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SUMMARY 

The purpose of this work is to study and scientifically explain the principles of 

high seve rit y pulping process. The thesis has the following objectives: t 0 

establish a correlation between cooking conditions (temperature, time, 

pressure) and the physicochemical fiber changes due to vapor phase cooking, 

to establish a correlation between fiber changes and resulting mechanical and 

optical properties and to determine the optimum cooking conditions in order to 

obtain required paper properties. In the first experimental series, we have 

established the importance of chemical impregnation for good fiber 

development. We found that the Na2S03/NaHC03 impregnation system 

yielded an excellent pulp quality without any negative side effect, such as yield 

or brightness 1055. A comparison with conventional high-yield pulps (RMP, 

CTMP, CMP) at the same chemical charge, yield and ionic content, showed 

that the explosion pulps had better mechanical and similar optical properties at 

much lower refining energy (up to 50%). The superiority of the explosion pulps 

can be attributed to the chemical changes (higher crystallinity, better lignin 

softening) that occur as a result of the high-temperature-high-pressure cook as 

weil as to the physical changes (better and easier fiber separation) that occur 

following high severity cook and explosive discharge from the digester. 

Increasing the digester pressure to 25 atm prior to the explosion also led to 

better fiber separation and hence lowered the refining energy consumption. 

Mechanical properties of such treated pulps showed (compared to RMP, 

CTMP and CMP) improved breaking length, burst and tear indexes. The 
second experimental series confirmed the superiority of a two-chemicals 

impregnation system compared to no or one chemical impregnation. We found 

that increasing the pressure prior to the explosion gave the best results at 

lower cooking severity or insufficient chemical treatment. In the third 
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experimental series, the X-ray diffractometry confirmed higher quantities of 

cellulose 1 and thicker micelles with increasing pulping temperature. Other 

spectroscopies (FTIR, Raman) showed lignin restructuring, higher cellulose 

quality and hemicellulose hydrolysis. Surface analysis (ESCA ... ) showed better 

fibrillation and better surface quality (more cellulose, better surface sulfonation) 

with increasing seve rit y of treatment. Statistical analysis showed a good 

correlation between cooking parameters (time, temperature and pressure) and 

resulting pulp characteristics and properties (yield, refining energy, mechanical 

properties). We were able not only to predict pulp properties from the cooking 

parameters, but also to estimate the cooking conditions needed to reach 

required paper properties. The correlation coefficient was higher th an 90% for 

ail the important parameters. 



RÉSUMÉ 

L'objectif de ce travail est de comprendre et d'expliquer scientifiquement les 

bases du fonctionnement du procédé de mise en pâte d'explosion et ce qui le 

distingue des autres procédés à très haut rendement. Ce travail comprend 

l'établissement d'une corrélation entre les paramètres de cuisson (température, 

temps, pression) et les changements physico-chimiques qui se produisent sur 

les fibres pendant la cuisson en phase vapeur. Il comprend aussi 

l'établissement d'une corrélation entre des changements physico-chimiques 

des fibres et les propriétés mécaniques et optiques des pâtes résultantes. La 

détermination des paramètres de cuisson optimales pour obtenir les propriétés 

papetières requises a aussi été effectuée. Dans la première partie de ce 

travail, nous avons établi l'importance de l'imprégnation chimique pour un bon 

développement des fibres. Le système Na2S03l'NaHC03 a donné de meilleurs 

résultats et ce, sans aucun effet négatif. En utilisant le même système 

d'imprégnation, la même charge chimique, et en se basant sur le même 

rendement et le même contenu ionique, les pâtes d'explosion, en 

comparaision avec des procédés classiques (pâte mécanique de raffineur, 

pâte chimico-mécanique et chimico-thermomécanique) ont consommé moins 

d'énergie de raffinage (jusqu'à 50%) et exhibé de meilleures propriétés 

mécaniques. Les meilleures performances obtenues s'expliquent par une 

meilleure sulfonation, des fibres plus longues et plus flexibles dans les pâtes 

d'explosion et une plus grande quantité de cellulose 1 ordonnée. 

L'augmentation de la pression avant l'explosion a aussi permis de diminuer 

l'énergie de raffinage et d'améliorer les propriétés mécaniques. La deuxième 

série d'expériences a prouvé qu'une explosion à 25 atmosphères peut avoir 

des effets bénéfiques lorsque la sévérité du traitement est plus faible ou que le 

traitement chimique soit insuffisant (un seul agent d'imprégnation). La 
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troisième série d'essais a confirmé la supériorité des pâtes d'explosion par 

rapport des pâtes chimico-mécaniques et chimico-thermomécaniques. 

L'analyse de diffraction aux rayons X a confirmé la présence d'un taux plus 

élevé de cellulose ordonnée et de plus grands cristaux. Les spectroscopies 

(infrarouge, FTIR, Raman) ont montré une restructuration de la lignine, une 

meilleure qualité de cellulose et une hydrolyse des hémicelluloses. L'analyse 

de la surface (ESCA. .. ) a montré une meilleure fibrillation des surfaces des 

fibres explosées. Aussi, la surface des pâtes d'explosion a été plus riche en 
cellulose et en ions sulfoniques, ce qui contribue grandement au 

développement des propriétés mécaniques. L'analyse statistique a montré une 
très bonne corrélation entre les paramètres de cuisson (température, temps, 

préssion) et les charactéristiques et les propriétés des pâtes résultantes 

(rendement, énergie du raffinage, propriétés mécaniques). On peut donc 

prédire non seulement les propriétés mécaniques et l'énergie de raffinage, 

mais aussi les conditions de cuisson nécessaires pour obtenir une qualité de 

papier donnée. Le coefficient de corrélation a été 90% ou plus pour tous les 

paramètres importants. 



RÉSUMÉ SUBSTANTIEL 

L'industrie forestière et papetière constitue la plus importante industrie du 

pays. L'industrie canadienne des pâtes et papiers compte environ 75 sociétés 

regroupant plus de 140 usines. Elle occupe le premier rang des producteurs 

mondiaux de papier journal. 

La production des pâtes mécaniques et chimico-mécaniques a été développée 

pour économiser le bois et les produits chimiques. Les avantages de ces 

procédés comparativement avec les procédés kraft et sulfite sont: un 

rendement plus élevé, une meilleure blancheur et, généralement une utilisation 

moindre de produits chimiques pour la fabrication de la pâte. D'un autre côté, 

les propriétés mécaniques de ces pâtes sont généralement inférieures à celles 

des pâtes à bas rendement, ce qui empêche leur utilisation dans plusieurs 

domaines. Suite à ce constat, de nombreux chercheurs ont travaillé au 

développement et au rehaussement des propriétés des pâtes à haut et très 

haut rendement. Le but visé était de développer des pâtes compétitives avec 

les pâtes chimiques. Une des possibilités dans ce cheminement est la mise en 

pâte d'explosion. 

La mise en pâte d'explosion pour la production papetière est un nouveau 

procédé proposé par Kokta et ses collaborateurs. Cette technique représente 

la poursuite des travaux effectués par d'autres chercheurs (Mason, Asplund, 

Mamers ... ), qui ont connu une certaine réussite avec diverses versions de la 

mise en pâte d'explosion. Malheureusement, les propriétés mécaniques des 

pâtes, ainsi obtenues, n'étaient pas suffisantes pour la production papetière. 
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Le procédé suggéré par Kokta augmente la résistance mécanique des pâtes 

d'explosion, aux niveaux égales ou supérieurs à ceux des procédés à haut 

rendement classiques (pâtes mécaniques de raffineur (PMR), pâtes chimico­

mécaniques (PCM) et chimico-thermomécaniques (PCTM)). Dans certains 

cas, certaines des propriétés obtenues sont même comparables avec celles 

des procédés à bas rendement (kraft). De plus, les pâtes d'explosion exigent 

environ la moitié moins d'énergie du raffinage que celles produites par les 

procédés PCTM et PCM. 

Le procédé de mise en pâte d'explosion consiste en une imprégnation 

chimique des copeaux (classiques ou déchiquetés), suivie d'une cuisson de 

courte durée (1 à 5 minutes) en phase vapeur à des températures variant entre 

180 et 210°C. La cuisson est suivie d'un relâchement brusque de la pression 

(explosion) et d'un raffinage classique. La pâte produite peut être blanchie, au 

besoin. 

Le traitement de haute sévérité peut être évalué de deux points de vue: 

premièrement, on peut examiner l'influence des paramètres de cuisson (haute 

température - haute pression - courte durée) sur les trois constituants du bois 

(lignine, cellulose, hemicelluloses) ou deuxièmement, on peut évaluer 

l'influence de chacune des étapes de cuisson (préchauffage, cuisson, 

explosion) sur la qualité et les propriétés de la pâte finale. 

L'influence de la température élevée sur la production de la pâte, 

comparativement avec celle des procédés PCM et PCTM, est la suivante: La 

température étant au-dessus de la température de transition vitreuse de la 

lignine mène celle-ci à un ramollissement additionnel permanent. Les pâtes 

d'explosion sont bien ramollies et facilement raffinables (l'énergie de raffinage 

est jusqu'à 50 % plus faible en comparaison à l'énergie des PCM et PCTM). 

Les fibres sont aussi plus longues et plus flexibles, ce qui augmente la 

capacité de liaison et contribue à l'augmentation des propriétés mécaniques. 

Cependant, à cause de la courte durée de la cuisson, la température élevée ne 

cause pas l'hydrolyse de la cellulose à grande échelle. Au contraire, cette 

haute température mène à l'augmentation du degré de cristallinité et augmente 

la longueur des micelles. Plusieurs travaux ont prouvé, que c'est l'influence de 
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la haute température et de la pression (et non l'explosion), qui augmente la 

cristallinité. Par les méthodes d'analyse physico-chimiques, on a trouvé, que la 

cellulose change aussi sa structure de cristallinité (lb à la ou la') . 

. L'explosion joue aussi un rôle important dans le procédé de mise en pâte 

d'explosion. La décharge explosive pendant les essais semi-industriels a 

permis de libérer 37% des fibres, tandis que les fibres restantes étaient 

facilement raffinables. En effet, la consommation d'énergie était de beaucoup 

inférieure à l'énergie de raffinage des PCM et des PCTM. Les effets de 

l'explosion ont été aussi étudiés par Tanahashi. Il a prouvé, que l'explosion ne 

libère pas seulement les fibres, mais que l'explosion était aussi trouvée dans 
les fibres mêmes. De plus, Kosik a montré (par la méthode de sorption 

d'azote), que la surface spécifique de la pâte d'explosion (autour de 8 m2jg 

pour une pâte de tremble, indice d'égouttage 100 ml CSF, rendement 90%) a 

été deux fois supérieure à celle des pâtes commerciales. Si on fait la cuisson 

sous les conditions optimales, l'explosion diminue l'énergie de raffinage et 

augmente les propriétés papetières. 

L'objectif de ce travail est de comprendre et d'expliquer scientifiquement la 

base sur laquelle la mise en pâte d'explosion fonctionne, ce qui la distingue 

des autres procédés à très haut rendement, et à partir de résultats 

expérimentaux, justifier les hypothèses posées. 

Les recherches, constituant cette thèse doctorale, visent à: 

1. L'établissement d'une corrélation entre les conditions de cuisson 

(température, temps, pression) et les changements physico­

chimiques, qui se produisent sur les fibres pendant la cuisson en 

phase vapeur; 

2. L'établissement d'une corrélation entre les changements physico­

chimiques sur les fibres et les propriétés mécaniques et optiques 

résu Itantes; 

3. L'établissement de la cinétique de création du contenu ionique et son 

influence sur les propriétés papetières; 



4. La détermination des conditions de cuisson optimales pour obtenir 

les propriétés requises. 

Mode d'approche. 

Plusieures séries d'essai ont été entrepris: 

Le but de la première série d'essais était de comparer la qualité des pâtes 

d'explosion avec des pâtes obtenues par des procédés classiques (PMM, 

PCTM, PCM). Les conditions de cuisson ont été fixées de façon à ce que le 

rendement et le contenu ionique soient les mêmes ou semblables. Les pâtes 

d'explosion ont été préparées aussi en pressurisant le réacteur avant 

l'explosion (sous azote) pour évaluer l'influence de la pression. 

x 

Les pâtes préparées avec 8% de Na2S03 ont un rendement de 90%. La seule 

exception était la pâte PCTM dont le rendement a été de 93%. Pour fin de 

comparaison avec cette pâte nous avons aussi préparé une pâte d'explosion à 

ce même rendement. Même si le contenu ionique était le même pour toutes 

les pâtes, les pâtes d'explosion ont eu un taux de sulfonation plus élevé (une 

meilleure sulfonation diminue le caractère hydrophobe de la lignine ce qui peut 

mener à l'amélioration des propriétés mécaniques). Tel que nous l'avions 

remarqué par des recherches précédentes, nous avons enregistré la 

diminution d'énergie de raffinage avec la hausse de la sévérité du traitement. 

En comparaison avec les PCTM et PCM, les pâtes d'explosion ont demandé 

en moyenne la moitié moins d'énergie de raffinage. Dans le cas des pâtes 

d'explosion, l'augmentation de la température de 190 à 200°C a diminué 

l'énergie de raffinage de 10% (de 4 à 3.6 MJ/kg). L'analyse Bauer-McNett (la 

longueur moyenne des fibres) a demontré que les fibres des pâtes d'explosion 

sont plus longues (au moins 10%) que les fibres de PCTM et PCM. 

Cependant, grâce au ramollissement supplémentaire de la lignine, les fibres 

explosées sont plus flexibles telles que mesurées par la densité des pâtes 

d'explosion. Une plus grande densité et une meilleure sulfonation rendent le 

contact des fibres plus efficace. Le coefficient de diffusion de la lumière qui 

représente la surface non liée l'a aussi démontré. Ce coefficient a été plus 
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grand dans le cas de la pâte de raffineur et il a diminué avec l'augmentation de 

la sévérité de la cuisson: PMM > PCTM > PCM > pâtes d'explosion. 

Les changements chimiques résultant des cuissons à haute température ont 

été évalués par spectroscopie infrarouge (FTIR). En utilisant le modèle 

cellulosique de Sukhov (quatre composants: cellulose 1 ordonnée, cellulose 1 

désordonnée, cellulose Il ordonnée et cellulose Il désordonnée), nous avons 

trouvé que les échantillons des pâtes d'explosion ont une teneur en cellulose 1 

plus élevée. La cellulose 1 est le matériel le plus bénéfique pour obtenir une 

bonne qualité de papier. En effet, le caractère et l'orientation des groupements 

hydroxyliques (OH) permet une très bonne création interfibrillaire des liens 

hydrogènes, ce qui contribue très fortement au développement des 

resistances mécaniques. 

Le résultat de ces changements physiques et chimiques sur les pâtes 

d'explosion fut l'obtention de meilleurs paramètres mécaniques. Toutes les 

propriétés mesurées: la longueur de rupture, l'indice de déchirure , l'indice 

d'éclatement et d'allongement ont été nettement supérieurs dans le cas des 

pâtes d'explosion. En ce qui concerne les propriétés optiques, la plupart des 

pâtes ont démontré une blancheur de 60% MgO ou plus. La seule exception 

était la pâte d'explosion à l'eau (sans imprégnation chimique) . Les fibres de 

cette pâte étaient couvertes par la lignine. La pâte ainsi obtenue était foncée et 

sa blancheur était d'environ 42% MgO. La réponse au blanchiment a été 

bonne pour toutes les pâtes et la hausse de la blancheur pour chaque pâte a 

été autour de 20%. L'opacité des pâtes d'explosion a été un peu inférieure aux 

autres pâtes, ce qui peut s'expliquer par sa meilleure densité et un meilleur 

coefficient de diffusion de la lumière. 

Dans cette série d'essais, nous avons aussi évalué l'influence de la pression. 

Pour les trois pâtes d'explosion préparées (à 190°C/2 minutes, à 195°C/1.5 

minute et à 200°C/1 minute), nous avons répété l'expérimentation, mais cette 

fois avec une explosion beaucoup plus forte (25 atmosphères au lieu de 11 .5 à 
15.5 atm). Pour les trois pâtes testées, nous avons amélioré les propriétés 

mécaniques et diminué l'énergie de raffinage. 
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Une autre importante partie de cette série d'essais était l'évaluation de 

plusieurs systèmes d'imprégnation. Les comparaisons entre les pâtes 

d'explosion et les pâtes classiques (PCTM, PCM) ont été effectuées en 

utilisant le système typique de l'industrie soit 8% Na2S03. Nous avons aussi 

préparé des pâtes d'explosion sans aucune imprégnation chimique (explosion 

à l'eau) et avec un système à deux agents chimiques: Na2S03l'NaOH (pâte de 

soude) et Na2S03l'NaHC03 (pâte de bicarbonate). La pâte d'explosion à l'eau 

n'a pas démontré de bonnes qualités. En l'absence d'imprégnation chimique 

les fibres ont été couvertes par la lignine et les propriétés mécaniques ont été 

médiocres. Cependant, l'ajout d'un autre agent d'imprégnation a toujours 

apporté des changements importants. La soude est aussi populaire dans 

certains procédés industriels. La qualité des fibres a été excellente. Nous 

avons alors enregistré la meilleure longueur des fibres et les meilleurs 

paramètres mécaniques. Cette pâte (blanchie ou non) a même surpassé la 

qualité de la pâte kraft (à bas rendement) de tremble. La désavantage de 

l'utilisation de soude comme deuxième agent d'imprégnation est au niveau de 

la perte de rendement (de 90 à 83%) ainsi que de la perte de la blancheur. 

Plusieurs chercheurs ont suggéré le bicarbonate de sodium comme agent de 

remplacement pour la soude. Notre expérimentation a confirmé cette 

hypothèse: la pâte avec le système Na2S03/NaHC03 n'a pas perdu de 

rendement (on a resté autour de 90%) ni de blancheur (60%). Ainsi en 

comparant cette pâte avec celles préparées avec un seul agent 

d'imprégnation, ce système amélioré a diminué la consommation d'énergie de 

raffinage et a augmenté la sulfonation. Les résistances mécaniques ont aussi 

augmenté de façon très significative. 

La deuxième série d'essais a été effectuée pour évaluer l'influence de la 

pression. Un système à deux agents d'imprégnation a été utilisé (on a montré 

auparavant que le système d'imprégnation Na2S03l'NaHC03 était plus efficace 

que le Na2S03 seul et ce, sans baisse de rendement ou de blancheur). Cinq 

pressions différentes ont été utilisées pour couvrir l'intervalle entre la pression 

correspondante à la pression de la vapeur saturée pour la température de la 

cuisson et la pression de 25 atm. 
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Dans cette sene, nous avons travaillé avec le système d'imprégnation 

amélioré. L'effet de l'ajout d'un autre agent d'imprégnation a causé une hausse 

du contenu sulfonique, des propriétés mécaniques, de la blancheur et a 

diminué la consommation de l'énergie de raffinage. Quant à l'influence de la 

pression, nous n'avons pas vu de changements aussi importantes que dans la 

première série d'essais. Pour la plupart des paramètres, la qualité était 

identique dans les deux cas: explosion ordinaire et explosion de 25 atm. L'effet 

de l'explosion pressurisée a été significatif seulement pour la longueur de la 

rupture et l'indice d'éclatement. Pour des conditions de 190°C/2 minutes, nous 

avons amélioré la longueur de la rupture de 8.6 à 9.5 km et pour 195°C/1.5 

minute, ce paramètre a augmenté de 7.5 à 8.2 km. La similitude des valeurs 

obtenues pour les autres paramètres peut être expliquée par la présence du 

nouveau système d'imprégnation (deux agents chimiques). Dans la première 

série (un agent chimique) la plupart des qualités papetières n'ont pas été aussi 

bien développées qu'avec le système de deux agents chimiques. Il y avait 

donc beaucoup plus de possibilités d'amélioration des propriétés. Dans la 

deuxième série, l'effet de l'explosion pressurisé a été probablement diminué 

par l'ajout de bicarbonate. Le bicarbonate a tellement augmenté la valeur de 

certains paramètres, que l'influence de l'explosion a été négligeable. 

Cependant, la qualité de toutes les pâtes a été excellente. 

Pour la troisième série d'essais, nous nous sommes concentrés sur les 

paramètres de la cuisson suivants: - la température, le temps et la pression. 

Pour bien évaluer l'influence de la sévérité, l'expérimentation a été planifiée sur 
trois niveaux complets pour deux variables (la température et le temps) et pour 

certains niveaux pour l'autre variable (pression). Ces expériences avec douze 

pâtes d'explosion ont couvert la majorité de l'intervalle de mise en pâte 

d'explosion, tel que définie dans les brevets. Le plan d'expérimentation 

comprenait aussi quatre pâtes de référence. 

Le but de cette série était de travailler non pas seulement autour de l'optimum 
proposé dans la littérature mais aussi d'étudier les phénomènes présents dans 
les extrémités. En ce qui concerne les résultats, la qualité de toutes les pâtes 

obtenues a été un peu moins bonne que dans les séries précédentes. Nous 

pensons, que ceci a été causé par la moins bonne qualité des copeaux de 

tremble utilisé. Par contre, si on compare les pâtes d'explosion et les pâtes 
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classiques, nous sommes arrivés aux mêmes tendences que dans la première 

série. les pâtes d'explosion ont eu une meilleure sulfonation, de meilleures 

propriétés des fibres (densité, lSC, porosité, longueur, facteur S .. . ). Elles ont 

aussi demandé considérablement moins d'énergie de raffinage. les propriétés 

mécaniques (longueur de rupture, indice d'éclatement et de déchirure , 

élongation ... ) ont aussi été supérieures en comparaison avec les pâtes 

chimico-thermomécaniques et chimicomécaniques. 

Si on se concentre sur les pâtes d'explosion, on peut arriver aux conclusions 

suivantes: 

- le rendement des pâtes diminue proportionnellement avec la sévérité du 

traitement. les conditions les moins sévères (180°C/1 minute) ont permis 

d'obtenir un rendement de plus de 90%, tandis que les conditions les plus 

sévères (200°C/4 minutes) ont diminué le rendement jusqu'à 83%. 

- la chute de rendement a été causée majoritairement par l'hydrolyse des 

hémicelluloses. les analyses ont prouvé que la teneur en lignine (méthode 

de Klason) fut la même dans la plupart des échantillons. Plusieurs autres 

analyses (diffractométrie des rayons X, spectroscopies diverses) ont montré 
que la quantité de cellulose est demeurée la même. 

- l'hydrolyse des hémicelluloses a aussi été documentée concernant le 

contenu ionique. les groupements COOH des hémicelluloses sont les 

constituants majeurs du contenu carboxylique. leur diminution a confirmé la 

théorie que l'hydrolyse est la réaction la plus rapide dans les conditions de 
traitement de haute sévérité. D'autre part, la teneur en ions sulfoniques a 

augmenté pour la plupart de l'intervalle de l'expérience. C'est seulement 

dans les conditions extrêmes, que le contenu sulfonique a commencé à 

diminuer. Ceci s'explique par l'hydrolyse partielle des groupements 

sulfoniques ainsi que par les réactions de la lignine. 

- les propriétés des fibres ont été améliorées avec chaque hausse de 

sévérité du traitement. Ceci était un peu surprenant. On avait plutôt prévu 

que la qualité de la pâte augmenterait jusqu'à un certain optimum et qu'on 

assisterait à une chute des propriétés pour des conditions de traitement trop 
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fortes. Lors de nos essais, la meilleure qualité de la pâte a été obtenue pour 

des conditions de 200°C/4 minutes. Si on parle des propriétés des fibres, le 

coefficient de diffusion de la lumière était très près de ceux obtenues avec 

des pâtes chimiques dont le rendement est beaucoup plus bas (presque 

deux fois moindre). De plus, les résistances mécaniques étaient meilleurs 

pour les plus grandes sévérités de traitement. 

- En ce qui concerne l'explosion pressurisée (à 25 atm), nous avons trouvé 

que son influence était plus grande pour les conditions de traitement les 

plus légères (180°C/1 minute). Dans plusieurs cas, l'augmentation de la 

pression avant l'explosion a eu le même effet que le temps de cuisson 

doublé. Pour ce qui est du point central (190°C/2 minutes), nous avons vu 

une légère amélioration de longueur de rupture et pour les conditions les 

plus sévères, l'explosion pressurisée n'a pas changé les propriétés 

papetières. Ceci confirme les conclusions des séries précédentes. 

L'explosion à 25 atmosphères peut avoir des effets bénéfiques à condition 

que la sévérité de traitement soit faible ou que le traitement chimique soit 

insuffisant. 

Pour expliquer la meilleure performance des pâtes d'explosion, nous avons 

effectué plusieurs analyses supplémentaires. L'analyse de diffraction aux 

rayons X a confirmé l'augmentation de la cellulose, de sa cristallinité et de la 

grandeur des micelles. Comme nous l'avons expliqué dans la première série 

d'essais, la cellulose 1 ordonnée représente la meilleure qualité de cellulose 
pour la formation des liens entre les fibres. Les bonnes propriétés de la surface 

et la meilleure fibrillation ont été confirmées par de plus grandes valeurs de 

rétention d'eau. Ces valeurs ont augmenté avec la hausse de sévérité. 

L'explosion pressurisée a aussi amélioré ce paramètre de 15% (dans tous les 

cas). Ceci montre que l'explosion est bénéfique pour la fibrillation interne. 

L'analyse ESCA a montré des différences très importantes de qualité de 
surface. En comparaison avec le bois ou les pâtes classiques, les pâtes 

d'explosion ont un plus grand pourcentage de cellulose sur la surface des 

fibres. La lignine a aussi été sulfonée plus fortement sur la surface des fibres 

explosées. Les effets principaux contribuant au développement des propriétés 

mécaniques sont une meilleure qualité et quantité de cellulose et une plus 
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grande quantité d'ions sulfoniques sur la surface. Cette analyse explique donc 

pourquoi un traitement plus sévère rend la pâte de meilleure qualité. 

L'analyse statistique a montré une très bonne corrélation entre les paramètres 

de cuisson (température, temps, préssion) et les charactéristiques et les 

propriétés des pâtes résultantes (rendement, énergie du raffinage, propriétés 

mécaniques). On peut donc prédire non seulement les propriétés mécaniques 

et l'énergie de raffinage, mais aussi les conditions de cuisson nécessaires pour 

obtenir une qualité de la feuille donnée. Le coefficient de corrélation a été 90% 

ou plus entre les paramètres les plus importants. 

En conclusion, ce travail a démontré que le procédé de mise en pâte 

d'explosion est une technologie vraiment prometteuse. La cuisson à une haute 

sévérité peut produire une pâte avec le même rendement que les procédés 

conventionnels (pâtes chimico-thermomécaniques et chimico-mécaniques). En 

utilisant le même traitement chimique, les pâtes d'explosion utilisent jusqu'à 

50% moins d'énergie de raffinage. Avec un système d'imprégnation plus 

développé (Na2S0s/NaHC03), les pâtes d'explosion économisent davantage 

d'énergie de raffinage et améliorent les propriétés mécaniques. La meilleure 

qualité et les meilleures propriétés mécaniques des pâtes d'explosion sont 

expliqués par la meilleure qualité des fibres. En comparaison avec les fibres 

préparées par des procédés classiques, les fibres des pâtes d'explosion sont 

plus longues, plus flexibles et leur qualité de surface est aussi supérieure. 
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1. INTRODUCTION 

Ultra-high yield (UHY) pulping represents pulping processes with yield over 85% 

and serves the papermaking industry and our society basically by excellent 

wood mass valorization. These processes usually involve one or several of the 

following operations: wood or chip grinding, refining, thermal and/or chemical 

treatment. Commercially used processes for papermaking purposes produce 

different pulp types, known as the refiner mechanical pulp (RMP), 

thermomechanical pulp (TMP). chemi-thermomechanical pulp (CTMP) and 

chemimechanical pulp (CMP). Main outcome of these processes is an ultra-high 

yield pulp with reasonably good mechanical and optical properties accompanied 

by reduction in environmental pollution (water and air, compared to low yield 

processes). However, there are several drawbacks limiting the use of UHY 

pulps: 

- Iimited mechanical properties. Ultra-high yield pulps conserve large majority 

of original wood components. As compared to chemical pulps which consist 

from highly delignified fibers with excellent bonding capacity, the fibers are 

usually less flexible and do not bond as weil as in chemical pulps. 

- color reversion. Most mechanical pulps can be bleached to excellent 

brightness levels, but their brightness decreases with time. 

- very high refining energy consumption. 

- preference for the softwoods. Conventional mechanical processes work best 

with softwood species because of the long fiber length, thin cell walls, high 

fiber uniformity and low amounts of non-fibrous material. 
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The research in the field of ultra-high yield pulping faces an uneasy task -

finding solutions to the above mentioned deficiencies. One of the possible ways 

(other than improving existing processes) is to work at high severity pulping 

conditions (high cooking temperature and pressure) which, according to the 

literature review, can provide pulps with excellent mechanical and optical 

properties, consumes less refining energy and is adaptable to hardwood and 

softwood species. 
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1.1 PRESENTLY USED AND STUDIED HIGH SEVERITY PULPING 

PROCESS 

ln its essence, high severity pulping is not a new approach. In the past, there 

has been a number of pulping trials implementing high temperature, high 

pressure and/or explosive pulp release. Mostly known and still industrially 

employed are processes based on discoveries by Mason [1 to 7] and Asplund 

[8]. However, masonite process, working at temperatures up to 265°C 

diminishes fiber quality [9] and the use of masonite pulp is basically limited to 

insulating panels and boards. The Asplund's system (the Defibratar process) 

with its high temperature defibration does not have larger application scale, 

either. Neither of these processes is capable to produce pulp with acceptable 

papermaking quality. More recently, a series of projects carried out in Australia 

[10 to 18]. They showed more promising results using bath an nuais and wood. 

A feasibility study based on a 200 ton/day plant [11] showed good econamy 

perspectives. 

Present research in the high severity treatment can be divided into several 

areas: 

- wood fibres separation, characterization of morphological and chemical 

changes and/or secondary chemical treatment of basic wood components 

- ultra-high yield pulping that would produce an excellent quality pulp at a 

90%+ yield 

- pulp recycling and deinking 

ln any of the above areas, good progress was made in recent years. In our 

review, we shall focus on high seve rit y pulping for papermaking Le. the process 

development, the changes due to high temperature, high pressure and 

explosive discharge and the characterization of these changes and their 

influence on final pulp and paper quality. 

Most of the publications came from The UOTR Pulp and Paper Research 

Center in Trois-Rivières, Canada. UOTR made a major contribution in this field 

and defined the high severity pulping (V-pulping, S-pulping, Steam explosion 
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pulping, Explosion pulping, SEP description names were also used in some 

references) as a process that can produce a papermaking ultra-high yield 

quality pulp [19 to 28]. Various wood species were used, such as the aspen [29 

to 72], birch [29, 55 to 57, 66, 73, 74], eucalyptus [10, 11, 13, 17,29, 36, 66, 75 

to 79], maple [29, 36, 56, 61, 62, 66], pine [12, 54, 79, 80], spruce [31, 36, 54, 

61, 62, 65, 66, 81 to 89], fir [31, 36, 61, 62, 66, 90], oak [56], beech [56], larch 

[91 to 93], cypress [93], hickory [56], kenaf [14, 18, 94, 95], rice straw [14, 96], 

wheat straw [14, 16], bagasse [14, 16,95, 97, 98], flax [17, 95], bamboo [48, 99, 

100] and their mixtures. 
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1.2 STEAM EXPLOSION PULPING PROCESS AS DEFINED AT THE UQTR 

The process (as depicted on Figure 1.1) consists of the following steps: 

- chip impregnation 

- presteaming 

- high temperature/high pressure/short time cooking 

- sudden pressure release (explosion, but slow pressure release is also 

possible) 

- pulp washing 

- refining 

If necessary, optional bleaching may be added to the process. 

1.2.1 CHIP IMPREGNATION 

As the cooking time at high temperatures is relatively short (0.5 to 5 minutes), 

deep and uniform impregnation is essential for good pulp quality. Generally, two 

different methods are used: soak impregnation for laboratory trials and press­

impregnation for semi-industrial trials. The latter type has several advantages: at 

the compression ratio 4:1 (the chips are comprised to one fourth of their original 

volume), most of the air leaves the system making thus space for impregnation 

liquor absorption. Furthermore, at this pressure the chips undergo a certain 

degree of mechanical destruction as weil [83]. Created cracks and openings 

(mostly between fibers in the middle lamella) do not cause any harm to fibers. 

On the contrary, they increase chip porosity and help the impregnation solution 

to penetrate more evenly. Not to waste any chemicals, Stake Tech system [59] 

has a second compression before the chips enter the digester. During this 

compression, about 50% of the impregnation solution can be recovered and 

reused without any additional treatment. 
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Soak impregnation used in the laboratory trials is less effective and the 

impregnation time is also longer - about 24 hours. 

1.2.2 IMPREGNATION CHEMICALS 

The goal of impregnation is to introduce cooking chemicals into the fibers. In 

high yield pulping, high severity or regular, the most commonly used agent by 

far is sodium sulfite [13, 14,31 to 49, 52 to 55, 59 to 70,72, 76, 78, 79, 81 to 83, 

85, 87 to 89, 94, 96 to 105]. It protects chips from oxidation reactions, sulfonates 

the lignin (increasing its hydrophylicity) and even protects pulp brightness (by 

eliminating the carbonyls from coniferylaldehydes) [105]. An addition of a 

second chemical agent can often have additional beneficial effect. Sodium 

hydroxide is the most favorite second cooking chemical [12 to 14, 16,17,29,30, 

32, 34 to 40, 45, 47, 50, 51, 53 to 55, 58, 59, 62 to 66, 68 to 70, 76 to 79, 88, 

89, 94, 96 to 104, 106 to 108]. It helps increasing the mechanical properties, 

and degree of sulfonation with a reduction in refining energy. On the other hand, 

it reduces pulp yield and often provokes darkening. 

ln cooking process (mostly high seve rit y), much research has been done in 

order to replace NaOH with more suitable chemicals (with or without Na2S03), 

such as: NaHC03 [12, 39, 42, 44, 53, 58, 64, 68, 88, 89, 96, 98, 106], Na2C03 

[39, 42, 44, 53, 64, 88, 89, 96, 98, 106], MgC03 [39, 43, 58, 68], MgCI2 [39, 68, 

106], ZnCI2 [39], H202 [39, 68,108], Na2S [12,39,68], S02 [10,11], C02 [12], 

NH3 or NH40H [11, 14, 56, 57, 74], H2S04 [75], AQ [65, 99, 109], percarbonate 

[110], metabisulphite [96, 98, 100], ammonium bisulphite [10], magnesium 

bisulphite [10], urea [10, 14] and others. Due to environmental protection, sulfur­

free trials were also carried out and compared to conventional cooks [51, 106]. 

As a result, one of the best replacements for NaOH is sodium bicarbonate. It 

provides same benefits without sacrifying yield, properties or brightness. One of 

the reasons why NaHC03 works so weil is its pH. Previous studies indicated 

[39] that if pH drops below 9.0, weaker sheets with lower brightness result, while 

a pH over 10.0 causes a drop in yield and pulp darkening. NaHC03 at most 

concentration levels fitted the balanced range between 9 and 10. 
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1.2.3 COOKING 

1.2.3.1 PRESTEAMING 

To increase chip temperature and to eliminate the air from the system, an 

atmospheric presteaming precedes the cook. In the labo rato ry, chips already 

placed in the reactor are flushed during 1 minute and in the semi-industrial trials 

the presteaming takes about 20 minutes. 

1.2.3.2 COOK 

The process developed at the UQTR is patented for temperatures from 180 to 

210°C. The most often used conditions are usually between 190 and 200°C. 

Cooking pressure corresponds to cooking temperature and can be determined 

by the saturated steam pressure at given cooking temperature : 9.9 atm for 

180°C, 11 .9 atm for 190°C and 15.5 atm for 200°C. Cooking time is quite short 

and usually ranges between 1 and 4 minutes. The higher is the cooking 

temperature, the shorter is the cooking time, conforming with the Arhenius' 

kinetic laws. Wood species also influence cooking time. Softwoods, due to the 

different lignin content and different morphology, as weil as species with high 

wood density require somewhat longer cooking time. 

Some other authors [46, 47, 82, 86] tried cooking at these very high 

temperatures up to 9 minutes. As a result, they obtained lower yields and 

sometime, lower properties. 

If the process is based on the use of chemicals other than Na2S03, cooking 

conditions vary accordingly. For C02, S02 and NH3, cooking temperatures 

ranged from 90 to weil over 200°C, pressures went up to 138 atm and cooking 

times were between 3 and 60 minutes [10, 12, 14, 16, 17). 



9 
1.2.3.3 COOK TERMINATION AND PULP RELEASE 

Even if high temperature - short cooking time at high pressure are the basis of 

high seve rit y pulping, literature shows that the pulp release plays also an 

important role. 

Provided the chips are weil softened, a sudden pressure release can 

significantly contribute to fiber separation. Press impregnation can further 

enhance this benefit and as a result, in the semi-industrial trials, about 37% of 

the pulp was released as free fibers [36]. It is the explosion that causes fiber 

separation, since in the blowing system, there is no possibility for chips to have 

a direct impact against any wall or nozzle bars. 

ln laboratory trials, however, chip separation is not as evident. Visual inspection 

indicates that exploded chips (particularly resulting from higher severity cooks) 

are quite flexible and fairly easy to separate into fiber bundles. For laboratory 

trials,some other authors did not observe visible fiber separation [46 to 48, 82, 

86]. 

For better explosion evaluation, the digester pressure can be increased prior to 

pulp release. For its inert nature, nitrogen is used ,for this purpose, and the 

pressure increase can go up to 25 atmospheres. 

For pulp comparison purposes, it is also possible to release the pressure slowly 

and without explosion. From pressures about 10 to 15 atmospheres, 

depressurization can take from about 15 seconds to 4 minutes. 

1.2.4 PULP REFINING 

Pulp washing follows the cooking process and then the pulp can be refined. As 

there is no existent equipment able to duplicate industrial refining, domestic 

blender is often used for pulp refining. Compared to other methods, the blender 

was found to be the most suitable instrument, because [29, 36, 49, 55, 59, 88, 

89, 111]: 
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- refining energies are very weil comparable to industrial ones 

- pulp quality and paper properties are very weil comparable to industrial ones 

- blender does not cut fibers to such damaging extent as the other refiners do 

- blender does not require large pulp quantities 

Based on these proven facts, in spite of different refining nature [111], blender 

scores better than other laboratory beaters, which are mostly designed for 

chemical pulps defibration and refining, such as the PFI mill, Valley Beater, etc. 

Blender values were quite weil comparable to semi-industrial refiners, such as 

Sunds, Sprout and Bauer [36, 49, 59, 88, 89]. 

To get a representative pulp sample, a batch of 15 blenders for each pulp and 

each CSF value is usually used. Due to uneven blade wear and the effect of air 

agitation, the freeness values of every blender in a batch were not necessarily 

the same and there were also slight differences in the color of individual 

suspensions. Some objections concerning the differences in fiber surface 

development (in comparison to industrial refiners) were raised, but based on the 

results and literature references [111], a blender is judged as the best laboratory 

choice. 
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1.3 THEORETICAL CONSIDERATIONS 

As far as high severity conditions are involved, we can look at them from two 

points of view: what happens to the individual wood components (lignin, 

cellulose, hemicelluloses) at high temperature/high pressure/short time cooking 

and what happens at the individual cooking stages (steaming, cook, explosion) 

to the chips and/or cooked pulp. 

Even if there are several articles reporting on the progress and understanding of 

other ultra-high yield pulping processes [112 to 118], it would be difficult to use 

them as a basis for our purposes. The reason is very simple - other processes 

(TMP, CTMP, CMP and their modifications) work at conditions so different from 

the steam explosion process that their chemical outcome is hardly comparable. 

Based on our knowledge of wood chemistry and literature review, it would 

appear that the se reactions take place: 

1.3.1 LlGNIN 

With high temperatures used in steam explosion pulping, lignin undergoes an 

additional permanent softening. With rising temperature, lignin as a solid 

polymer absorbs more energy and its chains develop more violent motion until a 

temperature is reached at which intermolecular bonds are' broken and the 

macromolecules become capable of large scale displacement with respect to 

each other. The mechanical properties of the polymer change rapidly in this 

temperature region and the solid undergoes what is known as a glass transition. 

Below this transition, polymer behaves as glassy solid and above, it becomes 

rubbery palstic [68]. Steam explosion cooking temperature is higher than the 

glass transition temperature (Tg) of aspen lignin and its model compounds (C9 

oligomer units from which lignin is composed) [68]. For some model compounds 

of aspen lignin, the Tg is about 135°C. Wood lignin behaves somewhat 

differently from its model compounds and due to its higher complexity and 

molecular weight has higher Tg. On the other hand, the presence of steam 

during the cook decreases the Tg and with temperatures of 190°C+ there would 
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be a guarantee for a significant increase in lignin softening, when compared to 

CTMP/CMP lignins. 

Some other sources [39, 73, 91 to 93, 119, 120] also confirmed rapid chemical 

degradation, if no preservative chemicals were added. In the water explosion 

process (steam explosion with no chemicals added), lignin in the secondary 

walls of fibers was degraded to low molecular fractions by cleavage of the ether 

linkages after only 4 minutes of steaming [119]. The middle lame lia lignin was 

more resistant to steaming and has partially melted yielding small oily droplets. 

Differences in lignin reactivity can be ascribed to the differences in the chemical 

structure and the concentration of lignin between the secondary walls and 

middle lamellae. Similar results of lignin melting were reported by Kosik [121] . 

Products of lignin degradation by steam explosion are similar to an acidolysis 
reactions which includes cleavage of the a- and ~-ether linkagesfollowed by an 

increase of phenolic-hydroxyl groups. However, the analyses showed that the 

contents of carbonyl groups of exploded lignin were very much smaller than in 

the acidolysis of milled wood lignin [92, 120]. Therefore, the cleavage reactions 

of lignin by an explosion are different from those in acidolysis. 

From exploded wood (Figure 1.2), fractions of vanillin (5), syringaldehyde (5'), 

coniferyl aldehyde (4), coniferyl alcohol (2), sinapyl alcohol (2'), sinapaldehyde 

(4'), d,l-syringaresinol (9'), d,l-episyringaresinol (10'), dehydrodiconiferyl alcohol 

(11), vanillic acid (7), syringic acid (7'), furfural (29) and 5-hydroxymethyl furfural 

(30) were isolated and identified by 1H-NMA, 13C-NMA and GC-MS [92]. 

ln further investigation of lignin degradation, guaiacylglycerol-~-guaiacyl ether 

(1) after high seve rit y treatment (230°C, 16 minutes) yielded (Figure 1.2) mostly 
coniferyl alcohol (2), its y-methyl ether (13) and guaiacol (3). Coniferyl aldehyde 

(4), vanillin (5), vanillin alcohol (6), vanillic acid (7) dehydrodiconiferyl alcohol 

(11), d,l-pinoresinol (9) and d,l-epipinoresinol (10) were separated by PTLC and 

identified by NMA [92]. 

Steam explosion (230°C, 16 min) of guaiacylglycerol-~-guaiacyl ether formed 

mainly coniferyl alcohol and guaiacol, but products of 120°C/4 hour acidolysis of 
this compound (1) were mainly composed of ~-oxyconiferyl alcohol (14), which 
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was separable into keto and enol types by acetylation, 1-propanone (16), 2-

propanone (15), guaiacyl acetone (18), vanilloyl methyl ketone (17) and 

guaiacol (3), as it shows Figure 1.3. Coniferyl alcohol (2), dehydrodiconiferyl 

alcohol (11) and pinoresinol (9,10) which are the main products resulting from a 

steam explosion were hardly detected in the acidolysis of product (1). Thus, the 

mechanism of lignin degradation accompanying a steam explosion is entirely 

different from acidolysis. Tanahashi et al. [92] proposed that by steam 

explosion, lignin is cleaved mainly homolytically to produce cinnamylalcohol 
radicals which couple to give CJ3-C~ or C~-C5 linkages. Disproportionation of 

the radical produces cinnamyl alcohol and cinnamyl aldehyde and cinnamyl­

alcohol radicals also can be reduced by sugars to give cinnamyl alcohol. 

Based on their further research, Tanahashi et al. [91, 92, 119] proposed a 

possible mechanism of lignin degradation by steam explosion, as shown in 

Figure 1.4. Even if they slightly misrepresented the ionization of water [122] 

under steaming conditions as of 10-7 (which is about 107 times greater than 
under normal conditions), it is true that hydroxyl groups or ether linkage of the ex-

position of lignin side-chains could be easily protonated and converted to the 
quinone methide structures (21). Thus, a ~-O-4 ether linkage can be 

homolytically degraded to produce coniferyl alcohol and sinapylalcohol radicals 

(22,22'). These radicals then could react as described in Figure 1.4. 
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1.3.1 CELLULOSE AND HEMICELLULOSES 

Several studies [93, 120, 123 to 128] revealed what happens to cellulose , its 

derivatives and to hemicelluloses at elevated temperatures. Similarly, to the 

case of lignin, the temperatures up to 200°C are below the glass transition 

temperature of dry cellulose. However, Atalla and Ellis [124] states that in the 

presence of polar media, Tg is depressed and molecular mobility is sufficient to 

allow structural reorganization. 

ln recent Japanese studies of explosion pulping [91, 93, 120] it has been shown 

that the fastest reaction by far is the hemicellulose hydrolysis. This is not 

surprising, since hemicelluloses are the most reactive wood component. In the 

case of white birch, hemicelluloses in wood were easily hydrolyzed (mostly into 

oligosaccharides) and converted into almost soluble materials by only 1 minute 

steam treatment at 20 atm. By increasing the severity to 28 atm (about 230°C) 

and 8 minutes, more th an a half of hemicelluloses can be converted into 

monosaccharides. As Table 2.1 shows, in a 2 minute steaming at 28 atm, the 

cellulose in the exploded wood was hardly degraded to glucose (only 4.9% of ail 

monosaccharides) [91]. 

TABLE 1.1 Composition of monosacharides in water soluble fraction of 

steam-exploded white birch wood [91] 
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Nuclear magnetic resonance (NMR), X-ray diffractometry and Transmission 

electron microscopy (TEM) studies revealed other interesting physical and 

chemical changes in exploded wood cellulose composition: 

- firstly, the micelle width (micelles are microcrystalline regions in the cellulose 

which are perfectly ordered in ail three directions in space) of exploded wood 

was more than twice that of original material (increase from 25 to 52 À) [93]. 

These findings (Tab 2.2) correspond weil with those of Taylor et al. [129] 

discussing the influence of high seve rit y cooking on aspen, spruce and straw. 

Similar increase was also found in preceding research at the UQTR (Ahmed 

at al.) [65]. Very comparable micelle width can be observed and confirmed by 

TEM [93]. 

- secondly, exploded wood has a significant increase in cellulose crystallinity 

(Table 2.2). For both hardwoods and softwoods, the NMR crystallinity can be 

calculated by measuring each crystalline and non-crystalline area of carbons 

C4 and C6. In addition, this method can discern two different crystalline forms 

of native cellulose: a cotton-ramie type (cellulose la) and a bacteria-valonia 

type (cellulose lb) [128]. Even if wood cellulose cannot be assigned to type la 

or lb, from a comparison of the peak width of C1, C4 and C6 peaks in the 

crystalline component spectra of the wood with those of valonia and cotton 

cellulose, the crystal li ne form of intact wood cellulose would be identical with 

cellulose lb rather than la. However, the spectra of the crystalline component 

showed that the crystalline form clearly changed after the explosion. Horii et 

al. [128] showed the transformation of the cellulose crystalline form by a high­

pressure-saturated-steam treatment at a high temperature by NMR. The 

crystalline form, type lb of valonia and bacteria cellulose, was transformed by 

increasing the steam temperature to cellulose la' which is almost identical to 

cellulose la. 4 minutes of steaming is enough for complete transformation of 

the crystalline form of wood cellulose to cellulose la. Thus the crystalline form 

of original wood cellulose was considered to be of a less-ordered orientation 

and was transformed to cellulose la' by increasing the order of orientation and 

crystallinity by the steam explosion. 
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TABLE 1.2 Crystallinity evaluation of various Iignocellulosic steam-

exploded samples [93] 

Crystallimty 
[%} 

Microtlbnl 

SAMPLE x-ray l;jC-NMR Wi~th Length 

Cr.-I 
[A] [A] Crystalline 

C-4 C-6 X-ray TEM SEM form 
(002) 

White birch· 
original 51 43 58 25 32 00 ?(Ib) 

28 atm /1 min ~4 - - 42 ~3 - -
2 min 67 - - 44 59 - -
4min 70 66 69 51 58 1900 la 
8 min 70 - - 54 48 2000 -

16 min 67 68 64 52 50 2000 -
Jaoanese larch· 

original 50 - - 24 - - -
28 atm /1 min 65 - - 42 - - -

2 min 68 - - 41 - - -
4min 69 - - 45 - - -
8min 69 - - 44 - - -

16 min 65 - - 43 - - -
1 Jaoanese cvoress: 

original 48 51 46 - - - ?(Ib) 
28 kg/cm2 4 min 63 62 59 - - - la 

t-ilter oaoer: 
original 88 75 67 60 - 00 la 

28 kg/cm2 16 min 89 83"" 74"" 67 80 1000 la 
Cottonw

• 

original 77 72 70 47 - 00 la 
49 kg/cm2 30 min 8_~_"" 70"" 61"" 62 76 1200 la 

ValoniaW

• 

original 90 87 90 143 - - lb 
28 kg/cm2 30 min* 90"" 89"" - - - - la+IQ 
49 kg/cm2 30 min* 9bWW 90WW 99wW 108 140 1400 la 

* . These data were taken partially from [128] and the reaction conditions 

were only steaming without explosion 

**. These data were observed on the sample after washing it with water 
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Micelle width and crystallinity values [91, 93] were compared to samples 

prepared with a slow release of steam pressure. Results indicate that the 

increases of micelle width and cellulose crystallinity were caused only by the 

high temperature and steam pressure independently of the explosion. 

The increase of microfibril (microfibril is an agglomerate of cellulose molecules 

in a fiber) or micelle width could be explained as follows: 

- rearrangement or reorientation of cellulose molecules inside and near the 

crystalline region of microfibrils by relaxation caused by high temperature and 

pressure, and/or by 

- removal of other components such as hemicelluloses and lignin, and 

- crystalline fusion with adjacent microfibrils by removal of hemicelluloses and 

lignin 

Steam ionization (into H30+ and OH- ions) increases at high temperatures and 

pressures helps weil this process. lonized steam reacts with polysaccharides 

and hydrolyses them to smaller molecular-weight sugars. In addition, acetic acid 

formed from the acetyl groups of hemicelluloses, and levulinic and formic acids 

partially formed by degradation of the hemicelluloses, catalyze the hydrolysis of 

carbohydrates [91, 93, 120]. Lignin degradation (mainly through homolytic 

cleavage) gives dimers, cinnamyl alcohol and aldehydes [73, 92, 119, 120]. By 

these reactions the wood constituents can be partly degraded and become 

mobile. The inner stress in the crystalline region of cellulose is loosened and in 

such a condition, the crystallinity of wood cellulose could be increased by 

rearrangement and reorientation of the cellulose molecules of the 

paracrystalline regions during steaming. 

On the other hand, in relatively pure cellulose mate rials such as bleached kraft 

pulp or filter paper, almost constant crystallinity was observed before and after 

steam explosions [93, 120]. This is ascribed to the fact that original materials do 

not contain hemicelluloses which affect the rearrangement of paracrystalline 

regions. The fusion of microfibrils to become greater fibrils observed by TEM 

can be ascribed to the fact that lignin in inter-fibril spaces becomes soluble or 
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mobile by heating and is removed. The microfibril width has a maximum peak at 

certain steaming time (different for every temperature) and further steaming 

causes a decrease of the crystalline width of microfibrils by a graduai hydrolysis 

of the cellulose at the surface of the crystal lite. 

These considerations suggest three stages in the reaction of cellulose during 

steam explosion: 

- ln the first stage of steaming, hemicelluloses and paracrystalline cellulose are 

partially hydrolyzed and the inner stress in the crystalline regions of the 

cellulose is loosened. Then paracrystalline cellulose is relocated to the 

crystalline region and the width of cellulose microfibrils increases. 

- ln the second stage, microfibrils are cut at some nodes of the cellulose 

crystal lite to give microcrystalline cellulose and the length of the microfibrils 

decreases to 1 000 - 2000À. 

- ln the third stage, the surfaces of cellulose crystallite are gradually hydrolyzed 

Then the microfibril width and cellulose crystallinity decrease. 

ln addition to these reactions of cellulose during steaming, transformation from 

cellulose lb or la to la' of cellulose crystalline form is accomplished. 

The changes in cellulose structure and its importance to mechanical and 

chemical behavior were further examined and mathematically quantified by 

Sukhov et al. [130]. In his research, they used recently developed non­

destructive analytical methods, such as advanced laser techniques facilitated by 

computers. Fourier transform infrared (FTIR) spectroscopy and Raman 

spectroscopy revealed twice as many bands as before. FTIR spectroscopy of 

acetone-substituted samples and Raman spectroscopy of deuterium-substituted 

samples enabled not only to discern the structural differences between both 

native cellulose (C-I) and mercerized cellulose (C-II), but also their ordered and 

disordered forms. 

ln the case of high severity pulping, there are no conditions for mercerized 

cellulose formation (in most cases, work was carried out without NaOH which is 
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necessary for the mercerisation process) and C-II has not been confirmed by 

any other analysis (X-ray diffractometry, for example would show a clear C-II 

peak different from other cellulose forms). However, the hemicelluloses give 

similar FTIR/Aaman spectra as cellulose C-II and it would be very helpful to use 

this approach in high seve rit y pulps evaluation. 

Valov et al. [131] developed an algorithm for a quantitative evaluation of the 

contents of these four components: C-I ordered,C-1 disordered, C-II ordered and 

C-II disordered. A special computer program was developed for automatic 

interpretation of lA spectra. Investigation of the differences between cellulose 

types C-I and C-II [130] showed fundamentally different characters of 

intermolecular interaction. The chain packing energy in an elementary cell of 

cellulose C-II is represented by Van der Waals interactions [126]. Therefore C-II 

hydroxyls are considered to be involved mostly in intramolecular hydrogen 

bonds, and interchain interactions are likely to be limited by weaker bonds of 

Van der Waals type. On the other hand, the hydroxyl spectra of cellulose C-I are 

intensive in both inter and intremolecular orientations. This fact shows that there 

is a developed system of intermolecular and intramolecular hydrogen bonds 

which is responsible for the strong interchain interactions in native celluloses. 

When the C-II type is obtained, the intermolecular hydrogen bonds are 

destroyed, macromolecule units are separated and their configuration is defined 

by intramolecular forces. 

The differences in the character of interchain interactions in C-I and C-II are 

apparent at macromolecule and fibril levels. Naturally, the different ways by 

which the microfibrils and fibrils are formed in C-I and C-II should affect the 

properties of individual cellulose fibers. To prove this hypothesis, Sukhov et al. 

[130] compared paper formation properties of purified fibers of cotton, native 

and mercerized celluloses. Conventionally prepared handsheets made of 

cellulose C-II appeared to be heterogeneous compared to those made of C-1. In 

the comparison of maximum sample break forces, the tensile strength of 

handsheets made of native cellulose was found to be more than twice as large 

as that of handsheets made of mercerized cellulose. For the purpose of high 

seve rit y pulping, we should thus try to preserve the native form of cellulose l, 

which more resembles a kraft pulp cellulose and shows better bonding potential 

and physical strength compared to mercerized cellulose. 
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1 nfrared , Fourier transform infrared and Raman spectroscopies, especially after 

recent laser technology and computer implementation were improved and 

successfully applied in lignocellulosic research by several other authors [39, 40, 

52,58,64,67,132 to 143,151] 

Among other methods helping to understand the influence of high severity 

cooking conditions on the properties of resulting pulps, a mention should be 

made of the nuclear magnetic resonance spectroscopy [58, 91, 93, 120, 128, 

129, 143 to 149]. Since wood and pulp are not normally soluble (in water or 

NMR solvents) and the main components have very different solvents and their 

partial or total dissolution is accompanied by drastic chemical modifications, 

only progress in solid state NMR enabled research in this area. High resolution 

solid state 13C NMR can, for example, differentiate the signais from ordered 

(crystalline) and disordered (amorphous) cellulose regions [144]. It has been 

shown that the intensity of 89 ppm line increases while that of a 84 ppm line 

considerably decreases as a result of an increase in cellulose crystallinity. As a 

result, the NMR factor of crystallinity can be determined as the portion of 89 

ppm line to the total intensity of C-4 carbon signais (at 89 and 84 ppm) in the 

simulated spectra. 

Hua et al. [145] and Focher et al. [67] offered more detail characterization. From 

their 13C NMR spectra comparison of aspen wood, industrially prepared high 

severity and conventional pulps in the Figure 1.5, they reached these 

conclusions: 

Wood spectrum is dominated by cellulose and hemicellulose resonance signais. 

The peak at 106 ppm is the resonance of C-1 in polysaccharides. Peaks at 84 

and 89 ppm are the resonances of C-4. The apparent doublet in the 70-80 ppm 

region is assigned to the C-2, C-3 and C-5 carbons of cellulose. The signal at 65 

ppm is due to C-6 cellulose. The signal at 21 ppm is due to acetyl groups in 

hemicellulose. The presence of hemicellulose is also shown by a background of 

50 to 90 ppm (C-2, C-3, C-4, C-5 and C-6). The signais from lignin are located 

between 160 and 110 ppm. The signais are due to the aromatic ring carbons of 

lignin. The intensity between 160 and 143 ppm is specifically due to oxygen-
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substituted aromatic ring carbons (C-3, C-4 and C-5). The peak at 56 ppm 

corresponds to the methoxyl groups of lignin. 

o 
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FIGURE 1.5: CP-MAS 13C NMR spectra for: (A) untreated wood; (8) 

Explosion pulp 8% Na2S03; (C) Explosion pulp 8% Na2S03 + 

0.5% NaOH; (0) CMP 8% Na2S03 + 1% NaOH; (E) CTMP 8% 

Na2S03 + 0.5% NaOH and (F) CTMP 5% Na2S03 + 5% NaOH 

[150] 

ft 
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Explosion pulp has a less intensive signal at 21 ppm, which indicates a removal 

of acetyl groups from xylan. This observation suggests that these groups were 

dissolved in the cooking solution under high temperature. A small reduction of 

peak intensity at 56 ppm may imply sorne structural changes in lignin. Another 

proof that the Iignin was modified rather th an removed is in the shift of the 150 

ppm line to 154 ppm. These considerations may explain why explosion pulp 

could have high yield. Lignin modifications suggested by Hua et al. [145] are in 

the conversion of aromatic Iignin units into aliphatic chains due to aromatic ring 

opening, in partial breaking of the Iignol network structures, in the formation of 

sidechain structures of the ketone type and other reactions. A considerable drop 

of the 84/89-ppm signal ratio after a steam explosion treatment indicates a 

dissolution of hemicellulose (C-4 of 4-0Me glucuronic residue) and an increase 

in cellulose crystallinity. The loss of hemicellulose and the increase in cellulose 

crystallinity are confirmed by the decrease of the high-shielding shoulder on the 

peak at 65 ppm, since this shoulder is due to C-6 amorphous cellulose and C-5 

of xylan for aspen wood. 

ln comparison with conventional processes [67, 145], the CMP pulp showed 

lower Iignin content, corresponding to its lower yield. Also, a higher 84/89 ppm 

ratio suggests higher hemicellulose content and lower crystallinity in the CMP 

case. As for CTMP, their spectra show the least changes when compared to the 

untreated wood sample. This is quite understandable, since the CTMP process 

is carried out under the lowest tempe rature and generally milder conditions. 

Electron microscopy (both SEM and TEM) is also very helpful. Hua [150] found 

that exploded fibers exhibited higher fiber conformability th an CMP or CTMP. 

There was more contact between SEP fibers, consequently leaving less void in 

the pulp pad. Exploded fibers were weil separated, long and flexible. Fiber 

cutting was not common. These properties in combination with higher average 

fiber length should provide SEP paper sheet with higher density and physical 

strength, low porosity and smooth surface. Fiber cells were flattened, collapsed 

and somewhat shrunk and wrinkled. CMP and CTMP micrographs showed 

more stiffness and inflexibility in the network with more shives, broken fibers and 

more cell fragments from the fiber wall destruction. 
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After high seve rit y treatment, Focher et al. [67] observed weil separated fibers 

exposing sorne areas of the outer cell wall portions (middle lamella), as weil as 

inner layers (8-1, 8-2). This could indicate that the separation occurs at the level 

of compound middle lame lia. No fibrillation was observed. The presence of 

NaOH during high severity treatment increased the exposure of inner layers, 

probably through higher fibre swelling. As lignin in fines was lower, it was 

suggested that the middle lame lia peeling occurred with the outer layer of the 

secondary wall. This could lead to higher polysaccharide surface concentration 

which is very important for fiber bonding and for sheet strength improvement. 
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1.4 OBJECTIVES OF THIS WORK 

Summarizing the theoretical cosiderations, it can be concluded that the high 

seve rit y cooking conditions provoked certain distinct physical and chemical 

changes in wood material. In the present work, investigating efforts will be 

devoted to improve current knowledge and understanding of the influence of 

high temperature and high pressure on wood and fibers, hopefully leading to mill 

exploitation by the papermaking industry. 

The main objectives of this work are: 

A: establish a correlation between cooking conditions (temperature, time, 

pressure) and the physicochemical fiber changes due to vapor phase 

cooking 

Justification: It is believed that the most important process variables are 

the cooking parameters. High seve rit y cooking conditions lead to physical 

physicochemical and chemical changes such as additional permanent 
lignin softening, increase in the ordered cellulose 1 content, easier 

defibration, preservation of higher fiber length, higher quality fiber surface, 

etc. Confirmation of this hypothesis could explain superior performance of 

explosion pulps. As far as the bibliographical research is concerned, lot of 

these influences were not studied weil enough or have not been quantified. 

B: establish a correlation between fiber changes and resulting mechanical 
and optical properties 

Justification: Statistical methods for the correlation evaluation were 

planned to be used as confirmed by earlier research. The experimental 

design and resulting data should help understanding what happens (at 

various levels) with the fibers not only around process optimum 

parameters, but on a much larger scale. Based on this analysis, the most 

important parameters and their influence on the final product could be 

determined and evaluated. 
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C: establish the kinetics of ionic content creation and its influence on paper 

properties 

Justification: For mechanical pulps, a review of the literature showed the 

importance of ionic content (sulphonic and carboxylic) up to 150°C. At 

temperatures around 200°C, the influence of the ionic content might 
become even more important to explain from chemical and mathematical 

points of view. 

0: determine the optimum cooking conditions in order to obtain required 

paper properties 

Justification: 

points. 

Process optimization is a logical outcome of the preceding 

ln the time of project preparation, lot of preliminary work has already been done: 

i.e. the basics of the process, parameters such as chemical requirements, 

optimum cooking conditions were estimated and various wood species were 

used as weil. However, none of these studies had shown clearly what actually 

happens to the fibers, and how are their surfaces and bonding ability altered, 

and which are the most critical parameters to be further studied. To answer 

these questions, different analytical methods were used: surface analysis by the 

electron spectroscopy for chemical analysis (ESCA) and Fourier transform 

infrared spectroscopy (FTIR), hydrophility by the water retention value (WRV) 

and light-scattering coefficient (LSC), ionic evaluations and their differences on 

the surface and in bulk (ESCA/conductometric titrations) and on chemical 

changes on the cellulose and lignin (X-ray diffraction and FTIR/Raman 

spectroscopy) due to cooking conditions. 

The process optimization carried out at the UQTR resulted in successful 
laboratory trials leading to superior pulp in comparison to conventional ultra-high 
yield pulping methods. The questions were: can we reach further improvement 

and how can we mathematically and statistically evaluate the process? What 

are the optimum pulping conditions, can they be mathematically evaluated and 

can cooking conditions for required paper properties be calculated? 
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According with the objectives previously stated, the purpose of my work is to 

understand and scientifically explain the principles of high seve rit y pulping, 

clarify the differences between this and other ultra-high yield processes and to 

justify the original hypotheses. The experimental design covers whole region of 

high severity pulping and the analyses should be sufficient for a complete and 
objective fundamental process characterization. 

The work will be presented as follows: in the chapter 2, there will be a 

description of the experimental plan and ail the experimental procedures 

including pulp preparation, quality evaluation and physicochemical methods to 

evaluate various pulp and paper properties. Chapter 3 will present obtained 

results and the discussion of our findings. Chapter 4 will deal with the 

mathematical treatment of the results and the chapter 5 will bring the general 

conclusion. 



2. EXPERIMENTAL 

2.1 EXPERIMENTAL CONSIDERATIONS 

ln comparison to conventional ultra-high yield pulping processes, the main 

benefits of high seve rit y pulping seems to be in property improvement (higher 

mechanical parameters) and in refining energy reduction. Kokta (inventor of the 

process that will be used in this work) as weil as several other authors (in 

cooperation or independently) from around the world claim that explosion 

pulping can lead to pulp and/or paper with higher mechanical strength [29, 31, 

32, 34, 35, 37, 40 to 44, 49, 50, 52, 54, 55, 57 to 59, 61, 62, 64, 65, 85, 87 to 

89], lower refining energy [29,31,32,34,35,37,40 to 44, 49, 50, 52, 54, 55, 57 

to 59, 61, 62, 64, 65, 85, 87, 89, 104], longer average fiber length [31, 32, 34, 

35, 37, 40, 42, 43, 50, 54, 55, 58, 61, 62, 65, 85, 89, 104] and higher wet web 

properties [35]. These experiments were carried out either in laboratory 

conditions [12, 29, 31, 34, 36 to 38, 58, 61, 66, 81, 87] or in semi-industrial or 

industrial conditions [11, 14, 16, 31, 32, 36 to 38, 40, 58, 61, 66, 81, 87]. 

Explosion pulp release at the end of the cooking process was compared to slow 

pulp release [31,81, 88] and several other analyses were carried out in order to 

characterize explosion pulps and to explain their superior behaviour. 

On the other hand, other authors claimed that they did not observe any fiber 

separation [46, 47, 82, 86], that the explosion pulps cannot be prepared at ultra­

high yield [47, 82, 86], that the properties of explosion pulps were worse or 

equal to conventional processes [47, 70, 82, 87) and that the refining energy 

was higher for explosion pulps [46, 47, 82,86]. 
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An independent research study by the Pulp and Paper research Institute of 

Canada (Paprican) [33, 45] was undertaken to clear these controversies. 

According to this pilot plant study results, high severity pulping can produce a 

good quality pulp, even if the results did not show refining energy savings or 

superior paper properties compared to CMP and CTMP. It has been stated that 

explosion pulping produced more uniform pulp with less rejects and shives and 

would require smaller investment capital. 

Taylor et al. [59] explained that some the Paprican study conclusions [45] might 

have been based on incorrectly considered chemical charge. He states that the 

dewatering zone of the Stake Tech. equipment for high severity pulping 

squeezes about 50% of the impregnation liquor out of the system prior to 
steaming and cooking which was not considered in Paprican evaluation [45] . 

Thus the chemical charges considered by Paprican were in fact 200% of 

chemicals actually used in explosion pulping, which was confirmed by detail 

chemical analyses of the chips and the pressates [59]. Based on the 

recalculation of Paprican results, Kokta et al. showed [44] that the explosion 

pulping process does save refining energy and does produce mechanica"y 

stronger pulp. 
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2.2 EXPERIMENTAL CONDITIONS 

Having considered the above mentioned information it was decided to 

undertake process evaluation and optimization using the following approach: 

2.2.1 WOOD SPECIES 

As described in the introduction (chapter 1.1), the steam explosion pulping 

process was successfully applied to both softwoods and hardwoods. In our 

work, trembling aspen wood (Populus tremuloides, Michx.) was selected. This 

choice was based on several reasons: firstly, aspen is one of the most widely 

distributed hardwood species in North America. In Quebec only, Deilgat [153] 

estimated 50 million cubic meters of aspen. Secondly, aspen in the beginning of 

our study was a very underused species in high yield pulping. Lower mechanical 

properties resulting from the TMP, CTMP and CMP processes prevent aspen 

from a larger scale industrial use. This is due mainly to its short fibers. Kraft 

pulping is thus the most common way of chemical treatment of aspen wood. 

From the morphological point of view, aspen is an excellent species for 

processes with chemical charges. It has low density, lots of large vessels (3 

times more in comparison with white birch) and thin fiber walls which much 

helps the impregnation process. Fibers are very flexible, pliable and easy to 

flatten. From the chemical point of view, over 80% of the wood mass is 

represented by holocellulose [154]. Aspen contains more than 50% of cellulose 

and only about 18% of lignin, which facilitates swelling and chemical treatment 

in pulping process. 

Other advantages of selecting aspen are the high initial wood brightness and 

opacity enabling the production of UHY pulp with little or no bleaching. 

ln the present trials, freshly cut aspen trees from Quebec region were debarked 

and chipped at la Station Forestière Duchesnay (Que bec). The chips were 

screened at the Pulp and Paper Research Center at the Université du Québec à 

Trois-Rivières. The average chip size corresponded to the industrial conditions 

and the mean chip dimensions were 31 x 15 x 5 mm. 
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2.2.2 IMPREGNATION 

Several works concerning chip impregnation were carried out at the UOTR. 

Based on their summarization in [36], we have chosen these conditions: 

ln the early stages of this work, an 8% Na2S03 impregnation solution was 

mainly used. This has been reported [36] as the effective amnount for the 

laboratory trials. As the process evolved, gained experience from other 

researchers' results [39] led to the selection of Na2S03l'NaHC03 system as the 

basis for further process enhancement. As a reference, no chemical 

impregnation (water explosion pulps, refiner mechanical pulps) and a 

Na2S03l'NaOH system (in the very early stages) were used. 

Impregnation for every cooking batch (75g calculated to oven dry wood) was 

carried out individually. Chip humidity prior to the impregnation was about 86 to 

93%. Chips were placed in plastic bags and blended with the impregnation 

solution. Usual liquor-to-wood ratio was 6:1. Impregnation time was 24 hours 

and impregnation temperature was 60°C. Exact impregnation concentrations will 

be described in detail with every pulping condition. 

2.2.3 COOKING 

Ali pulps were produced at the UOTR in the laboratory steam explosion reactor 

(Figure 1.1). For every pulping condition, a series of 15 cooks was performed. 

This produced about 1 kg of pulp for every pulping condition, which was 

sufficient for ail planned analyses. 

2.2.3.1 FIRST EXPERIMENTAL SERIES 

According to the objectives, in the first series of experiments, efforts were 

devoted to answer some important questions concerning the new approach of 

high severity pulping for papermaking. Some of the most significant ones were: 

is it possible to prepare both conventional and high seve rit y pulps at the same 

chemical charge and same yield levels? If so, what would be the difference in 
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specific refining energy requirements, in pulp and paper properties, in the ionic 

content development, in chemical composition, in surface characteristics .. . ? It 

was considered important that to keep the two very important parameters 

(chemical charge and yield) constant, to be able to have a good basis of 

comparison between these otherwise very different processes. 

From this point of view, a series of explosion pulps (Table 2.1) at usual 

conditions (190°C/2 min; 195°C/1.5 min; 200°C/1 min) were prepared. The 

resulting pulps showed a yield very close to 90%. In order to have the same 

CMP cooking yield, it was necessary to cook somewhat longer than in usual 

industrial conditions. In the CTMP case, the treatment being much milder, a 

90% yield was not obtained even after a one hour cooking. That's why another 

explosion pulp, cooked for only 80 seconds at 190°C with a yield comparable to 

that of CTMP was prepared. 

To find out the influence of the explosion alone, three additional explosion pulps 

were subjected to higher pressure of 25 atm (under nitrogen) immediately after 

the cook and then discharged from the digester. Nitrogen was chosen as the 

pressurizing agent because of its inert character. 

As a chemical basis, an 8% Na2S03 solution at the liquor-to-wood ratio 6:1 was 

used. Because of same chemical charge during the impregnation, the chemical 

uptake was the same for ail pulps. Two pulps - water explosion and refiner 

mechanical pulp - were processed without any added chemicals. 

To compare with industrial processes using Na2S03/NaOH impregnation, two 

pulps using this impregnation system (Table 2.2) were also prepared . As an 

alternative to the NaOH [39] , one pulp sam pie was prepared with the 

Na2S03;NaHC03 impregnation. 

To determine effects of bleaching response, ail the above pulps were bleached 

in one stage peroxide system with bleaching conditions [156] shown in the 

Table 2.3. 



TABLE 2.1 Pulping conditions in the first experimental series 

Pulp 

TABLE 2.2: Pulping conditions in the additional experiment 

Impregnation Cook 

TRIAL Na2S03 NaOH NaHC03 Temperature Time 

[%] [%] [%] [OC] jmil}l 

1 8 0.5 0 190 4 

2 16 1 0 190 4 

3 8 0 1 190 2 
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Iquor­
ta-wood 

ratio 

Liquor-to-

wood ratio 

6:1 

3:1 

6:1 
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TABLE 2.3: Bleaching conditions in the first experimental series 

H202 4% 

NaOH 2% 

Na2SiO~ 4% 

MgS04 0.05% 

OTPA 0.5% 

Consistency 20% 

Temperature 80°C 

Time 180 min 

2.2.3.2 SECOND EXPERIMENTAL SERIES 

Encouraged by the results from the tirst experimental series and to answer other 

objectives questions, more in depth research was undertaken to better 

understand the action of explosion on the fibres. 

ln the second series of experiments, the work was carried out with a new 

impregnation solution system of Na2S03/NaHC03. For ail cases, the Na2S03 

concentration was kept at 8% and the NaHC03 addition was 1 %. For ail 

conditions, the liquor-to-wood ratio was 6:1 . Two temperature levels of 190 and 

195°C were chosen. In the case of nitrogen explosion, pressures prior to the 

explosion increased from 11.9/13.3 atm (corresponding to saturated steam 

pressure at 190/195°C) to 25 atm (Table 2.4). 



37 
TABLE 2.4: Pulping conditions in the second experimental series 

TRIAL 

2.2.3.3 THIRD EXPERIMENTAL SERIES 

The conditions of the third trial series are Iisted in Table 2.5. The goal of this 

series was not only to work around the suggested optimum [36] (190°C/2 

minutes), but also to stretch seve rit y of treatment in both directions - to underdo 

and to exaggerate cooking conditions, keeping in mind that these extreme 

conditions might not lead to excellent quality pulps, but to generate valuable 

information about chemical changes during high seve rit y cooking as weil as 

good reference points for mathematical processing and process optimization. 

The impregnation system was the same as in the second series - 8% Na2S03 + 

1 % NaHC03 with the Iiquor-to-wood ratio 6:1 . As the purpose of this work was 

not to enhance the impregnation, the best system known at that time was used. 

Three reference pulps (CMP, CTMP and one explosion pulp) were prepared 

with Na2S03 only and one explosion pulp (water explosion) was prepared 

chemically free. 
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TABLE 2.5: Pulping conditions in the third experimental series 

Impregnation Cook 
TRIAL PULP Nr2~f03 Nr~C03 Temperature Tlme Pressure 

% % [OC] [min] [atm] 
1 CXJ-' 8 1 180 1 9.9 
2 EXP 8 1 180 2 9.9 
3 EXP 8 1 180 4 9.9 
4 EXP 8 1 190 1 11.9 
:, CXJ-' ts 1 190 2 11.9 
6 I::XJ-' 8 1 190 4 11.9 
7 EXP 8 1 200 1 15.5 
ts _CXJ-' ts 1 200 2 15.5 
9 EXP 8 1 200 4 15.5 
10 N-EXP 8 1 180 1 9.9/25 
11 N-cXJ-' ts 1 190 2 11.9/25 
12 N-EXP 8 1 200 4 15.5/25 
13 EXP 8 0 190 2 11.9 
14 W-EXP 0 0 190 2 11.9 
15 GIMJ-' ts 0 12ts 10 1.ts 
16 CMP 8 0 150 30 4.0 

For cooking conditions, the temperature, time and pressure were the 

parameters to be studied. For good cooking severity evaluation, the experiment 

was planned at three complete levels for two variables (temperature and time) 

and for severallevels for third variable (pressure). Three temperatures at levels 

of 180°C, 190°C and 200°C were chosen. Cooking times were of 1, 2 and 4 

minutes. These conditions were selected to see the changes at doubling the 

reaction effect, which can be achieved not only by doubling the reaction time but 

also by increasing the reaction temperature by 10°C (Arhenius' law). This series 

involves 12 high severity pulps which should cover the majority of the explosion 

pulping interval. Together with four reference pulps, the experimental design is 

charted in Figure 2.1. 
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FIGURE 2.1: Experimental design in the third pulping series 
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2.3 PULP EVALUATION AND TESTING 

2.3.1 PULP YIELD 

Cooked pulp was washed with 11 of water, refined during 90 seconds in a 

laboratory blender, washed again with 11 of water and dried at 105°C. Yield was 

calculated as the oven dry pulp weight compared to oven dry chip weight. 

2.3.2 REFINING AND REFINING ENERGY 

8ased on the information presented in chapter 1.2.4, refining was done using a 

domestic blender Osterizer 8-9614 at a 2% consistency Javel. The resulting pulp 

was then washed and kept at 5°C for further evaluations. The refining energy 

was measured using a EW-604 wattmeter. Relative specifie refining energy was 

calculated by substracting the blending energy of fully beaten pulp from the total 

energy needed to refine and blend the fiber suspension to given freeness levaI. 

Each pulp was refined to at least three different freeness levels. The target 

values were 100, 300 and 500 ml CSF. If the lowest freeness value was 

between 101 and 110 ml CSF, we extrapolated the result to the 100 ml CSF 

Javel. If the lowest freeness value was over 110 ml CSF, we carried out another 

refining to get to 100 ml CSF or lower. 

Most of the evaluations were carried out at 100 and at 200 ml CSF. The 

tendencies were very similar and since the most usual range of UHY pulp 

utilization is between 50 and 200 ml CSF, 100 ml CSF has been chosen to be 

presented in this work. 

2.3.3 LATENCY REMOVAL AND PULP DISINTEGRATION 

As a result of refining and subsequent pulp cooling, pulp fibers can be curled 

and twisted. This effect is called pulp latency and may cause inconsistencies in 

the freeness and paper properties. Therefore the pulp latency was removed 
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prior to freeness tests, sheet forming and any other analysis. Latency removal 

was carried out on never dried pulp by disintegration in hot water according to 

the CPPA standard C.1 OP. 

2.3.4 FREENESS 

The Canadian standard freeness (CSF) is a measure of the drainage rate at 

which a dilute suspension of pulp may be dewatered. It is a useful index of the 

am ou nt of mechanical treatment given to the pulp and may correlate with the 

drainage behaviour of pulp mate rial on a commercial paper machine. The CSF 

values were determined according to the CPPA standard C.1. 

2.3.5 FIBER CLASSIFICATION AND S FACTOR 

The pulps were fractionated into R14, 14/28, 28/48, 48/100, 100/200 and P200 

using a Bauer-McNett fiber clasifier according to the TAPPI standard T233 cm-

82. The abbreviation R14 means retained on a 14 mesh sieve, 14/28 (or the 

latter number alone) means fraction that passed through a 14 mesh sieve and 

retained on a 28 mesh sieve and P200 means passed through a 200 mesh 

sieve. S factor is defined as the CSF of the 48/100 fraction. 

2.3.6 WATER RETENTION VALUE 

Even if water retention value evaluation is not a specifie fiber surface test 

method, it can lead to significant conclusions. WRV values reflect the surface 

accessibility of cellulose and its ability to swell, which is another important fiber 

parameter. Sakai [166] directly associated swelling to external fibrillation (which 

can be measured as specifie surface) and Garceau [167] successfully used 

WRV measurement as an indirect measurement of specifie surface. Other 

authors [67, 71, 137] also used WRV in pulp evaluation. In our trials, we used 

Lebel's description [168] of the WRV technique. 
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From the practieal point of view, water retention value is a pereentile amount of 

water held in the pulp sample after a 12-minute long eentrifuging at 2500 rpm. 

2.3.7 IONie GROUP CONTENT 

Ionie groups (both sulfonie and earboxylie) were determined by means of 

eonductometrie titration [181] 



43 
2.4 PAPER SHEET FORMING 

Paper sheets were prepared according to the CPPA standard C.4. At least 7 

sheets were prepared for each pulp sample at each freeness value. Paper 

sheets were prepared at two different weights: 1 .2g (60 g/m2 ) for physical 

testing and 3g (150 g/m2) for physical and optical testing. 
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2.5 PHYSICAL AND OPTICAL PAPER TESTING 

Physical and optical tests were performed on prepared handsheets according to 

the CPPA standards. These are the tests carried out: 

Denslty: The density is the weight per unit volume or the apparent specifie 

gravit y and is usually reported as grams per cubic cemtimeter. Bulk is a 

reciprocal of paper density and represents the volume in cubic centimeters, 

occupied by 1 gram of paper. Both values are calculated from the oven dry 

basis weight and paper thickness (CPPA standard 0.4). 

Breaklng lenght: The tensile breaking lenght is the maximum load or weight 

that the paper specimen will support before pullinf apart. Breaking length 

expresses length of paper that will cause its own rupture (CPPA standard 

0.6H). 

Stretch: Stretch of paper is defined as the leongation per unit length at tensile 

failure (CPPA standard 0.7H). 

Burst: Bursting strength is defined as the hydrostatic pressure, required to 

produce paper rupture, when the force to the paper sheet is applied in 

perpendicular direction (CPPA standard 0.8). 

Tear: Internai tearing resistance of paper is defined as the work to tear a paper 

sheet where part of the work is represented by rupturing the paper and partly in 

bending the sample as it is being torn (CPPA standard 0.9). 

Po rosit y: Since paper sheet has a porous nature, porosity is a ratio of pores 

volume to the total sheet volume. Sheet po rosit y is evaluated by measuring its 

air permeability which is dependent on the number of pores and their distribution 

in siza, shape and orientation (TAPPI standard T547 pm-88). 

Llght-scattering coefficient (LSC): LSC is a measurement of the ability of the 

interior of the test sheet to scatter light. It depends on the unbonded fiber 

surface area (TAPPI standard T220 om-83). 
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Brightness: Absolute brightness is defined as the reflectance of blue light with 

a specified spectral distribution peaking at 457 nm compared to that of perfectly 

reflecting, perfectly diffusing surface (CPPA standard E.1). 

Opacity: Opacity is described by means of the ratio of two values of 

reflectance. This ratio is derived by dividing the reflectance of a single sheet 

over black by that of a pad of the sample, or alternatively that of a single sheet 

over white (CPPA standard E.2). 

Brlghtness reversion: This test provide an accelerated procedure for 

determining the brightness loss by an exposure to a combination of high 

humidity and high temperature (CPPA standard E.4P). 
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2.6 OTHER INSTRUMENTAL ANALYSES 

ln this section, some of the more recent evaluation methods will be mentioned. 

As these procedures are not as common as those above mentioned, more detail 

description will be given. 

2.6.1 X-RAY DIFFRACTOMETRY 

Based on the literature review of [41, 52, 58, 65, 67, 71, 93, 120, 123 to 129, 

137, 139, 143, 144, 148, 162], the X-ray diffractometry was selected as one of 

the analysis approaches. This method should result in information about 

cellulose crystallinity and crystal size. 

X-ray diffractometry is one of the three basic uses of X rays in instrumental 

analysis (the other two are the fluorescent and absorption analyses) [163] . X-ra~ 

diffractometry depends upon the wave character of X rays and the regular 

spacing of planes in a crystal. Although diffraction methods can be used for 

quantitative analysis, they are also widely used for qualitative identification of 

crystalline phases. 

ln analyzing a crystal, virtually monochromatic radiation is obtained by reflecting 

X rays from crystal planes. The relationship between the wavelength of the X­
ray beam, and the angle of diffraction e, and the distance between each set of 

atomic planes of the crystallattice, d, is given by the Bragg condition [164] : 

mÂ. = 2d.sine 

where m represents the order of the diffraction and Â. is the wavelength of the X­

ray. The geometric relations are shown in Figure 2.2. 
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For the ray diffracted by the second plane of the crystal, the distance CBD 

represents the additional distance of travel in comparison to a ray reflected from 
the surface. Angles CAB and BAD are both equal to e. Therefore, 

CB = BD = AB.sine 

and 

CBD = 2AB.sine 

where AB is the interplanar spacing d. In order to observe a beam in the 

direction of the diffracted rays, CBD must be some multiple of the wavelength of 

the X rays, so the diffracted waves will be on phase. The range of wavelengths 

usable is govemed by the d-spacings of the crystal planes and by the geometric 

limits of the rotation. 

Retlected 
X-ray beam 

Lattice -J-----...::...------'''rL---~~ 
spacing 

d 

-L-________ """-____ Crystal plane 

FIGURE 2.2: Diffraction of X-rays from a set of crystal planes. 

Every atom in the crystal scatters an X-ray beam incident upon it in ail 

directions. Because even the smallest crystal contains a very large number of 

atoms, the chance that these scattered waves would constructively interfere 

would be almost zero except for the fact that the atoms in crystals are arranged 

in a regular, repetitive manner. Atoms located exactly on the crystal planes 
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contribute maximally to the intensity of the diffracted beam. The scattering 

power of an atom for X-rays depends upon the number of electrons it 

possesses. Thus the position of the diffraction beams from a crystal depends 

only upon the size and shape of the repetitive unit of a crystal and the 

wavelength of the incident X-ray beam, whereas the intensities of the diffracted 

beams depend also upon the type of atoms in the crystal and the location of the 

atoms in the fundamental repetitive unit, the unit calI. From these 

considerations, calculation of the width of the crystal, as weil as the number of 

levels participating at the diffraction can be made. 

Another important information concerns the crystallinity index was given by 

Browning who showed [165] that the crystallinity index can be determined from 

the ratio of the intensity of diffraction to that of scattered radiation: 

Crystallinity index = (L002-Lam)/L002 

where L002 is the intensity of the diffraction from the (002) plane at 29 = 22.5° 

and Lam is the intensity of the background scatter measured at 29 = 18.0°. 

2.6.2 ESCA 

ESCA (Electron Spectroscopy for Chemical Analysis) is a technique for surface 

chemical analysis. The method is concerned with the measurement of core­

electron binding energies. A molecule or atom is bombarded with a source of 

high-energy X-rays which cause the emission from sample atoms of inner-shell 

electrons. Ali electrons whose binding energies are less than the energy of the 

exciting X-rays are ejected. The kinetic energies, Ek, of these photoelectrons 

are then measured by an energy analyser. The core-electron binding energies, 

Eb, can be th en computed via the relationship 

where hv is the energy of the exciting radiation and cp is the spectrometer work 

function, a constant for a given analyzer. 
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Although the X-ray photon may penetrate and excite photoelectrons to a depth 

of seve rai hundred nanometers, only the photoelectrons from the outermost 

layers have any chance to escape from the material environment and to be 

eventually measured. Most of ESCA measurements of solids generate useful 

information from only the outer 2.0 nm of the surface layer. 

CHEMICAL SHIFT 

The utility of ESCA for the chemist is the result of chemical shifts that are 

observed in electron binding energies. The binding energies of core electrons 

are influenced by the valence electrons and therefore by the chemical 

environment of the atom. When the atomic arrangement surrounding the atom 

ejecting a photoelectron is changed, it alters the local (quantum) charge 

environment at the atomic site. This change, in tum, reflects itself as a variation 

in the binding energy of ail the electrons of that atom. thus, not only the valence 

electrons, but also the binding energies of the core electrons experience a 

characteristic shift. Such a shift is inherent to the chemical species producing 

the results and thus provides the capability of chemical analysis. In a simple 

sense, the shifts of the photoelectron lines in an ESCA spectrum reflect an 

increase in binding energy as the oxidation state of the atom becomes more 

positive. In general, any parameter, such as oxidation state, ligand 

electronegativity, or coordination, that effects the electron density about the 

atom is expected to result in a chemical shift in electron binding energy. 

A major portion of the strength of ESCA as an analytical toollies in the fact that 

chemical shifts can be observed for every element in the periodic ch art (except 

for hydrogen and helium). Magnitudes of chemical shifts will vary from element 

to element, and in general they lie in the range 0 to 1500 eV. 

Even if the absolute quantification has not been accomplished so far, a relative 

quantification of one species to another can be made. This is based on peak 

area sensitivity factors. The number of photoelectrons per second in a specific 

spectral peak, l, can be given by: 

I=KncrÂT 



Where: 

K is a proportionality constant, 

n is the number of atoms of the element per cm3 of sample, 

cr is the photoelectric cross-section for the atomic orbital of interest, 

Â. is the inelastic mean free path of the electron, 

T is the detection efficiency for electrons emitted from the sample. 

This can be rewritten as: 

n=I/KcrÂ.T 
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The denominator in this equation can be assigned the symbol S, defined as the 

atomic sensitivity factor. If we take another element R as reference, the mean 

atomic ratio of the element X we are interested in, to the element Ris: 

From this equation, we are able to quantify the element of interest. 

For peak synthesis, which is a curve fitting technique for resolving the complex 

spectra, we used a VGS 1000 computer software. The atomic ratio on the 

surface can be estimated from corresponding peak and from the above 

equation. Using Scoffield's cross sections [171] for oxygen 01 s, carbon C1 sand 

sulfur S2p peaks, corrected for angular asymmetry, electron attenuation length 

and instrument transmission [172], the following equations can be obtained: 

OIC = 101 (2.851 le) 

SIO = 1.497 Is 1 10 

Thus: 

SIC = (S/O) 1 (O/C) = 0.525 Is 1 le 



Where: 

OIC is the atomic ratio of oxygen to carbon 

5/0 is the atomic ratio of sulfur to oxygen 

SIC is the atomic ratio of sulfur to carbon 

10 is the normalized integrated area of 015 peak 

Ic is the normalized integrated area of C1s peak 

Is is the normalized integrated area of S2p peak 
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Based on these equations, the various atomic ratios can be calculated tram 

corresponding normalized peak areas. 

2.6.3 FTIR AND RAMAN SPECTROSCOPY 

Infrared spectroscopy is one of the most commonly used instrumental 

techniques for identification and characterization of chemical structures. It is a 

technique investigating the vibrational energy levels of a molecule that are 

mostly in the range of infrared radiation. The conventional IR approach uses a 

dispersive technique in which the IR radiation passes through a narrow slit and 

grating system to Iimit the frequency range of the radiation reaching the detector 

to one resolution width. Thus, the disatvantage of this approach is its low 

sensitivity, Iimiting its use to sampling techniques in which a substantial 

proportion of the incident energy reached the reactor, and to slow events. This 

could be overcome by the combined application of interferometry and Fourier 

transform techniques with digital computers. Thendetected signal intensity is 

improved by using the Michelson type of interferometer (instead of the grating 

one). The detected signal intensity is dependent on the readiation frequency 

and the displacement of the moving mirror in the interferometer. The resulting 

interferogram contains th us information of the intensity of each frequency in the 

spectrum. This interferogram is then calculated by Fourier transformation to 

yoeld the IR spectrum. Because the FTIR process uses a laser to monitor the 

position of the moving mirror, the frequency of the measured spectrum is very 

accurate, and the risk of drift during multiple scanning is absent. Moreover, the 

computation ability is improved since the data are in digital form. This allows the 

spectrum to be mathematically treated and the most commonly used techniques 
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helping to spectra interpretation are spectral substraction, derivatization and 

deconvolution [142]. 

Raman spectra (although related to infrared absorption spectra) arise in a quite 

different manner and th us provide complementary information. Vibration spectra 

that are active in Raman may be inactive in the infrared and vice versa. 

The Raman effect arises when a beam of intense monochromatic light passes 

through a sample that contains molecules that can undergo a change in 

molecular polarizability as they vibrate [161]. The electric field produced by the 

polarized molecule oscillates at the same frequency as the passing 

electromagnetic wave, so that the molecule acts as a source sending out 

radiation of that frequency in ail directions. As the electromagnetic wave passes, 

the polarized molecule ceases to oscillate and returns to its original ground level 

in a very short time (approximately 10-12 sec). 



3. RESUL TS AND DISCUSSION 

3.1 FIRST EXPERIMENTAL SERIES 

3.1.1 PULP PREPARATION AND PULPING RESULTS 

High yield pulps and even ultra-high yield pulps (85%+) can be prepared over a 

wide range of process conditions. Based on results of previous research as 

weil as on theoretical considerations, the high temperature and pressure are 

probably the most influential factors contributing to better performance of 

explosion pulps. 

Pulping conditions, pulp and paper praperties resulted fram this experimental 

series are presented in Table 3.1 to 3.3. In most of the figures in this chapter, 

pulping temperature has been chosen as an independent variable - as a simple 

manner for better visualization of our results. In reality, pulp response is a 

complex function of multiple influences (we would need at least two or three 

parameters to explain satisfactorily different effects on individual pulp 

properties) and the mathematical treatment will be presented more in detail in 

the next chapter. 

ln this part, particular attention was focused on the influence of temperature 

and pressure. Pulping conditions were adapted to eliminate some of the 
process variables. First, pulps were produced at the same yield. Table 3.1 and 

Figure 3.1 show that pulp yield for the two CMPs and most of the explosion 

pulps (SEP) was 90%. Explosion pulps were cooked under usual conditions 

while the CMP cooking times were extended somewhat to obtain a yield of 
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90%. In the case of CTMP, conventional cooking gave a yield of 95% (Pulp 2). 

However, we managed to prepare a CTMP and an explosion pulp at 

comparable yield (about 93%) by extending the CTMP cook and shortening the 

SEP cook. 

Second, ail pulps received the same amount of chemical added, except for the 

RMP, where no chemicals were used. The chemical charge during the 

impregnation as weil as the resulting uptake was the same for ail chemically 

treated pulps. 

We do realize that the cooking conditions for the CMP and CTMP are 

somewhat different from the industrially used ones, but as we explained in the 

project description, we wanted to compare the outcome of different processes 

based on the same chemical charge and same yield. 

Figure 3.2 shows that the total ionic content was similar for most of chemically 

treated pulps. However, Figure 3.3 shows that the degree of sulfonation was 

higher in explosion pulps. 

Ionie content is one of the most important factors contributing to the pulp's 

mechanical properties [82, 182]. As shown previously [36], mechanical 

properties of explosion pulps are superior to those of other high yield pulps at 

the same ionic (sulfonic) content. Similarly, explosion pulps provide comparable 

mechanical properties at lower ionic content. This was confirmed in our study 

and is discussed later in this chapter. 



TABLE 3.1 

PUlp 
# type 

1 RMP 

2 CTMP 

3 CTMP 

4 CMP 

5 CMP 
WATER 

6 EXPLO-
SION 

7 EXP 

8 EXP 
9 EXP 
10 EXP 

11 N-EXP 
12 N-EXP 
13 N-EXP 

Pulping conditions and sorne of the characteristics of resulted 

pulps in the first experimental series 

GOOIIing lome content [mmollkg) Symbol 
Time Temp. Pressure Yleld 1%1 Sulfonie Carboxylic Total usedin 
[min] loci [atm] Value Error vaue t:rror °0 !ioures 
- - - 98.8 0.7 0.0 77 77 3.2 Il 

10 128 1.8 95.3 0.8 35 143 178 3.3 D 

60 128 1.8 93.1 1.0 39 141 180 2.9 D 

55 150 4.0 89.6 0.6 37 128 165 3.0 0 

30 160 5.2 89.9 0.6 38 141 179 4.1 0 

2.5 190 11 .9 91.3 0.6 0.0 94 94 3.6 "-

1.3 190 11.9 92.6 0.4 46 134 180 2.2 • 
2.0 190 11 .9 90.4 0.7 43 137 180 3.4 • 
1.5 195 13.6 90.1 0.3 46 134 180 3.4 • 
1.0 200 15.5 89.9 0.6 45 121 166 5.0 • 
2.0 190 11.9/25 90.0 0.5 40 140 180 4.5 • 
1.5 195 13.6/25 89.7 0.7 51 132 183 3.8 • 
1.0 200 15.5125 90.0 0.4 42 137 179 4.1 • 
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TABLE 3.2 

Pulp 

# Type CSF 
[ml] 

95 
1 RMP 305 

513 
104 

2 CTMP 280 
440 
110 

3 CTMP 295 
55 
85 

4 CMP 240 
520 
106 

5 CMP 275 
500 
75 

6 W-EXP 195 
420 
100 

7 EXP 325 
545 
98 

8 EXP 270 
500 
95 

9 EXP 180 
476 
103 

10 EXP 210 
330 
108 

11 N-EXP 245 
496 
100 

12 N-EXP 217 
520 
98 

13 N-EXP 210 
520 
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Mechanical paper properties obtained in the first experimental 
series 

parameter va ues and exper mental error ln [%] 
Breaking 

Stretch Dens~r Porosity length Tear Burst 
O<a/m3 rml/minl rkml r%1 ImNm2/g} . [kPam2/al 

Value Error Value Error rvalue Error Value Error Value Error Value Error 
211 2.3 600 3.3 1.6 2.8 1.1 4.2 3.3 2.0 0.6 6.3 
234 3.3 2480 3.2 0.8 2.6 1.0 3.6 2.3 6.3 0.3 2.3 

It was not pOssible to ::>reoare handsheets at this freeness 
378 2.9 360 3.9 3.4 2.9 1.3 4.3 4.1 3.2 1.3 3.2 
339 2.6 1150 4.0 2.7 2.6 1.2 3.6 4.0 4.4 0.9 1.9 
294 2.3 2490 2.3 1.8 3.0 0.9 3.8 4.5 5.0 0.6 2.6 
415 2.4 242 2.6 4.1 2.4 1.6 4.0 5.1 6.4 1.8 3.0 
452 3.6 1160 3.6 3.0 2.9 1.1 4.3 4.5 5.9 1.1 2.4 
284 2.2 3600 5.0 1.7 3.2 0.8 3.2 3.4 6.2 0.6 2.6 
435 1.9 90 2.9 4.9 4.1 1.5 2.9 6.3 4.4 2.2 2.3 
395 2.0 500 3.1 4.1 3.6 1.4 3.5 5.7 5.8 1.6 3.5 
314 1.8 2500 4.6 2.6 2.9 1.0 3.6 5.1 6.0 0.9 4.3 
475 2.6 90 4.4 5.9 3.5 1.9 3.6 7.1 3.9 2.2 2.3 
417 2.2 400 4.4 4.6 3.6 1.5 4.0 6.4 1.0 1.6 2.0 
370 2.2 2045 2.6 3.4 3.4 1.2 4.3 5.9 5.8 0.9 2.1 
413 2.3 80 2.4 4.6 2.0 1.7 4.6 6.2 6.3 2.0 2.9 
381 2.5 300 2.5 3.6 3.6 1.3 2.1 5.4 4.5 1.5 2.6 
335 2.0 1415 2.9 2.4 2.9 1.0 3.9 4.7 7.6 0.9 3.0 
510 2.9 50 3.6 5.9 2.1 1.8 3.1 8.2 3.6 3.0 3.5 
433 3.4 630 2.5 4.5 3.6 1.3 2.6 6.2 5.6 2.0 2.0 
381 4.0 1945 2.6 3.5 3.4 1.1 3.0 6.4 6.4 1.3 2.6 
530 2.6 30 2.4 6.4 4.3 1.9 3.3 7.5 5.7 3.1 2.7 
480 2.7 345 2.8 5.2 4.3 1.7 4.6 7.1 7.3 2.3 2.7 
422 2.9 1490 2.9 4.5 1.9 1.4 4.2 7.4 6.8 1.9 2.7 
516 2.0 40 2.9 6.7 1.6 2.0 4.3 7.7 6.6 3.2 2.5 
487 1.8 175 2.0 5.7 2.9 1.8 4.1 7.2 5.3 2.5 2.1 
395 3.9 1770 2.6 3.9 4.3 1.2 4.1 7.2 4.6 1.7 2.6 
520 1.6 75 4.0 6.5 3.5 2.0 3.5 7.4 6.4 3.1 3.2 
473 3.0 210 3.6 5.2 2.8 1.7 3.6 7.3 5.8 2.3 3.3 
438 2.5 685 2.5 4.6 3.1 1.5 3.5 7.0 5.4 1.9 1.6 
554 2.6 60 2.6 6.9 2.6 1.9 3.0 7.4 5.0 3.2 2.6 
460 2.1 200 3.2 5.6 3.0 1.7 3.4 7.6 6.3 2.6 3.3 
404 3.5 1920 2.8 4.0 3.0 1.3 1.3 7.4 4.4 1.6 3.4 
533 2.9 50 3.9 6.4 3.0 2.0 3.6 8.0 5.7 3.2 4.2 
494 3.6 235 4.0 5.6 2.4 1.7 2.6 7.5 6.1 2.4 4.1 
404 2.0 2190 2.4 4.1 4.2 1.3 3.5 8.1 5.6 1.6 3.2 
540 1.6 15 2.6 6.6 3.9 1.8 4.3 8.1 5.9 3.8 3.6 
460 3.1 200 3.5 5.8 3.4 1.5 4.4 8.1 7.1 2.8 3.4 
431 2.4 2130 4.0 4.0 4.0 3.2 4.9 6.9 3.2 1.5 2.1 



TABLE 3.3 
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Refining energy and optical paper properties obtained in the first 
experimental series 

Pulp Parameter va ues and exper mental error an [%] 
Relative 

# Type CSF 
[ml] 

specifie Brightness Brightness Brightness Opacity Light-
refining 1.2 9 sheet 3.0 9 sheet Ioss [%] scattering 
energy (60 glm2) (150 gtm2) [%] coefficient 
[MJJkg] '[%MgOr [%M"aO] [cm2/g1 

Value Error Value ErrorlValue Error Value Error Value Error Value Error 
95 12.0 4.2 64.1 1.2 65.2 1.3 0.2 - 95.2 1.3 639 2.6 

1 RMP ~30~5~~9~.6~~3~.6~~~.9~=2~.3~64~.1~~1.=5~~0.=2~_-~~9~2~.7~1~.~5~5~1~9~2~.~5~1 
513 6.3 5.6 It was not possible to repare handsheets at this freeness 
104 13.6 3.1 65.8 1.5 69.3 1.6 0.4 - 93.5 1.2 579 2.6 

2 CTMPr728~0~1~1~.4~~2~.6~6~5~.9~~1~.6~~~.6~71.~4~~0.~3~_-~~9~2~.9~1~.~2~5~2~2~2~.~6~1 
440 9.4 3.5 66.9 1.4 ~.9 1.5 0.3 - 92.6 0.3 493 2.5 
110 9.7 6.3 65.7 1.4 67.6 1.8 0.3 - 92.9 0.4 563 3.2 

3 CTMP~29~5~~7~.2~~2~.9~6~5~.6~~1~.6~6~7~.9~71.~7~~0.~4~_-~~9~1~.3~1~.~9~5~0~3.+-3~'74~1 
55 4.4 1.8 64.2 1.8 67.1 1.8 0.6 - 90.0 1.5 443 2.6 
85 9.0 3.2 57.4 1.7 58.5 1.9 0.1 - 94.8 1.2 490 2.8 

4 CMP ~24~0~~8~.0~~3~.6~6~0~.5~~0~.6~6~2~.4~~1.~4~~0.~1~_-~~9~2~.4~~1.~0+-4~777+-2~.=9~1 
520 5.5 6.2 58.5 0.5 60.9 1.5 0.2 - 92.1 1.0 428 2.7 
106 7.9 4.4 59.3 1.1 60.7 1.4 0.1 - 92.8 1.6 447 2.1 

5 CMP ~27=-=5~~5~.5-+-...;:;.5~. 0~6==0:-.:..;.5~....;..1 ~.0~6~2:..;.,.4~~1',=5~~0',,=,2~_-~~9;-;,1..:..::.7:+--=-,1.~5+-4~3-,:-7+-2~.~6~1 
500 3.0 1.6 57.9 1.0 59.6 1.7 0.2 - 91.7 0.2 421 3.2 
75 11.0 3.5 41.6 1.3 42.9 1.6 0.1 - 99.6 0.5 6~ 1.0 

6 W-EXP~19~5~~9~.9~~3~.6~4~2~.3~~1~.2~4~2~.9~71.~6~~0.~1~_-~~9~9~.1~~1.~3~6~1~5~5~.~2~1 
420 7.6 3.4 41.8 1.6 42.8 1.2 0.1 - 98.9 1.2 580 3.6 
100 4.5 3.5 61.5 1.1 63.3 1.4 0.4 - 92.5 1.2 440 3.4 

7 EXP ~32~5~~2~.6~~3~.6~6~0~.0~~1~.9~~~.0~71.~2~~0.~4~_-~~9~0~.0~~1'70+-4~2~7~2~.~6~1 
545 1.7 5.9 61.4 1.8 63.8 1.6 0.3 - 89.6 1.1 418 2.8 
98 4.0 2.9 62.0 1.7 64.0 1.5 0.5 - 89.6 1.1 400 3.2 

8 EXP ~27~0~~3~.3~~2~.6~5~9~.7~~1~.8~6~2~.2~71.~24-~0.~74-_--4~8~9~.4~0~·76~4~1~0+-3~.~1~1 
500 2.0 3.5 62.3 1.9 64.2 1.0 0.4 - 87.2 0.8 391 3.6 
95 3.7 4.6 60.2 1.7 65.1 1.3 1.0 - 88.6 2.3 399 3.2 

9 EXP ~18~0~~3~.2~~2~.6~6~0~.0~~1~.7~64~.2~~1.~0;-71.~2;-_--;~8~9~.0~2~.~1~3~9~6+-3~.~5~1 
476 1.5 2.4 60.2 1.9 64.9 1.2 1.6 - 88.3 0.5 388 2.6 
103 3.5 2.5 61.6 1.6 63.5 1.6 0.6 - 89.0 0.6 425 2.5 

10 EXP ~21~0~~3.~0~~2~.9~6~0~.9~~1.~4~63~.7~~1.~5+-~0'77+-_-~~9~0~.3~1~'76+-4~2~3+-3~.5~1 
330 2.5 6.2 60.5 1.5 ~.5 0.3 0.9 - 89.0 1.4 414 1.8 
108 3.2 3.5 57.6 1.1 58.3 0.5 0.4 - 90.8 1.8 400 4.3 

11 N-EXP~24~5~~2.~8+-3~.3~~6=0.~6~1~.8~~65~.~1~1~.6~71.~3+-_--+~8~8.~5~1~.4~739~0~~2~.9~1 
496 1.4 6.8 57.6 1.7 61.4 1.4 1.4 - 89.9 1.4 390 3.7 
1003.1 1.961.31.965.81.1 1.0 - 87.81.43825.1 

12 N-EXP ~21:-:7.-+-~2~.7~~3=-::.5,.........,5=-:9~.1~~1,"=.8~63~.9~~1''76~70''78~_-~~8~8:-,-::.1~1~.~4~3:-:~:7+_2~.~6~1 
520 1.2 4.6 59.0 1.7 64.4 2.1 1.1 - 88.1 1.4 384 3.5 
98 2.9 6.5 61.0 1.8 65.4 0.6 1.0 - 88.7 1.6 375 3.4 

13 N-EXP~21:-:0~~2~.4~~3~.9~6~1~.4~~1~.6~6~5~.7rl-~2.~3~~1.~0~_--;~8:-:6~.0~~1.~6~3:-:6~9+-3~.~6~1 
520 1.0 4.7 60.9 1.0 65.7 2.0 0.6 - 88.7 1.2 383 1.2 
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3.1.2 REFINING ENERGY 

As we stated in the chapter 1, the blender may not be the ideal method for 

refining pulp, but it has been reported as the bast method for refining in a small 

scale [111]. Pulp properties and refining energies obtained with the blender 

compared weil with the semi-industrial results [36, 50]. 

Figure 3.4 shows the relative specifie refining energies for chemically treated 

pulps at a freeness of 100 ml CSF. The decrease in refining energy in the case 

of SEP can be attributed to the influence of temperature and explosive 

discharge from the digester. The cooking temperature in the SEP process is 

above the glass-transition tempe rature for lignin, which leads to additional 

permanent softening of the chips. The explosive discharge helps to separate the 

softened chips into individual fibers as weil as fibrillating the individual fibers 

themselves [120]. Even if we didn't achieve the extent of defibration as in the 

semi-industrial trials (up to 37% of fibers), it was evident, that exploded chips 

were on touch much more flexible than CMP or CTMP and could be easily 

separated into fibers and refined. The shorter refining time (diminished energy 

requirements) also helps preserve fiber length. 

If we concentrate more specifically on the high seve rit y area (Figure 3.5), we 

can see a drop in the relative specifie refining energy with an increase of either 

cooking time and cooking temperature. This suggests that cooking severity does 

have a significant influence on the pulp quality. If we compare the two pulps 

cooked at 190°C - a 40 second increase in cooking time (from 80 seconds to 2 

minutes) was sufficient to cause a 0.5 MJ/kg drop in refining energy requirement 

(from 4.5 to 4.0 MJ/kg). Working at the same yield, a 10°C temperature increase 

caused another drop from 4.0 to 3.5 MJ/kg. If the reactor was pressurized to 25 

atmospheres prior to the explosion, the pulp was even easier to refine and the 

refining energies were in the neighborhood of 3.0 MJ/kg. The highest drop 

caused by the nitrogen explosion was in the case of 190°C/2 min (at the highest 

pressure difference). However, the lowest refining energy was measured for 

pulp #13 (200°C/1 min). 
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3.1.3 FIBER PROPERTIES 

Because of the permanent lignin softening and the explosive discharge, 

explosion pulps need substantially less energy for fiber separation. It is 

supposed that most of the energy is thus applied to fiber development. The 

higher average fiber length of explosion pulps (which will be discussed later in 

this section) can be explained by the shorter refining time and by fiber 

separation. (The blade does not eut into the shives or fiber particles, treating 

separated fibers instead). The fiber length distribution for some pulps is shown 

later in this chapter in Figure 3.25. It is clear that high seve rit y cooking 

conditions resulted in longer fibers. The microscopie study of our explosion 

pulps samples also showed that even in the coarser fractions (R-14 and R-28) 

we did have very few fiber bundles and shives. This count seemed to be 

several times higher in the case of RMP, CTMP and CMP. Explosion pulps had 

the overwhelming majority of fibers weil separated with more or less developed 

surface fibrillation. Scanning electron microscopy (SEM) revealed that the 

surface fibrillation was mostly dependent on freeness level and on the fraction 

size. Unfortunately, due to low photoprint quality, we were unable to include 

them as a confirmation of our observation. 

The surface development of fibers can be evaluated using the S-factor. (S­

factor is a measure of the freeness of the fraction that has passed through a 

48-mesh wire but has been retained on a 100-mesh wire on the Bauer-McNett 

fiber classifier). Figure 3.6 shows that the SEPs had a lower S-factor than the 

CMPs, indicating higher specifie surface, possibly as a result of good fiber 

development. Most of the SEPs also had a lower S-factor than CTMP and 

RMP. S-factor of CTMP and RMP is lowered by higher amount of debris and 

fines, both of which significantly retard pulp drainage. 

Because of the lignin softening that occurs at high temperature, we expected 

the longer fibers in the SEPs to be also more flexible. Figure 3.7 depicts pulp 

density as a function of cooking temperature for pulps at 100 ml CSF. High 

density is a sign of fiber flexibility (since the explosion pulps have higher 

amount of long fibers, as it is shown in the Figure 3.24), and it is clear that pulp 

density increased with the seve rit y of the cooking process. Even the water 

explosion pulp (no chemicals) had a density comparable with that of CTMP. 
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Presumed higher flexibility of the longer SEP fibers should improve the fiber to 

fiber contact possibilities. This should contribute to better bonding capacity, 

and subsequently to better mechanical properties of explosion pulps. Light­

scattering coefficient (LSC) is another way of measuring bonding capacity. The 

LSC refers to the unbound surface in the pulp sample which is a parameter 

that can relate to at least two important facts. In optical properties, the lower 

LSC shows to the lower capacity to reflect and scatter light beams which 

results in lower opacity. On the other hand, lower LSC means that there is 

more bonded surface in pulp or paper sam pie which should logically suggest 

higher mechanical parameters, such as the breaking length and tear. 

Generally, the LSC factor is higher for mechanical pulps and decreases with 

the degree of chemical treatment. The lowest LSC factors are in the case of 

chemical pulps (kraft and sulfite). Figure 3.8 shows LSC as a function of 

pulping temperature. The low LSC for the SEPs suggests better contact 
between the fibers and hence their better bonding capacity. As in Figure 3.7, 

pulp density (bonding potential) increases with increasing seve rit y of the 

cooking process (represented by the temperature), favoring the explosion 

pulps overthe conventional CMP and CTMP. 

Pulp porosity is another analysis that confirms that the structure of explosion 

pulps is more dense and more bonded. For the majority of explosion pulps, the 

porosity was several times lower than in the case of CMP and CTMP (Figure 

3.9). 
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The chemical changes that take place during the cook are another important 

consideration. Tanahashi et al. [91, 93, 120] have recently reported an 

increase in the crystallinity of cellulose following steam treatment at high 

temperature and pressure. For our considerations, we worked with Sukhov's 

modification phase model of cellulose structure [130], as it shows Figure 3.10. 

Using Sukhov's qualitative methods for evaluating cellulosic materials via FTIR 

(Fourier-transform infrared reflectance) and Raman spectroscopy [130, 131], 

we found that explosion pulps have the highest content of ordered Cellulose 1 

(C-I). The results in Figure 3.11 (with one impregnation chemical) show that 

crystallinity of C-I increased in order milled wood> CTMP > CMP > explosion 

pulps. Ordered C-I is the highest quality cellulose (highest bonding capacity) 

and contributes significantly to pulp mechanical properties [126, 130]. 

Disordered cellulose Il (C-II), on the other hand, is a lesser quality material 

composed of a mercerized-type of cellulose and hemicelluloses. Figure 3.12 

shows the distribution of C-I ordered and C-II disordered cellulose in the 

samples of SEP, CMP, CTMP, RMP and in milled aspen wood. It is apparent 

from Figure 3.11 and Figure 3.12, that the cellulose structure, represented by 

an increase of C-I ordered and the C-I/C-II ratio has improved with increasing 

temperature and pressure of cooking. From this point of view, the best C-I/C-II 

ratio was found in the water explosion pulp. These results are in excellent 

agreement with other study by Kokta et al. [58]. It has been shown that at 

various impregnation conditions, there was a sharp increase of cellulose 1 and 

sharp decrease of cellulose Il occurring at the cooking temperature of 190°C 

and cooking time at least two minutes. 

The high C-I/C-II ratio in the water explosion pulp (no chemicals), as it is shown 

in Figure 3.12, can probably be explained by the fact that these chips were not 

chemically protected by an antioxidant. In this case, the predominant reaction 

is hydrolysis of the unprotected hemicelluloses, which produces a higher 

proportion of C-I compared with C-II in the resultant pulp. 

According to another analysis [68], the concentration of cellulose and sulfur on 

the fiber surface is higher for explosion pulps than for conventional pulps. The 

fibers in explosion pulps also were reported to have less Iignin on their surface 
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3.1.4 MECHANICAL PROPERTIES 

The results presented so far show that the physical and chemical changes that 

take place during the high-temperature-and-pressure cook and subsequent 

explosive discharge are beneficial and should provide a pulp with superior 

mechanical properties. This was experimentally confirmed and results for 

breaking length, stretch, burst index and tear index are presented in Figures. 

3.13 to 3.16, respectively. 

If we compare CTMP and SEP, the explosion pulps have: higher mechanical 

properties (breaking length, tear and burst) , higher density and C-I crystallinity 

at lower LSC, and lower refining energy. This was accomplished either at 

conventional CTMP conditions (Pulp 2) or at similar yield (Pulp 3) and at the 

same chemical treatment and similar ionic content. The only difference 

between the CTMP and SEP pulps were the cooking conditions (temperature, 

pressure and time), which emphasizes the influence of these parameters on 

pulp quality. 

While the differences between CMP and SEP were not as pronounced as 

between CTMP and SEP, Figures 3.13 to 3.16 show that the mechanical 

properties of SEP were superior. This is also apparent in Figure 3.17, which 

relates tear index and breaking length. This relationship is most useful in 

evaluating the mechanical strength of pulp [112], and we can see that strength 

increases in the direction RMP < CTMP < CMP < SEP, correspondingly with 

increasing seve rit y of the cooking process. The only exception in this order is 

the water explosion pulp, which is placed between CTMP and CMP, because 

of the lack of chemical treatment. 

The CMP and SEP pulps were prepared at the same yield using the same 

chemical treatment during impregnation and cooking. The total ionic content 

was almost identical for CMP Pulp 4 (150°C, 55 min) and SEP Pulp 10 (200°C, 

1 min). This is also true of CMP Pulp 5 (160°C, 30 min) and SEP Pulp 8 (190°C, 

2 min) and SEP Pulp 9 (195°C, 1.5 min). The results in Figure 3.17 thus confirm 

previous research [36] showing that explosion pulping provides comparable 

strength at lower ionic (sulfonic) content, or higher strength at the same ionic 

content compared with conventional high-yield pulping processes. 
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3.1.5 OPTICAL PROPERTIES 

Brightness exceeding 60% can be obtained if the chip quality is satisfactory 

(Figure 3.18). Water explosion (no chemicals) was the only process where 

brightness dropped significantly (to about 42%) because of the condensation 

reactions. Otherwise, brightness values ranged from 60% to 66% MgO for the 

unbleached and from 79% to 84% MgO for bleached pulps (Figure 3.19). 

These results are in agreement with those reported previously [36]. For both 

unbleached and bleached pulps, the CTMP had the highest brightness level, 

closely followed by other pulp types. Explosion pulps showed slightly higher 

brightness stability. 

As far as opacity is concerned (Figure 3.20), the highest level was found for the 

water explosion pulp. This was quite expected since this pulp had the lowest 

brightness (around 42%). Also, compared to other pulps, its fiber surface is 

much more rich in lignin rather than in cellulose. For other pulps, the order of 

opacity was inversely following density, po rosit y and LSC with the highest value 

in the RMP case and lower values in order CTMP > CMP > explosion pulps. 
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3.1.6 INFLUENCE OF PRESSURE 

The cooking conditions used to produce the SEP Pulps 8 to 10 were replicated 

for Pulps 11 to 13. These latter pulps were subjected to a pressure of 25 atm 

under nitrogen immediately after the cook and then discharged explosively. 

The high-pressure explosion increased the mechanical properties, as seen in 

Figure 3.21, which shows the results for SEP Pulps 10 and 13, both cooked at 

200°C for 1 minute at 15.5 atm. These pulps showed the greatest difference in 

mechanical properties, with the pulp discharged at high pressure showing an 

increase in tear index at constant breaking length. Overall mechanical strength 

improvement is shown in the Figure 3.22. Increasing the pressure prior to the 

explosion also leads to better fiber separation and hence lowers refining 

energy consumption (Figure 3.5). The time to increase the digester pressure is 

very short and has no negative influence on pulp yield or any other parameter. 

The effect of pressure on èxplosion pulps over a wider pressure range was the 

subject of second experimental trial and will be discussed later on. Pulps 8/11 

and 9/12 did show similar tendencies. 
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3.1.7 THE IMPORTANCE OF A CHEMICAL AGENT 

Good chemical impregnation is essential for the development of papermaking 

qualities. If we take the two pulps without chemical impregnation (RMP and 

water explosion), we can see from the results presented in this chapter that both 

of them are weaker in strength parameters. In the case of refiner mechanical 

pulp, the unsoftened fibers (quite fragile due to their thin cell wall) were broken 

(often several times), did not develop good bonding capacity and as a result it 

was almost impossible to prepare paper sheets if the freeness level was over 

250 ml. 

ln the case of the water explosion pulp, we have obtained quite dark pulp. Even 

if it was fairly easy to separate the individual fibers, they remained enveloped 

with a lignin layer. This goes very weil with the theory of refining which says that 

the higher is the process temperature, the higher is the lignin amount on fiber 

surface [183]. Lignin softens more at higher tempe ratures and the following 

refining goes more towards the middle lame lia, where the resistance against 

fiber separation becomes lower at increased temperatures. 

A chemical impregnation agent helps to soften whole fiber, contributes to the 

ionic content development, protects the pulp against the brightness loss and 

hence helps to develop mechanical strength. Based on several research works 

in the area of impregnation [34, 36, 39, 63, 65, 68, 70, 72, 83, 89, 157, 158], we 

cooked several more pulps with a second impregnation agent (the cooking 

conditions are presented in the Table 2.2). We used the sodium hydroxide and 

sodium bicarbonate along with sodium sulfite. Cooking results and the pulp and 

paper properties are listed in the table 3.4. As these pulps were cooked mostly 

as a reference, we only present values at 100 ml CSF, which id the reference 

freeness with the pulps cooked in this series. 

As a result of an additional chemical impregnation (second chemical), the pulps 

were more easy to refine and the Figure 3.23 shows the refining energies for 

no-chemical, 1-chemical and 2-chemicals impregnation system. In our case, the 

biggest savings were observed with Na2S03/NaOH solution. Also, this 

impregnation substantially improved the ionic content. Figure 3.24 shows that 

the sulphonic content has significantly increased with a 2-chemicals 
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impregnation (in comparison with 1-chemical impregnation in the case of SEP or 

conventional pulps). 

TABLE 3.4 Pulping conditions, pulp and paper properties in the additional 

experiment. For the parameters, where freeness is important, 

the value is 100 ml CSF 

1 ~ 3 
8% Na2S03 16% Na2S03 8% Na2S03 

Pulp 0.5% NaOH 1% NaOH 1% NaHC03 
UW6:1 UW3:1 UW6:1 

190°C/4 min 190°C/4 min 190°C/2 min 
Parameter value Error Value Error Value Errer 
Yleld [% 83.7 1.2 82.7 1.4 90.8 ·0.6 
SUif. content mmol/KQI 7~.3 - 61~ - ~?-.~ -

1 Carb. content mmol/Kg] 146 - 14~ - 151 -
lotal Ion. cont. [mmol/Kg] 218 5.3 204 4.6 204 3.6 
RSRE [MJ/kg 2.2 5.0 2.4 3.2 2.6 1.6 

1 Denslty [Kg/m~] 590 2.3 o~o 4.0 o~5 3.5 
1 Porosity [mi/min] 12 1.9 10 2.6 9 4.6 
1 Breakin J length [km] 9.~ 3.0 ~.1 3.1 ~.o 3.9 
1 stretCh [%] ~.o 1.2 ~.1 o.~ ~.o 5.0 
lear [mNm<:::/g] ~.4 4.~ 0J: ~ ~ 1.7 

1 Burst [KPam<:::/ g] 5.~ 4.1 -~ J.9 4.5 3.5 
1 Bnghtness 1.i 9 sheet 
[%MgO] 

56.0 0.6 56.5 3.8 65.0 3.6 

Bnghtness 3.0 9 sheet 
[%MgO] 

60.3 3.1 60.1 4.0 6~.~ 1.1 

BriQhtness oss[%] ()_.~ - ~ - 1·1 -
Opaclty [%] 84.7 1.6 ~3.4 ~.2 ~3.~ 3.6 
LSC [cm~/g] 280 3.7 245 3.1 340 4.3 

-1 
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Another important improvement was found in the fiber fractionation (Figure 

3.25). In the case of NaOH/Na2S03, we have obtained the highest fraction of 

long fibers (R14 + R28 + R48). These longer fibers are very important for paper 

strength development (tear index). The difference in pulps with the highest 

percentage of R14 fraction (RMP, nitrogen explosion and soda pulp) was also 

obvious. It was clear that under a microscope, in the RMP case, the fraction 

retained on a 14 mesh sieve was mostly represented by fiber bundles and 

shives. High seve rit y pulping resulted in single fibers, even in the longest 

fractions. Less rejects were also confirmed by Sommerville analysis. In the case 

of the RMP, we found the highest reject amount (4.3%) The reject amount for 

high seve rit y pulps was hardly measurable. Similar results were confirmed in 

[33]. 

It can be concluded that the addition of a second impregnation chemical 

strongly helps in the development of mechanical parameters. These pulps 

reach in general higher ionic content, higher average fiber length, higher 

density, lower S-factor and lower refining energy. Ali these parameters suggest 

higher strength. As seen from Figure 3.26, the breaking length increased by 2 

km for NaHC03 and even more with NaOH, when compared to the average 

value of breaking length for a SEP with only one impregnation agent. Similar 

tendency could be observed for the burst index (Figure 3.27) when NaHC03 
addition caused an increase to about 3.5 kPa.m2/g and NaOH to 6 kPa.m2/g 

(compared to about 3.5 kPa.m2/g for a simple impregnation). Tear index of 

these pulps could be slightly lower, which may be as a result of higher density 

[159] and lower fines amount. In the case of bleached pulps, the breaking 

length went over 10 km (Figure 3.26), which is even higher than in the case of 

low yield kraft aspen pulp [160]. 
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The biggest paper strength were found in the case of NaOH. Unfortunately, in 

the case of NaOH, the priee to pay forthe property increase is the yield 1055 

(about 7%) and lower brightness. The addition of NaHC03, on the other hand, 

enhances the mechanical properties and reduces the refining energy without 

decreasing the yield or brightness. From this point of view, the impregnation 

system Na2S03"NaHC03 seems to be the most promising, as far as it provides 

high mechanical properties with a very low refining energy and good brightness 

at a 90% or possibly higher yield. 
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3.1.8 CONCLUSIONS FROM THE FIRST TRIAL RESUL TS 

Comparison of high-yield pulps at the same chemical charge, yield and ionic 

content showed that the explosion pulps had better mechanical properties and 

much lower refining energy than the conventionally cooked CMP and CTMP 

pulps. Explosion pulps had optical properties similar as the CMP pulps and the 

CTMP pulps were slightly better than those of SEP and CMP. 

Explosive pulp release also seemed to help in some aspects. It decreased the 

refining energy (Figure 3.5) and improved the paper strength. Pressurizing the 

reactor prior to the explosion helped in further refining energy reducing also 

improved the breaking length and burst index. Figure 3.22 shows the breaking 

length, burst and tear index comparison for pulps prepared at 200°C and 1 

minute, where the improvement was most evident. 

ln this work, we showed the results obtained at 100 ml CSF. Since the same 

tendencies were found at the 200 ml CSF evaluation, we did not include them 

in this work. 

The addition of a second impregnation agent enhances the process and 

resulted in significantly higher mechanical properties and lowers refining 

energies (at increased ionic content). With NaHC03 as second impregnation 

chemical, the pulp yield is preserved, while NaOH addition leads to a yield drop 

(about 7% in our case). However the property gain was the highest with NaOH. 

Setter properties of the explosion pulps can be attributed to the chemical 

changes (higher crystallinity, better lignin softening) that occur following the 

high-temperature-high-pressure cook as weil as the physical changes (better 

and easier fiber separation) that occur following high severity cook and 

explosive discharge from the digester and consequently better fiber surface 

and flexibility during refining. 

The first experimental series confirmed most of our theoretical considerations 

and results showed that the high severity pulps can be prepared at ultra-high 

yield comparable to conventional UHY pulping processes. At the same chemical 

charge, yield and ionic content, the explosion pulps showed much lower refining 
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energy and higher paper strength. This occurred as a result of high severity 

pulping conditions: high temperature, high pressure and short cooking time. 

As a result, we can conclude that the explosion pulping shows promise as a 

viable ultra-high yield pulping process. In addition to the discussed comparison 

with the conventional methods of chemimechanical and chemi-thermo­

mechanical pulping, explosion pulping is also very fast (usually 2 min or less) 

and requires little chemicals. As a result, it was suggested [33] that the industrial 

application wou Id require smaller size equipment and therefore lower capital 

investment. 



98 
3.2 SECOND EXPERIMENTAL SERIES 

3.2.1 PULP PREPARATION AND PULPING RESULTS 

ln the second series, five different explosion pressures were chosen. As an 

impregnation medium, Na2S03iNaHC03 system was selected (this combination 

provides excellent results without sacrifying yield or brightness), with two 

cooking temperatures of 190 and 195°C. With this new impregnation system , 

the level of 200°C was considered too high requiring very short cooking time 

which might lead to insufficient cooking deeper inside the wood chip. The five 

pressures levels used were 11.9 and 13.6 atmospheres (saturated steam 

pressure at 190/195°C), 17.5 atm, 20.0 atm, 22.5 atm and 25.0 atm. This was 

about the maximum achievable with our laboratory cooking system. Pulping 

conditions, pulp and paper properties resulted fram this experimental series are 

presented in Table 3.5 to 3.7. 



TABLE 3.5 

# Time 
fminl 

1 2 
2 2 
3 2 
4 2 
5 2 
6 1.5 
7 1.5 
8 1.5 
9 1.5 
10 1.5 
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Pulping conditions and sorne of the characteristics of resulted 

pulps in the second experimental series 

Cooking OniC content [mmol/kg 
Temp. Pressure Yield [%] Sulfonic Carboxylic Total 

fOCl fatml Value Error Value Error [% 
190 11.9 90.8 0.3 42.7 . 152 194 2.9 
190 11.9/17.5 91.6 0.6 42.3 155 197 3.4 
190 11.9/20 90.3 1.0 43.6 158 202 4.4 
190 11.9/22.5 90.3 0.6 51.7 153 205 1.3 
190 11.9/25 89.3 0.8 46.9 153 200 2.9 
195 13.5 90.6 0:9 42.7 150 193 5.0 
195 13.5/17.5 90.0 1.1 48.9 146 195 4.3 
195 13.5/20 90.5 0.4 51.1 147 198 3.6 
195 13.5/22.5 89.8 0.7 50.7 147 198 3.8 
195 13.5/25 90.3 0.7 48.7 147 196 4.0 



TABLE 3.6 

Pulp 
Final 

# pressure 
[atm] 

1 11.9 
2 17.5 
3 20 
4 22.5 
5 25 
6 13.5 
7 17.5 
8 20 
9 22.5 
10 25 

TABLE 3.7 

PUIP 

Final 
pressure 

# [atm] 

1 11.9 
2 17.5 
3 20 
4 22.5 
5 25 
6 13.5 
7 17.5 
8 20 
9 22.5 
10 25 

100 
Mechanical paper properties obtained in the second experimental 
series (at 100 ml CSF) 

Parameter va ues ana exper menlal error ln l."M 
Breaking 

Dens~ Porosity length Stretch Tear Burst 
[kg/m [mVminl [kml [%1 [mNm2/a1 [kPam2/al 

!Value Error Value Error !Value Error Value Error Value Error '{alue Error 
585 3.3 9 2.2 8.6 2.6 2.0 2.6 6.8 6.4 4.5 0.5 
593 2.5 17 2.9 9.1 3.5 1.9 2.4 6.9 5.3 4.1 3.2 
570 3.4 18 3.1 8.9 3.4 2.0 2.5 6.8 2.6 4.4 1.6 
602 2.6 17 2.0 9.4 3.6 1.8 2.5 6.7 0.1 4.1 2.5 
557 3.4 20 3.4 8.1 3.2 1.7 2.5 6.8 6.7 3.9 2.3 
571 4.0 16 2.9 8.6 1.2 1.9 2.3 7.0 6.8 4.7 2.9 
526 1.3 21 2.7 7.4 0.5 1.7 2.3 6.6 5.1 3.6 3.4 
543 1.5 20 2.8 7.8 2.9 1.7 1.9 6.7 5.3 3.6 0.9 
556 3.3 17 3.1 7.8 3.1 2.0 3.3 6.8 3.4 4.0 1.4 
542 2.4 21 4.2 8.0 2.3 1.9 3.7 6.7 3.9 3.9 2.9 

Refining energy and optical paper properties obtained in the 

second experimental series (at 100 ml CSF) 

parameter va ues ana experlmental error an [%] 
Relative 
specifie Brightness Brightness Brightness Opacity Light-
refining 1.2 9 sheet 3.0 9 sheet loss [%] scattering 
energy (60 g/m2) (15°lam2) [%] coefficient 
fMJ/kâl '[%MaOl' [% 01 lcm2/al 

Value Error Value Error Value Error Value Error Value Error Value Error 
2.6 3.4 65.0 1.5 68.2 1.2 1.1 - 83.2 1.1 340 2.6 
2.7 6.5 61.9 1.3 63.6 1.3 0.3 - 84.4 3.0 323 2.3 
2.6 5.6 61.0 1.6 62.7 1.1 0.5 - 84.5 1.4 331 2.5 
2.9 5.7 61.4 1.4 63.0 1.1 0.2 - 84.7 1.8 316 2.4 
3.6 4.9 62.5 1.8 63.8 1.0 0.4 - 85.0 1.9 360 4.1 
3.7 3.6 63.4 2.0 65.3 1.5 1.3 - 83.1 1.6 320 1.0 
3.1 3.5 64.1 1.6 64.2 3.0 0.2 - 87.3 1.1 365 1.1 
3.2 4.8 63.3 1.3 65.2 0.5 0.3 - 86.8 1.1 370 3.5 
2.0 2.9 63.2 1.0 64.6 1.6 0.4 - 86.0 1.4 360 3.4 
2.8 6.1 62.1 0.8 64.3 1.1 0.6 - 85.9 1.0 350 4.4 
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3.2.2 PULP EVALUATION 

Similarly to the first series, the explosion pressure did not seem to influence 

pulp yield. Most of the pulps were prepared at or very close to 90% yield. This 

was not a surprise, because the cooking conditions 10r ail the pulps were the 

same. The only difference was in the pressure increase at the end and the 

pressurizing time was very short, so there was no obvious reason 10r additional 

chemical changes. We did not 1ind higher degree of fiber separation with the 

"higher pressures". The chips were usually very flexible and it was very easy to 

separate them into smaller units. As the explosion pressure increased, the chips 

were more crushed and with the highest pressure of 25 atmospheres, the 

visually observed separation degree was the highest and almost every chip 

showed some sort of defibration. We believe that this is due to two reasons. 

Firstly, the difference between internai pressure in the chip and the pressure in 

the release vessel helps to tear the chip apart. This was shown by Tanahashi 

[120], where the explosive discharge from 28 atmospheres did cause not only 

the fiber separation, but also an explosion of the chip per se. Secondly, the 

impact against the release vessel wall is much stronger with increasing pressure 

which also contributes to the breakdown of softened chips. 

As far as ionic content is concerned (Table 3.5), again, the pressure increase 

did not cause any significant changes. For most of the pulps, the total ionic 

content was around 200 mmol/kg. 

Refining times were very similar for each pulping condition and a 100 ml CSF 

freeness was reached after about 43 minute blending for 190°C/2 min pulps and 

after about 50 minutes for 195°C/1.5 min pulps. In this case, we did not 1ind any 

significant difference in refining energy requirements. The relative specifie 

refining energies were mostly between 2.5 and 3.0 MJ/kg, which corresponds to 

our previous findings. Refining energy measurement using a blender is 

influenced with higher possibility of experimental error than most of our other 

analyses and making conclusions based on the differences in such a short span 

could be erroneous. What we did confirm was that ail the pulps had low re1ining 

energies placed between 2.5 and 3.0 MJ/kg. 
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Concerning the fiber properties, not much differences were found either. 

Compared to the first experimental series, lower Iight-scattering coefficient 

values were obtained. These values were between 320 and 340 cm2/g for both 

pulping conditions. Density was around 580 kg/m3 for 190°C/2 minutes and 550 

kg/m3 for 195°C/1.5 min. For both conditions, the porosity factor at 100 ml CSF 

was around 15 to 20 ml, which was lower than in the first experimental series. 

This is a result of higher density and the higher ionic content (compared to the 

first experimental series) also contributes to better bonding and interfiber 

connections, which leaves less open space in the handsheet. 

When comparing the mechanical strength parameters with the first series, pulps 

in this series showed real improvement. In the case of breaking length, for 

190°C/2 minutes, the pulps reached values of 9 km or even more (Figure 3.28). 

For 195°C/1 .5 min, the values were somewhat lower and approached 8 km. 

Again, these are excellent results for non-bleached, 90% yield aspen pulps. As 

far as pressure influence is concerned, we can see a slight increase in breaking 

length for both pulping temperatures. It can be seen that the pressure-caused 

improvement was almost one kilometer for 190°C/2 minutes and about 0.5 km 
for 195°C/1 .5 min. 

Stretch values were very similar (around 1.8%) and did not seem to be 

influenced by pressure increase. 

Burst indexes also reached excellent values - over 4.0 kPa.m2/g for most pulps. 

When the burst indexes are plotted against pressure or other parameters, 

unfortunately, no clear pattern becomes discernible. 
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Tear values were the only parameter that were lower in comparison with the first 

experimental series. For the tear index values, we did not find any tendency as 

a function of either - freeness, cooking temperature or pressure. Ali the values 

were within the 6.6 - 7.0 mN.m2/g range with most points scattered around 6.8 

mN.m2/g. If tear indexes are plotted against breaking length, burst, density or 

relative specifie refining energy, no conclusive result cou Id be reached. Most 

often, pressure did not seem to influence these parameters in a clear manner 

and the values were too close to each other to make any reasonable 

conclusion. 

Aspen wood is known for its high initial wood brightness and in ail cases, the 

pulp brightness was also excellent and remained higher than 60% MgO. For 1.2 

9 sheets (60 g/m2), most of the values were around 62 to 63% and were slightly 

higher for 195°C/1.5 min. Brightness measured on 3.0 9 sheets (150 g/m2 ) 

averaged 2% MgO higher brightness. Opacity values were higher for 195°C (86 

to 87%) as compared to 190°C with an 85% average opacity. Again, the 

pressure did not seem to influence the optical parameters. 
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3.2.3 CONCLUSIONS FROM THE SECOND TRIAL RESUL TS 

A two-chemical-based impregnation system confirmed its superiority compared 

to no or one chemical impregnation from the first series. The Na2S0~NaHC03 

impregnation appears to be a much better choice than Na2S0~NaOH that we 

used as an alternative in the first series. The quality improvement is almost the 

same, without noticeable drop in yield or brightness which is usually caused by 

NaOH addition. It was possible to prepare ten pulps with a yield of 90% (or very 

close to 90%) with very low refining energies (about 2.5 to 3.0 MJ/kg) and with 

excellent papermaking properties. The breaking lengths reached up to 9 km , 

burst was over 4.0 kPa.m2/g and the tear was at about 7 mN.m2/g. Also , the 

brightness level exceeded 60% MgO in every case with an average value of 

63% for unbleached pulps. 

As to the pressure influence, no major changes were obtained as it was the 

case in the first experimental series. The only parameter where a pressure­

related changes were noticed, was the breaking length. Pressure increase 

improved this parameter by one kilometer at 190°C/2 minutes conditions and by 

almost 0.5 km at 195°C/1.5 min. The reason why no significant changes in other 

areas were observed was due probably to the impregnation approach. In the 

first series, we used one-chemical impregnation (Na2S03) and most of the 

papermaking qualities were lower compared to this two-chemical impregnation 

series. If the parameters in the first series were lower, there was much more 

space for further improvement and the changes caused by the pressure 

increase prior to the explosion were measured in ail threé cases: 190°C/2 min; 

195°C/1 .5 min and 200°C/1 minute. In this second series, much of the 

improvement was reached by the addition of the second impregnation chemical. 

Resulting quality leap was probably so high that it overlapped the smaller partial 

improvement caused by the pressure increase. 

Despite the fact that the influence of pressure increase on pulp quality could not 

be demonstrated, this series was not a failure, since it was possible to produce 

ten high severity pulps with excellent properties and the feedback from this 

series had helped in the designing of the third series of experiments. 
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3.3 THIRD EXPERIMENTAL SERIES 

The first experimental series compared high severity pulping process to 

conventional chemimechanical and chemi-thermomechanical pulping. We used 

the same chemical charge and have cooked these pulps to the same yield. It 

was demonstrated that, at these comparable conditions, high seve rit y pulping 

necessitated much lower amounts of refining energy. Compared to CTMP, the 

mechanical properties were much better and compared to CMP pulps, high 

severity pulping resulted in slightly higher properties. This has been reached at 

the same chemical charge (with one impregnation chemical), same yield and 

same total ionic content. Reactor pressurization prior to the explosion increased 

some mechanical properties and somewhat reduced the refining energy. Optical 

properties were very good for each pulp (with the exception of the water 

explosion pulp) with brightness of 60% MgO or more. One step peroxide 

bleaching resulted in about 20% MgO brightness increase. 

The addition of a second impregnation chemical provoked another significant 

refining energy reduction and property increase (most evident in the case of 

breaking length and burst index). With a suitable choice of the second 

impregnation agent (NaHC03 rather than NaOH), this overall improvement is 

not accompanied by any negative side effect, such as the brightness or yield 

loss. In the case of the Na2S03/NaHC03 impregnation system, the pressure 

increase did not cause any notable property increase. 

The second experimental series confirmed the importance of a second 

impregnation chemical for paper property development. The only case, where 

the second impregnation agent did not help, was the tear index. As a result of 

the 2-chemicals impregnation, the only parameter that was found to be 

increased with pressurized explosion (up to 25 atm) was the breaking length. 

ln the first two experimental series, SEP pulping conditions were determined to 

reach certain product parameters, Le. same yield at same chemical charge ... at 

around the presumed optimum, such as it was suggested for hardwoods and 

softwoods in the literature [36, 38, 64, 79, 88, 89]. These conditions (for aspen) 

were 190°C/2 minutes, 195°C/1.5 minute and 200°C/1 minute. Up to this point, 

little information could be generated about what could happen if conditions went 
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beyond the suggested optimum. It was speculated that an insufficient level of 

treatment would lead to higher refining energy consumption and probably to 

shorter fibers with reduced papermaking properties. 

ln the case of softwoods, Kokta et al. found [36] that too high values in some 

pulping parameters (chemical charge, cooking time or cooking temperature) 

would lead to pulp deterioration resulting in loss in yield, brightness and 

properties (Figure 3.29). If the high seve rit y pulping goes over the suggested 

optimum, the resultant pulp may have worse quality in comparison to a CMP or 

CTMP prepared at the same conditions, as it shows the Figure 3.30. 

Similar results were showed by Law [99]. McLeod et al. reported about the 

same problems in the case of kraft pulp [104]. After a high degree of chemical 

treatment, the explosion effect and the impact of kraft fibers against the blow 

tank wall caused a significant decrease in pulp properties. This is also why it is 

believed that the high seve rit y pulping is only possible in rather narrow area of 

process conditions. Good example of what happens at exaggerated treatment is 

the Masonite process resulting in pulp (high yield, though) with a very limited 

use. 
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The objectives in the third trial were to plan the experiment to reach beyond the 

conditions considered as optimum earlier. The purpose was not only to optimize 

the process and to find the cooking conditions to reach suggested pulp 

properties, but also to see what kind of changes (chemical, physicochemical 

and physical) occur under very mild and very severe pulping conditions. For 

high seve rit y pulps, cooking started at 180°C and one minute. A pulp with very 

high yield, higher level of refining energy and probably not too weil developed 

mechanical properties was expected. For explosion pulps, the most severe 

conditions were 200°C and 4 minutes. Here, lower yield (estimated of 

somewhere between 80 and 85%) was anticipated with very low refining energy 

and probably lower properties due to fiber damage. 

ln spite of the previous findings (second series) that there was no evident effect 

of the high pressure on resulting pulps, it was decided to pressurize the reactor 

in three cases: the mildest conditions (180°C/1 minute), central point (190°C/2 

minutes) and the highest seve rit y point (200°C/4 minutes) to ascertain effects of 

pressure. As in the second trial, not much influence for the central point could 

be expected. However, the effect may be much more visible at 180°C and 1 

minute, where the degree of cooking related changes is much lower. In the 

200°C/4 minutes case, the nitrogen explosion may also lead to some additional 

changes. 

For a reference, two other explosion pulps at the central point were prepared: a 

water explosion pulp with no added chemicals and a "base" explosion pulp 

prepared with Na2S03 impregnation. CMP and CTMP were also prepared at 

these impregnation conditions. The experimental plan is shown in Chapter 2, 

Figure 2.1. 

ln this chapter, discussion of the cooking results, characterization of the pulps 

and paper sheets and the changes due to cooking process (such as the 

crystallinity and surface parameters) will be made. In the next chapter, 

mathematical evaluation to quantify the cooking variables will be given together 

with a study of the correlations between cooking parameters and the pulp and 

paper properties. 
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3.3.1 PULP EVALUATION 

Pulping conditions, pulp and paper properties resulted from this experimental 

series are presented in Table 3.8 to 3.10. 

Based on our previous experience, yields over 90% for the CTMP, CMP water 

explosion pulp, base explosion pulp (Na2S03 only) and for the explosion pulps 

with lower severity of treatment (180°C/1 , 2, 4 minutes, 190°C/1, 2 minutes and 

200°C/1 minute) were expected. With the increased severity, a graduai shift 

below 90% yield limit was anticipated. Expectations came true for CTMP, CMP 

and for some explosion pulps (Figure 3.31). If yields for pulps cooked in this 

series are compared with the first and second trial (one impregnation chemical 

and the Na2S03lNaHC03 impregnation system), it can be noticed that ail the 

yields are about 1 to 1.5% lower. This could be due to lower chip quality. 

Indeed, chips used in this series were stored for several months and were 

slightly darker on the surface with occasional decay signs on few chips on the 

top in the storage bag (every chip was visually examined prior to impregnation 

and cooking and no unacceptable quality material was allowed to enter the 

process). Some of the wood degradation products are more soluble and are lost 

in the cooking, washing and refining process stages. This might have caused 

slight yield drop, as weil as influence some of the pulp and paper parameters 

that we will discus later on. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

14 

15 
16 

TABLE 3.8 
112 

Pulping conditions and sorne of the characteristics of resulted 

pulps in the third experimental series 

Pulp Impregnation cooklng IOnie content [mmoVkgj ::>ymbol 
type Na2SU; NaHl;U3 Temp Time Pres. Yield [%] Sulfonic Carboxy Total usedin 

[%1 [%1 loci [min] [atm] Value Error Value 'Error [% figures 
EXP 8 1 180 1 9.9 91.4 0.6 47.7 146 194 4.2 • 
EXP 8 1 180 2 9.9 90.5 0.4 51 .3 148 199 3.6 • 
EXP 8 1 180 4 9.9 88.6 0.8 50.1 151 201 5.0 " EXP 8 1 190 1 11.9 89.1 0.6 50.1 141 191 3.9 • 
EXP 8 1 190 2 11 .9 88.3 0.5 52.1 143 195 4.8 • 
EXP 8 1 190 4 11.9 85.2 0.5 55.3 139 194 6.1 " EXP 8 1 200 1 15.5 87.9 0.9 51.6 144 196 5.1 • 
EXP 8 1 200 2 15.5 85.4 0.8 53.4 139 192 4.3 • 
EXP 8 1 200 4 15.5 83.4 1.0 54.1 130 184 4.8 " N-EXP 8 1 180 1 9.9/25 91 .0 0.4 48.1 148 196 4.1 • 

N-EXP 8 1 190 2 11 .9/25 88.2 0.5 52.3 146 198 5.0 • 
N-EXP 8 1 200 4 15.5/25 82.4 0.4 51 .3 130 181 3.8 • 
BASE 8 0 190 2 11 .9 90.0 0.8 34.6 131 166 3.9 0 

EXP 
NATER 0 0 190 2 11.9 91 .9 0.6 0.0 96 96 1.4 " EXP 
CTMP 8 0 128 10 1.8 92.8 0.7 29.6 132 162 4.8 0 

CMP 8 0 150 30 4.0 90.6 0.7 32.5 135 168 1.8 c 



TABLE 3.9 M h . 1 113 
ec an/ca paper properties obtained in the third experimental 

series 

PUIP parameter va ues ana experlmental error ln l'roI 

Type CSF De~!lr 
Breaklng 

Stretch Tear Burst # Porosity length 
[ml] (kt' " fmVmiril ~ni] f%1 [mNm2/g] [kPam2/g] 

Value Errer Value Errer !Value Errer Value Errer Value Errer Value Errer 
100 490 2.3 110 4.3 5.5 3.5 1.7 1.6 5.0 6.3 2.6 2.6 

1 EXP 230 428 2.1 420 3.9 4.8 3.6 1.3 3.2 4.9 4.5 2.1 3.2 
370 392 3.6 574 5.0 3.9 2.1 1.1 5.3 5.1 3.8 1.6 3.2 
107 499 3.1 82 4.6 6.4 3.2 1.7 0.6 5.6 5.6 3.2 3.5 

2 EXP 190 437 3.4 1n 4.8 5.8 3.6 1.4 0.5 5.8 6.4 2.8 3.5 
350 394 2.0 467 4.9 4.7 2.5 1.2 2.6 5.6 5.6 2.1 .1.5 
100 538 1.6 41 4.7 7.3 2.9 1.8 3.4 6.9 5.4 3.7 2.2 

3 EXP 140 478 2.3 69 4.4 6.2 2.4 1.4 3.2 6.3 5.9 3.2 2.5 
375 410 2.5 424 4.4 5.5 2.0 1.4 3.6 6.8 6.5 2.3 2.9 
105 488 2.9 121 4.6 6.1 1.6 1.5 2.5 6.2 3.4 3.1 3.4 

4 EXP 195 467 0.6 233 5.2 5.6 1.8 1.4 1.9 5.8 5.9 2.7 4.1 
420 428 5.0 636 6.2 4.1 2.4 1.1 4.0 5.4 5.7 2.2 4.0 
100 553 2.4 47 3.1 7.0 3.5 1.6 1.6 7.2 6.4 4.0 2.6 

5 EXP 190 485 4.2 154 5.2 6.3 2.9 1.5 3.2 6.6 8.1 3.1 2.0 
420 409 1.6 562 1.0 5.0 2.1 1.2 3.8 6.3 3.4 2.4 2.0 
85 557 3.5 23 3.9 8.2 2.0 1.9 3.7 6.9 6.5 4.5 2.0 

6 EXP 117 504 3.4 35 3.6 7.5 2.9 1.7 3.3 6.5 6.7 4.0 2.6 
290 436 3.7 262 5.0 6.2 3.0 1.5 1.0 7.0 4.5 3.2 3.1 
105 565 3.4 45 4.6 7.0:- 3.1 1.9 0.6 6.4 \ 6.3 4.0 3.1 

7 EXP 210 468 5.0 152 5.8 6.3 3.1 1.5 0.5 6.3 \ 6.4 2.9 0.5 
395 448 5.0 610 6.0 5.5 3.0 1.3 2.9 5.5 : 5.5 2.5 0.2 
70 586 5.1 17 3.2 8.0 1.0 1.9 3.1 6.8 i 5.3 4.6 4.3 

8 EXP 170 546 3.4 74 6.2 7.4 6.4 1.7 3.2 6.7 ' 2.6 3.7 3.2 
385 462 2.8 410 3.4 6.2 2.0 1.5 3.5 5.1 ' 5.9 2.9 3.4 
75 587 2.9 14 1.9 8.7 6.5 2.0 3.9 7.9 6.4 4.7 1.5 

9 EXP 180 519 2.4 63 3.4 7.8 4.1 1.7 3.4 7.2 4.2 4.0 3.2 
325 480 2.3 224 6.3 6.8 3.2 1.5 6.5 6.8 3.5 3.6 2.2 
108 475 2.3 136 5.2 6.5 i 1.8 1.6 1.6 6.0\ 6.3 3.0 2.0 

10 N-EXP 230 432 1.6 362 1.6 5.5 4.4 1.3 2.3 5.8i 6.1 2.1 1.6 
380 395 3.2 666 3.5 5.0 \ 3.2 1.2 5.9 5.41 0.4 1.5 3.5 
110 537 3.5 57 3.9 7.2 5.0 1.7 2.5 6.4 3.9 3.8 3.2 

11 N-EXP 145 467 2.9 110 6.8 6.1 5.6 1.4 6.3 7.1 7.8 3.2 1.6 
325 442 2.8 380 1.7 5.4 3.1 1.3 1.3 6.4 3.1 2.5 2.8 
110 594 2.4 28 1.6 8.4 1.0 2.0 2.8 7.3 6.6 4.5 2.9 

12 N-EXP 183 511 2.6 76 4.5 7.8 2.6 1.8 2.9 7.9 6.4 4.0 6.2 
330 4n 1.3 268 2.3 6.7 2.8 1.6 2.2 7.5 6.9 3.6 4.5 
110 445 1.9 442 2.9 4.8 3.7 1.3 2.3 4.1 5.9 3.0 3.5 

13 BASE 300 400 3.5 680 2.8 3.2 2.1 1.0 3.4 4.5 3.9 1.6 3.1 
EXP 450 379 4.6 870 5.1 2.6 2.9 0.8 4.1 3.4 5.4 1.0 3.5 

105 380 3.2 292 3.8 3.1 3.4 1.3 4.5 4.3 1.6 1.3 1.5 
14 WATER 200 332 3.8 618 2.6 2.5 2.6 1.1 2.6 3.2 2.1 0.9 4.1 

EXP 390 294 2.9 888 6.2 1.7 3.4 0.9 3.8 3.3 2.1 0.6 4.9 
102 375 6.0 450 4.6 3.0 5.0 1.2 2.0 2.8 5.6 1.2 2.6 

15 CTMP 155 348 4.2 598 5.3 2.6 1.9 1.1 1.8 2.9 ' 5.8 0.9 3.4 
295 303 3.8 833 2.9 1.8 3.6 0.9 3.9 2.7 5.4 0.6 1.5 
96 425 3.5 200 4.6 4.7 3.4 1.4 3.4 3.7 6.1 , 2.1 3.6 

16 CMP 275 382 1.9 758 3.0 3.1 2.8 1.0 4.6 3.7 6.3 1.1 2.5 
380 351 3.7 9n 3.2 2.4 1.5 0.8 1.7 3.3 1.3 0.8 3.5 
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TABLE 3.10 Refining energy and optical paper properties obtained in the 114 
third experimental series 

PUlp parameter values ana experlment81 error ln ["foJ 
Relative 

Type CSF specifie Brightness Brightness Brightness Opaeity Light-
[mij refining 1.2 9 sheet 3.0 9 sheet loss [%] scattering 

3ner~~ (60 glm2) (l~°la~:) [%] coefficient 
MJ/k '[%MgOf % 0 rcm2/al 

Value Error Value Error Value Error Value Error Value Error Value Error 
100 5.2 2.6 65.2 1.2 68.0 1.6 1.0 - 88.8 2.6 450 3.6 

EXP 230 4.7 3.5 65.3 1.6 68.1 1.3 0.7 - 88.5 2.3 428 2.5 
370 4.1 6.3 65.0 3.5 67.5 1.5 1.1 - 87.4 2.5 416 2.7 
107 3.9 4.5 64.0 1.6 68.0 1.5 0.6 - 87.5 2.4 400 4.1 

EXP 190 3.5 6.8 62.8 1.4 66.1 1.4 1.4 - 87.9 3.2 397 3.6 
350 2.6 8.6 63.3 1.8 66.8 1.1 1.7 - 87.5 3.8 388 5.2 
100 2.6 9.5 62.7 1.6 66.4 3.2 0.6 - 85.5 1.6 353 4.3 

EXP 140 2.4 6.4 61.4 1.4 64.6 1.5 1.7 - 86.8 1.5 363 1.6 
375 2.0 5.6 61.6 1.5 65.0 1.6 1.2 - 85.8 4.2 352 5.3 
105 4.2 3.9 62.2 1.6 68.7 1.4 0.8 - 89.7 1.9 411 2.9 

EXP 195 4.1 5.7 63.3 1.4 65.9 1.1 0.7 - 88.1 2.6 399 4.0 
420 3.6 5.6 64.1 1.1 67.7 1.1 0.8 - 86.5 2.5 389 4.8 
100 3.5 4.8 63.0 1.1 67.1 1.1 0.4 - 86.0 3.2 364 5.1 

EXP 190 3.3 6.4 63.3 1.0 67.2 1.2 0.6 - 86.8 3.6 377 2.6 
420 2.6 4.6 65.3 1.1 67.0 1.7 1.0 - 84.5 2.5 365 2.0 
85 2.5 3.5 62.4 1.2 65.3 1.6 0.8 - 84.7 4.5 342 4.3 

EXP 117 2.4 5.5 63.0 1.1 65.1 1.4 0.3 - 85.3 4.6 351 2.9 
290 2.2 4.6 61.0 1.0 64.2 1.0 0.6 - 85.8 6.5 345 2.8 
105 3.9 5.9 62.1 1.6 67.0 1.9 0.3 - 85.6 3.1 357 2.7 

EXP 210 3.7 3.8 62.8 1.8 66.6 1.6 0.2 - 86.7 2.0 363 2.5 
395 3.1 4.7 62.7 1.4 66.7 1.5 0.2 - 86.2 1.2 359 2.6 
70 3.2 7.6 58.4 1.6 64.9 1.5 0.9 - 87.6 1.9 329 2.5 

EXP 170 3.1 9.5 61.5 1.1 65.0 1.4 1.3 - 85.2 6.5 339 2.4 
385 2.4 6.8 60.8 1.3 64.7 1.0 0.8 - 86.0 3.4 336 2.3 
75 1.6 4.5 60.0 1.3 63.3 1.3 0.7 - 83.6 1.6 313 2.8 

EXP 180 1.5 4.1 59.7 1.2 63.3 -1.6 1.1 - 85.0 3.7 325 2.9 
325 1.4 3.2 59.5 2.6 63.0 1.5 1.1 - 84.9 5.0 324 2.5 
108 4.3 4.6 64.8 1.3 67.5 1.8 0.6 - 88.0 4.6 426 4.6 

N-EXP 230 4.1 4.9 65.2 1.8 68.5 1.9 1.1 - 88.2 4.3 420 3.5 
380 3.4 6.7 65.5 1.4 68.5 1.9 1.6 - 87.9 4.1 411 3.9 
110 2.6 8.1 63.8 1.1 67.1 1.9 0.7 - 85.8 2.5 368 2.8 

N-EXP 145 2.5 2.0 61.1 1.0 65.0 3.2 1.1 - 87.7 4.3 378 2.4 
325 2.4 1.6 61.1 1.2 65.8 3.6 1.3 - 86.9 2.9 365 5.0 
110 1.5 1.5 57.5 1.7 62.5 3.1 0.9 - 88.3 2.7 315 1.5 

N-EXP 183 1.4 6.8 58.3 1.4 62.1 2.6 0.7 - 86.2 2.6 328 2.6 
330 1.3 3.4 59.1 1.1 62.9 2.4 1.1 - 86.3 1.6 331 2.7 
110 5.6 6.6 63.9 3.5 69.3 1.5 0.6 - 89.4 2.6 477 2.7 

BASE 300 4.9 6.5 64.0 2.3 69.0 1.6 0.9 - 90.2 3.8 456 2.9 
EXP 450 4.2 6.9 64.3 1.6 69.5 2.6 1.0 - 88.9 3. 436 3.5 

105 6.2 6.8 45.7 1.8 47.2 2.4 0.1 - 98.3 4.1 510 3.1 
WATER 200 5.9 4.5 44.6 1.0 45.6 2.4 0.1 - 97.8 4.6 502 2.9 

EXP 390 5.1 5.5 43.7 1.7 44.8 1.2 0.1 - 97.3 2.9 463 3.8 
102 9.2 5.5 71.5 1.5 71.5 1.5 0.9 - 90.4 5.1 564 5.4 

CTMP 155 8.8 5.8 71.6 1.6 73.8 1.6 0.7 - 90.0 3.7 561 2.1 
295 7.1 4.8 69.5 1.4 71.1 1.3 1.1 - 89.8 5.0 502 4.6 
96 7.0 6.7 67.0 1.1 68.5 1.1 1.0 - 90.1 5.9 508 6.4 

CMP 275 5.6 6.9 65.0 1.1 67.1 1.0 0.7 - 90.7 2.4 487 5.5 
380 5.2 3.5 65.0 1.0 67.6 1.5 0.9 - 90.5 1.6 463 4.7 
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Concerning explosion pulps and their yields (Figure 3.32), almost equal drop for 

each cooking temperature can be observed. The highest yields were found at 

the lowest temperature (180°C) and with each pulping temperature increase the 

yield also dropped. When the three pulps cooked at similar seve rit y (as it follows 

from the Arhenius' law): 180°C/4 minutes, 190°C/2 minutes and 200°C/1 minute 

are compared - we see that ail the yields were at about 88.5% javel. The yields 

for ordinary and nitrogen explosion pulping were very similar for 180 and 190°C. 

At 200°C, the difference was almost 1 % which might have been caused by the 

effect of highly softened fibers blown against the release vessel wall. However, 

such small difference can be also represented as an experimental error. 
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FIGURE 3.32 Pulp yield as a function of temperature for explosion pulps in the 

third experimental series 
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The ionic contents for the CTMP, CMP and base explosion pulps were similar-
around 165 mmol/kg (Figure 3.33). The addition of a second impregnation 

chemical (NaHC03) raised the total ionic content by approximately 20%. 

However, the total ionic content had a dropping tendency with increasing 

temperature/time combination. In order to find out what happens, it should be 

realized that there are two important reactions that contribute to the ionic 

content development. Firstly, the hemicellulose hydrolysis, which is by far the 

fastest reaction. It reduces the yield as weil as the carboxylic content. 

Carboxylic acids present in hemicelluloses are the units that contribute to 

carboxylic content, and their removal is mostly responsible for the total ionic 

content drop. Lignin sulphonation, on the other hand, is a reaction that 

increases the ionic content. From Figure 3.34 it can be seen, that the sulphonic 

content increased not only with rising temperature (CTMP < CMP < Base), but 

also with increased process seve rit y (in the case of explosion pulps). This 

reaction also has certain maximum, where lignin changes and their influence 

can decrease the sulphonic content. Sulphonic groups can be lost either with 

sulphonated soluble fractions of lignin or by the hydrolysis from the insoluble 

lignin, as it was suggested by Ahmed et al. [60]. He reported several bell­

shaped curves for the sulphonic content at high seve rit y cooking treatment. An 

examination of pulps in Figures 3.33 and 3.34, (with the exception of the highest 

seve rit y cook at 200°C/4 minutes) shows that the sulphonic content was rising. 

The total ionic content decrease was thus mainly caused by hemicellulose 

solvolysis, which is also confirmed by lower pulp yield at higher seve rit y 

treatment. Previous research (first experimental series) showed that the 

sulphonic content is the more important part of the total ionic content. Results 

showed that if several pulps with similar total ionic content were produced, those 

ones with higher sulphonation had higher papermaking quality. Influence of 

higher sulphonation on paper quality will be demonstrated later in this chapter 

and will be also considered in the mathematical treatment. 
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As mentioned earlier, the higher cooking seve rit y and higher blowing pressures 

yielded cooked chips that were much more flexible and easier to separate. This 

is weil reflected in the refining time and energy consumption figures (Figures 

3.35 to 3.37). Since the relaxation times after the glass transition are in order 

104 times higher [68] than the transition times, chips cooked at temperatures 

above the glass transition temperature remain flexible for substantially longer 

time than those cooked at lower temperatures. High seve rit y cooking treatment 

thus significantly contributed to a more permanent lignin softening. The chips 

stayed flexible after cooling down and this characteristics remained even during 

pulp storage at 3°C. Softer lignin and reduced chip hardness (on touch) 

substantially decreased both refining time (Figure 3.35) and refining energy 

(Figure 3.36). 

Refining times were about the same for CTMP, CMP and base explosion pulp 

(Na2S03 impregnation in ail cases). Refining energy, though, decreased with 

rising temperature. It was about 9 MJ/kg for CTMP, 7 MJ/kg for CMP and 6 

MJ/kg for base explosion pulp. Water explosion pulp had the refining energy 

slightly higher than the base pulp. 

If high seve rit y 2-chemical cooks are examined, it can be concluded that refining 

time decreases with either temperature and cooking time. Comparing refining 

times at similar severity, slight increases can be observed with rising 

temperature: 180°C/4 minutes < 190°C/2 minutes < 200°C/1 minute (Figure 

3.35). Similar effects were observed in the second experimental series, where 

the refining time for 190°C/2 minutes was slightly lower than at the 195°C/1 .5 

minute conditions. Refining energy shows the same tendency (Figure 3.37). The 

lowest seve rit y treatment pulp (180°C/1 minute) had the relative specifie refining 

energy around 5 MJ/kg and the lowest energy was found in the case of 200°C/4 

minutes for pulps with ordinary and nitrogen explosion. Nitrogen addition seems 

to have the biggest influence at lower severity: at 180°C/1 minute and 190°C/2 

minutes. conditions. At 200°C/4 minutes, the values for ordinary and nitrogen 

explosion were very similar. 
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The results 50 far show a very good accord between the three experimental 

series. When several fiber/sheet parameters - density, light-scattering coefficient 

and porosity are considered (Figures 3.38 to 3.42), similar conclusions can be 

reached. The average fiber length also increased with the treatment severity. If 

the rising temperature is considered as a reference, the average fiber length 

increased in the order CTMP < CMP < explosion pulps. If we take the 6 pulps 

prepared at the central point temperature (190°C), we found that the fiber length 

increased in order water explosion < base explosion < 190°C/1 minute < 

190°C/2 minutes = 190°C/2 minutes nitrogen explosion < 190°C/4 minutes. 

Even if the differences (especially for the 4 latter pulps) were not very large, 

they showed a tendency that has been repeated for ail three cooking 

temperatures (180, 190 and 200°C). The increase in fiber length with increasing 

cooking severity can be explained by the shorter refining time and lesser 

amount of energy attributed to each fiber during the refining stage. If there is 

le 55 energy and less contact with refining plates/blades, the fibers are cut to a 

lesser extent compared to less flexible, le 55 softened and more stiff CTMP and 

CMP. 

ln spite of the longer average fiber length, the higher seve rit y cooking conditions 

resulted in higher pulp density. Figure 3.38 shows the density increase as a 

function of treatment. The CTMP and the water explosion pulp are at similar 
level, CMP pulp has density slightly lower than the base explosion (Na2S03 

only), and the explosion pulps' density rises with increasing seve rit y of both time 

and temperature. This fact resulted in a better fiber softening and therefore an 

improved space filling by fibers treated with increased severity. From this point 

of view, it is not surprising to see that the explosion pulps had also lower light­

scattering coefficient values. Figure 3.39 shows this tendency for ail pulps and 

Figure 3.40 concentrates on the 2-chemical explosion pulps. If a comparison is 

made at similar severity, the values are very close for 180°C/4 minutes, 190°C/2 

minutes and 200°C/1 minute and are slightly rising with increasing temperature. 

The influence of nitrogen pressurization confirms earlier reported results - it 

diminishes the LSC in the case of 180°C/1 minute and does not cause 

significant differences at higher temperatures. As a matter of fact, the LSC 

values at 190°C/2 minutes and 200°C/4 minutes were identical for ordinary and 

nitrogen explosion. Higher density and larger fiber contact (represented by lower 

scattering capacity) naturally lead to lower porosity values. Figure 3.41 shows 
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this tendency for ail pulps. The porosity drops in the order CTMP > CMP > water 

explosion> explosion pulps. The only exception is the base explosion (one 

chemical) pulp with porosity matching that of CTMP. This is quite unexpected 

and was not found in the first experimental series. Higher density, lower LSC 

and better surface characteristics should definitely put this explosion pulp's 

porosity below the water explosion value. It is interesting to note that if the other 

(2-chemical) explosion pulps (Figure 3.42) are examined, it can be seen that 

regardless of the starting point, pulping condition or the digester pressurization, 

the po rosit y values seem to converge into one value (about 10 ml). In order to 

investigate this particularity, several sheets with the freeness level below 100 ml 

were prepared. From the "meeting point" at 10 ml, the porosity curves were very 

similar, and at ail pulping times at 200°C, they reached virtually zero porosity at 

about 65 to 70 ml CSF. 
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Better physical fiber characteristics as weil as higher sulfonic content suggest 

higher mechanical properties for the explosion pulps. Figures 3.43 to 3.49 fully 

confirm these suggestions. Breaking length values (Figure 3.43) nicely rise with 

increasing temperature in order CTMP < CMP < base pulp < explosion pulps. 

Water explosion pulp has its breaking length similar to the CTMP and the one­

chemical base explosion pulp is slightly stronger than the CMP. Explosion pulps 

(Figure 3.44) show improvement with either cooking time and cooking 

temperature increase. Nitrogen explosion again confirmed its beneficial 

influence on breaking length development. This seems to be the most improved 

mechanical parameter in ail three experimental series. In the case of 180°C/1 

minute, the pressure increase (over 15 atmospheres) caused an increase in 

breaking length so significant that this pulp was almost equal to the double­

length time cooking conditions at 180°C/2 minutes. At 190°C/2 minutes, the 

increase was less pronounced and the 200°C/4 minutes conditions produced 

equal breaking length values for both ordinary and nitrogen explosion. 

Stretch values (Figure 3.45) improved accordingly with the breaking length -

beginning at 1.2% for the CTMP and reaching to about 2% for the 200°C/4 

mi nute cook. 

Burst indexes (Figure 3.46) showed very similar behavior increasing linearly 

with increasing cooking severity (temperature). Water explosion pulp reached 

about the same strength than the CTMP and the base explosion pulp has its 

burst index about 30% higher when compared to the CMP. In the explosion 

pulps case (Figure 3.47), the biggest improvement was found when the cooking 

time was increased from one to two minutes. Further increase to four minutes 

added hardly half of the former improvement. Similarly to the breaking length, 

the nitrogen explosion was mostly pronounced at 180°C/1 minute - almost 

matching the burst of the 180°C/2 minute cook. The difference at 190°C/2 

minutes and 200°C/4 minutes were much lower. In fact, the pressurized 

explosion pulps ended up with burst values slightly lower compared to ordinary 
explosions. 

Tear values (Figure 3.48) followed the tendencies described for the breaking 

length, stretch and burst indexes. 
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A comparison of breaking length and the tear index, (Figure 3.49) shows the 

mechanical strength improvement in the following order: CTMP < water 

explosion < CMP < base explosion < explosion pulps. If we draw a line through 

these 16 pulps, the relationship tear = f(breaking length) is almost linear with 

none of these pulps being much "off limits". This was the order found in the first 

experimental series and it was again confirmed that the explosion pulping 

process working at high severity cooking conditions does produce pulps with 

higher mechanical strength quality. From this point of view, expected results 

were obtained. 
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This series, however, did result in some surprising results: 

First of ail, most of the mechanical parameters were lower than previous 

experiments suggested. These lower values are not caused by an experimental 

error. Every pulp was refined to four or five CSF levels and ail the values at 100 

ml CSF were interpolated rather than extrapolated. Also, it is worth mentioning 

that the statistical design for testing the reproducibility of this experiment was 

sufficiently good - a series of randomly prepared pulps at several cooking 

conditions showed only a 3 to 5% variation in properties with the exception of 

the tear index, where the variation was about 7% (we will describe this test more 

in detail with the mathematical treatment). The reason for lower pulp quality 

probably lies in the chip quality. The same causes that decreased ail pulps' yield 

could be applied as weil on the mechanical parameters. 

Secondly, the curve shapes were also surprising. What was confirmed - it was 

lower properties for lower seve rit y explosion pulps (180°C/1 minute). Quite 

surprisingly, even this pulp surpassed in ail cases both CTMP and CMP, often 

with 50 to 100% quality improvement. What was not expected was the superior 

quality improvement at the highest seve rit y pulping conditions (200°C/4 minutes, 

200°C/4 minutes - nitrogen explosion). Lower yield, carboxylic content, refining 

energy. LSC, porosity and higher density can be explained quite logically - they 

just follow out as a result of ail the changes underwent during the high severity 

treatment. What was expected as the result of the above mentioned changes, 

was much more profound fiber damage resulting in shorter fibers with lower 

mechanical properties. This did not happen and the probable explanation of this 

fact is that the cooking conditions were not severe enough so that the damaging 

effects of high seve rit y did not overlap the positive ones. In this case - in order 

to lower the properties we would have to go to either or a combination of: 

- much heavier chemical impregnation; 

- press-impregnation (for the pre-cook chip destruction); 

- increasing the cooking severity by using longer cooking time, higher cooking 

temperature and/or pressure. 

Thirdly, the influence of pressure. The results at 190°C/2 minutes did not come 

as a surprise and correlated quite weil with the second experimental series. 
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However, the improvement for the 180°C/1 minute was bigger than expected. 

This confirms the results from the first and second experimental series that if the 

cooking seve rit y does not reach certain degree and does not develop fiber and 

paper properties, there is a room for further improvement that can be obtained 

by a pressure increase. Also, the pressure increase at 180°C was the highest 

one (over 15 atmospheres, compared to 13 atm for 190°C and 9.5 atm for 

200°C) and it is quite logical that the property improvement was the most 

pronounced in this case. In several occasions, the nitrogen-exploded pulp at 

180°C/1 minute showed similar properties as the following one in the line : 

180°C/2 minutes, meaning that digester pressurization prior to the explosion can 

have almost the same effect as doubling the cooking time from 1 to 2 minutes. 

The most severe conditions, on the other hand, did not have either good or bad 

influence. With the exception of pulp yield, where the difference was about 1 % 

(which is insignificant if we consider the experimental error), ail other 

parameters were almost identical for the ordinary and nitrogen explosion. This 

was not expected at the beginning. As explained earlier in the theoretical 

considerations and in the experimental planning section, it was thought that this 

pulp should be really "overcooked" and the pressurization could cause certain 

damage to very soft fibers. The explanation why this did not happen would be 

the same as for the mechanical parameters i.e. the cooking conditions were not 

severe enough to cause damages sufficient to decrease fiber and paper quality. 

When examining the optical properties, it can be seen that excellent brightness 

values for ail pulps with the exception (again) for the water explosion pulp are 

obtained (Figure 3.50). Water explosion pulp (no chemical protection) comes 

out of the reactor very brown, the fibers are covered by lignin and the resulting 

brightness was (as in other series) around 45% MgO. Highest seve rit y (200°C/4 

minutes and 200°C/4 minutes - nitrogen explosion) was the only case where the 

brightness dropped below 60%. The highest value (close to 72%) was found at 

the CTMP pulping conditions. Brightness was little lower for the CMP and the 

explosion pulps followed closely behind. The highest explosion pulp brightness 

was found at the least severe conditions (180°C/1 minute): around 65% MgO. At 

190°C, the highest value was found for the base pulp prepared with only one 

impregnation chemical. Anyhow, the addition of the second impregnation agent 

did not cause a significant decrease and ail five pulps were within a 2% 

brightness span fram 61 to 63% MgO. 
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Opacity was again highest in the water explosion pulp case (Figure 3.51). Very 

similar opacity (around 90%) was found for CTMP and CMP pulps. Explosion 

pulps, once again showed lower opacity. The reason for lower opacity is not 

only in pulp brightness: the explosion pulps (in the first and third experimental 

series) did have significantly higher pulp density and lower light-scattering 

coefficients. These factors also contributed to a slightly less opaque sheets. 
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3.3.2 EXP LANA TORY ANALYSES 

Ali three experimental series showed that the high severity cooks can produce 

ultra-high yield pulps at very low refining energy with excellent papermaking 

properties. In this part, efforts will be focused on the physical, physicochemical 

and chemical changes that happen during the cook. By planning these analyses 

it is believed that the results would bring new insight into this topic and would 

contribute to a better understanding on what is going on at the high severity 

treatment. 

3.3.2.1 LlGNIN 

As we stated previously, lignin undergoes an additional softening. From the 

lignin 1055 point of view, there were no major changes, as revealed by the 

Klason lignin analysis (varying between 18 and 21 % of acid insoluble lignin in ail 

samples). Figure 3.52 shows that there was about 21 % of lignin in original wood 

and this value did not change for the CTMP, CMP, water explosion pulp (no 

chemicals added) and for the base explosion (one impregnation chemical). If 

explosion pulps resulting from a two-chemical impregnation were examined, a 

certain drop in the lignin content could be observed. The only exception was at 

the mildest condition (180°C/1 minute) where the lignin content was almost 

unchanged. For other pulps, the percentage of lignin was usually found between 

18 and 19%. 

If the pulp yield and the lignin content are examined, it can be seen (Figure 

3.52) that both variables change at similar rate. In our considerations, not much 

variation in the lignin content was expected. Indeed, in the high yield pulping 

(particularly in the ultra-high yield pulping), one of the objectives is to preserve 

as much wood material as possible and that is why pulping conditions and 

chemicals that are not very harmful to any of the wood components were 

chosen. Other research [39] also confirmed very small changes in the lignin 

content during high severity wood treatment (with several chemical 

impregnation systems). 
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Various methods have already been used in order to investigate the influence of 

high seve rit y cooking conditions on lignin changes. In our experimentation, the 

FTIR and mostly Raman spectroscopy have effectively been used. 

RAMAN AND FTIR SPECTROSCOPY 

A significant part of the Raman spectra for wood and explosion pulps prepared 

at 180°C/4 minutes and 200°C/4 minutes is plotted in Figures 3.53 to 3.55. The 

most valuable Raman information is obtained from the 1600 cm-1 and 1650 cm-1 

peaks and from the peaks at 1500, 1600 and 1650 cm-1 from the FTIR spectra. 

Peaks at 1600 and 1500 cm-1 relate to different modes of lignin aromatic ring 

vibrations and the 1650 cm-1 peak relates to C=O and C=C bonds in lignin. As 

the cooking temperature rises, we found less lignin in pulp samples. This is true 

for both comparisons: conventional processes (CTMP and CMP) and the 

explosion pulps, as weil as for the explosion pulps prepared at different degree 

of severity. FTIR revealed narrowing tendency for the half-peak width at 1500 

cm-1 with the temperature increase (which was not visible in the Raman 

spectra). This fact (Figure 3.56) shows that a quiet significant lignin restructuring 

leading to a certain degree of coalescence is taking place, particularly at high 

severity cooking conditions. 

Raman and FTIR spectroscopy analyses showed distinct differences in lignin 

quality. Compared to the CTMP and CMP, there is a lesser lignin quantity in the 

explosion pulps lignin samples and the remaining lignin is more structurally 

organized. These spectra even suggest a unique phase, which was probably 

caused by the coalescence effect [68, 121]. 
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Lignin sulfonation of high severity treated wood was higher in comparison to the 

CTMP and CMP. This fact was observed in the first and in the third 

experimental series and we believe that lesser hydrophobic character of lignin 

also helped to improve the mechanical properties (this aspect will be further 

investigated in the mathematical treatment). The importance of lignin sulfonation 

is not only in the quantity, but al 50 in the distribution. This topic (Iignin 

sulfonation in bulk and on fiber surface) will be discussed later in this chapter. 

However, there was one slight difference. In another reference [60], it was 

mentioned that the lignin sulfonation curve is a bell-shaped one. The 

explanation of this fact was that at the earlier stages of the cooking process, the 

lignin sulfonation reaction is quite fast and according to Arhenius' law, the 

kinetic constant increases twofold to threefold with a 10°C increase of the 

reaction temperature. When the cook begins, the lignin sulfonation is the 

dominant reaction. At the later stage, lignin changes and the hydrolytic reactions 

do cause a decrease in the sulfonic content. The sulfonic groups can be 

hydrolyzed from the lignin and lignin may also produce (even if in smaller 

quantities) soluble products of homolytic cleavage [92 , 120] that can be 

sulfonized, too. In our case, the lignin sulfonation curves were steadily rising 

with the increase of cooking temperature and cooking time. Only at the highest 

severity conditions (200°C/4 minutes and 200°C/4 minutes with nitrogen 

explosion), the sulfonic content seemed to level off or slightly dropped (Table 

3.8, Figure 3.34). Otherwise, we did not see any dramatic drop in lignin 

sulfonation. This characteristic may vary with different wood species, different 

impregnation chemicals or methods and with other factors. In ail our 

experimental series, in spite of relatively high possible experimental error in the 

sulfonic content measurement, the results were reproducible and comparable 

within each series as weil as between individual series. 

3.3.2.2 CELLULOSE AND HEMICELLULOSES 

As we stated before, the hemicellulose degradation (hydrolysis) is the 

predominant reaction in the vapour-phase cooking at high temperatures. This is 

extremely weil documented by the yield 1055 with increasing cooking severity. 

With almost constant cellulose and lignin content, the yield 1055 can be 

attributed to the hemicellulose 1055. Another proof of this theory is the carboxylic 
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content decrease. With the increasing pulping seve rit y, an increase in the pulp 

sulfonation, even if the total ionic content values were dropping, was found. This 

means that the carboxylic content was significantly decreased at higher cooking 

times and temperatures. The carboxylic content is mostly created by the 

carboxylic groups in hemicelluloses, since there are no such groups in the 

cellulose chain and the carboxylation of lignin is very low (usually less th an 1 or 

2 COOH groups per 100 Cg lignin units), then it can be concluded that the loss 

in the carboxylates can be indeed interpreted as a result of hemicellulose 

hydrolysis. 

The cellulose itself undergoes sorne changes, too. In the first series, an 

increase in the ordered portion of cellulose 1 and a decrease in the disordered 

portion of cellulose II-type (hemicelluloses in our case) was found. Results of 

the FTIR analysis were very similar for the third series. Furthermore, a Raman 

spectroscopy and the X-ray diffractometry were carried out to confirm the results 

from the FTIA. Another series of analyses were meant to bring more information 

about the surface characteristics. Higher light-scattering coefficient at high 

seve rit y treatment showed to better bonding and an attempt to prove this 

suggestion by the surface quality investigation by ESCA and WRV was 

undertaken. 

3.3.2.2.1 RAMAN SPECTROSCOPY 

Raman spectroscopy unfortunately did not provide much information. A distinct 

decrease in the hemicelluloses' content (acetyl groups peak decrease at 2937 

cm-1) was observed but if these spectra were compared with the FTIR, no 

worthwhile information could be obtained. Despite excellent equipment, the 

background noises and weak signais did not allow a more profound study. 

3.3.2.2.2 X-RAY DIFFRACTOMETRY 

The results from the FTIR and Raman spectroscopy suggested an increase in 

cellulose content with rising cooking severity. By using Valov's et al. 

mathematical model [131], a higher portion of ordered cellulose 1 and 
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decreasing amounts of cellulose II-type (hemicelluloses) with rising temperature 

were found. However, this analysis did not result in any specific number. The 

values obtained led only to a relative comparison between several samples. 

From this point of view, it was decided to use another method to confirm 

findings from the infrared spectra and their interpretation. Based on the literature 

review of [41, 52, 58, 65, 67, 71, 93, 120, 123 to 129, 137, 139, 143, 144, 148, 

162], the X-ray diffractometry was selected as one of the analysis approaches. 

This method results in information about cellulose crystallinity and crystal size. 

For our analyses, an X-ray diffractometry was performed on most of the pulp 

samples. An example of a X-ray diffractogram is on the Figure 3.57. It was clear 

from ail the diffractograms that the difference between the crystalline peak and 

the amorphous part was getting bigger with an increasing temperature. Also, the 

crystalline peak width (at the half-height) was narrowing which means that the 

degree of crystallinity order was increasing with cooking severity. 

Figure 3.58 shows a comparison of the crystallinity index for six samples (aspen 

wood, CTMP, CMP, 180°C/1 minute, base explosion pulp and 200°C/4 

minutes). It can be seen that the crystallinity increase is evident with rising 

temperature. The overall increase between wood and 200°C/4 minutes is 10% 

which represents a very significant improvement. On the other hand, it should 

be considered that the original wood sam pie and ail the other pulps are fairly 

different, because of the differences in pulp yield. Figure 3.59 reveals that the 

crystallinity increase is very proportional to the yield 1055. This could be 

explained in the fact that the yield decrease is mostly due to hemicellulose 

hydrolysis and that from this point of view the crystallinity increase is natural 

even without anything happening to the cellulose per se. When the crystallinity 

values were recalculated according to the pulp yield (Figure 3.60), a certain 

increase in the crystallinity in ail cases emerges, with the exception of the most 

severe pulping conditions (200°C/4 minutes). It is important to say that the 

crystallinity indexes must not be taken as absolute values. Since it is only a very 

small part that actually participates at the diffraction (in the test pellet, the 

crystals are randomly oriented), the crystallinity indexes serve more like units of 

comparison between individual samples, rather than as absolute values in 

comparison with other analyses. 
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FIGURE 3.57 X-ray diffractogram of the explosion pulp prepared at 190°C/2 
minutes 
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However, the crystal size is an absolute value. From Figure 3.61 one can see 

that the crystal size was rising with increased cooking severity. Considering that 

the calculated thickness of one crystalline layer of cellulose 1 is about 4 A, these 

values were increasing in order wood (11.5 layers) < CTMP (12.5 layers) < CMP 

(12.75 layers) < explosion pulps (14 to 15 layers). 

ln our comparison of 6 pulps (Figures 3.58 to 3.60) we can see that the 

crystallinity increase was not much dependent on the cooking chemicals. In this 

case, one sample with no chemicals, three pulps with one impregnation 

chemical and two pulps with two impregnation chemicals were used. The 

crystallinity sequence was however rising with increasing pulping severity. 

Similar effect can be seen in the crystal thickness case (Figure 3.61). The leaps 

are clearly a function of pulping conditions. In the central point, for example 

-water explosion pulp (no chemicals), base explosion pulp (Na2S03 only) and 

explosion pulp (Na2S03 + NaHC03) had the very same number of crystalline 

levels participating at the diffraction. The only further increase was found at the 

highest seve rit y conditions (200°C/4 minutes), where the crystal thickness rose 

from 56 to 60 A as there was one more layer in the cellulose crystal. 
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3.3.2.3 SURFACE ANALYSES 

ln previous paragraphs, we have shown and explained some important changes 

that occur during or as a result of the high seve rit y cooking. We have found 

chemical differences in the lignin structure, and more cellulose 1 and higher 

degree of cellulose order in explosion pulps. Some of these changes, such as 

the sulfonic content, are caused by both: the chemistry of impregnation and high 

severity. Other changes, such as cellulose crystallinity are caused mainly by the 

high temperature and high pressure during the cooking process. In general, high 

seve rit y pulp fibers needed much lesser amounts of refining energy. As a result, 

pulp fibers were longer, more flexible and the lignin was less hydrophobie in 

nature compared to conventional ultra-high yield pulps. 

From the papermaker's point of view, there is one more important aspect to 

evaluate. Ali previous analyses dealt with physical and chemical parameters in 

bulk mass. The question is: What are the surface characteristics of fibers 

treated at high seve rit y? Are there some differences in comparison to the RMP, 

CTMP and CMP and if so, how the paper quality is affected. 

ln this approach, we can basically use two types of methods: first type are the 

methods that would indirectly demonstrate fiber surface quality and the second 

type are direct methods. 

An example of an indirect method is the light-scattering coefficient. In the first 

and third experimental series, much lower values of LSC in the case of high 

severity pulps (Figures 3.8, 3.39 and 3.40) was found. Even if Kosik showed 

[121] almost twice as large specifie surface area for aspen explosion pulps, the 

LSC coefficients presumes to a lower area of unbound surfaces (meaning 

higher degree of fiber bonding). Lower values of CSF can be explained by two 

factors. Primarily, higher flexibility (higher density with longer fibers) of softer 

explosion pulps allows more fiber contact. Secondly, higher surface quality does 

lead to better interfiber bonding. Higher surface quality can be explained by both 

higher surface sulfonation (which decreases the hydrophobie lignin character) 

and mainly by more cellulose exposure on the surface of fibers. These are very 

important reasons how lower LSC values in the case of higher seve rit y 

treatment could be interpreted. To prove these assumptions, it was decided to 

use two more methods of surface evaluation. 
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3.3.2.3.1 WATER RETENTION VALUE 

Even if water retention value evaluation is not a specifie fiber surface test 

method, it can lead to significant conclusions. WRV values reflect the surface 

accessibility of cellulose and its ability to swell, which is another important fiber 

parameter. Sakai et al. [166] directly associated swelling to external fibrillation 

(which can be measured as specifie surface) and Garceau [167] successfully 

used WRV measurement as an indirect measurement of specifie surface. Other 

authors [67, 71, 137] also used WRV in pulp evaluation. In our trials, we used 

Lebel's et al. description [168] of the WRV technique. 

From the practical point of view, water retention value is a percentile amount of 

water held in the pulp sample after a 12-minute long centrifuging at 2500 rpm. If 

we look at the Figure 3.62, we can see the WRV values for most of reference 

and high seve rit y pulps. The capacity to absorb water rises in order CTMP < 

CMP < water explosion < base explosion < 180°C/1 minute < 190°C/2 minutes 

< 200°C/4 minutes. This classification is quite logical if the WRV value is 

considered to reflect the degree of chemical changes. In the CTMP case, the 
chemical modification is less pronounced as compared to CMP pulp and when 

the explosion pulps are examined, the order is also self-explanatory: water 

explosion pulp with no chemicals was the darkest pulp with presumably lot of 
lignin on the fiber surface, what barriers the entry channels against higher water 

intake. One impregnation chemical (base explosion pulp) helped the swelling 

and exposed more cellulose on the fiber surface. With the two-chemical 

impregnation, the highest values of WRV are obtained. Ali values rose with 

increasing seve rit y and the big difference between two-chemical impregnation 

and any other pulp can be attributed to better fibrillation, higher cellulose 

exposure on the fiber surface as weil as to higher sulfonation of these fibers 

(which reduces the hydrophobe character of lignin). 
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Other very important conclusion can be drawn from the regular explosion and 

nitrogen explosion water retention values. In ail three cases, the WRV 

improvement caused by a pressure increase to 25 atmospheres was around 

15%. This confirms that the explosion from higher pressures does not only help 

to separate chips into fibers or fiber bundles but also helps in internai fibrillation 

which is a very important parameter for paper strength development. 

If the best high severitypulps (200°C/4 minutes and 200°C/4 minutes - nitrogen 

explosion) are compared with CMP and CTMP, a dramatic improvement (almost 

100%) in the water retention value results. This indicates that a better fibrillation 

takes place with higher surface quality in the case of exploded fibers i.e. more 

surface cellulose and higher surface sulfonation. 
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3.3.2.3.2 ESCA 

ln the biomass and pulp/paper research, ESCA studies were used by several 

authors [39, 58, 65, 67 to 69, 71, 136,169 to 180]. For our analyses, we used 

the ESCALAB MKII equipment at the Université Laval. During our experiment, 

we recorded the C1s, 01s and S2p spectra for several pulp samples. Since our 

samples were electric insulators, a charge built up on the sample surface due to 

X-ray bombardment and acted as an additional retarding potential , which 

reduced the kinetic energy of photoelectrons. To get true binding energies, we 

corrected our results with a suggested reference point [169, 170] - 015 peak of 

cellulose, whose binding energy is 553.2 eV. Ali our samples were very close to 

this value and the peak shifts were usually less than 2 eV. A spectrum recorded 

for the 190°C/2 minutes explosion pulp is on Figure 3.63. 

The binding energy of C1s and its peak deconvolution have been weil 

documented. There is a general agreement on the assignment of components 

C1, C2, C3 and C4 of C1 s peak for wood derivated materials [169, 170, 173 to 

176]. C1 corresponds to carbon atoms Iinked only to hydrogen or carbon atoms 

(C-H or C-C), C2 has a single bond Iink to one oxygen atom (C-O) and C3 

carbon has a single bond Iink to two oxygen atoms (O-C-O) or one carbonyl 

bond (C=O). C4 represents carbon atoms Iinked to one carbonyl and one non­

carbonyl oxygen (O-C=O). Due to low concentration of carboxylic groups, we 

were not able to discern C4 atoms on oUr sample surfaces. 

Figure 3.64 shows the C1 s peak for the explosion pulp prepared at 190°C/2 

minutes along with the deconvolution into C1, C2 and C3 peaks. This type of 

information is important for cellulosic/non-cellulosic material assignment for the 

fiber surfaces. It is believed that C1 mainly comes from lignin and extractives, 

because the carbohydrates only contribute to C2 and C3 peak [177, 178]. 

Theoretically, there are 83% C2, 17% C3 and no C1 in pure cellulose (which 

corresponds to five c-o and one O-C-O atoms in a C6 cellulose unit) . 

Hemicelluloses have similar carbon bond structure as cellulose, that is, ail the 

carbons in hemicelluloses are linked to at least one oxygen. According to 

Freudenberg's spruce lignin empirical model [169], lignin has higher C1 

components. Its C1, C2 and C3 contents are 49.2, 48.8 and 2%. As for the 

extractives, they should have the highest C1 percentage, since they are mainly 
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hydrocarbons. However, we expected to have insignificant extractive content: 

we suppose that almost ail these chemicals got extracted during impregnation, 

cook, washing and refining process stages, similarly as shown previously [32]. 

Figure 3.65 shows the C2/C1 ratio for wood and three explosion pulps prepared 

at 190°C/2 minutes. Since the C3 portion in each of these pulps is very low, the 

C2/C1 ratio is good enough to compare the saccharidic and Iignin presence on 

the surface of untreated and treated fibers. 

For wood, the ratio is only slightly above 1.0 which indicates to higher lignin 

percentage on the fiber surface. If we look at the water explosion pulp, we can 

see that the C2/C1 ratio is even lower. This confirms the theory that if we do not 

protect chips chemically, high seve rit y pulping conditions, leading to higher 

permanent Iignin softening will also lead to fiber separation mostly in the middle 

lame lia. Visually, water exploded chips were much darker (about 20 brightness 

points compared to any other pulp) and we presume that this dark colour is 

caused by lignin and its condensation products. Higher percentage of lignin on 

fiber surface (in this case, even non-sulfonated lignin) prevents the creation of 

hydrogen bonding sites and thus largely reduces paper strength. Considering 

this Iignin encrust on water exploded fibers, it is not surprising that the 

mechanical parameters of this paper were lower than in any other explosion 

pulp. Some property similarity with some other pulps (CTMP, CMP) can be 

explained by higher fiber length, higher fiber flexibility (due to higher degree of 

permanent Iignin softening) and similar paper density. 

If we look at the water explosion, base explosion pulp and the 190°C/2 minutes 

explosion pulp, we can see that the C2 portion has a significant increase with 

each chemical added. Na2S03 improved the C2 content by approximately 30% 

and in the case of Na2S0slNaHC03 impregnation, the C2 portion was almost 

70% higher than the C1 component. From our previous considerations, it follows 

that higher C2 content proves higher surface exposure of the cellulose and 

hemicelluloses. 
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FIGURE 3.64 Carbon C1s spectrum with C1, C2 and C3 peak deconvolution 

for the 190°C/2 minutes explosion pulp 
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Another confirmation of this theory is in the oxygen peak evaluation. An 

example of an 01s peak (190°C/2 minutes) is in Figure 3.66. Figure 3.67 shows 

the oxygen/carbon ratio for aspen wood, CMP, and the three explosion pulps 

prepared at 190°C/2 minutes. The clear tendency in the OIC ratio is the very 

same as in the C2JC1 analysis. We have a reference value for aspen wood, in 

the case of water explosion pulp the OIC value is lower due to higher lignin (Iess 

oxygen) surface exposure and for other pulps, the O/C ratio is rising in 

sequence CMP < base explosion < ste am explosion. From this picture , it is 

obvious that the explosion pulps have more carbohydrate and less lignin on the 

fiber surface compared to the CMP or wood. A rise in exposure for 

carbohydrates means more exposure for hydrophilic groups on the fiber surface, 

which facilitates the formation of hydrogen bonding between fibers during paper 

making. This is one of the partial explanations why explosion pulps show 

greater strength compared to conventional CTMP and CMP. 

Peak synthesis technique revealed that there was only one peak present in the 

S2p spectra. In our case, the binding energies indicate the sulfonate state. 

Therefore, it may be concluded that the sulfur in our samples is completely in 

the form of sulfonate. Consequently, the SIC ratio will reflect the amount of the 

sulfonate group on the fiber surface. An example of a sulfur peak is on Figure 

3.68. Figure 3.69 shows that explosion pulps higher SIC ratios than the CMP. In 

this case, we have no reference point, since neither aspen wood, nor water 

explosion pulp contain detectable (or comparable) am ou nt of sulfur. For 

explosion pulps we see that the SIC ratio has increased with the addition of a 

second impregnation chemical. 

As the formation of the sulfonate group in lignin improves its hydrophilicity, more 

sulfonate may help fiber bonding and consequently, lead to a greater paper 

strength. In addition, an introduction of sulfonate groups into lignin reduces its 

glass transition temperature and makes it sotter, which leads to lower refining 
energy and an increase in long fiber fraction, fiber specifie surface and 

conformability [159]. Therefore, it might be suggested that lower refining energy 

and more long fibers of steam explosion pulps may result from their greater 

sulfonation. 
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FIGURE 3.66 Oxygen 015 peak for the 190°C/2 minutes explosion pulp 
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ln conclusion, the ESCA analysis showed that explosion pulps have higher 

oxygen-to-carbon ratio and less C1 peak areas compared to wood or 

conventional CMP. This suggests that explosion pulps have more 

carbohydrates exposed on its fiber surface. More carbohydrates, therefore more 

hydrophilic groups, exposed on the surface facilitate hydrogen bonding during 

paper formation, and consequently improve interfiber bonding. This may explain 

why the paper sheet made of explosion pulp provides much greater strength 

than a conventional pulp. Explosion pulps also have higher degree of surface 

sulfonation resulting in more hydrophilic groups on the fiber surface. 
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3.3.3 CONCLUSION FROM THE THIRD TRIAL RESUL TS 

Sixteen pulps in the third experimental series covered the majority of the 

cooking interval for the high severity treatment as weil as some conventional 

processes. If we look at the explosion pulps, we can conclude that: 

- pulp yield has decreased proportionally with increasing severity. The mildest 

conditions (180°C/1 minute) resulted in yield higher than 90% and the most 

severe conditions (200°C/4 minutes) lowered the yield to about 83%. 

- The yield drop is mainly caused by the hydrolysis of hemicelluloses. Klason 

lignin analysis showed that the lignin content is similar in most of the 

samples. Several other analyses (X-ray diffractometry, spectroscopies) have 

shown that the quantity of cellulose did not change, too. 

- lonic content was another proof of hemicellulose hydrolysis. Hemicellulose 

COOH groups are the main contribution to the carboxylic . content. Their 

decrease with rising seve rit y confirmed the fact, that the hydrolysis is the 

fastest reaction during high-temperature cook. On the other hand, the 

sulfonic content was increasing for the main part of the pulping interval. Only 

at he most extreme conditions at 200°C, the sulfonation began to decrease. 

This can be explained by lignin reactions and partial hydrolysis of the sulfonic 

groups. 

- Every severity increase has improved sorne fiber properties. This was not 

quite expected since we thought that there would be an optimum with further 

quality decrease at exaggerated cooking conditions. The light-scattering 

coefficient at the most severe conditions, for example, was very close to 

values known for chemical pulps which have substantially lower yield. Also, 

the mechanical properties were best at higher severity. 

- Pressurized explosion (from 25 atmospheres) showed the biggest benefit at 

180°C/1 minute. Pressure increase had almost the same effect on paper 

quality as doubling the reaction time. In the central point, we found slightly 

higher breaking length and at the most severe conditions (200°C/4 minutes) 

we did not see any improvement at ail. This confirms our previous findings 
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(from the first and second experimental series) that the pressurization to 25 

atmospheres has a positive effect only at lower seve rit y or lower or 

insufficient chemical treatment. 

Several analytical analyses helped to explain better performance of explosion 

pulps. The X-ray diffraction confirmed higher cellulose crystallinity and thicker 

crystals with increasing severity. As we explained in the first series, when we 

talk about bonding properties, the ordered cellulose 1 is the highest quality 

material possible. Water retention value analysis showed better surface 

fibrillation for explosion pulps. Pressurized explosion improved the WRV by 

about 15% in ail cases, which demonstrated another benefit of explosive pulp 

release. ESCA analysis showed some important differences in fiber surface. In 

comparison with conventional processes (CMP), the surface cellulose exposure 

was substantially higher in the case of explosion pulps. Also, higher surface 

sulfonation of explosion pulps helped to reduce the hydrophobie lignin character 

and increased mechanical properties. 



4 MATHEMATICAL EVALUATION OF OBTAINED 
RESULTS 

With a new process development, it is very important to analyze its performance 

by comparing ail the important outcomes to existing processes. In the case of 

ultra-high yield pulps, the most important parameters are the cost evaluation 

(mostly represented as the refining energy) and paper properties. It is very 

difficult to compare process conditions of high seve rit y pulping and conventional 

methods, such as the CTMP and CMP, since the operating conditions and 

chemical charges added are completely different. Carrasco et al. [42, 53, 155] 

suggested that it would make no sense to compare the properties of pulps 

resulting from processes, working at such different temperatures, times, 

pressures and impregnation conditions based on one single parameter only 

(such as the yield, sulfonation, etc.). When he tried to explain or predict the pulp 

and paper properties with one parameter only, the regression coefficients were 

very low (for yield, for example: from 0.04 to 0.53 for the refining energy and 

mechanical properties, 0.56 to 0.73 for optical properties). This is also the 

situation in this work: most of the figures are presented as a function of 

temperature. In fact, the temperature was not chosen as a single important 

parameter - it was chosen to demonstrate increasing cooking severity, which 

increases with rising temperature. Also, the temperature was chosen for better 

result visualization, because it did not cause many challenges in understanding 

of the figures. It is really essential to determine which and how man y 

parameters can be taken as reference variables. These parameters should 

represent the severity of different pulping processes. 

As a first step in this evaluation, we tested the result reproducibility. We cooked 

100 explosion pulps at 190°C/2 minutes. Based on randomly generated 
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numbers, we prepared 10 pulp samples with 10 cooks in each of them. With 

these samples, we did most of the analyses performed throughout this work. For 

the yield, density, porosity, breaking length, stretch, burst, brightness, opacity 

and light-scattering coefficient, the relative standard deviation at 100 ml CSF 

was in 2 to 5% interval. The two parameters with higher spread were the relative 

specific refining energy (6%) and tear (7%). 

For every pulping condition in the first, second and third experimental series, 

every cook was repeated 15 times and cooked pulps were mixed together. From 

this mixture, pulps were refined to at least three freeness values. Pulp yield , 

sulfonic and carboxylic content, relative refining specific energy and the Bauer­

McNett fiber classification were measured 4 times, ail other parameters were 

measured at least 10 times. 

The experimental error defined as the relative standard deviation for each 

measurement is presented in the tables with experimental results (chapter 3). 

The interdependence between processing pulping conditions and characteristic 

pulp and paper properties is iIIustrated in Figure 4.1. It is clear that specific 

refining energy and paper properties depend on operating conditions. But the 

pulp parameters also influence paper properties and could explain the energy 

consumed to obtain certain paper quality. Then, it is possible to relate y 

variables (paper quality) to x variables (pulp characteristics) without considering 

the operating conditions (z variables) because the ove rail influence of the latter 

will be included in the intermediate variables x. Therefore, the determination of 

mathematical equations of the type y = f(x) instead of y = f(z) is an attempt to 

correctly compare processes having two or more operating conditions. Equation 

of the type x = f(y) could be also useful. 
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FIGURE 4.1 Schematic diagram of the interrelations between operating 

conditions and variables representing pulp and paper quality 

ln our study, we considered the following variables: 

Cooking condition parameters (z): 

- Cooking temperature 

- Cooking time 

- Cooking pressure 

Pulp parameters (x): 

Yield 

- Sulfonic content 

- Carboxylic content 

- Total ionic content 

Refining energy and paper parameters (y): 

- Relative specifie refining energy 

- Refining time 

- Density 

- Porosity 

- Breaking length 
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- Stretch 

- Burst index 

- Tear index 

- Light-scattering coefficient 

- Brightness (60 g/m2) 

- Brightness (150 g/m2) 

- Opacity 

To determine the most significant pulp parameters affecting the values of 

specific refining energy and paper properties, we used the following 

mathematical model: 

where a is the intercept and bj are slopes. In our case, i can be one to four (we 

have four parameters for evaluation). 

4.1 EVALUATION BASED ON PULP PROPERTIES 

For each dependent variable, a systematic and complete Iinear regression was 

performed by considering ail the possible combinations between these variables 

(4 one-x, 9 two-x, 3 three-x and 1 four-x model). The most significant 

regressions are shown in Tables 4.1 to 4.8. One sole parameter is clearly not 

enough for reliable property prediction. Neither yield, nor ionic content (sulfonic, 

carboxylic or total) gave correlations over 90 or 95%. If we look at ail the 

individual influences (Tables 4.1 to 4.4), we can see that the least regression 

coefficients were found for the carboxylic content. Total ionic content gave 

correlations somewhat higher and the yield correlated to about 60% (with the 

exception of optical properties). Sulfonic content had best correlations and 

confirmed results of several other studies emphasizing the importance of good 

sulfonation [42, 44, 53, 64, 89]. 



TABLE 4.1 Regression analysis of pulp quality: the influence 

of yield 

REGRESSION ANAL YSIS OF COOKING RESUL TS 

THE INFLUENCE OF 
YIELD 

2 + 
FOR SEP + ALL CONV 

N EXP PULPS PULPS 
(9 pulps) (12 pulps) (16 pulps) (11 pulps) 
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TABLE 4.2 Regression analysis of pulp quality: the influence 

of sulfonic content 

REGRESSION ANAL YSIS OF COOKING RESUL T5 

THE INFLUENCE OF 
SUFONIC CONTENT 

+ 
FOR SEP + ALL CONV 

N EXP PULPS PULPS 
VARIABLE (9 pulps) (12 pulps) (16 pulps) (11 pulps) 
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TABLE 4.3 Regression analysis of pulp quality: the influence 

of carboxylic content 

REGRESSION ANAL YSIS OF COOKING RESUL TS 

THE INFLUENCE OF 
CARBOXYLIC CONTENT 

+ 
FOR SEP + ALL CONV 

N EXP PULPS PULPS 
(9 pulps) (12 pulps) (16 pulps) (11 pulps) 
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TABLE 4.4 Regression analysis of pulp quality: the influence 

of total ionic content 

REGRESSION ANAL YSIS OF COOKING RESUL TS 

THE INFLUENCE OF 
TOTAL IONIC CONTENT 

+ 
FOR SEP + ALL CONV 

N EXP PULPS PULPS 
(9 pulps) (12 pulps) (16 pulps) (11 pulps) 
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From the more-x models, we concentrated on several two-x results. This type of 

analysis gave good correlations and this is also logically best choice, since there 

are just two types of variables: yield and a certain form of ionic content. 

Interaction terms (product of two or more variables) did not produce any 

significant improvement, 50 we used a two-x model equation: 

y = a + b1 x1 + b2x2 

Results and correlation factors are in Tables 4.5 to 4.8. As we can see, the best 

results with best correlations can be interpreted as a combination of yield with 

sulfonic or total ionic content. For these parameters, the correlation coefficient r2 

was around 90% for most of studied properties. When we created prediction 

equations, it was confirmed that the properties increase and refining energy 

decreases with rising sulfonic/total ionic content and decreasing yield. 



TABLE 4.5 
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Regression analysis of pulp quality: the combined influence of 
yield and sulfonic content 

REGRESSION ANAL YSIS OF COOKING RESUL TS 

THE INFLUENCE OF 
YIELD AND SUFONIC CONTENT 

+ 
FOR SEP + ALL CONV 

N EXP PULPS PULPS 
(9 pulps) (12 pulps) (16 pulps) (11 pulps) 
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Regression analysis of pulp quality: the combined influence of 

yield and carboxylic content 

REGRESSION ANAL YSIS OF COOKING RESUL TS 

THE INFLUENCE OF 
YIELD AND CARBOXYLIC CONTENT 

+ 
FOR SEP + ALL CONV 

N EXP PULPS PULPS 
VARIABLE (9 pulps) (12 pulps) (16 pulps) (11 pulps) 
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Regression analysis of pulp quality: the combined influence of 

yield and total ionic content 

REGRESSION ANAL YSIS OF COOKING RESUL TS 

THE INFLUENCE OF 
YIELD AND TOTAL IONIC CONTENT 

+ 
FOR SEP + ALL CONV 

N EXP PULPS PULPS 
(9 pulps) (12 pulps) (16 pulps) (11 pulps) 
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Regression analysis of pulp quality: the combined influence of 

sulfonic and carboxylic content 

REGRESSION ANAL YSIS OF COOKING RESUL TS 

THE INFLUENCE OF 
SUFONIC AND CARBOXYLIC CONTENT 

2 + 
FOR SEP + ALL CONV 

N EXP PULPS PULPS 
VARIABLE (9 pulps) (12 pulps) (16 pulps) (11 pulps) 
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4.2 EVALUATION BASED ON PULPING PARAMETERS 

As the purpose of this work is not only the evaluation of cooking intermediates 

(pulp quality) but mainly pulping conditions, we applied this very same 

mathematical approach towards cooking parameters. Since the H factor (as 

used in the case of chemical pulping) cannot be used for high yield processes, 

the only previous attempt to use cooking parameters was the K constant or K 

factor [31]. K factor is a product of cooking time and coo'king temperature and 

has very limited interpretation. In our trials, we were able to use one-, two- and 

three-variable models in evaluation of cooking conditions and resulted paper 

properties and refining energy requirements. The results are presented in 

Tables 4.9 to 4.15. 

Tables 4.9 to 4.11 show that neither of three cooking variables provides 

reasonable correlation ail by itself. From two-z variables models (Tables 4.12 to 

4.14), the best results were obtained for the time/temperature combination. If we 

look at the complete three-z evaluation at the Table 4.15, the correlations are 

very good for the explosion pulps with or without pressurized explosion. If we 

add the CTMP and CMP processes, the correlations drop significantly. This is 

due to very different cooking conditions for high severity and conventional 

pulping. Also, if we talk about the short span of condition used in explosion 

pulping, we can consider the influence of individual parameters as linear. 

However, if we include other pulps produced at very different time and 

temperature values, we must realize that these influences are not linear. In spite 

of trying other non-linear models, we were not able to obtain reasonably better 

outcome. 

If we concentrate on the high seve rit y interval and cooking tempe ratures 

between 180 and 200°C, cooking times between 1 and 4 minutes and pressures 

ranging from 9.9 to 25 atmospheres, we can see that our correlations are over 

90% in the predictions of yield, relative specific refining energy, breaking length, 

burst, Iight-scattering coefficient and the brightness. From this point of view, we 

have covered most of the important parameters: yield, refining energy, 

mechanical and optical properties. Based on these considerations, Table 4.16 

shows the equations for parameter estimate. We can see, that increasing 

cooking temperature decreases pulp yield, carboxylic and total ionic content, 
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refining energy, porosity, LSC and optical properties. It also helps to increase 

sulfonation, density and ail the mechanical properties. The very same tendency 

was found with increasing cooking time. Thus we have also mathematical proof 

of our experimental conclusions. 

Figure 4.2 provides a visual way to evaluate the goodness of proposed modal. It 

consists of plotting the predicted values resulting from the mathematical 

equations (Table 4.16) as a function of experimental data. When the model is 

appropriate, points must be the nearest possible from the diagonal. This type of 

representation gives more information th an just reporting regression coefficient 

values: it also allows to detect if points are randomly distributed above and 

below the diagonalline for each series of operating conditions. Figures 4.2 and 

4.3 clearly indicate that the breaking length is accurately predicted. Plots of 

residuals against estimated values indicated that for each dependent variable, 

residuals were randomly scattered. Thus, the assumptions inherent to multiple 

linear regression models were satisfied. 



TABLE 4.9 Regression analysis of pulping conditions: the 

influence of pulping temperature 

REGRESSION ANAL YSIS OF COOKING PARAMETERS 

TEMPERATURE 

SEP SEP + N-EXP ALL PULPS 

(9 pulps) (12 pulps) (16 pulps) 

VARIABLE R2 R2 R2 

YII:L.LJ U.OH U.tif U.4~ 

~uLt'ONATES 0.39 0.39 0.65 
:AHH(lI;YLA II:~ U.Oti U. ti~ U.UU 

1 U 1 AL IUNI\; \;UN 1 t:N 1 0.48 0.48 0.32 
HI:t-ININü IIMI:_ U.;jO U.4H U.OO 
Ht:L. Ht:t-ININl:l t:Nt:Hl:lY 0.17 0 .32 0.65 
lJI:N~11 Y U.04 U.fU U.O~ 

t'UHU~II y 0.62 0.70 0.48 
IjHI:AKINü LI:Nü 1 H U. O~ U.of U.OU 
~fRETCH 0.49 0.53 0.50 
II:AH U.OU U . o~ U . O~ 

BURST 0.60 0 .68 0.56 
BRIGHTNESS 60 g/m" u.oo U.o~ U.;jo 

BRIGHTNESS 300 g/m" U.~4 U.;jH 0.14 
Ut'A\;II y U. ~;j U.1H U.U9 
LSC 0.46 0.58 0.58 
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TABLE 4.10 Regression analysis of pulping conditions: the 

influence of pulping time 

REGRESSION ANAL YSIS OF COOKING PARAMETERS 

TIME 

SEP SEP + N-EXP ALL PULPS 

(9 pulps) (12 pu~~ 116 pulps) 

VARIABLE R2 R2 R2 

YIELD 0 .39 0 .54 0 .03 
~ULt-UNA 1 t:~ 0 .;$4 O . ;$~ U . J~ 

CARBOXYLATES 0 .07 0.23 _0~01 

IUIAL IUNle eUNIt:NI 0 .01 0 .1 J 0.J4 
REFINING TIME 0.55 . 0 .63 _0, 33 
REL. Rt:t-ININl,:; t:Nt:Hl,:;Y O.HO u.78 u .~u 

Ut:N~IIY 0.13 O .J~ 0 .1 !) 
POROSITY 0 .23 0.37 _0 .. 10 

Lt:Nl,:; 1 H O.Jf U.4~ U. 1~ 

~IHt:ICH 0.17 0 .31 0 .17 
It:AH 0.20 O .J~ U.1H 

• BURST 0.32 0.44 .0.15 
BRIGHTNESS 60 g/m~ 0 .10 O.J!) U. 1~ 

BRIGHTNESS 300 g/m~ O.of 0.10 0 .04 
OPACII y O.O!) 0.41 U.U~ 

LSe 0.44 0 .57 O .1H 
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TABLE 4.11 Regression analysis of pulping conditions: the 

influence of pulping pressure 

REGRESSION ANAL YSIS OF COOKING PARAMETERS 

PRESSURE 

SEP SEP + N-EXP ALL PULPS 

(9 pulps) (12 pulps) (16 pulps) 

VARIABLE R2 R2 R2 

_YII:~~ o.!)!) 0.01' o . ~!) 

~UL~UNA 1 t:~ 0.33 .0.02 0.33 
lIAHIjUXYLA 1 t:~ 0.!)1 O.OJ o.o~ 

1 U 1 AL IUNllI CONTENT 0.45 0.12 0.18 
Ht:~ININli---'LI\llt: 0.J4 O.O~ 0.31 
REL. REFINING cru::n\.:> 0.17 0.11 0.44 
Ut:N~11 y O.O~ 0.1 U O.JO 
t>OHO~IIY 0.63 0.01 0.28 
!:SHI Lt:Nl:l 1 H 0.58 0.11 O.JO 
~IHt:Il;H 0.59 0.16 0.41 
It:AH u.!)o u.u~ 0.36 
BUR~T 0.55 0.08 0.35 
BRIGHTNESS 60 g/m" U.!)/j U.1U 0.11 

BRIGHTNESS 300 g/m" O.~/j U.11 0.04 
Ut"'AlIIIY U.~4 U.UU O.O~ 

L~lI 0.45 0.04 0.39 
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TABLE 4.12 Regression analysis of pulping conditions: the 

combined influence of pulping temperature 

REGRESSION ANAL YSIS OF COOKING PARAMETERS 

TEMPERATURE AND TIME 

SEP SEP + N-EXP ALL PULPS 

(9 pulps) (12 pulps) (16 pulps) 

VARIABLE R2 R2 R2 

YIELD 0.97 0.97 0.51 
::;ULt-UNAIt:::; U.I;:J U.of U.of 
CARBOXYLATES 0.63 0.71 0.20 
IUIAL IUNle eUNIt:NI UA9 U.O~ UAU 
REFINING TIME 0.90 0.89 0.57 
Ht:L Ht:t-ININli t:Nt:HliY U.9f U.91 U.OO 
lJl:NSllY 0.79 0.84 0.52 
POROSII y u.85 U.tsts U. O~ 

tiHt:AKINli Lt:Nli 1 H U.90 0.94_ O. O~ 

STRETCH 0.66 0.68 0.50 
It:AH U.tso O.!!!! O.O;:J 
BUHST 0.92 0.91 0.58 
BRIGHTNESS 60 g/m~ U.f~ U.f9 U.;:Jf 

BRIGHTNESS 300 g/m~ U.91 U.!!!! U . 1~ 

OPACITY u.87 U.49 u 'lJ\! 
Lse 0.90 0 .92 0 .59 
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TABLE 4.13 Regression analysis of pulping conditions: the 

combined influence of pulping temperature and pressure 

REGRESSION ANAL YSIS OF COOKING PARAMETERS 

TEMPERATURE AND PRESSURE 

VARIABLE 
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TABLE 4.14 Regression analysis of pulping conditions: the 

combined influence of pulping time and 

REGRESSION ANAL YSIS OF COOKING PARAMETERS 

TIME AND PRESSURE 

ALL PULP 

VARIABLE 
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TABLE 4.15 Regression analysis of pulping conditions: the 

combined influence of pulping temperature, 

time and pressure 

REGRESSION ANAL YSIS OF COOKING PARAMETERS 

TEMPERATURE AND TIME AND PRESSURE 

SEP SEP + N-EXP ALL PULPS 

(9 pulps) (12 pulps) (16 pulps) 

VARIABLE R2 R2 R2 

YIELD U.!:If u.98 0 .53 
~ULtl)~-" II:~ 0.79 0.02 U.of 
CARBOXYLAII:~ U.OO 0.71 0.05 
.IUIAL IUNle vUNIt:NI 0.50 0.55 0.40 
Ht:t"ININu IIMt: U.!:IU U.ts!:l 0 .58 
Hl:l . !it:t!f'!!.N.~I:~!i{j'f 0.97 0.90 U.O!:l 
DENSITY 0.84 0.85 0.56 
t-'UHU~IIY O ... tso_ U.ts!:l U.OJ 
RRFAKING LENGTH 0.96 0.95 0.56 
~IHt:II.,;H O.ts!:l U.l4 U.OO 
IEAR 0.87 0.88 0.56 
IjUH~1 U.!:IJ U.!:I1 0.60 
BRIGHTNESS 60 g/m~ 0.13 0.1:S1 U.JI 

BRIGHTNESS 300 g/m~ 0.91:S U.!:IJ U.10 
Ut-'AI.,;II y U.tsts U.4!:1 U.11 
LSC 0.90 0.92 0 .61 
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TABLE 4.16 Regression analysis of pulping conditions: pulp 

and paper quality prediction equations for 

explosion pulps 

REGRESSION ANAL YSIS OF COOKING PARAMETERS 
FOR THE STEAM EXPLOSION PULPS (180 TO 200°C) 

(12 pulps) 
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FIGURE 4.2 Comparison between predicted values and experimental data 
with a three parameter model for the breaking length 
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Based on these equations, it is also possible to predict cooking conditions for 

requested pulp and/or paper property. In this case, ail we need to do is to 

substitute the desired parameter and to choose the cooking conditions to fit the 

equation. 

ln the mathematical evaluations, we also tried to establish the kinetics of pulp 

sulfonation. Unfortunately, the possibility of experimental error in sulfonation 

measurement (Iower result reproducibility) was too high to get a reasonable 

interpretation. 



5 CONCLUSIONS 

The goal of this work was to study and scientifically explain the principles of high 

seve rit y (explosion) pulping process. The the sis had the following objectives: to 

establish a correlation between cooking conditions (temperature, time, pressure) 

and the physicochemical fiber changes due to vapor phase cooking, to establish 

a correlation between structural and chemical fiber changes and the resulting 

mechanical and optical pulp and paper properties and to determine the optimum 

cooking conditions in order to obtain required paper properties. 

At the early stage of the work, we focused on the influence of cooking 

temperature and pressure. We adjusted the pulping conditions to eliminate 

some of the process variables. We cooked the explosion and conventional 

pulps to the same yield by using the very same chemical charge. As a result, 

we also obtained same ionic content for most of the pulps. However, the 

sulfonic group content was much higher in the case of explosion pulps (the 

values varied between 40 and 50 mmol/kg for the explosion pulps and 35 to 40 

mmol/kg for the CMP and CTMP), cooked at higher severity. These pulps also 

had significantly lower refining energy (up to 50 %) in comparison to CMP and 

CTMP and showed improved fiber properties (Breaking length up to 7.5 km, 

burst 3 to 4 kPam2/g and tear 7 to 8 mNm2/g). The FTIR analysis showed a 

higher content of ordered cellulose 1 in exploded fibers, compared to the CMP 

and CTMP. The average fiber length was higher for higher temperatures and 

thanks to additional permanent softening, exploded fibers also had higher 

flexibility, density and thus better fiber contact in handsheets. This has been 

fully confirmed by lower values of the light-scattering coefficient and higher 

mechanical properties. The addition of a second impregnation agent to Na2S0S 

enhanced the process towards significantly higher mechanical properties and 

lowered refining energies (at increased ionic content). With NaHCOs as second 
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impregnation chemical, the pulp yield of about 90% was preserved, while 

NaOH addition led to a yield drop (about 7% in our case). However, "the 

property gain was the highest with NaOH. Nitrogen pressurization of the 

reactor prior to the explosion (up to 25 atmospheres) led to further decrease in 

refining energy and property improvement. When compared to the 

conventional pulps (CMP and CTMP, better mechanical properties and lower 

refining energy of the explosion pulps can be attributed to the chemical 
changes (higher crystallinity, better lignin softening) that occur following the 
high-temperature-high-pressure cook as weil as the physical changes (better 
and easier fiber separation) that occur following high severity cook and 
explosive discharge from the digester. 

ln the second series, we concentrated on the improved impregnation system 

Na2S03/NaHC03 and on the influence of pressure on the pulp and paper 
quality. We were able to prepare ten pulps with a yield of 90% (or very close to 
90%) with very low refining energies (about 2.5 to 3.0 MJ/kg) and with excellent 

papermaking potential. Our breaking lengths reached up to 9 km, burst index 

was over 4.0 kPa.m2/g and the tear index was around 7 mN.m2/g. Also, the 

brightness level exceeded 60% MgO in every case with an average value of 

63% for unbleached pulps. As to the pressure influence, we did not see 
changes as important as in the first experimental series. The only parameter 

where we were able to see a pressure-related improvement was the breaking 
length. The reason why we did not see any important changes in the other 

properties is probably associated with the impregnation change. In the first 
series, we used one-chemical impregnation (Na2S 03) and most of the 

papermaking qualities were lower compared to this two-chemical impregnation 

series. If the parameters in the first series were lower, there was much more 
space for further improvement and the changes caused by the pressure 

increase prior to the explosion were evident in ail three cases: 190°C/2 min; 

195°C/1 .5 min and 200°C/1 minute. In the second series, much of the 

improvement was reached by the addition of the second impregnation chemical. 
The resulting quality leap was probably so high that it overlapped the sm aller 
partial improvement caused by the pressure increase. 

ln the third experimental trials, we fully focused on the full interval of high 
severity pulping. The purpose was not only to optimize the process and to find 
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the cooking conditions in order to reach suggested pulp properties. We also 

wanted to see what kind of changes (chemical, physicochemical and physical) 

occur or do not occur at very mild and very severe pulping conditions. We found 

that the pulp yield has decreased proportionally with increasing severity. The 

mildest conditions (180°C/1 minute) resulted in yield higher than 90% and the 

most severe conditions (200°C/4 minutes) lowered the yield to about 83%. The 

yield drop was mainly caused by the hydrolysis of hemicelluloses. Klason lignin 

analysis showed that the lignin content is similar in most of the samples. Several 

other analyses (X-ray diffractometry, spectroscopies) have shown that the 

quantity of cellulose did not change, either. lonic content was another proof of 

hemicellulose hydrolysis. Hemicellulose COOH groups are the main contribution 

to the carboxylic content. Their decrease with rising severity confirmed the fact, 

that the hydrolysis is the faste st reaction during high-temperature cook. On the 

other hand, the sulfonic content was increasing for the main part of the pulping 

interval. Only at the most extreme conditions at 200°C, the sulfonation began to 

decrease. This can be explained by lignin reactions and partial hydrolysis of the 

sulfonic groups. Every severity increase has improved sorne fiber properties. 

This was not quite expected since we thought that there would be an optimum 

with further quality decrease at exaggerated cooking conditions. The light­

scattering coefficient for the most severe pulping conditions, for example, was 

very close to values known for chemical pulps with substantially lower yield. 

Also, the mechanical properties were best at higher severity. Pressurized 

explosion (from 25 atmospheres) showed the biggest benefit at 180°C/1 minute. 

Pressure increase had almost the same effect on paper quality as doubling the 

reaction time. In the central point, we found slightly higher breaking length and 

at the most severe conditions (200°C/4 minutes) we did not see any 

improvement at ail. This confirms our previous findings that the pressurization to 

25 atmospheres has a positive effect only at lower severity or lower or 

insufficient chemical treatment. 

Several analytical analyses helped to explain the better performance of 

explosion pulps. X-ray diffraction confirmed higher cellulose crystallinity and 

thicker crystals with increasing severity. As we explained in the first series, 

when dealing with bonding properties, the ordered cellulose 1 is the highest 

quality material possible. Water retention value analysis indicated better surface 

fibrillation for explosion pulps. Pressurized explosion improved the WRV by 
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about 15% in ail cases, which demonstrated another benefit of explosive pulp 

release. ESCA analysis showed sorne important differences in the fiber surface. 

ln comparison with conventional processes (CMP), the surface cellulose 

exposure was substantially higher in the case of explosion pulps. Also, higher 

surface sulfonation of explosion pulps helped to reduce the hydrophobic lignin 

character and increased mechanical properties. 

Statistical analysis showed good correlation (calculated as the square 

regression coefficients within a 95% confidence interval) between cooking 

parameters, pulp properties and resulted handsheet properties. We were able 

not only to predict pulp properties from the cooking parameters, but also to 

estimate the cooking conditions based on required handsheet properties. The 

correlation coefficient was higher than 90% for ail the important parameters 

(pulp yield, refining energy, breaking length ... ). 

Laboratory results show a promise in the possibility to use the high seve rit y 

explosion pulping process as an alternative to conventional methods of high 

yield pulping. Literature review also suggests smaller size equipment and thus 

lower capital investment for an industrial application (due to short cooking time). 

However, a full economical study would be required to confirm this suggestion. 

This work showed that this new approach is allowing to prepare and produce an 

excellent quality pulp with lower refining energy requirements and superior 

properties. The main feature of this process is in the high seve rit y treatment: the . 

combination of high cooking temperature, short cooking time and explosive pulp 

discharge. From this process, we obtained higher quality fibers (longer, more 

flexible, better fibrillated, better surface characteristics) which resulted in higher 

quality pulp and handsheets. 
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