nous avons utilisé un manomètre qui nous permettait une précision de lecture de \pm 34 kPa. Ce manomètre nous indiquait la pression du gaz contenu dans les cellules.

Nous avons effectué, à chaque lecture d'indice de réfraction, les corrections requises en raison des déformations associées à la température et à la pression. Les déformations ont fait l'objet d'une étude à la section 3.2.1.

4.3 PURETE DES GAZ

Pour tous les gaz étudiés, nous avons employé le produit de la plus haute qualité possible, soit la qualité "recherche". Les gaz furent utilisés tels que contenus dans le cylindre livré par le manufacturier. Dans le tableau 4.1, les impuretés rapportées pour le CH_4 , le C_2H_4 et le CO_2 sont celles spécifiées par le manufacturier après une analyse par spectroscopie de masse du gaz de notre cylindre. Pour le SF_6 , les impuretés rapportées sont celles notées par le manufacturier après analyse d'un échantillon (batch analysis) du lot comprenant notre cylindre.

Impunatão	dana	1	~ • •	5+
impureces	uans	162	ya∠	etuares

Ga z	Fournisseur	Qualité	Pureté	Impuretés principales
СН4	Matheson .	Recherche	99.97%	CO ₂ < 10 ppm, O ₂ < 6 ppm, N ₂ ≅ 13 ppm, C ₂ H ₆ ≅ 34 ppm C ₃ H ₈ < 5 ppm.
C ₂ H ₄	Air Liquide (Canada Ltd.	Recherche	99.5 %	Air < 60 ppm, $CH_4 < 9$ ppm, $C_2H_6 < 5$ ppm, $C_2H_2 < 2$ ppm, $C_3H_8 < 10$ ppm, $C_3H_6 < 10$ ppm $H_2 < 50$ ppm, $CO_2 < 5$ ppm CO < 10 ppm et humidité<5ppm
SF ₆	Matheson	Recherche *	99.8 %	Air Tetrafluorure
CO2	Union Carbide	Recherche	99.995%	0 ₂ < 1 ppm, N ₂ < 8 ppm. hydrocarbone < 1 ppm, Humidité < 1 ppm.

* Analyse d'un échantillon de lot (batch analysis)

4.4 RESULTATS

4.4.1 <u>MESURES DE A_R</u>

Pour déterminer A_R , nous avons utilisé le procédé rapporté à la section 2.3. Dans ce processus, nous faisons une mesure de l'indice de réfraction (n) en fonction de la pression (P) pour un gaz maintenu à une température constante (T). La pression maximale atteinte fut de l,17 x 10³ kPa. L'équation de travail, appelée équation de Lorentz-Lorenz, est

$$\frac{n^2 - 1}{n^2 + 2} = A_R + (B_R - A_R B_P) \frac{P}{RT} + \dots$$
(4.2)

et une mise en graphique de $\frac{n^2-1}{n^2+2}$ $\frac{RT}{P}$ en fonction de (P/RT) nous permet d'obtenir A_R comme intercepte et la pente nous donne B_R-A_RB_P, d'où nous déduisons B_P selon la procédure rapportée à la section 2.3. Nous traitons les valeurs $\frac{n^2-1}{n^2+2}$ en fonction de P/RT par la méthode des nombres carrés dont les détails se trouvent à l'appendice C.

Le résumé de nos résultats pour ${\rm A}_{\rm R}$ se trouve au tableau 4.2 et celui pour ${\rm B}_{\rm p}$ est au tableau 4.3.

Pour obtenir A_R , nous avons compté le nombre de franges observées (k) à une pression (P) dans la cellule A ou les cellules A et B, préalablement mises sous vide. De la mesure "k", nous avons déduit la valeur de l'indice de réfraction "n". La mesure de "P" réalisée à une température "T" a mené au calcul de P/RT. De là, nous avons obtenu le produit $\frac{n^2-1}{n^2+2}$ $\frac{RT}{P}$. Un exemple de ces opérations mathématiques se trouve à l'appendice A. Pour le CH_4 , les détails concernant "k" et "P" pour 3 séries de mesures se situent aux tableaux 4.4, 4.5 et 4.6. La mise en graphique de $\frac{n^2-1}{n^2+2}$ $\frac{RT}{P}$ en fonction de P/RT est à la figure 4.1.

Pour le C_2H_4 , on présente aux tableaux 4.7, 4.8, 4.9 et 4.10 les 4 séries de mesures de "k" et de "P". La figure 4.2 donne le graphique de $\frac{n^2-1}{n^2+2} \frac{RT}{P}$ en fonction de P/RT.

Les 2 séries de mesures de "k" et de "P" pour le CO_2 se situent aux tableaux 4.11 et 4.12. A la figure 4.3, on a la mise en graphique de $\frac{n^2-1}{n^2+2} \frac{RT}{P}$ en fonction de P/RT.

Le SF₆ a fait l'objet de 2 séries de mesures de "k" et de "P". Nous les présentons aux tableaux 4.13 et 4.14 alors que la figure 4.4 est la mise en graphique de $\frac{n^2-1}{n^2+2}$ $\frac{RT}{P}$ en fonction de P/RT.

A l'appendice A, on a placé, pour chacun des gaz, le rapport de l'ordinateur. Ce rapport donne les coefficients correspondants au meilleur polynôme obtenu par la méthode des moindres carrés pour l'équation (4.2). Dans ces rapports, le coefficient A doit être identifié au premier coefficient viriel de réfractivité A_R : le coefficient B représente $B_R - A_R B_P$ alors que X(I) représente P/RT et Y(I) est associé à $\frac{n^2-1}{n^2+2} = \frac{RT}{P}$.

Aux tableaux 4.4 à 4.14 inclusivement, nous rapportons les lectures de pression en unités PSI. parce que le DPP fut calibré en unités PSI (voir la section 3.2.5.2).

Premier	coefficient	du	viriel	de	l'indice	de	réfraction	(A _R)	•
---------	-------------	----	--------	----	----------	----	------------	-------------------	---

				A _R (cm ³ / mole)		
Gaz	Temp (K)	λ(nm)	Nous	Litt. ^{a)}	Autres	Références
СН4	303 300	632,8 546,2	6,553±0,006 -	-	- 6.614±0.002	23
	299	632,8	-	-	6,600±0,002	4
с ₂ н ₄	303	632,8	10,610±0,009 -	- 10,649	-	24
SF ₆	323 303	632,8	11,348±0,021 -		- 11,34±0,02	25 4
co ₂	323 323	632,8	- 6,658±0,021	-	-	- 25
	298 323	-	-	- 6,647	6,650±0,006 -	- 4

a) Calculée d'après les tables de dispersion de Landolt-Börnstein. 2

Deuxième coefficient du viriel de la pression (B_p) .

		- B _p (cr	m ³ / mole)	
Gaz	Temp (K)	Nous	Autres	Références
CH4	303	42,0±1,2	-	23
	303	-	43,2±1,8	6
	95 - 300	-	44,0±3,0	3
	300	-	42,0±1,0	12
C ₂ H ₄	303	154,5±2,4	-	24
	300	-	134,8±0,3	21
	300	-	145 ±4	19
	298	~	136	22
	303	-	128	5
SF ₆	323	221,7±3,9	-	25
	н	-	225,3±0,5	8
	II.	-	216,9	9
	ii .	-	230,0	10
	325	-	228 ±5	12
	323		218,8±1,7	7
CO2	323	109,2±2,7	-	25
	н	-	103,5	13
	П	-	120,6±1,3	16
	1	-	109,3±4,4	ון ז

Détermination de $\rm A_R$: nombre de franges (k) observées à une pression (P) pour le $\rm CH_4$ gazeux à 303 K.

JLNIL M2104/0	SEI	RIE	. A21	104	76)
---------------	-----	-----	-------	-----	----	---

Pression (P) (±0,005 psi)	Franges (k) (± 4 λ/4)
40.022	431
60,024	649
80,005	866
90,016	976
99,997	1 085
110,007	1 195
119,990	1 306
130,007	1 417
140,000	1 528
150,028	1 638
160,072	1 748
170,052	1,858

Détermination de $\rm A_R$: nombre de franges (k) observées à une pression (P) pour le $\rm CH_4$ gazeux à 303 K.

SERIE	A280476
-------	---------

Pression (P) (±0,005 psi)	Franges (k) (± 4 λ/4)
40,013	432
50,011	541
60,022	649
70,008	758
79,997	866
89,998	976
100,004	1 086
109,997	1 196
119,995	1 307
130,001	1 418
139,994	1 530
149,940	1 641
160,002	1 753
169,942	1 862

Détermination de A_R: nombre de franges (k) observées à une pression (P) pour le CH₄ gazeux à 303 K. SERIE AB150476

Pression (P) (±0,005 psi)	Franges (k) $(\pm 4 \lambda/4)$
30,015	647
- 39,974	862
49,994	1 079
59,996	1 297
70,001	1 516
79,459	1 724
90,004	1 956
99,990	2 175
109,984	2 397
119,986	2 619
129,982	2 840
140,004	3 061
149,907	3 281
159,947	3 501

,

Figure 4.1: Equation de Lorentz-Lorenz du CH_4 gazeux en fonction de P/RT à 303 K.

Détermination de ${\rm A}_{\rm R}$: nombre de franges (k) observées à une pression (P) pour le ${\rm C_2H_4}$ gazeux à 303 K.

c	FD	т	Г	A D 1	70076	
С	LK	1	L	ADI	/00/0	

Pression (P) (±0,005 psi)	Franges (k) $(\pm 4 \ \lambda/4)$
30 144	1.060
-40,036	1 415
50,020	1 776
60,020	2 139
70,019	2 506
80,027	2 874
89,979	3 248
100,049	3 623
109,978	4 002
119,962	4 384
129,968	4 770
139,982	5 156
149,957	5 549
160,136	5 953

Détermination de $\rm A_R$: nombre de franges (k) observées à une pression (P) pour le $\rm C_2H_4$ gazeux à 303 K.

|--|

Pression (P) (±0,005 psi)	Franges (k) $(\pm 4 \lambda/4)$
29,808	1 048
. 55,037	1 956
75,012	2 690
. 84,951	3 059
95,021	3 438
104,997	3 810
115,012	4 191
125,005	4 574
134,946	4 959
144,992	5 349
155,005	5 744
; 165,002	6 140

Détermination de $\rm A_R$: nombre de franges (k) observées à une pression (P) pour le $\rm C_2H_4$ gazeux à 303 K.

SERIE A	B260876
---------	---------

Pression (P) (±0,005 psi)	Franges (k) (± 4 λ/4)
50,030	1 777
:60,028	2 139
70,004	2 503
80,042	2 873
90,045	3 245
100,032	3 618
110,048	3 999
120,012	4 380
130,033	4 767
140,031	5 155
150,033	5 548
160,028	5 945
170,022	6 344
1	

,

Détermination de $\rm A_R$: nombre de franges (k) observées à une pression (P) pour le $\rm C_2H_4$ gazeux à 303 K.

SERIE AB 100876

Pression (P) (±0,005 psi)	Franges (k) (± 4 λ/4)
40,045	1 415
60,058	2 140
70,044	2 507
80,053	2 877
90,016	3 247
110,011	4 003
120,026	4 389
130,009	4 776
139,968	5 161
150,010	5 557
160,047	5 956
170,094	6 353

<u>Figure 4.2</u>: Equation de Lorentz-Lorenz du C_2H_4 gazeux en fonction de P/RT à 303 K.

Détermination de A : nombre de franges (k) observées à une pression (P) pour le CO_2 gazeux à 323 K.

SERIE AB	260578
----------	--------

Pression (P) (±0,005 psi)	Franges (k) (± 4 $\lambda/4$)
	1 781
.95,025	1 996
105,021	2 212
107,851	2 271
115,067	2 425
125,032	2 643
135,006	2 856
145,041	3 078
154,980	3 301
164,125	3 532
175,023	3 757
184,942	3 977
190,608	4 102

Détermination de $\rm A_R$: nombre de franges (k) observées à une pression (P) pour le CO $_2$ gazeux à 323 K.

Pression (P) (±0,005 psi)	Franges (k) (± 4 λ/4)
80,008	1 674
:90,021	1 888
99,987	2 103
107,839	2 269 .
120,052	2 537
129,893	2 753
140,011	2 977
149,856	3 190
160,008	3 419
169,921	3 642
179,946	3 873
190,602	4 111

SERIE AB020678

Figure 4.3: Equation de Lorentz-Lorenz du CO2 gazeux en fonction de P/RT à 323 K.

Détermination de $A_{\rm R}$: nombre de franges (k) observées à une pression (P) pour le SF $_{\rm 6}$ gazeux à 323 K.

Pression (P) (±0,005 psi)	Franges (k) (± 4 λ/4)
54,990	1 981
64,982	2 356
74,996	2 737
84,970	3 122
95,098	3 516
105,037	3 910
114,980	4 310
124,972	4 721
134,976	5 135
144,794	5 544
155,084	5 985
164,917	6 412
174,990	6 849
1	

SERIE AB160578

Détermination de A_R: nombre de franges (k) observées à une pression (P) pour le SF₆ gazeux à 323 K.

SERIE AB180578

Pression (P) (±0,005 psi)	Franges (k) (± 4 λ/4)
59,990	2 168
: 69,947	2 545
79,948	2 929
90,009	3 320
100,028	3 714
110,021	4 113
120,007	4 518
129,877	4 926
140,135	5 351
150,020	5 766
160,015	6 198
169,966	6 633
179,733	7 068
185,462	7 321

Figure 4.4: Equation de Lorentz-Lorenz du SF₆ gazeux en fonction de P/RT à 323 K.

4.4.2.1 RAPPEL DE LA PROCEDURE

Nous avons suivi la procédure que nous avons élaborée à la section 2.2. Nous rappelons ci-après les principales étapes qui conduisent à la détermination directe de B_p.

L'équation de Lorentz-Lorenz (L.L) est liée aux coefficients du viriel de l'indice de réfraction par la relation

L.L.=
$$\frac{n^2 - 1}{n^2 + 2} = \frac{1}{d} = A_R + B_R d + C_R d^2 + \dots$$
 (4.3)

Nous voulons obtenir B_R à partir de mesures de l'indice de réfraction "n". Cet indice de réfraction peut être développé en fonction de la densité par la série suivante:

$$(n-1) d^{-1} = A_n + B_n d + C_n d^2 + \dots$$
 (4.4)

Les coefficients de l'équation (4.3) sont liés à ceux de l'équation (4.4) par les relations suivantes:

$$A_{\rm R} = (2/3) A_{\rm n}$$
 (4.5)

$$B_{\rm R} = (2/3) B_{\rm n} - (1/9) A_{\rm n}^2$$
 (4.6)

$$C_{R} = (2/3) C_{n} - (2/9) A_{n}B_{n} - (4/27) A_{n}^{3}$$
 (4.7)

Pour mesurer l'indice de réfraction, nous employons 2 cellules, A et B, dont les volumes sont respectivement $V_A = V(1+\delta)$ et $V_B = V(1-\delta)$ et les longueurs $\ell_A = \ell(1+\Delta)$ et $\ell_B = \ell(1-\Delta)$ alors que δ et Δ sont petits. Si la cellule A contient initialement un gaz d'indice de réfraction n_l et de densité d_l alors que la cellule B est vide, la variation d'indice D_A, obtenue en ouvrant la valve entre les cellules A et B est donnée par

$$D_{A} = A_{n}(\Delta - \delta)d_{1} + \frac{B_{n}}{2}[1 + 2(\Delta - \delta)]d_{1}^{2} + \frac{C_{n}}{4}[3 + (4\Delta - 3\delta)]d_{1}^{3} + \dots (4.8)$$

De la même façon, si la cellule B est remplie de gaz d'indice de réfraction n_2 et de densité d_2 alors que la cellule A est vide, l'expansion de gaz de la cellule B vers la cellule A donne la variation d'indice $D_{\rm R}$, telle que

$$D_{B}^{n} = -A_{n}(\Delta - \delta)d_{2} + \frac{B_{n}}{2}[1 - 2(\Delta - \delta)]d_{2}^{2} + \frac{C_{n}}{4}[3 - (4\Delta - 3\delta]d_{1}^{3} + \dots (4.9)]d_{2}^{3}$$

De l'équation (4.4), nous faisons une approximation sur la densité en fonction de l'indice de réfraction et nous avons:

$$d_1 \cong \frac{n_1 - 1}{A_n} - B_n \left(\frac{n_1 - 1}{A_n}\right)^2 + \dots$$
 (4.10)

$$d_2 \approx \frac{n_2 - 1}{A_n} - B_n \left(\frac{n_2 - 1}{A_n}\right)^2 + \dots$$
 (4.11)

Si on insère les équations (4.10) et (4.11) dans les équations (4.8) et (4.9), on fait la somme et on obtient

$$\frac{D_{A}}{n_{1}-1} + \frac{D_{B}}{n_{2}-1} = \frac{B_{n}}{2A_{n}^{2}} [(n_{1}-1) + (n_{2}-1)] + (n_{2}-1)] + [\frac{3C_{n}}{4A_{n}^{3}} - \frac{B_{n}^{2}}{A_{n}^{4}}] [(n_{1}-1)^{2} + (n_{2}-1)^{2}]$$
(4.12)

En faisant une mise en graphique du côté gauche de l'équation (4.14) en fonction de $[(n_1-1) + (n_2-1)]$, on peut déterminer $B_n/2A_n^2$ à partir de la pente à l'origine et associer B_n à B_R par la relation (4.6). La mesure de A_n est obtenue en faisant une mesure directe de l'indice de réfraction en fonction de la pression (0 - 12 atmosphères) suivant la relation (4.4).

4.4.2.2 RESULTATS DETAILLES

Nous présentons d'abord le tableau 4.15 qui donne un résumé de nos résultats pour B_R . Par la suite, pour chacun des gaz étudiés, un premier tableau donne le nombre de franges observées lors de la rentrée "k" et de l'expansion " Δ k" du gaz pour la mesure de B_R . Un second tableau laisse voir les valeurs n_1 -1, n_2 -1, $D_A/(n_1$ -1) et $D_B/(n_B$ -1) employées pour calculer le polynôme. Nous complétons en présentant la mise en graphique de $[D_A/(n_1-1) + D_B/(n_2-1)]$ en fonction de $[(n_1-1) + (n_2-1)]$ pour chaque série de mesures.

Pour alléger l'écriture sur les tableaux, nous retenons les définitions qui suivent:

- k_A : nombre de franges, en multiples de λ/4, observées lors de la rentrée du gaz dans la cellule A.
- Δk_A : diminution de franges, en multiples de λ/4, observée lors de l'expansion du gaz de la cellule A vers la cellule B.
- k_B : nombre de franges, en multiples de $\lambda/4$, observées lors de la rentrée du gaz dans la cellule B.

: diminution de franges, en multiples de $\lambda/4$, observée lors de l'expansion du gaz de la cellule B vers la cellule A.

$$n_{1}-1 = k_{A}\lambda / 4\ell_{A}$$

$$n_{2}-1 = k_{B}\lambda / 4\ell_{B}$$

$$D_{A} = \Delta k_{A}\lambda / 4(\ell_{A} + \ell_{B})$$

$$D_{B} = \Delta k_{B}\lambda / 4(\ell_{A} + \ell_{B})$$

Un exemple de calcul est présenté à l'appendice B.

Notons que les valeurs ℓ_A et ℓ_B sont les longueurs corrigées en fonction de la température et de la pression (voir la section 3.2.1.3) pour les cellules A et B. Les incertitudes rapportées sur k_A , Δk_A , k_B et Δk_B sont les écarts maximaux notés entre 2 mesures, lors de plusieurs entrées successives, à une même pression, du gaz dans une cellule. L'incertitude relative est très faible sur la rentrée mais est plus importante sur le passage.

Pour le CH₄, les résultats des mesures sont aux tableaux 4.16 et 4.17 et à la figure 4.5.

Les résultats obtenus lors de l'étude du C_2H_4 se trouvent aux tableaux 4.18 et 4.19 et à la figure 4.6.

Le CO₂ fait l'objet des tableaux 4.20 et 4.21 et de la figure 4.7.

Enfin, les résultats des expériences réalisées avec le SF₆ se trouvent aux tableaux 4.22 et 4.23 et sont mis en graphique à la figure 4.8. A l'appendice B, nous présentons un exemple de calcul pour obtenir n-l et D/(n-1). Nous complétons l'appendice en présentant, pour chaque gaz, le rapport de l'ordinateur. Ce rapport donne les coefficients correspondants au meilleur polynôme obtenu par la méthode des moindres carrés pour l'équation (4.12). Dans chacun de ces rapports, le coefficient A doit être identifié au quotient $B_n/2A_n^2$. Enfin, X(I) représente la somme $[(n_1-1)+(n_2-1)]$ alors que Y(I) représente $[D_A/(n_1-1)+D_B/(n_2-1)]$.

			B _R (cm ⁶	/ mole ²)	
Gaz	т (к)	λ(nm)	Nous	Autres	Références
СН4	303	632,8	6,6±0,9		23
	299	u	-	7,15±0,35	4
	300	546,2	-	5,5 ±1,0	3
C2H4	303	632,8	41,3±2,4	_	24
SF ₆	323	632,8	36,0±1,8	-	25
-	300		-	29 ±5	4
C02	323	632,8	3,3±3,6	-	25
2	298		-	3,2±1,6	4
	323	447,1-667,8	-	5,3±0,9	14
	- 373	447,1-587,6	-	2,7±1,4	14
	309	546,1	- '	0,4±0,36	14
	309	540,1	-	0,420,30	14

TABLEAU 4.15 Deuxième coefficient du viriel de l'indice de réfraction.

Nombre de franges observées lors de la rentrée et de l'expansion pour la mesure de ${\rm B}_{\rm R}$ du ${\rm CH}_4$ gazeux à 303 K.

k _A	^{Δk} A	k _B	∆k _B
±4 λ/4	±8 λ/4	±4 λ/4	±8' λ/4
18 052	117	18 116	116
20 005	141	20 083	129
`26 [`] 005	227	26 081	234
27 986	265	28 068	285
30 041	303	30 147	310
32 032	339	32 110	350
33 903	368	34 014	401
35 920	429	36 057	437

; ;

Valeurs utilisées pour calculer le polynôme et déduire le B $_{
m R}$ du CH $_4$ gazeux à 303 K.

$(n_1 - 1) \times 10^2$	$(n_2 - 1) \times 10^2$	[D _A /n ₁ -1)]x10 ²	[D _B /(n ₂ -1)]x10 ²
4,5361 ± 0,0012	4,5411 ± 0,0012	0,65 ± 0,04	0,65 ± 0,04
5,0269 ± 0,0014	5,0343 ± 0,0013	0,70 ± 0,04	0,64 ± 0,04
6,5345 ± 0,0014	6,5379 ± 0,0014	0,87 ± 0,03	0,90 ± 0,03
7,0323 ± 0,0015	7,0358 ± 0,0015	0,95 ± 0,03	1,02 ± 0,03
7,5487 ± 0,0016	7,5570 ± 0,0016	1,01 ± 0,03	1,03 ± 0,03
8,0491 ± 0,0016	8,0492 ± 0,0016	1,06 ± 0,02	1,09 ± 0,02
8,5192 ± 0,0017	8,5264 ± 0,0017	1,08 ± 0,02	1,18 ± 0,02
9,0260 ± 0,0018	9,0385 ± 0,0018	1,19 ± 0,02	1,19 ± 0,02

Figure 4.5: Courbe de $[D_A/(n_1-1) + D_B/(n_2-1)]$ en fonction des indices de réfraction $[(n_1-1) + (n_2-1)]$ pour le CH₄ gazeux à 303 K.

Nombre de franges observées lors de la rentrée et de l'expansion pour la mesure de ${\rm B_R}$ du ${\rm C_2H_4}$ gazeux à 303 K. .

k _A	۵kA	к _В	∆k _B
±4 λ/4	±8 λ/4	±4 λ/4	±8 λ/4
18 007	177	18 004	156
22 092	267	22 110	242
25 959	361	26 036	349
29 909	485	29 915	482
32 350	547	32 012	551
34 806	639	34 811	674
35 853	659	35 894	719
37 769	740	37 757	796
41 644	859	41 769	904
44 785	950	44 766	1 004

i

.

Valeurs utilisées pour calculer le polynôme et déduire le B_R du C_2H_4 gazeux à 303 K.

(n ₁ - 1) x 10 ²	(n ₂ - 1) x 10 ²	[D _A /n ₁ -1)]x10 ²	[D _B /(n ₂ -1)]x10 ²
4,5253 ± 0,0012	4,5137 ± 0,0012	0,98 ± 0,22	0,87 ± 0,22
5,5519 ± 0,0013	5,5431 ± 0,0013	1,21 ± 0,18	1,10 ± 0,18
6,5238 ± 0,0014	6,5273 ± 0,0014	1,38 ± 0,15	1,34 ± 0,15
7,5166 ± 0,0016	7,5000 ±0,0016	1,61 ± 0,13	1,61 ± 0,13
8,1299 ± 0,0016	8,0255 ± 0,0016	1,69 ± 0,12	1,72 ± 0,13
8,7474 ± 0,0017	8,7273 ± 0,0017	1,83 ± 0,11	1,94 ± 0,12
9,0104 ± 0,0017	8,9989 ± 0,0017	1,84 ± 0,11	2,01 ± 0,11
9,4919 ± 0,0018	9,4659 ± 0,0018	1,96 ± 0,11	2,11 ± 0,11
10,4657 ± 0,0019	10,4712 ± 0,0019	2,06 ± 0,10	2,17 ± 0,10
11,2552 ± 0,0021	11,2230 ± 0,0020	2,12 ± 0,09	2,24 ± 0,09

<u>Figure 4.6</u>: Courbe de $[D_A/(n_1-1) + D_B/(n_2-1)]$ en fonction des indices de réfraction $[(n_1-1) + (n_2-1)]$ pour le C_2H_4 gazeux à 303 K.

Nombre de franges observées lors de la rentrée et de l'expansion pour la mesure de B_R du CO₂ gazeux à 323 K.

k _A ±4 λ/4	Δk _A ±8 λ/4	k _B ±4 λ/4	Δk _B ±8 λ/4
9 884	44	9 879	57
11 957	65	11 972	85
13 096	85	13 121	101
14 080	100	14 147	126
14 818	126	14 745	139
15 994	157	16 168	161
17 862	180	17 851	235
19 240	235	18 887	270

i

Valeurs utilisées pour calculer le polynôme et déduire $B_R^{}$ du CO $_2^{}$ gazeux à 323 K.

.

$(n_1 - 1) \times 10^2$	$(n_2 - 1) \times 10^2$	[D _A /(n ₁ -1)]x10 ³	[D _B /(n ₂ -1)]x10 ³
2,4832 ± 0,0011	2,4760 ± 0,0011	4,48 ± 0,88	5,75 ± 0,80
3,0039 ± 0,0011	3,0003 ± 0,0011	5,45 ± 0,69	7,09 ± 0,62
3,2901 ± 0,0011	3,2884 ± 0,0011	6,52 ± 0,62	7,71 ± 0,50
3,5374 ± 0,0011	3,5455 ± 0,0011	7,08 ± 0,51	8,92 ± 0,45
3,7228 ± 0,0012	3,6955 ± 0,0012	8,47 ± 0,45	9,45 ± 0,34
4,0181 ± 0,0012	4,0519 ± 0,0012	9,82 ± 0,36	1,00 ± 0,32
4,4875 ± 0,0012	4,4737 ± 0,0012	10,09 ± 0,35	13,17 ± 0,30
4,8337 ± 0,0012	4,7335 ± 0,0012	12,18 ± 0,30	14,34 ± 0,28

<u>Figure 4.7:</u> Courbe de $[D_A/(n_1-1) + D_B/(n_2-1)]$ en fonction des indices de réfraction $[(n_1-1 + (n_2-1)]$ pour le CO₂ gazeux à 323 K.
TABLEAU 4.22

Nombre de franges observées lors de la rentrée et de l'expansion pour la mesure de ${\rm B_R}$ du ${\rm SF_6}$ gazeux à 323 K.

k _A	۵k _A	k _B	∆k _B
$\pm 4 \lambda/4$	$\pm 8 \lambda/4$	$\pm 4 \lambda/4$	±8 λ/4
2 511	2,4	2 512	2,5
3 000	1,2	3 001	6,5
3 498	- 5,5	3 501	14,4
4 017	0,7	4 023	15,2
4 762	4,9	4 758	8,4
5 506	11,7	5 499	16,6
5 998	9,9	6 015	26,1
6 978	4,8	6 993	34,6
8 008	29,9	8 030	28,1
9 009	31,3	9 021	43,0
10 002	32,6	10 010	57,4
10 481	49,6	10 490	43,8
11 406	34,5	11 438	74,1
11 638	30,4	11 663	65,7
12 971	58,2	12 992	86,4

;

TABLEAU 4.23

Valeurs utilisées pour calculer le polynôme et déduire ${\rm B}_{\rm R}$ du SF $_{\rm 6}$ gazeux à 323 K.

(n ₁ - 1) x 10 ²	(n ₂ - 1) x 10 ²	[D _A /(n _i -1)]x10 ³	[D _B /(n ₂ -1)]x10 ³
0,6307 ± 0,0010	0,6296 ± 0,0010	0,95 ± 3,18	0,99 ± 3,18
0,7537 ± 0,0010	0,7520 ± 0,0010	0,40 ± 2,66	2,17 ± 2,67
0,8789 ± 0,0010	0,8773 ± 0,0010	-1,57 ± 2,28	4,12 ± 2,28
1,0092 ± 0,0010	1,0081 ± 0,0010	0,17 ± 1,98	3,78 ± 1,91
1,1964 ± 0,0010	1,1925 ± 0,0010	1,03 ± 1,67	1,77 ± 1,67
1,3832 ± 0,0010	1,3780 ± 0,0010	2,12 ± 1,45	3,02 ± 1,45
1,5068 ± 0,0010	1,5074 ± 0,0010	1,65 ± 1,33	3,20 ± 1,33
1,7532 ± 0,0010	1,7525 ± 0,0010	0,69 ± 1,14	4,95 ± 1,14
2,0118 ± 0,0011	2,0126 ± 0,0011	3,73 ± 1,00	3,50 ± 0,99
2,2633 ± 0,0011	2,2607 ± 0,0011	3,47 ± 0,89	4,77 ± 0,88
2,5128 ± 0,0011	2,5088 ± 0,0011	3,25 ± 0,80	5,74 ± 0,80
2,6331 ± 0,0011	2,6291 ± 0,0011	4,73 ± 0,76	4,18 ± 0,76
2,8655 ± 0,0011	2,8665 ± 0,0011	3,02 ± 0,70	6,49 ± 0,70
2,9237 ± 0,0011	2,9230 ± 0,0011	3,94 ± 0,68	6,69 ± 0,69 🔍
3,2588 ± 0,0011	3,2509 ± 0,0011	4,48 ± 0,62	7,66 ± 0,62

<u>Figure 4.8:</u> Courbe de $[D_A/(n_1-1) + D_B/(n_2-1)]$ en fonction des indices de réfraction $[(n_1-1) + (n_2-1)]$ pour le SF₆ gazeux à 323 K.

4.5 POLARISABILITE ELECTRONIQUE ET ATOMIQUE

Sachant que

$$A_{\varepsilon} = \frac{4}{3} \pi N_{A} (\alpha_{atomique}^{+} \alpha_{electronique})$$
(4.13)

$$A_{\rm R} = \frac{4}{3} \pi^{\rm N} A^{\alpha}$$
 electronique (4.14)

nous pouvons, à partir de nos valeurs de A_R (voir le tableau 4.2) déduire la polarisabilité électronique d'une molécule. Si nous comparons nos résultats avec les mesures de A_e , nous obtenons la polarisabilité atomique de cette même molécule. Le tableau 4.24 nous fait voir les résultats pour le CH₄ et le C₂H₄ alors que le tableau 4.25 résume les résultats pour le SF₆ et le CO₂.

TABLEAU 4.24

Gaz	λ (nm)	Temp (^O K)	A _R (cm ³ mole ⁻¹)	A (cm ³ mole ⁻¹)	^α elect. (10 ²⁵ cm ³)	lpha atm. (10 ²⁵ cm ³)	^α total (10 ²⁵ cm ³)	Références
								<u> </u>
CH ₄	632,8	302	6,553±0,006	-	25,97±0,01	-0,04±0,02 ^e	-	23
	-	н	-	6,541±0,003	-	+0,03±0,02 ^f	25,93±0,01	6
	632,8	н	6,569 ^a	-	26,04 ^C	-	-	Litt.
	547,1	300	6,614±0,002	-	26,22±0,01	-	-	. 3
	632,8	299 、	6,600±0,002	-	26,16±0,01	-	-	4
	-	-	-	6,559 ^d	-	-	26,0	17
	-	298	6,45 ±0,06	6,53 ±0,06	25,56±0,25	0,32±0,01	25,88±0,26	20
^C 2 ^H 4	632,8	303	10,610±0,009	-	42,05±0,04	+0,46±0,006	-	24
	-	н	-	10,725±0,005	-	-	42,51±0,02	18
	632,8	п	10,649 ^a	-	42,21	-	42,6 ^b	-
	-	298	10,34 ±0,10	10,73 ±0,10	40,98±0,41	1,54±0,01	42,53±0,42	20

Polarisabilité atomique et électronique du CH_4 et du C_2H_4 gazeux.

a) Calculée d'après la référence 2.

- b) voir référence 17
- c) Calculée d'après \boldsymbol{A}_R et référence 2

- d) Calculée d'après α_{total} de la référence 17
- e) Calculée par rapport à la référence 6.
- f) Calculée par rapport à la référence 17.

TABLEAU 4.25

Gaz	λ (nm)	Temp (^O K)	A _R (cm ³ mole ⁻¹)	A _e (cm ³ mole ⁻¹)	^α électr. (10 ²⁵ cm ³)	lpha atom. (10 ²⁵ cm ³)	^α total (10 ²⁵ cm ³)	Références
SF6	632,8	323	11,348±0,021		44,98±0,08	20,59±0,15	-	25
	-	298	11,31 ±0,11	16,51 ±0,16	44,70±0,45	20,35±0,20	65,05±0,65	20
	-	298	-	16,543±0,017	-	-	65,58±0,07	7
	632,8	323	11,41 ^a	-	45,23 ^d	-	64,8 ^b	Litt.
	632,8	298	11,34 ±0,02	-	-	-	-	4
		£						
с0 ₂	632,8	323	6,658±0,021	-	26,39±0,08	2,74±0,10	_	25
	-	298		7,350±0,006	-	· _	29,13±0,02	11
	632,8	323	6,647 ^a	-	26,35 ^d	-	26,5 ^C	Litt.
	632,8	298 -	6,650±0,005	-	-	-	-	4
	-	298	6,54 ±0,07	7,35 ±0,73	25,92±0,26	3,21±0,03	29,13±0,30	20
					•			

Polarisabilité atomique et électronique du SF_6 et du CO_2 gazeux.

a) Calculée d'après la référence 2.

- b) Voir la référence 17
- c) Voir la référence 18
- d) Calculée d'après A_R et la référence 2.

4.6 LISTE DES OUVRAGES CITEES DANS LE CHAPITRE IV

- 1- J.G. Kirkwood, J. Chem. Phys. 4, 592 (1936)
- 2- Landolt-Börnstein, <u>Zahlenwerte und Funktionen</u>, Vol. II, Pt. 8 (Springer-Verlag, Berlin, 1962)
- 3- J.D. Olson, J. Chem. Phys. 63, 474 (1975)
- 4- A.D. Buckingham et C. Graham, Proc. Roy. Soc. London, A336, 275 (1974)
- 5- W. Thomas et M. Zander, Z. angew. Phys. 20, 417 (1966)
- 6- T.K. Bose, J.S. Sochanski et R.H. Cole, J. Chem. Phys. 57, 3592 (1972)
- 7- T.K. Bose et C. Hosticka, J. Chem. Phys. 60, 1318 (1974)
- 8- W.H. Mears, E. Rosenthal et J.V. Sinka, J. Chem. Phys. 19, 845 (1951)
- 9- K.E. MacCormack et W.G. Schneider, J. Chem. Phys. 19, 845 (1951)
- 10- H.P. Clegg, J.S. Rowlinson et J.R. Sutton, Trans. Faraday Soc. <u>51</u>, 1327 (1955)
- 11- T.K. Bose et R.H. Cole, J. Chem. Phys. 52, 140 (1970)
- 12- J.H. Dymond et E.B. Smith, <u>Tables of virial coefficients of gases</u>, Clarendon Press, Oxford (1969)
- 13- A. Michels et C. Michels, Proc. Roy. Soc. <u>A152</u>, 201 (1935)
- 14- R.H. Orcutt et R.H. Cole, J. Chem. Phys. <u>46</u>, 697 (1967).
- 15- K.E. MacCormarck et W.G. Schneider, J. Chem. Phys. <u>18</u>, 1269 (1950)

16- A.A. Maryott et F. Bucley, Natl. Bur. Std (U.S.) Circ 537 (1953)

17-	J.O. Hirschelder, C.F. Curtiss et R.G. Bird, <u>Molecular Theory of Gases</u>
	and Liquids, Wiley, New-York (1967)
18-	T.K. Bose et R.H. Cole, J. Chem. Phys. <u>54</u> , 3829 (1971)
19-	H.M. Ashton et E.S. Halberstadt, Proc. Roy. Soc. <u>A245</u> , 373 (1958)
20-	H.E. Watson et K.L. Ramaswany, Proc. R. Soc. <u>A156</u> , 144 (1936)
21-	E.G. Butcher et R.S. Dadson, Proc. R. Soc. <u>A277</u> , 448 (1964)
22-	A. Michels, J. Gruyter et F. Niesen, Physica, 's Grav. <u>3</u> , 346 (1936)
23-	J.M. St-Arnaud et T.K. Bose, J. Chem. Phys. <u>65</u> , 4854 (1976)
24-	J.M. St-Arnaud et T.K. Bose, J. Chem. Phys. <u>68</u> , 2129 (1978)
25-	J.M. St-Arnaud et T.K. Bose, J. Chem. Phys., <u>71</u> , 4951 (1979)

CHAPITRE V

DISCUSSION

5.1 INTRODUCTION

La discussion sur la contribution d'interactions moléculaires à l'indice de réfraction d'un gaz fait l'objet du présent chapitre.

Nous avons mesuré l'indice de réfraction jusqu'à des pressions de l'ordre de 200 atmosphères dans le but d'augmenter la contribution d'interactions moléculaires, diminuant ainsi l'erreur sur le deuxième coefficient du viriel de l'indice de réfraction (B_R). Nous avons choisi des gaz multipolaires comme le CO_2 , le C_2H_4 , le CH_4 et le SF_6 pour lesquels une mesure précise du second coefficient du viriel diélectrique (B_{ϵ}) existe déjà. Notre mesure précise de B_R pour ces gaz nous permettra de séparer les interactions dues au champ moléculaire de celles dues au champ externe. Nous effectuons cette séparation en comparant B_{ϵ} et B_R dans l'expression

$$B_{\varepsilon} - B_{R} = B_{FIR} + B_{IR}$$
(5.1)

où B_{FIR} qui représente l'absorption induite par collision dans l'infrarouge lointain correspond au terme B_{OR} mentionné antérieurement. Le terme B_{IR}

est associé aux interactions entre les dipôles de translation, rotation et vibration induits par le champ moléculaire. Birnbaum et Bose¹ ont proposé pour B_{IR} l'expression suivante:

$$B_{IR} = 2(A_{e} - A_{R}) N_{A} \alpha_{0}^{2} R_{0}^{-3} I_{6}(x)$$
(5.2)

où α_0 est la polarisabilité totale, R $_0$ est le diamètre moléculaire, x=R/R $_0$ et I $_6(x)$ est défini par

$$I_6(x) = o^{\int_{-\infty}^{\infty} x^{-6} \exp[-U(x)/kT] 4\pi x^2 dx}$$
 (5.3)

alors que U(x) est le potentiel de la paire, k est la constante de Boltzmann et T est la température absolue.

Pour la majorité des gaz que nous avons étudiés, B_{IR} est négligeable sauf pour le SF₆. En effet, l'examen du tableau (5.2) nous permet de constater que pour le CO₂, le C₂H₄ et le CH₄, la valeur de B_{IR} est plus petite que l'incertitude admise sur B_{FIR}. Donc, il nous paraît raisonnable de négliger B_{IR} devant B_{FIR} pour ces gaz. Toutefois, en ce qui concerne le B_{IR} du SF₆, nous en discuterons plus loin.

Dans le cas de gaz non-polaires, Buckingham et Pople² ont proposé pour B_{OR}(=B_{FIR}) l'expression qui suit:

$$B_{OR} = \frac{4\pi N_A^2}{9kT\Omega} o^{\int_{\infty}^{\infty}} d\tau (\underline{\mu}_1 + \underline{\mu}_2)^2 \exp \left[-U_{12}/kT\right]$$
(5.4)

où $\underline{\mu}_1$ et $\underline{\mu}_2$ sont les moments induits dans les molécules l et 2. Ces moments sont induits par les champs multipolaires de l'autre molécule de la paire. C'est l'interaction entre ces moments induits qui donne naissance à B_{OR}. L'intégrale doit être prise sur toutes les configurations relatives de la paire dans un volume sphérique V où $\int d\tau = \Omega V, \Omega$ étant défini comme l'intégrale

TABLEAU 5.1

Paramètres de viscosité et potentiel de Lennard-Jones utilisés pour calculer les B_R

, selon la théorie DDI et les comparer avec nos valeurs mesurées de ${\rm B}_{\rm R}^{}.$

GAS	Potentiel de Lennard-Jones	[ε/k] (K)	R _o (nm)	B _R (DDI) (cm ⁶ /mole ²)	B _R (Nous) (cm ⁶ /mole ²)
CO2	6-12	218,8 ^a	0,3819 ^a	6,9	3,3±3,6 ^e
C2H4	6-12	201,8 ^a	0,4218 ^a	20,1	41,3±2,4 f
сн ₄	6-12	148,6 ^b	0,3758 ^b	6,1	6,6 ±0,9 ^g
SF ₆	6-12	155 ^c	0,546 ^C	10,5	36,0±1,8 ^e
SF ₆	7-28	439 d	0,468 ^d	24,8	36,0±1,8 ^e

a: ref. 3 b: ref. 4 c: ref. 5 d: ref. 6 e: ref. 7 f: ref. 8 g: ref. 9

Dans le cas du CH_4 et du C_2H_4 , nous avons conservé l'eau à 29,85 ± 0,02°C alors que la pièce était maintenue à 21,2 ± 0,3°C. Nous avons compensé l'évaporation de l'eau au moyen d'un système qui gardait constant le niveau d'eau. Pour le SF₆ et le CO₂ qui possèdent des températures critiques plus élevées, nous avons opéré respectivement à 49,85 ± 0,02°C et à 49,72 ± 0,02°C. Pour ces 2 derniers gaz, nous avons opté pour le polyéthylène glycol car son taux d'évaporation est très faible par rapport à l'eau et il peut ainsi être chauffé sans problème d'évaporation jusqu'à 100°C.

La figure 3.15 illustre une variation type de la température dans l'enceinte des cellules pour une période de l2 heures. On constate que la température se maintient, dans le cas du SF_6 , à 49,84 ± 0,02^OC. Les écarts de température ne perturbent pas nos mesures car elles sont en deçà de la précision de nos lectures.

3.3.2.2 ENCEINTE ENTRE LE BAIN ET L'INTERFEROMETRE-LASER

Une distance approximative de 10 cm existe entre l'enceinte des cellules et le laser. Nous avons contrôlé la température de cet espace afin d'éviter les gradients de température le long du faisceau circulant dans l'air libre. Un contrôleur proportionnel de température, une sonde à résistance de platine placée dans le voisinage des faisceaux et 2 ampoules électriques de 25 watts disposées symétriquement par rapport aux faisceaux constituent le système de contrôle de température de cette enceinte. Celle-ci est fabriquée avec du contre-plaqué dont l'intérieur est recouvert de papier d'aluminium. Ce système maintient la température à 36,32 \pm 0,06⁰C durant une période de 11 heures dans le cas du SF₆. La figure 3.16 laisse voir une courbe de la température en fonction du temps dans l'enceinte entre le bain et le laser.

Т	A	В	L	E,	A	U	5	•	2
-			_		_				_

GAS	Т(К)	Β _ε	^B R	B _{FIR}	B _{IR} ^a	Β _ε - Β _R	B _{FIR} + B _{IR}
CO2	323	50,7±0,9 ^b	3,3±3,6 ^C		_	47,4±4,5	_
	333	-	-	48±5 d		-	49,0±5,0
	298	-	-	-	1,0	-	-
°2 ^H 4	303	50,3±1,4 ^e	41,3±2,4 f	9,0 ^g	0,8	9,0±3,8	9,8
сн ₄	303	7,68±0,31 ^h	6,6±0,9 ⁱ	1,21 ^j	0,087	1,08±1,21	1,29
SF ₆	323 298	63,3±2,8 ^k	36,0±1,8 ^C	- 0,53 ^m	- 24,2	27,3±4,6 -	- 24,73
a: ref. 1 g: ref. 13	b: ref. h: ref.	10 c: 1 13 i: 1	ref.7 d ref.9 j	: ref. 11 : ref. 15	e: ref. k: ref.	12 f: re 16 m: re	ef. 8 ef. 17

Comparaison des diverses valeurs de B en cm⁶/mole².

sur les coordonnées d'orientation, U_{12} est l'énergie potentielle d'interaction de la paire et N_{Δ} est le nombre d'Avogadro.

5.2 SYSTEMES QUADRUPOLAIRES

Nous avons étudié 2 gaz qui possèdent des moments quadrupolaires: le CO₂ qui est une molécule à symétrie axiale et le C₂H₄ qui est une molécule à faible symétrie.

Pour un potentiel de Lennard-Jones 6-12, Buckingham et Pople² ont obtenu, à partir de l'équation (5.4), l'expression suivante:

$$B_{OR} = \left[\frac{(4\pi N_A)^2 \alpha_0^2}{3kT} \quad \overline{\theta}^2 \right] \langle R^{-8} \rangle$$
(5.5)

оù

•

$$= (1/12) R^{3-n} y^{-4} H_n(y)$$
 (5.6)

où y et $H_n(y)$ ont été définis à l'expression (1.33). Dans l'équation (5.5), α_0 est la polarisabilité totale et $\overline{\theta}^2 = \theta_1^2 + (3/4) \theta_2^2$. Notons que θ_1 et θ_2 sont des moments quadrupolaires indépendants donnés par^{18,19}

$$\theta_{1} = \sum_{i} e_{i} \left[z_{i}^{2} - \frac{1}{2} \left(x_{i}^{2} + y_{i}^{2} \right) \right]$$
(5.7)

$$\theta_2 = \sum_{i} e_i \left[y_i^2 - x_i^2 \right]$$
(5.8)

où x, y et z sont les axes principaux de la molécule et où e_i est la grandeur de la charge en x y z .

Comme le CO₂ a une symétrie axiale, il possède un moment quadrupolaire unique (θ_1) et $\theta_2 = 0$.

TABLEAU 5.3

κ.

Valeurs de B_{ϵ} , B_{R} et $B_{0R} = B_{\epsilon} - B_{R}$ et valeurs du momént quadrupolaire (θ_{1}) du CO_{2} .

METHODE	т (К)	B _ε (cm ⁶ /mole ²)	B _R (cm ⁶ /mole ²)	^B OR (cm ⁶ /mole ²)	θ ₁ (x 10 ²⁶ esu-cm ²)
Β _ε - Β _R	323	50,7±0,9 ^a	3,3±3,6 ^b	47,4±4,5	
INFRAROUGE LOINTAIN	233-333	-	-	48 ±5 ^C	4,5±0,2 ^C
Β _ε - Β _R	323	50,7±0,9 ^a	4,0 ^a	46,9±0,9 ^a	4,32 ^a
BIREFRINGENCE	323	-	-	-	4,3±0,2 ^d
MICRO-ONDES	298	-	-	46 ^e	4,4 ^e

a: réf. 10 b: réf. 7 c: réf. 11 d: réf. 20 e: réf. 13

5.2.1 <u>CO</u>2

La molécule du CO_2 est bien connue du point de vue diélectrique. De fait, on relève dans la littérature qu'il existe un très bon accord (voir le tableau 5.3) entre les valeurs du moment quadrupolaire obtenues à partir de mesures diélectriques¹⁰, de mesures dans la région des micro-ondes¹³, de mesures dans l'infrarouge lointain¹¹ et d'une mesure directe faite par Buckingham et al²⁰ par la méthode de la biréfringence induite. Etant donné que B_{ε} et B_{OR} sont connus avec beaucoup de précision dans le cas du CO_2 , nous étions intéressés à mesurer directement B_R dans le but de déterminer la fiabilité de notre méthode.

Nos mesures de l'indice de réfraction du CO₂ furent faites à 323 K dans le but d'être au-dessus du point critique et de mesurer jusqu'à des pressions de 80 atmosphères sans problème de liquéfaction.

On constate au tableau 4.15 que notre valeur expérimentale de B_R est en accord, dans les limites d'incertitude , avec d'autres valeurs antérieures mais ne concorde pas avec la valeur DDI calculée avec un potentiel de Lennard-Jones 6-12 (voir le tableau 5.1). On peut comprendre ce désaccord en se rappelant que l'approximation DDI néglige à la fois les effets d'interactions de courte et de longue portée sur la polarisabilité d'une molécule.

Le désaccord sur le B_R du CO₂ entre notre valeur expérimentale et la valeur théorique obtenue selon le calcul DDI peut être comparé à celui de l'argon. Dans les 2 cas, la valeur mesurée est la moitié de la valeur DDI. Si les considérations faites au chapitre I sur les gaz atomiques sont

qualitativement valables, on peut dire qu'il est probable que, dans le cas du CO_2 , le calcul de B_R^{CH} dans la région du chevauchement entre 2 molécules soit suffisamment négatif pour réduire la contribution positive de B_R^{DIS} .

La comparaison, au tableau 5.2, des mesures de B_R, B_E et B_{FIR} permet de constater que, pour le CO₂, B_E - B_R est en accord avec la valeur de B_{FIR} obtenue par Ho et al¹¹ à la suite de mesures de l'absorption dans l'infrarouge lointain. Nous notons (voir le tableau 5.3) que notre valeur expérimentale de B_R est similaire à la valeur déduite par Bose et Cole¹⁰. En raison de cet accord, toutes les analyses de Bose et Cole basées sur B_{OR} et visant à déterminer θ_1 seront semblables aux nôtres.

5.2.2 <u>C₂H₄</u>

Il n'existe aucune valeur expérimentale de B_R pour le C_2H_4 dans la littérature. De plus, le moment quadrupolaire calculé par Bose et Cole¹² à partir de leur mesure de B_{ϵ} et d'une valeur de B_R déduite par eux ne concorde pas avec le moment quadrupolaire (θ_1) obtenu directement par Buckingham et al²⁰ (voir le tableau 5.4). On constate que la valeur de Buckingham et al s'accorde beaucoup mieux avec celle qui est obtenue à partir de l'absorption mesurée dans le domaine des micro-ondes par Birnbaum et Maryott¹³. Le désaccord entre la valeur du moment quadrupolaire dérivée de la mesure diélectrique, celle déduite de la région des micro-ondes et celle obtenue par une mesure directe nous amène à constater qu'il est possible que la valeur de B_R déduite par Bose et Cole soit la cause de ce désaccord. Pour résoudre ce problème, nous avons décidé de mesurer avec précision le B_R du C_2H_4 .

TABLEAU 5.4

Valeurs de B_{ϵ}, B_{R} et $B_{0R} = B_{\epsilon} - B_{R}$ et valeurs du moment quadrupolaire (0) du $C_{2}H_{4}$.

METHODE	т (к)	B _ε (cm ⁶ /mole ²)	B _R (cm ⁶ /mole ²)	^B OR (cm ⁶ /mole ²)	∂ x10 ²⁶ esu-cm ²	⁰ 1 x10 ²⁶ esu-cm ²
Β _ε - Β _R	303	50,3±1,4 ^a	41,3±2,4 ^b	9,0±3,8	2,04±0,43	-
MICRO-ONDES	298	-	-	9,0 ^c	2,04 ^C	-
BIREFRIN- GENCE INDUITE	303	-	-	-	-	2,00±0,15 ^d
Β _ε - Β _R	303	50,3±1,4 ^a	6,0 ^a	44,3	3,9 ^a	-
L						

a: réf. 12 b: réf. 8 c: réf. 13 d: réf. 20

Contrairement au CO_2 , on observe (voir le tableau 5.1) que le B_R expérimental du C_2H_4 est le double de la valeur calculée à partir de la théorie classique DDI. Pour expliquer cette différence, nous pouvons noter qu'il est possible que l'effet de longue portée sur la polarisabilité, effet qui ajoute une valeur positive au calcul DDI, soit plus important que l'effet négatif produit dans la région du chevauchement. Si on applique au cas du C_2H_4 le calcul fait par Jansen et Mazur²¹ pour obtenir l'effet de longue portée sur la polarisabilité de l'argon, on observe que B_R^{DIS} augmente de 20 cm⁶/mole² (valeur de B_R^{DID}) à 60 cm⁶/mole². Cependant, ce calcul n'est peut-être pas quantitativement valable pour le C_2H_4 parce que Jansen et Mazur utilisent la fonction d'onde de l'hydrogène. On peut donc conclure que la contribution négative de B_R^{CH} est proportionnellement moins importante pour le C_2H_4 que pour le C_2 .

La valeur de B_{OR} (9,0±3,8 cm⁶/mole²) que nous obtenons en comparant notre mesure de B_R avec la mesure de B_E de Bose et Cole¹² est en accord, dans les limites d'incertitude, avec la valeur de B_{OR} (9,0 cm⁶/mole²) mesurée par Birnbaum et Maryott¹³ dans la région des micro-ondes.

Nous avons obtenu la valeur de $\overline{\Theta}$ du C₂H₄ en négligeant les corrections faites par Bose et Cole¹⁰ pour le moment quadrupolaire du CO₂. En effet, Hosticka et al¹⁸ ont déjà montré que ces corrections dans le cas du C₂H₄ sont pratiquement toutes négligeables.

Nous pouvons alors comparer notre valeur de $\overline{\theta}$ (voir le tableau 5.4) avec le θ_1 de Buckingham et al²⁰. Leur mesure directe basée sur la biréfringence induite donne $\theta_1 = (2,00\pm0,15) \times 10^{-26}$ esu-cm² en posant $\alpha_{xx} = \alpha_{yy}$ et en supposant que l'axe z est celui de la double liaison.

Si on pose $\alpha_{xx} \neq \alpha_{yy}$, la valeur mesurée n'est pas $\theta_1 \left(\theta_{zz} \right)$ dans le cas de Buckingham et al.) mais plutôt

$$\theta_{1} + \left[\left(\alpha_{xx} - \alpha_{yy} \right) \right] \left(\alpha_{zz} - \alpha_{yy} \right) \right] \quad \theta_{xx}$$
(5.9)

Puisque Buckingham et Parizeau²² ont déterminé que $(\alpha_{xx} - \alpha_{yy}) / (\alpha_{zz} - \alpha_{yy})$ est de 0,019 pour le C₂H₄, le second terme dans (5.9) devient négligeable pour toute valeur raisonnable de θ_{xx} .

En conséquence, notre valeur de $\overline{\theta}$ associée avec le θ_1 de Buckingham et al devrait nous permettre de déduire θ_2 . Une telle combinaison $\begin{bmatrix} \frac{3}{4} & \theta_2^2 &= \overline{\theta} & 2 \\ 0 & 0 & 0 \end{bmatrix}$ nous donne $\theta_2 = (0,46 \pm 1,52) \times 10^{-26} \text{ esu-cm}^2$.

Zwicker et Cole¹⁹ ont montré que pour un rotor asymétrique, les transitions $\Delta J = 0$, l, 2; $\Delta k = 0$, 2 sont toutes permises. Ils ont calculé les coefficients d'absorption à toutes les combinaisons de transition et ont trouvé que les transitions $\Delta J=0$, $\Delta k=0$ contribuent à elles seules à 10% de l'absorption de rotation. Sur la base de cette information, $\overline{\theta}$ pour le C₂H₄ devrait être de l'ordre de 3,3 x 10⁻²⁶ esu-cm² d'après les résultats que Birnbaum et Maryott¹³ ont obtenus par l'absorption dans les micro-ondes. Cette valeur est évidemment beaucoup plus élevée que celle que nous obtenons à partir de B_c et B_R.

En employant les éléments matriciels $\Delta J=0$ et $\Delta k=0$ et les relations de Kramers Kronig,Zwicker et Cole¹⁹ ont obtenu, sur la base des résultats de Birnbaum et Maryott, une valeur de θ_1 plutôt que de $\overline{\theta}$. Cette valeur, $\theta_1 = 3,5 \times 10^{-26}$ esu-cm², est presque le double de la valeur $\theta_1 = 2,0 \times 10^{-26}$ esu-cm² mesurée directement par Buckingham et al. En raison de l'accord presque parfait entre les 3 premières valeurs du moment quadrupolaire annoncées au tableau 5.4, il nous paraît raisonnable d'affirmer que la composante θ_2 du moment quadrupolaire du C_2H_4 est petite, sinon nulle. Puisque notre valeur expérimentale de B_R donne en association avec B_{ε} une valeur de B_{OR} qui s'accorde très bien avec la valeur de B_{OR} déduite de l'absorption dans la région des micro-ondes selon les règles de sélection d'un rotor symétrique, nous croyons que la représentation de la molécule du C_2H_4 avec un moment quadrupolaire axial est satisfaisante. De plus, il nous apparaît improbable de pouvoir séparer la contribution de θ_2 au moyen d'une mesure de l'absorption induite par pression pour le C_2H_4 tel que proposé par Zwicker et Cole¹⁹.

5.3 SYSTEME OCTUPOLAIRE (CH₄)

La valeur de B_R que nous obtenons dans le cas du CH₄ est, dans les limites d'incertitude, en accord non seulement avec les autres valeurs dans la littérature (voir le tableau 4.15) mais aussi avec la valeur théorique DDI (voir le tableau 5.1) calculée avec un potentiel de Lennard-Jones 6-12. Ceci signifie qu'il est probable que la théorie DDI soit assez exacte dans le cas du CH₄ et que les corrections quantiques soient très faibles pour cette molécule. Comme pour les gaz précédents, la comparaison entre les mesures de B_E, B_R et B_{FIR} permet de vérifier que B_E - B_R est en accord dans les limites d'incertitude, avec la valeur rapportée par Birnbaum et Cohen¹⁵ à la suite de mesures dans l'infrarouge lointain.

TABLEAU 5.5

Valeurs de B_{ε} , B_{R} et $B_{OR} = B_{\varepsilon} - B_{R}$ et valeurs du moment octupolaire (Ω) du CH₄.

(K) $(cm^{6}/mole^{2})$ $(cm^{6}/mole^{2})$ $(cm^{6}/mole^{2})$	$(x \ 10^{34} \ \text{esu-cm}^3)$
303 7,68±0,31 ^a 6,6±0,9 ^b 1,08±1	.21 2,1±0,6
163,195 243,296 1,2	c 2,22±0,12 ^C
303 7,68±0,31 ^a 2,5 ^a 5,13±0,	31 ^a -
163,195 - - 1,2 243,296 - - 1,2 303 7,68±0,31 ^a 2,5 ^a 5,13±0,	с 31 ^а

a: réf. 14 b: réf. 9 c: réf. 15

En utilisant un potentiel de Lennard-Jones 6-12 pour la paire de molécules et en négligeant l'énergie d'interaction octupole-octupole et les effets d'induction du second ordre, l'effet d'interaction entre les dipôles induits par le moment octupolaire (Ω) est donnée par la relation^{14,24}

$$B_{OR} = \left(\frac{256\pi N_A^2 \alpha^2}{15kT}\right) < R^{-10} > \Omega^2$$
 (5.10)

où $\langle R^{-n} \rangle$ a été défini à l'expression (5.6). Notons ici, que, selon les travaux de Ozier et Fox²⁵ et ceux de Birnbaum et Cohen¹⁵ réalisés en spectroscopie de l'infrarouge lointain, les transitions de rotation suivent les règles de sélection $\Delta J=1$, $\Delta J=2$ et $\Delta J=3$ (cette dernière étant la plus intense) des interactions entre dipôles induits par le moment octupolaire lors de collisions entre paires de molécules. La forme d'absorption à de hautes fréquences et pour toutes les températures est telle qu'elle ne peut pas être expliquée seulement par les transitions $\Delta J=1$, $\Delta J=2$ et $\Delta J=3$. Birnbaum et Cohen ont suggéré que l'absorption due aux dipôles induits par le moment hexadecapolaire suive les règles de sélection $\Delta J=1$, $\Delta J=2$, $\Delta J=3$ et $\Delta J=4$, cette dernière contribuant à l'absorption aux hautes fréquences. Birnbaum et Cohen ont ainsi pu séparer la contribution venant du moment octupolaire de celle issue du moment hexadecapolaire.

Notre calcul de Ω selon la relation (5.10) donne une valeur de Ω qui est en accord, dans les limites d'incertitude, avec la valeur rapportée par Birnbaum et Rosenberg (voir le tableau 5.5).

Lorsque les valeurs de B_e et B_R sont du même ordre de grandeur, la valeur B_{OR} est faible et une grande incertitude est associée à la valeur de B_{OR}. Tel est le cas pour le CH₄ où le calcul de Ω , quoique valable, renferme une forte incertitude.

5.4 <u>SYSTEME HEXADECAPOLAIRE (SF₆)</u>

Nos mesures de l'indice de réfraction du SF₆ furent faites à 323 K dans le but de se situer au-dessus du point critique et de mesurer jusqu'à des pressions de 80 atmosphères sans problème de liquéfaction.

Nous obtenons $B_R = 36,0\pm1,8 \text{ cm}^6/\text{mole}^2$. Cette valeur est en accord, dans les limites d'incertitude, avec la mesure de $B_R = 29\pm5 \text{ cm}^6/\text{mole}^2$ que Buckingham et Graham²⁶ ont réalisée à une pression maximale de 5,0 atmosphères (voir le tableau 4.15). Notre valeur mesurée est cependant 1,5 fois plus grande que la valeur calculée selon la théorie DDI en tenant compte d'un potentiel de Lennard-Jones 7-28. Cette forme de potentiel fut retenue parce que les travaux de McCoubrey et Singh⁶ indiquent que pour le SF₆ ce sont les paramètres 7-28 qui expriment le mieux les différentes propriétés physiques comme la viscosité et le deuxième coefficient du viriel de la pression. Pour fin de comparaison, nous vous présentons au tableau 5.1 la valeur théorique de B_R calculée avec un potentiel de Lennard-Jones 6-12. On y constate la très grande importance de déterminer la bonne forme de potentiel car la valeur obtenue avec un potentiel 7-28 est beaucoup plus près de la valeur mesurée que la valeur calculée avec un potentiel 6-12.

Nous nous retrouvons ainsi dans une situation similaire au C_2H_4 où la valeur DDI est la moitié de la valeur mesurée. Pour le C_2H_4 , nous avons proposé une explication pour le désaccord entre la valeur DDI et la valeur mesurée. Nous croyons que la même explication demeure valable pour le SF₆.

T	AB	L	E/	٩L	J	5	6

			_		
METHODE	т (к)	B _e (cm ⁶ /mole ²)	B _R (cm ⁶ /mole ²)	^B IR (cm ⁶ /mole ²)	^B OR (cm ⁶ /mole ²)
B _ε - B _R - B _{IR}	323	63,8±2,8 ^a	36,0±1,8 ^b	24,2 ^C	3,6±4,6
INFRAROUGE LOINTAIN	233, 273	-	-	-	0,53 ^d
Β _ε - Β _R	323	63,8±2,8 ^a	28,04 ^a	_	36,7±5,8 ^a

Valeurs de B_{ϵ} , B_{R} et $B_{OR} = B_{\epsilon} - B_{R} - B_{IR}$ du SF₆.

a: réf. 16 b: réf. 7 c: réf. 1 d: réf. 17

Pour le SF₆, Birnbaum et Bose¹ ont déjà montré que $B_{\epsilon}-B_{R}\neq B_{FIR}$. Ils furent les premiers à calculer la valeur de B_{IR} et ils ont obtenu une valeur très élevée ($B_{IR}=24,2 \text{ cm}^{6}/\text{mole}^{2}$). Sachant que B_{IR} est une mesure de l'absorption induite par collision dans l'infrarouge, ils ont associé leur valeur théorique aux valeurs expérimentales de B_{ϵ} , B_{R} et B_{FIR} disponibles à ce moment. Ils ont constaté que $B_{\epsilon}-B_{R}\neq B_{FIR}+B_{IR}$. Cette vérification d'inégalité les a conduit à conclure qu'il y avait soit des erreurs dans les mesures des valeurs de B, soit une bande non-mesurée d'absorption induite par collision. Or, notre mesure de B_{R} présentée au tableau 5.2 nous permet de vérifier, dans les limites d'incertitude,que $B_{\epsilon}-B_{R}=27,3\pm4,6 \text{ cm}^{6}/\text{mole}^{2}$ est en accord avec $B_{FIR}+B_{IR}=24,73 \text{ cm}^{6}/\text{mole}^{2}$. Donc, nous pouvons conclure que, dans le cas du SF₆, il n'existe pas de bande inconnue d'absorption induite par collision.

L'examen du tableau 5.2 permet aussi de constater que, pour le SF_6 , la valeur de B_{FIR} (0,53 cm⁶/mole²) est beaucoup plus petite que la valeur de $B_{IR}(24,2 \text{ cm}^6/\text{mole}^2)$. Pour tous les autres gaz, B_{IR} est faible devant B_{FIR} .

En faisant $B_{OR}=B_{e}-B_{R}-B_{IR}$, nous obtenons 3,6±4,6 cm⁶/mole² et cette valeur rejoint, dans les limites d'incertitude, la valeur de $B_{FIR} = 0,53 \text{ cm}^{6}/\text{mole}^{2}$ mesurée par Rosenberg et Birnbaum ¹⁷ dans la région de l'infrarouge lointain.

Etant donné que les valeurs expérimentales de B_e et B_R et la valeur théorique de B_{IR} renferment toutes une incertitude, la différence entre ces valeurs de B conduit à une très grande incertitude sur B_{OR}. On en conclut qu'il serait inutile de calculer et d'interpréter la valeur du moment hexade-capolaire (ϕ) du SF₆ à partir d'une telle valeur de B_{OR}.

5.5 LISTE DES OUVRAGES CITES DANS LE CHAPITRE V

- 1- G. Birnbaum et T.K. Bose, J. Chem. Phys. 71, 17 (1979)
- 2- A.D. Buckingham et J.A. Pople, Trans. Faraday Soc. 51, 1029 (1955)
- 3- T.H. Spurling et E.A. Mason, J. Chem. Phys. 46, 322 (1967)
- 4- R.A. Svehla, NASA Tech. Rept. R-132,U.S. Government Printing Office, Washington D.C. (1962)
- 5- J.C. McCoubrey et N.M. Singh, Trans. Faraday Soc. 53, 877 (1957)
- 6- J.C. McCoubrey et N.M. Singh, Trans. Faraday Soc. 55, 1826 (1959)
- 7- J.M. St-Arnaud et T.K. Bose, J. Chem. Phys. 71, 4951 (1979)
- 8- J.M. St-Arnaud et T.K. Bose, J. Chem. Phys. 68, 2129 (1978)
- 9- J.M. St-Arnaud et T.K. Bose, J. Chem. Phys. 65, 4854 (1976)
- 10- T.K. Bose et R.H. Cole, J. Chem. Phys. 52, 140 (1970)
- 11- W. Ho, G. Birnbaum et A. Rosenberg, J. Chem. Phys. 55, 1028 (1971)
- 12- T.K. Bose et R.H. Cole, J. Chem. Phys. 54, 3829 (1971)
- 13- G. Birnbaum et A.A. Maryott, J. Chem. Phys. 36, 2032 (1962)
- 14- T.K. Bose, J.S. Sochanski et R.H. Cole, J. Chem. Phys. 57, 3592 (1972)
- 15- G. Birnbaum et E.R. Cohen, J. Chem. Phys. <u>62</u>, 3807 (1975)
- 16- C. Hosticka et T.K. Bose, J. Chem. Phys. <u>60</u>, 1318 (1974)

- 17- A. Rosenberg et G. Birnbaum, J. Chem. Phys. 52, 683 (1970)
- 18- C. Hosticha, T.K. Bose et J.S. Sochanski, J. Chem. Phys. 61, 2575 (1974)
- 19- J. O Zwicker et R.H. Cole, J. Chem. Phys. 60, 4780 (1974)
- 20- A.D. Buckingham, R.L. Disch et D.A. Dunmur, J. Am. Chem. Soc. <u>90</u>, 3104, (1968)
- 21- L. Jansen et P. Mazur, Physica 21, 193 (1955)
- 22- A.D. Buckingham et M. Parizeau, Trans. Faraday Soc. 62, 1 (1966)
- 23- G. Birnbaum et A. Rosenberg, Phys. Letts. 27A, 272 (1968)
- 24- R. Akhmedzhanov, P.V. Gransky et M.P. Bulanin, Can. J. Phys. <u>54</u>, 519 (1976)
- 25- I. Ozier et K. Fox, Phys. Letts. 27A, 274 (1968)
- 26- A.D. Buckingham et C.Graham , Proc. Roy. Soc. London, A336, 275 (1974)

APPENDICE A

EXEMPLE DE CALCUL POUR LA DETERMINATION DE A

Dans cet appendice, nous donnons un exemple de calcul pour obtenir n-1, P/RT et $\frac{n^2-1}{n^2+2} = \frac{RT}{P}$. Nous présentons aussi les rapports de l'ordinateur donnant les coefficients qui correspondent au meilleur polynôme obtenu par la méthode des moindres carrés pour les valeurs expérimentales de $\frac{n^2-1}{n^2+2} = \frac{RT}{P}$ en fonction de P/RT.

a) CALCUL DE n-1

Considérons la série AB260578 de mesures réalisées pour le CO₂ à 323 K. Nous notons 4 lO2<u>+</u>4 franges pour une pression de l90,608<u>+</u>0,005 psi. En tenant compte des déformations des cellules, nous avons calculé que les longueurs des cellules étaient:

 $\ell_{\rm B} = 6,3121 \pm 0,0005$ cm.

d'où

$$n-1 = \frac{k\lambda}{4t} = \frac{4.102 \times 10^3 \times 6.328 \times 10^{-5} \text{ cm}}{4 \times (6.2968 + 6.3121) \text{ cm}}$$
$$n-1 = 5,14665 \times 10^{-3}$$

b) $\frac{CALCUL DE P/RT}{RT} = \frac{190.608 (PSI) \times 0.068046 (atm/PSI)}{82.057(\frac{atm-litre}{mole - K}) \times 323 K}$ $= 4,8935672 \times 10^{-4} mole/litre$

c)
$$\frac{CALCUL DE}{n^2+2} \frac{n^2-1}{P}$$

On connaît dejà n-1 et P/RT par les calculs effectués en a et b.

En posant

$$X(I) = RT/P$$

 $Y(I) = \frac{n^2 - 1}{n^2 + 2} \frac{RT}{P}$

on donne à Y(I) un poids par rapport à la plus grande incertitude accordée. Ce faisant, l'incertitude absolue est la même pour toutes les valeurs d'une série de mesures. Ainsi, dans la série AB260578, l'incertitude sur la dernière valeur Y(I) = 7,0052922 est l,5 fois plus petite que l'incertitude retenue sur la première valeur, Y(I) = 6,8285129. En conséquence, nous avons attripué à la première valeur un poids de 2 et à la dernière un poids de 3. Il en fut ainsi pour chacune des séries de mesures analysées par l'intermédiaire de notre programme des moindres carrés, programme présenté à l'appendice C.

d) $\frac{n^2-1}{n^2+2} \xrightarrow{RT} EN FONCTION DE P/RT.$

Nous présentons, pour chacun des gaz étudiés, le rapport de l'ordinateur donnant les coefficients qui correspondent au meilleur polynôme obtenu par la méthode des moindres carrés pour l'équation de Lorentz-Lorenz.

Dans ce rapport, le coefficient A doit être identifié à A_R alors que le coefficient B est identifié à $B_R - A_R B_P$. De plus, X(I) représente P/RT alors que Y(I) représente $\frac{n^2-1}{n^2+2} = \frac{RT}{P}$. Sur le rapport, nous avons identifié les diverses séries de mesures.

DE LORENTZ-LORENZ DU CH4 GAZEUX A 303 K

-

CASE	- 1	Y=A+BX	СН	/4	T=302,72	K A(R)	L.L.	MOY.	A210476	A280
A=	6,5	53316458+00	DEV	A =	2,399634	96E-03				
8=		2.82065451E	•02	OE	¥8=	7.103663	164E+00			
STAN	DAH	D DEV OF THE	POLYNOMIAL	E	6.56	921804E-	•03			
	_									
		x(†)			Y(])	10.044	Y	(1) 54	P-Y(I)CALC	
	1.	090.13440F-04	6.581	490	502+00	-2.749	146985E	-03		
	1.	64426110F=04	6.603	748	70 - + 00	4.053	323816	-03		
	<u> </u>	19150850F=04	6.613	260	002+00	=1.874	155318	-03		
	2.	19160850F=04	6.613	260	005+00	-1.8/4	155315	-03		
	<u> </u>	46544830F=04	6.620	925	BUE+00	=1.943	712596	-03		
	÷.	10084930F=04	6.620	7621	705+00	-2 010	716596	-03		
		73035730F=04	0.027	762	705.+00	-2.418	7.35886	-03		
	<u></u>	134251301=04	0.521	102	105+00	-2.010	133085	-03		
	3.	013465106-04	6 6 34	002	105+00	-3.433	700555	-03		
	-3.	204033405-04	<u> </u>	7641	505+00	-3.933	036445	-03		
	3.	286033401-04	. 6.642	764	505+00	-3.264	0.16445	-03		
	3.	64123340F-04	6 463	204:	305+00	-3.204	611725	-03	Sária A2	10476
	3.	50133100F=04	0+003	200	305+00	-4.070	111735	-04	JELLE VE	10470
1	3.	20133300F-04	0.000	200	302-00	-4.070	734705	-04		
	3.	H3507520F=04	. 0+201	200	005+00	-2.910	728705	-04		
	3.	J3507570F-04	6 661	2030	005+00	-2.010	724706	-04		
	5.	100774205-04	6.001	6701	005+00	-2.510	120196	-03		
		109776205-04	6.645	670	005+00	-3.560	030025	-03		
	4.	109776205-04	6.665	670	0.05+00	=3,569	03402E	-03		
	4	384915405-04	6.665	9609	50F+00	-1.003	02653F	-02		
	4	384915405-04	6.666	960	50E+00	-1.003	92653F	-02		
	4	384915405-04	6.666	060	50F+00	-1.003	02653F	-02		
	4	5830150F-04	6.670	571	105+00	-1.413	99426F	-02		
	4	65830150F-04	6.670	571	105+00	-1-413	99426F	-02		
	4.	5830150F=04	6.670	571	10F+00	-1-413	199426F	-02)		
-	-1.	U9609190F=04	6.598	2311	10F+00	1.399	76831E	-05		
	î.,	36997100F-04	6.607	475	50F+00	1.551	68999E	-02		
	1.	04420630F-04	6.599	900	30F+00	2.064	69527E	-04		
	1.	177568UF-04	6.613	327	90E+00	5,918	15502E	-03		
	1.1	91775680F-04	6.613	3279	90E+00	5,918	15502E	-03		
	2.	191389405-04	6.613	921	30E+00	-1-206	67525E	-03		
	2.	191389405-04	6.613	921	30E+00	=1.206	67525E	-03		
	2.	46535070F-04	6.622	928	L0E+00	7.262	29862E	-05		
	2.	46535070F-04	6.622	42A	10E+0U	7.262	29862E	-05		
	2.	7394490UF-04	6.630	3500	00E+00	-2.369	43071E	-04 7	Série A2	80476
	2.	7394490UF-04	6.630	3500	00E+00	-2.368	43071E	-04		
	3.	1299950F-04	6.639	791	10E+00	1.488	34242E	-03		
	3.	0129995UF-04	6.639	791	10E+00	1.488	34242E	-03		
	3.	2870704UF-04	6.649	098	10E+00	3.064	74922E	-03		
1 M	3.	287070405-04	6.649	098	10E+00	3.064	74922E	-03		
	3.	56116870F-04	6.659	6883	30E+00	5.923	58316E	-03		
	3.	5611587VF-04	6.659	6AA	30E+00	5,923	58316E	-03		
	3.	83491090F-04	6.670	645	50E+00	9.159	46146E	-03	-	
	3	H3491000F-04	6.670	645	50F+00	9,159	46146F	-03 Î		

DE LORENTZ-LORENZ DU ${\rm CH}_4$ GAZEUX A 303 K (suite)

	4.10736560F-04	6.69097310E+00	1.18020557E-02	
1	4.10736560F-04	6.64097310E+00	1.180205576-02	
	4.1073656UF-04	6.68097310E+00	1.18020557E-02	
	4.382997905-04	6-68588770E+00	8-94202078E-03	
	4. 38299790F-04	6-68588770E+00	·· 8,94202078E-03	
. 41	4.382997005-04	6-68588770E+00	8,942020785=03	
1	4.655288205-04	5-68888480E+00	4-25875216E=03	
,	4.655289205-04	6.68888680E+00	4 258752165-03	
	A. 455289205-04	6 69888680E+00	4 258752165-03	
1		6 667731305+00	-9 786931785-03	
3	0.60000000000	6 5720/5705+00	1 122254115 02.1	
<u>,</u>	1 360505405 04	6 570710105+00	-1 322636726-02	
2	1 + 6340610= 04	6 507022205+00	1 195056145 02	
1	1.043494[0]=04	6 602622005 00	-1.105054102-02	
	1.91/000000	6.5035.12802+00	-3.0/15349/6-03	
	2.17007170F=04	0.613610602+00	-1.1016/2032-03	
10	2.1/665170F=04	6.613610602+00	-1.1016/5656-03	
	2.465515105-04	6.62376790E+00	9.07785830E=04	
"	2.46551510F=04	6+62376790E+00	9.077858306-04	
"	2.73905550F=04	6.62889040E+00	-1.605625862-03	
14	2./3906550F=04	6+6<8890402+00	-1.645625866-03	
·	3.01283510F-04	6.64112970E+00	2, A315 (95/E-03	C1
10	3.01283510F-04	6.64112970£+00	2.83157957E-03	Serie ABI50476
"	3.28682380F-04	6.65261050E+00	6.58410495E-03	
· · · · · · · · · · · · · · · · · · ·	3.285823805-04	6.65261050E+00	6.58410495E-03	
1.9	3.56064820E-04	6.65930270E+00	5.55266467E-03	
10	3.560648205-04	6.65930270E+00	5.552664678-03	
14 The second	3.835184805-04	6.66223360E+00	7.39835684E-04	
17	3.83518490F-04	6.66223360E+00	7.39835684E=04	
13	3.8351848UF-04	6.66223360E+00	7.398356848-04	
	4.10646160F-04	6.66859980E+00	-5.45745606E-04	
15	4.10646160F-04	6.66859980E+00	-5.45745606E-04	
20	4.10646160E-04	6.66859980E+00	-5.45745606E-04	
"i	4.38149120F-04	6.66975380F+00	-7.14938042E-03	
al -	4.38149120E-04	6.66975380E+00	-7.14938042E-03	
	4.38149120E-04	6.66975380E+00	-7.14938042E-03 J	
0				-
1				
3				
3				
4				
1				
a]				
1				
*				
۹				
a				
'				
2				
1				
1		•		
3				
-				
3				
7				
1	,			

DE LORENTZ-LORENZ DU C2H4 GAZEUX A 303 K

CAS	E 1 Y=A+BX			
	C2H4 A(R) LA=6.29	938 LE=6.3091 (A+E	3) (17+18+26)0876+13	0 876
A=	1.06104827E+01	DEVA≈ 2.882716	352-03	
B≃	1.68117302E+03	DEVB=	8.462334175+00	
STA	NDARD DEV OF THE POL	YNOMIAL = 8.55	602029E-03	
	×(I)	· Y(I)	Y(I)EX	P-Y(I)GALG
	8.24983410E-05	1.074799205+01	-1.19465596E-C3	
	1.09573840E-04	1.18068710E+01	1.218075902-02	
	1.36895130E-04	1.08545320E+01	1.3904 9985-02	
	1.64263210E=34	1.J8943450E+01	7.710421985-03	
	1.91628560E=04	1.09366640E+01	4.020533772-03	
	2.100185396-34	1.09757.102+01	-2.959744922-03	
	2.19010530E-04	1.097573102+01	-2.9597.4922-03	
	2.462552505-04	1.103041312+01	5-932616165=03	
	2.73814930E=34	1 . 10649290F+01	-5.8939239763	
	2.73814930E-04	1.106492905+01	-5.883923975-03	
	3.00988670E-04	1.11182890E+01	1.792206955-03	
	3.00988670E-04	1.111828905+61	1.792266955-03	Série AB170876
	3.283129602-04	1.116456205+01	2.228407715-03	
· `	3.28312960E-04	1.116466205+01	2.22840771E-03	
	3.55697460E-14	1.121125802+01	2.786325042-03	
_	3.55697460E-04	1.12112580E+01	2.786325042-03	
	3.83103860E-04	1.12512820E+01	-3.264575322-03	
	3.83103860E-04	1.12512820E+01	-3.26457532E-03	
	3.83103860E-C4	1.12512823E+01	-3.26457532E-C3	
	4.10403520E-04	1.130259902+01	2.156972735-03	
	4.104035202-04	1.130259902+01	2.1569/2/32-63	
	4.104035202-04	1.130209900+01	2.1569/2/31403	,
	4.38261490E-04	1.135331205+01	6-035905062-03	
	4. 38261490E=14	1.135331265+01	6.035905065-03	
	8.15787740E-05	1.07471170E+01	-5.137347282-05	
	1.50625700E-04	1.08626590E+01	-1.051564102-03	
_	2.05293440E-04	1.09587290E+01	3.112506142-03	
	2.05293440E-04	1.395872902+01	3.112516142-03	
	2.32494570E-04	1.100208902+01	7.427001655-04	
	2.324945702-04	1.100208902+01	7.4270L165E-04	
	2.60054230E-04	1.10550250E+01	7.346143232-03	, Sánia AD100076
	2.60054230E-04	1.10550250E+01	7.346143232=03	Serie AB1808/6
	2.873566305-04	1.108722205+01	-6.356915142=03	
	2.0/3200302-04	1.113370005+01	-0,390919146-03	
	3.147657605-04	1.1:337900F+01	=5.8684(5107=03	
	3.42114680 E=34	1.117788602+01	+7.75067164E-C3	
	3.42114680E-04	1.11778860E+01	-7.75067164E-03	
	3.69321290E=04	1.12257380E+01	-5.637690445-03	
	3-69321290F=04	1 . 12257380E+01	-5-637690445-63	

DE LORENTZ-LORENZ DU $\rm C_2H_4$ GAZEUX A 303 K (suite)

	3.96815270E-04	1.12688310E+J1	-8.76682793E-03	
F	3,96815270E-04	1.12638310E+01	-8,766827935-03	
	3.96815270E-04	1.12688310E+01	-8.76682793E-D3	
	4.24218930E-04	1.13170798E+81	-6.589121882-03	
	4-24218930E=34	1.13176790E+01	-6.589121885-63	
,	4-242189305-04	1 . 13170790E+01	=6.589121885=03	
	4.515788365-34	1 136306105464	-5.73707265-67	
	4.515788305-04	1 476706405+04	-5.707707266-03	
,	4.5157000000-04	1.136396102+01	-5.703/9/202-03	
	4.719788802-84	1.13639610E+01	-5.103/9/262-03/	
	1.359225002=04	1.005419402+01	1.352088612-02	· .
1	1.642851166-04	1.J8893340E+01	2.659604292-03	
	1.91587510E=04	1.092940802+01	=3.166454082=03 /	
	2.19059580E-04	1.3968714CE+01	-1.0C457571E-C2	
,	2.46435880E-04	1.10135110E+01	-1.12730541E-02	
	2.464358802-04	1.10135110E+01	-1.12730541E-02	
	2.7376838DE-04	1.105154905+01	-1.91857158E-02	
)	2.73768380E-04	1.10515490E+01	-1.918571582-02	
	3.01180250E-04	1.11009540E+01	-1.58648122E-02	
	3.01180250E-04	1.11009540E+01	-1,58648122E+02	
)	3.28449800E-04	1.115034705+01	-1.231664405-02	
	3.28449830E-04	1.115034765+31	-1.231664402-02	
	3.55375360E-04	1,11976750E+01	-1.109575565-02 5	Sária AR260976
,	3,5587536DE-D4	1.11976750E+01	-1.109575562-02	Jerre ADZ00070
	3.83237960E-04	1.12445120E+ú1	-1.026002065-02	
	3.83237960E-04	1.124451205+01	-1.326302065-62	
	4.10611520E+04	1.12930100E+01	-7.78171126E-03	5 · · ·
	4.10611520E-04	1.129301002+01	-7.78171126E-D3	
	4.10611520F=C4	1,129301005+01	-7.731711265-03	
	4.37965910E+04	1.134572602+01	-1-053173815-03	
	4.379659105-04	1,134572605+01	-1-0531738103	
	4.379659105-30	1.174572605401	-1-353173012-03	
	4.57 5555102-04	1.139087965401	2.116053245-03	
	4 65317570E-04	1 170687035+61	2 116053242-03	
	4.653175705-04	1.130687005+01	2.116053205-03	
	1.095954805-14	1.080523605+01	1.047433405-03	
	1 64 3672205-04	1 09900000000	7 186567175-02	
	4 01000000000	1.000070902+01	5+1505531/2-03	
	1.910909000-14	1.093930202+01	0.543507912=03	
	2.19090902=04	1.400750505401	2.511622815=03	
	2+403000102=34	1.102350562+01	-1.145619421-03	
	2.4035051JE=94	1.102350502+01	-1.145019422-(3	
	3.01378990E=34	1.111528402+01	1.63542341=03	
	3.01078990E-04	1.11182840E+01	1.635423412-03	
	3.28488120E-04	1.1171424úE+01	8.695933442=03	
	3.28488120E-64	1.11714240E+01	8.695933445-63	
	3,55809680E-04	1,122157135+61	1.291056385-02	-
	3.55309580E-04	1.122157105+01	1.291056385-02	Sania AB100876
1	3.83J65550E→54	1.126243502+01	7.952830422-03	Serie Abiouoru
	3.830655506-04	1.12624350E+01	7.952830422-03	
	4.1J548570E-34	1.131426428+01	1.357811862-02	
	4.10548570E-04	1.131426402+31	1.357811865-02	
	4.13548579E-34	1.131426435+01	1.357811862-02	
	4.3∂0179202≛04	1.136381806+01	1.693138842-02	
	4.38017920E-34	1.13638185E+01	1.695138845-02	
	4.38017920E-04	1.13638180E+01	1.695138845-02	
	4.655146302-34	1.14034750E+01	1.23816613E-02	
	4.65514630E=04	1.14054750E+C1	1.238166135-02	
	4.65514630E-34	1.14054750E+01	1.238156135-62	

DE LORENTZ-LORENZ DU CO2 GAZEUX A 323 K

3

¥.

ŧ.

CASE 1 Y=A+8X CO2 A(R) AB(2635 + 0206)78P OEVA= 7.013666785-03 6.65811070E+00 Δ = 8= 7.29260154E+02 DEVB= 1.86914760E+01 STANDARD DEV OF THE POLYNOMIAL = 1.27950563'E-J2 Y(I)EXP-Y(I)CALC X(I) Y(I)2.18119170E-04 6.82851290E+00 1.133658492-02 2.181191702-04 6.82851290E+J0 1.133658495-02 6.021280415-03 2.439623808-04 5.84234380E+00 2.43962J8LE=04 6.842343805+00 6.02128041E-03 2.69625270E-04 6.859039402+00 4,301738525-03 2.696252765-04 5.359039402+00 4.301738525-03 2,76890860£-C4 6.858J1940E+00 -2.01676676E-03_ 2.76890860E-04 6.858319432+00 -2.016756755-03 2.95416830E-04 5.86381610E+00 -9.73031850E-03 -9.73C31850E-03 2.95416830E-04 6.86381610E+00 3.21000440E-04 6.88341660E+00 -8.786925862-03 3.21000440E-C4 5.88341660E+00 -8.78692586E-03 3.46607150E-04 5.88634060E+00 -2.403587915-02 3.466071502-04 6.88634v6CE+00 -2.403687912-02 3.723704705-04 6.909285705+00 -2.03799418E-02 Série AB260578 -2.03799418E-02 3.72370470E-54 5.909285708+00 6.934953002+00 3.97887320E-04 -1.331106382-02 3.97387320E-04 6.93496300E+00 -1.33110638E-02 3.978373205-04 6,9349F300E+JC -1.33110638E-C2 7.005433105+00 4.003718925-02 4.213657JJE-64 4.21365700E-04 7.00543310E+00 .4.303718922-02 7.205433102+00 4.213557 JUE-04 4.003718922-02 4.493446405-04 6.988519502+03 2.71,9663092-03 4.493446402-04 6.988519502+33 2.719553095-03 6,988519505+00 4.493446402-04 2.71955309E-03 4.74810150E-04 6.99956220E+G0 -4.80861866E-03 4.748101505-04 6.999562205+00 -4.808618652-03 4.74810150E-04 6.99956220E+00 -4.808618662-03 4.89356720E-04 7.00529220E+00 -9+686852532-03 4.893567202-04 7.005292202+00 -9.68685253E-03 4,89356720E-C4 _7.JC529220E+00_ __9.68685253E-03
RAPPORT DE L'ORDINATEUR POUR L'EQUATION

DE LORENTZ-LORENZ DU CO₂ GAZEUX A 323 K (suite)

		\sim	
2.054.8240E=14	6.816J9420E+00	8.18745970E-03	
2.054032408-04	6.816J9420E+00	8.187459702-03	
2.311156865-64	6.93111500E+00	4.461285615-03	
2.311150838-64	`6.3311153JE+00	4.461285612-03	
2.567.12548-04	5.85.1855üE+uü	4.872811335-03	
2.56701250E-04	6.85018550E+0J	4.872811332-03	
2.768603502=04	6.35244439E+U0	-7.569398262-03	
2.7686Jú50E-C4	6.352444302+33	-7.569398265-03	
3.082150505=04	6.88124160E+00	-1.638050385-03	
3.032150502=0+	6.851241602+00	-1.63835038E-03	
3.348031002-04	5.960396905+00	-1.872355825-03	
3.34803100E=04	6.903396902+00	-1.872355825-03	
3.594567108-14	6.923256505+00	3.008348765-03	
3.59.56710E-0.	5.92325650E+00	3.008348762-03	
3.8473224jE=04	5.9298010JE+CJ	-8.87958814E-03	Cánia ADO20670
3.84732246E=04	6.92985100E+00	8.87958814E-D3	Serie A6020076
3.84732240E-64	6.92980100E+00	-8.879588145-03	
4.137959462-04	6.956146302+00	-1.541506025-03	
4.107959432-04	6,956146302+00	-1.541506025-03	
4.1J795940E-J4	6.956146332+00	-1.5415G602E+C3	
4.36246340E-04	6 • 97763570E+00	1.388150145-03	
4.36246040E-04		1.38815014E=03	
4.36246340E-04	8,377635705+60	1.388150148-03	
4.6198369ú≅∽[4	7.006100002+60	1.108300755-02	
4.619636908-54	7.00610000E+00	1.108300755-02	
4.61983695E-34	7.J0610J00E+00	1.108300752-02	
4.89341330E-04	7.02052820E+00	5.560370782-03	
4.89341330E-04	7.020528205+00	5.560370782-03	
4.89341330E=04	7.02052820E+00	5.560370785-03	-

RAPPORT DE L'ORDINATEUR POUR L'EQUATION

DE LORENTZ-LORENZ DU SF₆ GAZEUX A 323 K

۵SF	> Y=4+HX+CX+4>	SF6 AH	140578 + A8180578	1.1	
≟ 1	·134771085+01	.UEVA=6.991	321998-03		
=	2.552463395+03	0EVH=	4.526481846+01		
	1 22244 2425 + 35	DEVC-	- 93767509F+04		

x (])	Y([)	YII) – Evil	P-Y(I)CALC
1.4117037 5-04	1.1729P(60E+01	-2.61433150E-03	
1.66931290E-04	1.18075270E+01	-2.72567957E-05	
1-92540700E-04	1.188118805+01	-3.2/9335618-03	
2.1814741 E-04	1.1960A700E+01	-1.8U29H364E-03	
2.1414 (41"E-04	1.195(B760E+01	-1.HU29>364E-03	
2.441474912-04	1.203097105+01	-6.70713025E-03	
2.44]4749"E=04	1.203097106+01	-6.76713025E-03	
2.696603506-04	1.21107440E+01	-6.14714653E-03	
2.6966015 E=04	1.21187440E+01	-6.147140H3E-03	
2.9319347-E-04	1.220245708+01	-5.21212316E-03	•
2.951-3470F-04	1.22024570E+1	-5,21212115E-03	
3.2.8403905-04	1.229490906+01	2.44952137E-03	
3.2.9403916-04	1.22949096E+01	2.449521378-03	
3.4951/L20E-04	1.23826170E+01		· · · · · · · · · · · · · · · · · · ·
3.40507.205-04	1.238261708+01	3.73257157E-03	
3.405-7.205-04	1,23826170F+01	3.73257157E-03	Série AB160578
3.7173033 F-114	1.24603980F+01	-5.02769647E-03	
3.7173033-5-04	1.246J398JE+01	-5.027696478-03	
3.7173033-E-04	1.246.39805+01	-5,027096478-03	
3.9915+32-8-04	1.25573720E+01	3.37737327E-04.	
3.9H15432 F-04	1.25573720E+01	-3,39737327E-04	
3.0415+32-5-04	1.255737206+01	-3.39/37327E-04	
4,2339714^E-04	1,26493670E+01	1.8(400776E-03	
4.23799.4:8-04	1.26493070E+01	1.H7400/76E-03	
4.23399.416-04	1.26+93670E+01	1.8/400776E-03	
4.442579218-04	1.273269466+01		name data in an or one contained to be addressed
4.4424342 6-04	1.273289405+01	-H.10667715E-03]	
4.4525592 1 - 04	1.2732H940E+n1	-8.10007719E-03	1

RAPPORT DE L'ORDINATEUR POUR L'EQUATION

DE LORENTZ-LORENZ DU SF₆ GAZEUX A 323 K (suite)

1.59:121	S. E = 0.4	1,17/11590F + 01	1.342074461-03	}	
1.795701	7 F 14	1.19473960F+61	1.909696H4E-03		
2.052542	00E=04	1.19275470E+01	4.440502908-03		
2.31 992	7:E-04	1:20094870E+01	6.68507172E-03	a - un Assesso - concetanosa	
2.31-842	7'E-04	1.200940705+01	6.60507172E-03		
2.504 105	1 ° E = 0.4	1.20859470E+01	2.193791218-03		
2.564/05	1 - 8 - 0 4	1.20859876E+01	2,193/9121E-03.	,	
2.82462	0CE-04	1.21677870E+01	1.60188517E-03		
2.924620	008-04	1.216778708+01	1.60188517E-03		
3.00 975	2:18-04	1.225464866+01			
3.08.925	2115-04	1.2254648015+01	4.52167145E-03		
3.33437/	237 E = 0.4	1.234275306+01	8.08196191E-03	1 .	,
3.334374	316=04	1.234275305+01	8,05196191F-03		
3.59772	7 ' E = 0.4	1.24249210E+01	7.10011482E-04		
7.597721	7 ' F = 0.4	1.24249210E+01	7.18611482E-04	Série	AB180578
3.597750	70E-04	1.24249210E+0.1	7.186114826-04		
3.851532	800-04	1.25068490F+01	-5.23300048E-03		
3,851532	ち::E=04	1.25068490E+01			
3.851532	80E=04	1.2506H490E+01	-5.2330004AE-03		
4.108139	10E=04	1.20023410E+01	-1.99071874E-04		
4,108139	10E=04	1+25023410E+u1	-1,99071874E=04		
4.108139) 0E = 04	1.26023410E+01	-1,99071874E-04		
4.363615	7 °E=04	1.26956600E+01	1.401354918-03		
4.303615	7 E = 04	1.269566008+01	1.46135491E-03		
4.363619	7∴E=04	1.209566005+01	1.40135491E-03		
4.614304	4°E-04	1.27917710E+01	6.05735667E-03		
4+614304	4-CE-04	-1.27917710E+01			
4.614308	4 ° E = 0 4	1.27917710E+01	6.05735067E-03		
4.761451	7"E-04	1.28409210E+01	H.12584858E-04		
4.761451	78E-04	1.2H409210E+01-	8.12584858E-04		Contraction of the second s
4.761451	7:E=04	1.28409210E+01	·8.12584859E~04		
				1	- ·

APPENDICE B

EXEMPLE DE CALCUL POUR LA DETERMINATION DE BR

Considérons le CH_4 . A la température de 303 K et à une pression de 2,087 x 10⁴ kPa, nous avons $\ell_A = 6,2955 \pm 0,0005$ cm et $\ell_B = 6,3108 \pm 0,0005$ cm. Le tableau 4.16 nous indique que la rentrée du gaz dans la cellule A a permis d'observer 3,592 x 10⁴ franges alors que le passage de la cellule A vers la cellule B a impliqué une diminution de 429 franges.

Nous avons fait

$$n_1 - 1 = \frac{k_A \lambda}{4 \ell_A} = (9,0260 \pm 0,0018) \times 10^{-2}$$
 (B-1)

Ce procédé de calcul est similaire à celui énoncé à l'appendice A.

Pour le calcul de $D_{\rm A}/(n_{\rm l}-1),$ nous avons d'abord calculé $D_{\rm A}$ de la façon suivante:

$$D_{A} = \frac{\Delta k_{A} \lambda}{4(\ell_{A} + \ell_{B})} = 1,19 \pm 0,02 \times 10^{-2}$$
(B-2)

Ensuite, nous avons fait le rapport $D_A/(n_1-1)$. Nous avons procédé de la même façon pour n_2 -l et $D_B/(n_2-1)$. Ceci étant posé, nous avons défini

$$X(I) = (n_1 - 1) + (n_2 - 1)$$
 (B-3)

$$Y(I) = \frac{D_A}{n_1 - 1} + \frac{D_B}{n_2 - 1}$$
(B-4)

et nous avons accordé à chaque valeur de Y(I) un poids en fonction de son incertitude par rapport à l'incertitude la plus forte. Ainsi, les dernières valeurs ont un poids de 3 parce que leurs incertitudes absolues sont 3 fois moins grandes que la première valeur. Le programme décrit à l'appendice C a été employé pour obtenir les coefficients du meilleur polynôme.

Nous présentons ensuite le rapport de l'ordinateur pour chacun des gaz analysés. Ce rapport donne les coefficients qui correspondent au meilleur polynôme obtenu par la méthode des moindres carrés pour l'équation

$$\frac{D_{A}}{n_{1}-1} + \frac{D_{B}}{n_{2}-1} = \frac{B_{n}}{2A_{n}^{2}} \left[(n_{1}-1) + (n_{2}-1) \right] + \left(\frac{3C_{n}}{4A_{n}^{3}} - \frac{B_{n}^{2}}{A_{n}^{4}} \right] \left[(n_{1}-1)^{2} + (n_{2}-1)^{2} \right]$$

• • • •

Dans le rapport, le coefficient A doit être associé à $B_n/2A_n^2$. D'autre part les valeurs X(I) représentent les sommes [(n₁-1) + (n₂-1)] alors que Y(I) doit être associée à ($\frac{D_A}{n_1-1} + \frac{D_B}{n_2-1}$). RAPPORT DE L'ORDINATEUR POUR DEDUIRE LE ${\rm B_R}$ DU ${\rm CH_4}$ GAZEUX à 303 K

-

A= 1.34670562E-01	DEVA= 5.193009	50E-04	
STANDARD JEY DE THE PU	YNOMIAL = 3.7.	146755-04	
. Alagoado de Contractional			
XIII	Y(I)	YLIJEXP	-YLLICALC
9.07722830=-02	1.287902305-32	0.546686585-04	
9.07722830c-02	1.28790230E-02	0.54668658E-04	
1.005123302-01	1.349572102-02	-2.379799906-05	
1.00512330E-01	1.349572LOE-02	-5.37979990E-05	
1.307244301-01	1.769371302-02	8.89805788E-05	
1.30724430E-01	1,76937130E-02	d.d9805788E-05	
1.307244302-01	1.769371308-02	3.89805788E-05	
1.40531210L-01	1.963320105-02	0.92563423E-04	
1.400512106-01	1.963528136-02	. 6.926639235-04	
1.51)540405-01	2 037607205-02	4 203551115-05	
1.5(3580)06-01	2.037607205-02	3.299551116=05	
1.51.054.0406-01	2.037607205-32	3.299551118-05	
1.60933340E-01	2.14855290E-02	-1.93187829E-04	
1.607333408-01	2.148652706-92	-1.931878298-04	
1.607333+0E-01	2.148652906-02	-1.93187829E-04	
1,704559008-01	2,263907602-02	-3,163)5805E-04	
1.70455900E-01	2.26390700E-02	-3.16315805E-04	
1.70+55900c-01	2.26390750E-02	-3.16315805E-04	
1.80645750E-01	2.405758905-02	-2.70079669E-04	
1.806477000-01	2.40575870E-02	-2.70379669E-04	
1.50645750E-01	2.405755708-02	-2.70079669E-04	
1.705457002-01	2,405/38405-32	-2.100148645-04	
	-		in the second seco
-			
and the second	Contraction of the second s		
		·	
· · · · ·			
A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY.		······································	

RAPPORT DE L'ORDINATEUR POUR DEDUIRE LE ${\rm B_R}$ DU ${\rm C_2H_4}$ GAZEUX A 303 K

-

	,		-
CASE 10 Y=AK	C2H4 31R1 (JA	/(N-1))+(D8/(N-1)) 10PTS	
	•		
4= 2.056408936-01	DEVA* 1.875631	23E - 03	
STANDARD DEV OF THE P	ULYNOMIAL = 1.43	7400 706-03	
(1) x	(1)Y	Y (I)EXP-Y(I)CAL	. C
9.03+042008-02	L.84974870E-02	-1.00478694E-04	
1.1J+5JJJ0E-01	2.305255502 -02	2.36640086E-04	
1.305106302-01	2 • 7 30 697105 -02	4.655547016-04	
1.501053402-01	3.114901106-02	2.000001300-04	
1.61.334/2306-01	3. 4134133032	2:055001302-04	
1.612542508-01	3.413415306-02	9.11992800E-04	
1.747472708-01	3.77243170= -02	1.789128282-03	·
1.747472402-01	3.772431708-02	1.739128288-03	
1.303429406-01	3.841639205-32	1.38191904E-03	
1.303424402-01	3.841637202-02	1.38191904E-03	
1.045740202-01	4.063712L0±-02	1.70192208E-03	
1.895790202-01	4.068712106-02	1.70192208E-03	
2,043734905-01	4.22958350c -J2	-7.69865405E-04	
2.073734902-01	4.2285886.02 -02	-7.09865405E-04	
2.367434905-01	4 . 2 2 8 3 8 8 3 9 2 - 0 2	-7.075054052-04	
2.247516702-01	4.36452070= -32	-2.575596500-03	
2.247816702-01	4.36462070E -02	-2.578096302-03	
			Contraction of the Contraction of the State State
			and the second sec
	· .		
		1	

RAPPORT DE L'ORDINATEUR POUR DEDUIRE LE B_R DU CO $_2$ GAZEUX A 323 K

_

.

		· · · ·		
Δ *	1.08447767E-01	DEVA= 9.43221	o7oE-03	
3=	1.72738831E+00	DEVB≖	1.14044001E-01	
5141	DARD JEV OF THE PU	LYNDMIAL = . 3.3	J 4448 3 3E-04	
		. Y(L)	Y (I) EXP-Y ()	CALC
	4.75914360E-02	1.022253408-02	. 2.96269235E-04	
	6.00423720E-02	1.254649508-02	-1.92350357E-04	
	6.57347420E-02	1.423511702-02	-3.74590809E-04	
	7.00209470c-02	1.599637908-02	-3.30719739E-04	
	7.413541302-02	1.792610505-02	3.74224339E-04	
	7.415541308-02	1.792610508-02	3.74224339E-04	
	3.001117102-02	1.982410705-02	-1.772167948-04	
	9.0677402-02	1.982410706-02	-1.77216794E-04	
	8.761262402-02	2.325635505-02	-3.33590751E-04	
-	8.901262402-02	2.325635.0E -02	-3.33590751E-04	
	9.507173502-02	2.652251302-32	3.36199022E-04	
CONTRACTOR AND ADDRESS	7.337173302-02	2.072271002-02	3.301770226-04	Colorest Second Propagation
			-	
		nen gerallemmelde om en de bie de bie de bie en de sold och de bie	·	And the owner of the lot of
a		1	and constant in the property set and the second	
		,		
			'	
	-	1		
	Construction and the second se			
			,	

RAPPORT DE L'ORDINATEUR POUR DEDUIRE LE B_R DU SF₆ GAZEUX A 323 K

C 4 5	E_10Y=4X	SF6PV 3[R] [JA	/(N-1))+(D8/(N-1)) 15PTS
7=	1.764570105-01	DEVA= 1,652100	96E-03
3 T A	NDARD 157 15 THE PI		5597165-04
21. A	toaks ber be the tr	E110-114E	10091102-04
	1 25-11/5205-022	1 05114710-03	TITEXP-TITICALC
	1.50372120-02	2.568336505-03	-2 + 12 / 104 91 2 - 04
	1.755213305-02	2.549174305-03	-5.501414572-05
	2-017304106=02	3. 957253:05 -03	1. J7578 886F=04
	2.017304100-02	3.95725150=-03	3.975788865-04
	2 - 3 - 3 - 5 - 7 - 7 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	2 - 795 1862 05 - 03	=1 - 42015257E=03
	2.384475705-02	2.795135205-03	-1.42015257E-03
	2.751248305-02	5.145030705-03	2 . 72614351E=04
1000 At 10 King	2.701248306-02	5.145030706-03	2.72614351E-04
	3.014147506-02	4.84469830E-03	-+ .73 + 76 + 30E -0 4
	3.014147006-02	4,844696105-03	-4,73976430E-04
	3.505709002-02	5.640957505-03	-2.45111884E-04
	3.53570 3036-02	5.640957502-03	-5.451118846-04
	3.500704000-02	5.640957535-03	-2.45111384E-04
	4.02430690E-02	7.232661335-03	1.31383564E-04
	4.02+30090E-02	7.232661305-03	1.31383564E-04
	4.024 30 670E-02	7,23266130=-03	1,313835648-04
	4.52+060400-02	8.242603702-03	2.59581043E-04
	4.52400070E-02	8.242603705-03	2.59581043E-04
	4.524000106-02	8.242603402-03	2.59581043E-04
	4.524000402-02	8.242603+02-03	2.59581043E-04
	5.02161970-02	8.996231/06-03	1.352316338-04
	5.02101970E-02	8,99623170=-03	1.35231633E-04
	5.021619708-02	8.996231308-03	1.35231633E-04
	5.02161970E-02	8.996231908-03	1.35231633E-04
			-3,78604676E-04
	5.252180506-02	8.906882008-03	-3.78604676E-04
	5.262130506-02	8.906382303-03	-3.70604676E-04
	5.20213020E-02	8.906842005-03	-3.736046768-04
	5.731979102-02	4.507387202-03	-0.07090066E-04
	5.731979106-02	9.50738/202 -03	-0.07090066E-04
	5.73197910E-02	9.507387202-33	6.07090066E-04
	5.731979108-02	9.507384202-03	-0.07J90066E-04
	5.731 979108-02	9.50738720E-03	6.07390066E-04
	5.345773902-02	1,063490505-92	3.17853433E-04
	5.840778902-02	1.06349050=-02	3.17853433E-04
	5.540//0902-02	1.06349050=-02	3.1/0734335-04
	5.840 / 8402 - 02	I.06349030E-02	J+L/073433E=U4
	7.1437734JE-02	1.31336-305 02	5+1/0754532-04
	0.714741002-02	1+21330779=-92	0 * J01 J94492 - U4 .
	0.71474100E-02	1.213307/38-02	0+301344432-04
	6 • 014 / 4 100E = 02	1 212295205 -02	0.381394492=04
	5 51474100E-02	1 212285705 -02	0.J01J7447E-04
	0.014741008-02	1.213303/05-02	0.30134472-04

APPENDICE C

PROGRAMME DES MOINDRES CARRES

Notre programme des moindres carrés est basé sur la réduction à un minimum, pour un polynôme donné, de la somme S = $\sum_{i=1}^{n} (y_i^e(x) - y_i^t(x))^2$. Dans cette somme, $y_i^e(x)$ est la valeur expérimentale soumise, $y_i^t(x)$ représente la valeur théorique calculée pour le polynôme étudié et N est le nombre de points.

Dans ce programme, la fonction

$$y^{T}(x) = y(x; c_{1}, ..., c_{k})$$
 (C-1)

dépend linéairement des paramètres c_k et elle peut alors s'écrire

$$y^{t}(x) = c_{1}\phi_{1}(x) + c_{2}\phi_{2}(x) + \dots + c_{k}\phi_{k}(x)$$
 (C-2)

Nous avons choisi de faire les $\{\phi_k(x)\}\$ de la forme $\{x^{k-1}\}\$ et les paramètres $\{c_k\}\$ sont déterminés par itération pour obtenir une somme S minimale. En tout temps, N doit être plus grand que k et plus N sera grand par rapport à k, plus la déviation standard sera diminuée. Notre programme est conçu de telle sorte que l'on détermine d'abord une forme particulière de $y^{t}(x)$ pour un k donné. Par une première approximation, on obtient les paramètres c_k^{*} qui représentent une première évaluation de $y^{t}(x)$. On peut faire ainsi plusieurs itérations qui ont pour but final de minimiser la valeur de S. Cette façon de procéder conduit à un système linéaire d'équations pour la détermination des c_k.

La valeur minimum de S est obtenue de la façon suivante. On constate d'abord que $S(c_1, \ldots, c_k)$ est une différentielle continue en fonction de ses arguments. De plus, pour un minimum, la première dérivée partielle doit s'annuler. Ainsi, en différentiant $S(c_1, \ldots, c_k)$ par rapport à c_i , on obtient

$$\frac{\partial}{\partial c_{i}} [S(c_{1}, \dots, c_{k})] = \sum_{n=1}^{N} \frac{\partial}{\partial c_{i}} [y_{n}^{e}(x) - y^{t}(x_{n}; c_{1}, \dots, c_{k})]^{2}$$

$$= -2 \sum_{n=1}^{N} [y_{n}^{e}(x) - y^{t}(x_{n}; c_{1}, \dots, c_{k})] \times \frac{\partial}{\partial c_{i}} [y^{t}(x_{n}; c_{1}, \dots, c_{k})]$$

$$(C-3)$$

$$(C-4)$$

Puisque
$$y^{t}(x;c_{1},...,c_{k})$$
 est de la forme
 $y(x) = c_{1}\phi_{1}(x) + c_{2}\phi_{2}(x) + ... + c_{k}\phi_{k}(x)$ (C-5)

on a

$$\frac{\partial}{\partial c_i} y^t(x_n; c_1, \dots, c_k) = \phi_i(x_n)$$
 (C-6)

En conséquence, pour i = 1,...,k, on aura

$$-2\sum_{n=1}^{N} [y_{n}^{e} - y^{t}(x_{n}; c_{1}^{*}, \dots, c_{k}^{*})] \phi_{i}(x_{n}) = \frac{\partial}{\partial c_{i}} [S(c_{1}, \dots, c_{k})] = 0 \qquad (C-7)$$

$$c_{i} = c_{i}^{*}$$

Ce système d'équations est une condition nécessaire pour que les paramètres c_1^*, \ldots, c_k^* , minimisent $S(c_1, \ldots, c_k)$. Les équations (C-7) sont connues comme les équations normales de l'approximation par la méthode des moindres carrés. Si ces équations sont écrites sous la forme

$$c_{1}^{*} \sum_{n=1}^{N} \phi_{i}(x_{n})\phi_{1}(x_{n}) + \dots + c_{k}^{*} \sum_{n=1}^{N} \phi_{i}(x_{n})\phi_{k}(x_{n}) = \sum_{n=1}^{N} y_{n}^{t}\phi_{i}(x_{n})$$
(C-8)

On aura un système de k équations linéaires ayant k inconnus $c_1^*, c_2^*, \ldots, c_k^*$. En conséquence, ce système a toujours au moins une solution et toute solution rend minimum $S(c_1, \ldots, c_k)$.

Dans le but de mieux comparer les diverses courbes du programme et pour vérifier s'il y a une nette modification de la déviation standard d'une courbe à l'autre, notre programme tend à minimiser le quotient

$$[S / (n - k)]^2$$
 (C-9)

où S est la déviation standard du polynôme ayant k paramètres c_k pour un nombre N de données expérimentales.

Cette procédure permet une comparaison entre des polynômes d'ordre différent. Par exemple, si N=10, on peut comparer la courbe k=2 avec la courbe k=3. Puisque la déviation standard du polynôme $y=c_1+c_2x+c_3x^2$ sera plus petite que celle du polynôme $y=c_1+c_2x$, la déviation standard S₃ du polynôme d'ordre 3 sera divisée par N-k=7 alors que celle (S₂) du polynôme d'ordre 2 sera divisée par N-k=8.

On peut ainsi constater s'il y a amélioration sensible de la déviation standard et reproduction de l'incertitude pour un nombre N en augmentant le nombre de paramètres c_k.

En règle générale, nous avons retenu la courbe qui nous offrait à la fois une déviation minimale sur chaque paramètre c_k et une déviation standard minimale.

Pour nous permettre de faire un choix judicieux, notre programme des moindres carrés calcule la valeur et la déviation des paramètres c_k ainsi que la déviation standard pour les ll équations $y(x;c_1,c_2,\ldots,c_k)$ qui suivent:

1)-	у	=	$c_1 + c_2 x$
2)-	у	=	$c_1 + c_2 x + c_3 x^2$
3)-	у	=	$c_1 + c_2 x + c_3 x^2 + c_4 x^3$
4) -	у	Ħ	$c_1 + c_2 x + c_3 x^2 + c_4 x^3 + c_4 x^4$
5)-	у	=	c ₃ x ²
6)-	у	=	$c_3 x^2 + c_4 x^3$
7)-	у	=	$c_3 x^2 + c_4 x^3 + c_5 x^4$
8)-	у	= ·	$c_1 + c_3 x^2 + c_4 x^3$
9)-	у	=	$c_2 x + c_3 x^2 + c_4 x^3$
10)-	у	=	c ₂ x
11)-	у	=	$c_{2}^{x} + c_{3}^{x^{2}}$

Le programme que nous avons utilisé a été mis au point à l'université Brown par le groupe du professeur R.H. Cole. Ce programme fut modifié par Jerzy Sochanski du centre de calcul de l'université du Québec à Trois-Rivières. La première modification a consisté à adapter ce programme pour l'ordinateur CDC. La seconde modification fut pour l'ajout des courbes $y=c_2x$ et $y=c_2x+c_3x^2$.

Dans les pages qui suivent, nous présentons notre programme.

В	PROCEAN DETENTINELT. JUTPUT. TAPELEINPUT. TAPE3=00 TPUT)	601				L.	
۲ I		0.62					
		0.63	· · ·		-		
ē l	030003	064					
۲ I	1. (44(5). (74(5). (74(5). (74(5). (74(5). (14(5). (14(2). (74(5)). (74(5)))))))))))))))))))))))))))))))))))	665					
	2C94 (9) - 47(5) - C7(1) - C4(1) - C4(15) - C4(15) - C10EV(5) - C20EV(5) -	0.65		-			
b (3C 32EV (51 - C 42E V (51 - C 5) E V (51 - C 42E V (51 - C 42E V (51 - DEV (21) C 42E V (21)	017		• .			
- i		CL8					
	5. 16 Y C11, 71. 50 C Y 2" 14 2" 4Y 2" CC 54 5 C 54 5 C 74 5 C 745 C 74	604					
		610					
·	C C 10X 114 C 114 (51 - S1 04 Y (1) - S1 (4 Y (2) - C 1 04 (1) - C 1 (4 (2) - C 1 (0 E Y (1) -						
		611					
1		612					
	2323122 L FORGET LLOATE 230015 LELLES 112000-2010	012					
		610			•		
. I		014.					
'		015					
		017					
"		017					
	1/JJJ77 2 PUKAAII2L14./1	010					
.	777347 DU 10 3*1 6	019					
1	111111 SXIII-0.0	020.	-				
	JJJJJJ JU 10 1*1,N	621					
.	0) 00 2X [1] - 2X [1] + X [1] + X [1] + 1	622					
•		623					
	000055 SXY(K)=0.0	624	1				
.	JJJJ26 JJ 15 1-1-N	625					
•	0)0J70 _15 _ SXY[K1+SXY[K1+Y[[]+X[[]+##[(K=L]	C26_					
.	333135 C1x(1)=N	G∠7					
.	3)0135 C1x(z)=5x(L)	628					
)		C29					
·	030110 SY2=0.0	630					
·	3J3112 00 20 1=1+N	631					
	C BEUIN LASE 1 Y=A0+41X	C32.					
)JJJ113 20 SY2=SY2+Y1[]++2	653					
.	JJ0117 CALL SULVE 12+N+CIK+SXY+CIA+CLDEV+SY21	634					
)	<u>Notes (2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	6.15					
: [033130 25 DEFCI(I)=((I)=CIA(2)+A(I)	610					
	030135 EKL1Y=0+0	G 3 7				1.2	
	JJJ137 UU 27 1=1+14	0.38.					
.	3)3141 27 EKC1Y=LKC1Y+3EVC1(1)+ #2	639			-		
:	0)0145 EKL1Y=SLNT(ERC1Y/(N+2))	L 40					
)		641					
. [0J)154 28 Cluck(i)=ERCIY+CIDEV(I)	642					
'	C FIN CASE 1	643				-	
>	33367 014(5)=54(2)		The second s				
-	0))151 C1x(51*5x(3)	644					
- 1	3J3162 C1x(6)=5x(4)	645					
)	L DEGIN LASE 2 Y=40+41X+42X2	646					
	333154 LALL SULVE (3+N+CLK+S XY+CZA+C20EV+SY2)	047	-				
	3)3173 UU JU 1=1,4	648					
	3)0175 33 DEVL2(1)=Y(1)=C24(1)=C24(2)*x(1)=C24(3)*x(1)**2	649					
1	010207 ENC2Y+U.U	650					
	الار 1 - 1 - 2 د ال ت 1 - 1 - 1 د ال	651					
	3) 3211 32 EKC2Y+0EYC21139 #2	652	-				
£	1))215 LALCY-SUNTIERC2Y/(N-31)	653					
1	د. ۱ = ۱ = ۱ = ۱ = ۱ = ۱ = ۱ = ۱ = ۱ = ۱	654					
-							
3							

)

030224 33	CZUEVIII = ERCZY* CZDEVIII	055			
y y	FIN LASE 2	C 56		-	
010200	61x171*5x131	657	· · ·		
333231	C1X(B1=>X(4)	658			
210535	C1A(9)=>A(5)	C59		· · · · · · · · · · · · · · · · · · ·	
319234	C1X1101-5X161	CoO			
C C	BEGIN LASE 3 Y=AD+A1X+A2X2+X1A+CA=CA=CA	061			
310235	LALL SULVE (4.V.CIK.SXY.CJA.CJUEV.SY2)	062			
330244	DU 35 1-1-N	C b 3			
313245 35	$U \in V(S \setminus \{1\}) = C \setminus \{1\} = V \setminus \{1\} = V \setminus \{1\} = C \setminus \{1\} = V \setminus \{1\}$	664			
919255	Fel 3786-6	0.65			
013265	all 37 Inc. N	· C.6.6			
333266 . 17		667			
010200		668		· ·	
		600			_
10101 14		604			
110301 30	L 302 Y 111 - CKL 3T + L 302 Y 1 I	670			
	PIN LASE J	U/1			
333305	U 1A (11)=3A (4)	672			
210129	618(12)=58(5)	C73		· · ·	
323307	<u>C1X(13)+>X(6)</u>	674			
000311	C 1 × (1 4) = 5 × (7)	C 75			
313315	C1A(15)=5X(8)	676			
ú	0 E G IN CASE 4 Y = 40 + 41 X + 42 X 2 + 43 X 3 + 44 X 4	077			
020314	LALL SULVE (5 .N. CLK .S XY .C 4A .C4DEV .SY2)	678			
222222	JU 46 1-1-4	679			
313125 50	U + (> [] + Y] + C + A) = C + A / + A + C + A 3 + Y + + 2 - C + A 4 + Y 1 + + 3	6.60.			
		0.81	-		
212245		643	-		
0,0,147		603			
530347	UU 42 1-11N	664			
000350 42	ENC-4Y=ENC-4Y+DEVC411 10 42	685			
010354	EKC47=30K[[EKC47/[4-5]]	686			
	UD 43 1=++5	607			
2)3363 +3	C 40 E V [1] = ER C 47 * C 40 E V [] 1	Сьы	-	· ·	
L C	FIN LASE 4	Ct9			
C	BEGIN LASE 5 Y=42X2				
333357	42C5+ 5XY131/5X141	691			
313370	C SULVY = U . U	642			1 A A A A A A A A A A A A A A A A A A A
222371	00 45 I-L.N	693			
013373	A=Y111-A2C5+X111+A111	654			
2)2376	A=A@	6.55			
. 323377	CouckY+CoDEVY+A	0.96			
333531 4	5 CLATING	697			
010515	5 GL 2 Y + 2 GL T (C 2 D F V Y / 1 N - 1))	0.48			
110411		640			
		1077			
01/123		100		*	
		101			
	35010 LH36 0 T#464(#4383	162			
530421 50	DENC3111+T11-A2C3+X111++2	163			
033427	C 0 X [1] * 3 X [4]	164			
012413	668123+52853	165	-		
333431	Cox(3)+5x(0)	100			
010433 .	C 6Y (11=>XY (3)	167			
333434	COY121+5XY[4]	168			
))))+)>	LALL SULVELZ, N, COX, COY, COA, CODE V, SY21	109			
3335	U 51 1-1-N	110			
313557 21	LEYL2 [1] - Y [] - C 64[] + X [] + + 2 - C 64(2) + X [] + +3	111			
Certit	L+LCY+U.U	112			
333451	0 52 1+1,4	113			
1					_

175

•

1111662		58(4) = tot over DEV (51 [] = # 2	and the second s			
110466	12					
010675		117 117				
030473	23					
			_			
	C C	DEGIN LASE / T=8282+8383+8484				
000501					-	
210205		C7X(c1=>x(2)			 	
770203		C/X(J)+JA(D) 122				
000505		67x141=5x61				
010505.						
210221		C7x(b)=5x(d) 125				
313511		C7Y(1)=3xY(3) 126				
110512		L7Y1(1=>AY(4) 167			 	
330514		C7Y(3)=3XY(5) 128				
010516		LALL SULVE (3,N,C7K,C7Y,C7A,C7UEV,SY2) 129				
330524		DU 55 1=1+N130			 	
010526	55	UEVC7 (1) + Y(1) - C74(1) + X(1) + 2-C74(2) + X(1) + 3-C74(3) + X(1) + 4 131		-		
010544		EKL7Y=0.0 132				-
313345		20 57 1+1-N				
010546	57	F K (7Y = F K) 7Y + 0E V (7/1 1 + + 2) 135		_		
333552		FK. 7Y = Sch T (F4C 7Y/(N=3)) 135				
313560		10 54 (51.1)				
310565		137		-		
210321	20					
010573	<u> </u>					
010202						
010202		L 5 X [2] - 5 X [2] 141				
010557		L 5 X [3] * 5 X [4] 1 4 2				<u> </u>
01021		CSX[4]=5x[3]		-		
010572		C82(2)=22(2)				
323574		Cax(b)=5x(5)	· .		 -	
313575		L bY (11+3xY (1) 140				
010577		C6Y(2)=5XY(3) 147				
220002		L 5Y [3] *3 X Y [4]				
200022		LALL SULV- 13-N.C84.C87.C84.C83.EV.SY21 1-9				
110011		150		-		
110011		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				
111027		bet Marine 11			 	
110-21		10.4 Jan N 163				
313-31						
110011					 	
010033						
330643		110 03 1-113	-			
110000	- 23	LUDEKIII-LSCOTTCOJIVII				
	C .	FIN LASE d ISB	-			
	c	BEGIN LASE 9 Y*AIX*A2X2*A3X3 159				
000650		C9X(1)=5x(2)			 	
333021		C % x (z) * 3 x (3) 1 c1				
010625		CYX[3]*5x[4]	· · ·			
210654		5215 (515) 52				
013655		164				
000655		دعاد المرد المالات المرد الممرد المرد ال				
010560		C97(1)+3x7(2)			 . 1	
330661		LYTICI=3XY131			 	
112003		C5Y[3]=52Y[4] 144				
110565		Latt North 13 N - C94 - C94 - C94 - C90 EV - SY21			-	
112023		UIL 306 1 10 10 10 10 10 10 10 10 10 10 10 10 1				
013073						
010013	0.2	UETUTIII=111-074111=074121=44121=4111=2				•

	030712 EKC9Y=0.U	· .		. 172		
0	0)0713 U0 67 1-1-N			173		
-	0)0714 b7 EKCYY-EKLYY+DEV	C91110+2		174		
	00720 EXLVY=56KT(ERC9	Y/(N-3))		175		*
0	313726 00 00 1=1+3			176		
	333727 pd CYCLV111=68CVY+	(9) = V(1)		177		
	C FINLASL P			. 178		
0	E BIGIN LANE 10	Y=A X	5	1.0		
•	100711	1-10				
	310734					
0		C107 - C1089 - C104 - C100EN - EVOL	-			
•	ALAZAS DE LASS STATE	CI3413 LOAT #C.LOA. CLODE # 3.2 [
		C10. () 1				
~	570745 1025 DEVELOCITI+TT[]-	C134([)*X(I)				
0	CALIGTED.D					
	JJJ/54 DU 1027 1=L+N					
_	030756 1027 EALIUY=EACIOY+D	EVC10(1)** 2				
Ð	E=C1UY=SURTIERC	10Y/(N-1))		-		
	033757 C100LV[1]*cRC10	Y*C133€⊀[1]				
	G FIN LASE LO			· .		
0	<u>C5+Q15_L4>E_11_</u>	Y=1X+0X++2				
	000771 0112(1)=54(2)					
		1				
0	3)0774 Llix(3)=3X(4)			. ,	-	
	030775 S11XY(13×3KY121					
	3)3777 \$11x41c1=3x4(3)					
D	331331 UALL SULVE(2.N.	C114 11XY 11A. C11DEV . SY2 !		-	-	
	3)1)37 UU UU I=1+N					
	3)1)11 1030 JEV(11(1)=Y(1)=	C114(1)*X(1)-C114(2)*X(1)**2				
D	331322 Exclipt+0.0					
-	001021 00.16 v/ 1+1+N	a second s			- Here of a service formation of a strategy of the basis of the service	and the second sec
	331324 1032 cs(11) at sC117+D	EVC11171002				
D		117/19-211				
-		111/13-611			-	
	11012 1311 (111-5411-6361)	VACINGUE	-			
6		1.011764111				
~	L. PINCASCII	Y		120		
		(Let 1) ,1=1,10)		179		
	011354 /0 FURNETL*1*////*	CASE 1 T *A * 0X* 1///120A41				
Ð		1E12 . 0 . YX, +JEVA ,E10. 81		1		
	JJ1354 A411L13,751 C1A	(I), CIDEALT)		182		
-	331364 dJ FUARAT (*3***8*	* , c 2 3 , 3, 7X , * L c V d ** , E 20 . 8)		183		
Þ	JJ1364	[2], CIDEV(2)		104		
	JJLJ74 190 FGNMATI+U++514	NJARD DEV UP THE POLYNOMIAL -+	,E 20.81	165		
	331374 #XITE13,1537E4C	14		186		
		.*<[]] *1204, *Y[] 1*14X,*Y[])EX	(P-YII)CALC*)			
))11)2 #*[TL[J]05)			168		
	331135 40 FCKK41(3223.8)			169		
D	JJ1106	3, FI[], DEV C1111, [=1,NI	and a local sector of the sect		-	
	0J1125 #x17E13,951 [7]	TLE([] , [=1,10)		151		
	331137 45 FUNDATL+1+////*	CASE 2 Y *A * dK * CK* . 3H**2.10X.	20A41 -			
Þ	221137 ANTTELS, 7510241	11,2216/(1)		193		
	JJ1147 AAITELJ.OJIC2AL	21,62364(2) .		154		
	JJ1157 IJJ + C.MAT (+)+,+C.	*,620. 3,9X,*JE/C=*,E20.81		195		
Þ	JJ1157 #KITL(3,13)1C24	(3), (202V(3)		196	-	
	JJ1167 #KITL13,1501ERC	24		197-		
	331175 **111110031			198	-	
Þ	371221 est1: Lavy311X11).Y(1).DEV.22(1).1=1.N)		199		
	3)1223 Addition (1)	11.: (11.1.1.1.0)		260		
	221232 122 FUSSETLE 2////>	CALE 3 Y ***************************	3.10X.20A41			
•						
			a second se			
>						

. .

.

177.

*

. . .

33122 **IE(s,r):(CAR(1):.			
10122 10111100111101110111011101110111011101	031232 #XITE(3,751C34(1),23324(1)	202	1
1112 1112 <td< td=""><td></td><td></td><td></td></td<>			
11122 1111 111 111 111<		204	·
11123 **11111111111111111111111111111111111		. 203	
11123 ATT (1.175) CO 11134 ATT (1.775) CO CO 11135 ATT (1.775) CO CO 1135 ATT (1.775) CO CO 1135 ATT (1.775) C		263	
91130 4:11:11:11:11:11:11:11:11:11:11:11:11:11	J)1272 AKIIL (J,17)16KU ST	207	
11113 11111 <td< td=""><td>3)1303 Ax112(3)631</td><td>200</td><td></td></td<>	3)1303 Ax112(3)631	200	
D1123 1 <td>331335 as11c(3,93)(X(1),Y(1),359c3(1),1=LaN1</td> <td></td> <td></td>	331335 as11c(3,93)(X(1),Y(1),359c3(1),1=LaN1		
1113 112 112 112 112 1113 ************************************))]]]]] #4[[E[3,1]])[[]][=1,16]	210	
201103	JJ1335 115 FDxX41(*1*///* CASE 4 Y=A+5X*CX*,15H**2*DX**3+	EX**4,10X,20A4)	
331135 ************************************			
311135	JJ1345 WKIIE(J,00)C4A(2),C40EV(2)	213	
2)21302 Lash Li Jai Li Jai Lash Kin Lash Kin Li Lash Kin Li Lash Li Lash 2)21302 Lash Li Lash Li Lash Kin Lash Kin Li Lash Kin Li Lash Li Lash 2)21303 Lash Li Lash Li Lash 2)21304 Lash Li Lash Li Lash 2)21305 Lash Li Lash Li Lash 2)21305 Lash Li Lash Li Lash 2)21307 Lash Li Lash Li Lash 2)21308 Li Lash Li Lash 2)21307 Lash Li Lash Li Lash 2)21308 Li Lash Li Lash 2)21307 Lash Lash 2)21308 Lash Lash 2)21308 Lash Lash 2)21308 <	2)1155 #NITE(3,10)1 C4AT31,C40EV(3)	214	
031175 LQ = Durat (+90++6++22,4,3)4,+000 + 2420,0) 210 031175 +111 (+12) (+21) (+12) (+1	0)1365 #KILL31LL31C56[41,C+DEV[4]	- 215	
331375 **.11(:1,1,2)(:4:4:15).(C+3:15) 213 331431 **.11(:1,1,5)(:1:4:4*********************************	001175 120 FURMAT (000,0E=0,E20,8,94,04UEVE=0,E20,8)	. 216	
001405 #KIT Lisis 218 001410 #KIT Lisis 219 001411 #KIT Lisis 219 001412 #KIT Lisis 219 001413 #KIT Lisis 219 001413 #KIT Lisis 211 001413 #KIT Lisis 211 001420 #KIT Lisis 211 001420 #KIT Lisis 211 001420 #KIT Lisis 212 001420 #KIT Lisis 214 001420 #KIT Lisis 214 001420 #KIT Lisis 214 001421 #KIT Lisis 214 001422 #KIT Lisis 214 001421 #KIT Lisis 214 001421 #KIT Lisis 214 001422 #KIT Lisis 214 001423 #KIT Lisis 214 001424 #KIT Lisis 214 001425 #KIT Lisis 214 001425 #KIT Lisis 214 001425 #KIT Lisis 214 001425 #KIT Lisit 214 001425 #KIT Lisit 214 001426 #KIT Lisit 214 001426 #KIT Lisit 214	3)1375 AKITE(3,123)1C44(5),C43EV(3)	217	
331413 *k11k13453 214 331417 *k11k13451 214 331417 *k11k13451 211 331417 *k11k13451 211 331417 *k11k13451 211 331417 *k11k13451 211 331407 *k11k13451 211 331531 *k11k13451 211	0)1405	218	
J1117 +LTL[1], YIII(I), TII) JEVC=[1], I=L(N) 240 J11153 +LTL[1], YIII(C), SCIENT 241 J11154 +LTL[1], YIII(C), SCIENT 241 J11155 +LTL[1], YIII(C), SCIENT 241 J11155 +LTL[1], YIII(C), YIII(C), SCIENT 241 J11155 +LTL[1], YIII(C), YIII(C	JJ1413 wkl1tL13+051	214	
J13130 AAIL(13)(23) HIL(2(11)(-1(13)) 241 J31430 4(11(1),7)(34(25)(5)(25) 241 J31430 4(11(1),7)(14(25)(5)(25) 241 J31440 4(11(1),7)(14(25)(5)(25) 242 J31440 4(11(1),7)(14(25)(5)(25) 242 J31440 4(11(1),7)(14(1),7)(3)1417 AKITE(3,93)(X([],Y(1),DEVCN([],1=L,N)	. ZZO	
0)1:30 125 ELXPNI[12]////* CASE 5 Y *AxA*, jM**2*10X+20A4) 1)1:400 4(11E(1), 13/12C(5)):505 1)1:410 4(11E(1), 13/12C(5)):505 1)1:411 4(11E(1), 13/12C(6)):505 1)1:421 1)111(11, 11(1), 13/12C(6)):507 1)1:510 4(11E(1), 13/12C(6)):507 1)1:511 4(11E(1), 13/12C(6)):507 1)1:512 4(11E(1), 13/12C(6)):507 1)1:513 4(11E(1), 13/12C(6)):507 1)1:514 4(11E(1), 13/12C(6)):507 1)1:515 4(11E(1), 13/12C(1), 1/1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	2/1335	201	
D11450 **11*(1)73142(5)5554 223 D11450 **11*(1)1015657 224 D11470 **11*(1)1015657 224 D1111 **11*(1)10111111111111111111111111111111	011-30 125 FURMAT(#1#////# CASE 5 Y=AX#,3H##2,10X,20A4)		
111100 4411111,1111,11111,11111,11111,1111,11	331450 #KITEL3,75142C5,55054	. 223	
J)1660 #KIT_C17,00 225 J)1511 #KIT_C17,01 1111 227 J)1521 J)1521 227 227 J)1521 J)1521 227 227 J)1521 J)1521 240 227 J)1521 ALTC17,506A111,C526V11 220 220 J)1531 #KIT_C17,506A111,C526V21 210 210 J)1531 #KIT_C17,506A111,C526V21 210 211 J)1531 #KIT_C17,506A111,C526V11 210 210 J)1531 #KIT_C17,506A111,C526V11 210 211 J)1535 #KIT_C17,507CA111,C126V11 214 211 J)1535 #KIT_C17,507CA111,C126V11 214 214 J)1535 #KIT_C17,707CA11,C126V11 214 214 <td>331460 #KITE(3,133150C5Y</td> <td>464</td> <td></td>	331460 #KITE(3,133150C5Y	464	
D1=72 *x111(1):000000000000000000000000000000000	12011131	225	
J1111 ************************************	0)1472 #81TEL3.901(X(1).7(1).JEV C5(1).1=1.N)	1 226	
11:21 110 F Core.1(*1////* Case 6 ************************************	311511 mal T: (4,132) (T [T_=([])]*1,1a)	227	
201520 **II (1, i, i) Coll (1) (Coll (2), i) E(2) 201 201501 **II (1, i) coll (Coll (2), i) E(2) 201 201501 **II (1, i) coll (Coll (2), i) E(2) 201 201501 **II (1, i) coll (Coll (1), 1) E(1), 1 (1, i) (1) 201 201501 **II (1, i) coll (2), i) E(2) (1, 1) (1, i) (1) 201 201504 **II (1, i) coll (1), i) Coll (1, i) (1, i) (1) 201 201505 **II (1, i) coll (1), i) Coll (1), i (1) (1) 201 201506 **II (1) i) Coll (1), i) Coll (1), i (2) (1) 201 201506 **II (1) i) Coll (1), i) Col	311223 130 FORMATION 2////2 CALE 6 Y =4K*, 9H*02+8X**3,10X+20	3443	
331511 *11t, 11, 11, 1287 Co f (11, 11, 11, 11, 11, 11, 11, 11, 11, 11	201523 (SITE (), 251C6A(1), CA)EV(1)	419	
D11541 *k11t[1,h]D1PCC6* 211 D11551 *k11t[1,h]D1PCC6* 211 D11551 *k11t[1,h]D1PCC6* 211 D11551 *k11t[1,h]D1PCC6* 211 D11555 *k11t[1,h]D1PCC6* 211 D11556 *k11t[1,h]D1PCC6* 211 D11556 *k11t[1,h]D1PCC6* 211 D11556 *k11t[1,h]D1PCC6* 212 D11556 *k11t[1,h]D1PCC6* 213 D11556 *k11t[1,h]D1PCC6* 214 D11556 *k11t[1,h]D1PCC7* 214 D11556 *k11t[1,h]D1PCC7* 214 D11556 *k11t[1,h]D1PCC7* 214 D11557 *k11t[1,h]D1PCC7* 214 D11557 *k11t[1,h]D1PCC7* 214 D11557 *k11t[1,h]D1PCC7* 214 D11557 *k11t[1,h]D1PCC7* 214 <td></td> <td></td> <td></td>			
D11551 #K11E(1)(0)1 411 D11551 #K11E(1)(0)1 411 D11554 #K11E(1)(1)1 411 D11554 #K11E(1)(1)1 411 D11555 #K11E(1)(1)1 411 D11556 #K11E(1)(1)1 411 D11557 #K11E(1)(1)1 411 D11558 #K11E(1)(1)1 411 D11559 #K11E(1)(1)1 411 D11550 #K11E(1)(1)1 411 D11551 #K11E(1)(1)1 411 D11751 #K11E(1)(1)1 411 D11751 #K11E(1)(1)1 #K11E(1)(1)1	11543 av 111 1 3 15 3 16 0 CAV	2 11	
0.11212 = K.H.C.L.N.2014X[L1+YLL1+2EVCo(L1,1+1,N) 2.34 0.11255 = K.H.C.L.N.2014X[L1+YLL1+2EVCo(L1,1+1,N) 2.34 0.11256 = K.H.C.L.N.2014X[L1+YLL1+2EVCo(L1,1+1,N) 2.34 0.11257 = K.H.C.L.N.2014X[L1+YLL1+2EVCo(L1,1+1,N) 2.34 0.11257 = K.H.C.L.N.2014X[L1+YLL1+2EVCo(L1,1+1,N) 2.34 0.11256 = K.H.E.L.N.2014Z[L1+YLL1+2EVCo(L1,1+1,N) 2.34 0.11256 = K.H.E.L.N.2014Z[L1+YLL1+2EVCo(L1,1+1,N) 2.34 0.11257 = L.11 2.34 0.11256 = K.H.E.L.N.2014X[L1+YLL1+2EVCo(L1+,1+1,N) 2.44 0.11257 = L.11 2.44 0.11257 = K.H.E.L.N.2014X[L1+YLL1+1,L1+1,N) 2.44 0.11250 = K.H.E.L.N.2014X[L1+YLL1+1,L1+1,N) 2.44 0.11251 = K.H.E.L.N.2014Z[L1+ZEVCo(L1+1+1,N) 2.44 0.11251 = K.H.E.L.N.2014Z[L1+ZEVCo(L1+1+1,N) 2.44 0.11251 = K.H.E.L.N.2014Z[L1+ZEVCo(L1+1+1+1,N) 2.44 0.11251 = K.H.E.L.N.2014Z[L1+YLL1+2EVCo(L1+1+1+1,N) 2.44 0.11251 = K.H.E.L.N.2014Z[L1+YL1+2EVCo(L1+1+1+1,N) 2.44 0.11251 = K.H.E.L.N.2014Z[L1+YL1+2EVCo(L1+1+1+1,N) 2.		10	
21232 45.112.117.213.11.111.12.11.111.111.111.1111.1		431	
J1574 #ATTELSTATION CASE 7 Y = AARSI SHOP 2 + BX + 3 + CX + 4 + 10X + 20A + 1 234 J1555			
J1535 13 F0.K-1[12,7]/1(ZALL), ZJEV(1) 236 J1535 AKITCI3,5](ZALL), ZJEV(1) 236 J1535 AKITCI3,5](ZALL), ZJEV(1) 236 J1535 AKITCI3,5](ZALL), ZJEV(1) 236 J1535 AKITCI3,5](ZALL), ZJEV(1) 246 J1535 AKITCI3,5](ZALL), ZJEV(1) 240 J1535 AKITCI3,5](ZALL), ZIEV(1) 241 J1555 AKITCI3,5](ZALL), ZIEV(1) 241 J1555 AKITCI3,5](ZALL), ZIEV(1) 240 J1555 AKITCI3,5](ZALL), ZIEV(1) 244 J1751 AKITCI3,7](ZALL), ZIEV(1) 246 J1751 AKITCI3,7](ZALL), ZIEV(1) 244 J1751 AKITCI3,7](ZALL), ZIEV(1) 246 J1774 AKITCI3,7](ZALL), ZIEV(1), ZIEV(2) 243 J1774 AKITCI3,7](ZALL), ZIEV(2) 251 J1774 AKITCI3,7](ZALL), ZIEV(2) 251		237	
J1535 AKIELSJ, 5367A121, 5767421, 5767421 417 J1556 AKIELSJ, 60167A121, 5767421 417 J1556 AKIELSJ, 60167A121, 5706743 419 J1556 AKIELSJ, 50168277 419 J1556 AKIELSJ, 50168277 410 J1556 AKIELSJ, 50168277 410 J1557 AKIELSJ, 50168277 410 J1556 AKIELSJ, 50168277 410 J1557 AKIELSJ, 50168277 410 J1557 AKIELSJ, 50168277 410 J1557 AKIELSJ, 50168277 410 J1557 AKIELSJ, 50168277 410 J1751 AKIELSJ, 501634115, 7029411 444 J1751 AKIELSJ, 601644721, 60094131 244 J1751 AKIELSJ, 601644721, 60094131 244 J1751 AKIELSJ, 601644714, 60094131 244 J1751 AKIELSJ, 601644714, 60094131 244 J1751 AKIELSJ, 601644714, 60094131 244 J1753 AKIELSJ, 601644714, 60094131 240 J1754 AKIELSJ, 601644714, 60094131 240 J1755 AKIELSJ, 601644714, 60194711<	JJ1506 135 FUXA-11*1////* CASE / T-AX*,15H**2*8X**3*CX**4	11104120441	
Jilslo xxllt(j,j)(J(x))(x,z)(y) Jilslo xxllt(j,z)(Z(X))(x) Jilzli xxllt(j,z)(Z	3)1536 AKITEL3,751C7ATL1,C73EVTL1	230	_
3)1526 xx11t(3,103)C/A(3),C/2V(3) 236 3)1530 xx11t(3,103)C/A(3),C/2V(3) 240 3)1550 xx11t(3,103)C/A(3),C/2V(7) 240 3)1550 xx11t(3,103)C/A(3),C/2V(7) 241 3)1550 xx11t(3,103)C/A(3),C/2V(7) 244 3)1551 441 3)1551 441 3)1551 441 3)1731 441 3)1731 441 3)1731 441 3)1731 441 3)1731 441 3)1731 441 3)1731 441 3)1731 441 3)1731 441 3)1731 441 3)1731 441 3)1731 441 3)1731 441 3)1731 441 3)1731 441 3)1731 441 3)1734 441 3)1743 441 3)1752 441 3)1753 441 3)1754 441 3)1754 441 3)1754 441 3)1754 441 3)2014 441 3)2014 441 3)2014 4411 3)2014 </td <td>J1516 ANTELS, 001074121, 7364121</td> <td>237</td> <td></td>	J1516 ANTELS, 001074121, 7364121	237	
D1036 AKI [k13, 2) [k3, 2] D104 AKI [k13, 2] D1057 AKI [k13, 2] D1171 AKI [k13, 2] D1171 AKI [k13, 2] D11721 AKI [k13, 2] AKI [k13, 2] 245 D1171 AKI [k13, 2] D1171 AKI [k13, 2] D11721 AKI [k13, 2] AKI [k13, 2] 245 D1173 AKI [k13, 2] AKI [k13, 2] 2] D1174 AKI [k13, 2] AKI [k13, 2] D1774 </td <td>3)1526 ANTE(3,103)C/A(3),C/3EV(3)</td> <td>230</td> <td>,</td>	3)1526 ANTE(3,103)C/A(3),C/3EV(3)	230	,
1)1644 xx11c13,c53 240 3)1655 xx11c13,r301(X(1),Y(1),JEYC7(1),1=1,N) 241 3)1657 xx11c13,r431(1),r12,c111,r12,r11,N) 241 3)1731 140 FGxA11(1),712,r111,r12,r111,R) 244 3)1711 xx11c13,r301(X(1),r302,r111) 244 3)1721 xx11c13,r301(X(1),r302,r111) 244 3)1711 xx11c13,r301(X(1),r302,r111) 244 3)1721 xx11c13,r301(X(1),r302,r111) 244 3)1721 xx11c13,r301(X(1),r302,r111) 244 3)1721 xx11c13,r301(X(1),r302,r111) 244 3)1721 xx11c13,r301(X(1),r302,r111) 244 3)1731 xx11c13,r431 244 3)1731 xx11c13,r431 244 3)1732 xx11c13,r431 244 3)1743 xx11c13,r431 111,r411,r411 3)1744 xx11c13,r432 111,r411,r411 3)2034 xx11c13,r432,r434,r914+2+CX+33,10X,20A4) 252 3)2034 xx11c13,r432,r434,r914+2+CX+33,10X,20A4) 252 3)2034 xx11c13,r432,r434,r914+2+CX+33,10X,20A4) 252 3)2034 xx11c13,r432,r434,r914+2+CX+33,10X,20A4) 253 3)2035 xx11c13,r432,r434,r434,r914+2+CX+33,10X,20A4) 253 3)2035 xx11c13,r43		4.19	
3)1652 *k Tr(t,y,J)(X(1),Y(1),J)(X(1),Y(1),J)(X(1),Y(1),J)(X)(X)(X)(X)(X)(X)(X)(X)(X)(X)(X)(X)(X)))[044 #KITE(3,05)	240	
J)1677 L <iii, i<="" td=""> L L J)1701 140 FCAAIL(012777) CASE KAABAA, VH+*2+CX**3, 10X, 20A41 J)1701 KIILL(13, 25)CALL1+C7DEV11 244 J)1711 KAIILL(13, 25)CALL1+C7DEV12 245 J)1711 KAIILL(13, 25)CALL1+C7DEV12 245 J)1711 KAIIL(13, 15)CALL1+C7DEV12 246 J)1721 #KIIL(13, 15)CALCAT 247 J)1737 #KIIL(13, 15)CALCAT 244 J)1743 #KIIL(13, 15)CALCAT 244 J)1755 #KIIL(13, 15)CALCAT 244 J)1756 #KIIL(13, 15)CALL1+, 11, 14, 101 244 J)1757 4KIIL(13, 15)CALL1+, 14, 101 244 J)1752 #KIIL(13, 15)CALL1+, 14, 101 250 J)1774 4KIIL(13, 15)CALL1+, 14, 101 250 J)1774 4KIIL(13, 10)CAL11, 240 EV(11) 252 J)2014 #KIIL(13, 10)CAL11, 240 EV(13) 253 J)2014 #KIIL(13, 10)CAL11, 240 EV(24) 253 J)2014 #KIIL(13, 10)CAL11, 240 EV(24) 254 J)2014 #KIIL(13, 10)CAL11, 240 EV(24) 255 J)2014 <</iii,>	3)1650 wkl1c(3,43)(X([),Y([),0EV(2)(1),[=1,N)		
JJ1701 140 FGAAT[0]*///* CASE & Y=A*BA*, 9H**2*CX**3, 10X, 20A41 JJ1701 #KITLIS, 7DEVI1 244 JJ1711 #KITLIS, 7DEVI1 244 JJ1711 #KITLIS, 1001C4A11, Cd JEVISI 246 JJ1711 #KITLIS, 1001C4A11, Cd JEVISI 246 JJ1737 #KITLIS, 1001C4A11, Cd JEVISI 246 JJ1737 #KITLIS, 1001C4A11, FJEVUSII), 1=1, NI 249 JJ1745 #KITLIS, 4001K(II, +VITI, -JEVUSII), 1=1, NI 249 JJ1745 #KITLIS, 14001K(II, +VITI, -JEVUSII), 1=1, NI 250 JJ1745 #KITLIS, 14001K(II, +VITI, -JEVUSII), 1=1, NI 250 JJ174 #KITLIS, 14001C4A11, -JEVUSII) 252 JJ174 #KITLIS, 1001C4A11, -JEVUSII) 252 JJ2014 #KITLIS, 1001C4A11, -JEVUSII) 253 JJ2014 #KITLIS, 1001C4A13, -CVDEVISI 254 JJ2014 #KITLIS, 1001C4A13, -CVDEVISI 254 JJ2014 #KITLIS, 1001C4A13, -CVDEVISI 255 JJ2015 #KITLIS, 1001C4A13, -CVDEVISI 256 JJ2015 #KITLIS, 1001C4A13, -CVDEVISI 256 JJ2015 #KITLIS, 1001C4A13, -CVDEVISI 256 <td> J)1657 KKITE(J,14)) (TIT_2(1),1*1,14)</td> <td></td> <td></td>	J)1657 KKITE(J,14)) (TIT_2(1),1*1,14)		
JJ1701 +k11c(J,7)CJ4(I).*7JEV111 244 JJ1711 +k11c(J,00)Cd412tcd12V(2) 245 JJ1711 +k11c(J,100)Cd412tcd13II.CdJEV(J) 246 JJ1731 +k11c(J,100)Cd412tcd13II.CdJEV(J) 246 JJ1731 +k11c(J,00)Cd412tcd1II.CdJEV(J) 246 JJ1731 +k11c(J,00)Cd41(L1,Y(I).JEVCJ11,I=1,N) 249 JJ1743 +k11c(J,00)Cd41(L1,Y(I).JEVCJ11,I=1,N) 249 JJ1745 +k11c(J,00)Cd41(L1,Y(I).JEVCJ11,I=1,N) 250 JJ174 +k11c(J,7)CPCCJ11,ZOEV(J) 250 JJ174 +k11c(J,7)CPCCJ11,ZOEV(J) 252 JJ2014 +k11c(J,100)CA13J,CCQEV(J) 254 JJ2014 +k11c(J,100)CA13J,CCQEV(J) 254 JJ2014 +k11c(J,100)CA13J,CCQEV(J) 254 JJ2015 +k11c(J,100)CA13J,CCQEV(J) 254 JJ2015 +k11c(J,100)CA13J,CCQEV(J) 254 JJ2015 +k11c(J,100)CA13J,CCQEV(J) 256 JJ2015 +k11c(J,100)CA13J,CCQEV(J) 256 JJ2015 +k11c(J,100)CA13J,CCQEV(J) 256 JJ2015 +k11c(J,100)CA13J,CCQEV(J) 256 JJ2055 +k11c(J,100)CA13J,CCQEV(J) 257 JJ2057 1125 FUKRATI1+1////* Ca5E 10 Y=AX*,10X+,20A41	JJ1701 140 FEAMATIO10////> C45E 8 Y+A+8A+,9H++2+CX++3,10X,2	20441	
J)1711 5411213001C447113Cd0EV121 245 J)1721 *k1Tk13J1501ERC8Y 246 J)1731 *k1Tk13J1501ERC8Y 248 J)1737 4R1Tk13J1501ERC8Y 248 J)1737 4R1Tk13J1501ERC8Y 248 J)1737 4R1Tk13J1501ERC9Y 248 J)1743 *k1Tk13J1501ERC9Y 248 J)1752 *k1Tk13J1501ERC9Y 249 J)1754 *k1Tk13J1501ERC9Y 250 J)1774 *k1Tk13J1501ERC9Y 252 J)2034 *k1Tk13J1501ERC9Y 255 J)2032 *k1Tk13J1501ERC9Y 255 J)2035 *11zt31TT12E111J151TT12E11J11=1N) 256 J)2035 *11zt31TT12E11J11=1N) 256 J)2035 *11zt31TT12E11J11=1N) 257 J)2035 *11zt31TT12E11J11=1N) 257	JJ1701 #KITE(J,75)CJA(L)+C70EV(L)	. 244	
J)1721 #KITE(J,10J)CHAT3), Cd JEV(J) 240 J)1731 #KITE(J,15)1ERC84 247 J)1737 #KITE(J,45)1ERC84 249 J)1743 #KITE(J,45)1TTTE[T],1=1,101 249 J)1752 #KITE(J,45)1TTTE[T],1=1,101 250 J)1754 #KITE(J,45)1TTTE[T],1=1,101 250 J)1755 #KITE(J,45)1CTTTE[T],1=1,401 252 J)2014 #KITE(J,45)CFAT11,2+0EV[1] 252 J)2015 #KITE(J,45)CFAT11,2+0EV[2] 253 J)2014 #KITE(J,15)DERC9Y 255 J)2015 #KITE(J,65) 256 J)2015 #KITE(J,65) 256 J)2015 #KITE(J,10,10)CPAT3],CP0EV(J),L0EV(CP(T),L1E1,N1 256 J)2015 #KITE(J,65) 256 J)2015 #KITE(J,11,10,0EVCP(T),L1E1,N1 257 J)2035 #KITE(J,111,0EVCP(T),11,10,0EVCP(T),20A4) 257 J)2035 #KITE(J,111,0EVCP(T),20A4) 257 J)2035 #KITE(J,111,0EVCP(T),20A4) 257 J)2035 #KIT4(J,111,0EVCP(T),20A4) 257 J)2035 #KIT4(J,111,0EVCP(T),20A4)	311711 ALIELA,001004121.Ed328/121	255	
3)1731 #RITEL3,150328C8Y 247 3)1737 #RITEL3,651 248 3)1733 #RITEL3,651 249 3)1743 #RITEL3,4541 1111.5111.1=1.101 3)1752 #RITEL3,14541 1111.5111.1=1.101 0)1754 145 FELMALL*12////* CASE 9 Y=AX*4X*,90H**2*CX**3,10X,20A41 252 0)1754 4RITEL3,1503C9A111.2*05EV113 253 3)2314 #RITEL3,1503C9A121.5*05EV131 254 3)2324 #RITEL3,1503E8C9Y 255 3)2324 #RITEL3,651 256 3)2324 #RITEL3,651 256 3)2324 #RITEL3,651 256 3)2325 #RITEL3,651 256 3)2326 #RITEL3,651 256 3)2327 #RITEL3,651 257 3)2057 1125 FURMATITELT1,1=1,101 257	0)1721 #KITE(3,100)C4A[3], Cd 0EV[3]	240	
031737 #RITE13,651 248 031743 #KITE13,401 K([1,Y(1),)EV (3 (1), 1=1,N) 249 031752 #KITE13,1451 (TTTLE1(1,1=1,10) 250 031774 #KITE13,1501 (CAL1), 20 (V(1)) 252 031774 #KITE13,00 (PAL2), C9) EV(1) 252 032034 #KITE13,100 (PAL2), C9) EV(2) 253 03224 #KITE13,100 (PAL2), C9) EV(2) 254 03224 #KITE13,000 (PAL2), C9) EV(2) 255 03224 #KITE13,000 (PAL2), C9) EV(2) 255 03224 #KITE13,000 (PAL2), C9) EV(2) 256 03225 #KITE13,000 (PAL2), C9) EV(1), 1=1.N) 256 03224 #KITE13,000 (PAL2), C9) EV(2) 255 03232 #KITE13,000 (PAL2), C9) EV(1), 1=1.N) 256 03232 #KITE13,000 (PAL2), C9 (I), 1=1.N) 256 03232 #KITE13,000 (PAL2), C9 (I), 1=1.N) 257 03235 #KITE13,000 (PAL2), C9 (I), 1=1.N) 257 03236 #KITE13,000 (PAL2), C9 (I), 1=1.N) 257 03235 #KITE13,000 (PAL2), C9 (I), 1=1.N) 257 03236 #KITE13,000 (PAL2), C9 (I), 1=1.N) 256	JJ1731 #KITE (J,153)E2C8Y	247	
JJ1743 AKITE (J, 400 KA(II), Y(II), JEV Co (II), I=1, NI 249 JJ1752 AKITE (J, 145) (TITLE (II), I=1, 10) 250 OJ1774 4KITE (J, 75) (CALII), CASE 9 Y = AX*4X + 9H + 2* (CX + 3, 10X, 20A4) 252 JJ174 4KITE (J, 75) (CALII), CASE 9 Y = AX*4X + 9H + 2* (CX + 3, 10X, 20A4) 252 JJ2014 4KITE (J, 75) (CALII), CASE 9 Y = AX*4X + 9H + 2* (CX + 3, 10X, 20A4) 253 JJ2014 4KITE (J, 100) (CALII), CASE 9Y + (Z) 254 JJ2014 4KITE (J, 150) EQC 9Y 255 JJ2015 4KITE (J, 150) EQC 9Y 256 JJ2015 AKITE (J, 125) EQC 9Y 257 JJ2015 AKITE (J, 125) EQC 9Y 256 JJ2015 AKITE (J, 125) ITT[_2111, 1=1, N] 257 JJ2055 AKITE (J, 1125) ITT[_2111, 1=1, 10) 257 JJ2057 1125 F UKAALII+1*////* CASE 10 Y = AX*, 10X*, 20A4) 457	031737 #8[1813:05]	248 ····	
0)1752 *k1TE(3,145) (T1T_E(11,1=1,10) 250 0)1774 145 F(k*4[[e1#////#_CASE 9 Y *AX*dX*,9H**2*CX**3,10X,2044) 252 0)1774 4k1TE(1,75)C7411)+0EV111 252 0)2034 4k1TE(1,3,01C4A12).CV)EV121 253 0)2034 4k1TE(1,00)C94121.CV)EV121 254 0)2034 4k1TE(1,00)C94121.CV)EV121 255 0)2034 4k1TE(1,00)C94121.CV)EV121 255 0)2034 4k1TE(1,00)C94121.CV)EV111.L=1.N1 256 0)2035 4k1TE(1,01).SUE(1,1,111.DEVCV(1).L=1.N1 256 0)2035 4k1TE(1,112.SUTTT_E(1).L=1.N1 257 0)2035 4k1TE(1,12.SUTTT_E(1).L=1.N1 257 0)2035 1125 FUKAGTT+1.V///* CASE 10 Y -AX*,10X,20A41 257	331743 #611E(3,90)(&(1),901) .JEV =3(1),1=1.NI	249	
0)1774 145 f(b+f([e]#////* CASE 3 Y *AX*dX*,9H**2*CX**3,10X,20A4) 0)1774 4k[TE[3,/5]C4A[1];.)+0EV[1] 252 0)2014 4k[TE[3,0]C4A[2];C4)EV[2] 253 0)2014 4k[TE[3,10]C4A[3];C40EV[3] 254 0)2014 4k[TE[3,10]C4A[3];C40EV[3] 255 0)2015 4k[TE[3,05] 256 1)2015 4k[TE[3,125][T[1,2][1,0]EY[24[1],1]=1,N] 257 1)2015 4k[TE[3,1125][T[1,2][1,1]=1,10] 257 1)2015 4k[TE[3,1125][T[1,2][1,1]=1,10] 257 1)2015 1125 10 4x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+	311752 aktic (3, (5)) [[]] = [[], [*i, 10]	250	
J1774 +kiTE(1), (J) CAL(1), (J) EV(1) 252 J22J34 +kiTE(1), (D) CAL(2), CUEV(2) 253 J32J4 +kiTE(1), (D) CAL(3), CUEV(3) 254 J32J24 +kiTE(1), (D) CAL(3), CUEV(3) 255 J32J24 +kiTE(1), (D) CAL(3), CUEV(3) 256 J32J2 +kiTE(1), (D) CAL(3), CUEV(4) 256 J32D3	011774 145 F(5+4]1+1+////* CASE 9 Y+42+44+9H**2+CX**3.10Y	(,2044)	,
J32334 4x11E13,001C94121,C93EV121 253 J32324 4x11E13,1001C94131,C90EV131 254 J32324 4x11E13,1501E3C9Y 256 J32035 4x11E13,051 256 J32035 4x11E13,1251(T11,0EVCY11),1=1,N1 257 J32355 4x11E13,11251(T11,0EVCY11),1=1,N1 257 J32355 4x11E13,11251(T11,0EVCY11),1=1,101 J32357 1125 FUKAAT1+1+////* C45E 10 Y=AX*,10X,20A41		252	
3)2314 +kITE13,100)COA(3),CVDEV(3) 254 3)2324 +kITE13,150)EQCOY 255 3)2332 +kITE13,05) 256 3)2035 -sITE13,90)LX([1,Y11],0EYCY([1,1=1,N)) 257 3)2057 1125 FUKAATI+1+////* CASE 10 Y=AX*,10X,20A4)		263	
032324 +k1Tk13,153163C9Y 255 33232 +k1Tk13,651 256 332035 -s1Tc13,901(X(11,711),05Y,911),1=1,N) 257 332055 -s1Tc13,11251(T1T_c11),1=1,161 332057 1125 FUK36T1+1+////* C45E 10 Y=AX*,10X,20A41	113314 ALTELS 1031604131 - 60507 11	364	- ,
0)2024 +k[[t[3]:0010(7)] 0)2012 +k[[t[3]:0010(7)]	315317 #KIICI310376767	· · · · · · · · · · · · · · · · · · ·	
37232 #KITE[3,02] 250 372035 ->[Iz[3,92]](X[[1,7[1]],0EY(2Y[1]),1=1,N]) 257 372055 ->[Iz[3,1]25](TIT_zII],1=1,10] 257 372057 1125 FUKALTI+1*////* CASE 10 Y=AX*,10X,20A4] 257		146	
122035 Astricts, 201811.1,111.1,202.2011.1,1-11.0) 201 012035 Astricts, 1125)(TTT_ctT+1+1,10) 201	JICJJC #KIIELJ4071	620	'
)/2057 ************************************	12015 ASTLE (3) 901 (811 L) 11 DEV CY (1) 1 #1.NI		
JJ2957 1125 FUKALIL+1+7777+ CASE 10 T+AX+,10X,20A4)	A A A A A A A A A A A A A A A A A A A		
	JJ2057 1125 FUKAGI(+1+////+ CASE 10 T +AX+,10X,20A4)		
			. '

0

332377 A 332135 A 332111 A	(k11k13,150)ERC10Y (k11k13,05) (k11k13,05) (k11k13,05)	(),[-1,N)	· · · · ·				j
-33 21 30	<pre>(x17t(3,1130)(T17tc(1),1=1,1d) 0x4471*1*////* Case 11 Y=A 4(17t(3,75)C114(1),C110EV(1)</pre>	x+dx*,3H*+2,10X,20A4					
	KIT: [3,001C11A(2),C110EV(2)						{
332174 332213 332214	(KIJE12*A0)[X[I]*AII)*9EA9TTU 19 IO 1090 19 IO 1090	Jalakant	,	258			_
			· · · · · · · · · · · · · · · · · · ·			1. 1. 1.	
			· · ·				
				-			
			1				
	-					-	
	· · · · · · · · · · · · · · · · · · ·		· .	-	-		
•.							
	·						
				-			
···· · · ···· · · · · ·				-			

, ,

. '

		 A set of the local contraction of the set of the set	the second second		1	· · · ·
		SUGKGUTINE SOLVE INDR. Nº F. X. Y. Z. W. E) 260				
000015		<pre>xt4L x(500); *f30); f130; 4(30); c, x1(500); \$1,*1</pre>			,	
		SULVE EQUATIONS AT THE SQUAKE KOUT METHOD				
		NOR - DADER OF TOTENT TATELY, NET - NORDER OF USSERTATIONAL LOUA203203				
		PARATETICS A + THELE STANDARD DEVIATIONS		:		
0)0012	-	ADUP - NET - NUR 200			,	
223013		IF (AALF) 1003,1030,1031 267				,
000015	1000	ANUF = -1.0 . 268				
00017	1031	UU 1002 (1 = 1,50)				
150010	1032	270				
03-9324		A1(44a) = c				
		20 1005 LN + 1.3 272				
111151		DG 1010 11 * Lynok . 273				
222220		4(11) * 0+0 · · · · · · · · · · · · · · · · · ·				
110114						-
010035		(+(Lh-2) 1015,2015,3010 227		-		
010140	3010	0 4 3 4 1 - 1, NOR 278				-
330342	3010	x1(J1+405) = 0.0				,
33.3345		x1(11+465) = 1.0 200				
010347		LU TU 2015				
333347	1015	x1(11+465) = Y[1]) 282				
010022		UU 1025 JL = 1,11 , 283			5	
21.7753		111 = ((11-1)+)1)/2 224				
110020		131 - 111 + 31 265				
010020		x1(1)1) = x(1)() 286				
		267				
11 1164						
113355		INT - ITT - VT - CC7				
333373		16 (1) - A11 (0(0, 104), 1045 (1))				
110072	1040	11 - 11 - 1114 (1114)	· .			
03-3-377	1040	CONTINUE (93		-		
20102		11 - 111111 - 11				-
)))))),		111 + 111 + 1 1 255				
112175		11 (11-21) 1025:1022:1050 246				
010110	1050	x1(1,1) = F(+x1(1,1)) 247				
330113		51 • 51 • X1([]])*X1(]]+405) 298				
		249				
333123		51 = x1((1+465) = 51 300				
333125		1 - (11) 1655-1055-1060 361				
	1922	11 - 5 - 6				
333127		en 10 1022	-	-		
710133	1003	11-5-CK1111 304		· · ·		
111115	1.1.0.0					
313137	1003					
112141		Attility - 11 - 308				
000143		X1(579) = X1(499) + (X1(11+55)++2) 309				
333145		SC TU 1010 310				
1)))152	2010	JU 2017 A1 = 1+N04				
339154		N1 = NUK + 1 = K1 312				
))))1j5		s1 = 0.0 313				
		1+1LN=21 2017+2018+2019				
110125	2018	18(11 - 1) 1010, 2019, 1010 315				
1)0164	2014	00 2020 JI = NI+N04 316				

9

		×				•	
					· · ·		
010166	18:1=fff11_114113723401				7	х х х х х х х х х х х х х х х х х х х	
3)0172	1F(J1 - N1) = 2020,2020,2025			31/	8 .		
3)0174	2025 51 = 51 + 1X1[JN1]+X1[J1 + 405)]		31	9 [·]		
)))))))))))))))))))))))))))))))))))))))	2020 CONTINUE		-	320	0	•	
	$\frac{NN1}{X11N1+4N51} = \frac{1}{X11N1+4N51-5119X}$	1 (NN1)	• •	32	<u> </u>		
212513	1F(LN-2) 2017,2030,2017		- • · · · · · · · · · · · · · · · · · ·	32	3		,
<u>))))?15</u>	$\frac{2030 21811 = x1181 + 4651}{2030 21811 = x1181 + 4651}$			324	4		
110553	2017 CUNIINUE 16(15-2) 1010.1010.1025			. 325	5 , 6 *		
110225	JJ20 DJ 3020 J1=1,NOR			32	7		•
222551	3020 A [J] = A [J] + (K1 (J 1+46) + +2)		321	в .		
333234	$\frac{1}{1}$	1 100		ا∠ز. ∖د د	9		
)))241	1FIX150011 3301,3302,3302	1 I			1		
313243	$3301 \times 1(500) = +0.0$			33,	2		
	1012 00 1007 J1 = 1,N0K				J		
333297	1011 m(11) = +0.0 1711 m(11) = +0.0			ەرى. بەنى ق	"		
1)))234	6.3 T <u>U 1</u> 06.9			33	6		
333254	1000 m ()11 * Sur T (W ()1))		÷.	337	7		
333520				וננ יורי י	9 9		
333272	KETUAN I.			. 34(0		
010272	ENU			34)	1	• : .	
		•. •					
		•					• • •
			·				
							e.
	•				•		
		·			·	-	
	-	,		· · · ·			
	······································					· · ·	
•			• •			· .	
							•
					,		
	•						
			• • •				
			q	· · · · · · · · · · · · · · · · · · ·			
		· · ·					-
		•					
				•			
				· .			•
		<u> </u>		•		· .	

LISTE DES OUVRAGES CITES DANS L'APPENDICE C

- 1- S.D. Conte et Carl de Boor, <u>Elementary Numerical Analysis</u>, 2è édition, McGraw-Hill, New-York (1972).
- 2- Y.V. Lennik, <u>Méthode des moindres carrés</u>, Dunod, Paris (1963).
- 3- N.R. Draper et H. Smith, Applied Regression Analysis, Wiley (1966).

APPENDICE D

L'INCERTITUDE DE Bp

La comparaison entre l'incertitude annoncée sur nos valeurs de B_R et celles annoncées par Buckingham et Graham¹ n'est pas directement possible parce que nos façons de calculer sont différentes. Le seul moyen de faire une telle comparaison est de normaliser les 2 séries de résultats sur B_R . Nous allons analyser notre résultat à la manière de Buckingham et Graham, c'est-à-dire que nous calculerons les incertitudes sur le B_R du CH_4 en considérant la moyenne arithmétique.

Pour nos 7 valeurs de B_R , la moyenne arithmétique est de 6,6 cm⁶/ mole² et on a calculé une déviation standard de ±0,30 cm⁶/mole². Buckingham et Graham obtiennent, pour 4 valeurs de B_R , une moyenne arithmétique de 7,15 cm⁶/mole² et une déviation standard de 0,35 cm⁶/mole².

Nous estimons que nos mesures de B_R sont plus exactes que celles de Buckingham et Graham. En effet, dans notre procédé, nous faisons nos mesures à l'équilibre alors que Buckingham et Graham effectuent leurs mesures hors de l'équilibre. Ils doivent donc estimer l'effet sur B_R de la dérive thermique. De plus, nous séparons par notre méthode d'analyse, les interactions du second ordre de celles d'ordres supérieures. Buckingham et Graham attribuent dans leurs mesures, toutes les interactions aux interactions de second ordre. Or, tel n'est pas nécessairement le cas, même à basse pression. Enfin, notre valeur de B_R est obtenue par la méthode des moindres carrés en comparant nos valeurs expérimentales avec ll polynômes différents (voir appendice C).

1- A.D. Buckingham et C. Graham, Proc. Roy. Soc. London, A336, 275 (1974)

APPENDICE E

EFFET DE LA DISPERSION SUR AR ET BR

Toutes nos mesures pour obtenir A_R et B_R furent faites à une seule longueur d'onde (632,8 nm). Il y a cependant lieu de s'interroger sur l'importance possible de la dispersion.

Pour examiner l'effet de la dispersion sur A_R et B_R , nous avons choisi d'analyser les travaux de Michels et Hamers¹ sur l'indice de réfraction du CO₂ à haute pression et à diverses longueurs d'onde(λ).

Nous avons retenu les mesures faites à 323 K pour des pressions variant de O à 1669 atmosphères et pour les longueurs d'onde allant de 447,1 nm jusqu'à 667,8 nm. Nous avons cherché, par notre méthode des moindres carrés, (voir appendice C) le meilleur polynôme correspondant à la variation de $\frac{n^2-1}{n^2+2} \frac{1}{\rho}$ en fonction de ρ . Pour les 6 longueurs d'onde, le meilleur polynôme est

$$\frac{n^2 - 1}{n^2 + 2} \frac{1}{\rho} = A_R + B_R + C_R \rho^2$$

Nous obtenons ainsi, pour diverses " λ ", les coefficients $A_R^{},\;B_R^{}$ et $C_R^{}.$ Les résultats de cette analyse sont présentés au Tableau E.1 où les

incertitudes annoncées correspondent à 3 déviations standards.

L'analyse du Tableau É.l nous permet de conclure que la dispersion influence nettement le coefficient A_R . On constate que A_R varie de 6,716 ± 0,015 cm³/mole à 6,598 ± 0,012 cm³/mole pour λ variant de 447,1 nm à 667,8 nm. En conséquence, la valeur de la polarisabilité électronique (α_e) qui est obtenue de $A_R = \frac{4}{3} \pi \alpha_e$ sera influencée par la dispersion.

D'autre part, nous pouvons constater que B_R demeure suffisamment constant, à l'intérieur des limites d'incertitude, pour conclure que B_R n'est pas affecté par la dispersion.

1- A. Michels et J. Hamers, Physica IV, 995 (1937)

TABLEAU E.1

Mesures de Michels et Hamers¹. Comparaison de A_R , B_R et C_R pour diverses longueurs d'onde après traitement par notre méthode des moindres carrés.

λ (nm)	A _R (cm ³ /mole)	B _R (cm ⁶ /mole ²)	C _R (cm ⁹ /mole ³)
447,1	6,716±0,015	4,4±2,8	- 344±97
471,3	6,697±0,008	. 4,2±1,3	-342±45
492,2	6,682±0,010	. 4,4±1,7	-349±60
501,5	6,679±0,013	3,2±2,3	-307±82
587,6	6,622±0,009	3,9±1,4	-315±50
667,8	6,598±0,012	3,4±2,1	⇔302±72