#### UNIVERSITE DU QUEBEC

•

#### MEMOIRE PRESENTEE A

L'UNIVERSITE DU QUEBEC A TROIS-RIVIERES COMME EXIGENCE PARTIELLE POUR L'OBTENTION DE LA MAITRISE ES SCIENCES (PHYSIQUE)

> PAR JACQUES HUOT

# ETUDE DU DEUXIEME COEFFICIENT DU VIRIEL DE LA CONSTANTE DIELECTRIQUE DE GAZ ATOMIQUES EN FONCTION DE LA TEMPERATURE

Mars 1984

## Université du Québec à Trois-Rivières

Service de la bibliothèque

## <u>Avertissement</u>

L'auteur de ce mémoire ou de cette thèse a autorisé l'Université du Québec à Trois-Rivières à diffuser, à des fins non lucratives, une copie de son mémoire ou de sa thèse.

Cette diffusion n'entraîne pas une renonciation de la part de l'auteur à ses droits de propriété intellectuelle, incluant le droit d'auteur, sur ce mémoire ou cette thèse. Notamment, la reproduction ou la publication de la totalité ou d'une partie importante de ce mémoire ou de cette thèse requiert son autorisation.

#### REMERCIEMENTS

Je tiens tout d'abord à exprimer ma profonde gratitude envers mon directeur de thèse, Dr Tapan K. Bose, professeur au département de Physique de l'Université du Québec à Trois-Rivières. Ses conseils judicieux et son constant soutien m'ont guidé et encouragé tout au long de ce travail.

Je désire également remercier tous les membres du groupe de recherche sur les diélectriques. Leurs conseils et leurs encouragements ont toujours été appréciés.

Je remercie sincèrement tout le personnel de l'atelier de mécanique de notre Université. La grande qualité de leur travail et leur dévouement m'ont été d'une aide précieuse. Je veux aussi remercier le Dr. Jerzy Sochanski pour son aide dans la programmation.

Je remercie l'ensemble des professeurs du département de Physique pour l'enseignement de qualité qu'ils m'ont prodigué.

Enfin, je remercie mesdames Ginette Huot Baron, Suzanne Huot Filteau pour la dactylographie de ce mémoire.

#### RESUME

La connaissance précise du deuxième coefficient viriel de la constante diélectrique ( $B_{\epsilon}$ ) des gaz, donne des renseignements sur les interactions entre deux molécules. En particulier, la mesure de  $B_{\epsilon}$  des gaz atomiques à différentes températures nous permet d'évaluer la polarisabilité de deux atomes en collision. Nous avons donc mesuré le  $B_{\epsilon}$  d'hélium et du néon à 77°K et 303°K ainsi que celui de l'argon à 192°K et 303°K. Afin de mesurer  $B_{\epsilon}$  avec le maximum de précision nous avons adopté la méthode directe d'évaluation de  $R_{\epsilon}$  tel que développée par Buckingham et al. Nous avons également mesuré à basse pression (moins de 200psi) la valeur de  $A_{\epsilon}$ , le premier coefficient du viriel de la constante diélectrique.

Pour chaque gaz, nous avons comparé nos mesures expérimentales de  $B_{\epsilon}$  avec les valeurs de  $B_{\epsilon}$  déduites des calculs <u>ab</u> <u>initio</u> de polarisabilité. On constate que les valeurs expérimentales et les valeurs calculées concordent pour l'hélium.

L'accord est également bon pour le néon. Enfin, pour l'argon, les valeurs mesurées et celles calculées sont assez loin l'une de l'autre.

## TABLE DES MATIERES

| P A | ١G | Ε |
|-----|----|---|
|-----|----|---|

| REMERCIEMENTS     | •••••                  | • • • • •             |                      | • • • | ii  |
|-------------------|------------------------|-----------------------|----------------------|-------|-----|
| RESUME            |                        |                       | • • • • •            | • • • | iii |
| TABLE DES MATIERE | s                      |                       |                      |       | iv  |
| INTRODUCTION      |                        |                       |                      |       | 1   |
| CHAPITRE I : THEO | <u>RIE</u>             |                       |                      |       | 4   |
| 1.1 Les coeffic   | ients du v             | iriel de la           | a constante          |       |     |
| diélectriqu       | e                      |                       |                      | •••   | 4   |
| 1.2 Dérivation    | de B <sub>E</sub> pour | une substa            | ance non-pol         | laire | 12  |
| 1.3 Effets quan   | tiques                 | • • • • •             |                      |       | 16  |
| 1.3.1 Lon         | gue portée             | • • • • •             |                      |       | 19  |
| 1.3.2 Cou         | rte portée             |                       |                      |       | 21  |
|                   |                        |                       |                      |       |     |
| CHAPITRE II : PRO | CEDURE EXP             | ERIMENTALE            |                      |       | 2 5 |
| 2.1 Déterminati   | on de A <sub>c</sub> e | t de B <sub>p</sub> . |                      |       | 2 5 |
| 2.2 Méthode abs   | olue de dé             | termination           | nde B <sub>i</sub> . |       | 29  |

| 2.3   | Méthode  | directe d'évaluation de B $_{\varepsilon}$ | 30  |
|-------|----------|--------------------------------------------|-----|
|       | 2.3.1    | Méthodes d'expansion                       | 30  |
|       | 2.3.2    | Méthode de BUCKINGHAM et al                | 31  |
| 2.4   | Approche | e expérimentale                            | 33  |
|       | 2.4.1    | Expansion du gaz de la cellule A           |     |
|       |          | vers la cellule B                          | 33  |
|       | 2.4.2    | Expansion du gaz de la cellule B           |     |
|       |          | vers la cellule A                          | 38  |
| CHAPI | TRE III  | : EOUIPEMENT EXPERIMENTAL                  | 40  |
| 3.1   | Descript | tion du montage                            | 40  |
| 3.2   | Cellules |                                            | 42  |
| 5.1   | 3 2 1    | Corre de la collule et du condensateur     | 4.3 |
|       | J. Z. I  | corps de la certure et du condensateur.    | 4.5 |
|       | 3.2.2    | Connections électriques                    | 47  |
| 3.3   | Pont de  | capacité à transformateur                  | 47  |
| 3.4   | Référenc | ce à température controlée                 | 54  |
| 3.5   | Valves   | ••••••••••••                               | 54  |
| 3.6   | Enceinte | e des cellules (bain)                      | 59  |
|       | 3.6.1    | Température de pièce                       | 59  |
|       | 3.6.2    | Température cryogénique                    | 59  |
| 3.7   | Control  | e de la température                        | 61  |
|       | 3.7.1    | Température de pièce                       | 61  |
|       | 3.7.2    | Température cryogénique                    | 64  |

PAGE

PAGE

| 3.8   | Thermomètres                                   | 65  |
|-------|------------------------------------------------|-----|
|       | 3.8.1 Thermomètre de température ambiante      | 6 5 |
|       | 3.8.2 Thermomètre cryogénique                  | 65  |
| 3.9   | Détecteur de pression                          | 67  |
|       | 3.9.1 Principe de fonctionnement               | 67  |
|       | 3.9.2 Calibration                              | 70  |
| 3.10  | Compresseur manuel                             | 71  |
| 3.11  | Détecteur de fuites                            | 72  |
| 3.12  | Température ambiante                           | 74  |
| 3.13  | Liste des appareils                            | 77  |
| CHAPI | TRE IV : RESULTATS EXPERIMENTAUX               | 78  |
| 4.1   | Formule de travail                             | 78  |
| 4.2   | Facteurs de corrections                        | 84  |
| 4.3   | Mesures de $A_{\varepsilon}$ et de $B_{p}$     | 91  |
| 4.4   | Mesures de B <sub>e</sub> et de C <sub>e</sub> | 110 |
|       | 4.4.1 Traitement des mesures expérimentales .  | 110 |
|       | 4.4.2 Résultats détaillés                      | 113 |
| CHAPI | TRE V : DISCUSSION                             | 164 |
| 5.1   | Méthodes expérimentales pour déterminer        |     |
|       | la trace                                       | 164 |
| 5.2   | Hélium                                         | 167 |
| 5.3   | Néon                                           | 170 |
| 5.4   | Argon                                          | 173 |

| APPENDICE  | A   | :   | DERIVATION D'UNE AUTRE FORME                       |    |
|------------|-----|-----|----------------------------------------------------|----|
|            |     |     | DE L'EQUATION CLAUSSIUS-MOSSOTTI · · · · 1         | 76 |
| APPENDICE  | В   | :   | TRAITEMENT DES DONNEES 1                           | 78 |
| APPENDICE  | С   | :   | CALCUL DE A <sub>E</sub> ET B ET                   |    |
|            |     |     | DE LEURS INCERTITUDES 1                            | 79 |
| APPENDICE  | D   | :   | <u>CALCUL DE B<sub>E</sub> ET C<sub>E</sub> ET</u> |    |
|            |     |     | DE LEURS INCERTITUDES                              | 82 |
| D.1 Déte   | eru | nir | nation de B $_{\epsilon}$ et de son incertitude    | 83 |
| D.2 Déte   | ern | ir  | nation de C <sub>e</sub> et de son incertitude 18  | 84 |
| APPENDICE  | E   | :   | POTENTIEL UTILISE                                  | 86 |
| REFERENCES | 5 B | II  | BLIOGRAPHIQUES                                     | 89 |

#### INTRODUCTION

L'étude de la constante diélectrique des gaz atomiques sous pression nous permet d'obtenir des informations sur la structure moléculaire et les interactions moléculaires. Plus spécifiquement, l'analyse de la constante diélectrique nous renseigne sur la polarisabilité du gaz. En effet, au milieu du 19ième siècle Mossotti<sup>(1)</sup>, puis indépendamment Clausius<sup>(2)</sup>, ont dérivé une expression reliant la constante diélectrique statique  $\varepsilon$  avec la polarisabilité  $\alpha$ . C'est l'équation Clausius-Mossotti.

$$\left(\frac{\varepsilon-1}{\varepsilon+2}\right)\frac{1}{d} = \left(\frac{4\pi}{3}\right)N\alpha \qquad (I.1)$$

où d est la densité molaire et N le nombre d'Avogadro. Lorsque la densité est élevée cette équation n'est plus exacte car cette relation ne tient pas compte des interactions moléculaires. A densité élevée, on peut faire un développement en série de puissances de la densité. On obtient

$$\left(\frac{\varepsilon-1}{\varepsilon+2}\right)\frac{1}{d} = A_{\varepsilon} + B_{\varepsilon}d + C_{\varepsilon}d^{2} + \dots \qquad (I.2)$$

où  $A_{\varepsilon}$  est le premier coefficient viriel diélectrique et représente l'interaction d'une molécule avec le champ externe.  $B_{\varepsilon}$ est le deuxième coefficient viriel diélectrique et est dû aux interactions entre deux molécules. De façon similaire,  $C_{\varepsilon}$ représente les interactions entre trois molécules et ainsi de suite.

Le but principal de notre travail est la mesure du deuxième coefficient du viriel B<sub>c</sub> pour les gaz atomiques. En effet, dans le prochain chapitre nous verrons que l'expression théorique de B<sub>c</sub> contient deux parties: une partie produite par l'interaction entre les moments dipolaires induits par le champ externe et une autre partie qui tient compte du moment dipolaire total des atomes en collision même lorsque le champ externe est nul. Cette dernière partie est la plus importante pour des gaz atomiques, polaires. Cependant pour les gaz qui sont non-polaires, cette partie est nulle et B n'est fonction que de la première partie c'est-à-dire de l'interaction entre les moments dipolaires induits par le champ externe. L'intérêt des gaz atomiques est alors que l'on peut mesurer expérimentalement cette contribution sans que celle-ci ne soit masquée par celle venant du moment dipolaire total des atomes en collision comme dans le cas des gaz multipolaires.

Un autre avantage de travailler sur les gaz atomiques est que les calculs théoriques de  $B_{\varepsilon}$  sont relativement simples car on ne tient compte que d'un seul effet. De plus, la forme assez simple de ces atomes facilite également le calcul.

On note, en dérivant l'expression de  $B_{\varepsilon}$ , que ce coefficient est fonction de la température. Cependant, jusqu'à présent les

2.

mesures de ce coefficient, pour les gaz atomiques, n'ont été faites qu'à des températures de pièce. La connaissance de la valeur de  $B_{\varepsilon}$  sur une grande plage de température nous permettra d'avoir beaucoup plus d'informations sur les paramètres moléculaires des gaz étudiés. En particulier, on peut ainsi tester l'expression du tenseur de polarisabilité de deux atomes en collision.

Dans le cadre de ce travail nous avons mesuré le  $B_{\epsilon}$  de: l'hélium à 303 et 77<sup>o</sup>K, le néon à 303 et 77<sup>o</sup>K et l'argon à 303 et 192<sup>o</sup>K.

Le présent exposé comprend 5 chapitres. Au chapitre I nous donnons la théorie classique et quantique de  $B_{\varepsilon}$ . Au chapitre II on voit les diverses méthodes pour mesurer  $B_{\varepsilon}$ , particulièrement la méthode directe que nous employons. Dans le chapitre III on trouve la description des divers appareils requis pour effectuer nos mesures. Le chapitre IV est consacré à la présentation de nos résultats expérimentaux. La discussion de nos résultats en fonction des théories existantes est faite au chapitre V.

3.

#### CHAPITRE I

#### THEORIE

Dans ce chapitre nous déduirons l'expression théorique du deuxième coefficient du viriel de la constante diélectrique  $B_{\epsilon}$ . Nous commencerons par un traitement classique basé sur un développement statistique dû à Buckingham et Pople<sup>(3)</sup>. Nous verrons ensuite que le traitement classique ne suffit pas pour expliquer les résultats expérimentaux de  $B_{\epsilon}$  des gaz atomiques. Nous exposerons alors succinctement quelques méthodes quantiques des divers auteurs qui ont essayés d'expliquer les résultats expérimentaux.

## 1.1 Les coefficients viriels de la constante diélectrique

Pour obtenir l'expression des coefficients du viriel de la constante diélectrique, considérons un milieu diélectrique homogène et isotrope de forme sphérique. La polarisation de cette sphère sera donnée par

$$4\pi \vec{P} = (\varepsilon - 1) \vec{E} \qquad (1.1)$$

où  $\varepsilon$  est la constante diélectrique du milieu et  $\vec{E}$  est le champ électrique macroscopique moyen dans la sphère. Il serait plus commode de trouver l'expression de  $\vec{P}$  en fonction du champ externe  $\vec{E}_0$ . Il nous faut donc relier le champ moyen macroscopique dans la sphère  $\vec{E}$  au champ externe  $\vec{E}_0$  Pour notre échantillon de forme sphérique cette relation est

$$\vec{E} = \left(\frac{3}{\varepsilon+2}\right) \vec{E}_{0}$$
(1.2)

En combinant (1.1) et (1.2) nous avons la relation entre la polarisation du diélectrique et le champ externe

$$\vec{P} = \left(\frac{3}{4\pi}\right) \left(\frac{\varepsilon - 1}{\varepsilon + 2}\right) \vec{E}_{0}$$
 (1.3)

Calculons maintenant le champ qui agit sur une molécule c'est à dire le champ local. Pour ce faire considérons une sphère de Lorentz: dans le spécimen macroscopique on choisit une sphère microscopique assez grande pour avoir les mêmes propriétées diélectriques que l'échantillon macroscopique. Si on calcule alors le champ local  $\vec{E}_{loc}$  en fonction du champ macroscopique dans le diélectrique on trouve

$$\vec{E}_{loc} = \vec{E} + \left(\frac{4\pi}{3}\right) \vec{P}$$
 (1.4)

En combinant (1.4), (1.2) et (1.3) on trouve

$$\vec{E}_{loc} = \vec{E}_{0}$$

Donc, pour un échantillon sphérique, le champ local est égal au champ externe.

Considérons un ensemble de  $N_A$  molécules ( $N_A$  ext le nombre d'Avogadro) dans un volume molaire  $V_m$  et situé dans un champ externe  $\vec{E}_0$ . Le moment dipolaire macroscopique est donné par

$$\vec{M}(\vec{E}_0) = \vec{P}V_m = \left(\frac{\varepsilon - 1}{\varepsilon + 2}\right) V_m \left(\frac{3}{4\pi}\right) \vec{E}_0 \qquad (1.5)$$

On a vu dans l'introduction (I.1) que le terme  $[(\varepsilon-1)/(\varepsilon+2)]V_m$  représente la fonction Clausius-Mossotti.Celle-ci est donc donnée par la composante, suivant l'axe de  $\vec{E}_0$ , du moment dipolaire total moyen  $\langle \vec{M} (\vec{E}_0) \rangle$  lorsque  $\vec{E}_0$  tend vers zéro

$$\frac{\varepsilon - 1}{\varepsilon + 2} \mathbf{V}_{\mathbf{m}} = \frac{4\pi}{3} \frac{\ell_{im}}{E_0 \to 0} \frac{\langle \vec{\mathbf{M}}(\vec{\mathbf{E}}_0) \rangle}{\vec{\mathbf{E}}_0} = \frac{4\pi}{3} \left( \frac{\partial}{\partial \vec{\mathbf{E}}_0} \langle \vec{\mathbf{M}}(\vec{\mathbf{E}}_0) \rangle \right)_{\mathbf{E}_0 = 0}$$
(1.6)

où la moyenne est prise sur toutes les orientations et est donnée par

$$\langle \vec{M}(\vec{E}_{0}) \rangle = \frac{\int [\vec{M}(\tau, \vec{E}_{0}) \cdot \hat{e}] EXP\{-[U - \vec{M}(\tau, \vec{E}_{0}) \cdot \vec{E}_{0}]/kT\} d\tau}{\int EXP\{-[U - \vec{M}(\tau, \vec{E}_{0}) \cdot \vec{E}_{0}]/kT\} d\tau}$$
(1.7)

ici  $\mathbf{\tilde{M}}(\tau, \mathbf{\tilde{E}})$  est le moment dipolaire instantané de l'échantillon inclus dans les coordonnées moléculaires  $\tau$ ,  $\mathbf{U}$  est l'énergie potentielle due aux forces intermoléculaires et ê est un vecteur unitaire dans la direction de  $\mathbf{\tilde{E}}_{0}$ . L'intégrale sur  $d_{\tau}$  est faite sur toute les directions et sur toutes les orientations des molécules.

Si on effectue la dérivée partielle du moment dipolaire macroscopique par rapport à  $E_{a}$  lorsque  $E_{a} = 0$  on obtient

$$\langle \frac{\partial \vec{M}(\vec{E}_{0}) \rangle}{\partial \vec{E}_{0}} \rangle = \frac{\int \left( \frac{\partial \vec{M} \cdot \hat{e}}{\partial \vec{E}_{0}} \right) E_{0} = 0}{\int EXP(-U/kT) d\tau}$$

$$+ \frac{1}{kT} \frac{\int (\vec{M} \cdot \hat{e})^{2} EXP(-U/kT) d\tau}{\int EXP(-U/kT) d\tau}$$

$$- \frac{1}{kT} \left[ \frac{\int (\vec{M} \cdot \hat{e}) EXP(-U/kT) d\tau}{\int EXP(-U/kT) d\tau} \right]^{2}$$

Ceci s'écrit plus simplement comme

$$\frac{\partial \vec{M}(\vec{E}_0)}{\partial \vec{E}_0} = \frac{\partial \vec{M} \cdot \hat{e}}{\partial \vec{F}_0} + \frac{1}{kT} \cdot (\vec{M} \cdot \hat{e})^2 > - \frac{1}{kT} \cdot (\vec{M} \cdot \hat{e})^{-2}$$
(1.8)

De plus, on sait que

$$\vec{M} \cdot \hat{e} = M \cos \theta \qquad (1.9)$$

où  $\theta$  est l'angle entre  $\vec{M}$  et  $\vec{E}_0$ .

Avec (1.9) on trouve

$$\langle (\vec{M} \cdot \hat{e}) \rangle^{2} = \langle M \rangle^{2} \langle \cos \theta \rangle^{2}$$
$$\langle (\vec{M} \cdot \hat{e})^{2} \rangle = \langle M^{2} \rangle \langle \cos^{2} \theta \rangle \qquad (1.10)$$

Mais,

$$\langle \cos^2 \theta \rangle = 0$$

$$\frac{2\pi}{2\pi} \frac{\pi}{\pi} \int_{0}^{\pi} \frac{\cos^2 \theta}{\cos^2 \theta} \sin \theta d\theta d\phi}{\frac{2\pi}{2\pi} \frac{2\pi}{2\pi} (2)} = 1/3 \qquad (1.11)$$

En plaçant 
$$(1.11)$$
 dans  $(1.8)$  on a

$$\langle \frac{\partial \vec{M}(\vec{E}_0)}{\partial \vec{E}_0} \rangle = \langle \frac{\partial \vec{M} \cdot \hat{e}}{\partial \vec{E}_0} \rangle + \frac{1}{3kT} \langle M^2 \rangle$$
(1.12)

8.

Le premier terme du membre de droite représente l'effet du champ externe qui polarise les molécules. Le second terme tient compte de l'effet statistique des dipoles permanents et induits qui tendent à s'aligner dans la direction du champ externe en recherchant la position d'énergie la plus basse. Ce dernier terme est important pour les molécules possédant un moment dipolaire permanent. Cependant, même pour une molécule n'ayant pas de dipole permanent, ce terme n'est pas nécessairement nul car il tient compte de la contribution des dipoles induits par les multipoles. Le moment total de l'ensemble des N<sub>A</sub> molécules est la somme des moments de chaque molécule.

$$\vec{M} = \sum_{i=1}^{N_A} \vec{\mu}_i$$
(1.13)

L'équation (1.12) devient alors

М

Or, par le développement viriel, la fonction Clausius-Mossotti est exprimée en série de puissances inverses du volume molaire  $v_m$ 

Où  $A_{\epsilon}$ ,  $B_{\epsilon}$ ,  $C_{\epsilon}$ , ..., sont les différents coefficients du viriel de la constante diélectrique. Le premier coefficient  $A_{\epsilon}$ tient compte de l'interaction d'une molécule avec le champ externe. Le deuxième coefficient  $B_{\epsilon}$  représente l'interaction entre deux molécules, le troisième coefficient  $C_{\epsilon}$  représente l'interaction entre trois molécules et ainsi de suite.

Pour trouver l'expression de  $A_{\epsilon}$  , comparons les équations (1.14) et (1.15). On obtient

$$A_{\varepsilon} = \left(\frac{4\pi}{3}\right) N_{A} \left(\alpha_{0} + \frac{\mu_{0}^{2}}{3kT}\right)$$
(1.16)

où  $\alpha_0$  est la polarisabilité totale d'une molécule isolée et son moment dipolaire. Les gaz que nous étudions (He, Ne, Ar) sont non-polaires, c'est à dire qu'ils ne possèdent pas de moment dipolaire permanent. Donc  $\mu_0$  =0 et l'expression de A devient

$$A_{\varepsilon} = \left(\frac{4\pi}{3}\right) N_{A} \alpha_{0} \qquad (1.17)$$

Pour obtenir l'expression de B<sub>e</sub> nous enlevons à la fonction Clausius-Mossotti la contribution apportée par A<sub>e</sub> et nous prenons la limite lorsque la densité est nulle, c'est-à-dire lorsque V<sub>m</sub> est infini.

$$B_{\varepsilon} = \lim_{V_{m} \to \infty} \left\{ V_{m} \left[ \frac{\varepsilon - 1}{\varepsilon + 2} \right] V_{m} - A_{\varepsilon} \right\}$$
$$= \lim_{V_{m} \to \infty} \frac{4\pi N_{A} V_{m}}{3} \left\{ < \frac{\partial \vec{\mu}_{1}}{\partial \vec{E}_{0}} \cdot \hat{\varepsilon} > -\alpha_{0} + \frac{1}{3kT} \sum_{i=1}^{N_{A}} \langle \vec{\mu}_{1} \cdot \vec{\mu}_{i} > \mu_{0}^{2} \right\}$$
(1.18)

Si  $V_m$  est grand, la probabilité qu'une autre molécule que la molécule de reférence ait ses coordonnées de translation et de rotation  $\tau_i$  dans un domaine  $d\tau_i$  autour de la molécule 1 est donnée par

$$(\Omega V_{m})^{-1} EXP(-U_{1i/kT}) d\tau_{i}$$

où  $U_{1i}$  est le potentiel intermoléculaire et  $\Omega V_m = \int d\tau_i$  tel que  $\Omega$  est l'intégrale sur les coordonnées angulaires. La probabilité qu'une troisième molécule soit présente est proportionnelle à  $V_m^{-2}$  et elle ne contribue pas à  $B_{\epsilon}$ . En sommant (1.18) sur les probabilités que les molécules 2,...N soient près de la molécule 1 on obtient

$$B_{\varepsilon} = \frac{4\pi N_{A}^{2}}{3\Omega} \int \left[ \left[ \frac{\partial \mu_{1}}{\partial \overline{E}_{0}} \right] \cdot \hat{e} - \alpha_{0} \right] + \left[ \frac{1}{3kT} - \mu_{1} \cdot \left( \frac{\partial \mu_{1}}{\mu_{1}} - \mu_{0}^{2} \right) - \mu_{0}^{2} \right] EXP(-U_{12}/kT) d\tau_{2}$$
(1.19)

On peut écrire cette équation sous une forme plus symétrique

$$B_{\varepsilon} = \frac{4 N_{A}}{3} \int \left[ \left[ \frac{1}{2} \frac{\partial \left( \dot{\mu}_{1} + \dot{\mu}_{2} \right)}{\partial \dot{\vec{E}}_{0}} \cdot \hat{e} - \alpha_{0} \right] + \frac{1}{3kT} \left[ \frac{1}{2} \left[ \dot{\vec{\mu}}_{2} + \dot{\vec{\mu}}_{2} \right] - \mu_{0}^{2} \right] EXP \left[ -U_{12}/kT \right] d\tau_{2}$$
(1.20)

## 1.2 Dérivation de $B_{E}$ pour une substance non-polaire.<sup>(3)</sup>

Comme dans notre travail nous mesurons  $B_{\epsilon}$  pour des gaz non-polaires, nous sommes particulièrement intéressés d'obtenir l'expression de  $B_{\epsilon}$  pour de tels gaz. Pour une molécule non-polaire on a  $\mu_{o}$  =0. L'équation (1.20) devient alors

$$B_{\varepsilon} = \frac{4\pi N_{A}}{3\Omega} \int \left[\frac{1}{2} \frac{\partial (\mu_{1} + \mu_{2})}{\partial E_{0}} \cdot \hat{e} - \alpha_{0}\right] + \frac{1}{6kT} (\mu_{1} + \mu_{2})^{2} EXP(-U_{12}/kT) d\tau_{2}$$
(1.21)

On voit que  $B_{\varepsilon}$  comprend deux parties: la première  $\left[\frac{1}{2} \frac{\partial}{\partial} \frac{(\mu}{E} 1^{+\mu} 2) \cdot \hat{e} - \alpha_0\right]$ est produite par l'intéraction entre les moments dipolaires induits par le champ externe, la seconde  $\frac{1}{6kT} (\vec{\mu}_1 + \vec{\mu}_2)^2$  existe lorsqu'une paire de molécules en intéraction possède un moment dipolaire résultant même en absence de champ externe.

Cependant, pour un gaz mono-atomique, comme dans notre cas, le terme  $(\mu_1 + \mu_2)$  est identiquement zéro par symétrie. Donc, pour un gaz mono-atomique non-polaire seul le terme  $\left[\frac{1}{2} \frac{\partial^{(\mu_1 + \mu_2)}}{\partial E_n} \cdot \hat{e} - \alpha_0\right]$  contribue à  $B_{\epsilon}$ . On peut calculer ce terme en utilisant l'approximation du dipole ponctuel. On arrive alors au modèle classique dipôle induit-dipôle (DID).

On a donc

$${}_{\mathcal{E}}^{\text{DIR}}(\mathbf{T}) = \frac{4\pi N_{\text{A}}^{2}}{3\Omega} \int \left[\frac{1}{2} \quad \frac{\partial \left(\overset{\mu}{\mu}_{1} + \overset{\mu}{\mu}_{2}\right)}{\partial E_{0}} \quad \hat{\mathbf{e}} - \alpha_{0}\right] \text{ EXP } \left(-U_{12}/kT\right) d\tau_{2} \qquad (1.22)$$

En supposant que la polarisabilité moléculaire est isotrope, le moment dipolaire µ1 de la molécule 1 sera

$$\vec{\mu}_1 = \alpha \left( \vec{E}_0 + \vec{F}_1 \right)$$
(1.23)

où  $\vec{F}_1$ , est le champ, dû aux autres moments dipolaires, au centre de la molécule 1. Comme B<sub>e</sub> est l'intéraction entre paires, considérons une autre molécule (molécule 2) pour **laquelle** on aura une équation similaire à (1.23).

$$\mu_2 = \alpha \vec{E}_0 + \vec{F}_2 \qquad (1.24)$$

En prenant un système cartésien d'axes, où l'axe Z joint les centres des molécules, et en utilisant le champ dû à un dipole on obtient

$$\vec{\mu}_{1} = \left(\frac{\alpha E_{\text{ox}}}{1 + \alpha r^{-3}}, \frac{\alpha E_{\text{oy}}}{1 + \alpha r^{-3}}, \frac{\alpha E_{\text{oz}}}{1 - 2\alpha r^{-3}}\right)$$
(1.25)

où r est la distance intermoléculaire. Pour  $\vec{\mu}_2$  l'expression est similaire. De (1.25) on peut calculer  $\frac{\partial \vec{\mu}_1}{\partial E_0}$ . On obtient alors

$$\left(\frac{\partial \mu_1}{\partial \dot{E}}\right) \cdot \hat{e} = \frac{\alpha}{1 + \alpha r^{-3}} \left(e_x^2 + e_y^2\right) + \frac{\alpha e_z^2}{1 - 2\alpha r^{-3}}$$
(1.26)

En prenant la moyenne sur toutes les directions ê du champ externe on a

$$\begin{pmatrix} \frac{\partial \mu}{1} \\ \frac{\partial \bar{E}}{\partial \bar{E}} \end{pmatrix} \cdot \hat{e} = \alpha(r) + \begin{pmatrix} \frac{2\alpha^3 r^{-6}}{(1+\alpha r^{-3})(1-2\alpha r^{-3})} \end{pmatrix}$$
(1.27)

On constate que le second terme a une singularité artificielle à  $r^3 = 2 \alpha_0$ . Mais, à cette distance l'approximation du dipole n'est plus valable car la molécule est dans la partie répulsive du champ intermoléculaire. Cette approximation n'est valable que pour r suffisamment grand. Au dénominateur on peut donc négliger les termes  $r^{-3}$  devant l'unité. On remplace donc le dénominateur par l'unité. L'équation (1.22) s'écrit alors

$$B_{\varepsilon}^{DID}(T) = \frac{4\pi N_{A}^{2}}{3\Omega} \int \{(\alpha(r) - \alpha_{0}) + 2\alpha^{3}r^{-6} EXP(-U_{12}/kT)d\tau\}_{2}$$
(1.28)

Dans l'approximation (DID) le dipole est ponctuel, donc  $\alpha(r)$  n'est pas une fonction de r mais bien une constante égale à  $\alpha_0$ On a

$$\alpha(\mathbf{r}) - \alpha_0 = \alpha_0 - \alpha_0 = 0$$
 (1.29)

Et l'équation (1.28) devient

$$B_{\varepsilon}^{D ID}(T) = \frac{4\pi N_{A}^{2}}{3\Omega} \int 2\alpha_{0}^{3} r^{-6} EXP(-U_{12}/kT) d\tau_{2} \qquad (1.30)$$

L'expression (1.30) a été dérivée par Buckingham et Pople<sup>(3)</sup>Pour calculer  $B_{\epsilon}^{DID}(T)$  ils ont utilisé un potentiel réaliste, le potentiel Lennard-Jones 6-12.

$$U(\mathbf{r}) = 4\varepsilon_0 \left[ \left( \frac{\mathbf{r}_0}{\mathbf{r}} \right)^{12} - \left( \frac{\mathbf{r}}{\mathbf{r}} \right)^6 \right]$$
(1.31)

où  $\varepsilon_0$  est la profondeur du puits de potentiel et r<sub>o</sub> représente le diamètre moléculaire ( $v(r_0)=0$ ).

Avec le potentiel tel que spécifié en (1.31) on ne peut résoudre analytiquement l'intégrale (1.30). Afin de résoudre numériquement cette intégrale, Buckingham et Pople ont exprimé cette intégrale comme étant:

$$B_{\varepsilon}^{\text{DID}}(T) = \frac{8\pi^2 N_{\text{A}}^2 \alpha_0^3}{3r_0^3} Y^4 H_6(Y)$$
(1.32)

où  $Y = 2(\epsilon_0/kT)^{\frac{1}{2}}$  et la fonction  $H_n$  (Y) est une somme infinie de fonctions gamma ( $\Gamma$ ). Buckingham et Pople <sup>(4)</sup> ont tabulé  $H_n$ (Y) pour n=6 à 17 et Y=0.6 à 32. Grâce à cette fonction  $H_n$  (Y) ils ont ainsi pu résoudre numériquement l'équation (1.30).

## 1.3 Effets quantiques

Par l'équation (1.32) on peut calculer  $B_{\varepsilon}$  dans l'approximation DID pour tous les gaz atomiques. Cependant, si on compare ce calcul avec les valeurs de  $B_{\varepsilon}$  mesurées en autres par Orcutt et Cole<sup>(5)</sup>, Kirouac et Bose<sup>(6)</sup>. On voit que la valeur de  $B_{\varepsilon}$  mesurée est toujours inférieure à la valeur calculée dans l'approximation DID. De plus, pour l'hélium et le néon la valeur de  $B_{\varepsilon}$  mesurée est négative alors que l'équation (1.32) donnera toujours un terme positif. Donc, l'approximation DID n'est pas valable.Mais, avant d'examiner les corrections à apporter au modèle DID voyons quelques définitions utiles.

Pour un gaz monoatomique l'expression de  ${\rm B}_{\epsilon}$   $% {\rm B}_{\epsilon}$  est donnée par

$$B_{\varepsilon}(T) = \frac{4\pi N_{A}^{2}}{3\Omega} \int \left[\frac{1}{2} \left[\frac{\partial (\mu + \mu)}{1 - 2}\right] \cdot \hat{e} - \alpha_{0}\right] EXP(-U_{12}/kT) d\tau_{2}$$
(1.33)

Mais, pour un gaz atomique, par symétrie on voit que la polarisabilité ne dépend que de r. En se rappelant que

$$d\tau_2 = d\Omega dV \tag{1.34}$$

on peut immédiatement intégrer (1.33) sur les angles, et on trouve

$$B_{E}(T) = \frac{4\pi N_{A}^{2}}{3} \int \frac{1}{2} (\alpha_{12} - 2\alpha_{0}) EXP(-U_{12}/kT) 4\pi r^{2} dr$$

où

$$\alpha_{12} = \begin{bmatrix} \frac{\partial (\vec{\mu} + \vec{\mu})}{1 & 2} \\ -\frac{\partial \vec{E}}{2} \end{bmatrix} \cdot \hat{e}$$
(1.36)  
$$= 0$$

 $\alpha_{12}$  exprime la polarisabilité de deux atomes en collisions. On appelle diatome le coomplexe quasimoléculaire formé par la collision de deux atomes.  $\alpha_{12}$  exprime donc la polarisabilité du diatome. En examinant le terme ( $\alpha_{12}-2\alpha_0$ ) on constate qu'il exprime la différence de polarisabilité entre le diatome et la polarisabilité des deux atomes isolés. Cette différence peut être exprimée comme étant la trace d'un tenseur. Pour un diatome, le tenseur de polarisibilité s'exprime par

$$\begin{array}{c} \alpha_{12} - 2\alpha_{0} = \begin{bmatrix} \alpha_{\parallel} & 0 & 0 \\ 0 & \alpha_{\perp} & 0 \\ 0 & 0 & \alpha_{\perp} \end{bmatrix}$$
 (1.37)

où  $\alpha_{||}$  et  $\alpha_{1}$  sont respectivement les polarisabilités du diatome dans les directions parallèles et perpendiculaires à l'axe intermoléculaire. Sous une transformation unitaire, ce tenseur a deux invariants: la trace  $\mathcal{A}(r)$  et l'anisotropie  $\gamma$  (r) définies comme

$$\boldsymbol{a}(\mathbf{r}) = \frac{\alpha_{\boldsymbol{\mu}} + 2\alpha_{\perp}}{3} \tag{1.38}$$

$$\gamma(\mathbf{r}) = \alpha_{\mu} - \alpha_{\perp} \qquad (1.39)$$

En combinant (1.35), (1.37) et (1.38) on obtient

$$B_{\xi}(T) = \frac{8\pi^2 N_A^2}{3} \int_{0}^{\infty} \mathcal{A}(r) EXP(-U_{12}/kT) r dr \qquad (1.40)$$

Le calcul DID tel qu'effectué à la section 1.2 donne

$$\mathcal{A}(\mathbf{r}) = \frac{4\alpha^{3}}{r} \tag{1.41}$$

Au début de la présente section nous avons vu que le calcul DID était incorrect. En effet cette approximation néglige les intéractons de courte et de longue portée sur la polarisabilité diatomique.

## 1.3.1 Longue portée

L'effet d'intéractions à longue portée sur la polarisabilité a tout d'abord été étudié par Jansen et Mazur<sup>(7)</sup> qui ont effectué les premiers calculs quantiques de la polarisabilité des diatomes. Ils ont démontré que les corrections quantiques s'annulent au premier ordre de perturbation et contribuent seulement à partir du deuxième ordre de perturbation (terme en  $r^{-6}$ ). Or, on a vu que dans le calcul DID il n'y avait également contribution qu'à partir du second ordre. Donc, la correction quantique est du même ordre de grandeur que le terme DID.

Il est commode de représenter  $\, \, a$ (r) comme

 $\mathcal{A}(\mathbf{r}) = \frac{\mathbf{A}_{6}}{\mathbf{r}^{6}} \tag{1.42}$ 

Le problème est alors de calculer  $A_6$  en tenant compte des effets quantiques à longue portée. Comme on a vu précédemment Jansen et Mazur<sup>(7)</sup> furent les premiers à faire un tel calcul. Buckingham<sup>(8)</sup> puis Certain et Fortune<sup>(9)</sup> ont également effectué ce calcul de  $A_6$ . Par exemple Certain et Fortune<sup>(9)</sup> en utilisant les techniques variationnelles ont pu obtenir l'expression du tenseur de polarisabilité. De là, ils ont pu calculer la valeur de  $A_6$ . Cependant, en incluant les effets quantiques de longue portée, les auteurs<sup>(8)(9)</sup> ont constaté qu'au lieu de diminuer la valeur de B<sub>e</sub>, et même de la rendre négative pour l'hélium et le néon, le calcul ne faisait que rendre la valeur de B<sub>e</sub> encore plu: élevée. Par exemple pour l'hélium le calcul Di mous donne  $A_6 = 4\alpha_0^3$  ce qui entraîne un B<sub>e</sub> de +0.003 cm<sup>6</sup>/mole<sup>2</sup>. Le calcul effectué par Certain et Fortune donne  $A_6 = 14.86 \alpha_0^3$  ce qui produit un B<sub>e</sub> de +.012 ce qui est encore plus loin de la mesure de Kirouac et Bosé<sup>6</sup> de -.059  $\pm$  .009 cm<sup>6</sup>/mole<sup>2</sup>.

#### 1.3.2 Courte portée

D'après ce qu'on a vu à la section précédente il est évident que l'approximation DID et les effets quantiques à longue portée sur la polarisabilité sont en désaccord avec les valeurs expérimentales de B<sub>e</sub> pour tous les gaz. Pour résoudre ce problème considérons les intéractions de courte portée.

Les calculs quantiques de la polarisabilité du diatome lorsque la distance internucléaire est faible très sont complexes. C'est pourquoi les premiers auteurs à effectuer de tels calculs l'ont fait pour un cas simple c'est à dire l'hydrogène. Citons les calculs de Kolos et Wolniewicz <sup>(10</sup> et de Ford et Browne .Cependant, pour l'hydrogène, les interactions sont trop fortes pour que les résultats soient pertinents pour gaz atomiques. DuPré et McTague <sup>(12</sup> ont les diatomes des constaté que le premier état triple excité  $\begin{pmatrix} 3 \\ \Sigma_{1}^{+} \end{pmatrix}$  de l'hydrogène peut servir de modèle de collision de paires d'atomes de gaz rares. Après avoir effectué le calcul ils ont constaté que le changement de polarisabilité était négatif à des distances intermédiaires. Donc, ils ont démontré que Be pouvait être négatif.

21.

Le premier calcul concernant le diatome d'Hélium fut effectué par Lim et al<sup>(13)</sup>en se basant sur la technique des perturbations de Hartree-Fock et en utilisant une base de huit orbitales gaussiennes centrées sur chaque atome. Cependant, pour de grandes séparations internucléaires le calcul montrait de sérieuses difficultés. De plus, ce calcul ne donnait pas une valeur de B négative.

Par la suite Buckingham et Watts <sup>(14)</sup>ont aussi tenté de calculer la polarisabilité du diatome d'hélium en utilisant la méthode des champs self-consistants (SCF) et la théorie de Hartree-Fock.

Ils ont cependant utilisé une base de 18 fonctions. Mais, même avec une base plus grande que celle de Lim et al<sup>(13)</sup>, ce calcul produit encore un B<sub>c</sub> positif.

Presque simultanément à Buckingham, O'Brien et al<sup>(15)</sup> ont eux aussi calculé les polarisabilités  $\alpha_{ll}$  et  $\alpha_{\perp}$  du diatome d'hélium en utilisant les mêmes techiniques mais en utilisant une base gaussienne beaucoup plus grande de 30 fonctions. Cette fois-ci, le calcul donne un  $B_{\epsilon}$  de -.093 cm<sup>6</sup>/mole<sup>2</sup> ce qui est consistant avec les mesures expérimentales. Ce calcul de

22.

O'Brien et al fut le premier à donner le signe correct de B<sub>e</sub> pour l'hélium. Par la suite plusieurs auteurs, en utilisant la même technique (SCF), ont trouvés des résultats similaires pour la polarisabilité du diatome d'hélium. Citons Fortune et Certain<sup>(16)</sup>, Kress et Kosak<sup>(17)</sup>et Dacre<sup>(18)(19)</sup>. En particulier Dacre<sup>(18)</sup>a fait un calcul de la polarisabilité du diatome d'hélium en tenant compte de la corrélation électronique.

Il est facile de s'imaginer que pour les gaz atomiques plus lourds (Ne, Ar, Kr, Xe) le calcul SCF est de plus en plus difficile à mesure que le nombre d'électrons augmente. La polarisabilité du diatome de néon fut calculée d'abord par Kress et Kosak<sup>(17)</sup>. Ils trouvent un  $B_{\epsilon}$  de -.010 cm<sup>6</sup>/mole<sup>2</sup> ce qui est assez loin de la valeur expérimentale de Orcutt et Cole<sup>(5)</sup> de -.3  $\pm$  .1 cm<sup>6</sup>/mole<sup>2</sup> et de celle de Vidal et Lallemand<sup>(20)</sup>de -.22  $\pm$  .06 cm<sup>6</sup>/mole<sup>2</sup>. Par la suite Dacre<sup>(21)</sup>, en utilisant aussi la méthode SCF et en tenant compte de la corrélation électronique, calcule un B<sub>c</sub> de -0.15 cm<sup>6</sup>/mole<sup>2</sup>.

Le calcul pour le diatome d'argon fut effectué par Lallemand et al<sup>(22)</sup>et par Dacre <sup>(23)</sup> Le calcul de Lallemand<sup>(22)</sup>ne reproduit pas une trace négative à courte distance intermoléculaire. Celui de Dacre<sup>(23)</sup> produit une valeur de B<sub>e</sub> de 0.048 cm<sup>6</sup>/mole<sup>2</sup> ce qui est loin de la valeur expérimentale de Bose et Cole<sup>(24)</sup>de 0.72 ± .12 cm<sup>6</sup>/mole<sup>2</sup>. Signalons enfin que Dacre<sup>(25)</sup>a également calculé la polarisabilité du diatome de krypton et de xénon. Pour le krypton le calcul donne B<sub>e</sub> =0.34 cm<sup>6</sup>/mole<sup>2</sup> alors qu'expérimentalement Orcutt et Cole<sup>(5)</sup> ont trouvé 6.2 ± .3 cm<sup>6</sup>/mole<sup>2</sup> et Vidal et Lallemand <sup>(20)</sup>ont eux mesuré 5.4 ±.4 cm<sup>6</sup>/mole<sup>2</sup>.

On voit donc que plus le gaz est lourd plus la méthode SCF donne un résultat éloigné de la réalité.

#### CHAPITRE II

#### PROCEDURE EXPERIMENTALE

Dans ce chapitre, nous verrons tout d'abord la procédure pour déterminer expérimentalement le premier coefficient viriel diélectrique  $A_{\varepsilon}$  et le deuxième coefficient viriel de pression  $B_p$ . Nous expliquerons ensuite la méthode absolue de détermination de  $B_{\varepsilon}$  et nous verrons pourquoi cette méthode est peu appropriée. On verra enfin la méthode d'expansion de Buckingham et al<sup>(30)</sup> que nous avons utilisée.

# 2.1 <u>Détermination de A<sub> $\epsilon$ </sub> et de B<sub>p</sub></u>

Nous avons vu (équation 1.2) que la fonction de Clausius-Mossotti peut être développée en série de puissances de la densité.

On sait également que l'équation d'état d'un gaz imparfait est

$$\frac{P}{RT} = d + B_p d^2 + C_p d^3 + \dots$$
 (2.2)

De cette équation, on peut exprimer, en deuxième approximation, la densité comme

$$d = \left(\frac{P}{RT}\right) - B_{p} \left(\frac{P}{RT}\right)^{2}$$
(2.3)

Ensuite, en troisième approximation, la densité est exprimée comme

$$d = \frac{P}{RT} - B_{P} \left(\frac{P}{RT}\right)^{2} + \left(2B_{P}^{2} - C_{P}\right) \left(\frac{P}{RT}\right)^{3}$$
(2.4)

Si, dans l'équation (2.1) on remplace d par son expression donnée par (2.4) on obtient

$$\left(\frac{\varepsilon-1}{\varepsilon+2}\right)^{\frac{RT}{P}} = A_{\varepsilon} + \left(B_{\varepsilon} - A_{\varepsilon}B_{p}\right) \frac{P}{RT} + \left[C_{\varepsilon} - 2B_{p}\left(B_{\varepsilon} - A_{\varepsilon}B_{p}\right) - A_{\varepsilon}C_{p}\right] \left(\frac{P}{RT}\right)^{2} + \dots$$
(2.5)

On sait que pour les gaz atomiques, les deuxième et troisième coefficients du viriel de pression ( $B_p$  et  $C_p$ ) et du viriel de la constante diélectrique ( $B_e$  et  $C_e$ ) sont petits. Donc, si on travaille à basse pression (moins de 200psi) on peut négliger dans le membre de droite de l'équation (2.5) les termes d'ordre supérieur à (P/RT).

Il reste donc

$$\left(\frac{\varepsilon-1}{\varepsilon+2}\right)\frac{RT}{P} = A_{\varepsilon} + \left(B_{\varepsilon} - A_{\varepsilon}B_{p}\right)\left(\frac{P}{RT}\right)$$
(2.6)

Ceci est notre équation de travail pour la mesure expérimentale de A<sub>e</sub> et de B<sub>p</sub>. En examinant cette équation, on voit que pour déterminer A<sub>e</sub> et B<sub>p</sub> nous devons mesurer à la fois la constante diélectrique <sup>e</sup> et la pression P sur un isotherme T. La constante diélectrique est donnée par l'équation

$$\varepsilon = \frac{C}{C_0}$$
(2.7)

où C<sub>o</sub> représente la capacité d'un condensateur où il y a le vide entre les plaques et C représente la capacité du même condensateur lorsque ses plaques baignent dans un diélectrique. Pour mesurer C et C<sub>o</sub> on utilise un pont de capacité à transformateur très précis (section 3.3). Ceci nous permet d'évaluer la valeur de la constante diélectrique avec une précision d'une partie par million.

La pression est celle mesurée par un détecteur précis de pression (D.D.P.) (section 3.9). La résolution de cet appareil est de .001%.

La procédure expérimentale est la suivante: on mesure individuellement la capacité de chaque cellule et la pression correspondante pour des pressions allant de 200psi à environ 80psi en diminuant la pression par intervalle de 10psi environ. De l'équation (2.7) nous calculons la constante diélectrique de chaque cellule. De ceci, on peut calculer, à chaque pression, la constante diélectrique moyenne. On porte ensuite sur graphique les différentes valeurs de  $\left[\frac{c-1}{c+2}\right]$  (RT/P) en fonction de (P/RT). L'expérience est répétée au moins une fois pour chacun des gaz étudiés afin de vérifier la reproductibilité des mesures. On soumet, pour chaque gaz, les paires de mesures  $\frac{\varepsilon-1}{\varepsilon+2}$  (RT/P), (P/RT) au programme des moindres carrés. Celui-ci, calcule les coefficients et les incertitudes sur chacun d'eux, de la droite

$$Y = K + mX$$
(2.8)

où  $Y = \frac{\varepsilon - 1}{\varepsilon + 2}$  (RT/P) et X = (P/RT)

En plus, il nous permet, en calculant également d'autres polynômes, de nous assurer que l'équation (2.8) est le polynôme qui rend compte le mieux de nos points expérimentaux.

En comparant (2.8) et (2.6) on voit que

$$K = A_{c}$$
(2.9)

et que 
$$m = B_{\varepsilon} - A_{\varepsilon} B_{p}$$
 (2.10)

En isolant B<sub>p</sub> on obtient

$$B_{p} = \frac{B_{c} - m}{A_{c}}$$
(2.11)

De (2.9) on voit que l'ordonnée à l'origine nous donne directement la valeur de  $A_c$ .

La valeur de B<sub>p</sub> est celle calculée à partir de l'équation (2.11) où m est donné par le programme des moindres carrés et B est évalué par une autre méthode (section 2.3).
е

La méthode absolue de détermination des coefficients viriels de la constante diélectrique consiste à mesurer la constante diélectrique en fonction de la pression. La densité est ensuite exprimée en termes de pression via les coefficients viriels de pression  $B_p$  et  $C_p$ . On a vu à la section (2.1) que l'équation Clausius-Mossotti devient alors (équation 2.5)

$$\left(\frac{\varepsilon-1}{\varepsilon+2}\right)\frac{RT}{P} = A_{\varepsilon} + \left(B_{\varepsilon} - A_{\varepsilon}B_{p}\right)\left(\frac{P}{RT}\right) + \left[C_{\varepsilon} - 2\left(B_{\varepsilon} - A_{\varepsilon}B_{p}\right) - A_{\varepsilon}C_{p}\right]\left(\frac{P}{RT}\right)^{2} + \dots$$
(2.12)

On voit que la pente à l'origine de la courbe $\left[\frac{\varepsilon-1}{\varepsilon+2}(RT/P)\right]$ en fonction de (P/RT) nous donne la valeur de  $B_{\varepsilon}$  si on connaît  $A_{\varepsilon}$  et  $B_{p}$ .

Pour bien voir les désavantages de cette méthode, prenons par exemple le cas de l'argon. Pour l'argon à température de la pièce on a

$$A_{\varepsilon} = 4.142 \text{ cm}^3/\text{mole}$$

$$B_{p} = -15 \text{ cm}^3/\text{mole} \qquad (2.13)$$

$$t \quad B_{\varepsilon} \simeq 1 \text{ cm}^6/\text{mole}^2$$

De ceci on obtient

$$A_{eB_{p}} \simeq 60 \text{ cm}^{6}/\text{mole}^{2}$$
(2.14)

On s'aperçoit que  $B_{\varepsilon}$  n'est qu'environ 2% du terme  $(B_{\varepsilon} - A_{\varepsilon} B_{p})$  Donc, en faisant une erreur de 2% sur  $B_{p}$  une erreur de 100% va résulter dans la détermination de  $B_{\varepsilon}$ . Or, les valeurs de  $B_{p}$ mesurées par différents laboratoires diffèrent entre elles par 4%. Cette méthode n'est donc pas valable pour déterminer  $B_{c}$ .

# 2.3 <u>Méthode directe d'évaluation de B</u> $_{\varepsilon}$

#### 2.3.1 Méthodes d'expansion

Afin de déterminer les coefficients viriels diélectriques sans avoir à mesurer la densité, Cole et ses collaborateurs ont adapté la méthode d'expansion de Burnett<sup>(27)</sup>aux mesures diélectriques. Ils ont ainsi développé la méthode d'expansion cyclique<sup>(28)</sup>(29) . Une variante de cette méthode a été utilisée par Buckingham et al<sup>(30)</sup>. C'est cette dernière que nous avons adoptée.

# 2.3.2 <u>Méthode de Buckingham et al</u> (30)

Afin de bien visualiser le principe de cette méthode considérons tout d'abord le cas idéal. On a deux cellules A et B qui ont des volumes et des capacités géométriques identiques

$$V_{A} = V_{B} = V$$

$$A_{0} = C_{B0} = C_{0}$$

$$(2.15)$$

On remplit la cellule A de gaz à densité d tout en gardant la cellule B vide. On mesure la capacité totale des deux cellules en parallèle C, qui est

$$C_1 = C_{A1} + C_{B0} = C_1 + C_0$$
 (2.16)

où  $C_1$  est la capacité lorsque la cellule A est remplie de gaz de densité  $d_1$ . On ouvre ensuite une valve entre les deux cellules afin que le gaz se répartisse uniformément dans les deux cellules. La capacitance totale devient

$$C'_{I} = C_{A3} + C_{B3} = C_{3} + C_{3} = 2C_{3}$$
 (2.17)

où C $_3$  est la capacité lorsqu'une cellule est emplie de gaz de densité d $_3$ . Comme les volumes de A et B sont égaux on a

$$d_3 = \frac{d_1}{2}$$
 (2.18)

Définissons maintenant  $D_A$  comme étant la différence de capacité totale avant et après l'expansion

$$D_{A} = C_{I}^{*} - C_{I}$$
(2.19)

32.

De (2.16) et (2.18) on a

$$D_{A} = 2C_{3} - C_{1} - C_{0}$$
(2.20)

De la définition de la constante diélectrique (équation 2.7) on obtient

$$\frac{D_A}{C_0} = 2\varepsilon_3 - \varepsilon_1 - 1 \tag{2.21}$$

Ceci se réécrit

$$\frac{D_A}{C_0} = 2(\varepsilon_3^{-1}) - (\varepsilon_1^{-1})$$
 (2.22)

De l'appendice A on tire

$$(\varepsilon_1 - 1) = A_{\varepsilon}^{\prime} d_1 + B_{\varepsilon}^{\prime} d_1^2 + C_{\varepsilon}^{\prime} d_1^3 + \dots$$
 (2.23)

de la même façon

où A' , B' , C' sont définis dans l'appendice A.

En combinant (2.18) et (2.24) on a

$$(\varepsilon_{3}-1) = A_{\varepsilon}'(\frac{d}{2}) + B_{\varepsilon}'(\frac{d}{2})^{2} + C_{\varepsilon}'(\frac{d}{2})^{3} + \dots$$
(2.25)

En plaçant (2.25) et (2.23) dans (2.22) on obtient

$$\frac{D_A}{C_0} = 2 \left[ A_{\varepsilon} \left( \frac{d_1}{2} \right) + B' \left( \frac{d_1}{2} \right)^2 + C' \left( \frac{d_1}{2} \right)^3 + \dots \right] - \left[ A_{\varepsilon} d_1 + B_{\varepsilon} d_1^2 + C_{\varepsilon} d_1^3 + \dots \right]$$
(2.26)

$$\frac{D_{A}}{C_{O}} = -B_{\varepsilon}' \left(\frac{d^{2}}{1}{2}\right) - \frac{3}{4} C_{\varepsilon}' d_{1}^{3} - \dots$$
(2.27)

On voit donc que cette méthode élimine les termes linéaires en d. Le changement de capacité lors de l'expansion nous donne donc directement la valeur de B<sub>e</sub>.

### 2.4 Approche expérimentale

Nous avons vu à la section précédente que la méthode d'expansion de Buckingham et al<sup>(25)</sup>permet d'éliminer les termes linéaires en densité. Examinons maintenant en détail cette méthode pour une situation réelle, c'est à dire lorsque les deux cellules A et B sont légèrement différentes. Considérons donc que les volumes et le capacitances géométriques de ces cellules sont définis par

$$V_{A} = V(1+\delta)$$
  $V_{B} = V(1-\delta)$  (2.28)

$$C_{A0} = C_0(1+\Delta) \qquad C_{B0} = C_0(1-\Delta) \qquad (2.29)$$
  
où  $\delta << 1$   
 $\Delta << 1$ 

#### 2.4.1 Expansion du gaz de la cellule A ver la cellule B

Lorsque la cellule A est remplie de gaz à densité d<sub>1</sub> et la cellule B est vide, la capacitance totale s'écrit

$$C_{I} = C_{A1} + C_{B0}$$
(2.30)

En ouvrant la valve entre les deux cellules on fait l'expansion du gaz de la cellule A vers la cellule B. Immédiatement après l'expansion le système est instable dû à l'effet Joule-Thomson.

On attend donc que l'équilibre thermodynamique soit atteint et on referme alors la valve d'expansion. Les deux cellules sont remplies de gaz à densité d<sub>3</sub> et la capacitance totale s'écrit

$$c_{I}^{\prime} = c_{A3}^{\prime} + c_{B3}^{\prime}$$
 (2.31)

Comme précédemment on définit  $D_A$  comme étant le changement de capacitance entre la situation finale et la situation initiale

$$D_{A} = C_{I}^{\dagger} - C_{I}$$
(2.32)

De (2.31) et (2.30) on a

$$D_{A} = (C_{A3} + C_{B3}) - (C_{A1} + C_{B0})$$
(2.33)

En utilisant la définition de  $\varepsilon$  (équation 2.7) on exprime C<sub>A1</sub> comme étant

$$C_{A1} = \varepsilon_1 C_{A0} \tag{2.34}$$

et de même pour CA3 et CB3. L'équation (2.33) devient alors

$$D_{A} = c_{3}(C_{A0} + C_{B0}) - (c_{1}C_{A0} + C_{B0})$$
(2.35)

et de l'équation (2.20) on obtient

$$D_{A} = \varepsilon_{3} [C_{0}(1+\Delta) + C_{0}(1-\Delta)] - [\varepsilon_{1}C_{0}(1+\Delta) + C_{0}(1-\Delta)]$$
(2.36)

$$\frac{D_{A}}{C_{0}} = 2\varepsilon_{3} - \varepsilon_{1}(1+\Delta) - 1$$
 (2.37)

35.

(2.43)

En remaniant, cette expression devient

$$\frac{D_A}{C_0} = 2(\varepsilon_3^{-1}) - \Delta(\varepsilon_1^{-1}) - (\varepsilon_1^{-1})$$
(2.38)

où ( $\epsilon_3$ -1) et ( $\epsilon_1$ -1) sont exprimés comme

$$\epsilon_3 - 1 = A_{\epsilon}^{\dagger} d_3 + B_{\epsilon}^{\dagger} d_3^2 + C_{\epsilon}^{\dagger} d_3^3 + \dots$$
 (2.39)

et 
$$\varepsilon_1 - 1 = A_{\varepsilon}^{\dagger} d_1 + B_{\varepsilon}^{\dagger} d_1^2 + C_{\varepsilon}^{\dagger} d_1^3 + \dots \dots \dots$$
 (2.40)

La densité est le nombre de molécules par unité de volume. On a donc en se servant de (2.27)

$$d_{1} = \frac{N_{1}}{V_{A}} = \frac{N_{1}}{V(1+\delta)}$$
(2.41)

$$d_{3} = \frac{N_{1}}{V_{A} + V_{B}} = \frac{N_{1}}{2V}$$
(2.42)

où N<sub>1</sub> est le nombre de molécules

De (2.41) et (2.42) on tire

$$d_3 = \frac{(1+\delta)d_1}{2}$$

Puisque  $\delta <<1$  on a

$$d_{3}^{2} = \frac{(1+2\delta)d_{1}}{4}$$

$$d_{3}^{3} = \frac{(1+3\delta)d_{1}}{8}$$
(2.44)

En se servant de (2.43) et (2.44) on peut écrire (2.39)en termes de d<sub>1</sub> seulement

$$\varepsilon_{1} - 1 = A_{\varepsilon}^{*} \left( \frac{1+\delta}{2} \right) d_{1}^{*} + B_{\varepsilon}^{*} \left( \frac{1+2\delta}{4} \right) d_{1}^{2} + C_{\varepsilon}^{*} \left( \frac{1+3\delta}{8} \right) d_{1}^{3} + \dots$$
(2.45)

En se servant de (2.40) et (2.45) on peut écrire (2.38) en termes de  $d_1$ 

$$\frac{D_{A}}{C_{O}} = -(\varepsilon_{1} - 1)\Delta + 2\{\frac{1}{2}A_{\varepsilon}'(1 + \delta)d_{1} + B_{\varepsilon}'(1 + 2\delta)d_{1}^{2} + C_{\varepsilon}'(1 + e\delta)d_{1}^{3} + \dots\} - \{A_{\varepsilon}'d_{1} + B_{\varepsilon}'d_{1}^{2} + C_{\varepsilon}'d_{1}^{3} + \dots\}$$
(2.46)

En regroupant et en négligeant les termes d'ordre supérieur à  $d_i^3$  cette équation devient

$$\frac{D_{A}}{C_{O}} = (\varepsilon_{1} - 1)\Delta + \{A_{\varepsilon}^{*}d_{1}^{*} + \frac{1}{2}B_{\varepsilon}^{*}d_{1}^{2} + \frac{1}{4}C_{\varepsilon}^{*}d_{1}^{3}\} 
+ \delta\{A_{\varepsilon}^{*}d_{1}^{*} + B_{\varepsilon}^{*}d_{1}^{*} + C_{\varepsilon}^{*}d_{1}^{3} - \frac{1}{4}C_{\varepsilon}^{*}\delta d_{1}^{3} 
- \{A_{\varepsilon}^{*}d_{1}^{*} + B_{\varepsilon}^{*}d_{1}^{*} + C_{\varepsilon}^{*}d_{1}^{3}\}$$
(2.47)

avec (2.40) on obtient

$$\frac{D_A}{C_0} = (\epsilon_1 - 1)(\delta - \Delta) - \frac{1}{2}B_{\epsilon}'d_1^2 - \frac{3}{4}C_{\epsilon}'(1 + \frac{\delta}{3})d_1^3$$
(2.48)

On voit dans cette expression que le changement de capacité  $D_A$  est fonction d'un terme géométrique ( $\delta - \Delta$ ) et des interactions moléculaires (termes en  $B_{\epsilon}'$  et  $C_{\epsilon}'$ ). Comme on ne mesure pas la densité directement, on doit exprimer celle-ci en fonction de la quantité mesurée, c'est-à-dire  $\epsilon$ .

De (2.40) on a en deuxième approximation

$$d_{1} = \frac{\varepsilon - 1}{\Lambda_{\varepsilon}^{\prime}} - \frac{B_{\varepsilon}^{\prime}}{\Lambda_{\varepsilon}^{\prime}} \left[\frac{\varepsilon - 1}{\Lambda_{\varepsilon}^{\prime}}\right]^{2}$$
(2.49)

37.

En combinant (2.48) et (2.49) on a

$$\frac{D_{A}}{C_{0}} = (\varepsilon -1)(\delta - \nabla) - \frac{B_{\varepsilon}'}{2} \left[ \left( \frac{\varepsilon_{1} - 1}{A_{\varepsilon}'} \right) - \frac{B_{\varepsilon}'}{A_{\varepsilon}'} \left[ \frac{\varepsilon_{1} - 1}{A_{\varepsilon}} \right]^{2} \right]^{2}$$

$$-\frac{3}{4} C_{\varepsilon} \left(1 + \frac{\delta}{3}\right) \left[ \left( \frac{\varepsilon_{1} - 1}{A_{\varepsilon}'} \right) - \frac{B_{\varepsilon}}{A_{\varepsilon}'} \left[ \frac{\varepsilon_{1} - 1}{A_{\varepsilon}'} \right]^{2} \right]^{3}$$
(2.50)

En négligeant les termes d'ordre supérieur à  $(\epsilon_1^{-1})^3$  on obtient

$$\frac{D_{A}}{C_{O}} = (\varepsilon_{1}-1)(\delta-\nabla) - \frac{B_{\varepsilon}}{2} \left[\frac{\varepsilon_{1}-1}{A_{\varepsilon}}\right]^{2} + \frac{B_{\varepsilon}}{A_{\varepsilon}}\left[\frac{\varepsilon_{1}-1}{A_{\varepsilon}}\right]^{3} - \frac{3}{4} C_{\varepsilon}(1+\frac{\delta}{3})\left[\frac{\varepsilon_{1}-1}{A_{\varepsilon}}\right]^{3}$$
(2.51)

Ce qui donne

$$\frac{D_{A}}{C_{0}(\varepsilon_{1}-1)} = (\delta - \nabla) - \frac{B_{\varepsilon}'(\varepsilon_{1}-1)}{2A_{\varepsilon}'^{2}} + \left[\frac{B_{\varepsilon}'^{2}}{A_{\varepsilon}'^{4}} - \frac{3}{4}\frac{C_{\varepsilon}'}{A_{\varepsilon}'^{3}}\right](\varepsilon_{1}-1)^{2} - \frac{C_{\varepsilon}'}{4}\delta(\varepsilon_{1}-1)^{2}$$
(2.52)

L'équation (2.52) exprime le changement de capacitance  $D_{\rm A}$  en fonction de la constante diélectrique avant l'expansion  $\epsilon_1$ , des facteurs géométriques  $\delta$  et  $\Delta$  ainsi que des coefficients du viriel  $A_{\rm E}^{\prime}$ ,  $B_{\rm E}^{\prime}$  et  $C_{\rm E}^{\prime}$ .

#### 2.4.2 Expansion du gaz de la cellule B vers la cellule A

On a vu à la section précédente que  $\frac{D_A}{C_0(\varepsilon_1-1)}$  était dépendant du facteur géométrique ( $\delta$ - $\Delta$ ). Pour annuler cette dépendance, on fait l'expansion de la cellule B vers la cellule A. La procédure expérimentale est semblable. On remplit la cellule B de gaz à une densité d<sub>2</sub> similaire à d<sub>1</sub> de telle sorte que d<sub>2</sub>  $\simeq$  d<sub>1</sub>

et la cellule A est vide. On mesure la capacité totale C II puis on fait l'expansion de B vers A. Après équilibre on mesure la capacité C'<sub>II</sub>.

Comme précédemment on définit

$$D_{B} = C'_{II} - C_{II}$$
(2.53)

Après des calculs similaires à ceux de la section 2.4.1. on trouve

$$\frac{D_{B}}{C_{0}(\varepsilon_{2}-1)} = (\nabla - \delta) - \frac{B_{\varepsilon}'}{2A_{\varepsilon}'^{2}} (\varepsilon_{2}-1) + \left[\frac{B_{\varepsilon}'^{2}}{A_{\varepsilon}'^{4}} - \frac{3C_{\varepsilon}'}{4A_{\varepsilon}'^{3}}\right] (\varepsilon_{2}-1)^{2} + \frac{C_{\varepsilon}'\delta}{4} (\varepsilon_{2}-1)$$
(2.54)

Si on fait la somme de (2.52) et (2.54) on trouve

$$\frac{D_{A}}{C_{0}(\varepsilon_{1}-1)} + \frac{D_{B}}{C_{0}(\varepsilon_{2}-1)} = -\frac{B_{\varepsilon}^{\prime}}{2A_{\varepsilon}^{\prime 2}} \left[ (\varepsilon_{1}-1) + (\varepsilon_{2}-1) \right] \\ + \left[\frac{B_{\varepsilon}^{\prime 2}}{A^{\prime}} - \frac{3^{C^{\prime}}}{4A_{\varepsilon}^{\prime 3}} \right] \left[ (\varepsilon_{1}-1)^{2} + (\varepsilon_{2}-1)^{2} \right] - \frac{C_{\varepsilon}^{\prime}}{4} \delta \left[ (\varepsilon_{1}-1)^{2} - (\varepsilon_{2}-1)^{2} \right]$$
(2.55)

Mais comme  $\varepsilon_1 \simeq \varepsilon_2$  et que  $\delta \ll 1$ on peut négliger le terme  $\frac{-C_{\varepsilon}'}{4} \delta[(\varepsilon_1 - 1)^2 - (\varepsilon_2 - 1)^2]$ 

On a donc l'équation de travail pour la méthode d'expansion de Buckingham.

$$\frac{D_{A}}{C_{0}(\varepsilon_{1}-1)} + \frac{D_{B}}{C_{0}(\varepsilon_{2}-1)} = -\frac{B_{\varepsilon}^{\prime}}{2A_{\varepsilon}^{\prime 2}} \left[ (\varepsilon_{1}-1) + (\varepsilon_{2}-1) \right] + \left[ \frac{B_{\varepsilon}^{\prime 2}}{A_{\varepsilon}^{\prime 4}} - \frac{3C_{\varepsilon}^{\prime}}{4A_{\varepsilon}^{\prime 3}} \right] \left[ (\varepsilon_{1}-1)^{2} + (\varepsilon_{2}-1)^{2} \right]$$
(2.56)

Dans cette équation on voit que l'effet de l'inégalité des volumes et des capacitances des deux cellules a été complétement éliminé.

#### CHAPITRE III

#### EQUIPEMENT EXPERIMENTAL

#### 3.1 Description du montage

Le coeur de notre montage expérimental est constitué de deux cellules pouvant supporter de hautes pressions et d'un pont de capacité à transformateur couplé à une capacité de référence standard. Les cellules sont reliées entre elles par une valve qui sert à faire l'expansion du gaz d'une cellule à l'autre. D'autres valves permettent d'emplir ou de vider les cellules. Le gaz est acheminé vers les divers instruments et vers les cellules par des conduits de métal pouvant supporter à des pressions de 30,000psi.

Les cellules sont immergées dans un bain à température contrôlée. Elles sont reliées au pont de capacité par des cables coaxiaux (50  $\Omega$ ) à connection BNC.

La pression du gaz dans les cellules est augmentée par un compresseur manuel. Une pompe mécanique nous permet de faire le vide.



Figure 3.1: Montage pour la mesure des différents coefficients du viriel.

41

Pour la mesure de  $A_{\epsilon}$  et  $B_{p}$  nous devons connaître précisément la pression dans les cellules. Pour ce faire, nous utilisons un détecteur précis de pression (D.P.P.). Ce D.P.P. est calibré grâce à un référentiel de pression. La figure 3.1 nous donne un schéma du montage expérimental.

#### 3.2 Cellules

Comme nous prenons des mesures jusqu'à des pressions assez élevées, les cellules doivent avoir deux caractéristiques majeures:

- Pouvoir supporter de façon sécuritaire à de hautes pressions et ce, sans aucune fuite.
- 2) La géométrie du condensateur à l'intérieur de la cellule ne doit pas être modifiée par la pression.

La première caractéristique est obtenue en employant un matériau approprié (acier inoxydable 316). Ensuite, par les équations de la théorie de l'élasticité nous pouvons calculer, pour une géométrie donnée, l'épaisseur de paroi requise pour pouvoir supporter une pression donnée. La deuxième caractéristique est acquise par le fait que comme toutes les plaques du condensateur sont à l'intérieur de la cellule, la pression est la même sur toutes les parties du condensateur et donc, la géométrie de celui-ci ne change pas.

Il faut cependant tenir compte du facteur de compressibilité de l'acier inoxydable. Ceci est fait à la section 4.2

Examinons maintenant en détail la construction d'une cellule.

#### 3.2.1 Corps de la cellule et condensateur

Chaque cellule est un cylindre en acier inoxydable de 15.1cm de hauteur et 7.6cm de diamètre externe avec des parois de 1.9cm d'épaisseur. Ce cylindre est bouché par un couvercle de 2.5cm d'épaisseur et de 7.6cm de diamètre. Sur le couvercle on visse le condensateur qui lui est formé de plaques ayant 3.2cm de diamètre et distancées de 0.16cm l'une de l'autre. En variant la distance entre les plaques ont peut ajuster la capacité géométrique avec une précision de 0.1pf. (figure 3.2).





44.

Pour assurer l'étanchéité entre le couvercle et le cylindre, on place un "o ring" de cuivre de 2mm d'épaisseur, de 5.4cm de diamètre externe et de 4.1cm de diamètre interne dans une cavité de 1mm d'épaisseur aménagée sur le cylindre afin de recevoir le "o ring". Sur le couvercle il y a une couronne proéminente qui vient presser fortement sur le "o ring" (figure 3.3). Le serrage du couvercle sur le corps de la cellule est fait par six boulons.

Sur le couvercle, en plus de six orifices servant au boulonnage, il y a trois autres orifices. Deux de celles-ci servent à l'installation de sorties électriques qui, étant reliées aux plaques du condensateur, permettent les lectures de capacité (figure 3.2). Le troisième orifice sert à relier la ligne extérieure à la cellule. Par cette ligne on peut faire entrer ou sortir les gaz sous pression ou bien faire le vide. Cet orifice est de type "Aminco" afin d'avoir une bonne étanchéité même à des pressions de 8000psi.

Après le corps de la cellule on retrouve également un orifice de type "Aminco". Cet orifice sert à relier les deux cellules ensemble via une valve de type "Aminco". Ceci nous permet de faire l'expansion des gaz d'une cellule à l'autre.





COUPE "A,A"

Figure 3.3: Détails du couvercle de chacune des cellules.

#### 3.2.2 Connections électriques

Deux types de connections électriques ont été utilisées. Pour les mesures à température de pièce un connecteur (Feedthrus) de céramique a été utilisé. Pour les mesures cryogéniques ont doit fabriquer un connecteur avec de l'époxy ayant de bonnes propriétés thermiques et mécaniques. (STYCAST 2850FT CATALYSEUR 24LV de la compagnie Emerson & Cumming).

#### 3.3 Pont de capacité à transformateur

Le pont de capacité à transformateur tel que présenté à la figure (3.4) est un pont de Wheatstone conventionnel sauf qu'ici, la tension appliquée est produite par un transformateur alors que dans le pont de Wheatstone conventionnel la tension est fonction d'une résistance. Le pont de capacité à transformateur est donc beaucoup plus précis et il offre une meilleure résolution et une bonne stabilité des lectures. Si on utilise des câbles coaxiaux du type à trois conducteurs, c'est-à-dire que l'un sert de mise à terre entre le pont et le corps des cellules, on élimine les impédances résiduelles de la condition d'équilibre du pont provenant de l'environnement extérieur tel que l'induction magnétique et électrostatique ou dues à la capacité de ligne.





Sur la figure (3.4) on voit que, sur le solénoïde toroïdal, l'enroulement du primaire connecté au générateur (GEN) sert uniquement à exciter le noyau du tore et le nombre de tours de fil  $N_p$  détermine la charge imposée au générateur sans influencer le circuit du pont. Comme le noyau est fait d'un matériau hautement perméable, on peut assumer que tout le flux magnétique est concentré sur le noyau. Dans un tel cas, le rapport des différences de potentiel( $V_1/V_2$ ) sur les deux parties de l'enroulement du secondaire doit être exactement égal au rapport du nombre de tours de fil( $N_1/N_2$ ). Comme de chaque côté du circuit on a respectivement une capacité standard C<sub>s</sub> et une capacité inconnue C<sub>x</sub>, la condition d'équilibre du pont, c'est à dire lorsque le détecteur mesure un courant nul, sera

$$V_2 C_s = V_1 C_x \tag{3.1}$$

Donc

$$\frac{C_{X}}{C_{S}} = \frac{V_{2}}{V_{1}} \frac{N_{2}}{N_{1}}$$
(3.2)

Ainsi,  $C_x$  peut être déterminé avec une grande précision en fonction de la capacité standard  $C_s$ .

Pour évaluer la précision que l'on peut atteindre avec un tel montage, on tient compte des admittances dérivées Y<sub>1</sub> et Y<sub>2</sub> résultant de la dispersion et des pertes diélectriques dans les condensateurs. En tenant compte de la self-inductance "L" et de l'inductance mutuelle des deux solénoides  $M = n_1 n_2 m$  et des résistances  $n_1 r$  et  $n_2 r$  qui apportent une perte ohmique, les tensions V<sub>1</sub> et V<sub>2</sub> sont données par

$$V_1 = -n_1 e + n_1 r I_1 + n_1^2 i \omega L I_1 + n_1 n_2 i \omega m I_2$$

$$V_2 = n_2 e - n_2 r I_2 - n_2^2 i \omega L I_2 - n_1 n_2 i \omega m I_1 \qquad (3.3)$$

où  $n_1^e$  et  $n_2^e$  sont les forces électromotrices et  $\omega$  est la fréquence angulaire du générateur.

Le pont est en équilibre lorsque le courant du détecteur est nul, c'est à dire lorsqu'on a le même courant dans les deux branches du pont.

On a donc

et

$$I_{s} = Y_{s}V_{2} = I_{x} = -Y_{x}V_{1}$$
(3.4)  

$$I_{1} = I_{x} - V_{1}Y_{1}$$
(3.5)

A partir de (3.3),(3.4) et (3.5) on obtient

$$\frac{Y_{x}}{Y_{s}} = \frac{n_{2}}{n_{1}} \left[ \frac{1 + n_{1}Y_{1} (r+i)\omega(L-m)n_{1}}{1 + n_{2}Y_{2} (r+i\omega(L-m)n_{2})} \right]$$
(3.6)

Le terme entre accolades de cette équation représente la

Le terme entre accolades de cette équation représente la déviation du comportement d'un transformateur idéal due aux admittances dérivées  $Y_1$  et  $Y_2$  et aux caractéristiques intrinsèques du transformateur, c'est à dire r et (L-m).

En condition normale d'utilisation, cette déviation est assez petite pour pouvoir être complètement négligée. Par exemple, pour r=10hm et  $n^2(L-m)=10^{-6}$ henry, une admittance  $Y_1 = i\omega c_1$ d'un condensateur dérivé  $C_1 = 100$  pf on obtient comme correction

 $n_{1} \{r+i\omega n_{1} (L-m)\}i\omega C_{1} = i(10^{-10}\omega) - 10^{-16}\omega^{2} \qquad (3.7)$ L'erreur faite en comparant deux capacitances Cx et Cs ayant la même capacité de 100pf et à une fréquence v=10KHz ( $\omega=2\pi v = 6.3 \times 10^{4}$  rad/s) est, pour la capacité de  $\Delta C = -4 \times 10^{-5}$  pf et pour la conductance  $\Delta G = 4 \times 10^{-11}$  mho.

On peut dériver une telle capacité par l'emploi de câbles coaxiaux d'une longueur d'un mètre connectant le transformateur à l'un des condensateurs. On en conclut qu'une grande longueur de câble affecte très peu la condition d'équilibre du pont. Tant que la fréquence sera basse, l'erreur faite sera petite à cause des termes en  $\omega$  et  $\omega^2$  dans (3.7).

La figure (3.5) nous montre un schéma du pont de capacité à transformateur utilisé pour nos mesures. Le côté du secondaire des transformateurs est séparé en dix parties égales auxquelles sont connectés douze condensateurs standards fixes de 100nf à 1af en multiple de dix. On note également cinq résistances





standards et un circuit multiplicateur pour réduire leurs valeurs respectives ce qui donne en pratique onze conductances standards de  $10\mu_{\Im}$  à 1f  $\Im$  en multiples de dix. On remarque le multiplicateur externe (ext multiplier) qui permet de multiplier la référence standard externe de -.1 à 1.0 en saut de .1, la multiplication par -.1 nous permettant de mesurer directement la référence externe. Le multiplicateur de lecture (readout multiplier) permet de multiplier la valeur de la capacitance et de la conductance inconnue par un facteur de 1,10 ou 100.

Comme les valeurs de capacité de nos cellules sont dans un domaine de 100pf à 110pf, un condensateur externe standard Cs=100.00121pf est utilisé. Lorsque celui-ci est connecté, il se comporte comme un condensateur standard interne. Donc, la lecture prise avec le pont de capacitance doit être ajoutée à la valeur du condensateur standard externe. On voit qu'avec un tel agencement, le pont ne mesure que la différence de capacité entre la cellule à mesurer et la référence standard externe.

Ceci permet de prendre des lectures de quelques parties par million.

La figure (3.6) illustre schématiquement le fonctionnement de ce pont. L'alimentation est fournie par un générateur de fréquence audio qui permet d'opérer dans un intervalle de fréquences de 10HZ à 100KHZ. Nos mesures ont été effectuées à 1KHZ car c'est à cette fréquence que le pont a un rendement optimal.

En effet, à haute fréquence la précision est moindre à cause, entre autre, de la diminution de la perméabilité du tore avec la fréquence et des capacitances et inductances résiduelles dans les enroulements. A basse fréquence la sensibilité est limitée par la tension maximale que l'on peut obtenir du transformateur. Un amplificateur est utilisé pour la détection précise du zéro assisté d'un préamplificateur à haute impédance.

#### 3.4 Référence à température contrôlée

Un condensateur de type 1408-B de la compagnie General Radio sert de condensateur standard extérieur au pont de capacité à transformateur. La capacité a été calibrée par le National Bureau of Standard et mesure 100.00121 pF avec une précision de 0.5ppm à une fréquence de lKHZ et à une température de 30.07°C. Le condensateur de la référence est scellé dans une atmosphère d'azote et un four de type marche-arrêt garde la référence à 30.07 ± .01°C.

#### 3.5 Valves

Comme les mesures furent prises à des températures très différentes nous avons dû utiliser deux types de valves de conceptions complètement différentes.



Figure 3.6: Diagramme schématique représentant le fonctionnement

du pont de capacité à transformateur.

Pour les mesures à température de pièce, nous avons utilisé les modèles 44-13161, 44-13106 ou 44-13121 de la compagnie Aminco ou le modèle 60-11HF4 de la compagnie High Pressure. Ces valves peuvent supporter une pression de 30,000psi. Le principe de ces valves est le suivant: (voir figure 3.7). En tournant une poignée on fait descendre ou monter une tige d'acier très dur (acier inoxydable 440c). Cette tige ne tourne pas et elle vient s'appuyer fermement sur son siège afin de boucher le conduit traversant la cellule. Un joint d'étanchéité de Teflon serre fermement la tige afin d'assurer l'étanchéité.

Pour les mesures à température cryogénique, les valves à l'extérieur du bain sont les mêmes valves que précédemment. Cependant pour les deux valves amenant le gaz aux cellules et pour la valve d'expansion on ne peut utiliser ce type de valve car la basse température détériorerait le joint d'étanchéité de Teflon. Pour ces trois endroits on utilise donc des valves à étanchéité par soufflet. On peut voir une telle valve sur le figure (3.3). Le soufflet est fait d'un tube uniformément mince d'un métal ductile. Le tube est plissé à la manière d'un accordéon afin d'être plus flexible. En soudantl'extrémité haute du soufflet à la tige et celle du bas à un anneau fixe, la tige peut monter et descendre alors que l'étanchéité est assurée par le soufflet.

Le modèle SS-4TW *de* Nupro est une valve de ce type et elle peut supporter des pressions de 2500psi jusqu'à une température de 77<sup>0</sup>K.



FIGURE 3.7: Schéma d'une valve utilisée à la température de la pièce.



FIGURE 3.8: Schéma d'une valve à étanchéité par soufflet

#### 3.6 Enceinte des cellules (bain)

#### 3.6.1 Température de pièce

Le bain à température de pièce est une enceinte cylindrique, construite en aluminium de 8mm d'épaisseur ayant un diamètre externe de 51cm et une profondeur de 52cm. Cette enceinte est entourée de matériaux isolants. Le bain est rempli d'un liquide peu volatil: l'éthylène glycol. Ce liquide est continuellement agité afin de garder l'uniformité de 1a température. Sur la figure 3.9, on voit la température du bain sur une période de 14 heures. La température s'y maintient à 29.75 ± 0.01°C. La période des oscillations de la température est d'environ 25 minutes. Comme les cellules ont une masse importante d'acier inoxydable et ont une paroi très épaisse, l'inertie thermique des cellules est très grande. Donc le gaz à l'intérieur des cellules subit une variation de température beaucoup plus faible que le bain en lui-même car ces variations sont très amorties par les cellules.

#### 3.6.2 Température cryogénique

Le bain à basse température est une enceinte cylindrique de diamètre interne de 23.5cm et de profondeur de 41cm. Elle est isolée de l'extérieur par des panneaux de polystyrène extrudé de 4cm d'épaisseur. Selon la température désirée, l'enceinte est remplie soit d'azote liquide soit d'un mélange acétone-glace sèche (voir section 3.7.2). FIGURE 3.9

TEMPERATURE DU BAIN PENDANT 14 HEURES.



#### 3.7 Contrôle de la température

## 3.7.1 Température de la pièce

Pour garder l'enceinte des cellules à température constante (29.75<sup>O</sup>C) on utilise un contrôleur proportionnel de température de la compagnie Melabs modèle CTC-1A.

Un oscillateur d'un kilocycle fournit un signal stable à une des entrées d'un détecteur de phase et au circuit d'un pont à courant alternatif. Le détecteur de phase compare l'entrée et la sortie du pont et la différence de phase est utilisée pour produire un courant continu changeant de polarité suivant le sens d'équilibre du pont. Ce courant est ensuite amplifié par un amplificateur à courant continu et, il est utilisé pour contrôler la sortie d'un rectificateur au silicone qui lui alimente un élément chauffant de 750W (voir figure 3.10).

Le pont est composé de quatre résistances (voir figure 3.11). Deux sont fixes et d'égales valeurs, une autre est variable afin de sélectionner la température désirée et la dernière est la sonde dont la résistance de platine varie presque linéairement avec la température. Lorsque la température du milieu fait varier la résistance de la sonde il se produit un changement rapide de la phase. Ce changement de phase est analysé par le détecteur de phase. Selon la direction du changement de phase, le système fournira plus ou moins de puissance aux éléments chauffants afin de rétablir l'équilibre du pont, c'est-à-dire la température désirée. La stabilité de



Figure 3.10: Diagramme du contrôleur proportionnel de température.





ce contrôleur est de  $0.002^{\circ}$ C à court terme et de  $0.007^{\circ}$ C à long terme. La figure 3.9 illustre la température du bain sur période de 14 heures. On voit que la température se maintient à 29.75 ±  $.01^{\circ}$ C. Ces écarts de température ne pertubent pas nos mesures.

#### 3.7.2 Température cryogénique

Avec le bain à température cryogénique nous avons mesuré à deux températures, à 77<sup>0</sup>K et à 192<sup>0</sup>K.

Pour les mesures à 77<sup>o</sup>K le bain est rempli d'azote liquide. On ajoute régulièrement de l'azote liquide pour compenser les pertes par évaporation et les mesures sont toujours prises au même niveau de liquide dans le bain. Le seul facteur pouvant influencer la température du bain est la pression atmosphérique, cet effet est négligeable dans notre cas.

Pour les mesures à 192<sup>°</sup>K le bain est rempli d'un mélange acétone-glace sèche (CO<sub>2</sub> solide). L'acétone et la glace sèche sont constamment rajoutés afin de compenser les pertes par évaporation.On s'assure qu'il y a toujours de la glace sèche dans le bain. Un agitateur assure l'uniformité de la température dans le bain.

Pour les deux températures (77 et 192<sup>0</sup>K) on a constamment mesuré la température avec un thermomètre cryogénique (voir section 3.8.2). Dans les deux cas la température ne varie pas de plus de .01<sup>0</sup>C.
### 3.8 Thermomètres

### 3.8.1 Thermomètre de température ambiante

La température du bain à température de pièce est mesurée grâce à un thermomètre à quartz de la compagnie Hewlett-Packard (modèle 2801A). Dans ce type de thermomètre un cristal de quartz (coupé selon un certain angle afin de présenter une variation de fréquence linéaire avec la température) génère une fréquence radio. Cette fréquence, qui dépend de la température du cristal, est comparée avec la fréquence radio générée par un oscillateur de référence très stable. La fréquence de battement qui en résulte est ensuite détectée et exprimée en degrés celcius. Dans nos conditions d'opération la résolution de ce thermomètre est de .001<sup>o</sup>C.

#### 3.8.2 Thermomètre cryogénique

La température du bain à basse température est mesurée avec le contrôleur de température cryogénique de la compagnie Lake Shore Cryotronics modèle TGC-100. Lorsque l'appareil sert uniquement de thermomètre une source précise de courant constant envoie un courant de 10 microampères à travers la diode (GaAs) de la sonde. La tension variable de référence est soustraite de la tension de référence et la différence est amplifiée par un amplificateur à gain variable. La différence amplifiée est alors lue sur un "null meter". On ajuste la tension de référence jusqu'à ce que la différence soit nulle avec un gain maximum. Par une table on peut relier la tension de référence à la température du bain. A la figure 3.12 on a un diagramme de ce thermomètre.

La précision de cet instrument est, dans le pire des cas, de  $0.1^{\circ}$ K.





### 3.9 Détecteur de pression

### 3.9.1 Principe de fonctionnement

Pour mesurer précisément la pression nous utilisons le détecteur précis de pression (D.P.P.), modèle 145-01 de Texas Instruments. Lorsqu'il opère en mode servo cet appareil a cinq composantes: une capsule Bourdon, un module de poursuite, un module de pression nulle, un amplificateur et un moteur à rétroaction. (voir figure 3.13)

La capsule Bourdon est une enceinte scellée contenant un orifice permettant d'y faire le vide ou d'y maintenir une pression de référence. Dans l'axe de la capsule un tube en quartz, enroulé en spirale, est monté. Le tube est maintenu à température constante à l'intérieur de la capsule. Un bout du tube est ouvert afin de permettre l'entrée du gaz. L'autre bout est fermé et un miroir y est fixé. Ce miroir indique la position angulaire du tube, celle-ci change lorsque le tube spirale est soumis à une pression différente entre l'intérieur et l'extérieur du tube.

Le module de poursuite comprend, entre autres, un transducteur optique et une table tournante sur 360<sup>0</sup>. Le transduc-



FIGURE 3.13: Fonctionnement du détecteur précis de pression dans le mode servo.

teur optique contient la source lumineuse et les cellules solaires. Le rayon lumineux est envoyé sur le miroir qui le réfléchit vers les cellules solaires. Celles-ci sont agencées de telle sorte que si le miroir est légèrement tourné il y aura sortie d'un signal. La table tournante sert à faire tourner le transducteur afin de rétablir l'équilibre. Ce faisant elle entraîne un compteur numérique qui indique la différence de pression entre l'extérieur et l'intérieur du tube.

Le module de pression nulle amplifie le signal qui sort du transducteur optique. Le signal sortant du module de pression nulle est encore amplifié par le servo amplificateur. Cet amplificateur a un gain d'environ 25,000. Le servo amplificateur envoie le signal qui actionne le moteur à rétroaction. Celui-ci actionne la plaque tournante afin de repositionner le transducteur optique.

Le D.P.P. a une résolution de ±.002psi sur une plage de pression allant de 0 à 200 psi. Pour nos mesures on maintient le vide dans le référentiel de pression afin de mesurer la pression absolue du gaz.



### 3.9.2. Calibration

Pour que la pression lue sur le D.P.P.soit la plus exacte possible nous calibrons celui-ci. Pour ce faire nous utilisons le référentiel de pression calibrée (R.P.C.) modèle PPS-500 de Compudyne Corporation. Cet appareil est constitué d'un piston qui s'ajuste étroitement dans un cylindre monté sur une table tournante. La différence entre le rayon du cylindre et celui du piston n'est que de 5x10<sup>-5</sup> cm. On peut placer sur le piston un ensemble de disques gradués dont on connaît la masse avec une précision de 0.005%. On relie l'appareil en série avec le D.P.P. Le gaz passe dans le cylindre et pousse sous le piston. La pression du gaz soulève le piston lorsque l'équilibre est

atteint avec les masses appliquées. De plus un mince filet de gaz se forme dans le jeu entre le cylindre et le piston. Ce filet permet la lubrification nécessaire pour que le piston glisse librement. Le cylindre étant sur une table tournante, on fait alterner le sens de rotation de la table afin d'éviter l'effet d'entraînement provoqué par un mouvement de rotation unidirectionnel.

Pour la calibration, on doit utiliser un gaz dont les propriétés se rapprochent le plus d'un gaz idéal. C'est-à-dire un gaz où la densité varie le plus linéairement possible avec la pression. ( $B_p$  le plus petit possible). Les gaz atomiques présentant de telles propriétés, nous avons donc calibré avec l'Argon. La calibration fut effectuée à température constante dans la pièce (21.9  $\pm$ .1<sup>o</sup>C). On a utilisé comme référence la pression atmosphérique. La précision du (R.P.C.) est d'au moins 0.015%.

### 3.10 Compresseur manuel

Afin de pouvoir travailler à des pressions supérieures à celle de la bonbonne de gaz nous avons utilisé un compresseur manuel de la compagnie High Pressure Equipment (modèle 50-6-15).

Ce compresseur est formé d'un cylindre, de volume intérieur de vingt centimètres cube, dans lequel glisse un piston qui, en s'abaissant, fait diminuer le volume donc, fait augmenter la pression. On abaisse le piston au moyen d'un bras de force. Ce compresseur peut fournir des pressions jusqu'à 15,000psi. Son principe de fonctionnement est le suivant: On injecte le gaz dans le compresseur par la valve d'admission. On ferme cette valve et on ouvre la valve de sortie conduisant aux cellules. On abaisse ensuite le piston qui, en comprimant le gaz fait augmenter la pression. On referme la valve de sortie et on recommence le cycle jusqu'à ce qu'on ait atteint la pression désirée. Dans certains cas, pour atteindre la pression requise plus rapidement nous avous utilisé deux compresseurs en série.

#### 3.11 Détecteur de fuites

Le détecteur de fuites permet de vérifier l'étanchéité du système. Il est composé d'un spectromètre de masse sensible à l'hélium, d'un indicateur de fuites et d'une pompe à diffusion.

Le spectromètre de masse est constitué d'une jauge de pression, d'une source d'ions, d'un écran collecteur d'ions et d'un préamplificateur (voir figure 3.14). Le champ magnétique est produit par un bloc d'Alnico V. Le spectromètre est relié à un système électronique indiquant le taux de fuites. Une pompe à diffusion sert à maintenir la pression en dessous de 0.2 micron afin de faciliter la détection de l'hélium à l'intérieur du spectromètre.

Notre but étant de vérifier si, à haute pression, notre système présentait des fuites, nous avons utilisé la technique suivante: Nous avons couplé au détecteur de fuite un tuyau de caoutchouc ayant à son extrémité une micro-fuite. Cette microfuite fut fabriquée à l'atelier de mécanique de l'UQTR. Grâce à cette micro-fuite, le détecteur de fuite peut aspirer de l'air de l'extérieur sans que son système de pompage ne soit sursaturé.

La partie du montage à analyser est remplie d'hélium à une pression un peu supérieure à celle où nous travaillerons (de



### FIGURE 3.14: Schéma du spectromètre de masse

73

2000 à 8000psi suivant le cas). On promène alors la micro-fuite sur les points du montage susceptibles de présenter une fuite. S'il y a une fuite, l'hélium est aspiré, via la micro-fuite, et est détecté par le spectromètre de masse du détecteur de fuite.

Le détecteur de fuite à spectromètre de masse que nous utilisons est le modèle NRC 925-20 de la compagnie Norton Vacuum Equipment. La limite de résolution de ce détecteur de fuite est de 1.0 x  $10^{-9}$ cc/sec. Sur nos montages nous ne tolérons aucune fuite supérieure à cette limite.

### 3.12 Température ambiante

La température ambiante a un certain effet sur le pont de capacitance, les tuyaux de gaz qui sont à l'extérieur du bain, le détecteur précis de pression (D.P.P.) et le référentiel de pression calibré (R.P.C.)

Les références internes du pont de capacitance sont sensibles aux variations de température, elles sont donc logées dans une enceinte bien isolée à l'intérieur du pont. Si on stabilise la température du pont à une valeur entre 22°C et 24°C on a les conditions optimales d'opération du pont. C'est pourquoi nous avons sélectionné la température de la pièce à 22°. La figure (3.15) nous donne la variation type de la température de la pièce sur une période de 24 heures. (de 00.00 hr à 24.00 hr). On y voit que pendant une journée la température se





maintient à  $22.0 \pm .1^{\circ}$ C. Pendant la période où on prend des mesures (entre 9.00 et 17.00 hres) la température est de 22.06  $\pm 0.04^{\circ}$ C. La température de la pièce croit un peu pendant cette période car le système de chauffage du bâtiment est alors en marche. Pendant la nuit le chauffage du bâtiment est abaissé, c'est pourquoi la température de la pièce baisse également un peu.

Examinons l'effet du changement de température de la pièce sur le pont. L'enceinte qui isole les capacités de référence du pont a une constante de temps de 6 hres. Le coefficient de température est de 3ppm/<sup>O</sup>C. Le changement fractionnel de la capacitance dû à la température est donné par

$$\frac{\Delta C}{C} = \alpha \frac{\Delta t}{RM} (\Delta \theta_e) e^{-t/RM}$$

où α=coefficient de température

 $\Delta t$  =temps pris pour mesurer

 $\Delta \theta_{e}$  = changement de température

RM=constante de temps

t=temps écoulé pendant la variation de température Prenons t=5min. dans notre cas, la pire situation est lorsque  $\Delta \theta_e = .2^{\circ}C$  et t<<RM. On a donc  $\frac{\Delta C}{C} = \begin{pmatrix} 3ppm \\ \circ C \end{pmatrix} \begin{pmatrix} 5mm \\ 360mm \end{pmatrix} (.2^{\circ}C) e^{\circ} = .008ppm$ 

Cette quantité est négligeable.

### 3.13 Liste des appareils

Agitateur, moteur C.A. modèle 7J753FAX, 1/3 H.P. C.G.E.co. Cellules (2) 0-8000psi

Compresseur manuel, modèle 50-6-15, High pressure Equipment Contrôleur proportionnel de température, modèle CTC-1A, Melabs Contrôleur de température arrêt-marche YSI modère 71A Détecteur de fuite, modèle NRC 925-50 Norton Détecteur précis de pression, modèle 145-01, Texas Instrument Element chauffant de 650 watts Enregistreur numérique, modèle 5055A, Hewlett-Packard Pompe mécanique, modèle 1376, Welch Scientific Co. Pont de capacité à transformateur, système 1621 Genrad Référence standard de capacité, type 1408-B, Genrad Standard de pression, modèle 2801A, Hewlett-Packard Thermomètre numérique, modèle TGC-100, Lake Shore Cryotronics Valves modèles 44-13161, 44-13106, 44-13121 Aminco

60-11HF4 High pressure

SS-4TW Nupro

#### CHAPITRE IV

### RESULTATS EXPERIMENTAUX

Dans ce chapitre, nous présentons nos mesures expérimentales de  $A_{\epsilon}$ ,  $B_{\epsilon}$  et  $C_{\epsilon}$  de l'Hélium, du Néon et de l'Argon. Ces gaz furent utilisés tels que contenus dans le cylindre livré par le manufacturier. Tous ces gaz étaient d'une haute pureté. Les puretés rapportées sont celles notées par le manufacturier après analyse d'un échantillon du lot comprenant notre cylindre. Ces puretés sont, pour chaque gaz:

Hélium (Matheson) Haute pureté 99.995% Hélium (Union Carbide) Recherche 99.995% Néon (Union Carbide) Ultra pur 99.996% Argon (Union Carbide) Prépurifié 99.998% Argon (Matheson) Prépurifié 99.998%

#### 4.1 Formule de travail

Au chapitre 2 nous avons dérivé l'équation de travail de la méthode d'expansion de Buckingham.

$$\frac{D_{A}}{C_{0}(\varepsilon_{1}-1)} + \frac{D_{B}}{C_{0}(\varepsilon_{2}-1)} = -\frac{B_{\varepsilon}'}{2(A_{\varepsilon}')^{2}} [(\varepsilon_{1}-1) + (\varepsilon_{2}-1)] + \left[\frac{(B_{\varepsilon}')^{2}}{(A_{\varepsilon}')^{2}} - \frac{3}{4} \frac{C_{\varepsilon}'}{(A_{\varepsilon}')}\right] |(\varepsilon_{1}-1)^{2} + (\varepsilon_{2}-1)^{2} ]$$

$$(4.1)$$

Cette expression ne se conforme pas à la représentation polynomiale que nous utilisons pour l'analyse des résultats par le programme des moindres carrés. Nous exprimons donc l'équation 4.1 sous la forme polynomiale utilisée dans notre analyse:

où

$$Y = A^{EXP} (X_{1} + X_{2}) + B^{EXP} (X_{1}^{2} + X_{2}^{2})$$
(4.2)  

$$Y = \frac{D_{A}}{C_{0}(\varepsilon_{1} - 1)} + \frac{D_{B}}{C_{0}(\varepsilon_{2} - 1)}$$

$$A^{EXP} = -\frac{B_{\varepsilon}^{'}}{2(A_{\varepsilon}^{'})^{2}}$$

$$B^{EXP} = \frac{(B_{\varepsilon}^{'})^{2}}{(A_{\varepsilon}^{'})^{4}} + \frac{3}{4} \frac{C_{\varepsilon}^{'}}{(A_{\varepsilon}^{'})^{3}}$$

$$X_{1} = (\varepsilon_{1} - 1)$$

$$X_{2} = (\varepsilon_{2} - 1)$$
(4.3)

Le programme des moindres carrés que nous utilisons calculé les coefficients des polynomes de la forme

$$Y = K + A^{CAL}X + B^{CAL}X^{2}$$

$$(4.4a)$$

$$Y = A^{CAL}X + B^{CAL}X^{2}$$

$$(4.4b)$$

etc

Si on compare les équations (4.4a) et (4.2) on voit que ces équations ne sont pas identiques, en effet si on pose

$$X = X_1 + X_2$$
 (4.5)

il est évident qu'alors A<sup>exp</sup> = A<sup>cal</sup> mais, B<sup>exp</sup> ≠ B<sup>cal</sup>Cependant, si on pose

$$\varepsilon_1 = \varepsilon + \gamma$$
 (4.6)  
 $\varepsilon_2 = \varepsilon - \gamma$ 

On a

$$X = X_1 + X_2 = (\varepsilon_1 - 1) + (\varepsilon_2 - 1) = (\varepsilon_1 + \gamma_1 - 1) + (\varepsilon_2 - 1) = 2(\varepsilon_1 - 1)$$
(4.7)

et

$$X_{1}^{2} + X_{2}^{2} = (\varepsilon_{1} - 1)^{2} + (\varepsilon_{2} - 1)^{2} = (\varepsilon + \gamma - 1)^{2} + (\varepsilon - \gamma - 1)^{2}$$
  

$$X_{1}^{2} + X_{2}^{2} = (\varepsilon - 1)^{2} + \gamma (\varepsilon - 1) + \gamma^{2} + (\varepsilon - 1)^{2} - \gamma (\varepsilon - 1) + \gamma^{2} = 2 (\varepsilon - 1)^{2} + 2\gamma^{2}$$
  

$$X_{1}^{2} + X_{2}^{2} = \frac{\chi^{2}}{2} + 2\gamma^{2}$$
(4.8)

En posant (4.8) et (4.5) dans (4.2) celle-ci devient

$$Y = A^{EXP}X + B^{EXP}\left(\frac{X^2}{2}\right) + 2B^{EXP}\gamma^2$$
 (4.9)

En comparant (4.9) et (4.4a) on a

$$A^{EXP} = A^{CAL}$$
(4.10a)

$$B^{EXP} = 2B^{CAL}$$
(4.10b)

$$2B^{EXP}\gamma^2 = 4B^{CAL}\gamma^2 = K$$
 (4.10c)

Le tableau 4.1 nous donne les valeurs de  $\gamma$  et  $\gamma^2$  pour une série de mesures (néon à 77<sup>o</sup>K). On voit que même en prenant la valeur maximale de  $\gamma^2$  qui est de 7.2 x  $10^{-7}$  et en prenant B<sup>cal</sup> = 0.13 qui est donné par le programme des moindres carrés on obtient

$$K = 4(0.13)(7.2x10^{-7}) = 3.7x10^{-7}$$
(4.11)

Or, le programme des moindres carrés donneK=4x10<sup>-4+</sup>1.6x10<sup>-4</sup>.Cette valeur non-nulle de K vient des incertitudes sur chaque point expérimental. On voit cependant que le fait que  $\varepsilon_1 \neq \varepsilon_2$  ne contribue pas à l'ordonnée à l'origine de la courbe. Donc, on peut en toute sécurité poser

$$X = (\varepsilon_1 - 1) + (\varepsilon_2 - 1)$$
  

$$X^2 = 2[(\varepsilon_1 - 1)^2 + (\varepsilon_2 - 1)^2]$$
(4.12)

Ensuite, on examine la courbe

 $Y = K + A^{CAL}X + B^{CAL}X^2$ 

| Εv                 | aluation de $\gamma^2$                                         | pour Néon à 77                                              | o <sup>K</sup>                                                               |                           |
|--------------------|----------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------|
| Pression<br>en psi | $(\varepsilon_1 - 1) \times 10^{-2}$<br>$\pm 2 \times 10^{-6}$ | $(\epsilon_2 - 1) \times 10^{-2}$<br>$\pm 2 \times 10^{-6}$ | $\begin{array}{c} \gamma \times 10^{-4} \\ \pm 2 \times 10^{-6} \end{array}$ | $\gamma^2 \times 10^{-7}$ |
| 1950               | 6.9290                                                         | 6.9323                                                      | 0.16                                                                         | 0.003                     |
| 1750               | 6.3310                                                         | 6.3147                                                      | -0.81                                                                        | 0.066                     |
| 1750               | 6.3740                                                         | 6.3034                                                      | -3.53                                                                        | 1.246                     |
| 1550               | 5.6206                                                         | 5.6400                                                      | 0.97                                                                         | 0.094                     |
| 1400               | 5.0686                                                         | 5.0697                                                      | 0.05                                                                         | 0.0003                    |
| 1350               | 4.8832                                                         | 4.8861                                                      | 0.14                                                                         | 0.002                     |
| 1200               | 4.3340                                                         | 4.3655                                                      | 1.57                                                                         | 0.248                     |
| 1100               | 3.9603                                                         | 3.9580                                                      | -0.11                                                                        | 0.001                     |
| 975                | 3.5056                                                         | 3,3533                                                      | -7.61                                                                        | 5.799                     |
| 875                | 3.2058                                                         | 3.0574                                                      | -7.42                                                                        | 5.506                     |
| 875                | 3.2247                                                         | 3.0551                                                      | -8.48                                                                        | 7.191                     |
| 775                | 2.8485                                                         | 2.7335                                                      | -5.75                                                                        | 3.306                     |
| 675                | 2.4773                                                         | 2.3710                                                      | -5.32                                                                        | 2.825                     |
| 600                | 2.1993                                                         | 2.1205                                                      | -3.94                                                                        | 1.552                     |
| 550                | 2.0115                                                         | 1.9230                                                      | -4.43                                                                        | 1.958                     |
| 487                | 1.7815                                                         | 1.6301                                                      | -7.57                                                                        | 5.730                     |
| 437                | 1.6296                                                         | 1.4874                                                      | -7.11                                                                        | 5.055                     |
| 437                | 1.6384                                                         | 1.4867                                                      | -7.59                                                                        | 5.753                     |
| 387                | 1.4487                                                         | 1.3301                                                      | -5.93                                                                        | 3.516                     |
| 350                | 1.2987                                                         | 1.1975                                                      | -5.06                                                                        | 2.560                     |
| 243                | 1.2605                                                         | 1.1545                                                      | -5.30                                                                        | 2.809                     |
|                    |                                                                |                                                             |                                                                              |                           |

TABLEAU 4.1

donnée par les moindres carrés. Il faut s'assurer que la courbe passe bien par (0,0) c'est à dire que K = 0. Pour ce faire on s'assure que K = 0 en dedans de trois déviations standard. Dans l'exemple précédent on avait  $K=4x10^{-4}+1.6x10^{-4}$  si on prend 3 déviations standard on a  $K=4x10^{-4}+4.8x10^{-4}$ . Donc, on peut prendre K=0. On passe ensuite à la courbe

$$Y = A^{cal} X + B^{cal} X^2$$

Le programme des moindres carrés nous donne les valeurs numériques de  $A^{cal}$  et  $B^{cal}$ . Or, en se servant de (4.10)(a)(b), (4.12) et (4.1) on a

$$\frac{D_{A}}{C_{0}(\varepsilon_{1}-1)} + \frac{D_{B}}{C_{0}(\varepsilon_{2}-1)} = -\frac{B_{\varepsilon}}{2(A_{\varepsilon})^{2}} [(\varepsilon_{1}-1)+(\varepsilon_{2}-1)]$$

$$+\frac{1}{2} \left[ \frac{\left(B_{\varepsilon}^{\prime}\right)^{2}}{\left(A_{\varepsilon}^{\prime}\right)^{4}} - \frac{3}{4} \frac{C_{\varepsilon}^{\prime}}{\left(A_{\varepsilon}^{\prime}\right)^{3}} \right] \left[ \left(\varepsilon_{1} - 1\right) + \left(\varepsilon_{2} - 1\right) \right]^{2}$$

$$(4.13)$$

Le coefficient  $A^{cal}$  nous permet d'obtenir  $B_{\epsilon}$  alors que le coefficient  $B^{cal}$  nous donne  $C_{\epsilon}$ 

### 4.2 Facteurs de corrections

L'effet de la pression sur la capacité géométrique C<sub>g</sub> des cellules est d'une certaine importance pour quelques gaz (en particulier pour l'hélium). Si on exprime la capacité géométrique à la pression P en terme de la capacité géométrique à vide  $\varsigma_{q}(0)$ ,on a la relation suivante

$$C_{q}(P) = C_{q}(0)(1-KP)$$
 (4.14)

où K est le facteur de compressibilité. Pour l'acier inoxydable avec lequel sont fabriquées nos cellules on a $^{(6)}$ 

$$K = 0.19 \times 10^{-6} \text{ atm}^{-1}$$

Pour les mesures de  $A_{_{\rm E}}$  ,  $B_{_{\rm E}}$  et  $C_{_{\rm E}}$  notre équation de travail est donnée par (2.17)

$$\varepsilon - 1 = A_{\varepsilon}^{\dagger} d + B_{\varepsilon}^{\dagger} d^{2} + C_{\varepsilon}^{\dagger} d^{3}$$
(4.16)

оù

$$A_{\varepsilon}' = 3A_{\varepsilon}$$
  

$$B_{\varepsilon}' = 3(B_{\varepsilon} + A_{\varepsilon}^{2})$$
  

$$C_{\varepsilon}' = 3(C_{\varepsilon} + 2A_{\varepsilon}B_{\varepsilon} + A_{\varepsilon}^{3})$$
(4.17)

Dans tous nos calculs, nous obtenons la permittivité par la relation

$$c = \frac{c}{c}_0$$

où C<sub>o</sub> est la capacité de la cellule à vide. Cependant, on a vu que la capacité géométrique varie avec la pression, on a donc selon (4.14)

$$E(corr) = \frac{C}{C_0(1-KP)}$$
 (4.19)

où ε(corr) est la permittivité corrigée qui tient compte de l'effet de pression. L'équation (4.16) devient alors

$$\varepsilon(\operatorname{corr})-1 = A_{\varepsilon}'(\operatorname{corr})d+B_{\varepsilon}'(\operatorname{corr})d^{2}+C_{\varepsilon}'(\operatorname{corr})d^{3}+\dots \qquad (4.20)$$

Notre but est d'établir une relation entre (4.16) et (4.20) afin de connaître les paramètres corrigés A'(corr), B'(corr), C'(corr) à partir des paramètres que l'on mesure:  $A_{c}$ ',  $B_{c}$ ',  $C_{c}$ '.

De (4.19) et (4.20) on a

$$\frac{C}{C_0(1-KP)} -1 = A_{\varepsilon}'(corr)d + B_{\varepsilon}'(corr)d^2 + C_{\varepsilon}'(corr)d^3 + \dots \qquad (4.21)$$

$$\begin{pmatrix} \underline{C} \\ \underline{C} \\ 0 \end{pmatrix} + KP = (A_{\varepsilon}'(\operatorname{corr})d + B_{\varepsilon}'(\operatorname{corr})d^{2} + C_{\varepsilon}'(\operatorname{corr})d^{3} + \dots)(1 - KP) \quad (4.22)$$

$$\frac{\underline{C}}{\underline{C}_{0}} - 1 = (A_{\varepsilon}'(\operatorname{corr})d + B_{\varepsilon}'(\operatorname{corr})d^{2} + C_{\varepsilon}'(\operatorname{corr})d^{3} + \dots) - (A_{\varepsilon}'(\operatorname{corr})P + B_{\varepsilon}'(\operatorname{corr})d^{2} + C_{\varepsilon}'(\operatorname{corr})d^{3} + \dots)KP - KP \quad (4.23)$$

En combinant (4.23) et (4.24) on a

$$\frac{C}{C_{0}} -1 = (A_{\varepsilon}'(corr)d + B_{\varepsilon}'(corr)d^{2} + C_{\varepsilon}'(corr)d^{3} + ...) - (A_{\varepsilon}'(corr)d + B_{\varepsilon}'(corr)d^{2} + C_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d + B_{\varepsilon}'(corr)d^{2} + C_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d + B_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d + B_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d + B_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d + B_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + C_{p}d^{3} + ...) - (A_{\varepsilon}'(corr)d^{3} + ...)K RT(d + B_{p}d^{2} + ...)K RT(d + ...)K RT$$

$$\frac{C}{C_0} - 1 = (A_{\varepsilon}'(\operatorname{corr})d + B_{\varepsilon}'(\operatorname{corr})d^2 + C_{\varepsilon}'(\operatorname{corr})d^3 + \dots) - KRT(A_{\varepsilon}'(\operatorname{corr})d^2 + A_{\varepsilon}'(\operatorname{corr})B_pd^3 + B_{\varepsilon}'(\operatorname{corr})d^3 + \dots) - KRT(d + B_pd^2 + C_pd^3 + \dots)$$

$$(4.26)$$

En rassemblant les termes du même ordre en d on a

$$\frac{C}{C_0} - 1 = (A_{\varepsilon}'(corr) - KRT)d_+ (B_{\varepsilon}'(corr) - KRT A_{\varepsilon}'(corr) - KRT B_p)d^2 + (C_{\varepsilon}'(corr) - KRTA_{\varepsilon}'(corr)B_p - KRT B_{\varepsilon}'(corr) - KRTC_pd^3 + ... (4.27)$$

En comparant les équations (4.16) et (4.27) on a

$$A_{E}^{\prime} = A_{E}^{\prime}(c \rho r r) - K R T \qquad (4.28a)$$

$$B_{\varepsilon}' = B_{\varepsilon}'(corr) - A_{\varepsilon}'(corr)KRT-KRT B_{p}$$
 (4.28b)

$$C_{\varepsilon}' = C_{\varepsilon}'(corr) - A_{\varepsilon}'(corr) B_{p}^{K}RT - KRT B_{\varepsilon}'(corr) - KRTC_{p} \qquad (4.28c)$$

De (4.28a, b, c) en se servant de (4.17) on a

$$A_{\varepsilon}(corr) = A_{\varepsilon} + \frac{KRT}{3}$$
(4.29a)

$$B_{\varepsilon}(corr) = B_{\varepsilon} + \frac{KRT}{3} (A_{\varepsilon}(corr) + B_{p})$$
(4.29b)

$$C_{\varepsilon}(\text{corr}) = C_{\varepsilon} + \frac{\text{KRT}}{3} (A_{\varepsilon}(\text{corr})B_{p} + B_{\varepsilon}(\text{corr}) - 2A_{\varepsilon}^{2}(\text{corr}) + C_{p}) \qquad (4.29c)$$

Aux tableaux (4.2a), (4.2b) et (4.2c) on présente respectivement les valeurs de  $A_{\epsilon}$ ,  $B_{\epsilon}$  et  $C_{\epsilon}$  avec et sans facteur de correction afin de bien voir l'importance relative du facteur de correction.

### TABLEAU 4.2 (a)

#### CORRECTION TEMPERATURE $\mathsf{A}_{_{\mathop{\mathrm{\epsilon}}}}$ GAZ $\mathsf{A}_{\varepsilon}$ sans correction $\frac{K RT}{3}$ corrigé ο<sub>K</sub> cm³/mole cm³/mole cm<sup>3</sup>/mole 0.5185 .0016 $0.5202 \pm .0002$ 303 Не .0016 $0.9970 \pm .0008$ 303 0.9955 Ne $4.142 \pm .002$ 303 4.140 .0016 Ar

### FACTEUR DE CORRECTION SUR $\boldsymbol{A}_{\epsilon}$

### TABLEAU 4.2 (b)

### FACTEUR DE CORRECTION SUR $\mathbf{B}_{\varepsilon}$

| GAZ | TEMPE RATURE<br><sup>O</sup> K | $B_{\epsilon}$ sans correction     | CORRECTION<br>$\frac{KRT}{3} \{ A_{\varepsilon} (corr) B_{p} \}$ | Β <sub>ε</sub><br>Corrigé          |
|-----|--------------------------------|------------------------------------|------------------------------------------------------------------|------------------------------------|
|     |                                | cm <sup>5</sup> /mole <sup>2</sup> | cm <sup>5</sup> /mole <sup>2</sup>                               | cm <sup>6</sup> /mole <sup>2</sup> |
| Не  | 303                            | 105                                | .019                                                             | 086±.005                           |
|     | 77                             | 061                                | .004                                                             | 057±.005                           |
| Ne  | 303                            | 19                                 | .02                                                              | 17 ±.01                            |
|     | 77                             | 107                                | 005                                                              | 112±.006                           |
| Ar  | 303                            | 1.25                               | 02                                                               | 1.23±.05                           |
|     | 192                            | 1.1                                | 05                                                               | 1.1 ±.2                            |

TABLEAU 4.2 (c)

### FACTEUR DE CORRECTION SUR $\rm C_{\epsilon}$

| GAZ | TEMPE RATURE | C <sub>ε</sub>                     | CORRECTION                                                                                         | C <sub>ε</sub>                     |
|-----|--------------|------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------|
|     |              | sans correction                    | $\frac{\text{KRT}}{3} \left( A_{\varepsilon} B_{p} B_{\varepsilon} - 2A_{\varepsilon}^{2} \right)$ | Corrigé                            |
|     | °K           | cm <sup>9</sup> /mole <sup>3</sup> | cm <sup>9</sup> /mole <sup>3</sup>                                                                 | cm <sup>9</sup> /mole <sup>3</sup> |
| Ar  | 303          | - 71                               | 2                                                                                                  | - 69± <b>2</b>                     |
|     | 192          | - 56                               | 1                                                                                                  | - 55±6                             |

### 4.3 <u>Mesures de A</u> et de B

Pour mesurer  $A_{\varepsilon}$  et  $B_p$  nous avons utilisé le procédé décrit à la section 2.1. Dans ce procédé, on mesure la constante diélectrique ( $\varepsilon$ ) en fonction de la pression (P) pour un gaz maintenu à température constante (T). La pression est mesurée précisément grâce à un détecteur précis de pression tel que décrit à la section (3.9). La pression maximale atteinte fut de 200psi. L'équation de travail est l'équation de Clausius-Mossotti (2.5)

$$\frac{\varepsilon - 1}{\varepsilon + 2} \frac{RT}{P} = A_{\varepsilon} + (B_{\varepsilon} - A_{\varepsilon} B_{p}) \frac{P}{RT} + \dots \dots \qquad (4.30)$$

Si on fait le graphique de  $\frac{\varepsilon-1}{\varepsilon+2} \frac{RT}{p}$  en fonction de  $\frac{p}{RT}$ , l'intercepte nous donne  $A_{\varepsilon}$  et la pente donne  $(B_{\varepsilon}-A_{\varepsilon}B_{p})$ , d'où nous tirons la valeur de  $B_{p}$ . Les valeurs de qui sont portées en ordonnée ont été calculées en prenant la moyenne des valeurs des deux cellules. L'écart entre les constantes diélectriques ( $\varepsilon$ ) mesurées avec chaque cellule est de l'ordre de .0002%. Pour l'hélium et le néon nous avons mesuré la constante diélectrique pour chaque cellule puis nous avons fait la moyenne. Pour l'argon, nous avons mesuré les deux cellules en parallèle. Ceci nous a donc donné directement la constante diélectrique moyenne. En posant  $Y = \left(\frac{\varepsilon - 1}{\varepsilon + 2}\right) \frac{RT}{P}$  et  $X = \frac{P}{RT}$  nous avons soumis, pour chaque gaz, ces valeurs de (X,Y) au programme des moindres carrés afin qu'il calcule les coefficients du polynôme Y=A + BX. En comparant ce polynôme avec (4.30) on voit que A = A<sub> $\varepsilon$ </sub> et B

=  $(B_{\epsilon} - A_{\epsilon} B_{p})$ . On détermine ainsi  $A_{\epsilon}$  et  $B_{p}$ . Nous avons calculé l'incertitude sur  $A_{\epsilon}$  et  $B_{p}$  en prenant trois déviations standard de A et de B (voir appendice C).Les points expérimentaux ainsi que les courbes représentant le polynome retenu ont été tracés grâce au traceur de courbe CAL COMP 1051 à l'aide de l'ordinateur local CYBER-171.

Pour l'hélium, les valeurs de  $\frac{\varepsilon-1}{\varepsilon+2} \frac{RT}{P}$  et de P/RT sont aux tableaux 4.3 et 4.4. Le tableau 4.5 est le rapport d'ordinateur indiquant les valeurs des coefficients A et B du polynôme Y = A + BX et la figure 4.1 représente cette courbe ainsi que les points expérimentaux avec leurs incertitudes.

Les valeurs de  $\frac{\varepsilon-1}{\varepsilon+2} \frac{RT}{P}$  et de P/RT pour le néon sont aux tableaux 4.6 et 4.7. Le tableau 4.8 est le rapport d'ordinateur de la courbe Y = A + BX. Cette courbe ainsi que les points expérimentaux avec leurs incertitudes sont sur la figure 4.2. Pour l'argon, les tableaux 4.9, 4.10, 4.11 et 4.12 donnent les différentes valeurs de  $\frac{\varepsilon-1}{\varepsilon+2} \frac{RT}{P}$  et P/RT Le tableau 4.13 est le rapport d'ordinateur de la courbe Y = A + BX calculée d'après ces points et la figure 4.3 représente cette courbe et les points expérimentaux.

Le tableau 4.14 indique la valeur de  $A_{\epsilon}$  trouvée pour chacun des gaz. Pour chaque gaz, notre valeur est comparée avec les valeurs généralement citées dans la littérature.

Au tableau 4.15 on compare, pour chaque gaz, notre valeur de B avec celle citée dans la littérature.

### TABLEAU 4.3

### MESURES DE PRESSION ET DE CONSTANTE DIELECTRIQUE

SERVANT A L'EVALUATION DE  $A_{\epsilon}$  et de  $B_{p}$ 

### HELIUM

### Série 3

| Pression<br>calibrée<br>P<br>±.002psi<br>200.064<br>190.001<br>179.995<br>140.019<br>129.968<br>119.948<br>110.007<br>100.001<br>89.966 | $\epsilon_A$<br>$\pm 10^{-6}$<br>1.000847<br>1.000804<br>1.000762<br>1.000594<br>1.000551<br>1.000509<br>1.000467<br>1.000425<br>1.000382 | <pre> EB ±10<sup>-6</sup> 1.000846 1.000803 1.000761 1.000593 1.000551 1.000509 1.000467 1.000425 1.000382</pre> | $\overline{\epsilon}$<br>$\pm 10^{-6}$<br>1.000846<br>1.000804<br>1.000762<br>1.000594<br>1.000509<br>1.000509<br>1.000467<br>1.000425<br>1.000382 | <pre>P/RT<br/>×10<sup>-4</sup>mole/1<br/>±5×10<sup>±9</sup><br/>5.47989<br/>5.20426<br/>4.93019<br/>3.83522<br/>3.55991<br/>3.28683<br/>3.01317<br/>2.73910<br/>2.46423</pre> | $\frac{\varepsilon - 1}{\varepsilon + 2} \frac{RT}{P} \times 10^{-1} \text{ cm}^3/\text{mole} \\5.146 \\5.146 \\5.147 \\5.149 \\5.158 \\5.158 \\5.159 \\5.162 \\5.164 \\5.166 \\5.166 \\5.166 \\$ | $\Delta \left( \frac{\varepsilon - 1}{\varepsilon + 2} \frac{RT}{P} \right) \times 10^{-4} \text{ cm}^3 / \text{mole}$ $4$ $4$ $4$ $5$ $5$ $6$ $7$ $8$ $8$ |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sales and                                                                                                                               | 1.222                                                                                                                                     |                                                                                                                  |                                                                                                                                                    | 3223 M                                                                                                                                                                        | ROX COLOR                                                                                                                                                                                         |                                                                                                                                                            |

### TABLEAU 4.4

### MESURES DE PRESSION ET DE CONSTANTE DIELECTRIQUE

SERVANT A L'EVALUATION DE  $\textbf{A}_{\epsilon}$  et de  $\textbf{B}_{p}$ 

HELIUM

### Série 4

| Pression<br>calibrée<br>P<br>±.002psi | <sup>е</sup> А<br>±10 <sup>-6</sup> | ε <sub>B</sub><br>±10 <sup>-6</sup> | ε<br>±10 <sup>-6</sup> | P/RT<br>×10 <sup>-4</sup> mole/1<br>±5×10 <sup>-9</sup> | $\frac{\varepsilon - 1}{\varepsilon + 2} \frac{RT}{P}$ $\times 10^{-1} \text{ cm}^3/\text{mole}$ | $ \sum_{\substack{\epsilon = 1 \\ \epsilon \neq 2}}^{\Delta \left( \frac{\epsilon - 1}{\epsilon \neq 2} \frac{RT}{P} \right)} \times 10^{-4} \text{ cm}^3/\text{mole} $ |
|---------------------------------------|-------------------------------------|-------------------------------------|------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 199.996                               | 1.000847                            | 1.000845                            | 1.000846               | 5.47803                                                 | 5.147                                                                                            | 4                                                                                                                                                                       |
| 189.997                               | 1.000805                            | 1.000803                            | 1.000804               | 5.20415                                                 | 5.149                                                                                            | 4                                                                                                                                                                       |
| 179.999                               | 1.000763                            | 1.000761                            | 1.000762               | 4.93029                                                 | 5.151                                                                                            | 4                                                                                                                                                                       |
| 170.000                               | 1.000721                            | 1.000719                            | 1.000720               | 4.65642                                                 | 5.153                                                                                            | 4                                                                                                                                                                       |
| 159.988                               | 1.000678                            | 1.000677                            | 1.000678               | 4.38218                                                 | 5.153                                                                                            | 4                                                                                                                                                                       |
| 149.995                               | 1.000636                            | 1.000635                            | 1.000636               | 4.10846                                                 | 5.155                                                                                            | 5                                                                                                                                                                       |
| 139.985                               | 1.000594                            | 1.000593                            | 1.000593               | 3.83428                                                 | 5.157                                                                                            | 5                                                                                                                                                                       |
| 129.998                               | 1.000552                            | 1.000551                            | 1.000551               | 3.56073                                                 | 5.160                                                                                            | 5                                                                                                                                                                       |
| 119.902                               | 1.000509                            | 1.000508                            | 1.000509               | 3.28420                                                 | 5.161                                                                                            | 6                                                                                                                                                                       |
| 109.995                               | 1.000467                            | 1.000467                            | 1.000467               | 3.01284                                                 | 5.164                                                                                            | 7                                                                                                                                                                       |
| 99.993                                | 1.000425                            | 1.000424                            | 1.000425               | 2.73888                                                 | 5.167                                                                                            | 8                                                                                                                                                                       |
| 90.008                                | 1.000382                            | 1.000382                            | 1.000382               | 2.46538                                                 | 5.168                                                                                            | 8                                                                                                                                                                       |
|                                       |                                     |                                     |                        |                                                         |                                                                                                  |                                                                                                                                                                         |

و ت A(E) HELIUM

| A=        | .518 | 49657  | E+00         | DEVA= | .77053820E-04 |
|-----------|------|--------|--------------|-------|---------------|
| 0B=       | 708  | 163993 | E+01         | DEVB= | ,19086814E+00 |
| OSTANDARD | DEV  | OF TH  | E POLYNOMIAL | 21    | .86921643E-04 |

| X(I)          | Y(I)          | Y(I)EXP-Y(I)CALC |
|---------------|---------------|------------------|
| .54798900E-03 | .51460000E+00 | 13301576E-04     |
| .52042600E-03 | .51470000E+00 | 10862400E-03     |
| .49301900E-03 | .51490000E+00 | 10284095E-03     |
| .38352200E-03 | .51580000E+00 | .21219590E-04    |
| .35599100E-03 | .51590000E+00 | 73875070E-04     |
| .32868300E-03 | .51620000E+00 | .32608538E-04    |
| .30131700E-03 | .51640000E+00 | .386821352-04    |
| .27391000E-03 | .51660000E+00 | .44465189E-04    |
| ,24642300E-03 | .51660000E+00 | 15031867E-03     |
| .54780300E-03 | .51470000E+00 | ,85380353E-04    |
| .52041500E-03 | .51490000E+00 | ,91298049E-04    |
| .49302900E-03 | .51510000E+00 | +97229918E-04    |
| .46564200E-03 | .51530000E+00 | ,10315470E-03    |
| ,43821800E-03 | .51530000E+00 | -,91182714E-04   |
| ,41084600E-03 | .51550000E+00 | -,85151636E-04   |
| ,38342800E-03 | ,51570000E+00 | -,79446532E-04   |
| .35607300E-03 | .51600000E+00 | ,26705015E-04    |
| ,32842000E-03 | .51610000E+00 | -,69255185E-04   |
| .30128400E-03 | .51640000E+00 | ,38448284E-04    |
| .27388800E-03 | .51670000E+00 | ,14430929E-03    |
| .24653800E-03 | .51680000E+00 | .50496268E-04    |

# TABLEAU 4.5 Rapport de l'ordinateur pour le calcul de $A_{\epsilon}$ et de $B_{p}$ de l'Hélium

 $\left[\frac{\varepsilon-1}{\varepsilon+2}\right] \frac{RT}{P}$  en fonction de P/RT pour l'Hélium à 303<sup>0</sup>K



### TABLEAU 4.6

### MESURES DE PRESSION ET DE CONSTANTE DIELECTRIQUE

## SERVANT A L'EVALUATION DE $\textbf{A}_{\epsilon}^{}$ et de $\textbf{B}_{p}^{}$

### NEON

### Série 2

| Pression<br>calibrée<br>P<br>±.002psi | ε <sub>Α</sub><br>±10 <sup>-6</sup> | €<br>±10 <sup>-6</sup> | ε<br>±10 <sup>-6</sup> | P/RT<br>×10 <sup>-4</sup> mole/1<br>±5×10 <sup>-9</sup> | $\frac{\varepsilon - 1}{\varepsilon + 2} \frac{RT}{P}$ $\times 10^{-1} \text{ cm}^3/\text{mole}$ | $\Delta \left( \frac{\varepsilon - 1}{\varepsilon + 2} \frac{RT}{P} \right) \\ \times 10^{-4} \text{ cm}^3/\text{mole}$ |
|---------------------------------------|-------------------------------------|------------------------|------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 200.003                               | 1.001626                            | 1.001624               | 1.001625               | 5.47822                                                 | 9.883                                                                                            | 6                                                                                                                       |
| 190.000                               | 1.001545                            | 1.001543               | 1.001544               | 5.20423                                                 | 9,885                                                                                            | 6                                                                                                                       |
| 180.010                               | 1.001464                            | 1.001463               | 1.001463               | 4.93060                                                 | 9.888                                                                                            | 7                                                                                                                       |
| 169.991                               | 1.001383                            | 1.001382               | 1.001382               | 4.65617                                                 | 9.891                                                                                            | 7                                                                                                                       |
| 160.006                               | 1.001302                            | 1.001301               | 1.001302               | 4.38267                                                 | 9.895                                                                                            | 8                                                                                                                       |
| 149.998                               | 1.001221                            | 1.001220               | 1.001220               | 4.10855                                                 | 9.898                                                                                            | 8                                                                                                                       |
| 139.998                               | 1.001140                            | 1.001139               | 1.001140               | 3.83464                                                 | 9.902                                                                                            | 9                                                                                                                       |
| 129.998                               | 1.001059                            | 1.001059               | 1.001059               | 3.56073                                                 | 9.909                                                                                            | 9                                                                                                                       |
| 109.996                               | 1.000897                            | 1.000896               | 1.000896               | 3.01287                                                 | 9.915                                                                                            | 10                                                                                                                      |
| 100.005                               | 1.000815                            | 1.000815               | 1.000815               | 2.73920                                                 | 9.919                                                                                            | 10                                                                                                                      |
| 90.001                                | 1.000734                            | 1.000734               | 1.000734               | 2.46519                                                 | 9.922                                                                                            | 11                                                                                                                      |

86

### TABLEAU 4.7

### MESURES DE PRESSION ET DE CONSTANTE DIELECTRIQUE

SERVANT A L'EVALUATION DE  ${\rm A}_\epsilon$  et de  ${\rm B}_p$ 

NEON

### Série 3

| Pression<br>calibrée<br>P<br>± .002psi | ε <sub>Α</sub><br>±10 <sup>-6</sup> | <sup>е</sup> в<br>±10 <sup>-6</sup> | ε<br>±10 <sup>-6</sup> | P/RT<br>×10 <sup>-4</sup> mole/1 | $\frac{\varepsilon - 1}{\varepsilon + 2} \frac{\text{RT}}{\text{p}}$ $\times 10^{-1} \text{ cm}^3 / \text{mole}$ | $\Delta \left\{ \frac{\varepsilon - 1}{\varepsilon + 2} \frac{\text{RT}}{\text{P}} \right\}$ $\times 10^{-4} \text{ cm}^{3} / \text{mole}$ |
|----------------------------------------|-------------------------------------|-------------------------------------|------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 200.000                                | 1.001625                            | 1.001624                            | 1.001625               | 5.47814                          | 9.880                                                                                                            | 6                                                                                                                                          |
| 190.005                                | 1.001544                            | 1.001543                            | 1.001544               | 5.20437                          | 9.881                                                                                                            | 6                                                                                                                                          |
| 180.005                                | 1.001463                            | 1.001462                            | 1.001463               | 4.93046                          | 9.885                                                                                                            | 7                                                                                                                                          |
| 159.992                                | 1.001301                            | 1,001300                            | 1.001301               | 4.38229                          | 9.891                                                                                                            | 7                                                                                                                                          |
| 139.995                                | 1.001139                            | 1.001139                            | 1.001139               | 3.83456                          | 9.897                                                                                                            | 8                                                                                                                                          |
| 119.990                                | 1.000977                            | 1.000977                            | 1.000977               | 3.28661                          | 9.906                                                                                                            | 8                                                                                                                                          |
|                                        |                                     |                                     |                        |                                  |                                                                                                                  |                                                                                                                                            |

| A(E) NE | ON              |                                         |                  |
|---------|-----------------|-----------------------------------------|------------------|
|         |                 |                                         |                  |
| 1       |                 |                                         |                  |
| A=      | .99546668E+0    | DEVA=                                   | .28224331E-03    |
| 0 B =   | 13740975E+0     | 2 DEVB=                                 | .65533852E+00    |
|         |                 |                                         |                  |
| OSTANDA | RD DEV OF THE P | DLYNOMIAL =                             | .25123850E-03    |
|         |                 |                                         |                  |
|         | V/TY            | VITS                                    | VITARVB_VITARALO |
|         | 547922005-07    | 00030000000000                          | 740000745-07     |
|         | 59040700E-03    | . 78830000ET00                          | 1044407275-07    |
|         | 497040005-07    | + 78830000E+00                          | 1094440376-03    |
|         | A4541700E-03    | • 7000000000000000000000000000000000000 | 10044007E-03     |
|         | 470047005-07    | 00050000ET00                            | +01002020E-04    |
|         | A10955005-07    | • 76730000ET00                          | + JJJJJ00007E-V4 |
|         | 1033300E-03     | , 78780000E+00                          | -,21130/23E-04   |
|         | -38340400E-03   | .990200002700                           | -249024106-05    |
|         | -3360/300E-03   | . 77070000EF00                          | . 320111216-03   |
|         | -30128/00E-03   | •99150000E+00                           | ·1/329818E-03    |
|         | -2/392000E-03   | + 99190000E+00                          | · 17/24873E-03   |
|         | .24651900E-03   | .99220000E+00                           | ·120/3248E-03    |
|         | -54/81400E-03   | .988000000000000                        | .608194082-04    |
|         | +52043/00E-03   | · 98810000E+00                          | 21536/25E-03     |
|         | .49304800E-03   | · 98850000E+00                          | 171/4629E-03     |
|         | .43822900E-03   | .98910000E+00                           | 34498529E-03     |
|         | .38345600E-03   | · 989/0000E+00                          | 49/61969E-03     |
|         | *35886100E-03   | ·99060000E+00                           | 30055639E-03     |

TABLEAU 4.8 Rapport de l'ordinateur pour le calcul de  ${\rm A}_{\epsilon}$  et de  ${\rm B}_{\rm p}$  du Néon


 $\left(\frac{\varepsilon-1}{\varepsilon+2}\right) \frac{RT}{P}$  en fonction de P/RT pour le Néon à 303<sup>0</sup>K



# MESURES DE PRESSION ET DE CONSTANTE DIELECTRIQUE SERVANT A L'EVALUATION DE ${\rm A}_{\epsilon}$ ET DE ${\rm B}_{\rm p}$

ARGON

## Série 1

| Pression<br>calibrée |                        |                          | ε-1 RT                | (ε-1 RT)                                           |
|----------------------|------------------------|--------------------------|-----------------------|----------------------------------------------------|
| Р                    | ε                      | P/RT                     | ε <b>+</b> 2 Ρ        | $\Delta \left( \overline{\epsilon + 2}  P \right)$ |
| ± .002 psi           | $\pm 3 \times 10^{-6}$ | ×10 <sup>-4</sup> mole/1 | cm <sup>3</sup> /mole | $\times 10^{-3}$ cm <sup>3</sup> /mole             |
| 199.993              | 1.068657               | 5.47523                  | 4.170                 | 2                                                  |
| 190.000              | 1.006520               | 5.20165                  | 4.169                 | 2                                                  |
| 170.007              | 1.005829               | 4.65430                  | 4.167                 | 2                                                  |
| 160.004              | 1.005484               | 4.38045                  | 4.166                 | 2                                                  |
| 150.006              | 1.005139               | 4.10673                  | 4.164                 | 2                                                  |
| 140.006              | 1.004794               | 3.83296                  | 4.163                 | 3                                                  |
| 130.000              | 1.004449               | 3.55902                  | 4.161                 | 3                                                  |
| 110.002              | 1.003761               | 3.01154                  | 4.158                 | 3                                                  |
| 100.007              | 1.003418               | 2.73790                  | 4.156                 | 3                                                  |
| 90.000               | 1.003074               | 2.46394                  | 4.155                 | 3                                                  |
|                      |                        |                          |                       |                                                    |

# MESURES DE PRESSION ET DE CONSTANTE DIELECTRIQUE SERVANT A L'EVALUATION DE $A_{\epsilon}$ ET DE $B_{p}$

#### ARGON

## Série 2

| Pression<br>calibrée |                     |                                                           |                                                                      | {ε-1 RT]                                                                 |
|----------------------|---------------------|-----------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|
| Р                    | ε                   | P/RT                                                      | $\frac{\varepsilon - 1}{\varepsilon + 2} \frac{\text{RT}}{\text{P}}$ | $\Delta\left(\frac{\overline{\epsilon+2}}{\overline{\epsilon+2}}\right)$ |
| ±.002psi             | ± 3×10 <sup>6</sup> | $\times 10^{-4} \text{ mole/l}$<br>$\pm 5 \times 10^{-9}$ | cm³/mole                                                             | ×10 <sup>-3</sup> cm <sup>3</sup> /mole                                  |
| 194.993              | 1.006692            | 5.33835                                                   | 4.169                                                                | 2                                                                        |
| 175.003              | 1.006001            | 4.79108                                                   | 4.167                                                                | 2                                                                        |
| 165.004              | 1.005656            | 4,51733                                                   | 4.165                                                                | 2                                                                        |
| 155.006              | 1.005310            | 4.24362                                                   | 4.164                                                                | 2                                                                        |
| 145.011              | 1.004965            | 3.96998                                                   | 4.162                                                                | 3                                                                        |
| 135.004              | 1.004620            | 3.69602                                                   | 4.161                                                                | 3                                                                        |
| 125.009              | 1.004276            | 3.42239                                                   | 4.159                                                                | 3                                                                        |
| 105.000              | 1.003588            | 2.87460                                                   | 4.156                                                                | 3                                                                        |
| 94.998               | 1.003245            | 2.60077                                                   | 4.154                                                                | 3                                                                        |

## 

ARGON

série 3

|                      | I                   |                                                 | 1                                                      |                                                                                             |
|----------------------|---------------------|-------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Pression<br>calibrée |                     |                                                 |                                                        |                                                                                             |
| Р                    | ε                   | P/RT                                            | $\frac{\varepsilon - 1}{\varepsilon + 2} \frac{RT}{P}$ | $\Delta \left( \frac{\varepsilon - 1}{\varepsilon + 2}  \frac{\text{RT}}{\text{P}} \right)$ |
| =.002psi             | ±3×10 <sup>-6</sup> | ×10 <sup>-4</sup> mole/1<br>±5×10 <sup>-9</sup> | cm³/mole                                               | $\times 10^{-3}$ cm <sup>3</sup> /mole                                                      |
| 199.998              | 1.006868            | 5.47537                                         | 4.172                                                  | 2                                                                                           |
| 190.008              | 1.006522            | 5,20187                                         | 4.170                                                  | 2                                                                                           |
| 180.016              | 1.006176            | 4.92832                                         | 4.169                                                  | 2                                                                                           |
| 170.013              | 1.005830            | 4.65447                                         | 4.167                                                  | 2                                                                                           |
| 160.006              | 1.005485            | 4.38050                                         | 4.166                                                  | 2                                                                                           |
| 150.000              | 1.005139            | 4.10657                                         | 4.164                                                  | 2                                                                                           |
| 140.006              | 1.004794            | 3.83296                                         | 4.163                                                  | 3                                                                                           |
| 130.004              | 1.004446            | 3.55913                                         | 4.158                                                  | 3                                                                                           |
| 120.002              | 1.004105            | 3.28531                                         | 4.159                                                  | 3                                                                                           |
| 110.008              | 1.003762            | 3.01170                                         | 4.158                                                  | 3                                                                                           |
| 100.015              | 1.003418            | 2.73812                                         | 4.156                                                  | 3                                                                                           |
| 89.977               | 1.003073            | 2.46331                                         | 4.154                                                  | 3                                                                                           |
|                      |                     |                                                 |                                                        |                                                                                             |

# MESURES DE PRESSION ET DE CONSTANTE DIELECTRIQUE SERVANT A L'EVALUATION DE $A_{\epsilon}$ ET DE $B_{p}$

#### ARGON

#### Série 4

| Pression<br>calibrée                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|
| Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ε                              | P/RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{\varepsilon - 1}{\varepsilon + 2} \frac{RT}{P}$ | $\Delta \left( \frac{\varepsilon - 1}{\varepsilon + 2}  \frac{RT}{P} \right)$ |
| ±.002psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±3×10 <sup>-6</sup>            | ×10 <sup>-4</sup> mole/1<br>±5×10 <sup>-9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cm <sup>3</sup> /mole                                  | ×10 <sup>-3</sup> cm <sup>3</sup> /mole                                       |
| 194.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.006689                       | 5.33785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.168                                                  | 2                                                                             |
| 184.981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.006344                       | 5.06425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.167                                                  | 2                                                                             |
| 175.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.006000                       | 4.79102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.166                                                  | 2                                                                             |
| 165.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.005655                       | 4.51750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.165                                                  | 2                                                                             |
| 155.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.005310                       | 4.24351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.163                                                  | 2                                                                             |
| 145.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.004965                       | 3.96971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.162                                                  | 2                                                                             |
| 134.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.004620                       | 3.69588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.160                                                  | 3                                                                             |
| 125.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.004275                       | 3.42239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.158                                                  | 3                                                                             |
| 114.996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.003932                       | 3.14826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.158                                                  | 3                                                                             |
| 104.994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.003588                       | 2.87443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.155                                                  | 3                                                                             |
| 95.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.003245                       | 2.60088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.154                                                  | 3                                                                             |
| and the second se | and the second of the line Day | And the second se |                                                        | Summer and the second state of the second                                     |

A(E) ARGON

| A=        | .41405423E+01   | DEVA=          | .67363737E-03    |
|-----------|-----------------|----------------|------------------|
| OB=       | .55073876E+02   | DEVB=          | .16593576E+01    |
| OSTANDARD | DEV OF THE POLY | NOMIAL =       | .97685364E-03    |
|           |                 |                |                  |
|           |                 |                |                  |
|           | X(T)            | Y(T)           | Y(I)EXP-Y(I)CALC |
| .5.       | 4752300E-03     | .41700000F+01  | 696496945-07     |
| .5        | 2016500E-03     | 41690000E+01   | - 189785735-07   |
| . 4.      | 6543000E-03     | 41670000E+01   | 824682895-03     |
| . 4       | 3804500E-03     | .41660000E+01  | 13328810E-02     |
| . 4       | 1067300E-03     | .41640000F+01  | .84036314E-03    |
| . 31      | 8329600E-03     | 41630000F+01   | 13481207E-02     |
| . 3       | 5590200E-03     | .41610000E+01  | 854814425-03     |
| .3        | 0115400E-03     | .41580000F+01  | 87199900E-03     |
| .2        | 7379000E-03     | 41560000E+01   | 379040545-03     |
| .2.       | 4639400E-03     | . 41550000E+01 | .997844475-03    |
| .5        | 3383500E-03     | .41690000E+01  | 94264562E-03     |
| . 4       | 7910800E-03     | .41670000E+01  | 713824125-04     |
| . 4       | 5173300E-03     | 41450000E+01   | 42097022E-03     |
| . 4       | 2436200E-03     | 41640000E+01   | 864568475-04     |
| .3        | 9699800E-03     | 41620000E+01   | 40650160E-03     |
| .3.       | 6960200E-03     | .41610000F+01  | 10230232E-03     |
| .3        | 4223900F-03     | .41590000E+01  | 390711215-03     |
| .21       | 8746000E-03     | .41560000E+01  | 373819338-03     |
| .2        | 6007700F-03     | 41540000E+01   | 84523138E-03     |
| .5.       | 4753700E-03     | .41720000E+01  | 13027321E-02     |
| .5        | 2018700F-03     | .41700000E+01  | 80900265E-03     |
| . 4       | 9283200E-03     | .41690000E+01  | 13155485E-02     |
| . 4.      | 6544700F-03     | . 41670000F+01 | 82374664E-03     |
| . 4       | 3805000F-03     | 41660000E+01   | 13324054E-02     |
| . 4       | 1045700E-03     | .41640000E+01  | 84124432E-03     |
| .3        | 8329600E-03     | 41630000E+01   | 13481207E-02     |
| . 3       | 5591300E-03     | .41580000E+01  | 21437914E-02     |
| .3        | 2853100E-03     | .41590000F+01  | .36424149E-03    |
| .3        | 0117000E-03     | ,41580000E+01  | .87111782E-03    |
| .2        | 7381200E-03     | .41560000E+01  | .37782893E-03    |
| .2        | 4633100E-03     | .41540000E+01  | 10868587E-03     |
| .5        | 3378500E-03     | .41680000E+01  | -,19398919E-02   |
| .5        | 0642500E-03     | .41670000E+01  | 14330707E-02     |
| .4        | 7910200E-03     | .41660000E+01  | 92828714E-03     |
| . 4       | 5175000E-03     | .41650000E+01  | 42190648E-03     |
| . 4:      | 2435100E-03     | .41630000E+01  | 91293734E-03     |
| + 3       | 9697100E-03     | .41620000E+01  | 40501461E-03     |
| .3        | 6958800E-03     | .41600000E+01  | 89692665E-03     |
| .3        | 4223900E-03     | .41580000E+01  | 13907112E-02     |
| .3        | 1482600E-03     | .41580000E+01  | .11902897E-03    |
| .2        | 8744300E-03     | .41550000E+01  | 13728831E-02     |
| .2        | 6008800E-03     | .41540000E+01  | -,86633719E-03   |

TABLEAU 4.13 Rapport de l'ordinateur pour le calcul de A<sub>e</sub> et de B<sub>p</sub> de l'Argon







# PREMIER COEFFICIENT DU VIRIEL DE LA CONSTANTE DIELECTRIQUE $A_{\epsilon}$

| GAZ |                             | $A_{\epsilon} cm^3/mole$                         |                    |
|-----|-----------------------------|--------------------------------------------------|--------------------|
|     | Notre travail               | Littérature                                      | Références         |
| Не  | .5185<br>(corr).5202 ±.0002 | .519 ±.001<br>.5173<br>.518 ±.001<br>.5210±.0002 | 5<br>32<br>31<br>6 |
| Ne  | .9955<br>(corr).9970 ±.0008 | .998 ±.001<br>.9953<br>.996 ±.001                | 5<br>32<br>31      |
| Ar  | 4.140<br>(corr)4.142 ±.002  | 4.142<br>4.1397 ± .0006                          | 32<br>24           |

| Γ | AB | LEAU | 4.15 |  |
|---|----|------|------|--|
|   |    |      |      |  |

| DEONIERE COLITICIENT DO VINIEL DE EN INEODIC | DEUXIEME | COEFFICIENT | DU VIRIEL | DE | LA | PRESSION |
|----------------------------------------------|----------|-------------|-----------|----|----|----------|
|----------------------------------------------|----------|-------------|-----------|----|----|----------|

| GAZ | Température | B <sub>p</sub> en cm |                   |                                          |
|-----|-------------|----------------------|-------------------|------------------------------------------|
|     |             | Notre travail        | Littérature       | Références                               |
| He  | 303         | $13 \pm 1$           |                   | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
|     | 300         |                      | 11.6 ± 0.5        | 33                                       |
| Ne  | 303         | 13 ± 2               | 100 - T. 100 Aug. |                                          |
|     | 300         |                      | 11 ± 1            | 33                                       |
| Ar  | 303         | -13 ± 1              | San A             |                                          |
| 1.1 | 300         |                      | $-15.6 \pm 0.5$   | 33                                       |
| 1.2 |             |                      |                   |                                          |

#### 4.4 Mesures de Beet Ce

#### 4.4.1. Traitement des mesures expérimentales

Pour mesurer les deuxième et troisième coefficients du viriel diélectrique nous avons utilisé la méthode d'expansion de Buckingham telle que décrite à la section (2.4).

Dans le cadre d'une expérience, les mesures que nous effectuons sont les suivantes.

- Pression: Nous effectuons une lecture grossière de la pression afin d'identifier le point expérimental.Cette lecture n'entre aucunement dans les calculs.
- C<sub>I</sub> La mesure de la capacité totale des cellules A et B, en parallèle, lorsque la cellule A est remplie de gaz et la cellule B est vide.
- T' La mesure de la capacité totale des cellules A et B, en parallèle, lorsque, après l'expansion A vers B, l'équilibre thermodynamique est atteint et qu'on a la même densité de gaz dans les deux cellules.

- C<sub>II</sub> La mesure de la capacité totale des cellules A et B, placées en parallèle, lorsque la cellule B est remplie de gaz et que la cellule A est vide.
- C'<sub>II</sub> La mesure de la capacité totale des cellules A et B, en parallèle, lorsque, après l'expansion B vers A, l'équilibre thermodynamique est atteint et qu'on a la même densité dans les deux cellules.
- $C_{AO}$  La capacité géométrique de la cellule A.
- C<sub>BO</sub> La capacité géométrique de la cellule B.

On prend ces mesures  $(C_{I}, G', C_{II}, C_{II}, C_{A0}, C_{B0})$  ainsi que leurs incertitudes expérimentales pour différentes pressions. Ces données sont ensuites traitées par le programme JACTRI(voir appendice B)qui calcule les quantités suivantes:

(ε<sub>1</sub>-1) – Où ε<sub>1</sub> est la constante diélectrique du gaz dans la cellule A lorsque la cellule B est vide avant l'expansion de A vers B.

$$\varepsilon_1 = \frac{C_1 - C_{BO}}{C_{AO}}$$

L'incertitude absolue sur  $(\varepsilon_1 - 1)$  – JACTRI calcule l'incertitude sur la quantité  $(\varepsilon_1 - 1)$ .

$$\sigma_{(\varepsilon-1)} = \left[ 2 \left( \frac{\Delta C}{C_{A0}} \right)^2 + \left( \frac{(C_{I} - C_{B0}) \wedge C}{C_{A0}^2} \right)^2 \right]^{\frac{1}{2}}$$

où  $\Delta C$  est l'incertitude sur la capacitée  $D_A/((\epsilon_1-1)C_0) - Où D_A = C'_I - C_I$ et  $C_0 = \frac{C_{A0} + C_{B0}}{2}$ 

Le programme JACTRI nous donne également les valeurs de  $(\varepsilon_2 - 1)$ ,  $D_B/((\varepsilon_2 - 1)C_0)$ ,  $(D_A/(\varepsilon_1 - 1)C_0 + D_B/(\varepsilon_2 - 1)C_0)$ ,  $((\varepsilon_1 - 1) + (\varepsilon_2 - 1))$ , ainsi que leurs incertitudes.

De plus, le programme calcule le poids sur la quantité  $(D_A/(\epsilon_1-1)C_0 + D_B/(\epsilon_2-1)C_0)$ . En effet, comme nous prenons des mesures sur une plage de densité assez grande, les points expérimentaux n'ont pas tous la même magnitude. Le poids est calculé en faisant le rapport de l'incertitude absolue maximale rencontrée dans la série de données avec l'incertitude absolue du point. Par la suite, dans le calcul des moindres carrés, un point sera autant de fois présent que la valeur du poids associé à ce point.

Toutes les quantités que nous venons d'énumérer ici sont rapportées, pour chaque gaz et chaque température, dans les différents tableaux des pages suivantes.

#### 4.4.2. Résultats détaillés

Les diverses valeurs expérimentales de l'hélium à 303K font l'objet des tableaux ( 4.16 à 4.21) et de la figure (4.4).

Pour l'hélium à 77K les résultats des mesures sont aux tableaux (4.22 à 4.27) et à la figure (4.5).

Le néon à 303K est présenté aux tableaux (4.28 à 4.33) et à la figure (4.6).

Le néon à 77K fait l'objet des tableaux (4.34 à 4.43) et des figures (4.7 à 4.8).

Dans ce cas, nous avons présenté notre traitement de données au complet. Après avoir présenté les diverses quantités expérimentales, nous présentons le rapport d'ordinateur de la courbe  $\mathbb{D}_A/(\varepsilon_1-1)\mathbb{C}_0 = \mathbb{K}_A + \mathbb{m}_A(\varepsilon_1-1)$  (tableau (4.39)) puis de la courbe  $\mathbb{D}_B/(\varepsilon_2-1)\mathbb{C}_0 = \mathbb{K}_B + \mathbb{m}_B(\varepsilon_2-1)$  (tableau (4.40)) où  $\mathbb{m}_A = \mathbb{m}_B$  $-\mathbb{B}_E^*/(2(\mathbb{A}_E^*)^2) = \mathbb{m}$ . On s'assure que  $\mathbb{K}_A - \mathbb{K}_B$  et que  $\mathbb{m}_A - \mathbb{m}_B$ . Ici,  $\mathbb{K}_A$ = .0258 + .0002 et  $\mathbb{K}_B - .0260 + .0003$  alors que  $\mathbb{m}_A = -.147$   $\pm$ .005 et m<sub>B</sub> =-.148  $\pm$ .007. Nous présentons un graphique de ces deux courbes à la figure (4.7). Nous examinons ensuite la courbe

$$\frac{D_A}{(\varepsilon_1 - 1)C_0} + \frac{D_B}{(\varepsilon_2 - 1)C_0} = K + m [(\varepsilon_1 - 1) + (\varepsilon_2 - 1)]$$

et où chaque point expérimental a la même pondération. On s'assure que K = 0 dans les limites d'erreurs. Ici, K = -.0001 ±.0003. On est donc justifié de faire la courbe

$$\frac{D_A}{(\varepsilon_1-1)C_0} + \frac{D_B}{(\varepsilon_2-1)C_0} - m + (\varepsilon_1-1) + (\varepsilon_2-1)$$
 (tableau 4.42).

On y voit que m =  $-.149 \pm .002$ . Finalement on analyse la courbe

$$\frac{D_A}{(\varepsilon_1-1)C_0} + \frac{D_B}{(\varepsilon_2-1)C_0} = m[(\varepsilon_1-1) + (\varepsilon_2-1)] \qquad (tableau 4.43)$$

où chaque point expérimental a été pondéré suivant la procédure de la section 4.4.1. On y voit que m =  $-.1487 \pm .0009$ .

L'argon à 303K est présenté aux tableaux (4.44 à 4.50) et à la figure (4.9).

Enfin, les mesures de l'argon à 192K sont présentées aux tableaux (4.51 à 4.56) et à la figure (4.10).

Le tableau (4.57) contient nos valeurs expérimentales de B<sub>e</sub> pour les différents gaz, comparées avec les valeurs mesurées par d'autres expérimentateurs.

#### Valeurs de capacité à vide

Hélium 303<sup>0</sup>K

#### Séries 1 et 2

| PRESSION     | CAD      | CBO      | ° C O    |
|--------------|----------|----------|----------|
|              |          |          |          |
|              |          |          |          |
| +4200000E+04 | 100.2090 | 99,5336  | 99.8713  |
| .400000E+04  | 100.2087 | 99.5335  | 99.8711  |
| .3800000E+04 | 100,2087 | 99,5333  | 99.8710  |
| .3600000E+04 | 100,2087 | 99.5333  | 99.8710  |
| .3400000E+04 | 100.2085 | 99.5333  | 99.8709  |
| .3200000E+04 | 100.2085 | 99.5333  | 99.8709  |
| .300000E+04  | 100.2085 | 99.5334  | 99.8710  |
| .2800000E+04 | 100,2085 | 99.5334  | 99.8710  |
| .260000E+04  | 100,2090 | 99.5333  | 99.8712  |
| .2400000E+04 | 100,2090 | 99.5333  | 99.8712  |
| .2200000E+04 | 100.2090 | 99.5333  | 99.8712  |
| .2100000E+04 | 100,2090 | 99.5336  | 99.8713  |
| .2000000E+04 | 100.2087 | 99.5335  | 99.8711  |
| ,1900000E+04 | 100.2087 | 99.5333  | 99.8710  |
| .2500000E+04 | 99.4639  | 100.5886 | 100.0263 |
| .2250000E+02 | 99.4639  | 100.5886 | 100.0263 |
| ,1250000E+04 | 99.4639  | 100.5886 | 100.0263 |
| .300000E+04  | 100.2083 | 99.5328  | 99.8705  |
| .1500000E+04 | 100.2083 | 99.5328  | 99.8705  |
| .2500000E+04 | 100.2083 | 99.5327  | 99.8705  |
| .1250000E+04 | 100,2083 | 99.5327  | 99.8705  |
|              |          | State .  |          |

| PRESSION     | CI       | CIP      | CII      | CIIP     |
|--------------|----------|----------|----------|----------|
|              |          |          |          |          |
| .4200000E+04 | 201.3058 | 201.2839 | 201.3181 | 201.3353 |
| .400000E+04  | 201.2648 | 201,2432 | 201,2344 | 201.2507 |
| .3800000E+04 | 201.1872 | 201,1672 | 201.1854 | 201.2012 |
| .360000E+04  | 201.1588 | 201.1391 | 201.1365 | 201.1518 |
| .3400000E+04 | 201.0791 | 201.0609 | 201.0612 | 201.0757 |
| .3200000E+04 | 201.0119 | 200.9949 | 201,0060 | 201.0198 |
| .300000E+04  | 200.9521 | 200.9360 | 200.9103 | 200.9233 |
| .2800000E+04 | 200.8388 | 200.8243 | 200.8300 | 200,8421 |
| .2600000E+04 | 200.7907 | 200.7767 | 200.7682 | 200.7797 |
| .2400000E+04 | 200.7280 | 200.7151 | 200.7046 | 200.7154 |
| +2200000E+04 | 200.6348 | 200.6233 | 200.6257 | 200.6356 |
| .2100000E+04 | 200.5172 | 200.5074 | 200.5351 | 200,5441 |
| ,2000000E+04 | 200.4969 | 200.4872 | 200.4925 | 200.5013 |
| .190000E+04  | 200.4585 | 200.4493 | 200.4678 | 200,4762 |
| +2500000E+04 | 200.9716 | 200,9817 | 200,9689 | 200,9573 |
| +2250000E+02 | 200.8886 | 200,8977 | 200.8928 | 200,8821 |
| .1250000E+04 | 200.5146 | 200.5199 | 200.5074 | 200,5018 |
| .300000E+04  | 200.9138 | 200.8979 | 200.8967 | 200.9099 |
| .1500000E+04 | 200.3192 | 200.3118 | 200.3195 | 200.3263 |
| .2500000E+04 | 200.7317 | 200.7185 | 200.7302 | 200.7412 |
| .1250000E+04 | 200.2267 | 200,2205 | 200.2386 | 200.2444 |

Valeurs de capacité lors des différentes étapes de l'expansion Hélium 303<sup>0</sup>K Séries 1 et 2

116

| PRESSION(FSI) | (ET - T)      | ABSOLUE      | DRATEL LADON      | ABSOLUE      |
|---------------|---------------|--------------|-------------------|--------------|
| 이 같이 있었다.     | 1.4 10 4.4 10 |              | the second second | 1            |
| .4200000E+04  | .1559940E-01  | .1737472E-05 | 1405710E-01       | ,9078855E-04 |
| .400000E+04   | .1519429E-01  | .1737242E-05 | -,1423421E-01     | .9320967E-04 |
| ,3800000E+04  | .1442190E-01  | .1736792E-05 | 1388571E-01       | .9820103E-04 |
| .360000E+04   | .1413849E-01  | .1736628E-05 | 1395159E-01       | .1001696E-03 |
| :3400000E+04  | .1334518E-01  | .1736170E-05 | 1365552E-01       | .1061238E-03 |
| .3200000E+04  | .1267457E-01  | .1735780E-05 | 1343002E-01       | +1117382E-03 |
| .300000E+04   | .1207682E-01  | +1735433E-05 | 1334855E-01       | .1172685E-03 |
| .2800000E+04  | .1094618E-01  | .1734777E-05 | 1326375E-01       | +1293810E-03 |
| ,2600000E+04  | .1046213E-01  | .1734487E-05 | -,1339886E-01     | ,1353671E-03 |
| .2400000E+04  | .9836442E-02  | .1734124E-05 | 1313142E-01       | +1439770E-03 |
| .2200000E+04  | .8906386E-02  | .1733585E-05 | 1292874E-01       | .1590112E-03 |
| .2100000E+04  | .7729845E-02  | ,1732903E-05 | 1269447E-01       | ,1832128E-03 |
| +2000000E+04  | .7531282E-02  | ,1732794E-05 | 1289624E-01       | .1880444E-03 |
| .1900000E+04  | ,7150078E-02  | .1732573E-05 | 1288361E-01       | .1980700E-03 |
| .2500000E+04  | ,9240539E-02  | .1746767E-05 | +1092723E-01      | .1530183E-03 |
| .2250000E+02  | .8406065E-02  | .1746279E-05 | ,1082268E-01      | .1482082E-03 |
| ,1250000E+04  | .4645907E-02  | ,1744087E-05 | .1140490E-01      | .3043501E-03 |
| .300000E+04   | .1170262E-01  | ,1735219E-05 | 1360431E-01       | .1210193E-03 |
| .1500000E+04  | .5768983E-02  | .1731781E-05 | 1284384E-01       | .2454889E-03 |
| .2500000E+04  | .9886407E-02  | ,1734165E-05 | 1336898E-01       | .1432509E-03 |
| .1250000E+04  | .4846904E-02  | .1731247E-05 | -,1280826E-01     | .2921908E-03 |

Valeurs de  $(\varepsilon_1-1)$  et de  $D_A/(\varepsilon_1-1)C_0$  et leurs incertitudes expérimentales

Hélium à 303<sup>0</sup>K

OD

10 100

Séries 1 et 2

117

| PRESSION(PSI) | (E2-1)       | INCERTITUDE<br>ABSOLUE | DB/((E2-1)CO) | INCERTITUDE<br>ABSOLUE |
|---------------|--------------|------------------------|---------------|------------------------|
|               |              |                        |               |                        |
|               |              | 옥사는 지난 것이 같은 것이다.      |               |                        |
| ,4200000E+04  | .1582883E-01 | .1749397E-05           | .1088025E-01  | .S946740E-04           |
| .400000E+04   | .1499194E-01 | .1748908E-05           | ,i088654E-01  | .9446190E-04           |
| .3800000E+04  | .1450168E-01 | .1748624E-05           | .1090936E-01  | .9765550E-04           |
| .360000E+04   | .1401039E-01 | .1748337E-05           | ,1093458E-01  | ,10108008-03           |
| .3400000E+04  | 。1325587E-01 | +1747895E-05           | ·1095269E-01  | .1068335E-03           |
| .3200000E+04  | +1270128E-01 | .1747571E-05           | .1087909E-01  | .1114982E-03           |
| .3000000E+04  | .1173877E-01 | .1747006E-05           | ,1108872E-01  | .1206407E-03           |
| ,2800000E+04  | .1093201E-01 | .1746535E-05           | .1108272E-01  | +1295437E-03           |
| .2600000E+04  | .1030710E-01 | .1746171E-05           | ·1117175E-01  | +1373977E-03           |
| 2400000E+04   | .9668121E-02 | .1745798E-05           | .1118515E-01  | .1464786E-03           |
| .2200000E+04  | .8875422E-02 | .1745336E-05           | ,1116879E-01  | .1595611E-03           |
| .2100000E+04  | .7962135E-02 | .1744798E-05           | .1131807E-01  | +1778636E-03           |
| .2000000E+04  | .7538166E-02 | .1744552E-05           | +1168899E-01  | ,1878687E-03           |
| .190000E+04   | .7292032E-02 | .1744412E-05           | .1153430E-01  | .1942097E-03           |
| ,2500000E+04  | .9110376E-02 | .1727161E-05           | 1272939E-01   | .1552091E-03           |
| .2250000E+02  | .8353829E-02 | .1726724E-Q5           | -,1280514E-01 | .1692655E-03           |
| .1250000E+04  | .4522381E-02 | .1724515E-05           | -,1237961E-01 | .3126679E-03           |
| .300000E+04   | .1161024E-01 | .1746942E-05           | .1138401E-01  | .1219773E-03           |
| ,1500000E+04  | .5811150E-02 | ,1743558E-05           | .1171681E-01  | .2437029E-03 .         |
| .2500000E+04  | .9938442E-02 | .1745967E-05           | .1108248E-01  | ,1424951E-03           |
| .1250000E+04  | .4999362E-02 | .1743087E-05           | .1161652E-01  | .2832746E-03           |

Valeurs de  $(\epsilon_2-1)$  et de  $D_B/(\epsilon_2-1)C_0$  et leurs incertitudes expérimentales Hélium à  $303^0K$  Séries l et 2

|                          | S. A.L. Marson         |       | 認定に使い             |                        |          |
|--------------------------|------------------------|-------|-------------------|------------------------|----------|
| (DA/(E1-1)+DB/(E2-1))/CO | INCERTITUDE<br>ABSOLUE | POIDS | ((E1-1)+(E2-1))   | INCERTITUDE<br>ABSOLUE | POIDS    |
|                          |                        |       | the second second |                        |          |
| 717/0415-02              | 10746365-03            | z     | .71428225-01      | 24454035-05            |          |
| -, 31/6841E-V2           | 17070405-07            | 7     | 70104075-01       | 24450045-05            |          |
| 334/6/1E-02              | 132/0682-03            | 3     | +30186236-01      | 24630742-03            | 1        |
| 2976346E-02              | 10070445-03            | z     | 20723300-01       | 24640766-05            | 1        |
| 301/013E-02              | 15059445-03            | 7     | 2440104E-01       | 244342000-05           | 4        |
| -,2702823E-02            | 15705005-07            | 7     | 25775055-01       | 24636261.03            | 4        |
| 2009246-02               | 14924415-03            | 7     | 23015506-01       | 24631100 00            | 4        |
| -,22378276-02            | 10700755-03            | 2     | 21070195-01       | 24024702 00            | 1        |
| -,21810346-02            | 10007025-03            | 5     | 2074074E-01       | 24610/32-03            | 4        |
| 222/10/E-02              | 2053907E-03            | 2     | 10504545-01       | 24404915-05            | 4        |
| -, 19462/3E-02           | 22524505-03            | 2     | 17701015-01       | 245000712-03           | L.<br>-{ |
| -,1/39932E-02            | 05574745-07            | 2     | 15401005-01       | 24577626-05            | 4        |
| 13/6404E-02              | 23334/00-03            | 2     | 15049455-01       | . 2458869F-05          | 1        |
| -,120/241E-02            | CTTTTTTTT              | 2     | 10007402-01       | .2458614F-05           | Î        |
| -,1349311E-02            | 21795525-03            | 2     | 1835091E-01       | .2456477E-05           | - 1      |
| -,1802102E-02            | 23843115-03            | 2     | .16759895-01      | .2455823E-05           | 1        |
| 07470045-07              | A747373E-03            | 1     | 9168288E-02       | 2452711E-05            | . 1      |
| -, 97470942-03           | 17192595-03            | . 3   | 27712875-01       | .24622735-05           | 1        |
| -,22203002-02            | 34591315-03            | 1     | 1158013E-01       | .2457450E-05           | 1        |
|                          | 2020537E-03            | 2     | 1982485F-01       | ·2460839E-05           | 1        |
| -,2200474E-V2            | 120200072 00           |       | 88442445-02       | 24547405-05            | 4        |
| 1191/34E-02              | +40676432-03           |       | ·7040200E-02      | 12430/402-03           | *        |

TABLEAU 4.20

Valeurs de

de  $D_A/(\varepsilon_1-1)C_0 + D_B/(\varepsilon_2-1)C_0$  et de  $[(\varepsilon_1-1) + (\varepsilon_2-1)]$  et leurs incertitudes expérimentales ainsi que la pondération

Hélium à 303<sup>0</sup>K

Séries 1 et 2

#### CASE 10 Y=AX 1HELIUM DA+DB 303K SERIES 2 ET 3 POIDS

| A=   | 10:   | 22489 | 74E- | 100 | DEVA>        | +10125389E-02 |   |
|------|-------|-------|------|-----|--------------|---------------|---|
| OSTA | NDARD | DEV   | OF   | THE | POLYNOMIAL = | .15972402E-0  | 3 |

| X(I)          | Y(I)           | Y(I)EXP-Y(I)CALC | POIDS |
|---------------|----------------|------------------|-------|
| .31428220E-01 | 31768410E-02   | .36661133E-04    | 3     |
| .30186230E-01 | 33476710E-02   | 26116103E-03     | 3     |
| +28923580E-01 | -,29763460E-02 | 18940648E-04     | 3     |
| .28148880E-01 | 30170150E-02   | 13882190E-03     | 3     |
| .26601040E-01 | 27028230E-02   | .17105103E-04    | . 3   |
| .25375850E-01 | -,25509240E-02 | .43729726E-04    | 3     |
| .23815590E-01 | 22598290E-02   | +17528980E-03    | 3     |
| .21878190E-01 | 21810340E-02   | 155987703E-04    | 2     |
| .20769240E-01 | -,22271070E-02 | 10347426E-03     | 2     |
| .19504560E-01 | 19462730E-02   | +48047556E-04    | 2     |
| .17781810E-01 | 17599520E-02   | .58219197E-04    | 2     |
| .15691980E-01 | 13764040E-02   | .22808430E-03    | 2     |
| .15069450E-01 | -,12072410E-02 | .33359427E-03    | 2     |
| .14442110E-01 | 13493110E-02   | ·12737942E-03    | . 2   |
| .18350910E-01 | -,18021620E-02 | .74199068E-04    | 2     |
| .16759890E-01 | 19824600E-02   | 26877904E-03     | 2     |
| .91682880E-02 | 97470940E-03   | -,37261684E-04   | 1     |
| .23312870E-01 | 22203000E-02   | .16341621E-03    | 3     |
| .11580130E-01 | 11270330E-02   | .57023000E-04    | 1     |
| .19824850E-01 | 22864940E-02   | 25942413E-03     | .2    |
| .98462660E-02 | 11917340E-02   | 18496375E-03     | 1     |

1

TABLEAU 4.21Rapport de l'ordinateur pour le calcul de B $Y = [D_A/(\varepsilon_1-1)C_0 + D_B/(\varepsilon_2-1)C_0]$  $X = [(\varepsilon_1-1) + (\varepsilon_2-1)]$ Hélium à 303<sup>0</sup>KSéries l et 2



Valeurs de capacité à vide

Hélium à 77<sup>0</sup>K

| PRESSION     | CAO     | CBO                      | CO        |
|--------------|---------|--------------------------|-----------|
|              |         |                          |           |
|              |         | The second second second |           |
| .1950000E+04 | 99.0894 | 99+8804                  | 99,4849   |
| .1800000E+04 | 99.0907 | 99.8805                  | 99.4856   |
| .1800000E+04 | 99.0956 | 99.8821                  | 99.4889   |
| .1750000E+04 | 99.0969 | 99.8835                  | 99.4902   |
| .1700000E+04 | 99.0952 | 99.8814                  | 99.4883   |
| .1700000E+04 | 99,0913 | 99.8814                  | . 99.4864 |
| .160000E+04  | 99.0906 | 99.8807                  | 99.4857   |
| .1400000E+04 | 99,0907 | 99.8808                  | 99.4858   |
| .1200000E+04 | 99.0907 | 99.8809                  | 99,4858   |
| .1100000E+04 | 99.0956 | 99.8821                  | 99.4889   |
| .100000E+04  | 99.0907 | 99.8809                  | 99.4858   |
| .100000E+04  | 99.0953 | 99.8816                  | 99.4884   |
| .9750000E+03 | 99.0894 | 99.8804                  | 99.4849   |
| .900000E+03  | 99.0907 | 99,8805                  | 99,4856   |
| .8000000E+03 | 99.0906 | 99.8807                  | 99,4857   |
| .7000000E+03 | 99.0907 | 99.8808                  | 99.4858   |
| .600000E+03  | 99.0907 | 99.8809                  | 99.4858   |
| .500000E+03  | 99.0907 | 99.8809                  | 99.4858   |
| +4870000E+03 | 99.0894 | 99.8804                  | 99.4849   |

| PRESSION     | CI                                                                                                              | CIP      | CII      | CIIP     |
|--------------|-----------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|              | in the second                                                                                                   |          |          |          |
| ,1950000E+04 | 201.5953                                                                                                        | 201.6559 | 201,5937 | 201.5170 |
| ,1800000E+04 | 201,4032                                                                                                        | 201.4588 | 201,4194 | 201,3478 |
| .1800000E+04 | 201.4046                                                                                                        | 201,4602 | 201.4239 | 201,3526 |
| .1750000E+04 | 201.3598                                                                                                        | 201.4141 | 201.3770 | 201.3074 |
| .1700000E+04 | 201,2956                                                                                                        | 201.3495 | 201.3143 | 201,2468 |
| +1700000E+04 | 201.2924                                                                                                        | 201,3473 | 201.3129 | 201.2450 |
| .160000E+04  | 201.1826                                                                                                        | 201.2342 | 201.1922 | 201.1281 |
| .1400000E+04 | 200.9433                                                                                                        | 200.9893 | 200,9547 | 200.8981 |
| .1200000E+04 | 200.6946                                                                                                        | 200.7354 | 200,7050 | 200.6561 |
| .1100000E+04 | 200.5763                                                                                                        | 200.6141 | 200.5966 | 200.5518 |
| .100000E+04  | 200.4349                                                                                                        | 200.4700 | 200.4530 | 200.4117 |
| .1000000E+04 | 200.4336                                                                                                        | 200,4685 | 200.4591 | 200.4179 |
| .9750000E+03 | 200.3066                                                                                                        | 200.3392 | 200.2478 | 200.2125 |
| ,9000000E+03 | 200,2093                                                                                                        | 200.2395 | 200,1641 | 200.1313 |
| .800000E+03  | 200.0981                                                                                                        | 200.1257 | 200.0544 | 200.0248 |
| .700000E+03  | 199.9762                                                                                                        | 200.0009 | 199.9381 | 199.9119 |
| .600000E+03  | 199.8502                                                                                                        | 199.8720 | 199.8178 | 199.7950 |
| .5000000E+03 | 199.7192                                                                                                        | 199.7378 | 199.6949 | 199.6755 |
| .4870000E+03 | 199.6510                                                                                                        | 199.6684 | 199.5948 | 199.5780 |
|              | the second se |          |          |          |

## Valeurs de capacité lors des différentes étapes de l'expansion

Hélium à 77<sup>0</sup>K

123

| PRESSION(PSI) | (E1-1)       | ABSOLUE        | DA/((E1-1)CO)    | ABSOLUE       |
|---------------|--------------|----------------|------------------|---------------|
|               |              | and the second | San Strand Brook |               |
| .1950000E+04  | .2649628E-01 | .1763541E-05   | .2298956E-01     | .5367222E-04  |
| .1800000E+04  | .2454317E-01 | +1762361E-05   | .2277109E-01     | . 5794248E-04 |
| 1800000E+04   | .2449049E-01 | .1762243E-05   | +2281933E-01     | .5806532E-04  |
| .1750000E+04  | .2401084E-01 | .1761936E-05   | .2273066E-01     | .5922426E-04  |
| .1700000E+04  | +2340174E-01 | .1761605E-05   | .2315094E-01     | .6076780E-04  |
| ,170000E+04   | +2340972E-01 | .1761679E-05   | +2357287E-01     | .6074918E-04  |
| .160000E+04   | .2231594E-01 | +1761045E-05   | .2324203E-01     | .6372639E-04  |
| .1400000E+04  | .1989894E-01 | .1759615E-05   | .2323630E-01     | .7146670E-04  |
| .120000E+04   | .1738811E-01 | .1758134E-05   | .2358559E-01     | .8178737E-04  |
| .1100000E+04  | .1613190E-01 | ,1757307E-05   | .2355223E-01     | .8815342E-04  |
| .100000E+04   | .1476728E-01 | ,1756591E-05   | ,2389162E-01     | .9630362E-04  |
| .100000E+04   | .1469999E-01 | .1756470E-05   | +2386359E-01     | .9674176E-04  |
| .9750000E+03  | .1349085E-01 | ,1755864E-05   | .2428965E-01     | .1054178E-03  |
| .900000E+03   | .1249461E-01 | .1755255E-05   | .2429539E-01     | +1138223E-03  |
| .800000E+03   | .1137141E-01 | .1754597E-05   | .2439688E-01     | +1250653E-03  |
| .700000E+03   | .1013920E-01 | .1753872E-05   | .2448683E-01     | .1402648E-03  |
| .600000E+03   | .8866624E-02 | .1753126E-05   | .2471366E-01     | ,1603974E-03  |
| .500000E+03   | .7544603E-02 | .1752352E-05   | .2478081E-01     | .1885038E-03  |
| +4870000E+03  | .6874600E-02 | ,1751982E-05   | .2544161E-01     | .2068825E-03  |

Valeurs de  $D_A^{}/(\epsilon_1-1)C_0^{}$  et de  $(\epsilon_1-1)$  et leurs incertitudes expérimentales Hélium à 77 $^0$ K

124

| PRESSION(PSI) | (E2-1)        | INCERTITUDE<br>ABSOLUE | DB/((E2-1)CO) | INCERTITUDE                               |
|---------------|---------------|------------------------|---------------|-------------------------------------------|
| 10.00         |               |                        |               | 18 S. |
| .1950000E+04  | +2627042E-01  | .1749442E-05           | 2934751E-01   | .5414694E-04                              |
| .1800000E+04  | .2451129E-01  | .1748406E-05           | 2936207E-01   | .5803254E-04                              |
| .1800000E+04  | .2449087E-01  | .1748366E-05           | 2926246E-01   | .5807877E-04                              |
| ,1750000E+04  | .2399395E-01  | ,1748050E-05           | -,2915595E-01 | .5928050E-04                              |
| .1700000E+04  | ·2340476E-01  | .1747741E-05           | 2898862E-01   | .6077354E-04                              |
| .1700000E+04  | ·2342979E-01  | +1747756E-05           | 2912983E-01   | .6071018E-04                              |
| .160000E+04   | .2223553E-01  | .1747067E-05           | 2897678E-01   | +6397088E-04                              |
| .140000E+04   | .1985567E-01  | .1745671E-05           | -,2865306E-01 | .7163715E-04                              |
| .1200000E+04  | .1735467E-01  | .1744206E-05           | -,2832249E-01 | .8195956E-04                              |
| .1100000E+04  | .1620811E-01  | .1743514E-05           | 2778249E-01   | .8775265E-04                              |
| .1000000E+04  | .1483166E-01  | .1742732E-05           | 2798975E-01   | .9590021E-04                              |
| ,1000000E+04  | .1483957E-01  | .1742724E-05           | 2790636E-01   | ,9584623E-04                              |
| .9750000E+03  | ,1279530E-01  | .1741552E-05           | 2773109E-01   | +1111624E-03                              |
| +900000E+03   | .1194327E-01. | .1741054E-05           | 2760516E-01   | .1190912E-03                              |
| +8000000E+03  | .1084394E-01  | .1740410E-05           | 2743748E-01   | .1311633E-03                              |
| .700000E+03   | .9677536E-02  | +1739730E-05           | 2721295E-01   | .1469705E-03                              |
| .600000E+03   | .8472090E-02  | .1739027E-05           | -,2705099E-01 | .1678808E-03                              |
| .5000000E+03  | ,7241625E-02  | .1738312E-05           | 2692803E-01   | .1964053E-03                              |
| .4870000E+03  | .6257484E-02  | .1737749E-05           | 2698686E-01   | .2272973E-03                              |

Valeurs de  ${}^{D}_{B}/(\varepsilon_{2}-1)C_{0}$  .et de  $(\varepsilon_{2}-1)$  et leurs incertitudes expérimentales

Hélium à 77<sup>0</sup>K

| DA/(E1-1)+DB/(E2-1))/CO                                                                                                                                                          | INCERTITUDE<br>ABSOLUE                                                                                                                                                       | POIDS                           | ((E1-1)+(E2-1))                                                                                                                                                              | INCERTITUDE<br>Absolue                                                                                                                                                       | POIDS                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                                                                                                                                                                  |                                                                                                                                                                              |                                 |                                                                                                                                                                              |                                                                                                                                                                              |                                 |
| 6357947E-02<br>6590972E-02<br>6443130E-02<br>6425281E-02<br>5837685E-02<br>5556953E-02<br>5734753E-02<br>5734753E-02<br>5416762E-02<br>4736902E-02<br>4230269E-02<br>4098136E-02 | .7624040E-04<br>.9200675E-04<br>.8212627E-04<br>.8379553E-04<br>.8594270E-04<br>.9588474E-04<br>.9029577E-04<br>.1011898E-03<br>.1157866E-03<br>.1243847E-03<br>.1359089E-03 | 4 4 4 4 4 3 3 3 3 2 2           | .5276669E-01<br>.4905446E-01<br>.4898137E-01<br>.4898137E-01<br>.4680650E-01<br>.4683951E-01<br>.4455147E-01<br>.3975461E-01<br>.3975461E-01<br>.3234001E-01<br>.2959894E-01 | .2484074E-05<br>.2482507E-05<br>.2482395E-05<br>.2481954E-05<br>.2481502E-05<br>.2481565E-05<br>.2480630E-05<br>.2478631E-05<br>.2476548E-05<br>.2475474E-05<br>.2474414E-05 |                                 |
| 4042777E-02<br>3441445E-02<br>3309770E-02<br>3040606E-02<br>2726121E-02<br>2337329E-02<br>2147225E-02<br>1545248E-02                                                             | .136181/E-03<br>.1531992E-03<br>.1647368E-03<br>.1812323E-03<br>.2031613E-03<br>.2321880E-03<br>.2722292E-03<br>.3073507E-03                                                 | 2<br>2<br>2<br>2<br>1<br>1<br>1 | .2953956E-01<br>.2628615E-01<br>.2443789E-01<br>.2221535E-01<br>.1981673E-01<br>.1733871E-01<br>.1478623E-01<br>.1313208E-01                                                 | .2474323E-05<br>.2473067E-05<br>.2472284E-05<br>.2471364E-05<br>.2470370E-05<br>.2469345E-05<br>.2468292E-05<br>.2468292E-05                                                 | 1<br>1<br>1<br>1<br>1<br>1<br>1 |

(

#### TABLEAU 4.26

Valeurs de  $\frac{D_A}{(\varepsilon_1-1)C_0} + \frac{D_B}{(\varepsilon_2-1)C_0}$  et de  $[(\varepsilon_1-1) + (\varepsilon_2-1)]$  et leurs incertitudes expérimentales ainsi que la pondération Hélium à 77°K

#### CASE 10 Y=AX 1HELIUM DA+DB 77K POIDS

| A=   | -,12  | 92319 | 94E | +00 | DEVA=        | .92484463E-03 |
|------|-------|-------|-----|-----|--------------|---------------|
| OSTA | NDARD | DEV   | OF  | THE | FOLYNOMIAL = | .26493682E-03 |

|    | X(I)          | Y(I)           | Y(I)EXP-Y(I)CALC | POID |
|----|---------------|----------------|------------------|------|
|    | •52766690E-01 | 63579470E-02   | +46119470E-03    | 4    |
|    | .49054460E-01 | 65909720E-02   | 25156899E-03     | 4    |
| į. | .48981370E-01 | 64431300E-02   | 11317255E-03     | 4    |
|    | .48004790E-01 | 64252810E-02   | 22152888E-03     | 4    |
|    | .46806500E-01 | -,58376850E-02 | .21120978E-03    | 4    |
|    | .46839510E-01 | 55569530E-02   | .49620773E-03    | 4    |
|    | ,44551470E-01 | 57347530E-02   | .22719881E-04    | 3    |
|    | .39754610E-01 | 54167620E-02   | 27919664E-03     | 3    |
|    | .34742780E-01 | 47369020E-02   | 24702515E-03     | 3    |
|    | .32340010E-01 | -,42302690E-02 | 50906780E-04     | 2    |
|    | .29598940E-01 | 40981360E-02   | 27300757E-03     | 2    |
|    | .29539560E-01 | 40427770E-02   | 22532237E-03     | 2    |
|    | .26286150E-01 | 34414450E-02   | 44434850E-04     | 2    |
|    | .24437890E-01 | 33097700E-02   | 15161408E-03     | 2    |
|    | .22215350E-01 | 30406060E-02   | -,16967323E-03   | 2    |
|    | .19816730E-01 | 27261210E-02   | 16516655E-03     | 2    |
|    | .17338710E-01 | -,23373290E-02 | 96613876E-04     | . 1  |
|    | .14786230E-01 | 21472250E-02   | 23637182E-03     | 1    |
| -  | .13132080E-01 | 15452480F-02   | 15183417E-03     | 1    |

## TABLEAU 4.27

Rapport de l'ordinateur pour le calcul de  $B_{\epsilon}$ 

 $\mathbf{Y} = [\mathbf{D}_{A}^{\prime} (\varepsilon_{1} - 1)\mathbf{C}_{0} + \mathbf{D}_{B}^{\prime} (\varepsilon_{2} - 1)\mathbf{C}_{0}]$ 

$$X = [(\varepsilon_1 - 1) + (\varepsilon_2 - 1)]$$

]

Hélium à 77<sup>0</sup>K



## Valeurs de capacité à vide

Néon à 303<sup>0</sup>K

| PRESSION     | CAO      | CBO       | CO       |
|--------------|----------|-----------|----------|
|              | 1.68     |           |          |
| ,400000E+04  | 99.4639  | 100.5889  | 100.0264 |
| +3750000E+04 | 99,4638  | 100.5892  | 100.0265 |
| .320000E+04  | 99.4640  | 100.5885  | 100.0263 |
| .300000E+04  | 100.1774 | 100.4252  | 100.3013 |
| .2800000E+04 | 100.1774 | 100,4252  | 100.3013 |
| .2600000E+04 | 100.1775 | 100.4252  | 100.3014 |
| .200000E+04  | 99.4639  | 1,00.5889 | 100.0264 |
| .200000E+04  | 100.1775 | 100.4252  | 100.3014 |
| .1850000E+04 | 99.4638  | 100.5892  | 100.0265 |
| .1800000E+04 | 100.1775 | 100.4252  | 100.3014 |
| .1600000E+04 | 99.4640  | 100.5885  | 100.0263 |
| .150000E+04  | 100.1775 | 100.4252  | 100.3014 |
| +1400000E+04 | 100.1774 | 100.4252  | 100.3013 |
| .130000E+04  | 100.1775 | 100,4252  | 100.3014 |
| .100000E+04  | 99.4639  | 100.5889  | 100.0264 |
| .100000E+04  | 100.1775 | 100,4252  | 100.3014 |
| .900000E+03  | 100.1774 | 100,4252  | 100.3013 |
| .7500000E+03 | 100.1775 | 100,4252  | 100.3014 |

| PRESSION      | CI           | CIP      | CII      | CIIP     |
|---------------|--------------|----------|----------|----------|
|               | See See Star |          |          |          |
| .4000000E+04  | 202.9488     | 202.9729 | 202,9814 | 202.9350 |
| .3750000E+04  | 202.7547     | 202.7776 | 202.7848 | 202.7420 |
| +3200000E+04  | 202.4453     | 202.4666 | 202.4542 | 202,4180 |
| .300000E+04   | 202.6243     | 202,6259 | 202.6637 | 202.6506 |
| .2800000E+04  | 202.5331     | 202.5346 | 202.4906 | 202.4792 |
| .260000E+04   | 202.3774     | 202.3792 | 202.3834 | 202.3729 |
| .2000000E+04  | 201.5055     | 201.5199 | 201.5019 | 201,4817 |
| .2000000E+04. | 201.9538     | 201.9559 | 201.9737 | 201.9663 |
| .1850000E+04  | 201.4047     | 201.4188 | 201.4049 | 201.3863 |
| .1800000E+04  | 201.8538     | 201,8559 | 201.8313 | 201.8249 |
| .1600000E+04  | 201.2529     | 201.2656 | 201.2420 | 201,2258 |
| .1500000E+04  | 201.6133     | 201.6155 | 201.6279 | 201.6230 |
| .1400000E+04  | 201.5680     | 201.5701 | 201.5422 | 201.5378 |
| .1300000E+04  | 201.4902     | 201.4922 | 201.4890 | 201.4849 |
| +1000000E+04  | 200.7824     | 200.7906 | 200.7720 | 200.7626 |
| .100000E+04   | 201.2791     | 201.2808 | 201.2856 | 201.2826 |
| .900000E+03   | 201.2293     | 201.2308 | 201.2147 | 201.2121 |
| ,7500000E+03  | 201.1087     | 201,1101 | 201.1136 | 201.1115 |

# Valeurs de capacité lors des différentes étapes de l'expansion

Néon à 303<sup>0</sup>K

| PRESSION(FSI) | (E1-1)       | ABSOLUE      | DA/((E1-1)CO) | ABSOLUE      |
|---------------|--------------|--------------|---------------|--------------|
| 1 . 1         |              |              |               |              |
| .400000E+04   | .2911609E-01 | .1758450E-05 | .8275025E-02  | .4856130E-04 |
| .3750000E+04  | .2716265E-01 | .1757297E-05 | .8428462E-02  | .5205371E-04 |
| .3200000E+04  | ,2405695E-01 | .1755460E-05 | .8851668E-02  | .5877420E-04 |
| .300000E+04   | .2018120E-01 | .1740692E-05 | ,7904356E-03  | .6986533E-04 |
| .2800000E+04  | .1927081E-01 | .1740161E-05 | .7760410E-03  | .7316588E-04 |
| .260000E+04   | +1771555E-01 | .1739252E-05 | .1013004E-02  | .7958914E-04 |
| .2000000E+04  | .1460530E-01 | .1749905E-05 | .9856833E-02  | .9681045E-04 |
| .200000E+04   | .1348706E-01 | .1736790E-05 | .1552370E-02  | .1045422E-03 |
| .1850000E+04  | ,1358987E-01 | ,1749312E-05 | ,1037263E-01  | .1040448E-03 |
| ,1800000E+04  | .1248883E-01 | .1736209E-05 | .1676450E-02  | .1128983E-03 |
| .160000E+04   | .1206869E-01 | ,1748418E-05 | .1052034E-01  | .1171596E-03 |
| .1500000E+04  | .1008809E-01 | .1734815E-05 | .2174237E-02  | .1397657E-03 |
| .1400000E+04  | .9636904E-02 | .1734555E-05 | .2172577E-02  | .1463095E-03 |
| .1300000E+04  | .8859275E-02 | .1734103E-05 | ,2250739E-02  | .1591519E-03 |
| .100000E+04   |              | .1745655E-05 | .1117583E-01  | .1927624E-03 |
| +100000E+04   | .6752015E-02 | .1732882E-05 | .2510202E-02  | .2088223E-03 |
| .900000E+03   | 6255902E-02  | +1732597E-05 | .2390533E-02  | .2253826E-03 |
| .7500000E+03  | .5051034E-02 | .1731898E-05 | .2763382E-02  | .2791453E-03 |

Valeurs de  $D_A/(\epsilon_1-1)C_0$  et de  $(\epsilon_1-1)$  et leurs incertitudes expérimentales

Néon à 303<sup>0</sup>K

| PRESSION(PSI) | (E2-1)         | INCERTITUDE<br>ABSOLUE | DB/((E2-1)CO) | INCERTITUDE<br>Absolue |
|---------------|----------------|------------------------|---------------|------------------------|
|               | 방법을 즐기는 것이 없다. |                        | 200 P         | and the second         |
| 40000005104   | 00114EAE 01    | 17707005 05            | 15070055 01   | 15530/75 04            |
| ,400000E+04   | +2711434E-01   | ·1/38/82E-03           | -+1373283E-01 | ,460/V63E-V4           |
| .3/50000E+04  | .2/15/99E-01   | .1/3/633E-05           | 15/5546E-01   | +3206955E-04           |
| ,320000E+04   | .2387649E-01   | .1735730E-05           | 1515738E-01   | .5922509E-04           |
| .300000E+04   | . 2052373E-01  | .1736597E-05           | 6363681E-02   | .6870137E-04           |
| .280000E+04   | ,1880006E-01   | .1735593E-05           | 6045594E-02   | .7499999E-04           |
| ,260000E+04   | 1773161E-01    | ,1734971E-05           | 5903838E-02   | .7951913E-04           |
| ,2000000E+04  | .1440616E-01   | .1730219E-05           | 1401808E-01   | .9815580E-04           |
| .2000000E+04  | .1365195E-01   | .1732601E-05           | 5404185E-02   | .1032816E-03           |
| .1850000E+04  | .1343981E-01   | .1729654E-05           | 1383581E-01   | ·1052129E-03           |
| .1800000E+04  | .1223398E-01   | .1731779E-05           | 5215613E-02   | .1152522E-03           |
| .160000E+04   | .1182541E-01   | .1728731E-05           | 1369572E-01   | .1195765E-03           |
| .1500000E+04  | .1020859E-01   | .1730606E-05           | 4785457E-02   | .1381179E-03           |
| .1400000E+04  | .9356217E-02   | .1730113E-05           | 4688628E-02   | .1507007E-03           |
| .1300000E+04  | .8825474E-02   | .1729806E-05           | 4631685E-02   | .1597634E-03           |
| .100000E+04   | .7149894E-02   | .1726024E-05           | 1314358E-01   | .1977683E-03.          |
| +1000000E+04  | .6800086E-02   | ,1728636E-05           | -,4398454E-02 | .2073481E-03           |
| .900000E+03   | .6095084E-02   | .1728229E-05           | 4252919E-02   | .2313314E-03           |
| .7500000E+03  | .5087369E-02   | .1727647E-05           | 4115469E-02   | .2771536E-03           |

Valeurs de  $D_B^{1/(\epsilon_2-1)C_0}$  et de

(ε<sub>2</sub>−1)

et leurs incertitudes expérimentales

Néon à 303<sup>0</sup>K

| DA/(E1-1)+DB/(E2-1))/CO | INCERTITUDE<br>ABSOLUE | POIDS | ((E1-1)+(E2-1)) | INCERTITUDE<br>Absolue | POIDS |
|-------------------------|------------------------|-------|-----------------|------------------------|-------|
| All the second states   | 成本的主义。                 |       |                 |                        |       |
| -,7657820E-02           | .6868264E-04           | 6     | .5823064E-01    | .2472955E-05           | 1     |
| 7327000E-02             | .7362626E-04           | 5     | .5432063E-01    | .2471327E-05           | 1     |
| 6305712E-02             | , 1.8343871E-04        | 5     | .4793343E-01    | .2468683E-05           | 1     |
| 5573245E-02             | .9798491E-04           | 4     | .4070493E-01    | .2458816E-05           | 1     |
| 5269553E-02             | .1047771E-03           | 4     | .3807088E-01    | .2457731E-05           | 1     |
| -,4890835E-02           | .1125065E-03           | 3     | .3544716E-01    | .2456648E-05           | 1     |
| 4161244E-02             | .1378652E-03           | 3     | .2901146E-01    | .2460859E-05           | 1     |
| 3851815E-02             | .1469563E-03           | 3     | .2713901E-01    | .2453232E-05           | 1     |
| 3463185E-02             | .1479698E-03           | 3     | .2702968E-01    | .2460040E-05           | . 1   |
| 3539163E-02             | .1613354E-03           | 2     | .2472281E-01    | .2452240E-05           | 1     |
| 3175384E-02             | .1674064E-03           | 2     | .2389410E-01    | .2458755E-05           | 1     |
| 2611220E-02             | .1964968E-03           | 2     | .2029669E-01    | .2450425E-05           | 1     |
| 2516051E-02             | .2100409E-03           | 2     | .1899312E-01    | .2449893E-05           | 1     |
| 2380947E-02             | .2255075E-03           | 2     | .1768475E-01    | +2449355E-05           | 1     |
| 1967745E-02             | .2761696E-03           | 1     | .1448522E-01    | .2454887E-05           | 1     |
| 1888252E-02             | .2942788E-03           | 1     | .1355210E-01    | .2447664E-05           | 1     |
| 1862386E-02             | .3229730E-03           | 1     | .1235099E-01    | .2447175E-05           | 1     |
| 1352087E-02             | .3933653E-03           | 1     | .1013840E-01    | .2446269E-05           | 1     |

Valeurs de  $A^{D}/(\epsilon_1-1)C_0 + D_B^{D}/(\epsilon_2-1)C_0$  et de  $[(\epsilon_1-1) + (\epsilon_2-1)]$  et leurs incertitudes expérimentales ainsi que la pondération

Néon à 303<sup>0</sup>K

133

| CASE 10 Y=AX                 | 1NEON DA+DB 303K | SERIES 1 ET 2 POIDS  |                                       |
|------------------------------|------------------|----------------------|---------------------------------------|
|                              |                  | and the start of the |                                       |
| A=13441776E+00               | DEVA= .532414    | 69E-03               | and the second second                 |
| STANDARD DEV OF THE F        | OLYNOMIAL = '.14 | 570234E-03           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| and the second second second |                  | 等"其他"的"自己的"。         | 的理论是在一篇                               |
| X(I)                         | Y(I)             | Y(I)EXP-Y(I)CALC     | POIDS                                 |
| .58230640E-01                | -,76578200E-02   | .16941209E-03        | 6                                     |
| .54320630E-01                | 73270000E-02     | 25342692E-04         | 5                                     |
| ,47933430E-01                | 63057120E-02     | .13739220E-03        | ´ 5                                   |
| .40704930E-01                | 55732450E-02     | 10177956E-03         | 4                                     |
| .38070880E-01                | 52695530E-02     | 15215066E-03         | 4                                     |
| .35447160E-01                | 48908350E-02     | -,12610722E-03       | 3                                     |
| .29011460E-01                | 41612440E-02     | 26158859E-03         | 3                                     |
| .27139010E-01                | 38518150E-02     | 20385012E-03         | - 3                                   |
| .27029680E-01                | 34631850E-02     | .17008399E-03        | 3                                     |
| .24722810E-01                | 35391630E-02     | 21597830E-03         | 2                                     |
| .23894100E-01                | 31753840E-02     | .36407356E-04        | 2                                     |
| .20296690E-01                | 26112200E-02     | .11701557E-03        | 2                                     |
| +18993120E-01                | 25160510E-02     | .36961611E-04        | 2                                     |
| +17684750E-01                | 23809470E-02     | 38025509E-05         | 2                                     |
| .14485220E-01                | 19677450E-02     | 20674201E-04         | 1                                     |
| +13552100E-01                | 18882520E-02     | 66609099E-04         | 1                                     |
| .12350990E-01                | 18623860E-02     | 20219361E-03         | 1                                     |
| .10138400E-01                | 13520870E-02     | .10694000E-04        | 1                                     |

Rapport de l'ordinateur pour le calcul de 
$$B_{\varepsilon}$$
 où  
 $Y = [D_A/(\varepsilon_1-1)C_0 + D_B/(\varepsilon_2-1)C_0]$   $X = [(\varepsilon_1-1) + (\varepsilon_2-1)]$   
Néon à 303<sup>0</sup>K



Valeurs de capacité à vide

Néon 303<sup>0</sup>K

| PRESSION                     | CAO     | CBO                           | CO                 |
|------------------------------|---------|-------------------------------|--------------------|
| .1950000E+04                 | 99.0955 | 99.8818                       | 99.4886            |
| .1750000E+04<br>.1750000E+04 | 99.0955 | 99.8820<br>99.8859<br>99.8824 | 99.4912<br>99.4891 |
| .1400000E+04                 | 99.0969 | 99.8863                       | 99.4916            |
| .1350000E+04                 | 99.0958 | 99.8825                       | 99.4891            |
| .1200000E+04                 | 99.0977 | 99.8863                       | 99.4920            |
| .1100000E+04                 | 99.0954 | 99.8826                       | 99.4890            |
| .9750000E+03                 | 99.0955 | 99,8818                       | 99.4886            |
| .8750000E+03                 | 99.0956 | 99,8820                       |                    |
| .8750000E+03                 | 99.0985 | 99.8839<br>99.8824<br>99.8825 | 99.4912<br>99.4891 |
| .6000000E+03                 | 99.0977 | 99.8863                       | 99.4920            |
| .5500000E+03                 | 99.0954 | 99.8826                       | 99.4890            |
| .4870000E+03                 | 99.0955 | 99,8818                       | 99.4886            |
| .4370000E+03                 | 99.0956 | 99,8820                       | 99.4888            |
| .4370000E+03                 | 99.0965 | 99.8859                       | 99.4912            |
| .3870000E+03                 | 99.0957 | 99.8824                       | 99.4891            |
| .3500000E+03                 | 99.0969 | 99.8843                       | 99.4916            |
| .3370000E+03                 | 99.0958 | 99.8825                       | 99.4891            |
| .2430000E+03                 | 99.0955 | 99.8818                       | 99.4886            |
| FRESSION                | CI       | CIP      | CII      | CIIP     |
|-------------------------|----------|----------|----------|----------|
| - and the second second |          |          |          |          |
| .1950000E+04            | 205,8436 | 205.9524 | 205.9014 | 205.6511 |
| .1750000E+04            | 205.2514 | 205.3564 | 205,2849 | 205.0627 |
| ,1750000E+04            | 205,2988 | 205,4035 | 205.2786 | 205.0610 |
| .1550000E+04            | 204.5479 | 204.6467 | 204.6115 | 264.4183 |
| .1400000E+04            | 204.0060 | 204.0980 | 204.0471 | 203.8783 |
| .1350000E+04            | 203.8173 | 203.9076 | 203.8597 | 203.6963 |
| .1200000E+04            | 203.2789 | 203.3614 | 203.3445 | 203.2036 |
| .1100000E+04            | 202,9025 | 202.9808 | 202.9314 | 202.8053 |
| .9750000E+03            | 202.4512 | 202,5232 | 202.3265 | 202,2227 |
| .8750000E+03            | 202,1544 | 202.2216 | 202.0314 | 201.9382 |
| .8750000E+03            | 202.1780 | 202.2454 | 202.0340 | 201.9413 |
| .7750000E+03            | 201.8008 | 201.8622 | 201.7084 | 201.6265 |
| .6750000E+03            | 201.4332 | 201.4877 | 201.3465 | 201.2767 |
| .600000E+03             | 201,1635 | 201.2129 | 201.1021 | 201.0410 |
| .5500000E+03            | 200.9713 | 201.0175 | 200,8987 | 200.8433 |
| .4870000E+03            | 200.7427 | 200.7840 | 200.6055 | 200,5596 |
| .4370000E+03            | 200.5925 | 200.6306 | 200.4632 | 200.4214 |
| .4370000E+03            | 200.6060 | 200.6439 | 200.4674 | 200.4259 |
| .3870000E+03            | 200.4137 | 200.4480 | 200.3066 | 200,2695 |
| .3500000E+03            | 200.2702 | 200.3011 | 200.1793 | 200.1467 |
| .3370000E+03            | 200,2274 | 200.2576 | 200.1314 | 200.0998 |
| .2430000E+03            | 199.8771 | 199.8993 | 199,7715 | 199.7500 |

# Valeurs de capacité lors des différentes étapes de l'expansion

# Néon 77<sup>0</sup>K

137.

| PRESSION(PSI) | (E1-1)       | INCERTITUDE<br>ABSOLUE | DA/((E1-1)CO) | INCERTITUDE<br>ABSOLUE |
|---------------|--------------|------------------------|---------------|------------------------|
|               |              |                        | ·             | · · ·                  |
| .1950000E+04  | .6928973E-01 | ·1789141E-05           | .1578289E-01  | .2051910E-04           |
| .1750000E+04  | .6331058E-01 | .1785507E-05           | ,1667012E-01  | ,2245741E-04           |
| .1750000E+04  | ,6373989E-01 | .1785751E-05           | .1651014E-01  | ,2230552E-04           |
| .1550000E+04  | .5620627E-01 | .1781206E-05           | ,1766839E-01  | .2529655E-04           |
| .140000E+04   | .5068574E-01 | .1777856E~05           | ,1824381E-01  | .2805148E-04           |
| .1350000E+04  | .4883153E-01 | ·1776761E-05           | .1858710E-01  | +2911763E-04           |
| .120000E+04   | .4334006E-01 | .1773431E-05           | .1913270E-01  | -3280659E-04           |
| .1100000E+04  | .3960325E-01 | .1771236E-05           | +1987265E-01  | +3590395E-04           |
| ,9750000E+03  | .3505608E-01 | .1768520E-05           | ,2064408E-01  | -4056218E-04           |
| .8750000E+03  | .3205793E-01 | ,1766733E-05           | .2106976E-01  | .4435618E-04           |
| .8750000E+03  | .3224735E-01 | -1766830E-05           | .2100783E-01  | .4409448E-04           |
| .7750000E+03  | .2848459E-01 | .1764608E-05           | .2166622E-01  | +4992141E-04           |
| .6750000E+03  | .2477300E-01 | ,1762406E-05           | .2211272E-01  | .5740158E-04           |
| .600000E+03   | +2199345E-01 | ·1760728E-05           | ·2257592E-01  | .6465517E-04           |
| .550000E+03   | +2011496E-01 | .1759659E-05           | .2308595E-01  | ·7069652E-04           |
| .4870000E+03  | .1781514E-01 | .1758301E-05           | +2330168E-01  | .7982384E-04           |
| .4370000E+03  | .1629638E-01 | .1757404E-05           | .2349955E-01  | .8726353E-04           |
| .4370000E+03  | .1638403E-01 | .1757440E-05           | .2325058E-01  | .8679385E-04           |
| .3870000E+03  | .1448701E-01 | .1756338E-05           | .2379799E-01  | ,9816321E-04           |
| .3500000E+03  | +1298729E-01 | .1755435E-05           | .2391407E-01  | .1094963E-03           |
| .3370000E+03  | .1260497E-01 | .1755230E-05           | .2408182E-01  | .1128208E-03           |
| .2430000E+03  | .9080130E-02 | .1753166E-05           | .2457465E-01  | .1566206F-03           |

Valeurs de  $D_A / (\epsilon_1 - 1) C_0$ 

et de ( $\epsilon_1$ -1) et leurs incertitudes expérimentales

Néon 77<sup>0</sup>K

| PRESSION(PSI) | (E2-1)           | ABSOLUE      | DB/((E2~1)CO) | INCERTITUDE<br>ABSOLUE |
|---------------|------------------|--------------|---------------|------------------------|
|               |                  |              |               | R.                     |
|               |                  |              |               |                        |
| .1950000E+04  | ,6932294E-01     | .1775076E-05 | 3629195E-01   | .2052627E-04           |
| .1750000E+04  | .6314751E-01     | .1771351E-05 | 3536825E-01   | .2253232E-04           |
| .1750000E+04  | .6303392E-01     | .1771213E-05 | 3469764E-01   | .2257156E-04           |
| .1550000E+04  | .5640033E-01     | .1767293E-05 | 3443105E-01   | ·2522642E-04           |
| .1400000E+04  | .5069664E-01     | .1763812E-05 | 3346623E-01   | .28062326-04           |
| .1350000E+04  | .4886141E-01     | .1762784E-05 | 3340752E-01   | .2911493E-04           |
| .1200000E+04  | ,4365464E-01     | .1759617E-05 | 3244087E-01   | .3258715E-04           |
| .1100000E+04  | .3958047E-01     | ,1757263E-05 | 3202279E-01   | .3594174E-04           |
| ,9750000E+03  | .3353264E-01     | .1753698E-05 | 3114399E-01   | .4242229E-04           |
| .8750000E+03  | .3057408E-01     | .1751948E-05 | 3063997E-01   | .4652613E-04           |
| .8750000E+03  | .3055086E-01     | .1751866E-05 | 3049802E-01   | .4656005E-04           |
| .7750000E+03  | .2733515E-01     | .1750033E-05 | 3011530E-01   | .5203752E-04           |
| .6750000E+03  | .2370986E-01     | .1747901E-05 | 2959039E-01   | .5999259E-04           |
| .600000E+03   | .2120511E-01     | .1746365E-05 | 2896093E-01   | .6707506E-04           |
| .5500000E+03  | .1922958E-01     | .1745273E-05 | 2895776E-01   | .7396812E-04           |
| .4870000E+03  | .1630127E-01     | .1743574E-05 | 2830204E-01   | .8725325E-04           |
| .4370000E+03  | .1487355E-01     | .1742737E-05 | 2824798£-01   | .9562830E-04           |
| .4370000E+03  | .1486696E-01     | .1742665E-05 | 2805700E-01   | .95667595-04           |
| .3870000E+03  | .1330064E-01     | .1741812E-05 | 2803664E-01   | .10693586-03           |
| .3500000E+03  | <br>.1197462E-01 | .1740971E-05 | 2736337E-01   | .1187711E-03           |
| .3370000E+03  | .1154456E-01     | .1740787E-05 | 2751274E-01   | .1231993E-03           |
| .2430000E+03  | .7951399E-02     | .1738709E-05 | -+2717824E-01 | .1788701E-03           |

Valeurs de  $D_B^{(\epsilon_2-1)}C_0$  et de  $(\hat{\epsilon}_{2}-1)$  et leurs incertitudes expérimentales

Néon 77<sup>0</sup>K

INCERTITUDE POIDS ABSOLUE

140.

(DA/(E1-1)+DB/(E2-1))/CD

| -,2050906E-01 | .2902346E-04 | 8 | .1386127E+00 | .2520302E-05 | 1 |
|---------------|--------------|---|--------------|--------------|---|
| 1869813E-01   | .3181259E-04 | 7 | .1264581E+00 | .2515098E-05 | * |
| 1818750E-01   | .3173345E-04 | 7 | +1267738E+00 | .2515174E-05 | 1 |
| 1676266E-01   | .3572517E-04 | 7 | .1126066E+00 | ·2509187E-05 | 1 |
| 1522242E-01   | .3967845E-04 | 6 | +1013824E+00 | .25043585-05 | 1 |
| 1482042E-01   | .4117806E-04 | 6 | •9769295E-01 | ·2502856E-05 | 1 |
| 1330817E-01   | .4624062E-04 | 5 | .8699469E-01 | ·2498261E-05 | 4 |
| 1215013E-01   | .5080258E-04 | 5 | .7918372E-01 | .2495045E-05 | 1 |
| 1049991E-01   | ,5869362E-04 | 4 | .6858872E-01 | ,2490606E-05 | 1 |
| 9570212E-02   | .6428181E-04 | 4 | .6263201E-01 | .2488106E-05 | 1 |
| 9490193E-02   | .6412614E-04 | 4 | .6279821E-01 | .2488116E-05 | 4 |
| 8449080E-02   | .7211138E-04 | 3 | .5581973E-01 | .24852485-05 | 1 |
| 7477670E-02   | .8303043E-04 | 3 | .4848286E-01 | .2482183E-05 | 3 |
| -,6385009E-02 | .9316305E-04 | 3 | +4319856E-01 | .2479910E-05 | 1 |
| 5871813E-02   | .1023195E-03 | 2 | .3934454E-01 | .2478382E-05 | 1 |
| 5000356E-02   | .1182581E-03 | 2 | .3411641E-01 | .2476221E-05 | 1 |
| 4748433E-02   | .1294592E-03 | 2 | .3116994E-01 | ·2474995E-05 | 1 |
| 4806414E-02   | .1291722E-03 | 2 | .3125099E-01 | .2474970E-05 | 1 |
| -,4238659E-02 | .1451595E-03 | 2 | .2778765E-01 | .2473587E-05 | 1 |
| 3449297E-02   | .1615426E-03 | 1 | .2496190E-01 | .2472354E-05 | 1 |
| 3430919E-02   | .1670527E-03 | 1 | .2414954E-01 | .2472078E-05 | 1 |
| 2603592E-02   | ·2377489E-03 | 1 | .1703153E-01 | .2469150E-05 | 1 |
|               |              |   |              |              |   |

POIDS ((E1-1)+(E2-1))

INCERTITUDE

ABSOLUE

### TABLEAU 4.38

Valeurs de  $[D_A/C_0(\epsilon_1-1)+D_B/C_0(\epsilon_2-1)]$  et de  $[(\epsilon_1-1) + (\epsilon_2-1)]$  et leurs incertitudes experimentales ainsi que la pondération

#### CASE 1 Y=A+BX

### INEON DA 77K SANS POIDS

| A=    | .25837854E- | -01 DE        | EVA= +56 | 863353E-04    |
|-------|-------------|---------------|----------|---------------|
| OB=   | 147223      | 202E+00       | DEVB=    | .15024522E-02 |
| OSTAN | DARD DEV OF | THE POLYNOMIA | 41. =    | +12863771E-03 |

| . X(I) .        | Y.(I)         | Y(I)EXP-Y(I)CALC | POIDS   |
|-----------------|---------------|------------------|---------|
| .69289730E-01   | ,15782890E-01 | .14600959E~03    | 1       |
| .63310580E-01 · | .16670120E-01 | +15297707E-03    | 1 1     |
| .63739890E-01   | .16510140E-01 | .56200954E-04    | 1 (     |
| -56206270E-01   | 17668390E-01  | .10533622E-03 -  | ~ [<br> |
| 50685740E-01    | 18243810E-01  | 13198734E-03     | 1       |
| .48831530E-01   | .18587100E-01 | 61677876E-04     | 1.      |
| .43340060E-01   | .19132700E-01 | 32454317E-03     | 1       |
| .39603250E-01   | .19872650E-01 | -,13473387E-03   | 7       |
| .35056080E-01   | .20644080E-01 | 32747410E-04     | -1      |
| .32057930E-01   | .21069760E-01 | 48461101E-04     | 1       |
| .32247350E-01   | .21007830E-01 | -,82504306E-04   | 1       |
| .28484590E-01   | .21666220E-01 | ,21924577E-04    | 1       |
| .24773000E-01   | .22112720E-01 | 78003189E-04     | 1       |
| ,21993450E-01   | .22575920E-01 | 24014147E-04     | 1       |
| ,20114960E-01   | .23085950E-01 | .20946077E-03    | 3       |
| .17815140E-01   | .23301680E-01 | +86606627E-04    | . 1     |
| .16296380E-01   | .23499550E-01 | .60881717E-04    | 1       |
| .16384030E-01   | .23250580E-01 | -,17518427E-03   | 1       |
| ,14487010E-01   | .23797990E-01 | .92942616E-04    | 1       |
| .12987290E-01   | .23914070E-01 | 11769188E-04     | 1       |
| .12604970E-01   | .24081820E-01 | .99694891E-04    | 1       |
| 90801700E-07    | 24574450F-01  | 775000745-04     | -1      |

### TABLEAU 4.39

Rapport d'ordinateur pour le calcul de l'intercept où

 $Y = [D_A/C_0(\varepsilon_1-1)]$ ,  $X = (\varepsilon_1-1)$  et  $A = (\delta-\Delta)$ 

#### CASE 1 Y=A+BX

#### INEON DB 77K SANS POIDS

| A=   | 25965630E-01          | DEVA= ,8 | 15043303E-04  |
|------|-----------------------|----------|---------------|
| 08=  | -,14822888E+00        | DEVB=    | .22757011E-02 |
| OSTA | NDARD DEV OF THE POLY | NOMIAL = | ,19973718E-03 |

| X(I)          | Y(I)           | Y(I)EXP-Y(I)CALC | POIDS      |
|---------------|----------------|------------------|------------|
| .69322940E-01 | -,36291950E-01 | ~.50658037E-04   | 1          |
| .63147510E-01 | 35368250E-01   | 42335118E-04     | ***        |
| -63033920E-01 | 34697640E-01   | .61143756E-03    | <u>.</u>   |
| .56400330E-01 | 34431050E-01   | -,10526206E-03   | 1          |
| -50696640E-01 | 33466230E-01   | ·14106348E-04    | 1          |
| ,48861410E-01 | -,33407520E-01 | 19921774E-03     | 1          |
| .43654640E-01 | 32440870E-01   | -,43614349E-05   | . 1        |
| .39580470E-01 | 32022790E-01   | -,19019110E-03   | 1          |
| .33532640E-01 | -,31143990E-01 | -,20785417E-03   | 1          |
| .30574080E-01 | 30639970E-01   | 14237821E-03     | 1          |
| .30550860E-01 | 30498020E-01   | 38700872E-05     | 1          |
| +27335150E-01 | 30115300E-01   | 97811184E-04     | 1          |
| .23709860E-01 | -,29590390E-01 | -,11027387E-03   | 1.         |
| .21205110E-01 | -,28960930E-01 | .14790984E-03    | 4          |
| .19229580E-01 | 28957760E-01   | 14175076E-03     | 1          |
| .16301270E-01 | 28302040E-01   | .79909126E-04    | 1          |
| .14873550E-01 | -,28247980E-01 | 77660213E-04     | <u>†</u> . |
| .14866960E-01 | 28057000E-01.  | ·11234296E-03    | 1          |
| .13300640E-01 | -,28036640E-01 | 99470903E-04     | 1          |
| ,11974620E-01 | -,27363370E-01 | .37724464E-03    | 1          |
| .11544560E-01 | 27512740E-01   | .16412732E-03    | 1          |
| .79513990E-02 | -,27178240E-01 | -,33982913E-04   | 1          |

### TABLEAU 4.40

# Rapport d'ordinateur pour le calcul de l'intercept

$$\tilde{u} Y = D_{B}/C_{0}(\epsilon_{2}-1)$$
,  $X = (\epsilon_{2}-1)$  et  $A = -(\delta-\Delta)$ 

Néon 770K

### CASE 1 Y=A+BX

INEON (DA+DB) 77K SANS POIDS

| A=<br>OB=<br>OSTA | 12702596E-03<br>14773069E+00<br>NDARD DEV OF THE PO | DEVA= .104606<br>DEVB=<br>LYNOMIAL = .24 | 90E-03<br>.13908340E-02<br>113617E-03 |       |
|-------------------|-----------------------------------------------------|------------------------------------------|---------------------------------------|-------|
|                   | X(T)                                                | Y(I)                                     | Y(I)EXP-Y(I)CALC                      | POIDS |
|                   | 13861270F+00                                        | 20509060E-01                             | .95316183E-04                         | 1     |
|                   | 12645810F+00                                        | 18698130E-01                             | .11063870E-03                         | 1     |
|                   | 12677380E+00                                        | 18187500E-01                             | .66790728E-03                         | 1     |
|                   | 11260660E+00                                        | 16762660E-01                             | -,18299050E-06                        | 1     |
| •                 | .10138240E+00                                       | 15222420E-01                             | 11810183E-03                          | 1     |
|                   | .97692950E-01                                       | 14820420E-01                             | -,26114684E-03                        | 1     |
|                   | 86994690E-01                                        | 13308170E-01                             | 32935820E-03                          | 1     |
|                   | .79183720E-01                                       | 12150130E-01                             | 32523821E-03                          | 1     |
|                   | A8588720E-01                                        | 10499910E-01                             | -,24022490E-03                        | 1     |
|                   | .62632010E-01                                       | 95702120E-02                             | 19051580E-03                          | 1     |
|                   | .62798210E-01                                       | 94901930E-02                             | -,85943958E-04                        | 1     |
|                   | .55819730E-01                                       | 84490800E-02                             | -,75766644E-04                        | 1     |
|                   | .48482860E-01                                       | 74776700E-02                             | 18823753E-03                          | 1     |
|                   | 43198560E-01                                        | 63850090E-02                             | .12377017E-03                         | 1     |
|                   | .39344540E-01                                       | 58718130E-02                             | .67609121E-04                         | 1     |
|                   | .34116410E-01                                       | 50003560E-02                             | .16671085E-03                         | 1     |
|                   | .31169940E-01                                       | 47484330E-02                             | -,16650201E-04                        | 1     |
| 1.00              | .31250990E-01                                       | 48064140E-02                             | 62657628E-04                          | 1     |
|                   | 27787650E-01                                        | 42386590E-02                             | 65442464E-05                          | 1     |
|                   | .24961900E-01                                       | 34492970E-02                             | .36536775E-03                         | 1     |
|                   | 24149540E-01                                        | 34309190E-02                             | .26373524E-03                         | 1     |
|                   | .17031530E-01                                       | 26035920E-02                             | .39513693E-04                         | 1     |

### TABLEAU 4.41

Rapport de l'ordinateur pour vérifier que l'intercept est nul  $T = \lceil \partial_A / C_0(\varepsilon_1 - 1) + D_B / C_0(\varepsilon_2 - 1) \rceil, X = \lceil (\varepsilon_1 - 1) + (\varepsilon_2 - 1) \rceil \text{ et } \Lambda = (\delta - \Delta) - (\delta - \Delta)$ 

143.

Néon 77<sup>0</sup>K

144.

FIGURE 4.7

 $D_A/(\epsilon_1-1)C_0$  en fonction de  $(\epsilon_1-1) et D_B/(\epsilon_2-1)C_0$  en fonction de  $(\epsilon_2-1)$ 



| A=    | 14920157E+00               | DEVA= .691223  | 55E-03           |      |
|-------|----------------------------|----------------|------------------|------|
| OSTAN | DARD DEV OF THE PO         | LYNOMIAL = .24 | 384560E-03       |      |
|       |                            |                |                  |      |
|       | A CARLES AND A CARL & CARL |                |                  |      |
| 1.1   | V/ / T \                   | V/T)           | VITIEND VITICALC |      |
|       | X(1)                       |                | T(I)EXF-T(I)UHLU |      |
|       | .13861270E+00              | 20509060E-01   | ,1/21/182E-03    | 아 전망 |
|       | +12645810E+00              | 18898130E-01   | ·16961648E-03    |      |
|       | .12677380E+00              | 18187500E-01   | .72734941E-03    |      |
|       | .11260660E+00              | -,16762660E-01 | .38420992E-04    |      |
|       | .10138240E+00              | 15222420E-01   | 96007218E-04     | -    |
|       | +97692950E-01              | 14820420E-01   | 24447893E-03     |      |
|       | .86994690E-01              | 13308170E-01   | 32842607E-03     |      |
|       | .79183720E-01              | 12150130E-01   | 33579502E-03     |      |
|       | .68588720E-01              | -,10499910E-01 | 26636561E-03     | * -  |
|       | .62632010E-01              | 95702120E-02   | 22541806E-03     |      |
|       | .62798210E-01              | -,94901930E-02 | -,12060176E-03   |      |
|       | ,55819730E-01              | 84490800E-02   | 12068890E-03     |      |
|       | .48482860E-01              | 74776700E-02   | 24395139E-03     |      |
| 685   | .43198560E-01              | 63850090E-02   | +60283774E-04    |      |
|       | .39344540E-01              | 58718130E-02   | -,15460428E-05   |      |
|       | .34116410E-01              | 50003560E-02   | .89865777E-04    |      |
|       | .31169940E-01              | 47484330E-02   | 97829159E-04     |      |
|       | .31250990E-01              | 48064140E-02   | 14371737E-03     |      |
|       | .27787650E-01              | 42386590E-02   | -,92698122E-04   |      |
|       | .24961900E-01              | 34492970E-02   | .27505755E-03    |      |
|       | .24149540E-01              | 34309190E-02   | .17223017E-03    |      |

77K

SANS POIDS

-,62461063E-04

1NEON (DA+DB)

CASE 10 Y=AX

.17031530E-01

TABLEAU 4.42Rapport de l'ordinateur pour le calcul de Bsans pondération $Y = [D_A/(\epsilon_1-1)C_0 + D_B/(\epsilon_2-1)C_0]$ X = [(\epsilon\_1-1) + (\epsilon\_2-1)]Néon 77° K

-.26035920E-02

145.

POIDS 1 1

111

1

1

CASE 10 Y=AX INEON DA+DB 77K POIDS

A= -.14875905E+00 DEVA= .32358321E-03 OSTANDARD DEV OF THE POLYNOMIAL = .27829634E-03

|               |                | 1                |       |
|---------------|----------------|------------------|-------|
| X(I)          | Y(I)           | Y(I)EXP-Y(I)CALC | POIDS |
| .13861270E+00 | 20509060E-01   | ,11083376E-03    | 8     |
| 12645810E+00  | 18698130E-01   | .11365700E-03    | . 7   |
| 12677380E+00  | 18187500E-01   | .67125023E-03    | 7     |
| ,11260660E+00 | 16762660E-01   | 11409003E-04     | 7     |
| .10138240E+00 | 15222420E-01   | 14087035E-03     | 6     |
| .97692950E-01 | 14820420E-01   | 28770943E-03     | 6     |
| .86994690E-01 | 13308170E-01   | 36692244E-03     | 5     |
| .79183720E-01 | 12150130E-01   | 37083493E-03     | 5     |
| .68588720E-01 | 10499910E-01   | 29671708E-03     | 4     |
| .62632010E-01 | 95702120E-02   | -,25313361E-03   | 4     |
| .62798210E-01 | 94901930E-02   | 14839085E-03     | 4     |
| .55819730E-01 | -,84490800E-02 | 14538992E-03     | 3     |
| .48482860E-01 | -,74776700E-02 | 26540574E-03     | 3     |
| .43198560E-01 | -,63850090E-02 | .41167807E-04    | 3     |
| .39344540E-01 | -,58718130E-02 | 18956552E-04     | 2     |
| .34116410E-01 | 50003560E-02   | .74768789E-04    | 2     |
| .31169940E-01 | -,47484330E-02 | 11162229E-03     | 2     |
| .31250990E-01 | -,48064140E-02 | 15754637E-03     | 2     |
| .27787650E-01 | 42386590E-02   | 10499455E-03     | 2     |
| .24961900E-01 | 34492970E-02   | ,26401157E-03    | 1     |
| .24149540E-01 | 34309190E-02   | .16154366E-03    | - 1   |
| .17031530E-01 | 26035920E-02   | 69997753E-04     | 4     |
|               |                |                  |       |

TABLEAU 4.43 Rapport de l'ordinateur pour le calcul de B<sub>ε</sub> avec pondération  $Y = [D_A/(\epsilon_1-1)C_0 + D_B/(\epsilon_2-1)C_0]$   $X = [(\epsilon_1-1) + (\epsilon_2-1)]$ Néon 77<sup>0</sup>K



# Valeurs de capacité à vide

# Argon 303<sup>0</sup>K

| PRESSION     | CAO      | CBO      | co       |
|--------------|----------|----------|----------|
|              |          | 3° 1     |          |
| .7200000E+04 | 100.1798 | 100.4279 | 100.3039 |
| .6600000E+04 | 100.1787 | 100.4271 | 100.3029 |
| .600000E+04  | 100.1615 | 100.4152 | 100,2884 |
| .5800000E+04 | 100.1719 | 100.4231 | 100.2975 |
| .5400000E+04 | 100.1783 | 100,4258 | 100.3021 |
| .460000E+04  | 100.1776 | 100,4255 | 100.3016 |
| .420000E+04  | 100.1776 | 100,4254 | 100.3015 |
| .3800000E+04 | 100.1776 | 100.4254 | 100.3015 |
| .390000E+04  | 100.1816 | 100.4290 | 100.3053 |
| .3600000E+04 | 100.1798 | 100.4279 | 100.3039 |
| .3300000E+04 | 100.1787 | 100.4271 | 100,3029 |
| .300000E+04  | 100.1618 | 100.4152 | 100.2885 |
| .290000E+04  | 100.1719 | 100.4232 | 100.2976 |
| .2700000E+04 | 100.1783 | 100.4258 | 100,3021 |
| .2500000E+04 | 100.1776 | 100,4255 | 100.3016 |
| .2300000E+04 | 100.1776 | 100.4255 | 100.3016 |
| .2100000E+04 | 100.1776 | 100.4254 | 100.3015 |
| .190000E+04  | 100.1776 | 100.4254 | 100.3015 |
| .1950000E+04 | 100.1816 | 100+4290 | 100.3053 |
| .1800000E+04 | 100.1798 | 100,4279 | 100.3039 |
| .1650000E+04 | 100,1787 | 100.4271 | 100.3029 |
| .1500000E+04 | 100.1612 | 100.4152 | 100.2882 |
| .1450000E+04 | 100.1719 | 100.4232 | 100.2976 |
| .1350000E+04 | 100.1783 | 100.4258 | 100.3021 |
| .1250000E+04 | 100.1776 | 100.4255 | 100.3016 |
| .1150000E+04 | 100.1776 | 100.4255 | 100.3016 |
| ,1050000E+04 | 100.1776 | 100,4254 | 100.3015 |
| .9500000E+03 | 100.1776 | 100.4254 | 100.3015 |
| ,9750000E+03 | 100.1816 | 100.4290 | 100.3053 |
| .900000E+03  | 100,1798 | 100.4279 | 100,3039 |
| .8250000E+03 | 100,1787 | 100.4271 | 100.3029 |
| +6750000E+03 | 100.1783 | 100.4258 | 100.3021 |
| .5250000E+03 | 100.1776 | 100.4254 | 100.3015 |

|        |          |          | the standard |                            |            |
|--------|----------|----------|--------------|----------------------------|------------|
|        | 221.8957 | 222+7184 | 222.1492     | 222.8269                   | 200000E+04 |
|        | 220.3798 | 221.1020 | 220,5937     | 221,1777                   | 600000E+04 |
|        | 219.1055 | 219:7428 | 219.1330     | 219.6450                   | 000000E+04 |
|        | 218.6319 | 219,2402 | 218,9074     | 219.3946                   | 300000E+04 |
|        | 217.3949 | 217.9310 | 217.2958     | 217,6996                   | 400000E+04 |
|        | 215.2613 | 215.6812 | 215,3897     | 215.7035                   | 500000E+04 |
|        | 214,1117 | 214.4747 | 214.0782     | 214,3361                   | 200000E+04 |
|        | 212.6873 | 212,9838 | 212.7315     | 212,9369                   | 300000E+04 |
|        | 211.6250 | 211.8761 | 211.7571     | 211,9272                   | 900000E+04 |
|        | 211.0387 | 211.2662 | 211,2133     | 211,3655                   | 500000E+04 |
|        | 210.3062 | 210.5057 | 210.4582     | 210.5876                   | 300000E+04 |
| Ar     | 209.6781 | 209.8523 | 209,7283     | 209.8436                   | 00000E+04  |
| ъб.    | 209.4546 | 209,6242 | 209,6292     | 209.7361                   | 700000E+04 |
| on     | 208.8600 | 209,0099 | 208,8535     | 208,9400                   | 700000E+04 |
| ω      | 208.3777 | 208.5125 | 208.5509     | 208.6302                   | 500000E+04 |
| 0      | 207.8226 | 207.9411 | 207,9213     | 207,9869                   | 300000E+04 |
| ω<br>0 | 207.2633 | 207,3663 | 207.2798     | 207.3323                   | 100000E+04 |
| ×      | 206.5686 | 206.6529 | 206.6188     | 206,6595                   | 700000E+04 |
|        | 206.0524 | 206+1251 | 206,1389     | 206.1714                   | 950000E+04 |
|        | 205,7640 | 205.8304 | 205,8746     | 205,9032                   | 300000E+04 |
|        | 205.4036 | 205.4622 | 205.5026     | 205,5261                   | 650000E+04 |
|        | 205,0820 | 205.1326 | 205,1253     | 205.1472                   | 500000E+04 |
|        | 204.9807 | 205,0307 | 205.0849     | 205.1036                   | 450000E+04 |
|        | 204.6931 | 204.7382 | 204,7105     | 204.7243                   | 50000E+04  |
|        | 204.4552 | 204.4959 | 204.5504     | 204.5723                   | 250000E+04 |
|        | 204.1817 | 204,2174 | 204,2487     | 204.2584                   | 50000E+04  |
|        | 203.9065 | 203.9378 | 203.9307     | 203.9377                   | 50000E+04  |
|        | 203,5637 | 203.5902 | 203.6037     | 203.6086                   | 500000E+03 |
|        | 203.3126 | 203.3352 | 203.3637     | 203.3669                   | 750000E+03 |
|        | 203,1685 | 203.1896 | 20312363     | 203.2385                   | 00000E+03  |
|        | 202,9894 | 203.0084 | 203.0510     | 203.0520                   | 250000E+03 |
|        | 202.6374 | 202.6521 | 202.6559     | 202.6556                   | 750000E+03 |
|        | 202.2469 | 202.2578 | 202.2665     | 202.2651                   | 250000E+03 |
| -      |          |          |              | A CONTRACTOR OF A CONTRACT |            |

| PRESSION(PSI) | (E1-1)        | INCERTITUDE<br>ABSOLUE | DA/((E1-1)CO)  | INCERTITUDE<br>ABSOLUE |
|---------------|---------------|------------------------|----------------|------------------------|
|               |               |                        |                |                        |
| .7200000F+04  | .2217932F+00  | 1865543E-05            | 3044293E-01    | 47421175-05            |
| 4400000E+04   | 20575205+00   | 105/07/5-05            | - 2075300E-01  | 4970754E-05            |
| . 6000000E+04 | 10077555400   | 19455715-05            | - 020000072 01 | 74117405-05            |
| 5800000E+04   | 1876734F+00   | .1843603E-05           | ~.2588299E-01  | .7517453E-05           |
| .5400000E+04  | .1706507E+00  | .1832604E-05           | 2359111E-01    | .8266109E-05           |
| .4600000E±04  | 1507363E+00   | .1820005E-05           | 20255235-01    | 97571975-05            |
| A200000E+04   | 13708755+00   | 18114375-05            | 18754255-01    | 10089115-04            |
| 790000000000  | 12312035+00   | 19027335-05            | - 16430705-01  | 11454505-04            |
| .3900000E+04  | 1129409E+00   | .1796372E~05           | - 15012485-01  | 1040340F-04            |
| .3400000E+04  | 10738495+00   | 1792967E-05            | 1413038F-01    | .13131805-04           |
| . 77000005+04 | .00A7004E-01  | 1789231E-05            | 1004754E-01    | .1415000000            |
| .3000000E+04  | .9251631E-01  | .1784176E-05           | 1242682E-01    | .15244016-04           |
| ,2900000E+04  | 9125314E-01   | 1783225E-05            | 1167991E-01    | 1545341E-04            |
| 2700000F+04   | .8321064E-01  | 1778218E-05            | 1036400E-01    | .1404595E=0A           |
| ,2500000E+04  | 8012869E-01   | 1776361E-05            | 9844827E-02    | 1759758E-04            |
| .2300000E+04  | -7370710E-01  | 1772478E-05            | -,8873335E-02  | .1913044E-04           |
| .2100000E+04  | 6717370E-01   | .1768542E-05           | 7792066E-02    | -2099080F-C4           |
| .1900000E+04  | . 6045763E-01 | 1764512E-05            |                | .23322328-04           |
| 1950000E+04   | -5550720E-01  | .17614815-05           | 58372755-02    | .25401155-04           |
| .1800000F+04  | 5285994E-01   | 17599345-05            | 53941338-00    | .24477575-04           |
| 1650000E+04   | .4911523E-01  | 1757723E-05            | - 4770217E-02  | .2870774F-04           |
| 1500000E+04   | 45434445-01   | 1755962E-05            | 47852165-02    | 3090154E-04            |
| .1450000E+04  | 4500763E-01   | .1755402E-05           | 4142525E-02    | .31309846-04           |
| .1350000E+04  | 4112867E-01   | .1752992E-05           | 3345220E-02    | 3429185F-04            |
| .1250000E+04  | .3962163E-01  | .1752113E-05           | 29943808-02    | .35585906-04           |
| .1150000E+04  | .3648820E-01  | .1750262E-05           | 2650402E-02    | .3864180E-04           |
| .1050000E+04  | .3328788E-01  | .1748375E-05           | 20965465-02    | .4235678E-04           |
| ,9500000E+03  | .3000272E-01  | .1746443E-05           | 1628276E-02    | 4699459E-04            |
| .9750000E+03  | .2751304E-01  | .1744911E-05           | ~.1159545E-02  | ,5124518E~04           |
| .900000E+03   | .2626078E-01  | .1744208E-05           | 8352133E-03    | .5368957E-04           |
| .8250000E+03  | .2441836E-01  | .1743148E-05           | 4082911E-03    | .5774109E-04           |
| .6750000E+03  | .2047849E-01  | .1740850E-05           | .1460540E-03   | .6885054E-04           |
| .5250000E+03  | .1659153E-01  | .1738595E-05           | -8412674E-03   | .8498089F-04           |

150.

TABLEAU 4.46 Valeurs de  $D_A/(\varepsilon_1-1)C_0$  et de  $(\varepsilon_1-1)$  et leurs incertitudes expérimentales Néon 303°K

| PRESSION(PSI) | (E2-1)           | INCERTITUDE<br>ABSOLUE | DB/((E2-1)CO) |     | INCERTITUDE<br>ABSOLUE |
|---------------|------------------|------------------------|---------------|-----|------------------------|
|               |                  |                        |               |     | 1.1.1                  |
| .7200000E+04  | .2201649E+00     | .1859875E~05           | 3725425E-01   |     | .6411698E-05           |
| .6600000E+04  | .2040903E+00     | ,1849474E-05           | 3527943E-01   |     | .6915819E-05           |
| .6000000E+04  | .1908685E+00     | .1841184E-05           | 3329348E-01   |     | ,7395034E-05           |
| .5800000E+04  | ,1856664E+00     | ,1837707E-05           | -,3266587E-01 |     | .7601245E-05           |
| .5400000E+04  | .1725343E+00     | .1829284E-05           | 3097850E-01   |     | .8178622E-05           |
| .4600000E+04  | .1501421E+00     | .1815139E-05           | 2788275E-01   |     | ,9396894E-05           |
| .4200000E+04  | .1381294E+00     | .1807617E-05           | -,2620071E-01 |     | .1021331E-04           |
| .3800000E+04  | .1232836E+00     | .1798386E-05           | -,2397795E-01 |     | .1144209E-04           |
| .3900000E+04  | .1121738E+00     | ·1791462E-05           | -,2231678E-01 |     | .1257402E-04           |
| .3600000E+04  | .1061309E+00     | ,1787768E-05           | -,2137086E-01 |     | .1328970E-04           |
| .3300000E+04  | -9857797E-01     | .1783159E-05           | 2017667E-01   |     | .1430747E-04           |
| .3000000E+04  | .9236948E-01     | .1779584E-05           | 1880479E-01   |     | .15270655-04           |
| ,2900000E+04  | .8991050E-01     | .1777946E-05           | -,1880724E-01 |     | .1568687E-04           |
| .2700000E+04  | .8370160E-01     | 1774133E-05            | 1785493E-01   |     | .1684927E-04           |
| ,2500000E+04  | .7875888E-01     | .1771149E-05           | 1706407E-01   |     | ,1790637E-04           |
| .2300000E+04  | .7306909E-01     | ,1767718E-05           | -,1616877E-01 |     | .1930025E-04           |
| .2100000E+04  | .6734651E-01     | .1764282E-05           | -,1524806E-01 |     | .2093975E-04           |
| .1900000E+04  | ,6024273E-01     | .1760029E-05           | 1395133E-01   |     | .2340824E-04           |
| .1950000E+04  | .5490944E-01     | ,1756786E-05           | 1319968E-01   |     | .2568046E-04           |
| .1800000E+04  | .5200447E-01     | .1755077E-05           | -,1272945E-01 |     | .2711510E-04           |
| .1650000E+04  | .4835747E-01     | .1752926E-05           | 1208149E-01   |     | ,2915996E-04           |
| .1500000E+04  | .4537361E-01     | .1751366E-05           | -,1111981E-01 |     | .3108159E-04           |
| .1450000E+04  | .4416908E-01     | .1750514E-05           | 1128655E-01   |     | .3192633E-04           |
| .1350000E+04  | .4116572E-01     | ,1748694E-05           | 1092273E-01   |     | ,3425385E-04           |
| .1250000E+04  | .3876306E-01     | .1747281E-05           | 1046812E-01   |     | .3637691E-04           |
| .1150000E+04  | .3598986E-01     | ,1745648E-05           | 9889638E-02   |     | .3917957E-04           |
| .1050000E+04  | .3320674E-01     | .1744014E-05           | 9397464E-02   |     | .4246300E-04           |
| .9500000E+03  | .2974546E-01     | 1741983E-05            | -,8882142E-02 |     | .4740378E-04           |
| .9750000E+03  | .2712961E-01     | .1740388E-05           | 8305025E-02   |     | .5197211E-04           |
| .900000E+03   | .2570899E-01     | .1739576E-05           | 8192383E-02   |     | .5434468E-04           |
| .8250000E+03  | <br>.23923825-01 | .1738547E-05           | 7917892E-02   | 100 | .5893749E-04           |
| .6750000E+03  | .2039317E-01     | .1736510E-05           | 7186590E-02   |     | .4914130E-04           |
| .5250000E+03  | .1647790E-01     | +1734239E-05           | 6595035E-02   |     | .8556968E-04           |

Valeurs de  $D_B/(\epsilon_2-1)C_0$  et de  $(\epsilon_2-1)$  et leurs incertitudes expérimentales

Argon 303°K

151

| DA/(E1-1)+DB/(E2-1))/CO | INCERTITUDE<br>ABSOLUE | POIDS  | ((E1-1)+(E2-1)) | ABSOLUE              | P0105 |            |
|-------------------------|------------------------|--------|-----------------|----------------------|-------|------------|
|                         |                        |        |                 |                      |       |            |
|                         |                        | state. |                 |                      |       | р с<br>р с |
| 6771717E-01             | .9032519E-05           | 13     | .4419581E+00    | .2634272E-05         | 1     | nd -       |
| 4343252E-01             | ,9748631E-05           | 12     | .4094424E+00    | -2619374E-05         | 1.    |            |
| - 6011036E-01           | .1046998E-04           | 12     | 3812441E+00     | .2606903E-05         | 1     | f a v      |
| 5854887E-01             | .1069070E-04           | 11     | .3733398E+00    | .2603083E-05         | 1     | t          |
| 5456961E-01             | ,1162834E-04           | 10     | .3431851E+00    | .2589347E-05         | 1     | 01         |
| 4863798E-01             | .1326117E-04           | 9      | .3008784E+00    | .2570437E-05         | 1     |            |
| -,4495696E-01           | ,1449679E-04           | 8      | .2752169E+00    | .2559059E-05         | 1     | -          |
| 4061067E-01             | .1619033E-04           | 7      | -2464039E+00    | .2546377E-05         | 1     | -          |
| 3732926E-01             | .1771859E-04           | 7      | ,2251346E+00    | .2536984E-05         | 1     | c<br>c     |
| 3550124E-01             | .1868315E-04           | 6      | .2135158E+00    | .2531965E-05         | 1     |            |
| 3312421E-01             | .2012439E-04           | 6      | .1982179E+00    | .2525354E-05         | 1 Ar  | i          |
| 3123161E-01             | +2157713E-04           | 6      | .1848858E+00    | .2519960E-05         | 1 9   | ſ          |
| 3048715E-01             | .2202012E-04           | 5      | -1811636E+00    | .2518131E-05         | i n   | א<br>ד     |
| 2821893E-01             | .2389686E-04           | 5      | .1669122E+00    | .2511893E-05         | 1 (1) | C          |
| 2693090E-01             | .2510603E-04           | 5      | .1588876E+00    | .2508471E-05         | 1 0   | -          |
| 2504211E-01             | .2717487E-04           | 4      | .1467762E+00    | ,2503299E-05         | 1 0   |            |
| 2304013E-01             | .2964940E-04           | 4      | .1345202E+00    | ,2498085E-05         | 1 ~   | -          |
| 2066308E-01             | ,3304355E-04           | 4      | .1207004E+00    | .2492229E-05         | 1     | ,<br>2     |
| -,1903696E-01           | .3612069E-04           | 3      | .1104166E+00    | .2487793E-05         | 1     | -          |
| 1812359E-01             | .3803558E-04           | 3      | .1049644E+00    | ,2485490E-05         | 1.    | U          |
| -,1685171E-01           | ,4091962E-04           | 3      | .9747270E-01    | ,2482406E-05         | 1     | p          |
| -,1590503E-01           | ,4382888E-04           | 3      | .9100805E-01    | .2480057E-05         | 1     | =          |
| -,1542908E-01           | .4473015E-04           | 3      | .8917671E-01    | ,2479059E-05         | 1     | 0          |
| -,1426795E-01           | .4846206E-04           | 2      | .8229438E-01    | .2476067E-05         | 1     |            |
| -,1346250E-01           | .5088847E-04           | 2      | ,7838470E-01    | .2474448E-05         | ĩ     | 4          |
| 1254004E-01             | .5502933E-04           | 2      | .7247806E-01    | .2471984E-05         | j.    | n          |
| -,1149401E-01 -         | ·5997669E-04           | 2      | .6649462E-01    | .2469494E-05         | 1     | -          |
| 1051042E-01             | +6675036E-04           | 2      | .5974818E-01    | ,2466691E-05         | i     | Q          |
| -,9464570E-02           | ,7298746E-04           | 2      | .5464265E-01    | .2464481E-0 <b>5</b> | 1     |            |
| 9017597E-02             | ,7674965E-04           | . 2    | .5196977E-01    | .2463410E-05         | 1     |            |
| -,8326183E-02           | .8250856E-04           | 1      | .4834219E-01    | ,2461932E-05         | 1     |            |
| 7040536E-02             | .9757518E-04           | 1      | .4087165E-01    | .2458867E-05         | 1     |            |
| 5753768E-02             | .1205982E-03           | 1      | .3306944E-01    | .2455666E-05         | 1     |            |

Rapport de l'ordinateur pour le calcul de  ${\rm B}_{\epsilon}$  et  ${\rm C}_{\epsilon}$  $Y = [D_A/(\varepsilon_1 - 1)C_0 + D_B/(\varepsilon_2 - 1)C_0] \qquad X = [(\varepsilon_1 - 1) + (\varepsilon_2 - 1)]$ Argon 303<sup>0</sup>K

.

CASE 11 Y=AX+BX\*\*2 1ARGON SERIE 1 DA + DB 303K POIDS

| A=178800      | 91E+00 D        | EVA= .13154378 | E-03 ·           |     |
|---------------|-----------------|----------------|------------------|-----|
| 0B= .573      | 349504E-01      | DEVB= .        | 36618062E-03     |     |
| OSTANDARD DEV | OF THE POLYNOMI | AL = .1165     | 4744E-03         |     |
| X(I)          | Y(I)            | Y(I            | )EXP-Y(I)CALC PO | IDS |
| .44195810E+00 | 6771717         | 0E-01 .103     | 43759E-03 1      | .3  |
| .40944240E+00 | 63632520        | 0E-01380       | 92301E-04 1      | 2   |
| .38124410E+00 | 6011036         | 0E-01279       | 14869E-03 1      | .2  |
| .37333980E+00 | -,58548870      | 0E-01 .211     | 10393E-03 1      | . 1 |
| .34318510E+0  | 05456961        | 0E-01 .378     | 03444E-04 1      | .0  |
| .30087840E+00 | 4863798         | 0E-01323       | 72331E-04        | 9   |
| .27521690E+00 | 04495696        | 0E-01 -+918    | 27325E-04        | 8   |
| .24640390E+00 | 4061067         | 0E-01353       | 95961E-04        | 7   |
| .22513460E+0  | 3732926         | 0E-01 .182     | 18797E-04        | 7   |
| .21351580E+00 | 0 -,3550124     | 0E-01 .610     | 73725E-04        | 6   |
| .19821790E+0  | 03312421        | 0E-01 .640     | 50313E-04        | 6   |
| .18488580E+00 | 03123161        | OE-01134       | 22435E-03        | 6   |
| .18116360E+0  | 3048715         | 0E-01 .228     | 42113E-04        | 5   |
| .16691220E+0  | 0 -,2821893     | 0E-01 .273     | 84858E-04        | 5   |
| .15888760E+0  | 02693090        | 0E-01 .305     | 44341E-04        | 5   |
| .14677620E+0  | 02504211        | 0E-01338       | 86229E-04        | 4   |
| .13452020E+0  | 02304013        | 0E-01255       | 73871E-04        | 4   |
| .12070040E+0  | 02066308        | 0E-01 .827     | 60566E-04        | 4   |
| .11041660E+0  | 01903696        | 0E-01 .643     | 37965E-05        | 3   |
| .10486440E+00 | 0 -,1812359     | 0E-01438       | 57385E-05        | 3   |
| .97472700E-0  | 11685171        | 0E-01 .316     | 24336E-04        | 3   |
| .91008050E-0  | 11590503        | 0E-01107       | 70279E-03        | 3   |
| .89176710E-0  | 11542908        | 0E-01 .597     | 26106E-04        | 3   |
| .82294380E-0  | 11426795        | 0E-01 .579     | 68547E-04        | 2   |
| .78384700E-0  | 11346250        | 0E-01 .200     | 39137E-03        | 2   |
| .72478060E-0  | 11254004        | 0E-01 .117     | 84242E-03        | 2   |
| .66494620E-0  | 11149401        | OE-01 .141     | 71599E-03        | 2   |
| .59748180E-0  | 11051042        | 0E-01321       | 19677E-04        | 2   |
| .54642650E-0  | 19464570        | 0E-02 +134     | 350492-03        | 5   |
| .51969//0E-0  | 1 -,901/59/     | 06-02 .119     | 70204E-03        | 4   |
| .48342190E-0  | 18326183        | 0E-02 .183     | 42082E-03        | 4   |
| .40871650E-0  | 7040536         | 0E-02 ,1/1     | 55048E-03        | 1   |
| .33069440E-0  | 15753768        | 0E-02 .963     | 61360E-04        | 1   |

| CASE 10 Y=AX                              | 1ARGON BASSES PRESS             | SIONS DA + DB 303K POIDS |       |
|-------------------------------------------|---------------------------------|--------------------------|-------|
| A=17311758E+00<br>OSTANDARD DEV OF THE PO | DEVA= .162024<br>LYNOMIAL = .75 | 03E-03<br>226816E-04     |       |
|                                           |                                 |                          |       |
| X(I)                                      | Y(I)                            | Y(I)EXP-Y(I)CALC         | POIDS |
| .11041660E+00                             | 19036960E-01                    | .78094874E-04            | 3     |
| .10486440E+00                             | 18123590E-01                    | .30281432E-04            | 3     |
| .97472700E-01                             | 16851710E-01                    | .22528196E-04            | 3     |
| .91008050E-01                             | 15905030E-01                    | -,14993638E-03           | 3     |
| .89176710E-01                             | 15429080E-01                    | .89764618E-05            | 3     |
| .82294380E-01                             | 14267950E-01                    | 21345871E-04             | 2     |
| .78384700E-01                             | -,13462500E-01                  | .10726978E-03            | 2 -   |
| ,72478060E-01                             | 12540040E-01                    | ·71865406E-05            | 2     |
| .66494620E-01                             | 11494010E-01                    | .17377872E-04            | . 2   |
| .59748180E-01                             | 10510420E-01                    | -,16695951E-03           | 2     |
| .54642650E-01                             | 94645700E-02                    | 49665237E-05             | 2     |
| .51969770E-01                             | 90175970E-02                    | 20716048E-04             | 2     |
| .48342190E-01                             | -,83261830E-02                  | +42700072E-04            | 1     |
| .40871650E-01                             | -,70405360E-02                  | .35065246E-04            | 1     |
| .33069440E-01                             | 57537680E-02                    | -,28866488E-04           | 1     |

Rapport de l'ordinateur pour le calcul de  $\mathsf{B}_\varepsilon$  à partir de mesures à basse pression seulement

 $Y = [D_A / (\epsilon_1 - 1) C_0 + D_B / (\epsilon_2 - 1) C_0]$ 

$$X = [(\epsilon_1 - 1) + (\epsilon_2 - 1)]$$

Argon 303<sup>0</sup>K



# Valeurs de capacité à vide

# Argon 192<sup>0</sup>K

| PRESSION     | CAO      | CBO      | CO      |
|--------------|----------|----------|---------|
|              |          |          |         |
| .2800000E+04 | 99.1640  | 100.0130 | 99,5885 |
| .2600000E+04 | 99.1640  | 100.0130 | 99.5885 |
| .2400000E+04 | 99.1675  | 100.0167 | 99.5921 |
| .2200000E+04 | 99,1682  | 100.0167 | 99.5925 |
| .2100000E+04 | 99.1682  | 100.0167 | 99.5925 |
| .1950000E+04 | 99,1663  | 100.0095 | 99.5879 |
| .1900000E+04 | 99.1676  | 100.0133 | 99.5905 |
| .1800000E+04 | 99,1658  | 100.0096 | 99.5877 |
| .1700000E+04 | 99.1663  | 100.0104 | 99.5884 |
| .1600000E+04 | 99.1649  | 100.0100 | 99.5875 |
| .1500000E+04 | .99.1663 | 100.0104 | 99.5884 |
| .1400000E+04 | 99.1657  | 100.0085 | 99,5871 |
| .1200000E+04 | 99.1676  | 100.0133 | 99.3905 |
| .9750000E+03 | 99.1663  | 100.0095 | 99,5B79 |
| .900000E+03  | 99.1658  | 100.0095 | 99,5877 |
| .8500000E+03 | 99.1663  | 100.0104 | 99.5884 |
| .800000E+03  | 99.1649  | 100.0100 | 99.5875 |
| ,7500000E+03 | 99.1663  | 100.0104 | 99.5884 |
| .700000E+03  | 99.1657  | 100.0085 | 99,5871 |
| .600000E+03  | 99,1676  | 100.0133 | 99.5905 |
| .4870000E+03 | 99.1363  | 100.0095 | 99,5879 |
| .4500000E+03 | 99,1658  | 100.0096 | 99.5877 |
| .4250000E+03 | 99.1663  | 100.0104 | 99.5884 |
| .400000E+03  | 99.1649  | 100,0100 | 99.5875 |
| .3500000E+03 | 99,1657  | 100,0085 | 99.5871 |
| .2440000E+03 | 99.1663  | 100.0095 | 99.5879 |
| .2250000E+03 | 99.1658  | 100.0096 | 99,5877 |

| PRESSION     | CI       | CIP      | CII          | CIIP     |
|--------------|----------|----------|--------------|----------|
|              |          |          | 14 M 2 1 6 1 |          |
| .2800000E+04 | 223.3420 | 223.0880 | 223.6780     | 222.1040 |
| .2600000E+04 | 222.2430 | 222.0350 | 222.4170     | 220.9330 |
| .2400000E+04 | 220,9200 | 220.7610 | 220.8870     | 219.5570 |
| .2200000E+04 | 219,2530 | 219.1570 | 219.2920     | 218,1140 |
| .2100000E+04 | 218,3750 | 218.3030 | 218,5850     | 217,4690 |
| .1950000E+04 | 216.8737 | 216.8433 | 216,8996     | 215.9253 |
| .1900000E+04 | 216.5110 | 216.4940 | 216.8000     | 215,8300 |
| .1800000E+04 | 215.1619 | 215.1763 | 215,2935     | 214.4385 |
| .1700000E+04 | 214.2970 | 214,3250 | 214.5640     | 213,7700 |
| .1600000E+04 | 212.7600 | 212.8233 | 213.0967     | 212,4053 |
| .1500000E+04 | 212,8881 | 212.9473 | 212.0523     | 211,4283 |
| .1400000E+04 | 210.3895 | 210,4903 | 210.6469     | 210,1195 |
| .1200000E+04 | 208,5210 | 208.6220 | 208.4470     | 208.0560 |
| ,9750000E+03 | 207.5105 | 207.6153 | 208.0466     | 207.6723 |
| .900000E+03  | 207.1373 | 207.2416 | 206,8394     | 206.5335 |
| .8500000E+03 | 206.7190 | 206.8240 | 206,5040     | 206.2160 |
| *800000E+03  | 205,9683 | 206.0733 | 205.8224     | 205.5653 |
| .7500000E+03 | 206.0323 | 206.1345 | 205.3324     | 205.1024 |
| .700000E+03  | 204.8073 | 204.9020 | 204+6715     | 204.4697 |
| .600000E+03  | 203,9850 | 203.9690 | 203.6370     | 203:4820 |
| .4870000E+03 | 203.3793 | 203.4623 | 203.4440     | 203+2986 |
| .4500000E+03 | 203,1962 | 203.2753 | 202.8705     | 202+7485 |
| .4250000E+03 | 202.9860 | 203.0620 | 202.7090     | 202,5950 |
| .400000E+03  | 202.6095 | 202.6812 | 202.3831     | 202:2807 |
| .3500000E+03 | 202.0287 | 202.0903 | 201.8345     | 201.7505 |
| .2440000E+03 | 201.3114 | 201.3609 | 201.2471     | 201.1838 |
| .2250000E+03 | 201.2177 | 201.2656 | 200.9714     | 200.9187 |
|              |          |          |              |          |

Valeurs de capacité lors des différentes étapes de l'expansion

Argon 192<sup>0</sup>K

| PRESSION(PSI) | (E1-1)                         | ABSOLUE      | DA/((E1-1)CO) | ABSOLUE                 |
|---------------|--------------------------------|--------------|---------------|-------------------------|
|               |                                |              |               |                         |
|               | ALL IN THE REAL PROPERTY AND A |              |               |                         |
| .2800000E+04  | .2436872E+00                   | .1899161E-05 | -,1046627E-01 | -5827947E-05            |
| .2600000E+04  | .2326046E+00                   | .1891799E-05 | 8979164E-02   | .6105463E-05            |
| .2400000E+04  | .2191827E+00                   | .1882867E-05 | 7283933E-02   | ,64789428-05            |
| .2200000E+04  | .2023643E+00                   | .1871824E-05 | 4763334E-02   | ,7017191E-05            |
| ,2100000E+04  | .1935106E+00                   | .1866054E-05 | 3735952E-02   | .7338191E-05            |
| .1950000E+04  | .1784669E+00                   | .1856341E-05 | -,1710446E-02 | .79570468-05            |
| .1900000E+04  | ,1747557E+00                   | .1853924E-05 | -,9767872E-03 | .81258058-05            |
| .1800000E+04  | .1612098E+00                   | ,1845259E-05 | 8969440E-03   | .\$\$08828E- <b>0</b> 5 |
| .1700000E+04  | .1524742E+00                   | .1839672E-05 | .1943967E-02  | .9313467E-05            |
| .1600000E+04  | .1369950E+00                   | .1829877E-05 | .4639746E-02  | .1036605E-04            |
| .1500000E+04  | .1382667E+00                   | .1830655E-05 | ,4299278E-02  | .1027059E-04            |
| .1400000E+04  | .1130966E+00                   | ,1814859E-05 | .89496915-02  | .1255714E-04            |
| .1200000E+04  | .9418500E-01                   | .1803092E-05 | .1076768E-01  | .1507843E-04            |
| .9750000E+03  | .8404771E-01                   | .1796878E-05 | ,1252071E-01  | ·1689807E-04            |
| .900000E+03   | .8029877E-01                   | ·1794584E-05 | .1304439E-01  | ,1768942E-0 <b>4</b>    |
| .8500000E+03  | .7605709E-01                   | .1791988E-05 | ,1386248E-01  | .18073826-04            |
| .800000E+03   | .6850609E-01                   | .1787412E-05 | ,1539060E-01  | .2073302E-04            |
| .7500000E+03  | .6913236E-01                   | .1787768E-05 | ,1484434E-01  | .205447SE-04            |
| .7000000E+03  | .5680492E-01                   | .1780310E-05 | ,1674021E-01  | .25004695-04            |
| .600000E+03   | .4743586E-01                   | .1774636E-05 | .1778095E-01  | ,2994317E-04            |
| ,4870000E+03  | .4238839E-01                   | .1771635E-05 | .1966186E-01  | .3351136E-04            |
| .4500000E+03  | .4054624E-01                   | .1770542E-05 | ,1958936E-01  | .3903388E-04            |
| .4250000E+03  | .3841325E-01 ·                 | .1769259E-05 | .1986662E-01  | ,3697927E-04            |
| .400000E+03   | .3463524E-01                   | .1767032E-05 | .2078722E-01  | .4101450E-04            |
| .3500000E+03  | .2878515E-01                   | .1763541E-05 | ·2146865E-01  | .4935122E-04            |
| .2440000E+03  | .2153554E-01                   | .1759240E-05 | ,2308037E-01  | ,6596751E-04            |
| -2250000E+03  | 2059480E-01                    | .1758693E-05 | .2335459E-01  | .6898160E-04            |

Valeurs de  $D_A/(\epsilon_1-1)C_0$ et de (ε<sub>1</sub>-1) et leurs incertitudes expérimentales Argon 192<sup>0</sup>Κ

|               |               |                        | Landa Starte aller all |                        |
|---------------|---------------|------------------------|------------------------|------------------------|
| FRESSION(PSI) | (E2-1)        | INCERTITUDE<br>ABSOLUE | DB/((E2-1)CO)          | INCERTITUDE<br>ABSOLUE |
|               |               |                        |                        |                        |
|               |               |                        |                        |                        |
|               | 04403005100   | 10070005 05            | 1147417E 01            |                        |
| .280000E+04   | ,2449782E+00  | .1883892E-05           | 6443413E-01            | .381/808E-03           |
| .260000E+04   | ,2323698E+00  | +1875585E-05           | 6412761E-01            | .51330/6E-05           |
| .240000E+04   | .2169918E+00  | .1865451E-05           | 6154369E-01            | .6565407E-05           |
| .2200000E+04  | .2010374E+00  | .1855085E-05           | 5883584E-01            | .7084199E-05           |
| .2100000E+04  | .1939686E+00  | ,1850518E-05           | 5777053E-01            | 7341494E-05            |
| .1950000E+04  | ,1772212E+00  | .1839893E-05           | 5520400E-01            | .8033427E-05           |
| .190000E+04   | +1761676E+00  | .1839149E-05           | 5528764E-01            | .8081312E-05           |
| ,1800000E+04  | .1611655E+00  | .1829662E-05           | 5327068E-01            | .8831972E-05           |
| .170000E+04   | ,1538570E+00  | .1825019E-05           | 5181968E-01            | .9250180E-05           |
| ,160000E+04   | .1392041E+00  | ,1815799E-05           | 4987384E-01            | .1022209E-04           |
| .1500000E+04  | .1287426E+00  | .1809248E-05           | 4866915E-01            | ,1105140E-04           |
| .140000E+04   | .1147172E+00  | ,1800568E-05           | 4616452E-01            | .1240012E-04           |
| -1200000E+04  | .9264868E-01  | ,1786906E-05           | -+4237599E-01          | .1534881E-04           |
| .9750000E+03  | 8869957E-01   | .1784562E-05           | 4237324E-01            | .1603252E-04           |
| .900000E+03   | .7663264E-01  | .1777226E-05           | 4008298E-01            | .1855416E-04           |
| .8500000E+03  | .7326538E-01  | +1775174E-05           | ~.3947164E-01          | 1940598E-04            |
| -8000000E+03  | . 6646835E-01 | .1771081E-05           | 3884030E-01            | 21389A9E-04            |
| .7500000E+03  | .6155060E-01  | .1768117E-05           | 3752209E-01            | 2309658E-04            |
| .7000000E+03  | -5496833E-01  | .1764208E-05           | 3686426E-01            | 2586154E-04            |
| . 600000E+03  | . 4455507E-01 | 17579175-05            | 34931476-01            | 3190111F-04            |
| 4870000E+03   | 4267795E-01   | 1756870E-05            | 3421010E-01            | .3330378F-04           |
| 45000005+03   | 74947455-01   | 17534745-05            | 33154576-01            | .3846701F-04           |
| A250000E+03   | 25710775-01   | 17574975-05            | 3241036E-01            | . 40238445-04          |
| 40000005103   | 70070705-01   | 17505925-05            | 32053645-01            | 4430280E-04            |
| 750000002103  | 24400745-01   | 17473955-05            | 3170900F-01            | .53425495-04           |
| 3440000000000 | +20000/40-01  | 17470755-05            | - 704000000-01         | . 4941434E-04          |
| 2250000E+03   | .1795828E-01  | .1742313E-05           | 2946729E-01            | .7912766E-04           |

Valeurs de  $\mathbb{P}_{B}/(\varepsilon_{2}-1)$  et de  $(\varepsilon_{2}-1)$  et leurs incertitudes expérimentales Argon 192<sup>0</sup>K 159.

| (DA/(E1-1)+DB/(E2-1))/CO | INCERTITUDE<br>ABSOLUE | POIDS | ((E1-1)+(E2-1)) | INCERTITUDE<br>ABSOLUE | POIDS |
|--------------------------|------------------------|-------|-----------------|------------------------|-------|
|                          |                        |       | ×               |                        |       |
|                          |                        |       |                 |                        |       |
|                          | 1. A. 1. 72.4          | 1.1.1 |                 |                        |       |
| -,7490040E-01            | .8234795E-05           | 13    | .4886654E+00    | .2675044E-05           | 1     |
| 7310677E-01              | .8653976E-05           | 12    | .4649744E+00    | .26639682-05           | 1     |
| 6882762E-01              | .9223950E-05           | 11    | ,4361745E+00    | .2650490E-05           | 1     |
| 6359917E-01              | .9971302E-05           | 11    | .4034017E+00    | .2635349E-05           | 1     |
| 6150648E-01              | .1038010E-04           | 10    | .3874792E+00    | .2628036E-05           | 1     |
| 5691445E-01              | .1130710E-04           | 9 .   | .3556880E+00    | .2613658E-05           | 1     |
| 5626443E-01              | .1146021E-04           | 9     | .3509232E+00    | ,2611418E-05           | 1     |
| 5237374E-01              | .1247394E-04           | 8     | .3223753E+00    | ,2598585E-0 <b>5</b>   | 1     |
| 4997571E-01              | .1312656E-04           | 8     | .3063312E+00    | ,2591348E-05           | 1     |
| 4523409E-01              | .1455837E-04           | 7     | ,2761991E+00    | .2577902E-05           | 1 -   |
| -, 4436987E-01           | .1508703E-04           | 7     | .2670093E+00    | .2573845E=05           | 1     |
| 3721483E-01              | .1764780E-04           | 6     | ,2278138E+00    | .2556513E-05           | 1     |
| -, 3160831E-01           | .2151616E-04           | 5     | .1868337E+00    | ,2538537E-05           | 1     |
| 2985254E-01              | .2329348E-04           | 5     | 1727473E+00     | ,2532476E-05           | 1     |
| 2703859E-01              | .2563537E-04           | 4     | ,1569214E+00    | .2525681E-05           | 1     |
| 2560915E-01              | .2693147E-04           | 4     | .1493225E+00    | ·2522392E-05           | 1     |
| 2744970F-01              | .2978887E-04           | 4     | 1349744E+00     | .2516261E~05           | 1     |
| 2267775E-01              | .3091179E-04           | 3     | 1306830E+00     | .2514429E-05           | 1     |
| -, 2012405E-01           | .3597296E-04           | 3     | .1117733E+00    | 2506378E-05            | 1     |
| 1715052E-01              | .4375242E-04           | 2     | 9199093E-01     | 2497921E-05            | 1     |
| 1454824E-01              | .4724567E-04           | 2     | 8506634E-01     | .2495051E-05           | 1     |
| - 17547215-01            | .5202964E-04           | 2     | 7749369E-01     | .2491885E-05           | 1     |
| - 12543745-01            | 5464979E-04            | 2     | 7373258E-01     | .2490286E-05           | 1     |
| - 1126642E-01            | .6037323E-04           | 2     | . 6671403E-01   | ,2487363E-05           | 1 -   |
| - 10220355-01            | .7273119E-04           | 1     | 5538589E-01     | .2482633E-05           | 1     |
| - 74095215-02            | .9518214F-04           | 1     | 4224657E-01     | .2477135E-05           | 1     |
| 6112708E-02              | .1049745E-03           | 1.    | .3855308E-01    | .2475613E-05           | 1 1   |

TABLEAU 4.55 Valeurs de  $[D_A/C_0(\epsilon_1-1) + D_B/C_0(\epsilon_2-1)]$  et de  $[(\epsilon_1-1) + (\epsilon_2-1)]$  et leurs incertitudes expérimentales ainsi que la pondération.

#### CASE 11 Y=AX+BX\*\*2

#### 1ARGON DA + DB 192K POIDS

 A=
 -.17808626E+00
 DEVA=
 .50395625E-03

 OB=
 .48679941E-01
 DEVB=
 .12495591E-02

 OSTANDARD DEV OF THE POLYNOMIAL =
 .44479563E-03

| X(I)           | - Y(I)         | Y(I)EXP-Y(I)CALC | POIDS |
|----------------|----------------|------------------|-------|
| ,48866540E+00  | -,74900400E-01 | .49972301E-03    | 13    |
| .46497440E+00  | 73106770E-01   | 82587828E-03     | 12    |
| .43617450E+00. | 68827620E-01   | 41220440E-03     | 11    |
| .40340170E+00  | 63599170E-01   | .31930152E-03    | 11    |
| .38747920E+00  | 61506480E-01   | .18942982E-03    | 10    |
| .35568800E+00  | 56914450E-01   | .270004755-03    | 9     |
| .35092320E+00  | 56264430E-01   | .23537792E-03    | 9     |
| .32237530E+00  | 52373740E-01   | 22231173E-04     | 8     |
| .30633120E+00  | -,47975710E-01 | .96010484E-05    | 8     |
| .27619910E+00  | -,45234090E-01 | .23958023E-03    | 7     |
| .26700930E+00  | 44369870E-01   | 28976778E-03     | 7     |
| .22781380E+00  | 37214830E-01   | ,82923173E-03    | 6     |
| .18683370E+00  | 31608310E-01   | 35057146E-04     | 5     |
| .17274730E+00  | -,29852540E-01 | 54130775E-03     | 5     |
| .15692140E+00  | 27038590E-01   | 29175509E-03     | 4     |
| .14932250E+00  | 25609150E-01   | 10229088E-03     | 4     |
| .13497440E+00  | -,23449700E-01 | 29946904E-03     | 4     |
| ,13068300E+00  | -,22677750E-01 | 23626124E-03     | 3     |
| .11177330E+00  | -,20124050E-01 | -,82693242E-03   | 3     |
| .91990930E-01  | 17150520E-01   | 11801449E-02     | 2     |
| .85066340E-01  | -,14548240E-01 | -24864477E~03    | 2     |
| .77493690E-01  | 13567210E-01   | 58984660E-04     | 2     |
| ,73732580E-01  | -,12543740E-01 | +32237143E-03    | 2     |
| .66714030E-01  | 11266420E-01   | .39776944E-03    | 2     |
| ,55385890E-01  | -,10220350E-01 | 50621428E-03     | 2 1   |
| ,42246570E-01  | 76095210E-02   | 17286987E-03     | 1     |
| .38553080E-01  | 61127080E-02   | .68071099E-03    | 1.    |

TABLEAU 4.56 Rapport de l'ordinateur pour le calcul de B<sub>ε</sub> et C<sub>ε</sub>  $Y = [D_A/(ε_1-1)C_0 + D_B/(ε_2-1)C_0]$   $X = [(ε_1-1) + (ε_2-1)]$  Argon 192<sup>0</sup>K.



| TARL  | FALL | 1     | 57 |
|-------|------|-------|----|
| 11.55 | LINU | - T + | 21 |

## DEUXIEME ET TROISIEME COEFFICIENTS DU VIRIEL DE LA CONSTANTE DIELECTRIQUE

|     | 10                 | B <sub>€</sub> (CM <sup>6</sup> /MOLE <sup>2</sup> ) |          | С <sub>е</sub> (СМ |           |            |
|-----|--------------------|------------------------------------------------------|----------|--------------------|-----------|------------|
| GAZ | Т( <sup>0</sup> К) | NOUS                                                 | AUTRES   | NOUS               | AUTRES    | REFERENCES |
| He  | 303                | 086±.005                                             |          |                    |           |            |
|     | 303                |                                                      | 059±.009 |                    | -0.84±1.2 | (6)        |
|     | 322                |                                                      | 06 ±.04  |                    |           | (5)        |
|     | 77                 | 057±.005                                             |          |                    |           |            |
| Ne  | 303                | 17± .01                                              |          |                    |           |            |
|     | 322                |                                                      | 3 ±.1    |                    |           | (5)        |
|     | 77                 | 112±.006                                             |          |                    |           |            |
| Ar  | 303                | 1.23 ±.05                                            |          | -69±2              |           |            |
|     |                    |                                                      |          |                    |           |            |
|     | 323                |                                                      | 0.72±.12 |                    |           | (24)       |
|     | 192                | 1.1±.2                                               |          | -55±6              |           |            |

#### CHAPITRE V

#### DISCUSSION

Dans ce chapitre nous commencerons par un examen critique des différentes méthodes expérimentales pour déterminer la trace du tenseur de polarisabilité. Nous verrons alors l'importance de la mesure directe de  $B_{\epsilon}$  à différentes températures. Nous comparerons enfin nos résultats expérimentaux avec ceux d'autres auteurs ainsi qu'avec certains calculs théoriques.

#### 5.1 Méthodes expérimentales pour déterminer la trace

Nous avons vu au chapitre I qu'il est possible de calculer la trace ( $\mathcal{A}(r)$ ) du tenseur de polarisabilité du diatome en fonction de la distance intermolécuraire. Ce paramètre  $\mathcal{A}(r)$ est relié à deux quantités physiquement mesurables: le spectre Raman polarisé produit par les diatomes et le deuxième coefficient viriel diélectrique  $B_{\rm E}$ . L'analyse du spectre Raman polarisé donne, en principe, directement l'expression de  $B_{\rm c}$ .

Cependant, ces mesures sont très délicates. En effet, le signal mesuré est de l'ordre de grandeur du bruit de fond. L'erreur expérimentale est donc très grande et l'expression de a(r)tiré de ces mesures est incertaine. Le deuxième coefficient viriel diélectrique  $B_{\epsilon}$  est relié à  $\mathcal{A}(r)$  par l'équation:

$$B_{\varepsilon}(T) = \frac{8 \pi^2 N_A^2}{3} \int_{0}^{\infty} a(r) EXP(-U_{12}/KT) r^2 dr \qquad (5.1)$$

Nous avons vu au chapitre II qu'il existe deux façons de déterminer  $B_{\epsilon}$ : la méthode absolue et les méthodes d'expansions (cyclique ou de Buckingham). La méthode absolue, bien qu'étant encore utilisée présente de sérieuses difficultés (voir section 2.2) et nous considérons que cette méthode n'est pas valable pour déterminer  $B_{\epsilon}$ . Par contre, les méthodes d'expansion déterminent directement la valeur de  $B_{\epsilon}$  et ce, d'une façon très précise. C'est pourquoi nous avons adopté la méthode d'expansion de Buckingham pour mesurer  $B_{\epsilon}$  (T).

Si on examine l'équation (5.1) on voit que  $B_{\varepsilon}$  (T) est en fait la moyenne thermodynamique de  $\mathcal{Q}(r)$ . Si on peut mesurer  $B_{\varepsilon}(T)$  à plusieurs températures, on peut obtenir expérimentalement l'expression de  $\mathcal{Q}(r)$ . Nous avons donc mesuré  $B_{\varepsilon}$  de l'Hélium, du Néon et de l'Argon à différentes températures afin d'avoir plus d'informations sur  $\mathcal{Q}(r)$ . Dans le cadre de ce travail,

nous avons décidé d'adopter la représentation semi-empirique de  $\mathcal{Q}(r)$  telle qu'exprimée par quelques auteurs (35), (36).

$$\mathcal{A}(\mathbf{r}) = \frac{A_6}{r^6} - \lambda \operatorname{EXP}(-r/r_t)$$
(5.2)

où  $A_6$ ,  $\lambda_t$  et r<sub>t</sub> sont des constantes

Le terme  $A_6/r^6$  est prédit par la théorie alors que le terme  $EXP(-r/r_t)$  est une forme empirique pour représenter les interactions à courte distance.

Les calculs ab initio donnent l'expression numérique de a(r)pour différentes distances internucléaires (r). De là, Frommhold  $^{(35)}$  a déduit les valeurs de A<sub>6</sub>,  $^{\lambda}t$  et  $^{r}t$  qui reproduisent le mieux chacun des calculs théoriques. De façon similaire, dans le cas du spectre Raman polarisé, les expérimenta-(3 7/3 8/3 9/4 0) teurs ajustent les paramètres  $A_6$ ,  $\lambda_t$ ,  $r_t$ , afin d'approcher le plus possible leurs points expérimentaux. Avec une telle expression empirique de a(r) on a donc une façon facile et rapide de comparer entre eux les différents calculs et les mesures expérimentales. En ayant la forme du potentiel et les valeurs de  $A_t$ ,  $\lambda_t$  et  $r_t$  notre programme INCAR calcule la valeur de B<sub>e</sub> à différentes températures telle que prédite par chaque modèle. On peut alors comparer nos valeurs expérimentales avec les prédictions de chaque modèle. Examinons maintenant chaque gaz en détail.

#### 5.2 Hélium

Un gaz très important à étudier est l'hélium. En effet comme il ne compte que deux électrons, les calculs <u>ab initio</u> de polarisabilité sont relativement faciles à effectuer. L'hélium est donc un gaz qui a été étudié par beaucoup d'auteurs. Malheureusement c'est un gaz qui est difficile de mesurer expérimentalement car la valeur de  $B_{\epsilon}$  est très faible. Au tableau 5.1 on retrouve nos valeurs expérimentales comparées avec les mesures d'autres auteurs ainsi qu'avec les calculs théoriques.

On remarque que notre valeur n'est pas en accord avec celle annoncée par Kirouac et Bose<sup>(6)</sup>. Ceci est probablement due au fait que Kirouac et Bose ont également trouvé la valeur de  $C_{\varepsilon}$ . Donc, leur valeur de  $\mathbb{R}_{\varepsilon}$  ne contient pas de contribution dûe aux collisions entre trois molécules ( $C_{\varepsilon}$ ) ou plus. Comme nous n'avons pas mesuré  $C_{\varepsilon}$ , notre valeur de  $\mathbb{R}_{\varepsilon}$  contient une contribution de  $C_{\varepsilon}$  (collision de trois molécules). Comme cette contribution est négative ( $C_{\varepsilon}$  est négatif) on peut s'attendre à ce que notre valeur de  $\mathbb{R}_{\varepsilon}$  soit plus négative que celle annoncée par Kirouac et Bose.

## TABLEAU 5.1

# VALEURS EXPERIMENTALES ET CALCULEES DU B $_{\epsilon}$ DE L'HELIUM

|                    | Réf. | Méthode        | ^ 6                                                     | <sup>)</sup> t | rt        | Βε                                        |                                         | Région<br>d'intégration |
|--------------------|------|----------------|---------------------------------------------------------|----------------|-----------|-------------------------------------------|-----------------------------------------|-------------------------|
|                    |      |                | (a <sup>9</sup> )                                       | a <sup>3</sup> | (a_)      | (cm <sup>6</sup> /m<br>303 <sup>0</sup> K | ole <sup>2</sup> )<br>77 <sup>0</sup> K |                         |
|                    |      | DID            | 10.5                                                    | 0              | Ő         | .003                                      | .003                                    | r>6.5a                  |
| Certain et Fortune | 9    | VAR            | 38.97                                                   | 0              | 0         | .010                                      | .010                                    | r>6.5a                  |
| O'Brien et al      | 15   | SCF            | 38.97                                                   | 12.14          | 0.7       | 083                                       | 054                                     | r>3a                    |
| Fortune et Certain | 36   | SCF            | $ \left\{\begin{array}{c} 9.24\\ 0 \end{array}\right. $ | 0<br>12.9      | 0<br>0.6  | 9]090                                     | 055                                     | r>6.5a<br>r<6.5a        |
| Rress et Kosak     | 17   | SCF            | 38.97                                                   | 17.59          | 0.6       | 7089                                      | 057                                     | r>3.5a                  |
| Dacre              | 18   | CI             | 38.97                                                   | 61.23          | 0.5       | 5055                                      | 025                                     | r>3a                    |
| Frommhold          | 3 5  | CILS           | 39                                                      | 75.0           | 0.5       | 5075                                      | 037                                     | r>3.6a                  |
| Orcutt et Cole     | 5    | EXP            |                                                         |                |           | 06±.04                                    |                                         | 0                       |
| Kirouac et Bose    | 6    | EXP            |                                                         |                |           | 059±.0                                    | 09                                      |                         |
| Nos Valeu          | rs   | EXP            |                                                         |                |           | 086±.0                                    | 05057                                   | 7±.005                  |
| où                 | DID: | Dipole induit  | dipole                                                  | ; C1           | с: с      | onfigurati                                | on d'inte                               | eraction;               |
|                    | VAR: | Variationnel;  |                                                         | CILS           | б: D      | iffraction                                | , induite                               | e par collision, de     |
|                    | SCF: | Champ self-con | nsistan                                                 | t;             | 1         | umière;                                   |                                         |                         |
|                    |      |                |                                                         | EXE            | ?: М<br>d | esure expé<br>'expansion                  | rimentale                               | e par la méthode        |

1 a

A 77°K nous avons trouvé une valeur de  $B_{\epsilon}$  de -.057 ± .005 cm<sup>6</sup>/ mole<sup>2</sup>. Ici aussi, nous n'avons pu trouver un  $C_{\epsilon}$ , donc la valeur de  $B_{\epsilon}$  annoncée est peut-être un peu trop négative. Cependant, on peut voir que la valeur de  $B_{\epsilon}$  devient plus positive lorsque la température diminue. Un tel comportement est normal, en effet lorsque la température diminue les collisions entre molécules sont moins fortes. Donc, en moyenne, les molécules vont être moins souvent très près l'une de l'autre, c'est à dire dans la région où  $\mathcal{A}(\mathbf{r})$  est négatif. On peut donc s'attendre à ce que la valeur de  $B_{\epsilon}$  à basse température soit moins négative que celle à haute température ce qui est exactement ce que nous observons.

Comparons maintenant nos résultats avec différents calculs théoriques. Au tableau 5.1 on a pour certains calculs théoriques les paramètres  $A_6$ ,  $\lambda_t$ ,  $r_t$ . Ces paramètres sont soit directement donnés par les auteurs, soit calculés par Frommhold<sup>(35)</sup> a partir des valeurs numériques de polarisabilité calculées par la théorie. Pour chaque série de paramètres nous avons calculé, grâce au programme INCAR, la valeur de & à 303 et 77°K en nous servant du potentiel MSV<sup>(41)</sup>voir appendice E). On voit que tous les calculs utilisant le champ self-consistant (self-consistant field) (SCF) sont en accord avec nos valeurs. Récemment, Dacre<sup>(42)</sup> a effectué un calcul en tenant compte de la corrélation électronique lorsque les atomes étaient près l'un de l'autre mais sans recouvrement d'orbitales (configuration d'interaction). Cette contribution est positive. Il trouve donc pour  $B_E$  une valeur de -.062 cm<sup>6</sup>/mole<sup>2</sup>.

En mesurant la lumière polarisée du spectre Raman de la lumière diffractée induite par collision (CILS) Frommhold  ${}^{(35)}_{a}$  pu mesurer la trace du diatome d'hélium. Les valeurs de  $^{\lambda}_{t}$  et r<sub>t</sub> qui reproduisent le mieux ces résultats sont indiquées sur le tableau 5.1. On y voit que les valeurs de B<sub>t</sub> à 303<sup>O</sup>K et 77<sup>O</sup>K déduites de ces paramètres sont trop positives pour concorder avec nos mesures.

#### 5.3 Néon

Nous avons mesuré  $B_{\epsilon}$  du néon à deux températures, à 303°K et à 77°K. Pour les mêmes raisons que l'hélium on peut s'attendre à ce que la valeur de  $B_{\epsilon}$  à 77°K soit plus positive que celle à 303°K. Nous avons effectivement mesuré une variation de  $B_{\epsilon}$ avec la température et dans la direction attendue. En effet le  $B_{\epsilon}$  passe de -.17 ± .01 cm<sup>6</sup>/mole<sup>2</sup> à 303°K à -.112 ±.006 cm<sup>6</sup>/mole<sup>2</sup> à 77°K. Nous présentons au tableau 5.2 les diverses mesures expérimentales et calculs effectués pour le Néon.

#### TABLEAU 5.2

## valeurs experimentales et calculees du $\mathbf{B}_{\varepsilon}$ du neon

|                | Réf. | Méthode | $(a_{\phi}^{9})$ | λ <sub>+</sub>     | r                 | $B_c cm^6 / mole^2$ |            | Région          |
|----------------|------|---------|------------------|--------------------|-------------------|---------------------|------------|-----------------|
|                |      |         |                  | $(a_{\delta}^{3})$ | (a <sub>6</sub> ) | 303                 | 77.        | d'intégration   |
| Kress et Kosak | 17   | SCF     | 224              | 115                | .626              | 11                  | 08         | 4.34 < R < 5.67 |
| Dacre          | 21   | CI      |                  |                    |                   | 15                  |            |                 |
| Frommhold      | 35   | CILS    | 224              | 65                 | . 7               | 17                  | 13         | 4.34 < R < 5.67 |
| Orcutt et Cole | 5    | EXP     | -                | _                  | -                 | 3±.1                | _          |                 |
| Nos Valeurs    |      | EXP     | _                | _                  | -                 | 17±.0               | 1 ÷.112±.0 | 06              |

| ou. Sur. Champ sell consistant | 0ù: | SCF: | Champ | self | consistan | t |
|--------------------------------|-----|------|-------|------|-----------|---|
|--------------------------------|-----|------|-------|------|-----------|---|

- CI: Configuration d'interaction
- CILS: Diffraction, induite par collision, de la lumière
- EXP: Mesures expérimentales par la méthode d'expansion.

La polarisabilité du diatome de néon a été calculée, en utilisant la méthode SCF, par Kress et Kosak<sup>(17)</sup>et récemment par Dacre<sup>(21)</sup>. L'atome de néon étant plus complexe que celui d'hélium, les calculs SCF sont plus difficiles à effectuer. Le calcul de Kress et Kosak<sup>(17)</sup>donne des valeurs de B<sub>e</sub> à  $303^{\circ}$ K et à  $77^{\circ}$ K qui sont assez loin de nos mesures. Par contre, le calcul de Dacre<sup>(21)</sup>qui lui tient compte de la configuration d'intéraction, produit un B<sub>e</sub> à  $303^{\circ}$ K qui se rapproche sensiblement de notre valeur.

Frommhold<sup>(35)</sup> en analysant le spectre Raman polarisé peut déduire les valeurs de  $\lambda_t$  et r<sub>t</sub> qui rendent mieux compte de ses points expérimentaux. Les valeurs de B<sub>e</sub> à 303<sup>o</sup>K et 77<sup>o</sup>K déduites de ces paramètres sont en accord avec nos propres mesures. Cependant, il faut souligner, que dans de tels calculs, la valeur de B<sub>e</sub> trouvée est fortement dépendante de la région d'intégration choisie.

On constate donc que pour le néon, même si les calculs théoriques et les mesures prises par CILS se rapprochent de nos mesures expérimentales, il faut être prudent car la concordance n'est pas parfaite et surtout, les calculs dépendent beaucoup de la région d'intégration.
### 5.4 Argon

Nous avons mesuré le  $B_{\epsilon}$  de l'argon à 303<sup>0</sup>K et à 192<sup>0</sup>K. Nos résultats ainsi que les mesures et les calculs d'autres auteurs sont rassemblés dans le tableau 5.3.

On remarque que notre valeur à  $303^{\circ}$ K est beaucoup plus élevée que celle de Bose et Cole<sup>(24)</sup>. Cependant, Bose et Cole ont travaillé à des pressions trop faibles pour pouvoir mesurer  $C_{\epsilon}$ . Donc leur valeur de  $B_{\epsilon}$  contient une contribution de  $C_{\epsilon}$ , or cette contribution est négative car  $C_{\epsilon}$  est négatif. On s'attend donc à ce que leur valeur de  $B_{\epsilon}$  soit un peu trop faible. Pour vérifier cela nous avons retranché certains de nos points expérimentaux jusqu'à ce que la plage de densité où les mesures ont été prises corresponde à celle de Bose et Cole<sup>(24)</sup>.La valeur de  $B_{\epsilon}$  que nous obtenons alors est de  $0.65^{\pm}.05$  cm<sup>6</sup>/mole<sup>2</sup>

qui est en parfait accord avec la valeur de Bose et Cole

La molécule d'argon étant encore plus compliquée que celle du néon aucun des calculs théoriques effectués jusqu'à présent n'est satisfaisant. Signalons les calculs SCF de Lallemand et de Dacre<sup>(23)</sup>. Comme on voit au tableau 5.3 ces calculs produisent une valeur de B<sub>E</sub> beaucoup trop faible.



### TABLEAU 5.3

# VALEURS EXPERIMENTALES ET CALCULEES DU ${\rm B}_{\rm c}$ DE L'ARGON

|              | Réf. | Méthode |      | $\begin{pmatrix} \lambda \\ t \\ (a_0^3) \end{pmatrix}$ | $r_t(a_0)$ | $B_{\varepsilon} cm^{6}/mole^{2}$ |                    | Région        |
|--------------|------|---------|------|---------------------------------------------------------|------------|-----------------------------------|--------------------|---------------|
|              |      |         |      |                                                         |            | 303 <sup>0</sup> K                | 192 <sup>0</sup> K | d'intégration |
| Lallemand    | 22   | SCF     | _    | -                                                       | -          | 0.038                             |                    |               |
| Dacre        | 23   | SCF     | _    |                                                         |            | 0.048                             |                    |               |
| Proffitt     | 40   | CILS    | 9665 | 860                                                     | 0.764      | 0.59                              | 0.69               | 4 < r < 20    |
| Bose et Cole | 24   | EXP     | _    |                                                         |            | 0.72±.12                          | _                  |               |
|              |      |         |      |                                                         |            |                                   |                    |               |
|              |      |         |      |                                                         |            |                                   |                    |               |

Nos Valeurs EXP - - - 1.23±.05 1.1±.2 -

On voit que le calcul SCF n'est pas bien adapté au cas de l'argon. La situation est encore pire pour le krypton où le calcul SCF effectué par Dacre<sup>(25)</sup>donne un  $B_{\epsilon}$  de 0.343 cm<sup>6</sup>/mole<sup>2</sup> alors que la valeur expérimentale de Orcutt et Cole<sup>(5)</sup> est de 6.2  $\pm$  0.3 cm<sup>6</sup>/mole<sup>2</sup>. On constate que pour les gaz atomiques lourds, la valeur théorique est beaucoup plus faible que la valeur mesurée.

En mesurant la partie polarisée du spectre Raman de l'argon, Frommhold a déterminé les coefficients  $\lambda_t$ et r<sub>t</sub> satisfaisant le mieux à ses mesures. A la table 5.3 on voit ces coefficients avec les valeurs de B<sub>F</sub> associées.

Là aussi, la valeur de  $B_{\varepsilon}$  associée à ces paramètres est plus faible que notre valeur expérimentale.

On constate donc qu'il existe présentement beaucoup de confusion entre les calculs théoriques, les mesures par (CILS) et les mesures diélectriques de  $B_{\varepsilon}$ . Des mesures supplémentaires de  $B_{\varepsilon}$  à d'autres températures contribueraient à éclaicir davantage la situation.

### APPENDICE A

### Dérivation d'une autre forme de l'équation de Clausius-Mossotti

L'équation de Clausius-Mossotti est exprimée sous la forme

où  $A_{\epsilon}$ ,  $B_{\epsilon}$  et  $C_{\epsilon}$  ont déjà été définis au chapitre I. Remanions cette équation pour avoir une forme plus simple.

$$\frac{\varepsilon - 1}{\varepsilon + 2} - 1 = A_{\varepsilon} d + B_{\varepsilon} d^2 + C_{\varepsilon} d^3 + \dots - 1$$
(A.2)

$$\frac{-3}{\varepsilon+2} = A_{\varepsilon}d + B_{\varepsilon}d^2 + C_{\varepsilon}d^3 + \dots -1$$
 (A.3)

$$\frac{\varepsilon+2}{3} = \frac{1}{1-(\Lambda_{\varepsilon}d+B_{\varepsilon}d^{2}+C_{\varepsilon}d^{3}+\ldots)}$$
(A.4)

$$\frac{\varepsilon+2}{3} = 1 + (A_{\varepsilon} d + B_{\varepsilon} d^{2} + C_{\varepsilon} d^{2} + \dots) + (A_{\varepsilon} d + B_{\varepsilon} d^{2} + C_{\varepsilon} d^{3} + \dots)^{2} + (A_{\varepsilon} d + B_{\varepsilon} d^{2} + C_{\varepsilon} d^{3} + \dots)^{3} + \dots$$
(A.5)

$$\frac{\varepsilon + 2}{3} = 1 + (A_{\varepsilon} d + B_{\varepsilon} d^{2} + C_{\varepsilon} d^{3} + \dots) + (A_{\varepsilon}^{2} d^{2} + 2A_{\varepsilon} B_{\varepsilon} d^{3} + \dots) + (A_{\varepsilon}^{3} d^{3} + \dots) + \dots$$
(A.6)

$$\frac{\varepsilon+2}{3} - 1 = A_{\varepsilon}d + (B_{\varepsilon} + A_{\varepsilon}^{2})d^{2} + (C_{\varepsilon} + 2A_{\varepsilon}B_{\varepsilon} + A_{\varepsilon}^{3})d^{3} + \dots$$
(A.7)

$$\varepsilon - 1 = 3[A_{\varepsilon}d + (B_{\varepsilon} + A_{\varepsilon}^{2})d^{2} + (C_{\varepsilon} + 2A_{\varepsilon}B_{\varepsilon} + A_{\varepsilon}^{3})d^{3} + \dots]$$
 (A.8)

$$\varepsilon - 1 = A_{\varepsilon}^{\dagger} d + B_{\varepsilon}^{\dagger} d^{2} + C_{\varepsilon}^{\dagger} d^{3} + \dots$$
 (A.9)

$$A_{\varepsilon}' = 3A_{\varepsilon}$$
  

$$B_{\varepsilon}' = 3(B_{\varepsilon} + A_{\varepsilon}^{2})$$
  

$$C_{\varepsilon}' = 3(C_{\varepsilon} + 2A_{\varepsilon}B_{\varepsilon} + A_{\varepsilon}^{3})$$
  
(A.10)

L'équation (A.9) est équivalente à l'équation de Clausius-Mossotti.

#### APPENDICE B

### Traitement des données

Tout le système de traitement des données est informatisé. Après avoir pris nos différentes mesures expérimentales avec leurs incertitudes, nous soumettons ces paramètres au programme JACTRI qui calcule les coordonnées de chaque point expérimental et les incertitudes sur ces coordonnées. Ensuite, le programme TRIG pondère chaque point selon l'incertitude associée à la valeur de l'ordonnée (Y). Ce poids est égal au rapport  $\Delta Y_{max}/\Delta Y_i$  où  $\Delta Y_{max}$  est l'incertitude maximale rencontrée dans le groupe de points traités et  $\Delta Y_i$  est l'incertitude sur Y du point considéré. Les points expérimentaux ainsi pondérés sont ensuite soumis au programme MCAREGC qui calcule, pour un polynôme donné, les paramètres de ce polynôme de telle sorte que la courbe polynomiale se rapproche le plus possible des points expérimentaux.

Les programmes JACTRI et TRIG ont été développés à l'UQTR par M. Christian Pépin. Le programme MCAREGC a été originellement mis au point à l'université Brown par le groupe du professeur R.H.Cole. Il fut ensuite modifié par M. Jerzy Sochanski du centre de calcul de l'UQTR puis par M. Christian Pépin.

### APPENDICE C

## <u>Calcul de $A_{\varepsilon}$ et $B_{p}$ et leurs incertitudes</u>

A la section (4.3) nous avons vu que l'équation de travail pour la détermination de  $A_{\epsilon}$  et  $B_{D}$  était

$$\frac{\varepsilon - 1}{\varepsilon + 2} \frac{RT}{P} = A_{\varepsilon} + (B_{\varepsilon} - A_{\varepsilon} B_{p}) \frac{P}{RT} + \dots$$
 (C.1)

Nous mesurons  $\varepsilon$ , P et T. On calcule ensuite chaque point expérimental en posant

$$Y = \frac{\varepsilon - 1}{\varepsilon + 2} \frac{RT}{P} \qquad \qquad X = \frac{P}{RT}$$

On calcule aussi les incertitudes sur Y et X à partir des incertitudes sur  $\varepsilon$ , <sup>P</sup> et T. On soumet ces paires (X,Y) au programme des moindres carrés qui calcule les coefficients K et m de la courbe

$$Y = K + mX \qquad (C.2)$$

ainsi que la déviation standard de chaque coefficient et du polynôme.

Par exemple, pour l'hélium le TABLEAU 4.5 nous donne  $A_{\epsilon} = K = 0.5185 \text{ cm}^3/\text{mole}.$ 

Mais, à la section 4.2 nous avons vu que nous devions tenir compte des facteurs de correction. Du tableau 4.2a on tire comme facteur de correction +.0016cm<sup>3</sup>/mole.La valeur corrigée de  $A_{\epsilon}$ est donc  $A_{\epsilon}$  (corr)=0.5202 cm<sup>3</sup>/mole.

L'incertitude sur  $A_\epsilon$  est calculée en prenant trois déviations standard de K ( $\sigma_k$ ) Dans notre exemple  $\sigma_k$  = 7.7 x 10^{-5} donc

$$\Delta A_{e} = 3\sigma_{k} \simeq 2 \times 10^{-4} \text{ cm}^{3}/\text{mole} \qquad (C.3)$$

On a alors

$$A_{c}(corr) = 0.5202 \pm .0002 \text{ cm}^{3}/\text{mole}$$

De (C.1) et (C.2) nous avons également

$$m = B_{\varepsilon} - A_{\varepsilon} B_{p} \qquad (C.4)$$

Donc,

$$B_{p} = \frac{B_{\varepsilon} - m}{A_{\varepsilon}}$$
(C.5)

Par une autre expérience, nous connaissons déjà  $\operatorname{B}_{\varepsilon}$  et A a été calculé précédemment, m est donné par le polynôme. Donc, on peut calculer B<sub>D</sub>.

181.

Dans notre exemple m = -7.1 et  $B_{\varepsilon}$  = -.086 <u>+</u> .005. Donc

$$B_{p} = \frac{-.086 + 7.1}{0.5202} = 13 \text{ cm}^{3}/\text{mole}$$
(C.6)

En dérivant (C.5) on obtient

$$\Delta B_{p} = \frac{\Delta B_{\varepsilon} + \Delta m}{A_{\varepsilon}} + \frac{(B_{\varepsilon} - m) \Delta A_{\varepsilon}}{A_{\varepsilon}^{2}}$$
(C.7)

Où  $\Delta m$  est donné par trois fois la déviation standard polynomiale sur m ( $\sigma m$ )

$$\Delta m = 3\sigma_{m}$$
Du tableau (4.5) on a  $\sigma m = 0.19$  donc  $\Delta m = 0.57$  On  
connait  $\Delta B_{\epsilon} = 5 \times 10^{-3}$  et  $\Delta A_{\epsilon} = 2 \times 10^{-4}$   
L'expression (C.7) devient

$$\Delta B_{p} = \frac{5 \times 10^{-3} + 0.57}{0.52} + \left(\frac{-.086 + 7.1}{0.27}\right) 2 \times 10^{-4}$$

$$\Delta B_{p} \simeq \frac{0.57}{0.52} \simeq 1 \text{ cm}^{3}/\text{mole}$$

Donc,

 $B_p = 13 \pm 1 \text{ cm}^3/\text{mole}$ 



### APPENDICE D

Calcul de  $B_{\varepsilon}$  et  $C_{\varepsilon}$  et de leurs incertitudes

Au chapitre 4 on a vu que l'équation de travail pour la détermination de B<sub>e</sub> et C<sub>e</sub> par la méthode d'expansion de Buckingham était

$$\frac{D_{A}}{C_{0}(\varepsilon_{1}-1)} + \frac{D_{B}}{C_{0}(\varepsilon_{2}-1)} = \frac{-B_{\varepsilon}'}{2(A_{\varepsilon}')^{2}[(\varepsilon_{1}-1)+(\varepsilon_{2}-1)]} + \frac{1}{2} \left[ \frac{(B_{\varepsilon}')^{2}}{(A_{\varepsilon}')^{4}} - \frac{3}{4} \frac{C_{\varepsilon}'}{(A_{\varepsilon}')^{3}} \right] \left[ (\varepsilon_{1}-1)+(\varepsilon_{2}-1) \right]^{2}$$
(D.1)

Les mesures expérimentales nous donnent les valeurs de  $Y = D_A/C_0(\epsilon_1-1) + D_B/C_0(\epsilon_2-1)$  et  $X = [(\epsilon_1-1) + (\epsilon_2-1)]$ . En soumettant ces paires (X,Y) au programme des moindres carrés, celui-ci calcule les coefficients A<sup>cal</sup> et B<sup>cal</sup> du polynôme  $Y = A^{cal}X + B^{cal}X^2$  (D.2)

ainsi que les incertitudes sur les coefficients

En comparant D.1 et D.2 on voit que

$$A^{\text{cal}} = \frac{-B_{\varepsilon}'}{2(A_{\varepsilon}')^2} \quad \text{et} \quad B^{\text{cal}} = \frac{1}{2} \left[ \frac{(B_{\varepsilon}')^2}{(A_{\varepsilon}')^4} - \frac{3}{4} \frac{C_{\varepsilon}'}{(A_{\varepsilon}')^3} \right] \quad (D.3)$$

où, de l'équation 2.18 on sait que

$$A_{\varepsilon}^{\prime} = 3A_{\varepsilon}$$
  

$$B_{\varepsilon}^{\prime} = 3(B_{\varepsilon} + A_{\varepsilon}^{2})$$
  

$$C_{\varepsilon}^{\prime} = 3(C_{\varepsilon} + 2A_{\varepsilon}B_{\varepsilon} + A_{\varepsilon}^{3})$$
(D.4)

## D.1 Détermination de $B_{\epsilon}$ et de son incertitude

De (D.3) et (D.4) on obtient

$$A^{cal} = - \frac{(A_{\varepsilon}^{2} + B_{\varepsilon})}{6 A_{\varepsilon}^{2}}$$
(D.5)

Donc, 
$$B_{\epsilon} = -A_{\epsilon}^{2}(6A^{cal} + 1)$$
 (D.6)

Par exemple, pour l'argon à  $303^{\circ}$ K nous avons déjà obtenu A<sub>e</sub> = 4.142 cm<sup>3</sup>/mole. Du tableau (4.49) on tire queA<sup>cal</sup> = -.1788.

En plaçant ces valeurs dans D.6 on obtient

$$B_{\varepsilon} = 1.25 \text{ cm}^6/\text{mole}^2 \tag{D.7}$$

De la table 4.2b on obtient le facteur de correction qui est -.02 cm<sup>3</sup>/mole. La valeur finale est donc

$$B_c(corr) = 1.23 \text{ cm}^6/\text{mole}^2$$

En dérivant (D.6) on obtient

$$\Delta B_{\varepsilon} = A_{\varepsilon}^{2} 6 \Delta A^{cal} + 2 (6 A^{cal} + 1) A_{\varepsilon} \Delta A_{\varepsilon}$$
 (D.8)

On connait déjà  $A_{\epsilon}$ ,  $A^{cal}$  et  $\Delta A_{\epsilon} = .002$ . Pour  $\Delta A^{cal}$  on prend trois fois la déviation standard de  $A^{cal}$ 

$$\Delta \Lambda^{cal} = 3^{\circ} \Lambda^{cal}$$
 (D.9)

Du tableau (4.49) on tire  $\sigma_{Acal} = 1.3 \times 10^{-4} \text{ donc } \Delta A^{cal} \simeq 4 \times 10^{-4}$ En posant ces valeurs dans (D.8) on trouve

$$\Delta B_{c} = 0.050 + 0.001$$

Donc l'incertitude retenue sur  ${\rm B}_{_{\ensuremath{\mathcal{E}}}}$  est de

$$\Delta B_{c} \simeq .05 cm^{6} / mole^{2}$$

On obtient pour  $B_{\epsilon}$ 

$$B (corr) = 1.23 + .05 \text{ cm}^6/\text{mole}^2$$
 (D.10)

## D.2 Détermination de $C_{\varepsilon}$ et de son incertitude

De D.3 et D.4 on a

$$B^{cal} = \frac{1}{2} \left[ \left( \frac{A_{\varepsilon}^2 + B_{\varepsilon}}{9A_{\varepsilon}^4} \right)^2 - \left( \frac{C_{\varepsilon} + 2A_{\varepsilon}B_{\varepsilon} + A_{\varepsilon}^3}{12A_{\varepsilon}^3} \right) \right]$$

En remaniant on obtient

$$C_{\varepsilon} = -24 A_{\varepsilon}^{3} B^{\text{cal}} + \frac{A_{\varepsilon}^{3}}{3} + \frac{2}{3} A_{\varepsilon} B_{\varepsilon} + \frac{4}{3} \frac{B_{\varepsilon}^{2}}{A_{\varepsilon}} \qquad (D.11)$$

Nous connaissons  $A_{\epsilon} = 4.142$ ,  $B_{\epsilon} = 1.23$  et du tableau (4.49)  $B^{cal} = 0.057$ 

$$C_{\varepsilon} = -97.2 + 23.7 + 3.4 + .5$$

$$C_{\varepsilon} = -69.6 \text{ cm}^9/\text{mole}^3 \qquad (D.12)$$

En dérivant (D.11) on a

$$\Delta C_{\varepsilon} = 24A_{\varepsilon}^{3}\Delta B^{cal} + 72B^{cal}A_{\varepsilon}^{2}\Delta A_{\varepsilon} + A_{\varepsilon}^{2}\Delta A_{\varepsilon} + \frac{2}{3}(A_{\varepsilon}\Delta B_{\varepsilon} + B_{\varepsilon}\Delta B_{\varepsilon}) + \frac{4}{3}\left(\frac{2B_{\varepsilon}\Delta B_{\varepsilon}}{A_{\varepsilon}} - \frac{B_{\varepsilon}^{2}\Delta A_{\varepsilon}}{A_{\varepsilon}^{2}}\right)$$
(.13)

On prend  $\Delta B^{cal} = 3\sigma_{B}^{cal}$ , de la table (4.49) on a  $\sigma_{B}^{cal} = 3.6 \times 10^{-4}$ Donc,  $\Delta B^{cal} = 10^{-3}$ . Alors que l'on sait que  $\Delta A_{\varepsilon} = 2 \times 10^{-3}$  et  $\Delta B_{\varepsilon} = 5 \times 10^{-2}$ .

L'équation (D.13) devient

$$\Delta C_{\varepsilon} = 1.7 + .1 + .03 + \frac{2}{3}(.2+.06) + \frac{4}{3}(.3+.0002)$$
$$\Delta C_{\varepsilon} \approx 2$$



### APPENDICE E

### Potentiel utilisé

Pour effectuer l'intégrale (1.40) qui nous donne la valeur de  $B_{\varepsilon}$  à une température donnée, nous avons besoin du potentiel intermoléculaire  $V_{12}$ . Or, le potentiel Lennard-Jones (6-12) n'est plus considéré comme suffisamment valable pour effectuer des calculs précis. Nous avons donc adopté les potentiels qui sont généralement considérés comme les plus acceptables. Pour l'Hélium nous avons utilisé le potentiel HFDHE2. Ce potentiel a la forme

$$V(\mathbf{r}) = \frac{\varepsilon}{k} V(\mathbf{x})$$

où  $V(x) = A EXP(-\gamma X) - \left(\frac{C_6}{X^6} + \frac{C_1}{X^8} + \frac{C_{10}}{X^{10}}\right) F(X)$ et  $F(X) = EXP\{-\left[\frac{D}{X} - 1\right]^2\}$  X < D= 1  $X \ge D$ on pose  $X = \frac{r}{r_m}$ 

A partir des résultats expérimentaux, Aziz et al <sup>(41)</sup> ont dérivé les valeurs de ces coefficients.

187.

Ce sont

A = 0.5448504 x 10<sup>6</sup>  

$$\gamma = 13.353384$$
  
C<sub>6</sub>= 1.3732412  
C<sub>8</sub>= 0.4253785  
C<sub>10</sub>=0.1781  
D = 1.241314  
r<sub>m</sub>= 5.607386 a<sub>0</sub>  
 $\frac{\varepsilon}{k} = 10.3$   
où  $a_0 = 0.52917706 \times 10^{-10} m = rayon de Bohr$ 

Pour le Néon nous avons utilisé le potentiel MSV tel que donné par SISKA et al<sup>(43)</sup>

$$V(r) = \frac{\varepsilon}{k} f(X) \quad \text{où} \quad X = \frac{r}{r_m}$$

et

$$f(X) = EXP[-2\rho(x-1)] - 2EXP[-\rho(x-1)] \quad 0 \le X \le X_3$$
  
= B<sub>1</sub> + (x - x<sub>3</sub>) {B<sub>2</sub> + (x - x<sub>4</sub>) [B<sub>3</sub> + (x - x<sub>3</sub>) B<sub>4</sub>]} X<sub>3</sub> < X < X<sub>4</sub>  
= -  $\frac{H_6}{X^6} - \frac{H_6}{X^8}$  X<sub>4</sub> ≤ X < ∞

Les valeurs des différents paramètres sont également données par SISKA et al<sup>(43)</sup> Pour l'Argon, la même forme de potentiel fut utilisée et nous avons pris les valeurs des coefficients tels que donnés par Parson et al.<sup>(44)</sup>

|                | Néon                   | Argon              |
|----------------|------------------------|--------------------|
| ε/k            | 45.85                  | 144.44             |
| ρ              | 6.93                   | 6.692              |
| Х <sub>3</sub> | 1.1                    | 1.11856            |
| X 4            | 1.4                    | 1.4                |
| B 1            | <b></b> 75             | 7                  |
| B 2            | 1.87                   | 1.7525             |
| B 3            | -5.185                 | -5.4197            |
| B 4            | 5.797                  | 8.9001             |
| H <sub>6</sub> | 1.282                  | 1.237              |
| H 8            | 0.278                  | 0.62757            |
| r m            | 5.725872a <sub>0</sub> | 7.02a <sub>0</sub> |

188.

#### REFERENCES BIBLIOGRAPHIQUES

- 1- P.F. Mossotti, Bibl. Univ. Modena 6, 193 (1847)
- 2- R. Clausius, Die Mechanische Wärmtheorie, Vol.II, Braunchwerch (1879)
- 3- A.D. Buckingham et J.A. Pople, Trans. Faraday soc., <u>51</u>, 1029 (1955).
- 4- A.D. Buckingham, Trans. Faraday soc., 51, 1173 (1955)
- 5- R.H. Orcutt et R.H. Cole, J. Chem. Phys. 46, 697 (1967)
- 6- S. Kirouac et T.K. Bose, J. Chem. Phys. 64, 1580 (1976)
- 7- L. Jansen et P. Mazur, Physica 21, 193 (1955)
- 8- A.D. Buckingham, Trans. Faraday soc. 52, 1035 (1956)
- 9- P.R. Certain et P.J. Fortune, J. Chem. Phys. 55, 5818 (1971)
- 10- W. Kolos et L. Wolniewicz, J. Chem. Phys. 46, 1426 (1967)
- 11- AL. Ford et J.C. Browne, Phys. Rev. A. 7, 418 (1973)
- 12- D.B. DuPré et J.P. McTague, J. Chem. Phys. 50, 2024 (1969)
- 13- T.K. Lim et Al, J. Chem. Phys. 52, 3831 (1970)
- 14- A.D. Buckingham et R.S. Watts, Molec. Phys. 26, 7 (1973)

15- E.F. O'Brien et Al., Phys. Rev. A. 8, 690 (1973)

| 16- | P.J. Fortune et P.R. Certain, J. Chem. Phys. <u>61</u> , 2620 (1974) |
|-----|----------------------------------------------------------------------|
| 17- | J.W. Kress et J.J. Kosak, J. Chem. Phys. <u>66</u> , 4516 (1977)     |
| 18- | P.D. Dacre, Molec. Phys. <u>36</u> , 541 (1978)                      |
| 19- | P.D. Dacre, Molec. Phys. <u>45</u> , 17 (1982)                       |
| 20- | M. Lallemand et D. Vidal, J. Chem. Phys. <u>66</u> , 4776 (1977)     |
| 21- | P.D. Dacre, Can. J. Phys. <u>59</u> , 1439 (1981)                    |
| 22- | p. Lallemand et Al., Molec. Phys. <u>27</u> , 1029 (1974)            |
| 23- | P.D. Dacre, Molec. Phys. <u>45</u> , 1 (1982)                        |
| 24- | F.K. Bose et R.H. Cole, J. Chem. Phys. <u>52</u> , 140 (1970)        |
| 25- | P.D. Dacre, Molec. Phys. <u>47</u> , 193 (1982)                      |
| 26- | R.H. Orcutt et R.H. Cole, Physica <u>31</u> , 1779 (1965)            |
| 27- | E.S. Burnett, J. Applied Mechanics <u>A3</u> , 136 (1936)            |
| 28- | D.R. Johnston et Al., J. Chem. Phys. <u>33</u> , 1310 (1960)         |
| 29- | H. Sutter et R.H. Cole, J. Chem. Phys. <u>52</u> , 132 (1970)        |
| 30- | A.D. Buckingham et Al., J. Chem. Phys. <u>52</u> , 5960 (1970)       |
| 31- | D. Vidal et M. Lallemand, J. Chem. Phys. <u>64</u> , 4293 (1976)     |
| 32- | R.R. Teachout et R.T. Pack, At. Data. <u>3</u> , 195 (1971)          |
| 33- | J.H. Dymond et E.B. Smith, Tables of Virial coefficients             |
|     | of gases, Clarendon Press, Oxford (1969)                             |

| 34- | R. Coulon et Al., Can. J. Phys. <u>59</u> , 1555 (1981)              |
|-----|----------------------------------------------------------------------|
| 35- | L. Frommhold, Adv. Chem. Phys. <u>46</u> , 1 (1981)                  |
| 36- | P.J. Fortune et P.R. Certain, J. Chem. Phys. <u>61</u> , 2620 (1974) |
| 37- | M.H. Proffitt et L. Frommhold, J. Chem. Phys. 72, 1377 (1980)        |
| 38- | M.H. Proffitt et L. Frommhold, Phys. Rev. Let. 42, 1473 (1979)       |
| 39- | L. Frommhold et M. H. Proffitt, Phys. Rev. A. 21, 1249 (1980)        |
| 40- | M.H. Proffitt et Al., Can. J. Phys. <u>59</u> , 1459 (1981)          |
| 41- | R.A. Aziz et Al., J. Chem. Phys. <u>70</u> , 4330 (1979)             |
| 42- | P.D. Dacre, Molec. Phys. <u>45</u> , 17 (1982)                       |

- 43- P.E. Siska et Al., J. Chem. Phys. <u>55</u>, 5762 (1971)
- 44- J.M. Parson et Al., J. Chem. Phys. <u>56</u>, 1511 (1972)