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Résumé 

Each year, thousands of patients in Canadian hospitals are infected with antibiotic-resistant 

bacteria, resulting in a cost of at least $100 million to the health-care system. Although 

most bacteria are harmless to healthy individuals, the symptoms of bacterial infection can 

be severe for patients with a weakened immune system. Outbreaks of Clostridium difficile 

(C. difficile) and methicillin-resistant Staphylococcus aureus (MRSA) have occurred in 

Canadian hospitals, leading, for example, to more than 600 deaths in Québec alone from 

2003 to 2005. Early detection is critical for improved patient care and can help in 

minimizing the risk of cross contamination between patients. The aim of the thesis is to use 

state of the art technologies for developing handheld biosensors for pathogenic bacteria 

detection. There is extensive demand for a low-cost, rapid, selective and sensitive method 

for detecting bacteria in medical diagnosis, and food-safety inspection. Traditional 

methods, such as polymerase chain reaction and cell culture techniques take several hours 

to days to give accurate results, and require bulky, expensive equipment. In this work, we 

introduced new techniques for detecting bacterial pathogen cell at low concentration level 

based on CMOS/MEMS technology batch process. The methodology of the proposed 

multibiosensors that is named by multi-Iab-on-a-chip (MLoC); lies on miniaturizing 

transducers, which is based on optical CMOS technology, charge based capacitance 

measurements (CBCM), electrochemical impedance spectroscopy (EIS) and CMOS 

microcoils incorporating with interdigitated microelectrode array (IDMA). The 



IV 

aforementioned approaches technically proved their capability and reliability 

overwhelmingly among the used conventional techniques for that reason these techniques 

havebeen proposed to create compact and portable biosensors for sensitive and rapid 

detection of bacterial pathogens. While the four proposed biosensors have common 

objectives they differ in the method and analysis used, and postulates engaged by a 

discipline to achieve the objectives; the inquiry of the principles of investigation in a 

particular field. For example, the immunosensors can smooth the progress of point-of-care 

testing (POCT) and become conscious state-of-the-art molecular analysis without the need 

of using a state-of-the-art laboratory. In addition; immunosensors reduce the cost of clinic 

diagnosis by miniaturizing and automate detection, and they can be categorized as 

capacitive, optical, electrochemical and magnetic techniques; in the light of their sens~ng 

theory. 
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Chapitre 1 - Introduction 

1.1 General Introduction 

Biosensors are analytical devices that combine a biologically sensitive element with a 

physical or chemical transducer to detect the presence of specific compounds selectively 

and quantitatively. This thesis explores the feasibility of microelectronic techniques in a 

successful attempt to get huge co st savings in mass production, fast reacting, and 

disposable biosensors [1]. Biosensors can be sorted by their input signal domain, physical 

and chemical biosensors. Physical biosensors include optical, magnetic, thermal and 

mechanical sensors. The chemical biosensors can be divided according to the transduction 

mode. In biosensors, natural materials are coupled to physical transducers. 

Biosensors can also be categorized according to the production techniques. A 

microsensor is a device requiring microfabrication technology. Microfabrication is used by 

the semiconductor (electronics) industry to produce integrated circuits (les). As Bergveld 

showed in 1970 [2] , design and packaging are important in the development of 

electrochemical "minisensors". They are even more crucial in manufacturing micro- and 

nanosensors. These biosensors are characterized by their small active sensing areas, while 

the size of the chip is still in the macroscopic range. Subsequently, these sensors can be 

Solid-state, integrated, pl anar, and smart sensors. The sold-state sensor refers to the device . 

that deals with the response in the solid. The integrated sensor is made using the bulk of the 

silicon, while the planar uses the surface of the silicon. Therefore, the combination of the 
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integrated and the planar produces the smart sensor often called the intelligent sensor [3]. 

The high Signal-to-Noise Ratio (SNR) and the electromagnetic interface characteristics 

made the smart sensor the best technique to implement biosensors. Semiconductors rapidly 

became on high demand to mass-produce these miniature devices at very low cost 

compared to conventional methods. 

There is a strong demand for biosensors in the food production industry to follow the 

various steps in production, and control the quality of the final products. Therefore, the 

biomedical sector constitutes a potential market for biosensors, in most of life's aspects. 

Biosensors that are based on the enzymes that act as catalyst sensors were used to be 

studled and commercialized for the requirements of biomedical analysis. For instance, the 

glucose oxidize was the first electrode that is used to determine glucose in blood and urine 

for the diagnosis of diabetes. Other biosensors use either enzymes or antibodies to 

determine neurotransmitters, hormones and other metabolites. An implantable biosensor 

system is discIosed for determining levels of cardiac markers in a patient to aid in the 

diagnosis, determination of the severity and management of cardiovascular diseases [4]. It 

does provide access to precise regions of the human body, without consuming, or 

removing, biological fluids. Implantable biosensors yield immediate results, which are 

extremely useful ifrapid decisions are to be made, for example, during surgery [5]. 

A biosensor in most general cases is constructed from a combination of a bioreceptor; 

the biological component, and a transducer; the detection method. The main function of a 

biosensor is to transform a biological event into an electrical signal. Figure 1-1 represents 

the principle of the operation of a biosensor, which is starting from the analyte that can 

provide ail the information needed for its evaluation. This information can be processed 
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and stored for later use. The process of the analysis is starting from the analyte, which is 

identified by the first connection of a biosensor named "the bioreceptor". 

Figure 1-1 General Model for Biosensors, differentiating between molecular 
recognition, transduction and data processing. 

The second stage of a biosensor is the transducer that takes advantage of the 

biochemical modification of the substrate by the bioreceptor through transforming it into an 

electrical signal. 

Table 1.1 Common Biological Recognition Elements. 

Biological Element Mechanism for Recognition 

Antibodies and antigens Based on the specific and high-affinity antibody-antigen 
binding interactions to generate a detectable signal. 

Biomimetric receptors Genetically engineered biomolecules RNA and DNA 
aptamers. 

Enzymes Alteration of an analyte to induce or generate a signal that 
can be detected by the transducer. 

Non-enzymatic proteins A protein that produces a signal through a transmembrane 
ion channel leading to activation system. 

NucJeic acids Detection of specific DNA sequences by hybridization. 

Whole cells A substance-dependent boost or embarrassment of 
microorganism respiration. 
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Consequently, the type of biochemical modification is playing an important role to 

define the choice of transducer. Having the right transducer should comply with sorne 

requirements; such as optimal use of the product of the bioreceptor and give a signal that is 

sensitive, easily monitored, and has minimal background noise. Low background noise 

reduces the detection limit and improves the biosensor performance. 

The combination of any bioreceptor with any transducer leads to a large number of 

biosensors. Table 1.1 summarizes the state of biosensor research as a function of the 

different possibilities of coupling between various bioreceptors and transducers. Table 1.2 

demonstrates how it is possible to c1assify biosensors with respect to either the bioreceptor 

or the transducer employed. 

Table 1.2 Design Parameters for Selecting a Transducer for a Biosensor. 

Parameter Definition 

Sensitivity (S) S = ~~ where Llx is the input of the biosensor and Lly is the output 

Linearity Linear system; y = Kx , Nonlinear system: y = [ex). 

Working range (WR) WR = V max - V min values that can be measured by the biosensor. 

Accuracy (A) A = Mv -Av; the Mv = measured and Av = actual values. 

Repeatability The variation in reading under the same condition. 

Resolution Minimum detectable signal. 

Output Voltage signal is preferred due to readily gather the data with no 
extra hardware that may increase the source of errors. 

Response time The response time is measured from the start of an input change tiU 
the output stable. 

Bandwidth The output of a physical transducer is dependent on the amplitude 
and frequency of an input signal. 
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Considering that molecular recognition generally uses well-defined reaction types and 

that the detection method may be extremely varied, it is logical that biosensors should be 

classified primarily as a function of the bioreceptor used. On the other hand, using the 

classification by bioreceptor is worthy and trustful because this component determines the 

primary action of the biosensor. Nevertheless, for the laboratory that only deals with 

enzymes, a classification according to the transducer employed optical, electrochemical, 

thermometric, magnetic, can be used [6]. 

The recognition process of an organic or inorganic substrate by a receptor-molecule 

generating a host-guest product is considered as the key to the design of a chemical or 

biochemical sens or as shown in Figure 1-2. The biosensing system used in this work for 

biological detection is a chemical sensor making use of biological components as a sensing 

interface. A biosensor is made of two components: a receptor and a detector. The receptor 

senses the variation on the surface and then converts the difference to a measured electrical 

signal as shown in Figure 1-3. 

ID which 3 ch .. miC21 
re3.c.RoD 1\itt. 

p. rricip.tioa of fit. 

Figure 1-2 

Receptor 
priaciples 

la wllich. biochemical 
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The organization chart of receptor principles. 
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One of the main biological recognition e1ements is the enzyme, which are proteins that 

catalyze chemical reactions where they are reacting reversibly. Biosensors are a subgroup 

of chemical sensors where the detection of a chemical component is based on a specific 

interaction of this chemicàl component with a biorecognition molecule, being an enzyme, 

antibody, aptamer,- microorganism, or even a whole cell. This biological sensing element is 

integrated with or is in intimate contact with a physicochemical transducer [7]. 

Figure 1-3 Biosensors categories. 

A wide range of transducers is available to detect the interaction between the analyte 

and the biorecognition molecule and convert it into an electronic signal. Electrochemical, 

optical, thermal, and mass sensitive transduction mechanisms have been used in biosensor 

development over the past decade [8]. Figure 1-1 illustrates the general Model for 

Biosensors. A high selectivity and specificity, a relatively low production cost, a limited 

sample preparation time, and the potential for miniaturization are the main advantages of 

biosensors over conventional analytical methods [9]. Although, the healthcare industry and 

its high demand is pushing forward the development of biosensors, there have been many 

suggested applications in food, bio-processing, agriculture, and environment [10]. 
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During the evaluation phase, often only direct cost reductions and investments are 

considered. Because investments are often significant, the benefits are not always 

completely seen at early stages of the project, therefore standoff detection techniques [11] 

are required. Standoff detection technologies are a sensing performed in real time that 

involves decision making at a distance within a certain period. Real-time standoff 

biological sample detection is at this time . playing an important role in life science 

applications and medicine [12] .The principal advantages of standoff detection techniques 

are the reduction of the analysis time, reduction of the cost of analysis, shortening of the 

release time, and, as a consequence, lowering of production costs. Additionally, operators 

can improve their process understanding, control of the process, and, as a consequence, the 

first time quality because of improved product consistency. 

Recently, sensor technology is applied in every aspect of life so that considerable 

efforts are given to improve the performance of the biosensors and reduce the co st of 

production. Biosensor technology also benefits from the fast growth of the microelectronic 

industry, which results in advanced biochips by combining the knowledge of the 

microfluidic with microelectronics [13] . Although the performance of a biosensor is 

evaluated based on a particular application, one should address the basic performance 

criteria in the design of successful biosensors such as sensitivity, detection and quantitative 

determination limits, selectivity and reliability, response time, high sample throughput, 

reproducibility, stability, and lifetime. In addition, the complete biosensor should be cheap, 

small, portable, and easy to use [14]. 

The biosensor must also meet requirements connected with the measurements itself; 

these are repeatability, reproducibility, selectivity, sensitivity, a linear region of response, 



8 

and good response time [15]. Measurements have good repeatability if two sets of results 

obtained by the same operator, using the same sensor in the same sample are close to each 

other. The method is reproducible if workers in other laboratories can obtain previous 

results. For commercial purposes, the biosensor should have high reproducibility. 

Biosensors are also categorized in terms of their ability to recognize a single compound 

among other substances in the same sam pie. This specificity quality is defined by the 

strength of the interaction between a molecular probe (e.g., antibody) and an antigen (target 

analyte) as estimated by the dissociation constant Kd. The smaller the Kd the higher the 

specificity of binding. Specificity is often impossible to obtain, and so the term selectivity 

is used [16]. Selectivity can be estimated from dose responses of a biosensor to different 

analyte; i.e. bacteria, which means that an interfering species responds with the same type 

of signal. A sensor is more selective when the number of interfering compounds is low. 

The selectivity of biosensors is determined by both the bioreceptor and the method of 

transduction. Selectivity and specificity are related to each other. High selectivity means 

that the contribution of an interfering species to the signal relative to the primary analyte is 

minimal. Specificity, on the other hand, characterizes the unique property of a bioreceptor 

[17]. The sensitivity of a sensor is given by the change in its response as a function of the 

corresponding change in the quantity being monitored. Biosensors are more convenient to 

use ifthey exhibit a linear relationship between the variation in the amplitude of the output, 

11 Va, and the input, 11 Vi as described by equation below: 

(l.1 ) 

The linear region of a biosensor is obtained from a calibration curve of its response to 

different analyte concentrations. A good calibration curve also indicates the stability of the 
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response of the biosensor, which should neither drift nor oscillate with time. The response 

time of the biosensor gives a measure of how quickly it responds to a variation in the 

concentration [16]. 

1.1.1 Biosensors Techniques 

In biosensors where, in principle, the transducer plays a physical role and the 

bioreceptor has the task of molecular recognition. The information decoded by the 

bioreceptor is converted into an electrical signal by the transducer using measuring 

techniques like potentiometry, amperometry, thermometry, or photometry, ail of which are 

based on the variation of physical quantities. The method chosen must be simple and of a 

reasonable size, so that it is cheap and easy to use. 

The detection part in the biosensor can be achieved using various techniques, su ch as 

optical, capacitive, magnetic, and Electrochemical Impedance Spectroscopy (EIS). The 

selection of detection technique relies on the nature of the application and the accuracy of 

the analysis requested. In most general circumstances, these are the major princip les 

techniques for analyte detection. The following section presents a brief introduction to the 

most widely utilized detection methods employed in biosensors. 

1.1.1.1 Optical Techniques 

Spectroscopy was originally the study of the interaction between radiation and matter 

as a function of wavelength O.) [18]. Optical sensors make use of the effect of chemistry 

reaction on optical phenomena, such as Fluorescence spectroscopy, which is a sort of 

electromagnetic spectroscopy, which analyzes fluorescence from a sample. It involves 

using a beam of light, usually ultraviolet light, that excites the electrons in molecules of 

certain compounds and causes them to emit light of a lower energy. The most popular 
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detection method is laser-induced fluorescence (LIF) for its high sensitivity [19] , and 

absorption spectroscopy, which is a technique in which the power of a beam of light 

measured before and after interaction with a sample, is compared. Specific absorption 

techniques tend to be referred to by the wavelength of radiation measured such as 

ultraviolet, infrared or microwave absorption spectroscopy [20] , and chemiluminescence 

technique, which is a technique that refers to the emission of light from a chemical 

reaction; that was first coined by Eilhardt Weidemann in 1888. [21]. 

1.1.1.2 Electrochemical (EC) Techniques 

So far, optical techniques; particularly LIF detection is the most widespread detection 

method used in the industry. However, its major drawback is so c1ear in which most 

compounds are not naturally fluorescent, thus further steps are required to change the 

separation properties of the analytes. Moreover, the high cost and large size of the 

instrumental set up of the LIF detection are sometimes incompatible with the concept of 

micro total analytical systems (fl-TAS) [22], especially with the applications when 

portability and disposability are necessary, such as point-of-care or in-situ analysis. This is 

quite the opposite of the electrochemical (EC) technique [23] , it is preferably suited to 

miniaturization, biomedical and biological samples analysis. CMOS technology that is 

compatible with MEMS devices allows fabrication of biosensor devices such as 

microelectrodes on a single chip. Consequently, it is leading to a fully integrated system. 

The principle transducing that is based on the electroanalytical chemistry can achieve more 

th an one method, for instance, potentiometry, voltammetry, and conductometry [24]. 

Therefore, electrochemical technique is considered and it attracts a large number of 

scientists and researchers. The Electrochemical Impedance measurements expressed in 
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terms of a magnitude, Zo, and a phase shift, <p and plots in either Nyquist or Bode plot. 

Nyquist Plot can be obtained using the expression for ZC w) that is composed of real and 

imaginary parts, by plotting the real part on the X-axis and the imaginary part on the Y -axis 

of a chart. The major deficiency ofNyquist plots is that it cannot enlighten what frequency 

was used to record a specific point. Therefore, an alternative method to analyze the data of 

EIS based on the Bode plot is used. Unlike the Nyquist plot, the Bode plot does show 

frequency information, which shows on the X-axis the plotted logarithmic values of the 

frequency Cw) and shows on the Y-axis both the absolute values of the impedanceCIZI = 

Zo) and the phase-shift. Bode plots have a logarithrnic axis for frequency, and magnitude is 

expressed in decibels (dBs). Figure 1-4 shows the general Nyquist plot [25]. 
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Figure 1-4. Nyquist plot illustrates the characteristics of the impedance. 

1.1.1.3 Microjluidic channel fabrication 

Biosensors is working along with microfluidic functions that can be readily integrated 

on microchips; using surface and bulk silicon structure with sorne materials that are 

compatible with biological issues, such as PMMA, and PDMS.  High-performance 

detection is strongly requested. Consequently, the final success of a Il-TAS is highly 

determined by the ability of researchers and engineers to realize detection methods that 
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utilize the advantages of reduced diffusion lengths and confined geometries, while also 

solving the challenges imposed by su ch miniaturization [26]. 

Microfluidic channel fabrication depends on master molds. Fabrication of master molds 

is the key to the replication technologies. There are three methods that are utilized for 

master molds fabrication, including micromachining methods [27] , electroplating methods 

[28] and silicon micromachining methods [29]. After master molds have been fabricated, 

several methods can be applied for the replication step, such as hot embossing, injection 

molding and casting [30]. Creating a master requires basically couple of technologies, soft-

photolithography and rapid creation of a master prototype, these are the most common 

methods that's employed to achieve off-chip biosensor, on-chip sensor can be done using 

post-CMOS process, which adds more complications to biosensors development. Soft-

photolithography is a set of non-photolithographic methods for replicating patterns. A 

cleanroom protocols are not essentially requiring for the soft-photolithography methods for 

replication resolution in micro scale [31]. 

Figure 1-5 Microfluidic channel fabrication using photolithography and Rapid 
prototyping techniques 



13 

The second technique is rapid prototyping begins with creation of a design for a device 

in a using Electronic Design Automation tool (EDA) like Cadence program for example. 

Then; the design conveys on to a glass "Mask" using high-resolution mask aligner, which 

lately uses in contact photolithography to produce a pattern of photoresist. Then polymeric 

substrate such as PDMS is spread against the master made of patterned photoresist, to form 

the desired device. Figure 1-5 shows the microfluidic channel fabrication using soft-

photolithography and rapid prototyping techniques. There are sorne requirements as 

mentioned in details before, but for microfluidic detection compared to those of 

conventional analytical systems. If we put the tremendously small volume and the cell size 

into account, a higher sensitivity and special structures are strongly required. As a result, 

the time that passes the channel would be short so the detector should have faster response 

times. 

1.1.2 Biosensors instrumentation and CMOS Technology 

In terms of instrumentation, a biosensor is defined as a measuring device that exhibits a 

characteristic of an electrical nature (charge, voltage or current) wh en it is sùbjected to a 

phenomenon that is not electric. The electrical signal it produces must carry ail the 

necessary information about the process under investigation. Under this definition, a sensor 

could be regarded as a transducer as long it is capable to transforms one physical quantity 

into another. This idea is restrictive because a transducer is a quantitative device; a sensor 

actually possesses a much larger capacity. First, it should recognize the phenomenon, in a 

specific way if possible, and must translate it into a quantifiable property, which is then 

transformed into an electrical signal by a transducer. Thus, the original event is represented 

as an electrical signal and modern techniques of data collection and control can be applied 



14 

[32]. In a biosensor, the phenomenon is recognized by a biological system called a 

bioreceptor, which is in direct contact with the sample and forms the sensitive component 

of the biosensor. The bioreceptor has a particularly selective site that identifies the analyte. 

Most biosensors make use of existing transducers and the instrumentation already 

associated with them. The principal modifications are made to the part of the transducer 

where the biological system is to be situated. Biological systems must be renewed 

periodically to maintain an optimal activity and the membranes that carry proteins and 

other reactive substances are much easier to handle if they are removable or disposable 

components [33]. The choice of biosensor is often related to the cost of the instrumentation 

for a given application. Biosensors will be used more extensively in health care in the 

future, if their total cost, inc1uding the instrumentation, is not excessive. In this respect, 

electrochemical biosensors appear to be weil placed, requiring apparatus that is both simple 

and small. Optical biosensors generally require much larger apparatus with systems of 

lenses, mirrors, monochromators, and photomultipliers. Ali biosensors need a recording 

system to observe the reproducibility of the signal. This also indicates the nature of the 

response curve and detects any irregularities. Furthermore, it provides a permanent record 

of the behavior of the biosensor during both calibration and the determination itself [34]. 

Microsensors can be in microelectrodes, nanoelectrode, and ultramicroelectrode size 

[35]. The name "microsensor" means that the size of the active sensing area is in the micro 

range, whereas the sensing device itself is much larger and designed so that it can be 

handled easily. Miniaturization may result in a stronger device, such as the 

voltammetrically operated ultramicroelectrodes [36] . Despite the fact that the dimensions 

have been dramatically reduced by several orders of magnitude, the total amount of 
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information may be greater. In the case of biomedical sensors, increasing the information 

gathering capability per unit volume is often the motivation for integrating electronics in 

the system. Integration also results in sorne very promising properties, besides the resulting 

system is more versatile, it allows drifts to be corrected; fitting and calculation software to 

be implemented for the measurement based on nonlinear calibration functions; and 

interferences to be compensated by using sensing arrays. Merging sensing elements with 

electronic devices for transduction and readout has led to new capabilities, but has also 

imposed sorne constraints on the biosensor system; the size of the biomolecular samples 

[37]. Smaller sensor and sensing layer areas is highly request to improve their performance 

by reducing distances between electrodes, thanks for miniaturization and Nanotechnology. 

For these electrodes, sensitivity refers to the decreasing surface area exposed to the target 

analyte. For that reason, ultramicroelectrodes are often used in spectroelectrochemistry 

[38]. The thickness of the sensing layer in biosensor is a figure of merit. In optical 

transmission sensors, however, the optical path length is equal to the thickness of the 

optical sensor (optode) membrane. In optical bulk membrane, technology the optical 

sensing layer equilibrates with the target analyte in the sample phase. Therefore, the 

thickness of the sensing layer determines not only the speed of equilibration, but also the 

optical path length. So reducing thé thickness of the sensing layer also increases the 

sensitivity [39]. 

1.1.3 Immobilization 

In biosensors, functionalization the surface of the bioreceptor is very important step to 

be occurred in order to integrate the selected biorecognition elements. This is one of the 

most critical steps in biosensor development because biosensor performance (sensitivity, 
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dynamic range, reproducibility, and response time) depends on how far the original 

properties of the bioreceptor are kept after its immobilization. Therefore, bioreceptor 

requires direct or indirect immobilization on transducers to ensure maximal contact and 

response. Immobilization technique used for the physical or chemical fixation of cells, 

organelles, enzymes, or other proteins such as monoclonal antibodies, onto a solid support 

and solid matrix or retained by a membrane, in order to increase their stability and make 

possible their repeated or continued use. Immobilization has the advantage of stabilizing 

the protein so that it can be used repetitively. The sensing properties of a sensor depend on 

the physical-chemical environment of antibody and antigen-antibody complex, which are in 

turn determined by antibody immobilization techniques such as adsorption techniques [40], 

entrapment [41] , cross-linkage [42], or magnetic microbeads [43]. 

Functionalizing the surface of the biosensor; glass or silicon by a chemical material 

such as epoxysilane, polylysine or aminosilane; facilitates bonding the biological 

recognition elements such as enzymes [44], antibodies [45] or reporter genes [46]; to the 

surface; i.e. polymer, glass or silicon of the biosensor. 

1.2 The problem and the general framework of research 

By far, the main pathogen detection methods use DNA microarray techniques. These 

methods rely on Petri culture, colony counting and Enzyme-linked Immunosorbent assay 

(ELISA); which also rely on antibodies or nucleic acid polymerase chain reaction (PCR) 

detection [47]. The reason for this is the high selectivity and reliability ofthese techniques, 

which have different strengths and weaknesses. Culture and colony counting is the oldest 

method and is the one that is generally considered as the reference. It enables the detection 

of viable cells, but it is labor intensive and takes up to several days to obtain results. 



17 

Biosensors are relatively new players in the pathogen detection arena and the use of 

biological recognition element generally limits their performance. Such recognition 

elements are mostly antibodies or DNA sequences. While DNA based methods are 

excellent for their selectivity and long-term stability, they usually are unable to 

discriminate between viable and non-viable cells. Furthermore, antibody based biosensors 

are generally very expensive to produce and may suffer from cross binding of other 

bacteria, which would lead to false results. 

Miniaturization of biosensors is one of the recent trends aImmg towards both 

increased performance and portability along with low cost for mass production. To do so, 

ail the geometric and operational parameters have to go through proper optimization. 

However, it is both time-consuming and costly to study the effects of those parameters on 

performance by conventional prototyping. The modern approach of numerical prototyping 

is formulating mathematical models that best describe the system and use powerful 

computers to find the optimum design parameters. This does not only cut the cost of 

experimentation by reducing the number of experiments needed to analyze a particular 

problem , but it can also be used to explore problems that are difficult or expensive to test 

and make extrapolation to the uncultivated regions. Developing and producing miniature 

analytical instruments and devices can achieve a number of advantages; besides rapidly 

analyzing extremely small amounts of substance, it can also perform on-site analysis and 

analysis in security areas. Micro/Nanochip analytical devices that lead to multi/single Lab-

On-A-Chip devices are microdevices that merge microfluidic technology with electrical 

and/or mechanical functions for analyzing tiny volumes of biological sample. Analytical 

microdeivces can perform a progress through two ways to produce more versatile and 
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sm aller instruments. Firstly, developing the entire miniaturized systems in which they are 

capable and attractive devices for the analysis of pico-, femto-, and atto-molar quantities of 

biological and biomedicine samples, and secondly, developing dedicated systems by 

accelerating the development of chemical sensors, sensor arrays, and microsensors. In 

addition, miniaturization might be able to produce an instrument combining or hyphenating 

miniaturized single elements based on different working principles without sacrificing their 

versatility. 

The combination of both the surface-bound antibodies for identification and  the 

surface interaction for detection process is the mechanism of the conventional detection 

techniques. This technique has limitations because of the inadequate biomolecular binding 

to the sensing surface. This is because the biomolecular binding is too sm ail to move from 

the suspension and bind to the functionalized sensing surface. Recently; the specification 

and the behavior of the biosensors overcame this serious issue due to their high sensitivity, 

specificity, selectivity and improved accuracy. Therefore, the multi-Iab on a single chip 

technology (MLoC) enhanced the modern detection techniques by including capacitive 

(CBCM), optical, electrochemical (EIS) and magnetic techniques ail on one single chip. 

CMOSIMEMS technologies, integrated microfluidic channel, sorting, and biomolecular 

cells identification on a sort of substrates such as glass, polymer or plastic are the basis of 

modern biosensors (i.e. MLoC, micro total analytical systems ~  etc ... ). Note that 

miniaturizing of the sensing systems allows faster detection of tiny volumes of 

biomolecular cells than that of the macroscale analysis techniques, which in sequence 

facilitates the new generation of biosensors that exhibit rapid biological samples detection, 

leading it to be fit for point-of-care diagnostics. The performance of the biosensors should 
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be high enough to detect pathogens at low-Ievel concentrations of biomolecular cells, 

which is enough to cause a disease. Such transducers could play a significant role for 

monitoring contamination of water supplies with pathogens. Therefore, performing 

successful detection at low concentration depends on reliability, sensitivity and short timing 

to obtain results, which become the main characteristics of biosensors. The measurement 

for this low level of concentration should pass through a protocol starting from the location 

where the samplepicks up. Then the surface goes through modification followed by the 

treatment that binds it onto the sensing surface until finally the system reads out the results. 

The aforementioned approaches so far (the CBCM, Optical and EIS methods) 

required sample pre-treatment steps and signal amplification strategies, which cause sorne 

complications and challenges. Therefore, this work presents a novel microsystem that 

integrates a fishing system with the interdigitated microelectrodes arrays (IDMA), which 

may lead to highly functional and versatile biosensor systems, bacteria detection with high 

sensitivity, and fast-response times based on CMOS microcoil. Magnetic particles are ideal 

to solve both challenges at once, since the magnetic fields can easily manipulate them. 

1.3 Originality 

The thesis includes a variety of techniques that conducts transducers as biosensors, 

which produces a novel outcome. The single die has ail of the biosensors implemented 

within it using CMOSP35 TSMC technology available through the Canadian 

Microelectronics Corporation (CMC), which leads to a reduction of features that enhances 

and improves the new generation of multibiosensors, named multi-Iabs-on-a-single chip 

(MLoC) system by increasing its sensitivity. Implementing MLoC system exhibits 

eminent capability to achieve high performance of detecting biological samples. The 
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achievement of this objective depends on developing and fabricating a low-cost disposable 

OFF-chip microfluidic channel interface (MFCI) incorporating it with the interdigitated 

microelectrode arrays (IDMA) using the soft photolithography technique in the c1eanroom 

environment that will ail work along with the MLoC system. At the end, the MLoC system 

goes through testing and validation using the Labview software. 

Furthermore, each single biosensor out of four has a pew modification in design. For 

the CBCM technique,  a new layer sited on top of the reference capacitor isolates it. This 

layer consists of two metals that protect it from any external contamination in the course of 

running the experiment without altering the ~ of its capacitance. For the optical 

biosensor, and in the light of the fact that the sensitivity of the optical sensor depends on 

the exposed area to the light, the surface increases to the VPNP phototransistor 32 x 32 

arrays instead of 16 x 16 arrays, also, the chip contains ail the required resistors on-chip. 

For the electrochemical impedance technique (EIS), ail of its stages implemented on-chip 

includes voltage controller and signal-processing unit along with their associating 

capacitors and resistors. For the CMOS Microcoil biosensors technique, the entire sensor 

implemented on-chip includes the IDMA sited on the top of the microcoils for magnetic 

field manipulation. The work includes two types of IDMA; on-chip using CMOS 

technology for CMOS Microcoil sensor and OFF -chip on MFCI surface using soft 

photolithograph technique inside the c1eanroom. 1 wrote the Labview code to thoroughly 

control the experiment and provide us with useful information. 

1.4 Objectives 

The main objective of this  thesis is to develop novel multibiosensors that integrate 

state-of-the-art technologies that lead to a new generation of multilabs on a single chip 
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(MLoC). The mam outcome of this work is to allow detection and quantization of 

biological sample using miniature devices at a lower cost. Developing and fabricating the 

following elements will help achieve this objective: 

1. An integrated circuit reading from an interdigitated microelectrodes array 

(lDMA); 

2. A low-cost disposable-type microfluidic channel, which consists of an array of 

interdigitated microelectrodes, will act as a sensing layer for CMOS microcoils 

biosensors to perform impedance measurements through the magnetic field 

manipulations. 

3. The integration of the microelectrode chip with a simple microfluidic channel 

interface (MFCI) acts as working electrode for electrochemical impedance 

spectroscopy measurements (off-chip); 

4. Characterization, testing and validation ofthe entire MLoC integrated system. 

5. Test environment automation for ease to extract the measured data that the 

Labview software will post process and analyze. 

This work introduces a novel biosensor integrating state-of-the-art technologies that 

will allow the detection and quantify biological cells in freshwater, food , and other 

biological fluids. 

1.5 The Methodology 

As stated, the traditional biosensor methods are labour intensive and take up to several 

days to obtain results. Miniaturization of biosenso,rs is one of the recent trends aiming 

towards both increased performance and portability along with low cost for mass 
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production. To do so, ail the geometric and operation al parameters have to go through 

proper optimization. Accomplishing this miniaturization can be achieved through using 

CMOSP35 TSMC technology available through the Canadian Microelectronics 

Corporation (CMC) to design and fabricate the chip. Figure 1-6 shows these prototypes and 

will be unfolded in the following sections. 

Figure 1-6 The layout of the entire biosensors devices on a single chip. 

1.5.1 Research Design Strategy 

Yielding the objective of this work can be reached by developing the entire 

miniaturized systems in which they are capable and attractive devices for the analysis of 

pico-, femto-, and atto-molar quantities of biological and biomedicine samples, and 

secondly, developing dedicated systems by accelerating the development of chemical 

sensors, sensor arrays, and microsensors. In addition, miniaturization might be able to 

produce an instrument combining or hyphenating miniaturized single elements based on 

different working princip les without sacrificing their versatility. 
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1.5.2 A CMOS Resizing Methodology 

Resizing CMOS transistors is a crucial step for the reprocess of analog circuits. A 

technology migration can be achieved by resizing the methodology that should keep or 

advance and enhance the original design's figure of merits, which are performance, 

reduction of the area of the device and power consumption [48]. The resizing methodology 

of CMOS transistors passes mainly through defining the features that should be 

maintaining, and then determining the new transistor sizes by finding the aspect ratio in the 

light of the results that are figured out. 

1.5.3 Research tools 

CMOSP35 TSMC technology available through the Canadian Microelectronics 

Corporation (CMC) to design and fabricate the chip was used to resize the transistors and 

get the technology migration from macro scale to micro scale or smaller. The experiment 

setup reads out the result using the Labview software. In addition, the cIeanroom facilities 

were got involved for MEMS fabrication. 

1.5.4 Data analysis 

The result that carried out from the experiment set up is analyzed and manipulated to be 

used for validating the system. 

1.5.5 Limitations and challenges 

As with any of the traditional biosensors, the MLoC system has its limitation due to the 

size of the biomolecular cell. Therefore, becoming familiar with the application in ad vance 
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is necessary to design the biosensor but thus far, it remains a challenge for researchers in 

these fields. 

1.6 Structure of thesis 

The thesis includes a variety of techniques that are conducting biosensors as 

transducers. The single die has aIl of the biosensors implemented within it, which leads to a 

new generation of multibiosensors named as multi-labs-on-a-single chip (MLoC). 

The thesis is organized in six chapters and three appendices. The tirst chapter includes 

the general introduction and discusses the problem, the objectives, the originality, the 

methodology, and the state of the art of the existing biosensors techniques. The second 

chapter unfolds the details behind the new design of the multibiosensors that are 

implemented on a single chip; this chapter focuses on the CMOS capacitance biosensor that 

is based on Charge-Based Capacitance Measurements (CBCM), design and simulation. The 

chapter then goes through the experimental setup for validating the biosensor and it ends up 

with sorne experimental results and conclusion. The third chapter unfolds the novel design 

behind the optical biosensors. These sensors were implemented using CMOSP35 

technology on a single-chip that covers optical spectroscopy, VPNP design, operation, 

characteristics and structure. This chapter is concluded by sorne experiment procedures 

followed by the results and conclusion for the different cases for validation purposes. The 

fourth chapter expands on electrochemical impedance spectroscopy techniques for 

electrochemical sensing biomolecules. It details the biosensor principles, architectures and 

behavior, and th en features the electrochemical detection techniques. The IDMA 

microfabrication and its characteristics, its influences and the advantages are discussed in 

details. Additionally, this chapter co vers Non-Faradaic and Faradaic impedimetric 
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measurements. This chapter is concluded with sorne equivalent circuit modeling of the 

immunosensor system including the experiment set-up along with sorne results to validate 

the system and a conclusion. The fifth chapter describes CMOS Microcoils, and magnetic 

field manipulation techniques. A CMOS IC microcoil array architecture and design is 

shown and discussed followed by a detailed description of the digital design of the control 

circuit and impedimetric biosensors based on CMOS technology. Moreover, the behavior 

and characterization of microcoil using the impedance concept and the equivalent circuit 

modeling of the immunosensor system is demonstrated along with sorne experimental setup 

protocols to validate the system and the chapter ends up with the conclusion. The last 

chapter summarizes the overall conclusions for the whole system. It also demonstrates the 

contributions and suggestions for future works and challenges. Useful information is 

included in the following appendices: 

1. Appendix A: Labview programming and code source, 

2. Appendix B: Experimental Procedures' Images for (MLoC) system, 

3. Appendix C: French summery for the entire thesis. 



Chapitre 2 - CMOS capacitance sensor based on Charge-
Based Capacitance Measurements 

2.1 Abstract 

The use of the industrial complementary metal oxide semiconductor (CMOS) 

technology for fabricating biosensors, phototransistors, potentiostat, with the aim of 

reducing costs, size and time to market them will be discussed along with the 

implementation of CMOS-based capacitive sensors for biomolecular detection purposes. 

The system is implemented using CMOSP35 technology that uses the TSMC fabrication 

process. Note that the system consists of interdigitated capacitor structures, metal-metal 

comb-capacitors (MMCC), signal detection and processing circuitry. The proposed CMOS 

capacitive based sensors offer a number of advantages including small size, fast response 

time and low-cost for mass production. CMOS capacitance based systems, employed in 

immunosensors, plays a major role for cancer markers. This system is specifically 

designed, fabricated and experimentally validated. 

2.2 Preview 

In this chapter, the design and implementation of capacitive sensors for biomolecular 

detection purposes is largely discussed. The proposed system makes use of bacteriophage 

or phage organisms as recognition elements to detect deadly bacteria such as E-Coli and 

Salmonella. The system works based on monitoring the changes in capacitance signais 

caused when the target bacteria are attached to the sensing interface. The system consists of 
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interdigitated capacitor structures, signal detection and processing circuitry. The signal is 

detected by a Charge Based Capacitance Measurement (CBCM) technique. The adopted 

technique was originally proposed as an accurate method to characterize interconnects 

capacitance in deep submicron CMOS integrated circuits [49] . The phage organisms are 

immobilized on the surface of the capacitor and together they form the sensing interface. 

The CMOS capacitive based sensors have the huge advantage of small size, fast response 

time, and low-cost for mass production. 

Presently, much of the bacterial analyses run in clinical laboratories, which is time 

consuming and requires extensive professional expertise. In addition, the majority of the 

available commercial devices are massive, which make them not suitable for field 

applications. Furthermore, these commercial devices are generally growth-based, which 

means that the presence of bacteria has to reach a high threshold level in order to get a 

reading from the apparatus. The growth-based technique is time consuming as it takes from 

hours to days to get the results. 

The technique is a real-time bacterial sensor microsystem that holds great promise for 

versatile applicability such as food safety, national security, and clinical diagnostics. This 

sensor system design falls back on the use of specific bacteriophages, which are viruses 

that recognize specific receptors on the bacterium surface with extreme selectivity and 

sensitivity. The phages bind to the surface of the bacterium and inject genetic material. 

Capacitive sensors offer many advantages besic;les their capability in their straightforward 

method of sensing electrode motion; they can also detect conductive, or the dielectric 

properties of a biomaterial site onto the sensing capacitor. For that reason, the capacitance 

approach measurements technology is known as a powerful technique in biosensor 
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applications due to its tremendous capability, stability and low-noise signal m sensmg 

process [50]. 

2.3 Sensor System Design 

To reduce the cost and time required for the accurate clinical analysis and life science 

application, the biosensor based capacitance immunosensors were developed. This 

immunosensor for on-site screening and monitoring of contaminants determines the level 

of contamination by measuring the change of capacitance caused by the insertion of a 

biological sample to the system. The capacitive biosensor works wh en contaminant 

biomolecules bound to specific antibodies on the sensing electrode. Wh en a biomolecular 

sample inserted into the microfluidic channel is embedded with IDMA as a sensing 

electrode, the sensing field passes through the biomaterial. The presence of the 

biomolecular material alters the dielectric, which alters the capacitance accordingly. The 

capacitance will change in relationship to the thickness or density of the biomaterial [51]. 

The compound dielectric constant of the bulk analyte mixture determines the capacitance. 

For that reason, the capacitance change can be either positive or negative depending on 

whether the analyte has a higher or lower dielectric constant K leading to show significant 

variation with biomaterial properties or with frequency. Afterwards, the measurements are 

recorded as a difference between sensing and reference capacitors. 

2.3.1 Interdigitated microelectrodes array (IDMA) 

Interdigitated array of microelectrodes is a widespread technique. For example, it is 

used to develop biosensors for monitoring the catalyzed reaction of enzymes, the 

biomolecular recognition events of specific proteins. Interdigitated array microelectrodes 

(lDMA) are integrated with the CBCM technique in order to miniaturize the conventional 
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electrodes, enhance the sensitivity and use the flexibility of electrode fabrication to suit the 

conventional electrochemical cell format or microfluidic devices for a variety of 

applications in chemistry and life sciences. This work focuses on IDMA that is based on 

the CBCM technique as biosensors. Interdigitated microelectrode arrays (lDMAs) are 

fabricated on glass wafers and optimized to obtain optimal oxidation and reduction 

reactions. Therefore, IDMA are utilized to increase the sensor capacitance performance in a 

tiny biomolecular volume. 

A custom CMOS capacitance sensor is designed using the topology shown in Figure 

2-1. A CBCM based capacitive sensor circuit has been reported [52]. In general, the 

behavior of the CBCM technique can be characterized based on the current of each branch 

of the CBCM circuit that is amplified by a CUITent mirror. This current is then converted to 

a DC voltage using a simple capacitor (Cnt). 

Figure 2-1 

J-o[tage 
foUowt!,. 

Simplified block diagram ofCBCM technique. 

A differential amplifier (DAMP) finally subtracts the resulting voltage outputs of both 

the sensor circuits' reference and sensing electrodes as shown in Figure 2-2. It is noted that 

the only important limiting factor on the accuracy of this sensor circuit is the input voltage 
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offset of the DAMP circuit. The proposed biosensor boasts a fully differential architecture 

using sensing and reference capacitors to achieve improved resolution and high signal-to-

noise ratio (SNR). The sensing and reference capacitors are identical interdigitated 

structures with a metal layer placed over the structure for immobilizing the phage 

organisms and protecting the structure against hydration. 

Referenc 
E,Jectrod 

Figure 2-2 

Sensing, 
Electrode 

ID1'/IA 
Schematic diagram of CBCM technique. 

The sensor system is designed using the CMOSP35 process available through the 

Canadian , Microelectronics Corporation. The interdigitated capacitors are implemented 

using the metal layer available in the CMOS process. Another metal layer is placed over 

the capacitor structure. A Passivation (dielectric) layer protects the CMOS circuit and the 

reference capacitor where only the sensing capacitor is exposed to the sam pie by opening 

the dielectric layer over it. In addition, the unexposed region of the CMOS system was 

covered with epoxy after the chip was fabricated as protection for use in aqueous samples. 

The CMOS capacitive biosensors that incorporate IDMA configurations are introduced to 
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be used in biological and life science application in order to abuse the advantages of 

IDMA, which have a narrow gap between the electrodes, since the distance between 

electrodes is directly related to the sensitivity of the sensor. The electric field generated in 

one of the IDMA is distributed in the area where the target interacts with the bioreceptor, 

creating a change of the generated electrical field , which is detected on the second IDMA. 

The ionic media is a drawback in this kind of sensors because of the pre-dominant 

electrical spreading resistance of the solution. Figure 2-3 shows the schematic diagram of 

the interdigitated capacitor; named Metal-Metal Comb-Capacitors (MMCC). The 

capacitors are fabricated exclusively with layers and processing steps are available in the 

standard CMOS process. Note that the eledrode El (Blue) is formed by metal layer one 

while the electrode E2 ( orange) is a stack of metal layers one and two. While many of the 

processes used for MEMS fabrication are not compatible with the CMOS IC process, 

depositing a sensor material cnte a previously fabricated CMOS circuit can create a very 

useful category of sensors. 

Figure 2-3 A schematic diagram of the interdigitated capacitor. 

In this work, a CMOS capacitance biosensor composed of immunosensors bioreporters 

is reported; genetically engineered bacterial pathogen cells, are deposited onto 
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interdigitated microelectrodes (IDMA) that are fabricated through the CMOS technology 

process provided by CMC. The bioreporter used for this work is immobilized on the 

surface of the sensor capacitance made of IDMA. The immunosensor is detected by 

measuring the variation of the capacitance as a function of the concentration of bacteria 

[53]. The interdigitated microelectrode configuration is enhancing the sensitivity of the 

biosensor by maximizing the sensing area with a strong electrical field due to small gap 

between the fingers of the capacitor [54]. Figure 2-4 shows a layout of the interdigitated 

microelectrodes arrays  capacitor. It consists of 30 electrode pairs and occupies an area of 

100.3 flm x 102.8 flm, where the n e g ~  microelectrodes arrays' sensor area is 

similar to that of the reference electrode. However, it is noted that there is an isolation layer 

laid out on the reference electrode to protect it from any external contamination. The width 

and spacing of single electrodes are 1.0 flm and 0.6 flm respectively, as shown in Figure 

2-5. CMOSP35 technology defines the height of the microelectrode and the extracted· 

capacitance value is around 500.005tF. A capacitive biosensor utilizing a couple of 

capacitors are each composed of interdigitated microelectrodes array. 

Figure 2-4 Layout of the interdigitated microelectrodes arrays capacitor, (a) the sensor 

capacitor (b) the reference capacitor. 
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The reference capacitor is covered and protected entirely where the sensing capacitor is 

modified and functionalized separately and chemically by a sensitive polymer. The 

presence of the polymer on top of the sensing capacitor aims to absorb the biorecognition 

elements to bind the bacterial pathogen cell. Therefore, any variation on the surface will 

directly change the capacitance of the electrode and thus it is electrically detected and 

recorded. Figure 2-6 is demonstrating the block diagram of the CBCM integrated with the 

Interdigitated Microelectrode array and signal-processing system, where Figure 2-7shows 

the layout of the entire CMOS capacitance biosensor. 

; 

i 1.0um '< >1 . 
!Front viJw 

Figure 2-5 The dimension of the width and gap for the IDMA. 

The IDMA technique based on CMOS technology to implement the capacitive 

biosensor shows an unprecedented robustness and more sensitivity owing to a large area of 

the sensing surface and a small electrode gap (0.6 !lm) besides other known advantages of 

IDMA were reported [55]. 

Such technology allows further detection oftiny biomolecular samples in medicine and 

life science applications such as a label-free capacitive DNA sensing. The mechanism of 

this technology lies on characterizing the immunoreactions that occur on the sensing 

surface by capacitive parameters. As soon as the DNA targets bind on the sensing surface, 

the capacitance of the electrode will change accordingly. The read-out circuitry inc1uding 
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the Labview software is monitored and recorded by the output of the sensor. The CMOS 

capacitance approach offers many advantages over the other techniques. Besides the high 

sensitivity thanks to the presence of IDMA, it is also useful in real-time detection and it 

costs less with respect to the optical technique expenses [56]. 

Figure 2-6 

Sensing 
electroJe 

The Block diagram of the CBCM integrated with Interdigitated 

Microelectrode array and signal-processing system. 

Figure 2-7 The Layout of the entire CMOS capacitance biosensor. 
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2.3.2 Biosensor system design and architecture 

Capacitive immunosensors are based on altering electrical conductivity at a constant 

voltage, which is caused by immunoreactions that specifically generates or consumes ions. 

Femandez-Sanchez et al. [57] developed a disposable, non-competitive capacitive 

immunosensor for PSA. This work presents femto-molar detection bacterial pathogens 

sensor based on CMOS capacitance technology. Figure 2-8 illustrates the entire capacitive 

biosensors detecting system. The binding of bacterial pathogen cells and immobilized 

antibodies on sensing surface produces negative charges, which form an electrode-

electrolyte capacitance interface [58]. 

Signal Processing System 
Sensing 

Electrode 

Figure 2-8 The Biosensor circuit based on CBCM. 

The measurement of the changes in capacitance of the biosensor has a short response 

time thus allowing the rapid detection in the presence of the specific bacteria. The label-

free bacterial pathogens biosensing approach is incorporated with interdigitated 

microelectrode arrays under an extemally applied electrical field. It is no longer limited to 

observing the existence of the live pathogens due to the variations in characteristics of the 
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architecture electrochemical of the actuators. It also has the capability to detect pathogens 

whether they are live or dead cells. Figure 2-8 shows the CMOS biosensor based on the 

CBCM detection approach. Note that the capacitance pathogen biosensor is based on the 

sensing surface with the immunoglobulin (Le. antibodies), which provides specificity for 

the target bacterial pathogen. The live bacterial pathogen bound to the immunoglobulin on 

the electrode disturbs the surface-restricted electrical field making the capacitance between 

the electrodes decreases due to change the permittivity of the media. This decrease in 

capacitance value can be detected as the positive signal. By contrast, dead bacterial cells 

are not voluminous enough to induce noticeable changes in the electrical field lines 

distribution [59]. The microfluidic channel (MFC) that is built of interdigitated 

microelectrodes arrays is used as the transducer-sensing surface. Interdigitated 

microelectrodes arrays are capable to sense narrow changes in the electric parameters of the 

electrodes surface [60]. In addition, IDMA can be employed for detecting the presence of 

particular dielectric objects on the surface of electrodes [61]. As aforementioned, the 

sensing surface is interdigitated microelectrode arrays made by CMOS technology 

CMOSP35 providing by CMC. Thus both the resistivity "p" and the permittivity c of the 

solution will be measured and recorded accordingly as long as the y are dunk in the fluid 

system [62][63]. Electrolyte medium like the metallic conductor can act upon Ohm's law: 

E Rso1 =-
1 

(2.1) 

Where parameter R soi is the resistance of the body of the solution in ohms (0), 

parameters E and l are the potential difference (V) and the current (A) respectively. By 

definition, the conductance G, is the inverse of the resistance R of a consistent body of 

uniform cross section. In the electrolyte solution, the conductance Gis given by: 
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~  
R  1 

(2.2) 

Where "k" is the specifie conductance with units n-I.m-I, A and 1 are geometrical 

parameters. Note that it is difficult to define accurately geometrical parameters A and l, 

therefore there is a need to use parameters from a known specific source and map it to the 

, 
fluidic cell parameters. Therefore, the cell constant Xcell can find out as follows: 

1 
Xcell = - = kR A 

Resistance 

Conductance 

R = E!.!:. = _1_ - Xcell - pX 
A  a A - a - cell 

a 

Xcell 

1 

P X cell 

(2.3) 

(2.4) 

(2.5) 

Where; Xcell is the cell constant (m-
I) and can be found out by measuring the resistance 

Rso1 of a cell fiJled with an electrolyte of a known specific conductance k. having cell 

constant Xcell then the specific conductance k of any solution can be determined based on 

practical tentative resistances values using any of the equations mentioned above. By 

definition, specific conductivity is the inverse of the specific resistance of an electrolyte 

measured between two electrodes 1.0 cm2 in area and 1.0  cm spaced out. The higher the 

concentration of ionic ingredient, the higher the conductivity will be present in the system. 

Note that conductivity, "0-", is the inverse of resistivity " p"and the temperature depends 

heavily on the parameter. 

The double layer capacitance in the electrolyte behaves like two parallel plates' theory, 

thus the capacitance in the electrolyte electrode interface can be given as follows: 

c = éA 
d 

é 

Xcell 
(2.6) 
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Where ëO is the electric constant equal to ëO ~ 8.854 pF m- 1 and the permittivity ër is the 

dielectric constant of the material between the plates. In the light of the aforementioned 

regarding the cell constant "Xcell", the relation between the measured values of the 

resistance; Rsol and the capacitance; C can be undoubtedly noted by the direct proportion to 

the resistance Rsol and inverse proportion to the capacitance; C, (Source: PA C, 1974, 37, 

499 (Electrochemical nomenclature) on page 511) the constant cell is given by: 

L E R 
X cell = - = kR = - = -A C P (2 .7) 

For capacitive detection of bacterial pathogens, a suitable frequency should be selected 

under the application of a specific electrical field is needed. In the presence of bacterial 

pathogen binding to the surface of the electrodes via the biomolecular recognition of 

antibodies, the entire system will be perturbed and the variation will be detectable and 

measurable. In addition, the geometries of the electrodes and interface gap between the 

electrolyte and electrode are playing a significant role in the cell constant. 

Figure 2-9 Surface sensing binding with pathogens. 

As soon as the surface of the sensing transducer is modified by filling it with a 

biomolecular sample as a new dielectric in between the interdigitated electrodes it leads to 

variation in the capacitance Cr: 



C - A ErEo 
T---

d 
(2.8) 
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Biosensors based on capacitance measurements incorporated with IDMA generates 

strong electrical field between the fingers when pathogens are detected. The mechanism of 

this technique depends on the generated electrical field, where it starts from one si de and 

ends on the other finger of IDMA as shown in Figure 2-9. The electrical field is spreading 

in the gaps creating a disturbance in a form of a generated electric field. The latest criterion 

has tiny volume due to the membrane potential of cells breaks down and the ions in the cell 

are driven out. Dead cells still have the capability to be binding to the antibodies similar to 

live cells. However, their impact on variation in capacitance properties of the interface is 

negligible. Therefore, the plot of capacitance of the two categories will clearly distinguish 

between the behaviors of each criterion under the same conditions. Differentiating between 

the living or dead pathogen is a big advantage for the IDMA configuration. By contrast, the 

capacitance approach is not susceptible to these issues since the transducer can differentiate 

the volume of the insulating cell via the perturbation of the surface-confined electrical field 

measured at a proper frequency range. The interdigitated transducers have a finger width of 

1 Ilm and the gap between fingers is 0.6 Ilm, and these geometries confines 80% of electric 

field lines and currents within a distance equal to half of the pitch [64]. Therefore, this 

layout makes the detection of micrometer-sized dielectric objects such as live bacterial cells 

most sensitive. 

The target bacteria gets attached to the immobilized phages on the sensing capacitor, 

which changes the capacitance of the comb capacitor by interrupting the electrical field 

between interdigitated fingers as shown in Figure 2-9. The phages are not immobilized on 

the reference capacitor and hence it does not experience any capacitance changes with the 
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changes in bacterial concentrations. The CMOS Charge Based Capacitance Measurement 

(CBCM) circuit measures the difference of the capacitance between the sensing and 

reference capacitors and provides a voltage output [65] . CMOS capacitive biosensors are 

used recently on different applications such as Multi-Labs-on- a chip and micro technology 

system. Figure 2-10 illustrates the entire system ofMLoC applications. 

Multibiosensors: 
1. 0ptical 
2. CBCM 
3. MFC 
4. EIS 
5. Magentic 

Figure 2-10 An illustration ofCMOS capacitive biosensor for MLoC applications. 

2.3.3 Read-out circuitry 

The CMOS signal-processing system, shown in Figure 2-11 is a key component of the 

impedance measurements system. The CMOS circuit is designed and fabricated using the 

TSMC CMOSP35 processing technology. Ali transistors operate at the standard 3.3 V. The 

simplest noise approximation for the microluminometer assumes the detection of a dc 

signal in wide-band white noise [66]. 

The signal-processing circuit aims to con vert the current passing through the output 

stage into a digital signal, where the frequency is proportion al to the concentration of the 

pathogens in medium. This is solved by using a hybrid analog/digital integration scheme as 

shown in Figure 2-11. In this circuit, an analog integrator and a djscriminator con vert the 

cUITent generated as byproduct into a train of digital pulses; current-to-frequency converter 

(CFC). 
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Figure 2-11 Block diagram of the signal-processing circuit. 

These pulses are counted for a fixed time (to) , and the result is a digital word that is 

proportional to the working electrode current intensity. This system has several advantages 

compared to other processing options such as fast recovery from overload, and ease of 

analog-to-digital conversion reported in optical detection systems [67]. 

The mechanism of the signal-processing system can be explained by electronically 

analyzing the behavior of the circuit. The key for the signal-processing circuit are switches 

WS 1 and WS2. lnitially, both of the switches are closed during the beginning of the 

integration process. Consequently, a bias is applied on the detector and the output of the 

integrator is at "ground" and 0.5 V respectively. The role of the integrator is integrating the 

current coming out of the working electrode for a time t int that is determined by the voltage 

reference Vref used by the comparator. The comparator switched its output state when the 

integrator output gets to Vrej level. The main function of the comparator is to produce an 

output to trigger a one-shot circuitry, which in turns generates a pulse oftime period treset to 

bring the switches WS 1 and WS2 to "off' state. The one-shot stage has a role to generate a 

pulse width that assures that the switches are completely reset. The one-shot output as 

shown in the Figure 2-11 also has another function, which is triggering the sequential 
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circuit toggle dynamic flip-flop, which in turns generates a digital signal with frequency 

value defined by the following equation [68]: 

1 
fout = ( ) 2 tint+ treset 

(2.9) 

This circuit produces digital pulses with the frequency being inversely proportional to 

the effective capacitance [69] where the sensor and reference capacitance electrode are 

connected to the readout. The readout circuit translates the analog capacitance difference 

into a digital output signal. The frequency of the output signal is proportional to the 

difference of sensor and reference capacitance as weil [70]. 

Simplified equivalent circuit shown in Figure 2-12 can model the biosensor based on 

capacitance measurement. In general, the model is a capacitance in parallel with a 

resistance. The superior behavior of the capacitance can be achieved by the excellent 

capacitor dielectric that has a very large shunt resistance'. 

Cs 

Figure 2-12 IDMA simplified equivalent circuit 

As long as the bioreporter sensing concentration of the bacterial pathogen is present in 

the microfluidic channel, the impedance of the electrolyte (Z) will change. In the light of 

Ohm' s law: 

1 =!!.... 
ZT 

(2.10) 
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Where the total impedance Zr is combined of two parts; real part ZRe the increase of the 

resistance of the solution and the imaginary part Z/m decrease the double layer capacitance 

accordingly: given as: 

(2.11 ) 

ZRe = Rsol This resistance tends to be vey high Rsol » so this leads it to be: 

Z - _._1_ 
lm - J 2rrfC 

leading to: 

1 = -2rrfC VDD 

Where V dd: is the applied voltage. 

(2.12) 

(2.13) 

Therefore, as the capacitance increases due to high concentration, the current flows 

through sensing the capacitance increase as weil. The higher the concentration of the 

bacterial, the lower the impedance, the more current flow and the higher the frequency 

occurs. The sm aller the amount of the sensing signais of the system is the more sensitive it 

becomes. This criterion is considered as one of the most important specification of the 

transducer. The transducer based on capacitance measurements is a smart sensing system 

for a very low concentration of environmental biological domain. Consequently, the 

bioreceptor and the signal-processing circuit play an important role through out the 

measurement process 

2.3.4 Signal andfrequency 

The SNR ratio of the capacitive biosensors can be defined by the ratio of excitation 

voltage to the amplifier voltage noise. The theoretical limit of the excitation voltage and a 

high-impedance amplifier will become corruptive if the amplifier current noise becomes 
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significant. The amplifier current resulting either from very high impedance sensors or 

from the amplifier input capacitance is superior to sensor capacitance. Therefore, using the 

CMOS operation amplifier can help significantly in this region due to their lowest noise 

CUITent [71]. Electronic circuit convertors usually translate capacitance changes into an 

output signais such as voltage, frequency, or pulse width modulation. In biosensors, 

systems where the capacitance is in femto or less range than the appropriate electronic 

convertors should avoid excess of leakage. The applied frequency range must be high 

enough in order to reduce the impedance of the IDMA as much as it could to avoid 

coupling with power waveforms and for the entire biosensor frequency response to be 

sufficient; i.e. 50 kHz. On the other hand, the applied frequency must be reasonably low 

enough to simplify the electronic design circuit. It is more preferable to use frequency in a 

range of 100 KHz to get a good tradeoff. Usually the shape ofthe excitation signal is either 

square or in a trapezoidal waveform. Square waveforms are more preferable due to their 

well-controlled bandwidth. The bandwidth is usually set ten times higher than the 

excitation frequency for accurate measurements. In sorne cases, a triangle waveform could 

apply to permit a simpler amplifier implementation using a resistive feedback. However, a 

sinusoidal signal boasts generally superior accuracy mainly at high frequency applications. 

Synchronous demodulators are so helpful in · biosensors that they are excited with a 

continuous waveform in order to boost precision and good rejection of noise [72]. 

2.3.5 Sensitivity 

Sensitivity plays an important role in any design particularly in biosensor applications, 

CUITent or voltage alterations in consequence of an alteration in the gap between the target 

and the sensing surface. The sensitivity can be readily obtained graphically by plotting the 
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output voltage versus the gap size; in which the slope of the line is the sensitivity. The 

. sensitivity of the biosensor as a transducer to the target as a sensing layer is proportional to 

the dielectric constant of the biomaterial. Ultimate capacitance biosensor behavior, such as 

cancer markers, is required to have stable, highly sensitive and reliable sensing surface at 

the electrode-electrolyte interface [73]. 

2.4 CMOS Charge Based Capacitance Measurement Circuit 

Charge based capacitance measurement method was originally proposed as an accu rate 

technique for the characterization of interconnects capacitance in deep submicron CMOS 

integrated circuits. Figure 2-13 shows the principle of operation in which two signal pulses 

Vp and Vn are applied to two pairs of nMOS and pMOS transistors in order to frequently 

charge and discharge the sensing capacitor Cs and the reference capacitor CR. The signais 

Vp and Vn in Figure 2-13 are two non-overlapping signais. The purpose of these non-

overlapping waveforms is to ensure that only one of the two transistors in the basic test 

structure is conducting CUITent [74]. 

Figure 2-13 Schematic representation of (CBCM). 
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Thus, the short-circuit current from Vdd to ground is eliminated. When the PMOS transistor 

turns on, it will draw charge from Vdd to charge up the target interconnect capacitance. The 

generated DC currents IDl and ID2 can be obtained from the following equations: 

(2.14) 

(2.15) 

Where Vdd and f are the power supply voltage and the frequency of cJock pulse (Vp and Vn) 

respectively. Based on this method, the subtraction of charging/discharging currents IDl and 

ID2 measured through high precision DC ammeters is proportional to ~  [75]: 

f1C = ID1-ID2 
[ .VDD 

(2.16) 

The simplified block diagram of the CBCM circuit shown in Figure 2-14 demonstrates 

the symmetrical and differential behavior of the circuit, therefore; the initial value of the 

capacitance do es not affect the output voltage. The CBCM circuit has three current mirrors 

and one voltage follower. The top two current mirrors; (M4-M6 and M5-M7) are used to 

amplify (AI) the charging currents in the two branches, where the third current mirror, at 

the bottom; (M8-M9) is used for transferring the variation of the currents to the next stage 

to convert them to voltage by using the integrating capacitance. 

The last stage is a buffering stage to isolate the circuit from whatever you connect the 

output of the circuit to has no effect on the circuit itself; voltage follower; receives this 

voltage to be delivery by the end user for analysis. Figure 2-14 is the schematic of the 

CBCM circuit. MO-M3 is the CBCM core that can convert the difference ~  between the 

two capacitors Cs and CR into current difference Lll between two currents IDl and ID2. M4-

M9 form current mirrors used to read out and amplify (AI) LlI. 
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Figure 2-14 CBCM interface circuit topology. 

Note that the gain of the CUITent mirror stage is mainly defined by the aspect ratios of 

M8 and M9. Where MIO and MIl form the voltage follower (Av) used to drive the load 

capacitor as a low pass filter. Resistors RI and R2 used to balance the offset caused by the 

fabrication mismatch and offset caused during the epoxy encapsulation and packaging. 

2.5 Experimental Setup and CBCM on MLoC System Validation 

In terms of the transduction techniques used, the three main classes of biosensors are 

optical, electrochemical and magnetic. Almost ail current methods of diagnosing 

tuberculosis (TB) have drawbacks where the level of pathogens in a contaminated sample 

is often below the detection limits [76] , they tend to be either nonspecific or too time-

consuming. In most cases of pulmonary TB, diagnosis depends upon culturing the 

mycobacterium organism, a process requiring 4-8 weeks [77]. To overcome this problem, 

sample pre-treatment steps and signal amplification strategies are usually required. In 

CBCM technique, the sensor employs a differential capacitor architecture using the sensing 
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and reference capacitors to achieve improved resolution and higher signal-to-noise ratio. 

No surface treatment takes place on the reference capacitor and hence it does not 

experience any capacitance changes with the changes in biological cells concentrations. 

Figure 2-15 The experimental setup for Multibiosensors circuit based on CBCM. 

The CMOS CBCM circuit measures the difference of capacitance between the sensing 

and reference capacitors and provides a proportional voltage output [78][79]. Figure 2-15 

shows the measurement princip le, interface capacitance determines the frequency of the 

electrodes charging and discharging transients. A comparator compares the interdigitated 

microelectrode potential with a reference voltage Vref producing a digital signal at its 

output. The frequency of the output signal is inversely proportional to capacitance. The 

integrator accumulates the current signal until its output voltage reaches the threshold of 

the comparator. Then, the one-shot circuit resets the integrator and triggers the Dynamic 

Flip-Flop (DFF) [80]. The output frequency of the DFF is the digital representation of the 

variation of the sensing capacitor. To minimize error and simplify the sensor 

implementation the output can be read directly without further post processing [81][82]. 
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2.6 CBCM Technique Validation 

2.6.1 Simulation Resu/ts 

In this section, simulation and experimental results of sensing capacitance, interface 

circuit, interdigitated MMCC capacitance are introduced and discussed. The transient 

output voltage of the interface circuit Figure 2-13 is simulated using Spectra under Cadence 

environment for different values of input sensing capacitances (Cs) as shown in Figure 

2-14. Figure 2-16 demonstrates the linear relation between output voltage and input sensing 

capacitances, where the  reference capacitance CR is 500fF. As shown in these figures, this 

design results in 0.38 m V /fF sensitivity: 

L'IV 
S = L'le = 0.38 mV /fF (2.17) 
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Figure 2-16 Simulation results showing the voltage output of the CBCM circuit. 

If there is an unexpected offset in the capacitance value in the CBCM circuit, the value 

of resistor Rean be adjusted to cancel the offset that might occur because of CMOS 

mismatch issue. Normally; the value of 1/(fC) is much larger than R; hence adjusting the 
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value of the resistance will not have a significant affect on the sensitivity of the circuit. 

Figure 2-16 shows the Spectra simulation result of the circuit. The output voltage changes 

from 2.871 V to 3.061 V because of the variation in the capacitance, !1C = 500 fF. When 

similar devices are used on both sides of the CBCM structure, the effects of parasitic 

capacitances associated with M 1-M3 are removed through the capacitance subtraction. 

2.6.2 Capacitance measurements 

Figure 2-17 shows the variation of the capacitance with respect to the frequency. These 

results are extracted from the experimental setup as shown in Figure 2-15. Figure 2-18 

illustrates the capacitance measurements within low frequency. 

Time(msl 

Figure 2-17 The capacitance measurement using CMOS capacitance biosensor. 
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Figure 2-18 The capacitance measurement shows no significant response at low 
frequency range. 

2.6.3 Conclusions 
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This part of the thesis focused on the CMOS capacitive-based biosensor as one part out 

of the four biosensors implemented at once on the multilabs-on-single-chip (MLoC) system 

that was realized through CMOS technology. The CBCM technique on the MLoC system is 

tested in appropriate conditions and its performance was validated. The system provided a 

viable alternative to traditional biological analysis systems, which is mostly time 

consuming. The system employs an interdigitated capacitor structure in the charge based 

capacitance measurement technique to detect and process capacitance variations in the 

presence of targeted biological cells. The system provides a rapid, low power, and 

miniaturized platform that can be used  for mass-production. As stated, originality consists 

of three categories that each includes two components, the use of ideas and tools. The first 

category consists of old ideas that are implemented using new tools to create the final 

result. As for the second category, it consists of new ideas invented that are then put to 

work using old tools. The third and final category under originality includes newly invented 

ideas and the use of new tools. A fourth aspect of this is the use of old tools and old ideas, 

which is not considered originality at ail. In the light of the definition of originality, the 
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CBCM techniques fill in the first category where the ideas have been previously published 

since 1984 but the tools used to create the first biosensor out of four in the MLoC -system 

are CMOSP35, which is one of the most recent technologies. In addition, the reference 

electrode in this technique is isolated using a special layer made of combinations of 

CMOSP35 metals, which fill in the third category of originality. Furthermore, the Signal 

process unit used to avoid the parasitic capacitance that due to the pins and connectors, 

which makes the biosensors more reliable and sensitive. 



Chapitre 3 - CMOS single-chip Optical Biosensors 

3.1 Abstract 

There is widespread demand for a low-cost, highly miniaturized, rapid, selective and 

highly sensitive detection method for low-abundance detection in biological and 

biomedicine applications such as bacteria and cancer markers. The detection of weakly 

expressed proteins and protein complexes in biological samples down to single-molecule 

level represents a major challenge for scientists, due to the difficulty to achieve an 

acceptable level of signal-to-noise ratio, In addition, analysis of low abundance analysts 

can take several hours to days to give accurate results, and require bulky, expensive 

equipment. In this work, a highly miniaturized and integrated Multilabs-on-a-single-chip 

system has developed. The system comprises a fluorescence CMOS reader, a microfluidic 

channel, an analyte manipulation/concentration system and a novel amplification strategy 

for the binding event signal in the microfluidic system. A high sensitive phototransistor 

built as 32 by 32 arrays has been developed for biosensor detection using CMOSP35 

technology. A high-gain emitter inversion layer in VPNP emerges in CMOS technology to 

design a phototransistor array, to enhance the electrical characteristics of the CMOS 

analogue; as a result, the CUITent gain ~ is improved. In su ch technology, diffused 

source/drain junctions are used as merged VPNP emitters. 
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3.2 Preview 

In this work, we use nanosensors based on optical biosensors; fluorescence sensing 

mechanisms that has been introduced and discussed in [83] . These optical sensors usually 

employ bacteriophage or phageorganisms as recognition elements to detect bacteria such as 

E-Coli. Fluorescence spectroscopy can apply to a wide range of problems in the chemical 

and biological sciences. The measurements can provide information on a wide range of 

molecular processes, including the interactions of solvent molecules with fluorophores, 

rotational diffusion of biomolecules, binding interactions, conformational changes, and 

distances between sites on biomolecules. Advances in technology for cellular imaging and 

single-molecule detection are expanding the usefulness of fluorescence. These advances in 

fluorescence technology have short response time, are simple to implement, and they are 

standoff detection [84]. Moreover, the cost and complexity are greatly reduced making 

these sensors commercially competitive. Fluorescence spectroscopy will continue to 

contribute to rapid advances in biology, biotechnology, medical diagnostics, DNA 

sequencing, forensics , genetic analysis and nanotechnology [85]. Fluorescence detection is 

highly sensitive, and there is no longer the need for the expensive and complex radioactive 

tracers for most biochemical measurements. There has been dramatic growth in the use of 

fluorescence for cellular and molecular imaging. Fluorescence imaging can reveal the 

localization and measurements of intracellular molecules, sometimes at the level of single-

molecule detection. 

Typically, fluorescence based sensors excite optically active recognition elements that 

are selective to particular media (i.e. LB). Emission from the bacteriophage, at wavelengths 

is longer than the excitation wavelength, and it is monitored. It also provides information 



55 

regarding the concentration of multiple bacteria or viruses in real-time. Thus, in this 

technique, it is important to immobilize the bacteriophage at the sensor surface and 

maximize the contact surface are a to maximize the interaction of the media with the 

recognition element during the sensor operation. A phageorganisms (phage) is a type of 

virus that infects bacteria. 

This work is capable to detect and act as an atto-molar cancer markers concentration as 

long as these markers are based on CMOS optical biosensor and are used for biological and 

life science applications detection. 

3.3 CMOS Phototransistor technique 

The CMOS phototransistor, that is a highly photosensitive sensor, is necessary for the 

system because the biosensor area is smalt. Therefore, the phototransistor has been 

developed using the CMOSP35 process. The  Emitter is a  p diffusion layer in an n-welt. 

Stripe shape is used to reduce the parasitic capacitance of the phototransistor. The P-type 

substrate acts as a collector. The structure forms photodiode wh en the n-well is connected 

to the supply voltage. On the other hand, the phototransistor is formed when the potential 

of n-well is floating. The factor of ~ amplifies the photocurrent between the n-well to the p-

type substrate. To enhance the electrical characteristics of the CMOS analogue or the 

digital circuits, IC designers often employ merged vertical bipolar transistors (VPNP) 

coexisting on the same substrate as CMOS [91]. In such 'pseudo-BiCMOS' technology, 

diffused source/drain junctions are commonly used as merged VPNP emitters. 

Theoretically, there are two main factors, which limit the static current gain ~  the first 

factor is a low bipolar injection efficiency of source/drain p + emitters; the second factor is 
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the enhanced parasitic sidewall injection of P+ emitters in a compensated N-well base 

surface. 

This chapter introduces the design and implementation of an optical biosensor system 

with improved and tunable detection sensitivity. The circuit is implemented using CMOS 

technology along with VPNP technology. The IC consists ofhigh-gain phototransistors in a 

form of a 32 by 32 array. Figure 3-1 shows the architecture of this design. The integrated 

circuit separates the data by selecting the arbitrary light receiving element depending on the 

status of light source. In order to avoid the light receiving element from being insensitive 

due to the shrinkage in its surface area, the phototransistor that is more sensitive than 

photodiode was adopted as the light receiving element with the standard CMOSP35 

technology. 

Figure 3-1 CMOS Detection and Signal-Processing Circuit. 

ln addition, the trans-impedance amplifier (TIA) was adopted. Its sensitivity and 

response frequency were optimized according to the carrier frequency of visible light ID 

system and the characteristic of phototransistor. Each light receiving element is arbitrarily 

selectable with the external signal and capable of increasing the sensitivity by selecting 

more than one light receiving the element simultaneously [92]. The structure of the 
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phototransistor pixel is similar to a bipolar junction transistor and is formed by p-active 

(emitter)/n-well (base)/p-substrate (collector). This phototransistor structure was selected 

because of its highest responsivity (electrical current output/optical power input) of the 

photodetectors available in the standard CMOS process and particularly in the visible 

region of the electromagnetic spectrum. Phototransistors in a form of 32 by 32 arrays have 

been developed as a fluorometric biosensor system using the single-chip CMOS detection 

and processing unit, and the sensor system determines analyte concentrations. An external 

excitation source has been used through out this work; red laser 630-680 nm; or blue laser 

473 nm, and the fluorescence is detected by the optical chip using a phototransistor that is 

32 x 32 array. The optical chip also includes a current mirror, a cUITent-to-voltage 

converter, an amplifier, a bandpass filter, and a phase detector. The optical chip output is a 

DC voltage that corresponds to the detected fluorescence phase shift. The main targeted 

design goals for this biosensor system are stability, reproducibility, analytical reliability, 

and fast response to changes. The low cost, low power and miniaturization are part of the 

design requirements. Regulated Cascade (RGC)-type circuit as trans-impedance 

amplification (TIA) converts the CUITent signal from the phototransistor into the voltage. A 

trans-impedance amplifier circuit is adapted to achieve high gain, low noise and wide band 

characteristics. The complete schematic including the bias circuit is shown in Figure 3-2 

[80]. The circuit was fabricated using CMOSP35 technology. The conversion gain of the 

TIA depends on its self-resistance. Therefore, the phototransistor made of CMOSP35 

process is more sensitive to the frequency characteristic due to a negative impact of 

parasitic capacitance, compared to the Positive-lntrinsic-Negative (PIN) photodiode. The 

lC essentially consists of four blocks; the phototransistor array; the current to voltage 

converter; the amplifier block; and the phase detector as demonstrated in Figure 3-1 . The 
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phototransistor array forrns the high-sensitivity phototransistors that are capable to convert 

the imposed optical signaIs into electrical current signaIs and send the signaIs to an 

operational amplifier (op-amp) based circuit that acts as a current-to-voltage converter. 

Figure 3-2 

(a) 
t N!#,<) 

T 

(b) 
(a) Schematic of the bias generator circuit for rail-to-rail folded-cascade op-
amp used in CVC and TIA. (h) Schematic of the folded-cascade and output 
stages of the op-amp. 

Another operational amplifier based circuit amplifies the following voltage signaIs and 

then the signal is sent to a XNOR based phase detector. The nonlinear phase detector is an 

XNOR type detector that provides a dc voltage proportional to the phase shift bet\yeen the 
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detected optical signal and a fixed reference sinusoidal signal produced by a standard 

function generator [80]. 

3.4 VPNP phototransistor operation 

Phototransistors made of silicon act as photosensors and respond to the entire visible 

radiation range. The Phototransistor is a photodiode with amplification. The Phototransistor 

. light sensor has its collector-base PN-junction reverse biased exposing it to the radiant light 

source. In essence, a phototransistor can be a bipolar transistor either PNP or NPN 

configuration whose outer casing is either transparent or has a clear lens to focus the light 

onto the base junction for increased sensitivity. Phototransistors consist mainly of a bipolar 

NPN transistor with its large base region electrically unconnected, although sorne 

phototransistors allow a base connection to control the sensitivity, which uses photons of 

light to generate a base current, which in turn causes a current to flow from the collector to 

the emitter. In fact, the operation of a phototransistor is based on the biasing arrangement 

and light frequency. Phototransistor in its two types; NPN and PNP, mainly operates in two 

modes either an active mode or a switch mode. In the active mode, the operation of the 

phototransistor produces a response proportional to the incident light that is received by the 

exposed part up to a certain light level. At the time the amount of light exceeds that level, 

the phototransistor turns out to be saturated and the output will not boost neither affect 

anything additional in the light level. In the switch mode, the operation of the 

phototransistor will be either Off-state or On-state in response to the light. 

The VPNP phototransistor in the homo-junction planar structure as shown in Figure 3-3 

is composed of two back-to-back diodes, PN and NP as shown in Figure 3-4. The biasing 

arrangement plays a key role in the photosensor's mechanism [93]. In forward biased 
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configuration, the junction NP is the collector-base diode of the bipolar transistor. In this 

case, the increased current through the junctions due to incident light will be negligible. In 

contrast, in the reverse biased NP configuration, the boost in current flow will be 

significant and will be responsible for the light intensity. 

Figure 3-3 PNP phototransistor homo-junction planar structure. 

The optimum conversion and hence sensitivity can be accomplished by making the 

emitter contact offset within the phototransistor structure. 

Figure 3-4 The PNP phototransistor operation. 

This technique ensures that the maximum amount of incident light gets in touch with 

the active region within the phototransistor structure. For this reason, the PNP 
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phototransistors are operated in active mode. This means that the junction emitter-based is 

forward biased and the collector-base junction is reverse biased. In such application, where 

the light is part of the operation, the base connection is floating; in fact, the light-induced 

current effectively replaces the base current. The gate (G) terminal would only be used to 

bias the phototransistor with the intention that additional collector current was flowing and 

this would mask any current flowing because of the light intensity achievement. 

The base of the phototransistor is left as an open terminal, where the gate can be used to 

bias the device to a constant De level. TypicaIly, the characteristics of the transistors 

change due to the base current that leads to a change in the collector current, significantly 

lead ing to enhance the current gain fJ. The mechanism of the operational phototransistor 

heavily depends on the biasing arrangement. This could be simplified by making the 

collector of a p-n-p transistor negative with respect to the emitter. Hole-electron pairs will 

be generated thanks to the light penetration into the base region of the phototransistor. For 

this reason, the collector-base junction should be reverse bias to have the most adequate 

and readable result from the phototransistor operation. The hole-electron pairs move under 

the influence of the electric field and provide the base current, causing electrons to be 

injected into the emitter [94]. The value of fJ depends on the base current as weIl, while 

there is a risk that the junction capacitance Cj becomes large due to the Miller effect and the 

response frequency gets lower [95]. 

The Miller effect electronically refers to the increase in the equivalent input capacitance 

of an inverting voltage amplifier that is caused by the amplification of capacitance between 

the input and output of the electrical component. The input capacitance is equal to"CM = 

C(l - Av)" where Av is the gain of the amplifier and C is the feedback capacitance. The 
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ideal voltage amplifier of gain Av with an impedance Z is connected between its input and 

output nodes where the input resistance tends to be very high; "R ~ 00" so the input 

impedance will be equivalent to the input capacitance; "lin = ~  The output voltage of 
)WC 

the ideal circuitry is given by; " Vo = Av V;" and the input current is; "Ii = V i-Va", this leads 
z 

to an input impedance described as; "lin = 1 
jwC(1-Av) 

_1_" where CM is the Miller 
jwCM 

capacitance. 

3.5 VPNP phototransistor Structure and CMOS technology 

A lot of effort was devoted to enhance the behavior of the detecting circuit. The result 

of that is the generation of the vertical bipolar phototransistor integrated in CMOS 

technology employing the Inversion Emitter concept [96]. The inversion emitter 

substantially increases CUITent gain, particularly at low CUITent levels, which leads to a high 

output photocuITents. In addition, the external gate voltage can control current gain and 

photocuITent magnitude. 

Figure 3-5 Schematic diagram ofVPNP phototransistor structure. 
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By using this concept in the biosensor, the current gain can be boosted further by the 

current gain of the photodetector structure based on a bipolar transistor. Using , MOS 

transistors, the bipolar transistors could be switched between the "ON" and "OFF" states. 

Figure 3-5 shows the VPNP phototransistor structure. The inversion emitter improves the 

overall factor ~ of VPNP for two reasons: first, the inversion emitter efficiency is 

inherently improved. Second, the presence of MOS inversion layer decreases the total base 

current by eliminating minority-carrier surface-recombination in the channel area. The net 

effect is a substantial improvement of factor ~ at low current levels in spite of the large 

VPNP area, where the total collector current for the most part is due to the carriers' photo 

generated in the base-collector junction contribution which is given by le = f3IB [97]. The 

structure of the phototransistor pixel using the vertical phototransistor (VPNP) can produce 

currents that are several times larger compared to a comparable sized photodiode. The 

property of the optical biosensor prototype is as following: 

1. The lC consists of a high-gain phototransistors 32 by 32 array. 

2. The structure of the phototransistor pixel is similar to a bipolar junction 

transistor and is formed by the p-active (emitter )/n-well (base )/p-substrate 

( collector). 

3. The phototransistor has one of the highest responsivity (electrical current 

outputloptical power input) of the photodetectors available in the standard 

CMOS process and particularly in the visible region of the electromagnetic 

spectrum. 

4. The vertical phototransistor (VPNP) can produce currents that are several 

times larger compared to a comparable sized photodiode. 
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3.5.1 Biosensors Responsivity and Quantum Efficiency 

In general, the behavior of the optical transducer can be characterized for a given light 

source illumination level. The output of a phototransistor can be defined by the area of the 

exposed collector-base junction and the factor ~  The collector-base junction of the 

phototransistor works like a photodiode through generating a photocurrent, which is fed 

into the base of the transistor section. Thus, like the case for a photodiode, doubling the 

size of the base region doubles the amount of the generated base photocurrent. The DC 

current gain inherent to the transistor amplifies this photocurrent (lp). For the case where no 

external base-drive current is applied, the collector current defines as follow: 

le = P(lp) (3.1) 

Where ~ is the DC current gain and Ip is the photocurrent. Similar to signal transistors, ~ 

varies with base drive, bias voltage and temperature. At low light intensity; ~ increases with 

increasing light (or base drive) until a peak is reached. As the light level is further 

increased, the gain of the phototransistor starts to decrease [98]. The responsivity of a 

silicon photodiode is a measure of the sensitivity to light, and it defines as the ratio of the 

photocurrent Ip to the incident light power Pat a given wavelength: 

(3.2) 

In other words, it is a measure of the effectiveness of the conversion of the light power 

into electrical current. It varies with the wavelength of the incident light, the applied 

reverse bias and temperature as shown in Figure 3-6. Quantum efficiency is defined as the 

fraction of the incident photons that contribute to photocurrent. It relates to responsivity by: 

(3.3) 
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Where h is called the Planck constant and is equal to 6.63 x 10-34 1-s,  , c is the speed of 

light and is equal to 3 x 108 rn/s, q is the electron charge and equals to 1.6 x 10-19 C, (1(,) is 

the responsivity in (A/W) and Â is the wavelength in nanometer (nm). 

Responsivity ('R) in optical biosensors refer to its sensitivity. The quantity of the 

responsivity is the amount of induced photocurrent generated by the photodetector in 

response to the extemal light excitation. The sensitivity for a particular photodetector 

structure varies as a function of wavelength; the typical values of responsivity for silicon 

are 0.6 A/W at 900 nm. 

Figure 3-6 
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Responsivity (1(,) in optical biosensors varies with the wavelength of the 
incident light. 

Quantum efficiency is well-known as the fraction of the incident photons that 

contribute to photocurrent meaning that the percentage of collected carriers that are 

converted into electrical CUITent [99]. The mechanism of generation photocurrent (lp) in the 

photodetector lies on the absorption of the photon in the exposed area leading to generate 

an electron-hole pair. Consequently, one of the pair of free charge carriers are capable to 

reach the p-n junction thus the carrier is collected and it generates a current. Otherwise, the 

carrier is vanished in the exposed area by filling an orbital atom meaning that the 
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recombination process leads to no photocurrent to generate. Quantum efficiency relates to 

responsivity by: 

(3.4) 

The responsivity "J("of the photodetector is a function of quantum efficiency; " rj'. 

Where at short wavelengths; "X', Tl is low, since absorption occurs very close to the surface 

and the induced photocarriers recombine very quickly in the high doping region (N+) thus 

they are not collected. As for the quantum efficiency at long wavelengths, the layer 

thickness is too tiny to absorb the photocarriers completely therefore, no photocurrent is 

produced: 

J( = llq (3.5) 
hv 

Table 3.1 The spectrum of visible Iight frequency/wavelength. 

Where: q is the elementary charge, h is the Planck's constant, v is the radiation 

frequency, 7](eta) is the quantum efficiency; 

J( = llq = llqÂ. 
hv he 

(3.6) 

In addition, J( is proportion al to the voltage generated at the photodetector. Therefore, 

I p is given by the following equation: 
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1 = 1?p. = "q P. = "qÀ P. = 1]). P. 
P 0 hv 0 he 0 1243x 10-9 0 

(3.7) 

Where: Ip is the average photocurrent generated by a steady-state average optical power 

Po incident on the photodetector. The VPNP transistor is designed using CMOSP35 TSMC 

technology. The dimensions of the transistor are as shown in Figure 3-7. The area of the 

VPNP transistor is the emitter area 100 J.lm2 (l0 J.lm by 10J.lm) and the base area is 784 J.lm2 

B 

o c 

2um 
,.,.,.,.."., .... ' ....... ~  ..... ,-''''''''''''''''',''''''"''''''''''''''''''''''' 

; 
j 

; 

~ ~ 

2um 

, 
~ 

Figure 3-7 The structure of the VPNP transistor as given by CMC. 

3.5.2 Photo transistor 32x32 array characteristics 

The integration characteristics of the phototransistor can be determined through 

measuring the time to integrate 1 V at different light intensities. 

Figure 3-8 Integration frequency vs. light intensity Li. 
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The phototransistor at certain light intensities has a linear relationship between the 

integration frequency and the light intensity (L;) as shown in Figure 3-8. The light 

intensities are measured in lumens per square meter (Im1m2) , or lux (Ix). The current drawn 

by the phototransistor corresponding to the light intensity can be ca\culated using the 

equation of the Iinear model that measures the relationship between integration frequency 

and intensity; Eq. (3.9) for a given voltage; 1 V and "Cpt" is the parasitic capacitance 

existing in the phototransistor; Cpt = 300 fF , as shown in Figure 3-9. The relationship 

between the current drawn by the phototransistor (Ip) and the light intensity is given by 

Eq.(3.l0) [100]: 

1 = CptV pixel 
p Tint 

(3.8) 

1 
0.7 Li + 32 (3.9) 

Substitute Eq. (3 .9) in Eq.(3.8) which leads to: 

(3.10) 

Figure 3-9 The phototransistor CUITent at Cpt = 300 fF and 1 V. 
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For a given voltage; IV and Cpt is the parasitic capacitance existing in the phototransistor; 

Cpt = 300 fF , the final form of the current Ip is defined as follows: 

Where ID is the dark current and Li is the light intensity. ID is equal to 9.6 pA within the 

range of the light influence on the silicon as shown in Figure 3-l'O. The signal-to-noise ratio 

is figured out by taking the mean swing of each pixel at near saturation and dividing it by 

the mean of the standard deviation of each pixel. 
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Figure 3-10 Phototransistor current versus light intensity. 

The phototransistor reaches saturation level at Li = 256 lux, after Tin = 25 Jls; so 

Eq.(3.l0) leads to Ip = 63.36 pA, thus; from Eq.(3.8) the saturation voltage determined 

leads to Vsat = 5.28 V. The standard deviation determined in the dark current ID = 9.6 pA for 

a short integration time; Tin = 10 Jls, using Eq. (3.8) leading to: 

v: -TintxID 
pixel - c 

pt 

10x10-6x9.6 X 10-12 

300x 10-15 
0.32 V 

VSat Hence, SNR = SN R = 
VSTD 

5.28 = 16.5 7 24.30 dB. 
0.32 
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Table 3.2 VPNP phototransistor specification 

Technology CMOSP35 

Array Size 32 by 32 array 

Total Size 1210.8 !lm x 1318.4 !lm 

Pixel Size 40.20 flm x 41.775 flm 

Power Consumption 300 fl W (@ 3.3V) 

Dark Current 9.6 pA 

SNR 24.30 dB 

3.5.3 Dark Current (ID) 

Most of the characteristics of the phototransistor are similar to the characteristics of a 

conventional bipolar transistor form. The only exception is the base current replaced by the 

different levels of Iight intensity. Usually at a steady state condition where no extemal 

potential is applied (i.e. light) to the phototransistor, the operation refers to a tiny amount of 

current that flows in the structure named the dark current (ID). Figure 3-11 shows that the 

dark current (ID) corresponds to the tiny number of carriers that are attracted to the emitter. 

This amount of current is, in tums, also subject to the amplification by means of the 

transistor inherent gain. Therefore, phototransistors are tested to dark current limits, which 

range from 4.0 pA to 80 pA with respect to the capacitance range from 10 jF to 500 jF 

respectively as shown in Figure 3-12. In order to achieve a certain level of performance by 
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reaching the optimum conversion, the emitter contact is often offset within the 

phototransistor structure. Achieving that guarantees the maximum amount of incident light 

that gets in touch with the active region within the phototransistor [101]. 

~ ~~ ~~~~ ~ ~ ~ ~ ~ ~ ~  

~ ~~~~  .. 
r 10 
.: i ~  __ ._ •. _-_ .. ~  .. _---_ •. . ~ •• ~ 

Figure 3-11 Dark current vs. the capacitance. 

The dark current is a function of the applied voltage in the basis of the regular transistor 

operation as shown in Figure 3-13, but this is not the case for the phototransistor structure 

as long the base terminal is not connect and replaced by the light incident intensity. 

~  

...... ~  

~  

Figure 3-12 The dark current depends on the capacitance. 

The mechanism of the dark current that is drawn by the phototransistor corresponds to 

the light intensity that is acquired when no light is present and a voltage is applied from the 

collector to the emitter (V CE). For that reason,  a certain amount of current will flow. The 
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dark current (ID) is a leakage current and it can be determined by multiplying the collector-

base junction current and the DC current gain f3 of the transistor. The dark current is a 

function of the value of the applied voltage VCE• 1t is also a function to the ambient 

temperature, where it is directly proportional to it. Therefore, it is usually specified at 25°C. 

The dark CUITent is considered as a drawback to the phototransistor operation where its 

presence prevents the device to reach digitally the full ON/OFF states. 
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Figure 3-13 The dark current depends on applied voltage. 

On the other hand; the dark current offers advantages for the device under test (DUT) at 

a given collector-emitter test voltage by considering the maximum collector current that is 

allowed to flow. 

3.5.4 Power consumption 

One more important phototransistor characteristics is the power consumption. The 

power consumption can be calculated by observing how much CUITent the biosensor was 

drawing through the power supply voltage; Vdd =3.3 V. The current flow through the 

phototransistor array and the operational amplifier is measured by a general-purpose 

multimeter; Keithley 2400. Nevertheless, in the phototransistor array the situation is a little 

different where the power dissipation of an active-pixel-sensor APS aITay is partially 
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relying on the desired readout rate. Therefore, the common pixel-biasing load on each 

column and the analog line drivers primarily determines the power coupled with the 

readout. The measured power consumption can be defined by taking the average analog 

power dissipation from the pixel source-follower and the line driver based on the following 

formula [102]: 

(3.11) 

Where "Fr" is the frame-rate,  Ccol is the capacitance at the bottom of the column, and 

M is the total number of pixels readouts. Vdd is the power supply voltage, !:J. Vcol is the 

maximum voltage change at the bottom of the column, !:J. Vout is the maximum voltage 

change at the output of the circuit, Cio ad is the capacitance of the line driver and a is a 

parameter that indicates the number of operations per pixel that lies within a range of 2-4. 

The total power dissipated in the pixel source followers and the analog line drivers can 

be determined by setting the following parameters: a = 4, Fr = 1000 Hz, M = 1024, 

Ccol = 2 pF,  Cload = 35 pF,  Vdd = 3.3 V, !:J.Vout = 0.15 V, and !:J.Vcol = 1 V. The total 

power dissipation is about 300 Il W. The average power consumed in the pixel source 

followers is approximately 13.5 IlW, and the power consumed in the subsequent line 

drivers is around 284 Il W. The power dissipated in the digital timing and control circuits is 

highly considered through the design, therefore; it has become a figure of merit through the 

designer preparation. Table 3.3 shows different sensors with different specifications with 

respect to the recent work. By definition, the design' s robustness can be determined as the 

ratio between the transistor length and the minimal length of the technology. Therefore, 

using CMOSP35 technology for resizing e ~s of the design can also preserve the 

design' s robustness, the smallest dimensions the better the robustness (i.e. from 0.35 
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micron, 0.5 micron, 0.8 micron, and 1.2 micron). Moreover, decreasing the area by using 

CMOSP35 technology declines the cost. Power consumption that depends on the applied 

voltages and the area of the features in the design also decreases. Therefore, the most 

updated technology utilized leads to improve the three main performance criteria: area, 

power consumption, and speed. 

Table 3.3 Power consumption with respect to other technologies 

CMOS Power Phototransistor Pixel Power Reference 

Technology supply Array/ (pixel) area/(llm2) Consumption No. 

CMOSP35 3.3 V 32 by 32 40.1x 41.7 300 flW Thesis 

SOS 0.5 3.3 V 32 by 32 40x40 250 flW [100] 

MOSIS1.2 5.0V 256 X 256 NA 3-5 mW [102] 

AMIS 1.5 5V 20 X 26 54 X 58 5.6mW [301] 

AMSO.8 3.0V 12 X 63 50 X 350 60mW [302] 

CMOSO.8 5.0V 256 X 256 NA 52-400 mW [303] 

CMOS 1.2 5V 64 X 64 24x24 736 flW [304] 

3.6 Layout of one phototransistor pixel 

The phototransistor of 32 by 32 arrays was integrated in the chip die that measures 

1210.8 flm by 1318.4 flm. Note that the dimension of each pixel measures 40.2 flm by 

41.775 flm. Figure 3-14 shows the layout of the phototransistor pixel. Figure 3-15a shows 
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the layout of a phototransistor pixel along with the corresponding cross section. The 

vertical phototransistor is the utrnost responsivity of the photodetectors available in the 

standard CMOS process that is provided by CMC where it is forrned by the p-active 

( ern itter)/n-well (base )/p-substrate ( collector). 

Figure 3-14 Layout of one phototransistor pixel. 

Figure 3-15b shows the polysilicon grid that covers the n-well (base) forrning a ring 

around the p-substrate (collector) contact. 

(a) 

(b) 

Figure 3-15 Layout view and corresponding cross-section of VPNP: a) Layout view, b) 

Corresponding cross-section. 

To avoid any formation of parasitic P+/N+ junctions in the thin polysilicon gate layer, 

gate contacts were added over the polysilicon ring; Figure 3-15a. The importance of the 
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polysilicon grid that acts as a fourth terminal to PNP device is to increase the depletion 

region by setting it to the maximum potential, which leads to allowing the excess generated 

photo-carriers easily to flow to the p-active region (emitter). One of the best advantages of 

the phototransistor over the photodiode is that the photocurrent, which is generated through 

its operation, is adequately high. 

3.7 The detector block operation 

A high-sensitive biosensor based on VPNP phototransistors converts the optical signais 

into electrical current signais and at the end readouts the signal as a De voltage signal. In 

essence, the biosensor is composed of four stages as shown in Figure 3-16. There is a 

phototransistor array stage where the optical signal converts to an electrical current signal. 

Then there is a current to voltage converter stage where the signal converts to a voltage 

signal. There is also an amplification stage where the voltage signal is amplified. 

eu"" ... -Io-Vol .... lAYe' ohlfl Uvol.hlft 

eo.. ....... r (CVC) 
Comparactors ~~ 

v'" 

Figure 3-16 The optical biosensors stages. 
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At the last stage, a nonlinear phase detector provides a DC voltage signal proportional 

to the phase shift between the detected optical signal and a fixed reference sinusoidal signal 

that is obtained from a standard function generator. This optical sensor uses a new 

nonlinear phase detector that was proposed by Leo Yao et. al [103][104]. The proposed 

phase detector stage as shown in Figure 3-17 is composed of two comparators each 

implemented by standard wide-swing differential amplifiers. These are plugged into XNOR 

input gate, which is implemented by a standard digital gate [80] that ties its output to the 

input of a tunable low-pass filter stage, which transforms the phase difference into a DC 

voltage (Vout). 

Comparactors 

v_ 
<:::l-or----I ~ Vin ~  

l'llbor 

Figure 3-17 A nonlinear phase shift topology. 

From 

RGA 
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C 

The low pass filter stage as shown in Figure 3-18, is built up as a voltage follower with 

Vbias as a controlling voltage. Through the dut y cycle (D) of V;n at the high pulse period 

there is a source current charging the load capacitor; CL and at the low-pulse period there is 

a sink CUITent discharging. CL is considered to be in nano range; (CL = 10 nF), with the 

intention that the voltage alteration in CL can be disregarded during the dut y cycle. 
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Figure 3-18 Schematic of low-pass-filter circuit in the phase detector structure. 

3.8 Transduction and amplification 
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The mechanism of these stages rely on the pulse period of the input voltage that is 

charging/discharging the load capacitor; CL. When the pulse is on the high level then a 

source current h charges the load capacitor. However, when the pulse is on the low level a 

sink current h discharges the load capacitor CL. The generated photocurrent is usually weak 

and unreadable, for that reason, special care in setting the requirements for the design is 

essential. Transduction and amplification of the signal is a process, which takes place in 

between the input and output of the transducer. This process has been performed using the 

current-to-voltage converter (CVC); Figure 3-19 and the regulated gain amplifier (RGA); 

Figure 3-20 to amplify the signal and make it readable with good accuracy along with two 

voltage level shifters as shown in Figure 3-16. 
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Figure 3-19 The current-voltage convertor stage. 
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The type of the TIA chosen in this work is a high-gain rail-to-rail  folded-cascade op-

amp as shown in Figure 3-2 with built-in feedback resistor, RI = 2M ohm. While the input 

signaIs of the CVC stage is connected to TIA amplifier is the photocurrent (lp). This current 

is produced by the phototransistor array. The output signal from this stage is composed of 

two components; AC and DC components. The DC component is usually not that important 

and it is not taken into account; it is a byproduct of the biasing circuit. The AC component 

is the signal that is considered and recorded because of the phase information of the 

sinusoidal modulated luminescence signaIs. Afterward, the AC component as an output of 

the CVC stage feeds to the next stage to be amplified using the regulated gain amplifier 

(RGA) as shown in Figure 3-16. The characteristics of the RGA are similar to the high-gain 

rail-to-rail folded-cascade operational amplifier that the CVC is made of. The function of 

the RGA lies on regulating the gain up to double the input supply voltage through two 

built-in resistors; R2 =100 kn and R3 =1 Mn. The output frequency heavily depends on the 

concentration of pathogen cells. The higher the concentration of pathogens, the higher the 
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intensity of the light output generated by the sensing surface, the higher the generated 

photodetector current. From the electrical point of view, the higher photodetector CUITent 

that is produced means that there is a lower integration period, which means that there is an 

increase of the output frequency. 

Node 
B R2 

From 100k 
CVC 

lovel shlft 

Figure 3-20 Regulated gain amplifier (RGA) stage. 

The opposite of this process happens for the lower concentration of pathogens, which 

defines the performance of the transducer through showing the capability to sense very low 

concentration of bacterial pathogens cells. The minimum detectable signal (MDS) for the 

transducer is considered as a significant specification that can be defined by Eq.(3.12): 

1 
MDS ex: ~ 

" tint 
(3.12) 

The phototransistor and the signal-processing circuit play a crucial role in this process. 

As a result, the longer the integration time, the more the weaker signal can be detected. 

When there is a long integration time, the comparator should be set for the specific voltage 

that should be applied to allow it to act in accordance with the input corn mon-mode range 

of the comparator that should be experimentally specified. When designing the biosensing 
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system, the lower the noise of the system the higher the performance of the transducer. This 

system would be capable of avoiding the influence of the noise on MDS that generates 

from the signal-processing unit [105]. 

3.9 Experimental procedures and MLoC system Validation 

The optical fluorescence spectroscopy technology is widely employed for biosensors 

and has modemized the biological, biomedical and life science applications such as 

genomics, proteomics, and single-molecule detection [106]. Basically; optical fluorescence 

spectroscopy combines a number of components including a light source such as lasers or 

light emitting diodes, excitation and emission filters , focusing lenses, a pinhole, and a 

pumping syringe, microfluidic channel, microtubes, and an optical table as shown in Figure 

3-21. The main function of the filters is to obscure the excitation light but the y are 

translucent to the emission wavelength, therefore they are selected to go with the 

absorption and emission profiles of the required fluorescent dye. The consequential 

fluorescence from the illuminated light is detached from the illumination light thus the 

residuallight is measured at the detector [107]. 

3.9.1 Experimental setup 

The fluorescence spectroscopy schematic diagram setup of the assembled microfluidic 

glass/pol ymer substrate is integrated with the CMOS phototransistor biosensor as shown in 

Figure 3-21. The entire system afterwards is wrapped in polymethyl-methacrylate (PMMA) 

for packaging that aims to protect the device from the top and bottom from any extemal 

influences, which may fracture and damage the transducer. The microfluidic chip attaches 

to the biosensor through microfluidic tubing using fluidic inlet and outlet ports on the 
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microfluidic channel where the electrical connection to the biosensor is provided by wiring 

the electrical pads of the optical chip to the PCB board. 

(a) 

Pump 

Figure 3-21 Optical setup and MLoC system validation. 

A software user interface is developed using Labview to access the CMOS sensors' 

signais through the Data Acquisition (DAQ) multimeter card (National Instruments, 

6024E) that feeds the PC for further signal analysis. A syringe pump is used to introduce 

and control partic1e samples into the channels of the microfluidic chip. Flow control in the 

microchannel is achieved by means of a high precision syringe pump in blowing mode 

connected to the channel inlet. Blowing mode allows introducing the partic1e suspension by 

simple pipetting into the outlet reservoir of the microfluidic chip holder. The system starts 

recording the data in real-time scanning once the corresponding section in the microfluidic 

channel is homogeneously fi lied. In time, the flow keeps running and the system keeps 

recording the data that refers to the concentration of the media [108]. 
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3.9.2 CMOS microchip instrument 

The phototransistor chip in this work was fabricated using the CMOSP35 process 

available through the CMC system. The entire chip die area is 2.23 mm x 3.04 mm and the 

phototransistor core area is only 1210.8 llm by 1318.4llm, while each phototransistor pixel 

is 40.20 llm by 41.775 llm. The layout of the entire phototransistor system is shown in 

Figure 3-22 where the CMOS microchip is a single integrated circuit (lC) package that 

contains a phototransistor 32 by 32 arrays. The optical transducer consists of a vertical 

phototransistor array (VPTA), a current-to-voltage converter, an amplifier, a band-pass 

filter and a phase detector. The vertical phototransistor is formed by the p-active 

(emitter)/n-well (base )/p-substrate (collector), and has one of the utmost responsivity of the 

photodetectors available in standard CMOS process. The advantages of the CMOS-based 

system include its operation using low supply voltages and low cost of fabrication. 

Figure 3-22 The layout ofthe CMOS IC for photosensing device. 

A National Instruments DAQ516 PCMCIA card is installed in a laptop computer 

provided with digital 1/0 lines and an analog-to-digital conversion channel so that the 

CMOS microchip detection elements were individually accessed and read out. A custom 
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written software interface constructed with the Labview software controlled the data 

acquisition process for the CMOS microchip system. 

3.9.3 Phage immobilization and protocol 

The biomolecular recognition has to have immobilization antibodies on a good 

substrate su ch as gold along with a highly ordered molecular layer to have consistent 

capacitance measurements. The functionalities of biochips were used to detect different 

cancer markers. There are immobilization procedures that involve physical adsorption, 

covalent immobilization, and entrapment. Each protocol has an assortment of advantages 

and inconveniences depend on the nature of the functionalized surfaces of the sensing 

techniques that will apply to it. To get the receptor-ligand binding to match and work 

successfully, the immobilization of the membrane-associated receptors and the 

immobilization onto a sensor surface should be selected specifically and precisely to make 

certain that the receptor remains vigorous. For that reason sorne common protocols can be 

followed to accomplish this procedure certainly [109]: 

1. Clean the chips three times with ethanol and dry with air. 

2. Immerse the chips in ImM Mercaptoundecanoic acid in ethanol for 24 hours for 

20 ml of ethanol we need 0.0044g of Mercaptoundecanoic acid: 

3. 1 mml X 1 mol X 218.36 9 X 20 ml = 0.0044 9 
1000 ml 1000 mml 1 mol 

4. Wash the chips five times with ethanol and then dry with air. 

5. Immerse the chip with EDCINHS 1.15 g EDC in 15 ml high purity water, 200 

mg NHS in 15 ml high quality water. Prepare EDCINHS as required only as it 

decomposes very quickly. Required: For 10 ml of DI water, 0.77 g required of 

EDC, and 133.33 mg ofNHS. Then the chip immersed for 1 hour. 

6. Wash the chips five times with water and then three times with phosphate 

buffer. 
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7. Incubate the recognition elements with the activated surface for three hours with 

shaking. Wash 5-7 times with phosphate buffer. 

8. Then block the surface with 1 mg/ml (Bovine Serum Albumin) BSA in 

phosphate buffer. BSA is used to block the surface to improve non-specific 

adsorption of the bacteria to the I-hexadecanethiol. 

9. The control surface will be exactly the same procedure as above except replace 

the BSA instead of recognition elements in step (6). 

3.9.4 Bacteria preparation protocol 

E. coli 12 and wild-type T4 bacteriophages were prepared at Biophage Pharma Inc. 

(Montreal, Canada). 

Figure 3-23 The structure of Gram-positive bacteria, and Gram-negative bacteria. 

Escherichia coli are a Gram-negative bacterium that is commonly found in the lower 

intestine of warm-blooded organisms (endotherms). Most E. coli strains are harmless, but 

sorne, such as serotype 0157:H7, can cause serious food poisoning in humans, and are 

occasionally responsible for costly product recalls [11 0]. The gram reaction relies on the 

structure of the bacterial cell wall, and it is sited in two categories as shown in Figure 3-23. 

In Gram-positive bacteria, the layer of peptidoglycan, which forms the outer layer of the 

cell, traps the purple crystal violet stain. In Gram-negative bacteria, the outer membrane 

prevents the stain from reaching the peptidoglycan layer in the periplasm. The outer 
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membrane is then permeabilized by acetone treatment, and the pink safranin counter stain 

is trapped by the peptidoglycan layer [111]. 

3.9.5 Design and Fabrication (MFC) 

The sensing layer represented by the microfluidic channel (MFC) is a foremost element 

in the optical spectroscopy detection process. The MFC can be either fluorescence-based or 

Label-free techniques. Fluorescence-based detection has more sensitivity than label-free 

techniques [112]. Therefore, this technique is suitable for biological application and 

particularly for tumor markers due to tiny sample volume and high sensitivity required. 

Microfluidic channel was designed and fabricated using soft photolithography technique in 

different styles; coated fully or partially by gold: 

1. Double glass slices adhered to each other leave a significant gap in between, making a 

channel. The channel is provided with two inlets and outlet, as shown in Figure 

3-24 

Figure 3-24 Microfluidic channel. 

ii. Microfluidic channels were fabricated using PDMS with one inlet and one outlet, and 

others were fabricated with two inlets and one outlet. The outcome was suitable 

results. 

Ill. Microfluidic channels were fabricated by etching glass using a mixture of phosphoric 

acid (H3P04), (or HF can be another option), th en coated by gold. The outcome of 

this technique was unclear because of the roughness on the surface. 

IV. Microfluidic channels are fabricated by etching Si using TMAH, and then coated by 

gold. The results were clear. [113]. . 
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Soft photolithography technique is used for designing and fabricating a Microfluidic 

channel as shown in Figure 3-25; that is coated fully or partially by gold. Figure 3-26 

illustrates MFC with three inlets and one outIet. 

Figure 3-25 MFC after shining the system with red laser. 

Washing 

Analyte Micelles 

Outlet 

Figure 3-26 Microfluidic channel with three inlets and outIet. 

MFC c1eaning is an essential step, therefore, the sensing layer should be c1eaned in 

either a piranha solution (mixture of 3: 1 of H2S04 and H20 2) or using an electrochemical 

process. The second technique is more reliable but the first is less expensive, more rapid 

and available and easy to prepare in the laboratory. 

3.10 Optical biosensor on MLoC System Validation 

3.10.1 Bacterial pathogens results 

E. coli 12 was used to act as a target for a detection process in different concentration 

and types. Figure 3-21 demonstrates a schematic view of the experimental setup. It 

involves the integrated CMOS microchip system, an extemal laser source; 473 nm blue 

laser; (O.6-25m W Aquarius Series Blue Laser), and a pinhole was used to eliminate 
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extraneous light from the laser. The laser beam was focused onto the optical chip array 

using a capillary holder that is adjusted using a translational stage so that the laser beam is 

passed through the center of the microfluidic channel (MFC). Fluorescence from the MFC 

was detected with the CMOS microchip that was laid on it. Thereafter, the data was 

collected using a 2700-Multimeter/Data Acquisition System and National Instruments 

DAQ516 PCMCIA card installed in a laptop computer. A band pass optical filter (cut-off 

position: 510 nm, Edmund Industrial Optics) was attached on the CMOS microchip to 

eliminate the laser scattering. 

3.10.1.1 Before encapsulation the chip 

Figure 3-27 shows the fluorescence detection of E-coli obtained with the CMOS 

microchip system after the MFC is filled with high concentration of bacteria 109 using 

microfluidic pumps. The laser beam irradiation onto MFC was weil controlled. 
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Figure 3-27 Optical response ofphototransistors array in the CMOS microchip OFF/ON 
state. 
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When the laser beam was irradiating MFC, the phototransistors showed obvious optical 

response. The dark current signal was obtained when there was no laser beam irradiation 

onto MFC. The fluorescence intensities of E-coli 12 decreased while DI water was 

pumping through MFC. The bacteria detection was performed after this optical adjustment 

for the detection of the highest fluorescence signal. 
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Figure 3-28 The entire detection cycle. 

A full cycle was recorded, as shown in Figure 3-28, starting with the dark current 

signal; when the laser beam is off. This is followed by high concentration of bacteria where 

the laser is ON then pumping DI water through this step. The signal that resulted was a 

little bit higher than the previous one because of residual bacteria. High concentration of 

bacteria is then pumped through this step, after which we switch the laser beam OFF. 

After the IC microchip system showed the remarkable results, we applied fluorescent 

Material to check on the response behavior and performance of phototransistors arrays. 
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Figure 3-29 shows the profiles because of DI water and fluorescent Material, where the 

reproducibility of the experiment was observed. 
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Figure 3-29 The phototransistors were used to record the fluorescence signaIs of DI 
water and fluorescence material as a reference. 

~ 

1., 
1.2S+-+--+--+--+-f--t---l--+--+-+--If--t--+--+--+--+--t-t-+-+--+--+--+--H 
1.1S+-+--+--+--+-f--t---l--I--+-+--If--t--+--+--+--+--t-t-+-+--+--+--+--H 

~  

'.'+-+--+--+--+-f--t---l--+--+-+--I-t--+-+--+--+--t-t-+-+--+--+--+--tI 
•. ~  

~ ~  
~~ ~  
,.ss+-+--+--+--+-f--t---l--+--+-+--I'--t--+-+--+--+--t-t-+-+--+--+--+--tI 
•. ~  

~  

•.• +-+--+--+--+-f--t---l--I--+-+--I-t--+--+--+--+--t-t-+-+--I--+--+--tI 
•. ~  

•. ~  

.. ~ ~  0.15+ 

.. ~  O,05+-

~ ~ ~~~ ~ ~  
o 500 u:m 1500 zooo 2SOO 3000 3SOO 1000 .. 500 SOOO 5SOO 6O'JO 6500  7000  7500 l1OOO 8SOO 9000 9SOO 10000 10500 11000 11500 IZ079 

lime Cs) 

Figure 3-30 The fluorescence signal recorded for the positive bacteria, with high 
concentration and DI water, respectively. 

The bacteria E-coli 12 were prepared in two categories; Gram-positive and Gram-

negative. A significant detection voltage was observed when the mixture (bacteria and LB) 

was pumped through the MFC and the microchip's response was recorded. Figure 3-30 

shows the profile because of the flowing DI water through MFC, then the bacteria in LB 
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media pumping with high concentration (l0\ Gram-positive type of bacteria is used in this 

case; a voltage around 95 m V is detected. 

3.10.1.2 After encapsulation the chip 

The experiment was repeated after the optical chip was encapsulated using Norland 

Optical Adhesives. NOA60 are c1ear, colorless, one part adhesives that contain no 

solvents. When exposed to ultraviolet light, they gel in seconds and full cure in minutes to 

give a tough, resilient bond. 
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Figure 3-31 The phototransistors were used to record the fluorescence signais of DI 
water and fluorescence material after encapsulating the microchip. 

These adhesives are designed for fast, precision bonding where low strain and optical 

c1arity are required; the following experiments have been done. The experiment was 

repeated but after the microchip has modified by encapsulating it using NOA60. A profile 

was recorded as a result of the flowing DI water through MFC and then the fluorescent 

material respectively. Figure 3-31 shows this result without recording any significant 

difference from the previous experiment. 
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Figure 3-32 shows a profile because of the flowing DI water and bacteria with high 

concentration (positive type) respectively. A voltage was detected around 150 mV. The 

bacteria is in two different categories; Gram-positive and Gram-negative. This was also 

considered in this work and a profile as shown in Figure 3-23 demonstrated the different 

structure of each category, 
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Figure 3-32 The fluorescence signal recorded for the positive bacteria, with high 
concentration and DI water, respectively, after encapsulation. 
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Figure 3-33 The fluorescence signal for negative and positive bacteria. 
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Figure 3-33 is a remarkable observation because of the DI water and the pumping 

bacteria; positive type (BP) the,n the pumping Bacteria; negative type; (BN) with high 

concentration respectively. 

3.10.2 Conclusions 

Optical-based technique IS specifically designed, fabricated, and experimentally 

validated for realizing a new generation of multi-Iabs on a single chip (MLoC) system. 

Attributable to its compact design and multiplex capability, the integrated optical sensor as 

a part of the MLoC chip worked successfully and provided high-gain and throughput 

analysis as a tool for the detection of bacteria in medical diagnosis and bacterial pathogen 

based on its compactness, low cost, multiplex capability, selectivity and sensitive method. 

The integrated MLoC system as a detector expects to be compatible with convention al 

microfabricated devices to allow more rapid and high throughput analysis. In the light of 

the definition of originality aforementioned in "section 2.6.3", the optical techniques fill in 

the first category where the ideas have been previously published. The design in the 

literature made of exposed area 16 x 16 arrays, the technology that used was AMIS 1.5 

/lm, and power supply 5 V but the tools for MLoC system are definitely different. In this 

design, the technoJogy that used is CMOSP35, the exposed area is 32 x 32 arrays, and 

power suppJy is 3.3 V. As it is weil known that, the exposed area of the biosensor is matter 

and the wider exposed area improves significantly its sensitivity. Furthermore, the lower 

power supply to the Jess power consumption produced and this situation appJies on ail of 

the biosensor in the MLoC system, as the power suppJy is 3.3 V. 



Chapitre 4 - Electrochemical Impedance Spectroscopy for 
Electrochemical Sensing Biomolecules 

4.1 Abstract 

In medical biological and biotechnological applications, biochemical approaches and 

biological quantifications are of extreme importance. The changes in the surface that 

connects the sensing element to analyze the content of a biological sample at a tiny scale 

are the key requirements for the signal amplification and the general performance of 

electrochemical biosensors. The performance and sensitivity of the biosensor heavily 

depends on the surface type selection, the methodology of the electrochemical transducer, 

and the choice of the recognition receptor molecules. Electrochemical biosensors play an 

important role, therefore; it is considered a smart approach thanks to direct detection for a 

biological environment to an electronic signal. In biosensors, the optimization of the sensor 

response and the interpretation of its behavior are places of interest. The Electrochemical 

Biosensor is an analytical transducer that detects a biological response into a quantifiable 

and processed electrical signal. Typically, biosensors are built based on bioreceptors that 

specifically attach to the analyte. The bioreceptors have a surface architecture where a 

specific biological environment is present. On the other hand, the transducer component of 

the biosensor is where the signal is transformed to an electronic signal and amplified by an 

electronics circuit then processed to a physical parameter. The antibody works based on the 
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sensing surface that detennines the entire IDMA area. This becomes responsive to the 

presence of bacterial pathogens cells. 

4.2 Preview 

The EIS technique was introduced last century by Lorenz et. al. [114]. The 

measurement of this technique lies on applying a small AC voltage then measuring the 

response CUITent. The complex impedance can be determined in case the applied voltage is 

over a range of frequency. Such results can be plotted using either Nyquist or bode 

diagrams depending on the analysis requirements. Electrochemical impedance 

spectroscopy is a powerful technique to develop biosensors that are capable to detect and 

analyze biomaterials' behavior. Moreover, these techniques are able to investigate and 

monitor the electrical properties, resulting from a specific process that occurs on the 

electrode/electrolyte interface due to biorecognition events. For instance, modifying the 

sensing surface by either protein immobilization or antibody-antigen (Ab-Ag) 

immunoreactions on the sensing surface leads to a change in the conductance of the 

electrodes. The double capacitance that is established between the sensing surface, 

represented by the IDMA, and the electrolyte can be measured using an EIS technique 

named as Faradaic impedance spectroscopy. Monitoring the immunoreactions occur in the 

space between the microelectrodes as weil. [115]. The Electrochemical Impedance 

Spectroscopy (EIS) is an experimental method of characterizing electrochemical systems. 

Biosensors are transducers that exploit biomolecular interactions to recognize 

biological media such as hormones, glucose, deoxyribonucleic acid and proteins. 

Biosensors in their simplest structure connect a biological recognition element, weIl known 

as the probe, with the sensing surface that performs transcription as a first step leading to 



96 

the translation of the biorecognition event into a detectable then measured signal. The 

biological recognition element exploits the two main characteristics of biosensors; 

selectivity and specificity of the biological reactions either antibody-antigen (Ab-Ag) 

interactions in immunoassays or a molecular biology technique that measures the degree of 

genetic similarity between pools of DNA sequences [116]. Utilizing CMOS technology in 

the miniaturized electrochemical transducer makes this technique the utmost selectable 

method among the others for biological and biomedicine application due to its high 

performance and lower cost. Furthermore, electrochemical impedance spectroscopy (EIS) 

has the capability to endow free label detection, size, power consumption, real-time, 

simplicity and portable systems. The core of this technique lies on using a small device 

named potentiostat as shown in Figure 4-1 where the differential potential occurs in 

between the electrodes in simplicity; i.e. CE and RE translates to a measurable current at 

the work electrode. The measured value at the output is not confined by a CUITent but it can 

take two forms. The first approach is called the Faradaic approach that uses a specific label. 

The second approach is called the non-Faradaic approach that is based on a label-free 

technique. The Faradaic approach is based on measuring the variation of the CUITent flow 

across electrode-electrolyte interface in the light of Ohm 's law. The non-Faradaic approach 

is based on measuring the variation of the current that results from the rise and fall of the 

charge on the sensing surface. The main drawback of the EIS technique is that it is almost 

confined in the DNA detection through the preparation step of the sensing surface named 

hybridization, where it was observed that sorne variation is established in between the 

active layer that is functionalized with probe molecules and the electrolyte [117]. 
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The transducer is implemented using CMOSP35 technology, exploiting the advantages 

of the semiconductor fabrication processes by reducing the size of the device that can 

usually achieve a high-sensitivity electrochemical biosensor. Figure 4-2 illustrates the 

architecture of the electrochemical biosensors that is presented in this work and that builds 

on an active CMOS substrate. It mainly implies three units. The first unit is a voltage 

control unit representing the CMOS potentiostat. It is made of two operational amplifiers; 

one is a feedback amplifier for the reference electrode (RE) and it is connected to the other 

operational amplifiers through two nMOS transistors, where the output of the latter will 

connect to the CE terminal on the microfluidic cell (MFC). The second unit is the signal-

processing unit. It is made of Current-to-Frequency converters (CFCs). This unit implies 

two operational amplifiers, one works as the integrator (TIA) and the other as a comparator 

connected through two nMOS transistors as switches. It also implies voltage reference Vbias, 

one-shot, and triggered flip-flop circuit. Finally, the off-chip active layer as a sensing 

surface, represents MCF made of interdigitated microelectrodes with three terminais; WE, 

CE and RE [118]. 

AC 
CE 

we 

Figure 4-1 Basic Potentiostat scheme. 
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4.3 Electrochemical Biosensors - Sensor Principles and Architectures 

Over the past decades, quite a lot of sensing models and related industrial devices have 

been in favor of biosensors applications. In medical , biological and biotechnological 

applications, biochemical approaches and biological quantifications are of extreme 

importance. On the other hand, the convolution of connecting an electronic device directly 

to a biological setting is very challenging because of altering the biological data 

straightforwardly to the processed electronic signal. Therefore, electrochemical biosensors 

play an important role in this domain as a smart approach thanks to direct detection for a 

biological environment to an electronic signal. 

A) Block diagram of 
Voltage controller 

Figure 4-2 Electrochemical biosensor architecture. 

4.4 Electrochemical Detection Techniques 

Electrochemical immunosensors have the potential to make immunoassay easier and 

reduce the expense of clinic diagnosis. Besides, they are miniaturizable devices and they 

have computerizable detection due to their affinity ligand-based transducers that connect 
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immunochemical responses to proper biosensors and have a handle on a state-of-the-art 

biomolecular breakdown. Electrochemical detection can be performed using the label 

reporter or it can be label-free. The detection process for biomolecular responses is the 

foremost sensitive due to the amplification given by the label through employing 

electroactive signal producing labels. This process requires the use of a label , such as 

fluorescent labeling, . for sensing the biomolecular recognition between a ligand and its 

receptor, su ch as the antibody-antigen (Ab- Ag). The electrochemical technique can 

measure the generated electrical signais of the labeled species and carry out the output as 

impedance, capacitance or admittance [119]. 

4.5 CMOS-Integrated potentiostat behavior 

Potentiostat is a feedback control system. Its operation requires a three-electrode 

configuration represented by working, reference and counter electrodes. The entire set is 

called the electrochemical cell. The cell is used to measure the flow of charges that are 

resulted from the electrochemical reactions at the electrode-electrolyte interface. ln the case 

of the work electrode, where biomolecular probes are binding and the immunoreactions of 

interest take place are immersed alone in the electrolyte, no current flows through the 

electrode-electrolyte interface. Once the counter electrode (CE) is attached to the cell, a 

current is established accordingly. The current flow in the external circuit is due to the 

moving electrons between electrodes named as the Faradaic current and applied to Ohm's 

law where the movement of charges in the solution forms a double layer capacitance hence 

a displacement current is established and named as the non-Faradaic process. The situation 

is still ambiguous and it is not recognized at the surface of the two electrodes; work and 

counter. Therefore, a third electrode named the reference electrode (RE) is playing an 
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important role by holding the electrode-electrolyte interface at a specific potential by 

adjusting externally applied potential Vin. The preferred potential between the working 

electrode and the counter electrode could then be defined accordingly. Finally, the 

electrochemical cell is under control and its behavior so far is c1ear and ready for 

measurements due to the potential in between the working electrode and the counter 

electrode that is attuned to set up a preferred cell potential Vin between the working· 

electrode and the reference electrode. Afterwards, the reference electrode in the chip is tied 

to the high input impedance operational amplifier to ascertain that very low CUITent flows 

through. The potentiostat test chip is fabricated using a TSMC standard CMOSP35 process 

provided by the CMC. The test chip is powered from nominal power-supply voltage of 3.3 

v. Figure 4-2 shows the implementation of the potentiostat circuit that can be divided in 

three main parts. The first part to the left is the control voltage unit that represents the basic 

potentiostat function . The second part located on the right side is the signal-processing unit 

that has the integrator and comparator to translate the signal to frequency data then transmit 

the digital data off-chip. Therefore, the measurements can perform as frequency vs. time. 

The third part located in the middle is the microfluidic channel that implies interdigitated 

microelectrode arrays as a sensing surface. The overall size of the CMOS potentiostat chip 

sites is 500 Ilm by 380.6 Ilm. A CMOS-based EIS for chemical/biologi.cal sensing was 

introduced in many references [120][121]. However, in this work, significant effort has 

been made to improve the robustness and the performance of the individual components 

that the signal-processing circuitry comprises. In addition, the operation of the signal-

processing system is modified to improve the overall quality. Figure 4-3 shows the block 

diagram of the implementation layout. 
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IC ~  chip 

Figure 4-3 The layout of the OP-Amp and the entire CMOS lC chip. 

The CMOS lC chip consists of integrated CMOS potentiostat, the electrochemical cell 

and the signal-processing system. Figure 4-4 shows the architecture of the CMOS 

potentiostat. The signal-processing system shown in Figure 4-5, is the key component of 

the lC CMOS potentiostat. 

Figure 4-4 (a) Layout oflC CMOS chip (b) the architecture of the chip. 

4.5.1 Signal-processing unit 

The signal-processing unit is the key compone nt of the impedance measurements 

system. The bioreporter sensing concentration of the  bacterial pathogen presence in the 
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microfluidic channel will modify the impedance of electrolyte (Z). In the light of Ohm' s 

law: 

1 =!.... 
ZT 

(4.1) 

Where the total impedance Zr is composed of two parts, the real part Z Re and the 

imaginary part Z/m described by the following equations: 

(4.2) 

(4.3) 

1 Z =---
lm 2rrjfC (4.4) 

Therefore, as the impedance decreases due to the high concentration, it increases the 

drawn CUITent that flows through the working electrode. Such situation translates in to a 

lower integration period leading to increase the output frequency and vice versa in case of a 

lower concentration. 

Figure 4-5 The signal-processing unit arctechtiture and layout. 

The electrochemical-based impedance system is a useful sensing system for a very low 

concentration of an environmental biological domain. Consequently, the bioreceptor and 
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the signal-processing circuit play an important role throughout the measurement process. 

The biosensor performance must have the capability to sense very low concentration of 

environmental pollutants where the minimum detectable signal (MDS) for the transducer is 

considered as a significant specification due to its capability to delineate the MDS that can 

be defined by [122]: 

. 1 
MD S ex: r;:-:-

" tint 
(4.5) 

Consequently, the longer the integration time, the weaker the signal detected. 

Potentiostat and the signal-processing circuit play a crucial role in this process. Therefore, 

to have a longer integration time, the comparator reference voltage should be set to a high 

enough value. The high voltage value imposes on the comparator to have a high input 

common-mode range. Note that the targeted voltage value is around 2.4 V. The biosensing 

system should be designed very carefully for low noise to avoid the influence of the noise 

on the MDS that generates from the signal-processing unit (SPU) and acts a CFC. [123] . 

Figure 4-6 shows the layout of the TIA and the whole IC CMOS potentiostat. 

Figure 4-6 CMOS potentiostat layout. 
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By adding a specific resistor in series to the input of the integrator, the SPU converts 

the current from a working electrode to a periodic digital signal, the frequency of which is 

proportional to the concentration of the presence ofbacterial pathogen [124]. 

The integrated potentiostat is composed of a potential controller and a current- to-

frequency converter (CFC). The potential controller consisted oftwo operational amplifiers 

and two load transistors. The function is to control the potential difference at the interface 

between the solution drop let and working electrode, where an electrochemical reaction 

occuITed. This operation is accomplished by reading the input voltage (V;n) and adjusting 

the voltage at the counter electrode (CE) , so that the potential difference between the 

voltages at the reference electrode (RE) and working electrode (WE) are equal to Vin. On 

the other hand, the current-to-frequency converter is consisted of two operational 

amplifiers, one-shot circuit, dynamic flip-flop and load transistor. The function is to 

convert the electrical CUITent through the working electrode (WE) into a periodic digital 

signal. The amplifier is a conventional two-stage operational amplifier design with n-type 

differential input pair. The open-loop gain of the operational amplifiers is higher than 86 

dB while the cutoff frequency is roughly 500 kHz as shown in Figure 4-7. Although these 

performances were not comparable with CMOS technologies, they were high enough to 

compose the integrated potentiostat because the electric CUITent and operation frequency 

are not so high. 

The trans-impedance amplifier (TIA) has fully integrated components in its feedback 

loop. Figure 4-8 shows the schematic of the TIA. The bias signal (Vp), the counter electrode 

(CE), and the digital controls are ail provided extemally. 
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Figure 4-7 The simulation result for the TIA operation amplifier. 
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Figure 4-8 The schematic ofTIA used in the first stage. 
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The operational amplifiers in each stage use a gain-boosted folded cascade topology, 

and ail the transistors within the sensor (including switches) use thick-oxide 1/0 devices 

(0.35-,um minimum channellength in the process) that accommodate a maximum allowable 

supply of 3.3 V. Since most electroanalytical methods, with perhaps the exception of 

impedance spectroscopy, essentially operate at low frequency (i.e. , below 100 kHz). 

4.6 Microfluidic Electrochemical cell 

The electrochemical cell device lies on measuring the variation in the electrical 

potential occurring between the electrodes in the electrolyte solution using high input 

impedance devices. The electrochemical cell consists of a three-electrode configuration 

known as counter, reference, and working electrodes. Conventionally, the electrochemical 

cell is fabricated using a soft photolithography technique employing semiconductor 

material or glass slices. The fabrication process using the soft photolithography technique 

was largely reported in the literature [125][126]. Figure 4-9 illustrates the basic 

microfluidic channel (MFC) with three in lets, an analyte, washing and micelles, and outlet. 

(b) 

Figure 4-9 Basic Microfluidic channel with three inlets and outlet. 
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Recently, CMOSIMEMS technology made large contributions to the biomedical 

transducer through utilizing microfabrication techniques that can apply to produce a variety 

of geometries, i.e. sizes, shapes, that are named microelectrodes compared to convention al 

fabrication techniques. 

Figure 4-10 shows the microfluidic channel (MFC) embedded with interdigitated 

microelectrode arrays (IDMA) as a sensing surface referring to the working electrode in the 

basic electrochemical cell structure that was previously introduced by [127][128] . 

Sensing and reaction Chamber 

Figure 4-10 Microfluidic channel with embedded interdigitated microelectrodes 
array. 

IDMAs are widely used particularly in biomedical and life science applications for 

many advantages. Besides their low cost and thus their high mass-production, IDMA offers 

tiny size that leads to produce a sm ail voltage drop across the tingers which yields to a high 

electric filed generated. The overall design came to a novel design named as the polymeric 

lab on a chip laying on top of the CMOS chip with the embedded interdigitated 

microelectrodes array, as shown in Figure 4-11 [129]. Physically; there are two types of 

diffusions; linear and radical (spherical). Although the macroelectrodes suffer from the tirst 

diffusion, the IDMA takes advantage of the spherical diffusion to rapidly establish a 
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steady-state mass transfer and a high current density value "J = ~  resulting In the 

decrease of the current value as given by the equation. 

Figure 4-11 Polymeric lab on a chip on top of CMOS chips with embedded interdigitated 
microelectrodes array. 

Due to the Faradaic process and In the light of ohm's law "V = IR", the voltage drop 

across the fingers is low. This makes the bio-transducer, including the IDMA, to work 

independently in the biomedical environment[130]. In the light of the Non-Faradaic 

process, the presence of the IDMA in the system yields to tiny capacitive displacement 

currents [131]. Figure 4-12 illustrates the fundamental of interdigitated microelectrode 

arrays. 

Figure 4-12 Basic Interdigitated microelectrode array (lDMA) Illustrating the anode and 
cathode terminais. 

These electrodes are created by parallel fingers in a 100-/lm length,  1 /lm width and 

O.5-/lm spacing. The IDMA are interconnected with the aim of acquiring an anode and a 

cathode. In the electrochemical cell, the anode is where oxidation takes place, referring to 
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the positive polarity contact where negative ions are enforced by applying extemal 

potential, which leads to a production of electrons as an oxidation process. On the other 

hand, the cathode presents the negative polarity contact, thus, the reduction takes place. 

[132]. The flow of the electrolyte control in the microchannel is achieved by means of a 

high precision syringe pump in pushing mode connected to the channel inlet. Operation in 

pushing mode permits introducing the nanoparticle suspension by simple pipetting into the 

inlet reservoir of the microfluidic chip holder. Once the microchannel is homogeneously 

filled, the capture and dosing of the biological cells will start. [133][134]. 

At that point, the flow is stopped and a current is applied to generate the local electrical 

field between the anode and cathode of the IDMA required for plug formation. An AC 

CUITent and field is used throughout the experiments (50 Hz or 100 Hz) and the bacterial 

pathogen cells instantaneously align with the extemal field. 

4.6.1 The characteristics of IDMA influences and advantages 

Recently, interdigitated array microelectrodes have grown a widespread use in 

developing biosensors for monitoring the catalyzed reaction of enzymes, the biomolecular 

recognition events of specific proteins, nucleic acids, whole cells, antibodies or antibody-

related substances; growth of bacterial cells, or the presence of bacterial cells in the 

aqueous medium. 

Interdigitated array microelectrodes (IDMA) have been integrated with the EIS 

technique in order to miniaturize the conventional electrodes, enhance the sensitivity and 

use the flexibility of electrode fabrication to suit the conventional electrochemical cell 

format or microfluidic devices for a variety of applications in chemistry and life sciences 

application. This work is focused on IDMA based on the EIS technique as biosensors for 
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their applications in pathogens detection. Sorne researchers elaborated on different IDMA 

geometries, their fabrication materials, design parameters and types of detection techniques 

[135][136]. 

The IDMA with a four-electrode configuration as shown in Figure 4-13, was fabricated 

on polymer or glass wafers and investigated to obtain optimal oxidation and reduction 

reactions [137]. The IDMA is made of proximity microbands of an array to probe 

chemistry taking place around the microband. The four-electrode configuration implies a 

working electrode constructed of a double-band system named as the generator-collector 

mode. The two fingers' proximity aid the diffusion fields to overlap and a mutual effect 

occurs in between fingers. 

SUb$trate: 
1. SIIicofI. 0<. 
2. Polym.r. Of 
3. Glass. 

Figure 4-13 The four-electrode configuration. 

The mechanism of this configuration simply lies on the generator electrode that acts as 

a driver producing reduction species and the collector electrode that collects the generated 

reduction species so a current flows as result of this process. The generation-collection 

mode is sensitive to the chemical stability of species reduction. The dynamic motion of the 

oxidation-reduction reaction has the capability for detecting and quantifying the process. In 
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the case of insufficient time to diffuse ions to the collector, no current flow implies that no 

generating ions at the generator occurs, otherwise acurrent is recorded. Therefore, the more 

CUITent is recorded, the higher sensitivity of the electrode required. The high sensitivity of 

this configuration cornes from the feedback that occurs from the oxidation species at one 

finger to the oxidation species on the other finger. The feedback influence is playing an 

important role in the identification and quantification of chemical reactions concerning 

oxidation and reduction species. The generation-collection working electrode mode can be 

achieved using a two-finger and three-finger interfering configuration. In the three-finger 

configuration, the middle finger represents the generator and the adjacent fingers act as 

collectors. The more complicated technique can be achieved through the IDMA that is a 

comb built of wide series of parallel fingers. This comb is interfered with the other comb, 

therefore one of the combs acts as a collector and the other acts as a generator as shown in 

Figure 4-14. 

The kinetics behaviors of the IDMA relay on the widths of the fingers and the spacing 

between them [138]. The principal consequences of the properties of the microelectrodes 

have been categorized by Stulik et al. [139]. A steady state for a Faradaic process is 

obtained very rapidly leading to improve the Faradaic-to-charging CUITent ratio and signal-

to-noise ratio. In addition, scaling up the dimensions of the electrodes allows measurements 

on tiny biomolecular volume. 

Interdigitated microelectrodes arrays atm to enhance the signal-to-noise ratio, 

therefore, many researchers investigated various parameters of the IDMA [140][141]. 

Interesting differences between the electrode materials gold and platinum were found, 

which were due to the oxidization of platinum and gold during the IDMA fabrication 
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process, where the microelectrodes of various geometries have been prepared mechanically 

or lithographically. 

Figure 4-14 The layout of the IDMA. 

Tt resulted in gold IDMA as being by far superior in respect to signal-to-noise ratio and 

overall signal magnitude to those made of platinum (142]. 

4.7 Electrochemical impedance spectroscopy Structure and Behavior 

EIS is a rapid and powerful technique due to its capability to show thorough 

information straightforwardly on biorecognition-event induced capacitance and resistance, 

which alter at the IDMA or the substrate's surface. For instance, when antibodies bind to 

antigens resulting in an alteration in the impedance of the system, it makes possible the 

direct measurement of an electrical signal[143](144]. Physically, biological cells for their 

tiny volume and structure can electrically describe underprivileged conductors at low 

frequencies; i.e. below 10 kHz. For this reason, the effect of biological cells on the 
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interface impedance will be insignificant; such serious issues should be resolved. In order 

to make the biosensors work efficiently in biomedical and life science applications, sorne 

procedures are strongly required and applied to biological systems by applying external 

electrical potential; current or voltage, to entirely avoid this serious obstacle. Bacteria cells 

grow adherently on the surface of microelectrodes. Consequently, the electrode area that is 

exposed for the applied electrical signal will be significantly reduced. This implies that the 

measured impedance, which 1S inversely proportional to this parameter, is increased 

accordingly [145]. Growing biological cells adherently is an essential and fundamental 

process of ail biological systems where the cell-host interface detection process takes place 

because of cells undergoing extensive cell-cell and cell-extracellular matrix interactions 

[146][147]. EIS technique is integrated with IDMA; the bound cells are cultured directly on 

the sensing surface of the IDMA thus the overall signal that is carried out by impedance 

measurements lies on three features related to adherently growing tells. These features alter 

the number, growth and morphological behavior of the adherent cells due to the cell 

membranes acting as insulators [148]. It is important to note that any alters in media will 

result in dramatic alteration on the impedance measurement due to the permittivity 

changing [149][150]. The detection of biological cells using the EIS based impedance 

biosensors can be performed using the Non-Faradaic process in the absence of redox 

probes where the adherent growth of biological cells causes an alteration in the ionic 

structure. Therefore, the impedance in its components, both the imaginary and real parts, 

can be recorded and plotted using the Bode diagram [151] [152]. 

On other hand, the EIS based impedance technique can be also performed using the 

Faradaic process in the presence of a redox probe. This technique mainly lies on sensing 
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the formation of antibody-antigen immunoreactions on sensmg surfaces of the IDMA 

through monitoring the double layer capacitance and charge-transfer resistance of 

electrodes-electrolyte interface. The bioreceptors; i.e. antibodies, have an important role in 

this process due to generating impenetrable nanopartic\es that serve for an amplification 

strategy. This amplifies the alteration in the charge-transfer resistance because of the 

binding ofbiological cells to the sensing surface. However, the Faradaic process adds more 

steps for the system. As a result, a non-Faradiac process as a free-Iabel technique is widely 

used due to its high ability of detecting the alterations of the electrical properties proximity 

surface [153]. 

A high density of IDMA is used as a sensing surface to detect a concentration of 

biological cells in a solution. Once biological cells are attached to antibodies, only one part 

of the biological cell is covered above the sensor surface. As soon as the IDMA is dunked 

in a solution, only the active area of the biological cells is exposed to the solution. The 

purpose of the immobilized surface of the antibodies between the electrodes is that it acts 

as ties that hold the biological cell in place. The more concentrations of biological cells 

bound to the sensing surface the more changes noted in impedance measurements in 

between the microbands [154]. The EIS is deployed for bacteria detection in biosensors that 

are based on impedance analysis of the electrical properties of biological cells when they 

are binding to or associated with the microelectrode array [155]. 

Generally, impedance measurements can be Faradaic, which is a charge-transfer 

process that is joint together by electrons transferring across the interface leading to the 

reduction or oxidation of species present at the interface [156]: 

ox + ne f--t Re (4.6) 
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Where "Ox" is oxidation reaction and "Re" is reduction reaction. The dynamic 

behavior of the redox reaction can be described using the Butler-Volmer relationship: 

(4.7) 

Where F is the Faraday constant, Cox, and CRe are the surface concentration, n is the 

number of electrons, and kj and kb are the potential-dependant rate constant for the 

oxidation and reduction reactions. The Faraday impedance depends on the reaction 

mechanism given by: 

(4.8) 

Therefore, the total faraday impedance is [157]: 

(4.9) 

Where Dax and DRe are the diffusion constant for the oxidized and reduced species 

respectively and a is the symmetry factor. It should be emphasized that the impedance 

measurements are mainly used for measuring space charge capacities. They are usually 

performed in a frequency range of 10kHz up to nearly 1 MHz depending on the Faraday 

current [158]. The double-layer capacitor (Cdl) devices involve mainly non-Faradaic 

accumulation of charge difference across an interface that is electrostatic rather than 

electrochemical [159][160]: 

. dQ 
ln! = dt 

Where Q is the charge, t is the time, and "f' is the current. 

(4.10) 
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Thus the structure formed in this process is called the electrical double layer; i.e. the 

capacitor. The impedance of a capacitance is given by: 

(4.11) 

Where "J = "';-1" and w is the angular frequency and C d! is the double layer capacitor. The 

total impedance for the electrolyte/electrode interface is given by: 

(4.12) 

Consequently, Faradaic and non-Faradaic impedance can be categorized based on the 

presence or absence of any redox probe respectively. Non-Faradiac impedance is an 

alternative impedance technique in favor of developing biosensors for the detection of 

bacteria as weil as cell-based sensors. The variant of the impedance signal is depending on 

the growth and morphology behaviors of the adherent cells ' number due to the insulating 

effects of the cell membranes. The growth of bacteria on the electrode surface can be 

detected in the absence of a redox probe. For this reason, it causes a change in the ionic 

composition resulting in the impedance of the medium, independent of the volume of the 

sample, that will change simultaneously along with the bacteria concentration [163]. The 

measurement of the impedance results from the bacteria cells that are adherently growing 

on the electrode surface [164]. 

The microfluidic channel (MFC) incorporated with the IDMAs is used as the 

transducer-sensing surface that will functionalize by specific antibodies against a target 

bacterial pathogen strain. Interdigitated microelectrodes arrays have a lot of advantages 

besides their short electric field penetration depth that is capable to analyze the electrical 

properties ofthin layers and membranes [165][166]. 
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IDMA can be employed for detecting the presence of particular dielectric objects on the 

surface of electrodes [167][ 168]. After the sensing surface is represented by interdigitated 

microelectrodes that are exposed to an applied electrical field , the impedimetric detection 

perform to analyze and study the behavior of the biomolecular samples in the microfluidic 

channel. As aforementioned in section 2.3.2, the double layer capacitance (Cdl) in the 

electrolyte behaves similar to two simple parallel plates. 

(a) 

(b) 

Figure 4-15 The electric field established between the fingers (a) free-Iabel (b) 
Antibodies process. 

For the impedimetric detection of bacterial pathogens, a suitable frequency should be 

selected under a specific electrical field that is applied in the presence of bacterial 

pathogens binding to the surface of the electrodes via the biomolecular recognition of 

antibodies. Therefore, the entire system will perturb and the variation will be detectable and 

measurable. Besides, the geometries of the electrodes and the interface gap between the 

electrolyte and electrode are playing a significant role in the cell performance [169]. As 

soon as the surface of the sensing transducer is modified by filling it with biomolecular 

sample as a new dielectric in between the interdigitated electrodes, there would be variation 

in the measured impedance. The Zr components are the real part; ZRe, which is the 
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resistance of the solution increased and the imaginary one; Zlm that decreases the double 

layer capacitance accordingly: 

Rct2WCdl 
1+ (wRctCd[)2 

(4.13) 

(4.14) 

(4.15) 

EIS based impedimetric biosensors that are incorporated with the IDMA are mainly in use 

due to the proximity gap between fingers. This leads to a generated strong electrical field 

between the fingers therefore yielding a transducer with high performance. The mechanism 

ofthis technique depends on the generated electrical field, where it starts from one si de and 

ends on the other side of the IDMA as shown in Figure 4-15. The electrical field is 

spreading in the gap where the target cell acts together with the bioreceptors, which are 

antibodies used for the label process creating a disturbance of the generated electric field. 

The group of Gijs [170] overcomes the ionic media that is the major disadvantage in such a 

method due to the pre-dominant electrical distribution resistance of the electrolyte. In fact, 

the improvement lies on the optimization of the washing step subsequent to the target 

hybridization with the purpose of getting rid of ail the ions from the electrolyte [171]. 

In the presence of the electrical field, the biomolecular partic1es will align and get denser 

causing the situation to differ from before, where the magnitude of the alteration in the cell 

constant significantly relies on both the size and area of the sensing surface covered by 

biomolecular partic1es, as shown in Figure 4-16. The label-free and direct electrical 

detection of tiny biomolecular partic1es and proteins is possible by their intrinsic charges 
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using biofunction ion-sensitive technique. The biofunctionalization of the sensing surfaces 

coated with gold can be performed with BSA. 

(a) (b) 

Figure 4-16 The sensing surface covered by bacterial pathogen (a) before and (b) after 
applying electrical field. 

To achieve the biofunctionalization, a specific protocol should be applied [172]. The 

integrated system as described here will have an enormous potential to concentrate and 

enhance bacterial capture from samples. 

r·-·-··-····-·· .. ---·-------------·-·---···-·····---···-.----

1 

Figure 4-17 The architecture of the electrochemical biosensors. 
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This integration should improve the detection limit by several orders of magnitude, 

shorten the analysis and reduce non-specific detection events. Figure 4-17 illustrates the 

schematic detection setup. In this setup, a four-electrode configuration is placed in between 

the potentiostat unit and in the signal-processing unit, the three units build up the entire 

hiosensor CMOS chip. 

The electrode surfaces of the sensor chips will functionalize with the recognition 

receptors as a specific binding agent. Figure 4-18shows the layout of the entire 

electrochemical CMOS chip beside the schematic of the entire system. 

Figure 4-18 (a) The layout of the EIS CMOS chip, (h) The schematic ofTIA. 

The detection system approach has the following protocol that should be applied for 

achieving the mission of this transducer successfully; captured biological cells are 

introduced over the array containing the electrodes coated with the specific recognition 

elements. As soon as the electrical field is applied to the captured analytes, bacterial 

pathogens for instance, on the sensor surface, the impedance as a response of the sensor 

will change due to the added bacteria that is captured by a cytogenetic technique [173]. The 
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cytogenetic technique is one of the methodologies of genetics that covers the configuration 

and behavior ofthe biological cell, especially the chromosomes. Therefore, it is considered 

as a dominant approach for detecting RNA or DNA sequences in cells, tissues, and tumors. 

Conjugate fluorophores that are used as labels with in-situ hybridization has come to be 

known as fluorescent in-situ hybridization (FISH) that is used to detect and confine the 

presence or absence of specific DNA sequences on chromosomes and mRNA contained by 

tissues accordingly [174]. 

Figure 4-19 lmmunoglobulin attaches to a unique antigen. 

The reporter gene signal can be readily amplified by fluorophore-tagged 

immunoglobulin (Ig) that are bound to the dye molecule where each immunoglobulin binds 

to a unique antigen as shown in Figure 4-19. By measuring the impedance; as a biosensor 

response, which has bound onto the sensing surface, the rapid detection and quantitation of 

the presence of the specific biological ceIl is aIlowed. 

4.8 Equivalent Circuit modeling of the Immunosensor System 

Electrochemical impedance spectroscopy (EIS) is discussed and considered as a 

powerful bioanalytical and c1inical approach where the frequency dependence of the 

biosensor response can be readily carried out. To investigate and understand the potential 

differences at phase boundaries in biological and physiological processes, the electrical 
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polarization and the charge-exchange process is perforrned by using electrochemistry 

technique [175]. The nature of the biological cells growth and its environmental variations 

has a drawback that leads to insufficient and inaccurate information to describe the physical 

and chemical characteristics of the biosensor. It is essential and beneficial to understand 

these characteristics in order to optimize the sensor response. Sorne uncontrolled 

parameters might occur during incubation or laboratory procedures; preparation and 

washing steps play an important role in altering the biosensor response making the EIS 

approach merely incomplete. For that reason, the EIS approach should incorporate an 

electrical equivalent circuit model to analyze and adjust the assorted parameters concerned 

[176]. Consequently, as soon as the EIS approach is doing its job through the binding 

process by measuring the frequency band over a shot time, the equivalent circuit is figuring 

out the changes caused by drift thus completing the analysis of the impedance behavior of 

the biosensor [177]. 

The physical foundation of the impedance alterations can be identified usmg the 

response of the interface with equivalent circuit models. Generally, a collection of 

interfaces, which are represented as an electrochemical microfluidic ce Il, readily 

characterizes its performance by an equivalent circuit model buiIt of resistors and 

capacitors that pass CUITent with the same amplitude and phase angle. The real 

electrochemical cell behaves after applying external potential. Randles proposed the basic 

model in electrochemistry, as shown in Figure 4-20. In Randle's equivalent circuit, each of 

the four circuit elements represents a separate and clearly identifiable physical 

phenomenon. These elements are; resistance R soi for the electrolyte resistance, capacitance 

Cll, which represents the electrical double layer at the electrode/solution interface for the 
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interfacial combination of electronic and ionic charges, and  the resistance R et as a 

byproduct of the electrochemical reactions happening at the interface, which is a quantity 

of charge leaking across the double layer [178]. For that reason the charge transfer 

resistance, Ret is shown on the circuit to represent this charge leakage, and the diffusion of 

ions to the interface from the bulk of the electrolyte causes impedance that is well-known 

as Warburg impedance. ~  ~  represents the impedance of diffusion of the contributors in 

the Faradaic processes towards and from the interface. 

RS01 

~ 

Ir t""'----1 

Figure 4-20 Randles equivalent electrical circuit model. 

The Warburg impedance cannot be simply observed physically at lower frequencies 

less th an 1 kHz. It is covered by the inverse of the sampling period due to the slow 

electron-transfer kinetics. In the absence of the Warburg impedance, the shape of the 

impedance, Nyquist plot Zlm vs. ZRe, does not look good except when a constant phase 

element (CPE) is added to the model [179]. The CPE is an admittance that can be 

characterized as YCPE = Ya Uw)a where Ya and a are the parameters of CPE, a is the 

parameter that is more likely to define the nature of this quantity sites within the range 

-1 $ a $ 1 and YCPE ends at the admittance when a = 1 hence YCPE = jwCdl where Cdl 

is the double layer capacitance. In the impedance, the electrochemical microfluidic channel 

can be measured by [180]: 



Zr = Rs + ~  YCPE]-l 
Ret 

(4.16) 
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In the simple form of the equivalent circuit, three elements are essential to carry out the 

linear diffusion impedance. The element R s refers to the solution electrical behavior. The 

capacitor Cd! models the double-layer, where the electrical double-layer sometimes is 

represented by a constant-phase element (CPE) and a parallel resistance R d! [181]. The 

resistance R el relates to the charge transfer. Zw is the Warburg impedance related to the 

mass transfer. The last constant phase element is modeling the low frequency behavior of 

the cell. Others defined the capacitance of the electrochemical double layer in series with 

the native silicon-oxide layer capacitance, which is modeled in the electrical equivalent 

circuit as a CPE• It comprises deviation from the ideal behavior of a capacitor and it occurs 

at low frequencies [182]. Robert Levie [183] commented on the most popular model used 

in electrochemical analysis considering Randles' equivalent circuit, and proved that it is not 

reasonable and that it is exception rather than the rule. Consequently, the equivalent 

circuits' models are unsuccessfully right to represent such subtleties. Sorne arrangements 

with the double-layer capacitance; Cd! as a frequency-dependent constant-phase element 

[CPE] is given by [183]: 

(4.17) 

The CPE element is convenient for the flattened semicircle, which initiates from 

noticeable non-capacitive reactance properties. The CPE element appears at low frequencies 

and it is modeled as a CPE to account for deviations from the ideal behavior of a capacitor 

[184][185]. Note that the resistance associated to the silicon substrate; Rsub and the stray 

capacitance of the polysilicon electrodes to the silicon substrate through the silicon oxide-

insulating layer Csub have almost no influence on the impedance measurement. Since RSi 
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and Csubs are substrate parameters and constant among all biosensors, they can be ignored 

and eliminated from the equivalent circuit. 

The electrochemical impedance spectroscopy measurements of the total microfluidic 

cell or microelectrode impedance as a function of frequency (w) and techniques can be 

willingly taken out of the Faradaic impedance; Zfi the solution resistance; Rso/, and the 

double-layer capacitance; Cd/ from direct measurements plots; such as Nyquist and bode 

plots. Nyquist plots can be acquired from and compared to equivalent circuit models that 

are built up of different components based on the appropriate equations on behalf of the 

rates of the various methods and their contributions to the current. 

Rsol 

Kinetic 
control 

w/)= l/{RerCdl) + 

Ret 

Figure 4-21 The general schematic drawing ofNyquist plot for an EIS. 

Figure 4-21 shows the general Nyquist plot. On the other hand, su ch equivalent circuits 

are inclusive, so it is hard to select the form or structure of the equivalent circuit from the 

processes involved in the reaction scheme. In a complex reaction method, simple circuit 

models such as Randles' model is incorrect and insufficient for deliberate admittance or 

impedance measurements. Because of sorne significant parameters in the AC response in 
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the EIS that should be considered such as the electrode surface roughness and 

heterogeneity [186] and as long as no experimental pledge is seen in the horizon, the 

equivalent circuit model cannot mirror the performance of the system. 

For the ail these reasons; the measurement of the impedance based on the standard 

equivalent circuit as shown in Figure 4-20 should go further in depth. Consequently, the 

measurement can be performed either separately or altogether but the latter is more 

preferable and applicable for varies of frequencies and for the Faradaic impedance. The 

equivalent circuit is shown in Figure 4-22. 

-----t[::: ... ~~ ............. JI---
Faradaic 

Impedance 
Charge Transfer 

Resistance 
Warburg 

impedanu 

Figure 4-22 Faradaic impedance and its equivalent. 

For non-Faradaic impedance, the equivalent circuit is shown in Figure 4-23. Using this 

approach makes it easier and the parameters R so/, R et. Cd are directly determined, thus the 

total impedance Zr can be written as: 

(4.18) 

Where; Zl = Rsob Zz = and Z3 = Ret. The electrochemical impedance 

spectroscopic approach deals with the variation of total impedance in the complex plane as 

represented by Nyquist plots. The total impedance (Zr) of the electrochemical cell can be 

described in two parts, real and imaginary parts [187]. Both parts of the impedance; ZRe and 
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Zim should be measured and matched with the experiments protocols that are defined as 

follow: 

(4.19) 

(4.20) 

Figure 4-23 Non-Faradaic equivalent circuit mode!. 

The useful chemical data can be extracted by drawing Zim vs. Z Re over a range of 

frequencies; from low 10 Hz to 1 kHz to high frequency 50 kHz up to 1 MHz. For low 

frequency; "w -7 0" the above equations lead to the following equations: 

(4.21) 

(4.22) 

Solving these two equations with respect to w yields: 

(4.23) 

This means that the relation between the two parts is linear and the slop is equal to unity. In 

addition, the two parts of the impedance are still frequency dependent but excluding the 

Warburg impedance variable. Therefore, in low frequency, the total impedance Zr is a 

function of a diffusion-controlled process. As soon as the frequency rises, it enters the high 
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regime; hence, the total impedance no longer depends on Zw but heavily depends on 

parameters Ret and Cdl• In the high frequency regime " w » 0"; the Warburg impedance is 

abandoned due to the time scale that is so short, it is not capable to back up the diffusion to 

dynamically operate the CUITent. 

The total impedance is fully dependant on the charge-transfer resistance; Ret = ~ and 
nFlo 

the double-layer capacitance; Cdl where ~  is negligible. Therefore, the two parts of the 

total impedance yield: 

~  

~  

Solving these two equations with respect to w yields: 

(

22 
ZRe - RSOL + R;t) + ZIm 2 = (R;t) 

(4.24) 

(4.25) 

(4.26) 

The above result leads to a semicirc1e plot with radius; r = R;t and its origin at (Zlm = 0, 

Z Re = RSOL + Ret) as illustrated in Figure 4-21.: 2 

R = RT 
ct nFio 

(4.27) 

(4.28) 

(4.29) 

Where (J is quantitatively predictable from the constants of the experiment; ~  and 

CRe are the surface concentrations, F is the Faraday constant, T is the temperature in 

Kelvin, R is the Boltzmann constant, A is the exposed area and n is the number of electrons. 
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Increasing the thickness of the surface layer causes significant decrease in the double layer 

capacitance constant phase element relating to the ab ove equation where co is the vacuum 

dielectric constant; 8.85 x 1014 F/cm2
, ci is the dielectric constant of the layer i and A is the 

area of the surface. 

So far, the total impedance measurement somehow is still in standard form. In practice 

and more accurate system the situation is more complex and the actual plot of the 

impedance in the complex plane will unite the two limiting features ; mass-transfer and 

kinetic control regions. A Nyquist plot is so essential for the electrochemical system 

impedance where the two limiting feature regions are defined at low and high frequencies, 

which are the mass-transfer and kinetic control regions, respectively. Among the entire 

parameters of the total impedance, the key that controls the process is the charge-transfer 

resistance, R et incorporated with the Warburg impedance as a function of "a". The 

semicircular region does not look perfect due the entire behavior of the system where the 

mass transfer is a significant factor. The charge-transfer resistance is dominant as long as 

the chemical system is kinetically slow. On the other hand, the charge-transfer resistance, 

R et might be slightly sm ail by comparison to the solution resistance and the Warburg 

impedance over nearly the completely available range of " a". 

The equivalent circuit models were modified from the basic model that was proposed 

by Randles as shown on Figure 4-20. An electrical equivalent circuit is anticipated to 

analyze a variety of parameters involved in the impedance measurement of the target 

bacteria using the microfluidic channel (MFC) embedded with IDMA to improve the 

biosensor sensitivity [188]. Impedance measurements are often fit and adjusted to the 

equivalent circuit model that matches the requirement of each project individually. In 
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electrochemical cell analysis, there are mostly a few parameters of concern to be detected 

based upon the range of frequency and the biological sample. The electrochemical system 

has Faradaic Zf and non-Faradaic; R so! and C d!, impedances. The main two components in 

the plot, C d! and R et. depend on the dielectric and insulating characteristics at the 

electrode/electrolyte interface. Where the double-layer capacitance Cd! depends on the 

dielectric permittivity established by the double-charged layer molecules, " Edl", where the 

dielectric constant of the vacuum is " EO = 8.85 X 10-12 Fm- 1 " . The effective dielectric 

constant of the layer separating the ionic charges is "EP" , A is the electrode surface area and 

dis the thickness of the separating layer given by: 

(4.30) 

The double-layer capacitance, Cd!, can be calculated as a sum of a constant capacitance 

of an unmodified electrode; i.e. Au electrode, Cue ~ 40 to 60 f1F cm- 2 , relying on the 

applied voltage [189] , and a variable capacitance initiated from the electrode surface 

modifier, Cme, is connected as a series elements [190] 

C - CueCm e 
dl - Cue+ Cme 

(4.31) 

In case the surface is unsmooth, the constant phase element CPE is used instead of C d! . . 

The charge-transfer resistance, Ret. has power over the electron transfer kinetics of the 

redox probe at the electrode interface. As long as the insulating modifier on the electrode is 

predicted to slow down the interfacial charge-transfer kinetics, then increasing the charge-

transfer resistance must be done accordingly. The electron transfer resistance is determined 

in a similar way to the capacitance elements with respect to the unmodified electrode 

resistance Rue, the variable charge-transfer resistance Rme established by the modifier and 
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the charge-transfer resistance at the electrode that can be described in a series form and 

given by [190]: 

(4.32) 

Recalling the main shape of the Faradaic impedance spectrum; Figure 4-22, Nyquist 

plot consists of a semicircle segment pursued by a straight line. The semicircle segment is 

experiential at higher frequencies with respect to the charge-transfer-limited process, while 

the linear part is distinguished by the lower frequency range. It represents the dispersion 

limited electrochemical process. The impedance spectrum can be exploited with respect for 

the process speed. For rapid charge transfer processes, the impedance shape can disperse to 

the linear part, while for a slower charge-transfer process the shape expands only in a large 

semicircle region. The impedance spectrum is a powerful tool to analyze and study the 

charge-transfer kinetics and the diffusional characteristics as weil. As shown in Figure 

4-21 , the semicircle diameter refers 'to the charge-transfer resistance, Rct. At high 

frequencies "w --+ 00" the semicircle yields an intercept with the Zre-axis that refers to the 

solution resistance, Rso/. At low frequency "w --+ 0" the semicircle yields an intercept 

correspond to Rsoi + Rct, where the resonance frequency is equal to "wo = (Cdl Rct)-l" 

[191]. 

The Electrochemical analytical process can be more significant if the impedance 

measurements are performed with a range of frequencies "10-3 < f < 105 Hz" . In such 

condition, the interfacial properties of the modified electrodes mostly control the 

electrochemical process. The applied frequency is the main controller over the impedance 

measurements. Low frequencies less than 10-3 Hz result in an impedance value calculated 
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by the DC-conductivity of the electrolyte solution, while for frequencies greater than 105 

Hz more parameters get significant and affect the impedance spectrum as weil. 

Theoretically, the microfluidic cell with the three-electrode system can be treated as 

mentioned before; using the electrical equivalent circuit that is mainly constructed from the 

electrolyte solution resistance (Rso1) , Faradaic impedance (Zj ), and double layer capacitance 

(Cdl). If there is no electrochemical reaction on the electrode surface, the Faradaic path Zf is 

inactive and only the non-Faradaic impedance is operative [192]. In such a case, the 

equivalent circuit can be simplified as a seriai combination of the electrolyte solution 

resistance and the double layer capacitance, which will form the total impedance (Zr) of the 

system as shown in Figure 4-21. The following equations are valid and may apply: 

1 1 1 -=-+-
ZT z' z" 

IZ'I = 

IZ"I = 

(4.33) 

(4.34) 

1 (4.35) 

For low frequencies (less than la kHz) the regime is capacitive dominant in which the 

electrode impedance cou Id be detected and represented by the double layer capacitance and 

became the main source that is contributed to the total impedance. This arrangement makes 

the impedance value very high, where Rso1 is insignificant. As soon as it is the high 

frequency range (greater than 10kHz), the regime becomes resistive dominant due to the 

conduction of ions and the only contribution to the total impedance is the electrolyte 

resistance that is independent of the frequency and the double layer capacitance is 

insignificant [193]. For that reason, the growth of pathogens cou Id be detected by the 
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impedance measurement due to the variation in the double layer of the electrode and in the , 

biological environment executed over a range of frequencies. In the light of what is 

aforementioned about the behavior of the impedance measurements, it is cIearly noted that 

low frequency impedance (less than 10kHz) can provide the information of the double 

layer capacitance of the electrode, while high frequency impedance (greater than 10kHz) 

can collect the information about the electrolyte resistance. Consequently, the impedance 

measurement can be categorized based on what is targeted. If the biological environment is 

to be considered then high frequencies should be used. Otherwise, if the double layer of the 

electrode is to be considered then low frequencies should be used. Therefore, the 

impedance measurement is a powerful tool that should be used to monitor and detect the 

bacteria growth over a range of frequencies by watching and recording the behavior of 

either the double layer of the electrode or the biological environment [194]. Theoretically, 

the data of the electrochemical impedance spectra can be simulated with an equivalent 

circuit of the system for the detection of biological cells based on the general electronic 

equivalent model of an electrochemical cell incorporated with the behavior of the IDMA 

[195] , as shown in Figure 4-24. Consequently, the impedance spectrum can be categorized 

in three separate regions corresponding to the three main elements in the equivalent circuit; 

the double layer capacitance, the bulk medium resistance and the dielectric capacitance of 

the medium based on the frequency range of the applied signal. Figure 4-24 illustrates that 

the Faradaic current (if) flows through the seriaI elements (RETR and Zw) and the non-

Faradaic current (ie) flows through the double capacitance Cdl• The sum represents the total 

current that generates through the sensing surface. The total currents from the two branches 

will flow through the solution represented by the solution resistance R soi that is plugged in 

series into the equivalent circuit. The components of the Faradiac components as shown in 
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Figure 4-22 are not ideal because they are fully dependent on frequency where the 

components of the non-Faradiac as shown in Figure 4-23 are almost ideal circuit elements 

[196]. 

Figure 4-24 The equivalent circuit models for microelectrode aITay. 

The first regime refers to the double layer influence at low frequency range from 10Hz 

to approximately 1 kHz, the double layer capacitance of the electrodes dominates the total 

impedance spectra. The second regime refers to the conductivity of the ions in the medium 

and the bulk medium resistance over a range of frequency from 1 Hz to 50 kHz. The 

regime refers to the dielectric capacitance of the medium, as long as the frequency is 

greater than 50 kHz, then the dielectric region is dominant. At low frequency range, the 

double layer capacitance only dominates the impedance, while at high frequency range, the 

dielectric capacitance is dominant [197] [198]. 

Algorithms analysis for electrochemical fluidic cell has been performed using 

potentiodynamic electrochemical impedance spectroscopy (PDEIS). PDEIS is the system 

for resourceful characterization of electrochemical scheme. The EIS spectrum analyzer is a 

standalone program for analysis and simulation of impedance spectra. Figure 4-25 shows 

the impedance measurements using PDEIS analyze for Rso1 =20 0 , Ret =120 0 , Zw =50 

0/SI /2 in frequency range from 1 to 1kHz where PDEIS acquires changeable frequency 

responses in alternating CUITent and a potentiodynamic OC voltammogram in the same 
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potential scan, by probing the electrochemical interface with streams of mutually 

coordinated wavelets. 

. -~ . ~ .. 
~ 

Figure 4-25 Impedance measurements using PDEIS software. 

4.9 Experimental Setup and EIS on MLoC System Validation 

4.9.1 Impedance measurements 

The designed transducer incorporated with the MCF embedded with the IDMA is 

electrically characterized in deionized water as a standard solution, control sensing, and 

two other samples of blood and urine as surface sensing at a range of concentrations as 

shown in Figure 4-26. 

Figure 4-26 The microfluidic channel incorporates IDMA along with schematic. 

The impedimetric measurements were performed at 50 m V with the frequency range 20 

Hz to 1 MHz. Once the system is stabilized, the solution is inserted into the MCF channel 

using a high precision syringe pump. The impedance measurements from low to high 
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concentrations are recorded for both solutions individually. The analysis of the impedance 

response has been matched to the modified equivalent circuit elements as shown in Figure 

4-24. 

EIS measurements were performed using the MLoC system as an impedance analyzer. 

The IDMA were dunk in PBS solution as a sensing part (WE) where the reference (RE) and 

counter electrodes (CE) were plugged into the MLoC system. Figure 4-27 shows the 

different microfluidic channels that were used for validating the MLoC system. 

( 

Figure 4-27 Microfluidic channels in different designs. 

The experiment was performed using sm ail AC potential within a range of frequency 

from 1 Hz to 100 kHz. Figure 4-28 shows the experimental setup that runs the impedance 

measurements. Appendix B shows more details. The state-of-the-art impedance 

measurements employa frequency response analyzer that produces a sequence of alternate 

CUITent of a range of frequencies. Superimposed with a DC bias cUITent, the current is then 

applied to the EIS system yielding AC current measurements at each selected frequency. 

Afterwards, the impedance measurements were then analyzed from the excitation function. 

The results of the process can be recorded and drawn using Nyquist plot, imaginary 

impedance vs. real impedance. 
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Figure 4-28 The experimental setup for impedance measurements. 

The modifications on the electrode surface during the immobilization of antibodies onto 

the interdigitated microelectrodes array surface caused sorne variation mainly on the 

charge-transfer resistance. The changes are due to the antibody protein layer on the 

electrode surface that established a charge-transfer barrier and the variation increases 

because of the binding of biological cells on the antibody-immobilized microelectrode 

surface. The double layer capacitance shows variation for the immobilization of antibodies. 

In the medium resistance side, the binding biological cells do affect the interface resistance 

in the microelectrode system by creating resistance along with the medium one causing a 

little bit of difference from the original value of Rso/. The charge-transfer resistance in the 

semiconductor electrolyte interface can be carried out readily through a Nyquist diagram of 

the electrochemical impedance spectrum. The behavior of the system is tested using three 

different biological samples shown in Figure 4-29. Generally, the impedance spectrum has 

two parts a semicircle and a linear line. The semicircle part stands for the charge-transfer 

process with a diameter equal to the charge-transfer resistance. The linear part stands for 

diffusion process. 
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Figure 4-29 The behavior of the system after applying the three samples using Nyquist 
diagram. 

The diameter of the semicircle represents the electron-transfer resistance at the 

electrode surface. The electrochemical impedance spectroscopy measurements without any 

amplification shows useful results for the convenience of the IDMA that are used as 

working electrodes for the detection of bacterial cells bound to its surface. As long as the 

antibody is spontaneously adsorbed due to the immobilization protocol onto the surface of 

microelectrodes after  coating it by gold, the change in the electrochemical characteristics 

happened during the binding of the specific antigen. The charge-transfer resistance (Rel) can 

be figured out from the semicircle in the Nyquist plot that is increased due to the formation 

ofthe stable antigen-antibody complex. 

4.10 Conclusions 

Electrochemical-based biosensors are specifically designed, fabricated, and 

experimentally validated for realizing a new generation of multi-Iabs-on-a-single-chip 

(MLoC) system. The synthesis of the electrochemical biosensing with the IDMA biosensor 

is considered as a part out of four biosensors on the MLoC chip that worked successfully 

and provided enhancements in the current generation potentiostat system to impart 
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robustness and improve the system performance when compared to the previous 

generations. Attributable to its compact design, multiplex capability, low cost, selective, 

and sensitive method, the integrated EIS is considered as a powerful tool for the detection 

process in medical diagnosis. This work shows how engineering fields, physics, MEMS, 

bioelectrochemistry, and biology are combined at VLSI by replacing the separation 

between immunosensors and bioreceptors with an integrative approach through utilizing 

CMOS based biosensing. This work is focused on the interaction between the biosensors 

and the matching transducer surface nano-architectures with special focus on electronic 

sensing. IDMA technology has a potential integrated within the microfluidic channel 

(MFC) for biomedical and life sciences applications and it is the main valuable outcome 

along with the achievement of the miniaturization of biosensors that improves the 

transducer's sensitivity and selectivity. Presently, EIS incorporated with IDMA based on 

immunosensors are introduced as solutions for point-of-care diagnosis due to the direct 

electronic detection that is straightforwardly scalable and integerable into the CMOS 

technology process. In the light of the definition of originality aforementioned in "section 

2.6.3", the EIS techniques fill in the first category where the ideas have been previously 

published. The design in the literature made of a die within 2.25 x 2.25 mm using 

BiCMOS technology 1.2 /lm, and power supply -2V, +7V but the tools for MLoC system 

are definitely different. In this design, the technology that used is CMOSP35, the area of 

the overall size of the CMOS potentiostat chip sites is 500 /lm by 380.6 /lm, and power 

supply is 3.3V. Furthermore, ail of its stages implemented on-chip includes voltage 

controller and signal-processing unit along with their associating capacitors and resistors 



Chapitre 5 - CMOS Microcoils and Magnetic Field 
Manipulation 

5.1 Abstract 

So far, many strategies carried out by different research groups, in order to integrate 

electrochemical biosensors in microfluidic cartridges and sorne of these include various 

sample pre-treatments. The purpose is to miniaturize aIl the steps necessary in medical 

diagnostics and life sciences analysis laboratory. This work aims to develop a novel 

biosensor integrating state-of-the-art technologies that will allow the detection and 

quantitation of biological samples. To achieve the objective the following proprietary 

elements will con si der. The first objective is to design an integrated circuit-based 

impedance system for the simultaneously reading from an array of interdigitated 

microelectrodes and for controlling CMOS microcoils that will be used for providing 

magnetic field manipulation. The second objective is to develop a low-cost disposable-type 

microchip that consists of an array of interdigitated microelectrodes for impedance 

measurements along with microcoils for the magnetic field generation. Thirdly, integration 

of the microelectrode chip with a simple microfluidic channel interface. Fourth objective is 

characterization, testing and validation of the integrated system. 

5.2 Preview 

Recently, widespread demand on biomedical applications the microfluidic integrated 

with magnetic manipulations has become more attracted and got much attention due to its 
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great potential in this domain. Two general approaches had been studied to capture and 

release magnetic beads in microfluidic systems. The first approach utilizes permanent 

magnets [199], structures of a soft magnetic material magnetized by the external magnetic 

field from an electromagnet or a permanent magnet [200][201] or a combination [202]. In 

this category, biomedical applications were developed such as mixing, transport and 

separation of biomolecules [203]. Using jJTAS for quantitatively analyze biomolecules is 

readily and fast to separate and sort magnetic particles from bulk solution efficiently [204]. 

A commercial magnetic cell separation system (MACS) with permanent magnets has been 

discussed by Miltenyi et al. [205]. The manipulation of magnetic beads in lab-on-a-chip 

systems is a rapidly growing activity, which enables the direct detection of biological 

entities such as cells coated with magnetic particles on chip [206]. Lab-on-a-chip (LOC) 

was developed for DNA detection by Smithtrup et al. [207] by fabricating an array of soft 

micro-magnetic elements to produce magnetic field gradient for magnetic particJe 

separation. A complete separation of particles performed under external field without using 

hydrodynamic focusing [208]. A mathematical model for predicting the motion ofboth red 

and white blood cells under magnetic has been developed by Furiani et. al. [209]. The 

second approach utilizes microelectromagnets in various forms integrated with microfluidic 

channel [210]. These active magnetic separators have the advantage of local addressability 

but suffer from complex fabrication procedures and limited field strengths. In this category; 

microelectromagnets has been also used for magnetic separation. A prototype 

micromachined magnetic particle separator, with an excellent separation was achieved 

under magnetic flux density Ahn et al. [211]. Separators with embedded planar micro 

electromagnets made of spiral coils [212] and ring-shaped conductors' [213] were 

demonstrated. Although these magnetic separators made of micro electromagnets allow 
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switch "ON" and "OFF" for separation compared with 'those made of micro magnets. Note 

that, the magnetic fields generated by micro electro- magnets for separation are generally 

weak [214]. 

Several approaches for microorganism manipulation have been developed based on 

different analytical methods, su ch as electrical manipulation of biological cells based on 

Dielectrophoresis (DEP). Dielectrophoresis is the physical phenomenon whereby neutral 

particles, in response to a spatially non-uniform electrical field, experience a net force 

directed toward locations with increasing; called positive dielectrophoresis (PDEP) or 

decreasing; called negative dielectrophoresis (nDEP) field intensity according to the 

physical properties of partic1es and medium [215]. The mechanism of DEP for 

microorganism manipulation depend on these two forces; pDEP and nDEP, are used to 

precisely move cells in a microfluidic channel formed between two facing glass chips with 

interdigitated microelectrodes array. Despite microorganisms and cells are mostly 

electrically neutral. Dielectrophoresis (DEP) is weil suited to their manipulation but the 

drawbacks ofthis technique making it undesirable for microorganism manipulation because 

the fluid flow is required to lead cells into and out of the DEP cage and electrode alignment 

in three dimensions is necessary, traveling waves are combined with nDEP to move cells in 

a microfluiqic channel without fluid flow. However, it is difficult to precisely position 

cells, as needed by multistep experimental protocols, due to the fact that the cell speed 

depends on the type of cell [215]. On other hand, the DEP may damage biological cells 

while magnetic fields are transparent to the cells. Therefore, the magnetic manipulation 

method is employed to overcome ail of these issues. In the magnetic method, the magnetic 

beads are attached to target biological cells by coating the beads with specific proteins, 
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simply by passing on magnetic moments to biological cells. In addition, and in the light of 

magnetic manipulation in the conventional method where a large group ofbead-bound cells 

are ail drawn at once using magnetic fields. 

A new technique has been developed and improved to trap or transfer a unique cell 

under a magnetic field and steering capture cells to a precise location by switching the 

current direction [216]. This work presented a fully integrated circuitry incorporates an 

array of 4x 8 microcoils array. In the light of the relation between number ofturns (N) and 

the displacement of the cell from the center of the microcoil to the edge, choosing the size 

of the array be supposed to optimize and compromise; accordingly. Thanks to VLSI CMOS 

technology, this allows making high performance of microcoil with large number of turn 

(N) and small displacement (s). Each row of microcoils array connected to its own current 

source for independent current control. The standard theory of the electromagnetic field is 

relevant to this domain. The main goal from designing such microcoil is creating a single 

magnetic field magnitude peak at the coil center on the chip surface when an appropriate 

current is drawn. Each coil in the system constructed from three microcoils using metals 

Ml , M2 and M3 that are connecting in series. As long as a unique magnetic profile is 

required on the surface, and to eliminate other peaks beneath the last layer of the 

microcoils, therefore, the three coils were connected in series, as shown in Figure 5-1 . The 

purpose of the microcoils in the two lower metallayers are used to shape the magnetic field 

pattern properly to produce only one field magnitude peak at the coil center on the chip 

surface. On the other hand, the microcoil array should produce a magnetic force on the 

order of tens of pico-Newton (PN) on the chip surface when DC current, is applied; in 

milliampere range that is required to trap or transport cells on the chip surface within the 
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microfluidic channel. The magnetic field profile obtained using EM field to calculate the 

desired magnetic force. The magnetic trapping force is given by [217]: 

(5.1) 

Where V and X are the volume and magnetic susceptibility of the magnetic bead, 

respectively, µ0 is the magnetic permeability in vacuum, and B is the magnetic field 

magnitude. After the microcoil array design, the overall IC is carefully laid out to minimize 

stray magnetic fields from metal interconnects [218]. 

Figure 5-1 Single microcoil structure. 

Microscale and even Nanoscale CMOS technology play an important role in biosensors 

application. Such technology allows fabricating different designs of interdigitated 

microelectrodes array (IDMA) and deeply differentiate itself from the conventional 

electrodes due to their geometrically utmost in electrochemical behavior [219]. The IDMA 

design offers increased sensitivity to redox cycles, improving as the electrode gap 

decreases [220]. Using modern techniques of photolithography and microfabrication, the 

sensitivity enhancing geometries of the IDMA are created with dimensions of few hundred 
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nanometers [221]. Interdigitated microelectrodes array have the capability to improve the 

current response while retaining the properties of a single microelectrode, which gives 

them high sensitivity as detectors for flow injection analysis and liquid chromatography. In 

addition, sensitivity can be gained by maintaining the two interdigitated electrodes at 

different potentials to cause redox cyc1ing. Therefore, interdigitated microelectrodes array 

present as electrochemical detector throughout the biosensors application particularly for 

detection of the magnetic bead-based immunoassay where both electrodes held at the same 

potential [222]. 

5.3 CMOS IC Microcoil Array Architecture 

The schematic block diagram of the magnetic generator along with the control signal 

and current source circuits as shown in Figure 5-2 where the area of the entire circuit is 

248.05 ~  x 246.725 ~  The magnetic source is built using 32 microcoils in 4 x 8 arrays. 

Each coil, which made ofthree metals; Ml, M2, and M3, connecting with vias, where the 

input current plug into metall (Ml) and the output cornes out from meta13. The integrated 

system described has an enormous potential to concentrate and enhance bacterial capture 

. from samples. This integration should improve the detection limit by several orders of 

magnitude, shorten the analysis time and reduce non-specific detection events. The 

mechanism of this approach can be summarizing as a bi-directional microcoil array placed 

under the sensor chip; that is, interdigitated microelectrodes. The surface of the electrode of 

the biosensor chip relies on using recognition receptors as specific binding agent. In the 

proposed project, the detection process will perform through three steps process as will be 

unfolded in section 5.4.4. Figure 5-2 shows the layout of the CMOS IC microcoil array 

circuitry that performs the entire operation of detecting magnetic bead where there are two 
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main parts, the sequential circuit that provide a DC current source, and the microcoils array 

with interdigitated microelectrodes array on top of it. In this system, each row microcoil 

connected to four PMOS transistors working sequentially as switches. Figure 5-3 shows the 

schematic of the control current source, where each two transistors; SW l s connected to the 

same clock, while the others; SW2s are connected to the inverted clock. The goal of the set 

of switches labeled SWsI and SWs2 are used to change the current direction of the 

microcoil. Note that the rest of the microcoils rows are connected to different clock to be 

controlled and selected; accordingly [223]. Figure 5-4 shows the system along with the 

main structure of a single, identical microcoil in the array. The microcoil is built based on 

CMOS technology geometry and rules, where the width Ml is 0.5 Ilm and space is 0.45 

Ilm, M2 width is 0.6 Ilm and the space is 0.5 Ilm, and M3 width is 0.6 Ilm and the space 0.6 

Ilm, where the outer diameter of the microcoil is 20 Ilm. To forrn the microcoil the three 

metals; M2, M2, and M3 are connected in series with vias. The IC CMOS chip for 

magnetic cell manipulation is designed to generate multiple, localized magnetic field peaks 

on its surface by using an array of surface microcoils. Magnetic manipulation in biosensors 

applications is selected and preferred for two major reasons [224]: 

1. Magnetic fields are biocompatible. 

11. The magnetic fields are not subjective to the solution, which is making certain high 

selectivity of magnetically tagged cells. 

The multiple magnetic peaks are generated to control the positions of many individual 

biological cells in parallel that allows more information about the testing structures 

simultaneously to be produced. Consequently the goal of the multiple magnetic peak 

whether manipulation of a single bead over many microcoils, or manipulation multiple cell 
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over many microcoils, the bead is transported over a distance of 10 J-lm for each microcoil 

or 164 J-lm to leave the entire row, with the average speed will be discussed later. 

Figure 5-2 The layout oflC CMOS microcoils arrays. 

Figure 5-3 The electronic circuitry of the control current source. 

The chip is fabricated in standard CMOSP35 technology (process of Taiwan 

Semiconductor Manufacturing Company, Taiwan). The chip is implemented using analog 

and digital circuits. The analog circuits consist of 4 by 8 microcoil arrays that generate 

magnetic field patterns for cell manipulation, and current source to provide the microcoils 

array with a specific DC current. The digital circuits inc1ude the control circuit to steer the 

direction and the magnitude of the electrical current in the selected row of the microcoil 
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array, which will reduce the fan-in of the entire chip. The Jateral size of the chip is 2.23 by

3.04 mm2 and the supply voltage is Vdd = 3.3 V.
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Figure 5-4 The CMOS chip with single microcoil.

Figure 5-5 The distance between adjacent microcoils.

The chip have asymmetry array arranged in four rows and eight columns, each row has

eight identical microcoils, in total there are 32 microcoils. The outer diameter of each

microcoil is 20 µm and the center-to-center distance between two adjacent coils is 22 µm,



149 

and the separation distance between the edges of two adjacent microcoils is 1.05 µm, as 

shown in Figure 5-5. On top of the entire microcoils an interdigitated microelectrodes array 

with a 215.075 µm long and 114.775 µm width is placed as shown in Figure 5-6. Each 

finger has 0.6 µm width and space, and 188.6 µm long. 

Figure 5-6 Interdigitated microelectrodes array. 
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Figure 5-7 CMOS microcoil array incorporated control circuit. 
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Figure 5-7 CMOS microcoil array incorporates control circuit. Each row of array 

microcoils connected to the common current source. The inset shows the entire row of 

microcoil. Control circuit as shown in the inset in Figure 5-7, switches WSsl and WSs2 are 

PMOS transistors while WSs3 and WSs4 are NMOS transistors controls the direction of 

the current. Individually activating each branch in the current mirror using a sequential 

clock pulse that is applied externally changes the magnitude of the current. 

5.3.1 Generating magnetic field profiles /rom a microcoil 

The microcoil designed to generate a single peak in the magnetic field magnitude at its 

center. The structure of a single microcoil has three planar coils, each coil is built from 

different metal layer; Ml, M2, M3, they are connected using vias to form a microcoil. The 

metallines for Ml have the width of 0.5 /lm and the separation between metal Iines is 0.45 

/lm. The metal lines for M2 have the width of 0.6 /lm, and the separation between metal 

lines is 0.5 /lm. The m'etaI Iines for M3 have the width of 0.6 /lm, and the separation 

between metal Iines is 0.6 /lm. Strong magnetic fields can be generated with less current by 

having a multiple-turn planar coil in the top metallayer [225][226]. 

5.3.2 Design Microcoil Array 

Integrated microanalytical instrument brings considerable advantages over more 

conventional implementations only if they provide improved performance through parallel 

operations, sample size reduction or integration with following processes. Magnetic 

Resonance Microscopy (MRM) microspectroscopy is a new field in vivo and the analysis 

of small volume biological samples that requires essentially reducing the size of the MRM 

radio frequency (RF) detection coils [227]. Therefore, two approaches can consider 

bringing such technology to the light. These approaches are solenoidal microcoils and 
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planar microcoils. Solenoidal microcoil approach has shown potential results regarding 

detection efficiency and spectral resolution [228]. Nevertheless, the drawback of thi s 

approach is the more efficient zone for the detection at the center of the coil, which is not 

compatible with the implantable geometry for biological application. Where planar 

microcoils approach its detection zone is located just around the coil. Therefore, this work 

selects planar microcoils approach because CMOS technology can accomplish microcoil 

fabrication steps efficiently, and the produced transducers are biocompatible devices [229]. 

5.3.2.1 Spiral-Type Inductor 

The · storage of the magnetic field within the conductor coils is the inductor 

component's essential function. Because of CMOSP35 technology process limitation in the 

number of layers; Ml , M2, M3, M4, it was decided to design a spiral geometry inductor. In 

addition, credits to spiral geometry a closed loop for the current flow in the device and a 

production of the linked magnetic field within the coils. 

N: TURN 
(N; 4) 

1 .. 
K 

1 
1 J 

s t 1 
Figure 5-8 Standard CMOS Microcoil. 

Figure 5-8 shows schematic drawing for the corresponding microcoil that is 

highlighting the parameters spiral geometry these are turn number of spiral coil (N), the 
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metal width (W), the metal spacing (S), and the inner dimension (R) between the inner 

turns. 

Figure 5-9 shows the Jay out of the spiral inductor using the three metals Ml, M2, and 

M3 along. This configuration can hold back the metal loss in the inner turn, the unfilled 

coil of this configuration is illustrated in this layout. Consequently, the vortex current loss 

in the. metal film can be diminished in this layout due to the stronger magnetic field 

intensity, which is observed in the inner coils. 

(a) (b) {c} 

Figure 5-9 The layout of the three Metals (Ml, M2, M3) that using in CMOPS35 
technology. 

Thus, there may be an effect on the linked inductance and the Q-factor value from the 

four parameters; N, W, S, R, that correspond to the design of spiral inductor [230]. The 

parameters need to obtained high-Q performance at a precise inductance must be 

considered by the design of CMOS inductor. The geometry parameters values for the three 

layers; Ml, M2 and M3construct CMOS microcoil array are: 

Ml � R = 22.0 µm, W = 0.5 µm, S = 0.45 N = 3, L = 10.5 µm 

M2 � R = 14.1 µm, W = 0.6 µm, S = 0.5 N = 6, L = 7.05 µm 
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M3 ~ R = 20.0 Ilm, W = 0.6Ilm, S = 0.5 N = 8, L = 10.0 Ilm 

As shown in Figure 5-9 the starting radius of first coi!, which is made of MI R= 22.0 

Ilm is larger than the targeted biomolecular sample size to keep away from field distortions 

due to the proximity of conductor traces to the sample [231]. The most serious reason that 

is making off-chip inductor impossible is electro-static discharge protection networks in 

CMOS technology. Regarding, bond-wire inductors have a very high quality factor , but 

even though they are not commonly used in voltage-controlled oscillator (YCOs) because 

of lack of reproducibility and mechanical stability [232]. Therefore, On-chip integrated 

inductors are more preferable over off-chip ones. The advantage of CMOS microcoil is not 

just for elimination the parasitic capacitance that produces by pad and bond wire, but credit 

goes to CMOS technology fabrication that shows good reproducibility. 

The entire layout of CMOS microcoil arrays 4 by 8 is shown Figure 5-10 where 32 

individual microcoils supported by one common current source and a unique control circuit 

for each row. 

Figure 5-10 The entire layout of CMOS microcoil array using CMOSP35 
technology. 
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Each microcoil has three coils using three CMOSP35 metals, where the first coil is 

made of Ml connecting in series with the second coil that is made of M2 by via, then the 

third one on the top made of M3 and connecting with lower in series by via as weIl. The 

spiral microcoil parameters for ail of the coils are tabulated in Table 5.1. 

Table 5.1 Microcoil specification and parameters 

Parameter 

Rllm W Ilm S Ilm Nllm Lllm 

Metal 

Ml 22.0 0.50 0.45 3 10.5 

M2 14.1 0.60 0.50 6 7.05 

M3 20.0 0.60 0.50 8 10.0 

CMOS technology can implement inductors in three different ways, either external off-

chip inductors, packaging bond-wires as inductors, or on-chip spiral inductors [233]. The 

use of external resonators is not preferred with CMOS technology for several reasons. 

Firstly, this is due to the parasitic capacitance of the chip' s pin. Secondly, the chip pin 

generates undesirable noise that reduces signal-to-noise ratio (SNR) performance [234]. 

The foremost drawback of on-chip inductors is the low-Q factor and large die area. CMOS 

microcoil operation, as conventional inductor, is a storage magnetic field within the 

conductor coils, it can be built in various geometries, and the most preferable microcoil is 

spiral for its larger inductance-to-area ratio. In addition, it improves the Q-factor on the 

expense of increasing series resistance (Rs) because of the length of the design metal. [235]. 
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5.3.2.2 Quality factor ofCMOS Microcoil 

The quality factor (Q) of integrated inductors in CMOS technology go through three 

loss mechanisms, metal sheet resistance, capacitive and magnetic coupling to the substrate 

[236]. Few approaches can reduce these losses and gain high Q-factor on-chip inductors. 

Either by decreasing metal sheet resistance using thicker metallization [237], and lower 

resistivity metals [238]. The other approach by making the dielectric layer between metal 

layers and the substrate as thick as possible by using top metal layers, or reducing substrate 

losses by using high-resistivity substrate [239]. This achieved by selectively removing the 

underlying substrate with post-fabrication steps [240], by using patterned ground shield 

[241 ]. 

The quality factor (Q) of an inductor measured at a certain frequency. The Q-factor of 

the inductor measure how good it is, and how the parasitic are at that frequency. A Q-factor 

of high value refers to very low parasitic, where the low of Q-factor refers to very high 

parasitic. Therefore, there are two approaches to reduce parasitic, by reducing series 

resistance of the spiral, or by using the thickest lowest metal to make spiral inductor or a 

combination of both. Q-faCtor can be improving by making a wide metal trace but on 

expense of increasing parasitic capacitance [242]. The factor of this inductor can be 

expressed with the spiral conductor resistance of as: 

Q = wL 
R 

(5.2) 

The seriai resistance (R) of the coil is inversely proportional to its thickness, and the length 

of the coil is independent on the gap that results from increasing its thickness, review 

appendix C for more information: 
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P  L 
R=-x-

tth W 
(5.3) 

Where; " p" is the metal resistivity, and tth is the metal thickness. Therefore, Q-factor can 

be improved whether by increase the thickness or decrease the seriai resistance (Rs). 

However, the thickness is standard and unchangeable is CMOS technology, which implies 

a decrease in series resistance of microcoil (Rs). As a result, the sheet resistance can be 

figuring out as: 

L 
R= Ra-

W 
(5.4) 

Where; "Rd' is the sheet resistance of the metàl in n/square, and W/L is the aspect ratio of 

the device. Based on the information that was provided by TSMC through CMC for 

CMOSP35 technology the total sheet resistance for each  microcoil; Ml, M2, M3 can be 

determined using Eq.(5.4) for the sheet resistance Ml, M2 and M3 is Ra = 83 mil; 80 

mn, 80 mn; respectively; provided by Taiwan Semiconductor Manufacturing Co.,  L TD 

for CMOSP35 technology. The totallength Ml, M2, and M3 is 1= 171 ~  278 ~  and 

538 ~  respectively. The width of Ml, M2, M3 is W = 0.5 ~  0.6 ~  0.6 ~  

respectively, the calculated resistance is ended up to 28.3 n , 37.1 n and 70.4 n; 

respectively. The longest metallength is the higher coil resistance. 

The variations of metal length in seriai resistance versus frequency were reported by 

Heng-Ming [226]. As shown above, the seriai resistances are intluenced strongly by the 

dimension of metal length; the longest metal length shows larger seriai resistance. The 

reason can be explained by the induced eddy CUITent in metal strip especially at high 

frequencies. Secondly, the coil number related to seriai resistance, the smallest tum coil 

exhibits small RF resistance this effect is explained by the less amount of storage magnetic 
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field in this coil. The seriaI resistance increases as the increase of coil number due to the 

increase of induced eddy current in metal strips. Finally, the variations of metal spacing 

show the small deviation of series resistance is found by the increase of metal spacing. 

Consequently, the metal spacing effect plays minor role in the series resistance. In order to 

save the device area, the metal spacing always keeps the minimum spacing according to the 

definition of design rule. Ali of ab ove test keys have identical DC resistance. However, the 

corresponding series resistance expresses quite difference in various layout configurations. 

Accordingly, the design of spiral coil is essential to achieve high-Q performance [243]. 

Variation of the metal width in each coil was proposed by Craninckx et al. [230] that 

the inner tum of the spiral metalline should be narrower than the outer turn, optimizing the 

layout and thus improve the Q-factor value was proposed by Lopez et al [244]. 

Consequently, this inductor layout, with variable metal width called as taper inductor, is a 

potential structure for achieving high-Q performance, by suppressing eddy CUITent losses in 

the inner turns. The inductance caIculation using an analytical formula is proposed to 

caIculate the inductance for this type of inductor as reported by Heng-Ming Hsu[226] . In 

the light of these conclusions, and taking the advantage of CMOSP35 technology, Ml is 

selected to be the smallest width of the inner metal; MI= 0.5 !lm, where the outer metal M3 

is largest width; M3 = 0.6 !lm. The main microcoil structure is built from three metals as 

discussed above. The most contribution to the field magnitude cornes from the planar coil 

in the top metallayer; M3. This planar coil has multiple turns to generate stronger magnetic 

fields with less current; number ofturns; M3, N = 8. Planar coils in the second; M2, N= 6, 

and third metal ; Ml, N= 3, these layers are first and foremost used to shape a single peak in 

the magnetic field magnitude at the center of the microcoil on the chip surface. The three 
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layers; M3, M2, Ml are formed in such way to generate a single peak on the chip surface at 

the center of the microcoil. Therefore, in the microcoil design there are several goals had to 

be met [245]: 

1. The final design should be conventional to the mies set by CMOS technology. 

2. A single peak in the magnetic field magnitude ought to be produced at the center of 

a microcoil on the chip surface; this will increase the trapping accuracy. 

3. The magnitude of the magnetic field is supposed to be making the most of putting 

forth more trapping force on the manipulation target. 

In the light of these requirements, there should be a specific protocol to be followed 

through out laying out the microcoil structure and thus meeting the above goals; the 

protocols can be described in the following steps [246]: 

1. The minimum width (W) of the metal line in the microcoil is determined W = llD, 

where Dis the maximum line CUITent density (A/m) for the metal given by the chip 

foundry and 1 is the target CUITent flowing in the metalline. 

2. The outer diameter of the microcoil is similar to the size of biological cells to be 

manipulated, typically, tens ofmicrometers. This condition ensures the trapping ofa 

single biological cell per each microcoil. 

3. Once the outer diameter is set, the number ofturns in the coil is swept to make sure 

that a single magnetic field peak is generated on the surface of the device. 

4. The magnetic field patterns are then calculated using finite element simulation 

software, to check if it matches requirements. 

5. Interconnections between the microcoil and the current sources are made using the 

metallayer utmost away from the chip surface to minimize stray magnetic fields. 
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The spiral coils are using simplified models to calculate the inductance of the closed 

outer core that has been developed [247]. Figure 5-11 shows a schematic diagram of the 

inductor model, which is to be modeled to determine its inductance value. The area of the 

spiral coil should be taken into account as a figure of merit through CMOS technology 

fabrication process. The width layer that is the spiral coil built of is directly proportional to 

the resistance R of the coil, where the inductance; L, is proportional to N2; coil turns 

Number [248]. The parameters of the microcoil; width, thickness, and length aIl play an 

important role in the magnitude of the coil inductance and Q-factor; accordingly. 

c 

Figure 5-11 Equivalent circuit of the spiral-type inductor. 

For thin-film inductors with rectangular cross sections, we proposed the simplified 

model for the rectangular spiral coil of triple layers. In order to find the inductance value 

we used the formulas that take the form of reluctances [249]. The reluctance Rm in the path 

1 can be written as [250]: 

R - 1 ~ ~ ~  
m  - 8J.loJ.lstm ~ a c 

(5.5) 

Where the magnetic permeability for Aluminum; near-direct-current case; "/-lo = 

1.25666$0 X 10-6 (Hlm)" ; the relative permeability for Al Ils = J:... = 1.000022. Ils is 
J.lo 

the relative magnetic permeability, tm is the thickness of the magnetic core film. "a" is the 
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distance between the center of the coil and the outer shunt core, and "c" is a halflength ofa 

side of the rectangular inner shunt core. 

The reluctance Rij1 for the magnetic flux can be given as: 

For i :5 j , 

(5.6) 

Fori > j 

(5.7) 

Where; " lt is the distance from the ith coil to the center of the coil, i.e. li = li + 2(i -

-1) W , "W" is the width of the coil line and d is the distance between the upper and the 

lower core. The inductance in the path 1, Lm, is given as: 

(5.8) 

The inductance in path 2, "Lg" can be given as: 

(5.9) 

The internai self-inductance of the coil , L, is written as: 

L . = /loS = S X 10-
7 

L 8rr 2 (5.10) 

Where "s" : is the total length of the triple layer coil. The total inductance L of the triple 

layer coil with each layer of n turns can be obtained as a summation of this inductance: 

(5.11) 
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For n = 3, 6, 8, a =11. !lm, c =1.6 !lm, d =75 nm, tm=7 nm, the width of the metal Ml, 

M2, M3 is w = 0.5,  0.6, 0.6 !lm; respectively, 1; =1 !lm, Ils = 1.0000221, s = 0.977 mm. 

This generates an inductance equal to 78 pH. A full experiment has been reported by 

Chong H. Ahn et al [251], a remarkable notice was reached for spiral-type inductor with N 

= 36 in area of 6 mm2 an inductance of approximately 20 !lH was measured at 10kHz. 

Usually, only n-type material is used as active region in integrated Hall devices in order to 

achieve a maximal voltage-related efficiency [252]. 

5.3.3 Digital control circuit 

Figure 5-12 shows the schematic of the control circuit, which provides an independent 

control on the  electrical CUITent in each row of microcoil arrays. The CMOS chip has a 

separate and a unique electronic control circuit for each microcoil. Each control circuit is 

built using four PMOS transistors working sequentially as switches, where each row of the 

microcoils has eight microcoils; is placed on the center of the circuit as shown in Figure 

5-12. 

Vdd 

Il'L.: ~ .grrl ~ 
~ 802 8-Arraymlcrocoils in 
parallel 

Tc 
Current source 

ra 
fh 
" 1: 

Figure 5-12 The schematic of the microcoil connecting with control circuit. 
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The quantity of the magnetic peaks on the surface of biosensor is proportional to the 

number tum of the microcoil array [253]. In a microcoil array with specifie dimension (N x 

M) has the same current source with a CUITent pulse. This CUITent pulse has proportion of 

time during which a system is operated, it is called the dut y cycle D that is defined as the 

ratio between the pulse duration Ct) and the period (T) of a rectangular waveform, as shown 

in Figure 5-13. 

1- - - - - - - - - - - - - -, 
1 T . 1 
~ ,,1 1 

1 1 1 

1 T 1 1 1 : 
1 1 . 1 
I l! 1 t·-·-t_ ... ..- .. _-._._ m.-_.-, __ _ .. _ - r-.. J 

T T 

Figure 5-13 The dut y cycle Dis defined as the ratio between the pulse duration (t) and 
the period (T) of a rectangular waveform. 

In a periodic phenomenon, D is defined as the ratio of the duration of the phenomenon 

in a given period: 

T Dut y cycle; D = 
T 

(5 .12) 

Where t is the duration that the function is active high, normally when the signal is 

greater than zero; T is the period of the function. Such pulse is sequentially applied to each 

row of microcoil arrays, which generates a blinking magnetic peak that scans from 

beginning to end of the array [254]. The importance of moving and transporting magnetic 
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bead in submicron; in biological and biomedical applications, is making sensitivity and 

sampling significant in sm ail volume; i.e. micro, nano or picolitters. Consequently, in the 

light of Brownian motion [255][256], that refers to the random movement of particles 

suspended in a fluid. The time (ts) that the cell spends to reach the surface from the center is 

essential to be determined accurately to ensure that it is not released out of the microcoil, 

where this distance is so tiny in displacement in range of submicron. To have this concept 

crystal clear; the period of the current pulse (rp ) should be less than (rs). Credit goes to 

CMOS technology speed that can handle such timing. Leakage current is a serious issue in 

microelectronics, a lot of work had been done to minimize its presence as much as it could 

be. Although, a huge work has been conducting this drawback of CMOS technology, and 

so far it is not entirely eliminated. Therefore, it should be kept in mind through out any 

application in microelectronics and particularly in biosensors applications. Consequently; a 

Negative Mutual Inductance (NMI) phenomena may rise while one of the set of switches 

(SWls or SW2s) are OFF and the other set is ON. By definition, NMI results from 

coupling between two conductors having current vectors in opposite directions. In 

macroelectronics circuits, NMI quantity is usually so much sm aller in magnitude th an 

overall inductance that it can be neglected with little effect. In the microelectronics world, 

however, its neglect can result in inductance values as much as 30 percent too high where 

the inductance values already in range of micro or nano even picohenries [249] . 

Figure 5-14 shows the architecture of control circuit incorporating CMOS microcoil 

and displaying the connection of the eight microcoils in series at the center of the control 

circuit to change the direction of the current as request. The common current source is a 

powerful tool in IC CMOS microcoil array chip; it presents the system with many 
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advantages. In biosensors where shrinking the sample to the nanoliter range, the volume 

over which the magnetic field must be uniform decreases appropriately allowing either a 

smaller magnet to be used, or multiple spectrums to be taken in parallel with multiple 

microcoils [257]. Consequently; the multiple cells manipulation; capture or release; can be 

performed by using this tool through creating many magnetic peaks in the same time. 

Figure 5-14 
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8-Array microcoils in 1. 
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ID= ~ 

M1 
W=100 I-Im 
L;;400 l'lm 

Vss 

The architecture of control circuit incorporated CMOS microcoil. 

Figure 5-15 shows the architecture of control circuit incorporated CMOS microcoil 

displaying the connecting of the eight microcoils at the center of the circuit of the  control 

cUITent source. Each two PMOS transistors (SWls) connected to the same c1ock, while the 

other PMOS transistors (SW2s) connected to the inverted sequential c10ck pulse, with pulse 

width tON and period tp (more details about the timing will discuss in the following 

section). The goal of the set of switches labeled SWsl and SWs2 are used to change the 
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current direction of the microcoil. The rest of the microcoils rows are connected to different 

clock to be control\ed and selected. 

~ ~~  
a-Airay microcoils in 

parallel 

R=540 fi 

ID;;;;; 10.2 ~ 

M1 

~  

l =400 (lm 

Vdd 

W=50l1m 
L=400nm 

5.1 mA! 5.1 m1 5.1 mA! 
t.i3 

Vss 

Figure 5-15 CMOS microcoil displaying the connecting of 8 microcoils in series at the 
center of the control circuit. 

The distribution and steering of the current over the rows of the microcoils array is 

performed external\y using sequential clock pulse for each row. Consequently; only one 

row of the microcoil  array can be activated or more than one depend on whether the 

manipulation for single magnetic bead cell or multiple of magnetic cells. As a result, any 

row of microcoil in an array can access the current source at any given time. The current 

source can sink up to 10.20 mA and mirror to each branch of microcoil arrays by 5.10 mA 

distributed over the seriaI microcoils in the increments of 0.636 mA. However, steering the 

direction of the current in each row can achieve by switching the clock, or hold up the 

circuit by applying more positive potentiai to the PMOS transistors [258]. . 
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5.3 .3.1 Control Circuit Mechanism 

The mechanism of the control circuit that provides CMOS microcoil aITay with 

switching the direction of the cUITent; clockwise or counterclockwise, in each row of 

microcoils can be demonstrated using digital electronics concepts. The control circuit built 

using four PMOS transistors as a core ofthis structure. Figure 5-16 shows the schematic of 

control circuit structure. As weil known from microelectronics, where the threshold voltage 

(VIp) for pMOS is negative, therefore, pMOS transistor requires negative voltage to switch 

ON (close). 

Vdd 

Figure 5-16 The schematic of the control circuit. 

The schematic circuit in Figure 5-17a; demonstrates clearly the dynamic behavior of 

the circuit. When a signal pulse (CLK = 0) with low level (GND, VSS) applied to the gate 

of the two PMOS transistors (SW 1 s) thus the current will flow counterclockwise as shown 

in Figure 5-17a. In the meantime, the inputs at the other PMOS transistors (SW2s) will be 

inverted pulse signal (CLK = 1), which make certain the set to be open circuit (switch 

OFF) as shown in Figure 5-17b. In case of changing the direction of the current is required 

to be clockwise, simply is performed by switching the inputs of the PMOS transistor SW2s 
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to low level (CLK = 0) and SWls to high level (CLK = 1) thus the CUITent will flow 

clockwise as shown in Figure 5-18a. Consequently, the set of the two transistors (SWls) 

will tum OFF (open circuit) and SW2s will tum ON (close circuit) as shown in Figure 

5-18b. 
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SW2 SWltch 
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Figure 5-17 The control circuit operation to perform counterclockwise current in the 
microcoil, (b) The dynamic behavior of the electronics circuit when SWls is 
in low level and SW2s in high level. 

lOI 

Figure 5-18 a) The control circuit operation to perform clockwise current in the 
microcoil, (b) The dynamic behavior of the electronics circuit when SW2s is 

in low level and SWls in high level. 
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The objective from building the control circuit on-chip incorporated with CMOS 

microcoils is to provide switching of the direction of the current to perform the 

manipulation and steering the magnetic bead on the surface of the interdigitated 

microelectrode array (lDMA) in appropriate protocol. Further this technique offers more 

advantages in expense of co st that allows reusing the biosensor more th an once in different 

applications, which end up to save efforts and time. The IC CMOS microcoil array 

incorporating with control circuit and current source, off ers sorne advantages, particularly 

when the number of microcoils in an array is large. First, simplifying the interface of the 

chip by reducing the fan-in the microcoil is capable to be controlled. Second, it is readily to 

design and implement the current source because it activates a row of microcoil arrays at 

once. Third, the power consumption in the microcoil array is independent on the number of 

microcoils; thanks for CMOS technology integrates digital logic circuit to control a large 

microcoil array with low power consumption. 

Figure 5-19 The control circuit of entire row of microcoil array. 

Sharing one current source leading to minimize the power consumption and heat 

generated by microcoils array where only one microcoil works over the dut y cycle D. 
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Finally, the reduction in the heat generation among the cell manipulation can improve the 

biocompatibility of the system [259]. 

5.3.3.2 Current mirrors 

Current mirror can be either current sinks that are made using n-channel MOSFETs, or 

CUITent sources that are made using p-channel MOSFETs. The p-channel can be biased 

MOSFETs to form a current source. Figure 5-20 shows the basic CUITent source analysis. 

The biasing of CUITent mirrors is readily simplified if the design performed for a 

specific gate-source voltage, VGs• Therefore, setting VGS close to the threshold voltage VTHN, 

results in very large devices, while setting VGS significantly larger than the threshold 

voltage causes the transistor to enter the triode region too early. 

Vdd 
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M icrocoil 8-Array 

Microcoil 

Figure 5-20 Basic Current source analysis. 

In the light of what is proceeding, when designing CUITent sources/sinks, the general 

design rule can be applied and set the gate-source voltage to be 1.2 V [260]. Starting the 
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design based on these rules minimize the variables from five to two variables. Therefore, 

the basic current mirror design focus on the widths of the devices. The value of VGS is the 

controller that uses to get a desired characteristic, which is the minimum voltage across the 

CUITent source/sink. The drain current in the saturation region is given by the following 

equation that states the five variables: 

(5.13) 

(5.14) 

The following table shows the most common parameters for PMOS and NMOS 

transistors in CMOSP35 technology, in the light of these values the analysis of CUITent 

miITor is performed otherwise mention. Figure 5-21 illustrates this analysis. The CUITent 

source aspect ratio is Wn = 100 /-lm , L = 0.4 /-lm, for I D = 10.02 mA, VDD =3.3 V, Vss =-3.3 

V ~ R =531 n. Design a CUITent sink using VDD =  -Vss = 3.3 V to sink a CUITent of 10.02 

mA. For VGS = 1.2 V and the length of the devices as 0.4 /-lm. 

Table 5.2 The most common CMOS parameters. 

L'" , ~  Jl pU Cax· 

UrnA)o ~ &0 ~ Y.AlI-° ~ 
, 

n ~ 

~ -,,:rP ·,,:r;}iVi'C Î&'u!r?:: 

2.00R-Ol: 3.76E-Oy,: 1.13E-04c ~ ~ 035r:; 172c 1.2.:: 4.&OE·HOo L60E+IO: 4 .700 

The value of R; assuming ID! = 102 = 10.02 mA, is determined by Eq.(5.14): 

R = VDD-Ves-Vss 
ID 

R = 3.3-1.2-(-3.3) = 540 n 
lOmA 

(5.15) 

(5.16) 

::: 
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171 

The width of both Ml and M2 can be solved at the same time, 

4.80 X 1010 x 4.70 X 10-15 . /lA 
2 = 113 V2 

K W(V. -V )2 
ID = n CS THN = 102 mA 

L . 

Which gives W1 = W2 = 98.3 ~  and rounded up to 1 00 ~  The requirement for M2 to 

stay in the saturation region is called excess gate voltage, which determines as: 

VDS2 ~ VCS2 - VTHN = 1.2 -0.6 = 0.6 V 

As long as the drain of M2 is approximately ~ 2.13 V or greater, M2 will remain in the 

saturation region. 
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Figure 5-21 The entire le array microcoil incorporated control circuit. 

This consequence is considered particularly when the MOSFETs are biased with a VGS 

of 1.2 V; the minimum voltage from drain to source is 0.37 V (the excess gate voltage) for 
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operation in the saturation region. Design four equal current sinks with values 5.10 mA. 

Assume VDD =-Vss =3.3 V. The design procedure is simply a matter of re-sizing the 

MOSFETs used for sinking current to get the current required. 

The schematic of the design with new sizes is shown in Figure 5-22. The minimum 

voltage across any of the current sinks is 0.37 V corresponding to a minimum voltage on 

the drains of -2.13 V. 

Figure 5-22 The schematic of CMOS microcoil incorporated Control circuit. 

5.3.3.3 The signal-to-noise ratio 

The signal to noise ratio (SNR) of microcoil transducers is proportional to the output 

signal and inversely proportion al to the noise resulting from the resistance of the entire 

system and given by [261]: 

s SNR oc--
.JReoil 

(5.17) 

Where S is the sensitivity of the transducer, and R eai/ is the coil's high frequency resistance. 

The sensitivity of the transducer can be calculated as follows: 



s = 8 1 

1 
(5.18) 
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Where BI magnetic field magnitude produced by the microcoil holding a current. The 

geometrical parameters of microcoils are the main function that is capable to enhance the 

signal-to-noise ratio (SNR) of the microcoil [262]. The geometry of the microcoilleads for 

the resistance, so the minimum of the microcoil resistance the high sensitivity of the 

transducer. Miniaturizing microcoil credits for increasing the performance of the transducer 

[263]. The SNR of the microcoil is the parameter that is limited the spatial resolution and 

the minimum sensing signal amplitude. SNR is defined as the ratio of the peak signal to the 

root mean square (RMS) of the noise voltage: 

SNR = peak signal 
RMSnoise 

(5.19) 

Improving SNR for the microcoil can be accomplished by either increasing the output 

signal or decreasing the noise of the transducer. Increasing the output signal can be 

achieved by increasing the performance of the transducer; high sensitivity or modifying the 

sensing surface chemically to increase the number of pathogens binding over it; or the 

combination ofboth [264]. On the other hand, decreasing the noise can achieve by reducing 

overall resistances oftransducer [265]. In addition, the microcoil thickness is playing a role 

in improving the SNR and Q-factor parameter as weil [266]. 

5.3.4 Control Circuitfor Microcoil Array 

Microcoil array with low power consumption requires digital logic circuit to control it, 

which as result provides high spatial resolution in cell manipulation. Therefore, using the 

capability of CMOS technology in microelectronics it can readily perform manipulation of 

multiple bead-bound cells [267][268]. 
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5.3.4.1 Microcoil Array Operation 

In Biosensors, usually there are a huge cells required to be handled simultaneously. 

Therefore, microcoil array is used to achieve this operation. Nevertheless, the drawback of 

this technique, which is high power dissipation associated with this operation; one cannot 

ignore it for two reasons; overheating is inconvenient for CMOS components and 

biological cells. Therefore,  a protocol should be followed to minimize it. Consequently; 

manipulation of multiple bead-bound cells using CMOS microcoil array technology can be 

easily achieved by using CUITent source to each microcoil, which is drawn a DC current 

through each row of microcoils for transport or trapping of a bead-bound cell. Thanks for 

CMOS technology that provides high-speed microelectronics components that 'are capable 

to handle the flow of the biological cells through the microfluidic channel. Figure 5-14 

shows the schematic of CMOS IC incorporated with control circuitry. The mechanism of 

trapping or transport a magnetic bead can be simply explain based on Brownian movement; 

which is the random movement of microscopic particles suspended in a liquid or gas, 

caused by collisions with molecules of the surrounding medium[269][270]. 

~ 
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Figure 5-23 The mechanism oftrapping a magnetic bead use digital circuit concept; 
switching ON and OFF. 
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Bear this in our mind; one can easily explain how to trap a magnetic bead, by applying 

a De current to the microcoil array with appropriate interyal (TON , TOFF ), which leads to 

use digital circuit concept; switching ON and OFF. Figure 5-23 illustrates clearly this 

process, the magnetic bead trapped at the center of the microcoil when the switch is ON; 

otherwise, the magnetic bead is releases and moyes away in the light of Brownian theory. 

Thanks for CMOS speed that can capture and keep the cell in the microcoil after OFF state. 

Consequently, the bead is still captured in the microcoil without requiring a permanent 

current supply. So far, the mechanism applied on one microcoil that captured one cell, but 

this is insufficient through out the biosensors application. Therefore, the same mechanism 

applied on 4 by 8-microcoils array, where eight microcoils connected on series haying the 

same current source, which traps eight cells simultaneously, as shown in Figure 5-24. 

Figure 5-24 Microcoil Array Operation applied on 4 by 8 microcoil array. 

While one row is ON the rest will be OFF, but still CMOS technology fayor is there, so 

the entire trapped cells in the microcoil array remain in and neyer walk away. 
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5.4 Impedimetric Biosensors for Magnetic bead-based Immunoassay 

5.4.1 System and components 

Miniaturization actuators of mechanical, optical, and electronic products trend in the 

production spur by the significant and rapid advances of microelectronics where extensive 

effort has been heading for miniaturize and integrate analytical devices for 

Bioelectrochemistry and biomedical applications. A Microfluidic system that is dealing 

with micro and nanoliter ofthe fluid with high sensitive and throughput operation is mainly 

one of the outcomes ofthis technology. Microfluidic systems employed in different aspects 

of biomedical and life science, such as DNA amplifications and separations [271][272] , 

magnetic cell sorting [273][274]. 

Immunoassay is bioelectrochemistry (BEC) technique where electrochemical 

fundamentals and techniques are employed to investigate processes of biological 

application that measures the concentration of a biological sample because of the specific 

interaction of an antibody; Le. immunoglobulin, to antigen, where the antibodies (Ab) are 

generally used in the growth of biosensors application for their binding affinity with small 

molecules. BEC approach has the capability to detect the CUITent in either case Faradaic or 

capacitive, in between the electrodes [275]. The magnetic bead-based immunoassay 

through out this work constructed from electrochemical sensor represents by IDMA on the 

top of CMOS microcoil aITay incorporated with signal-processing unit. The integrated 

circuit was fabricated based on CMOSP35 technology provided by CMC employing 

electrochemical impedance spectroscopy for magnetic bead-based immunoassay [276] . 
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5.4.2 Impedimetric Biosensors based on CMOS technology 

Biosensor is an analytical transducer that detects a biological response into a 

quantifiable and processed electrical signal. Typically; biosensor are built using 

bioreceptors that specifically attach to the analyte, surface architecture where a specific 

biological environment presents, the transducer component. As a result, the signal 

transformed to an electronic signal and amplified by an electronics circuit then processing 

to physical parameter. Biosensors applications can be conducted in biomedical, 

biomedicine, biological, and in life science domains. They can be to analyze environmental 

samples, accordingly. Biosensor research has experienced explosive growth over the last 

two decades. The designer of biosensors should first define the biocatalyst to control 

interaction between the bioreceptors and surface architecture. The second point a designer 

must consider is the sensor response accu rate and free of noise. The third point is the size 

as a figure of merit in biosensor; therefore, it should be as small as the technology possibly 

permits. The fourth point is biosensor capability to provide real-time analysis. Finally, the 

above should not be on expense of the co st and complexity [277]. 

Fabrication the microfluidic channel and electrochemical sensor structures integrated 

on MLoC system is still not straightforward bringing an additional challenge to be 

overcome by technology in order to use this type of sensors; massively. Further, the great 

advantage of integrating biosensors into a MLoC system should be the reduction in sample 

and reagents volumes. However, to fully achieve this and bring these devices into 

profitable commercialization it needs to integrate the sample preparation protocol into the 

MLoC system. 
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Figure 5-25 shows the configuration of IDMA on the top of microcoil. This introduces 

many other challenges su ch as a priori smart design, simplification, and combination of the 

different protocol steps, or the interconnection of different blocks and its dead fluid 

volumes reduction. In addition, the choice of the right MLoC material for the application as 

weil as the reduction in the final production costs are also issues and that could be great 

impediments to the onset of industrial and social interest. 

Figure 5-25 The configuration of IDMA on the top of microcoil. 

In electrochemical impedance spectroscopy (EIS) the detection is based on the change 

of the CUITent response before and after the target recognition reaction [278]. As long as the 

bioreporter sensing concentration of the biological cells presence in the microfluidic 

channel the impedance of electrolyte (Z) will change. The higher concentration reflects as 

decreasing in the impedance in turns it increases the CUITent flows through working 

electrode. Such condition translates into a lower integration period leading to an increase of 
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the output frequency and vice versa in case a lower concentration [279]. At the end, the 

result display by using Bode plots. 

Interdigitated microelectrodes arrays (IDMA) that are fabricated using CMOS patch 

process provides by CMC. The IDMA had 30 electrode pairs with 197.22 µm long and 97 

µm widths; each electrode has 1.0 µm of width and 0.5 µm spaces as shown in Figure 5-26. 

The essential step preceding the experiment running is cleaning the IDMAs with acetone, 

methanol, then rinsing with deionized water, finally dried with a gas of nitrogen. 

Figure 5-26 IDMA configurations. 

Microelectrodes has the ability to locate down to single cell along with high single-to­

noise ratio of the analytical signal making electrochemical microelectrodes technology 

significantly importance for single cell measurements [280][281]. To achieve CMOS chip 

manipulator two processes have to be accomplished, microfabrication of microfluidic 

channels (MFC) and then packaging. The objective of the microfluidic channels are used to 

move safely and keep up the biocompatible environments of the biological cells to sensing 
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are a either optical capacitive or electromagnetic. Finally, as well-known in the design and 

microfabrication protocols packaging is the utmost stage through out the entire procedures, 

which provides protection to the die from the extemal influence features; light, pressure, 

temperature, etc., and applicable, touchable, usable by the researchers. It is the interface 

and the connection between the microscale and macroscale [282]. The high scale of the 

interdigitated microelectrodes is beneficial over the conventional electrodes due to its rapid 

and sensitive detection electrochemical process. Subsequently, microelectrodes were scale 

up to reach ultramicroelectrodes to be used to measure and sense chemical reactions inside 

even single biological cells [283]. 

5.4.3 Protocols and Detection Mechanism 

Planar spiral microcoils based on CMOS technology has been employed for biosensors 

integrated with microfluidic. Immunomagnetic (IM) technology; including magnetic 

resonance (MR) imaging and spectroscopy are considered as one of the o1ost biological and 

biomedicine bioanalytical approaches for their advantages over the conventional 

techniques; electrochemical impedance spectroscopy and fluorescent biosensors. 

In the present work, microelectromagnetic sensor using electrochemical impedance 

approach based on applied extemal magnetic field was exploiting for testing and validating 

MLoC system in appropriate conditions by detecting biological cells binding to magnetic 

beads. The mechanism lies on attaching of the biological cells to paramagnetic particles 

(PMP) at the surface of interdigitated microelectrodes due to applied magnetic field, 

thereafter impedimetric detection is performed to analyze and study the behavior of the 

biomolecular in the microfluidic channel. As aforementioned in section 2.3.2, the double 

layer capacitance in the electrolyte behaves alike two parallel plates ' theory. 



Figure 5-27 The sensing surface covered by biological cells (a) before and (b) after 
applying magnetic field. 
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For impedimetric detection biological cells, a suitable frequency should be selected 

un der a specific magnetic field applied, in presence of biological cells, binding to the 

surface of the electrodes via the biomolecular recognition of antibodies along with 

magnetic beads therefore the entire system will be provoked and the variation will be 

detectable and measurable. In addition, the geometries of the electrodes and interface gap 

between electrolyte and electrode are playing a significant role in the cell constant. As soon 

as the surface of the sensing transducer modified by filling it with biomolecular sample as a 

new dielectric in between the interdigitated electrodes leading to variation in the impedance 

Zr components; real part ZRe the resistance of the solution increased and the imaginary one 

Zlm decrease the double layer capacitance accordingly: 

(5.20) 

(5.21) 

z = _1_ -j 
lm jwCd! WCd! 

(5.22) 
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In the presence of magnetic field force, the biomolecular particles will align and dense 

causing the situation more different from before where the magnitude of the alteration in 

the cell constant significantly relies on both the size and area of the sensing surface covered 

by biomolecular particles, as shown in Figure 5-27. For that reason; the magnetic beads 

size has essential role on influence the behavior of the signal output. The largest magnetic 

beads utilized as label the strongest biomolecular event results the highest performance of 

the transducer gain. On the other hand, where the covered area is matter using sm ail 

magnetic bead does not lead to the same result but worst due to the increase of active 

particles motion leading to loose the strength of the output signal [284]. The detection setup 

is illustrated in Figure 5-28. In this setup, a bi-directional microcoil array placed under the 

sensor chip that is, interdigitated microelectrodes. 

~  Array 
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Figure 5-28 Illustration of the integrated magnetic field array setup. 

The integrated system as described here will have an enormous potential to concentrate 

and enhance bacterial capture from samples. This integration should improve the detection 

limit by several orders of magnitude, shorten the analysis and reduce non-specific detection 

events. The electrode surfaces of the sensor chips will functionalize with the recognition 
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receptors as specific binding agent. In this work, the detection process will be in three-

protocol steps process as shown in Figure 5-29. 
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Figure 5-29 Use of a magnetic field to detect specific bacteria. 

5.4.4 The CMOS Microcoil Behavior 

IDMA was connected to both the control and functionalized biosensor probes, and 

other terminais; the reference and counter electrodes were internally connected to embed 

signal-processing unit. Impedance measurements have been accomplished using the build-

in signal-processing unit as readout circuit; the output signal is a real-time frequency. For 

further studying impedance analyzer may use to get impedance versus frequency to plot 

bode diagram. For bacteria growth on the sensing surface an incubator made of a water-

jacketed glass vial (Bioanalytical System, West Lafeyette, IN), containing a sm ail amount 

of Brain Heart Infusion; (BHI Broth) that is used for the cultivation of a wide variety of 

microorganisms, including bacteria, yeasts and molds. The temperature of the BHI broth 

should be controlled and fixed at 37 Oc using circulating water in the water-jacketed glass 

vial from a thermostatic water bath. Thereafter, the BHI broth is then vaccinating with a 

specific pathogen culture at a desired bacterial concentration. As soon as the 

aforementioned step  ready then the impedance measurement proceeds right away by 

applying AC signal to the active layer; IDMA array, with amplitude of ±5 mV over a 

range of frequency from low to high. Afterward readings for impedance versus bacterial 
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growth time recording to analyze the situation using Bode plot. For each run the active 

layer should be washing and rinsing by alcohol and deionized water; respectively. 

Biosensors based electrochemical impedimetric technique besides the aforementioned 

advantages of IDMAs, it can be of multiple using as long neither contamination nor 

biorecognition element attached directly on the surface of IDMA. In addition, this 

technique improves the signal to noise ratio due to decrease the background noise that 

causes by the non-target ingredients in the biological sample [285]. The detection system 

approach has the following protocol that should apply for achieving the mission of this 

transducer successfully: 

Step 1: Magnetic beads coated with the specific capturing agent and captured bacteria 

are introduced over the array containing the electrodes coated with the antibodies as shown 

in Figure 5-30. 

Figure 5-30 Surface sensing preparation and functionalization. 

Functionalization of the surface of polysilicon interdigitated electrodes with the 

antibody provides specificity for the target pathogen. The figures from Figure 5-30 to 

Figure 5-32 show the mechanism ofthis technique, c1early. 



185 

Step 2: The magnet will be turned on to attract the magnetic beads, along with the 

captured analytes (bacteria in our case), on the sensor surface. As a result, the response of 

the sensor (impedance) will change due to the added bacteria captured by the fishing 

system, Figure 5-31 illustrate this process c1early. 

Magnetlc Field 
applled 

Figure 5-31 The magnetic field applied and the biomolecular attractive to the sensing 
surface. 

Step 3: The magnetic field is then reversed, which causes the unbound magnetic beads 

to move away from the sensor. Since sorne magnetic beads are already bound to the sensor, 

the impedance of the sensor do es not reverse to its initial state; Step 1, as opposed to the 

control sensor. Figure 5-32 demonstrates the detection process for the impedimetric 

pathogen sensor, the live bacterial cell binding to the antibody on the electrode perturbs the 

surface-confined electric field and the capacitance between the electrodes decreases, which 

can detect as the positive signal for the detection. 

Figure 5-32 The magnetic field release or reverse. 
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By contrast, dead bacterial cells are not voluminous enough to induce noticeable 

changes in the electric field lines distribution. By measuring the difference in sensor 

response between step 1 and step 3, we will be able to determine the amount of magnetic 

beads, if any, that have bound onto the sensor surface, thus allowing the rapid detection and 

quantitation of the presence of the specific bacteria. 

5.4.5 Magnetic Beads 

Magnetic particles are superparamagnetic, when apply an external magnetic field they 

can instantly be magnetized otherwise released. The characteristics of the magnetic 

particles are micro/nano-sized spheres of iron oxide covered with a polymeric material, 

which allows attaching the antibody onto the particle surface where the particles size 

reduced to be in nano-scale, improving the possibility of handling the particles strongly 

susceptible to a magnetic field [286]. 

In biomedical, the magnetic bead is so essential , because of its size, which site in micro 

to nanoscale and constructing and functioning based on a magnetic field source whether it 

is external magnet or electromagnet. The mechanism of magnetic technique owing to the 

significant dissimilarity permeabilities materials, therefore it is counting one of the utmost 

selective approaches. The main drawback of the permanent magnet is lack of tlexibility and 

difficulties to control it. For this reason, the electro and microelectromagnetic approach 

used instead to provide a selectable magnetic field by changing the CUITent source [287]. In 

biosensors application, biomedical diagnostics and Iife sciences industries, highly demand 

magnetic microbeads where it is a tiny particle with an inorganic material as core, i.e. 

Fe30 4 and bounded by an outer layer of shell wall that consists of long-chain organic 

legends or inorganic/organic polymers [288] , where this the most important part to 
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biosensors application of magnetic microbeads. Magnetic microbead for biomedical 

diagnostics and life sciences industries should be standardized in size, magnetism and 

surface as reported by Ademtech Company. Antibodies or ligand can be attached on top of 

the particles to allow capturing the targets by affinity, and then the separation is 

accomplished merely by applying a proper magnet field. Magnetic markers for IMEA are 

using the capability of the magnetic microbeads by measuring dissimilarity of magnetic 

permeability using aforementioned transducer that consists of CMOS microcoil 

incorporating with control circuit and interdigitated microelectrodes arrays. Impedance 

measurements can detect competitively or directly the variation in magnetic permeability of 

the biomedical testing sample [289][290]. Because ofthis technique, the characteristics and 

the performance of these magnetic markers are rescannableJ and applicable because of no 

transducer polluted, high signal-to-noise ratio (SNR), no sample treatment, less fan-in of 

the final chip. 

5.4.6 Magnetic Manipulation ofCells Theory 

In biosensors, the behavior of the biological cell in tluids can be controlled using 

electromagnetic (EM) fields. EM fields construct from electrical and magnetic components. 

The biological cell was manipulated in different systems using both of the mechanisms; 

individually. The electrical approach depends on the electrical property of biological cells 

in the tluid that will produce electrical field to generate electrical force on the surface of the 

cell, which might damage the cell. The magnetic approach due to the weak magnetic fields 

in small size, therefore, this technique leaks the strength to control the biological cell in the 

tluids. Therefore, sorne modification requires manipulating biological cells using magnetic 

approach, by using artificial magnetic beads and using the combination of the two 
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approaches; microelectromagnetic approach and magnetic approach. The characteristics of 

magnetic beads will unfold further details in this chapter section, such as the influence of 

microelectromagnets on the behavior of magnetic beads, and the manner of tagging the 

magnetic bead to biological cell [291]. 

The magnetic bead should be treating preceding attaching the biological cell to its 

surface, by functionalizing the magnetic bead's surface with lectins, (Concanavalin-A), 

antibodies, peptides [292]. 

(b) 

Figure 5-33 IIlustrates the magnetic behavior of a magnetic bead. 

The biological cells can be used by microelectromagnetic force when it is swallowed up 

magnetic beads or attached to each other. Therefore, functionalized the surface of the 

magnetic bead by modified it chemically with specific ligands will keep the 

biocompatibility of the microfluidic system so it can be readily bound to specific target 

cells. The structure of the Magnetic beads plays an important role over the manipulation 

process. The magnetic beads have insignificant magnetic moments, therefore the 

nanoparticles will accidentally leaning due to the thermal agitations as shown in Figure 

5-33a. As soon as an external magnetic field is applied, the magnetite nanoparticles will be 
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uniform and gather in one direction as shown in Figure 5-33b. As a result, the magnetic 

beads will expose to a force because of exchanges between the applied electromagnetic 

fields and the obtained magnetic moments [293]. The location of the magnetic beads right 

now can reconfigure by varying the magnetic field via changing the CUITent magnitude and 

direction as it will be unfolded in this chapter. This property gives credit to the CMOS IC 

that contains an array of microcoils, which produces electromagnetic fields on the surface 

of the microfluidic channel. Magnetic beads are available commercially in different sizes 

and it is widespread on demand in biomedical and clinical applications, such as; magnetic 

bead with diameter 2.8 Ilm; (M-280, Dynal Biotech, Oslo, Norway), and magnetic bead 

with diameter 8.5 Ilm ; (UMC4F-6548, Bangs Laboratories Inc., IN). 

Manufacturing the magnetic beads process mainly in 3-step processes [294]: 

1. Prepare porous polymer microspheres with a uniform size. 

2. Modify the microspheres with a solution of iron salts. 

3. Coat the microspheres with a polymer to fill the pores. 

This process is non-invasive because of using the capability of the magnetic field and 

its biocompatibility with microfluidic system. In addition; removing the target samples that 

is floating in a fluid permitting quick and selective sorting of the target systems. Magnetic 

bead behaves as superparamagnetism because of the weakness of the permanent magnetic 

moment. As soon as there is magnetic field, the nanoparticles will line up uniformly and 

evenly along with magnetic field direction. The moment that the magnetic field absents the 

nanoparticles came back to its nature and randomly distributed in the microspheres. Table 

5.3 shows magnetic susceptibilities of commercial magnetic beads at room temperature. 
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Table 5.3 Susceptibilities ofmost biological cells. 

M-280 M-450 UMC4F Biological cells 
Diameter (/-lm) 2.8 4.5 8.5 1 - 100 

Magnetic susceptibility X 0.17 0.24 0.18 - 10-5 

At a given temperature T and under an external magnetic field B, the average magnetic 

moment m of a magnetic bead can be expressed using the Langevin function: 

(5.23) 

Where n and /lp are the number density and the magnetic moment of nano-particIes; 

respectively, V is the volume of a bead, and kB is the Boltzmann constant, Jlo is the 

magnetic permeability of vacuum. Typically, a magnetic bead is characterized by a volume 

magnetic susceptibility x: 

(5.24) 

The biological cells have insignificant magnetic susceptibilities compared to those of 

magnetic beads causing the magnetic approach biocompatible. Therefore, a significant 

difference can be achieved between magnetically tagged and untagged cell populations, 

which enable the selective manipulation of target cells. As soon as the magnetic field takes 

away, the response of the magnetic moments of nanoparticIes will suddenly alter from 

thermal agitation and reach thermal equilibrium. 

The net magnetic moment of a bead, disappear exponentially as: 

-t 

met) = moe T (5.25) 
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Where, mo is the magnetic moment before removing the external magnetic field , t is 

the time fall after the field removal, and r is the relaxation time constant for the process, 

which is given by the Néel-Brown model: 

(5 .26) 

where ro is a time factor of the order of 10 sec, Vp is the volume of magnetic 

nanoparticle, and K is the anisotropy energy constant of the particle. In the light of the 

above equation designing the commercial magnetic beads are typically should be matching 

KVp < 25kBT, which gives r < 102 sec [295]. Having this rule through out the design, 

making the biological cells detach from the magnetic bead as soon the magnetic field is 

taken away. Figure 5-34 shows the magnetic bead when it becomes superparamagnetic 

when T is larger than the blocking temperature TB. In this state; where T > TB region, 

therefore; X ex:: liT as expected in paramagnetic material. Superparamagnetic is a forrn of 

magnetism that takes place only when an external magnetic field is applied. In Figure 5-34 

the temperature TB, designate the beginning of superparamagnetic state of a magnetic bead. 

Figure 5-34 
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The magnetic susceptibility X of a bead as a function of T [296]. 
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Magnetism has lot of forms and the superparamagnetic is one of these forms; that 

cornes into sight in small ferromagnetic; materials form permanent magnets, or 

ferromagnetic; materials having differing moments that are unequal and natural 

magnetization leftovers, nanoparticles. In small enough nanoparticles similar to magnetic 

bead size, the magnetization behavior is affected by temperature variations and move 

randomly. The time between two steps is known as Néel relaxation time (r). In steady state; 

B = 0, the magnetization of the nanoparticles appears to be in average zero when the time 

used to measure the magnetization of the nanoparticles is much longer than the Néel 

relaxation time. Such state called to be in the superparamagnetic state where the 

nanoparticles can be magnetized if an external magnetic field is applied; likewise to a 

paramagnet, material except that magnetic susceptibility X of the nanoparticles is much 

greater than latest. The temperature is a strong function of the susceptibility X, it is 

inversely proportion al to the temperature, and the paramagnetic behavior can be defined in 

the light of the less susceptibility X as the temperature decreases. The magnetic beads are in 

ferromagnetic state as long as the temperature is less than the blocking temperature. The 

susceptibility X behaves as monotonically increasing function of temperature, due to the 

thermal energy that helps magnetic field rotate to bring into line with the extemal magnetic 

fields. As soon as the temperature gets higher than the blocking temperature, consequently 

the thermal energy is sufficient to cause random oscillations of magnetic fields [296]. 

5.5 Packaging 

Packaging the biosensor, which is the last step in the design, is of an important step in 

the entire work. As soon as the microfluidic channel (MFC) is lying down on top of the 
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CMOS IC chip, then the integrated system is ready for operation. Figure 5-35 iIIustrates the 

packaging concept of the entire system using AutoCAD drawing. 

Figure 5-35 Packaging the biosensors including MFC Sample preparation. 

5.6 Experiment Setup and CMOS Microcoil on MLoC System Validation 

The experiment setup requires an electronic system to control the CMOS chip, a 

microscope to monitor the manipulation processes, a multimeter data acquisition system 

along with a Labview to record and analyze the output data. 

Figure 5-36 shows the schematic of the experiment setup that would operate . the cell 

manipulation system. The packaged cell manipulation system should al ways be in 

reasonable temperature. 

Figure 5-36 The experiment setup to operate the cell manipulation system. 
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To achieve the manipulation of the cell and impedance measurements using this 

technique, a flow control in the microchannel ~ required that can be accomplished using of 

a high precision syringe pump. Figure 5-37 shows the experimental setup for MLoC system 

validation. The  syringe pump allows introducing the particle suspension by simple 

pipetting into the inlet reservoir of the microfluidic chip holder where it attached to the 

microfluidic channel outlet. 

Figure 5-37 The experimental setup for MLoC system validation. 

Labview software used to monitor the manipulation process. First, the matching section 

in the microchannel has to fiB homogeneously the area between the first pair of magnetic 

poles. Figure 5-38 show the microfluidic channel incorporates the IDMA. Next, capture 

and dosing the particles can start. Finally, the course stop and a local adjustable magnetic 

field gradient is generated by applying extemally CUITent into the microcoil. To protect the 

superparamagnetic beads from any damage as their magnetic moment immediately aligns 

with the extemal field therefore the frequency that was used through out this experiment 

was in a range of 50-100 Hz. 
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(a) (b) 

Figure 5-38 The microfluidic channel incorporates IDMA. 

The extemal applied electrical field consents to capable demagnetization of the tips by 

steady damping of the signal for following release of the beads in the flow. 

5.7 Labview instrumentation, acquisition, and control applications 

Many applications use hook up devices to acquire data and transport it directly to 

computer memory. Presently, most scientists and engineers employ personal computers 

(PCs) for data acquisition, test and measurement, and industrial automation over GPIB, 

USB, Ethemet or seriai ports. One time got data into PC afterward the raw data should be 

processing and analyzing such as biomedical data to extract the constructive information 

from the noise and introduce it in a form more understandable than the raw data. 

Laboratory Virtual Instrument Engineering W orkbench; Labview is a powerful program 

used to simulation tool in addition to computerize testing and data congregation from an 

extemal source because of its capability to appear and operate mimic physical instruments. 

Such as oscilloscopes and function generators; therefore, they illustrious as virtual 

instruments; VI's, which incorporates with functions produces a signal afterward puts on 

show that signal in a graph. The basics of Labview elements are front panel, block diagram 

and tool palette that allows writing simple VIs to incorporate basic programming structures 



196 

III Labview. The featured structures include "While Loop", "For Loop", and "Case 

Structure". Labview pro gram 's structure has mainly two screens. The user interface is 

known as the front panel that always has the 'controls' and ' indicators' required by the 

program to show the input and output parameters and the second is the flowchart called 

' block diagram that contains the code using VIs and graphical representations of functions 

to control the front panel. At the end, the code allows talking with hardware such as data 

acquisition and on top of GPIB, and RS232 instruments [297] . 

Labview can take hold of hook up data acquisition devices; DAQ, to attain or produce 

analog and digital signais, for instance determining the frequency of an indefinite signal. In 

addition; it makes possible data transport over the General Purpose Interface Bus (GPIB), 

or through USB, Ethernet, otherwise it is capable to talk with other devices through PC's 

seriai port. Data acquisition is merely the process of measuring a real-world signal, by 

fetching that information into the computer for processing, analysis, storage, or other data 

manipulation. The DAQ system involves PC, DAQ Hardware; in this application a 

National Instruments Scope (NI5124) and a National Instruments Function Generator (NI-

5421) was used, software, biosensors, and signal conditioning. General Purpose Interface 

Bus; GPIB, is a parallel bus that many instruments use for communication that capable to 

bring data into a computer by using a special protocol. GPIB requires PC, Labview, GPIB 

board and cable. By using the different physical connections; GPIB and RS-232 Seriai 

techniques that instruments can be physically connected to PC, afterward the last requiring 

step is a passport to instrument communication, which is about how to speak instruments 

language. This is can be provided by Virtual Instrument Software Architecture; VISA, 

which gives a sort of functions in Labview for transfer mutual commands to and from 
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instruments. The way that the instrument connects to PC became is not an issue by the 

presence of VISA. For more information, review appendix A. 

5.8 Results and Conclusions 

5.8.1 Magnetic Bead Motion 

Bacterial pathogens are naturally moving close to the sensing surface in micron meter 

range per second and seeking the convenient oxygen ambient to stay alive. As soon as a 

DC current applied to microcoil the combined structure of PMP and bacterium, structure 

binding to the surface of the active layer and captured in the microfluidic channel (MFC). 

Thereafter; wh en the DC CUITent turned off the PMP bacterium conjugated left the surface 

due its characteristics as superparamagnetic but sorne bacterium cells may still adhere to 

the sensing surface. Thus afterward; to assure that the sensing surface clean and empty of 

cells when the experiment was done the active layer surface is treated with polysorbate 20 

making the IDMA as sensing surface reusable. Surface modification chemically has credits 

for eliminate any remaining cells on the active layer [298]. Sensing surface making of 

IDMA besides their credits for amplifying the signal by recovering an electrochemically 

redox-reversible molecule their spacing in between fingers; 0.6 !lm is smaller than the PMP 

size so the contact area was certainly on the surface not in between leading to keep away 

from potential fouling of the microelectrode [299]. The capability to manipulating PMP 

bacterium conjugated via microelectromagnetic is readily accomplished without any pre-

preparation or/and modification in advance. However, treated PMP with a specific solution 

such as streptavidin will speed up the diffusion rate of the reagents into the PMP, which 
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causes multilayers that in the presence of the magnetic field leads to improve the sensing 

are a then the performance of the transducer as whole [300]. 

Table 5.4 The magnetic bead specifications 

Magnetic bead • Radius (rB) 4.25 ~  

• SusceptibiIity (x) 0.19 

Microelectromagnet • Wire width 3 ~  

• Wire thickness 0.3 ~  

• Wire pitch (d) 10 ~  

• Insulator thickness 1 ~  

Environment Temperature 25°C =300 oK 

F1uid viscosity (11) 1.0 x 10"3 N·sec/m2 

Magnetic beads can be captured or released depend on the external applied magnetic 

field. The influence of the magnetic fields on the behavior of the magnetic bead in a fluid 

will be investigating. The Magnetic Bead Motion can be determined in the light of 

Brownian motion using the data as shown in Table 5.4. The switching time interval (TON' 

TOFF) that requires to keep the magnetic bead captured within the center of the microcoil 

array, where the cell moved under the Brownian motion away from the center through OFF 

state by the mean displacement (s): 

s = CD . TOFF )1/2 = [D . CN2 - 1) . TON ]1/2 (5.27) 
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The diffusion constant (D) for a magnetic bead of radius rB in a fluid with viscosity 1] 

(1.0 x 10-3 N·sec/m2
) can be determined based on Brownian Motion as: 

D = (5.28) 

Where kB is the Boltzmann constant (1.3806514 x 10-23 JK') and T is the absolute 

temperature (300 OK). 

Keeping the magnetic bead within the center of the microcoil demands strongly the 

displacement (s) to be al ways smaIler than the radius r of the microcoil. Having this 

condition into account, means the magnetic ceIl will hang on to the center of the microcoil 

during ON State. As a result, the ON state timing can be determined as 

TON < [D. (N2 -1)] (5.29) 

The entire time for switching (ON & OFF states) can be also evaluating as foIlows: 

Tp < [D· (N2 - 1)] (5.30) 

CMOS technology still play very important role in this field , where the number ofturns 

is essential but apparently it inversely proportional to ON state, so to come over this 

problem using high scale of CMOS technology can easily produce microcoil array with 

sm aIl radius and large number of turns simultaneously. Having this concept into account, 

and taking the condition as shown in Table 5.4 and taking different radius ofmicrocoils for 

the same number of microcoil turns the result in Figure 5-39 shows a remarkable notice 

that confirms the necessary of CMOS technology as mention before. The results is 

iIlustrated that ON timing is the smaIlest for the large number of turns (10 by 10) but as 

long as the radius increases the timing for the entire period (Tp ) and even the ON state time 
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increases. For radius changing from 0 (center of microcoiI) up to 10 /lm; the period Tp 

changes from 0 up to < 230 sec and ON state timing from 0 up to < 2.3 sec. 

Figure 5-39 
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Figure 5-40 shows the result of a sort of microcoils having the same conditions but 

different turn numbers (N by N); 10 by 10, 8 by 8, 4 by 8, and, 4 by 4 . 
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Figure 5-40 shows the result for different microcoils array and the less number ofturns 

the more time required, where the radius range for ail of them is the same from origin 

(center ofmicrocoil) up to 10 !lm. 

These conditions are easily satisfied as electronic circuits in the chip operate at much 

higher speed. To compare the timing required the microcoils should sort in different 

categories and then display the results as a histogram for easily elaborating and studying. 
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Figure 5-41 The time required for ON state (TON). 

Figure 5-41 shows the clustered column for illustrating the behavior of sort of 

microcoils in different number of turn over a range of radius represent the motion of the 

cell from the center of the microcoil up to the surface through ON state. 

Figure 5-42 shows the clustered column for illustrating the behavior of sort of 

microcoils in different number of turn over a range of radius represent the motion of the 

cell from the center of the microcoil up to the surface over the entire period (Tp); i.e. ON & 

OFF states. 
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Figure 5-42 The entire time require for ON and OFF state (Yp). 

Figure 5-43 shows the speed of the cell under magnetic field from the center of the 

microcoil to the surface, through ON state. Figure 5-44 shows the behavior of the magnetic 

bead among the transport time, entire period (Yp). The preceding sketching cIearly makes 

obvious the advantage of the CMOS technology process to capture multiple bead-bound 

cells; ail at once. In the light of low-power operation, moving multiple bead-bound cells in 

real-time it cornes at the cost of an increased transport time. 
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Figure 5-43 The speed of the cell under the magnetic field over the displacement (s) and 
the entire time interval (ON) from the center of the microcoil to the end. 
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This is because bead-bound cells are pulled by the microcoil not continuously but for a 

short duration ton over the entire period ip . Cutback the power at the co st of the increased 

transport time is utmost wanted to keep away from thermal IC malfunction and to preserve 

biocompatible environment; accordingly. 
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Figure 5-44 The cell speed over the period ON & OFF states. 

5. 8. 2 Magnetic Field Controlling 

Current source incorporated in microcoil array is a powerful tool in biosensors and 

magnetic bead domain. The current source can steer the entire operation, therefore; as it can 

be readily creating a single magnetic peak at each row microcoil ; assorted magnetic field 

patterns can be generated by changing current distributions in a microcoil array; as weil. 

The mechanism of controlling the peak of the magnetic field, which can be produced at the 

centers of microcoils, which leads to increase the spatial resolution of cell trapping; it can 

be achieving by adjusting in cooperation the magnitude and the direction of currents. 

Where during the peak movements, the magnitude of the peak remains nearly constant, but 
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the direction of the magnetic field is changing as long as the CUITent direction changing. 

Figure 5-45 shows the circuitry that performs the controlling on the magnitude and the 

direction of currents in the microcoil array. 

v 

Figure 5-45 Circuitry that steers the magnitude and the direction of CUITents. 

5.8.1 EIS technique Validation on MLoC System 

EIS technique is employing for impedance measurements. The output from the signal-

processing unit ended up to that the higher concentration of biological cells binding to the 

electrode surface the lower impedance the more current flow through CE the higher 

frequency occuITed at the output of the signal-processing unit. MLoC system tested and 

validated as impedance analyzer among three conditions, one as control and the other two 

as sensing transducers for comparing the variation of the impedance before and after 

applying the magnetic field (B) as demonstrated in schematic Figure 5-27. The four 

electrodes configuration used as a sensing layers for the three cases as shown in Figure 

5-30, where IDMA acts as working electrodes, i.e. WEC and WEG. A solution made of LB 

media with a specific concentration of biological cells mixed with magnetic beads (PMP). 
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The reference (RE) and counter electrodes (CE) plug into the chip, where the output data 

obtained then analyzed appropriately using Labview instrumentation. 

The experiment ran under small internaI AC potential to generate the magnetic field in 

CMOS microcoil arrays, within a range of frequency from 1 Hz to 10kHz. Afterwards, the 

results of the process were monitoring and plotting for each as weIl. The process starts by 

monitoring the control sensor, which is a bar of electrode immersed in the solution, then 

after the sensing layer that is immobilizing antibody on the surface of it. Then a 

combination of the biological cells and the magnetic bead got stable under magnetic field 

applied B > 0 as demonstrated in Figure 5-31. After removing the magnetic field; B = 0 

also the results recorded as weil, as demonstrated in Figure 5-32. Each status was plotting 

using Bode plot, magnitude of impedance vs. frequency, the result of this experiment 

shown in Figure 5-46. 

Frequency 1Hz} 

Figure 5-46 The experimental run for the entire process, control and sensing sensor 
before and after applying magnetic field . 

In the case of the control sensor, the . surface of IDMA not functionalized where the 

sensing layer, the IDMA functionalized as shown in Figure 5-30. Immobilization the 
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antibody onto the surface of the working electrode (WE) should take place first follow th en 

immersed " WE " into LB media that mixed with biological cells and magnetic bead to be 

attached. 

As a result, the immunoreaction that took place in between immobilized antibodies and 

biological cells binding along with the magnetic bead were monitoring and recording for 

carrying out the difference in charge-transfer resistance R CI and the double layer 

capacitance; Cdl, before and after applying the magnetic field. Figure 5-46 shows 

impedance measurements for both biosensors; control and functionalized. The control 

biosensor, which referred to it on the figure by the green line and signs, it has no 

modification to the surface of microelectrodes; called bare electrodes, therefore, the 

impedance shows the maximum due to the low concentration of the biological attached to 

the surface and the "Magnetic OFF". The functionalized biosensor where the antibodies 

immobilized on the surface of microelectrodes, there are two curves, the red line when the 

"Magnetic ON", and the blue line when the "Magnetic OFF2", the impedance shows the 

minimum for the case when the "Magnetic ON" and higher for the case when the magnetic 

released. However, the latter case still lesser than the control biosensor due the residual of 

the biological on the surface after releasing the magnetic field. As aforementioned in 

section 4.9.1 a layer that would reduce the moving and transferring charges in between the 

electrodes can create because of antibodies immobilization onto the electrode surface that 

means increasing the R CI resistance. Consequently, this leads mainly to the basic rule that is 

saying the higher biological cells that bonded to the surface of the electrodes the higher 

double layer capacitance at low frequency range the minimum impedance measured. 
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The mechanism of the charge-transfer resistance (Rel) and the double layer capacitance 

variations can confine due to the surface modifications during the immobilization of 

antibodies by always taking into account the frequency range. For the high concentration of 

binding biological cells associating with magnetic bead on the immobilized antibody 

electrode surface change the permittivity of the media in between the electrode fingers, 

which leads to change the double layer capacitance;  accordingly. Where the surface 

modification of the microelectrodes under any circumstances such as the immobilization of 

antibodies and binding biological cells does not show significant variation on the Warburg 

impedance; ~  and the solution resistance, Rso1 as discussed in section 4.8. 

5.8.2 Cone/usions 

CMOS microcoil-based system specifically designed, fabricated, and experimentally 

validated for realizing a new generation of multi-labs on a single chip (MLoC) System. 

CMOS-microcoil-based electrochemical impedance measurements incorporates hybrid 

microfluidic channel and IDMA combines the manipulation of paramagnetic microparticles 

(magnetic beads) through a magnetic field was employing for rapid detection of biological 

cells where with antibodies bound to the biosensor and magnetic bead surfaces. The 

integrated sensor is as a part of MLoC chip worked successfully and provided 

enhancements in the CUITent magnetic system to impart robustness and improve the system 

performance wh en compared to other techniques. IDMA technology with a potential 

integrated within microfluidic channel (MFC) for biomedical and life sciences applications 

is the main valuable outcome within reach of miniaturization of biosensors that is 

improving the transducer sensitivity and selectivity. 
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As stated, the definition of originality aforementioned in "section 2.6.3", the CMOS 

microcoil techniques fill in the first and the third categories where the ideas have been 

previously published. The design in the literature made of a die within 2.0 mm x 3.0 mm 

using electroplating techniques but the tools for MLoC system are definitely different. In 

this design, the technology that used is CMOSP35; the area of the entire planar microcoil is 

248.05 ~  x 246.725 ~  The magnetic source is built using 32 microcoils in 4 x 8 aITays. 

Each coil, which made of three metals; Ml, M2, and M3, connecting in series with vias. 

The integrated system described has an enormous potential to concentrate and enhance 

bacterial capture from samples. Moreover, this part of MLoC system fills also in the third 

category of originality, where the entire sensor implemented on-chip includes the  IDMA 

sited on the top of the microcoils for magnetic field manipulation. The area of the IDMA 

sites in a 215.075 ~  long and 114.775 ~  width is placed. Each finger has 0.6 ~  width 

and space, and 188.6 ~  long. The IDMA design offers increased sensitivity to redox 

cycles, improving as the electrode gap decreases. Therefore, this integration should 

improve the detection Iimit by several orders of magnitude, shorten the analysis time and 

reduce non-specific detection events. The work includes two types of IDMA; on-chip using 

CMOS technology for CMOS Microcoil sensor and OFF-chip on MFCI surface using soft 

photolithograph technique inside the c1eanroom. The digital circuits include the control 

circuit to steer the direction and the magnitude of the electrical CUITent in the selected row 

of the microcoil aITay, which will reduce the fan-in of the entire chip. The lateral size of the 

MLoC chip is 2.23 by 3.04 mm2 and the supply voltage is Vdd = 3.3 v. 



Chapitre 6 - Conclusions, Contributions and Suggestions 
for Future Works 

The researchers and biomedicine engineers would appreciate the final success of the 

MLoC system when they realize the capability ofthis system. The capability of the MLoC 

system complies with employing- the advantages of miniaturization that converts the 

devices from macro scale to micro/nano scale resulting in reduced diffusion lengths and 

minimized geometries. The miniaturization reduces the cost and time, which helps increase 

the manufacturing that pushes forward the research and the development in the area of life 

science and biomedicine applications. 

In terms of the transduction techniques used, the four main classes of biosensors that 

lead to a new generation of multi-Iabs-on-a-single chip (MLoC) contains capacitive, 

optical, Electrochemical Impedance Spectroscopy (EIS) and planar microcoils for magnetic 

field generation techniques. 

The first of the four techniques, the CMOS CBCM capacitive system had a drawback 

that was the limited detection level of the pathogens (around 12 pF). To overcome this 

problem, a single processing unit was added to the CBCM technique. The signal-processing 

circuit aims to convert the current passing through the output stage into a digital signal, 

where the frequency is proportional to the concentration of the pathogens in medium. This 

is solved by using a hybrid analog/digital integration scheme. In this circuit, an analog 

integrator and a discriminator convert the current generated as byproduct into a train of 
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digital pulses; current-to-frequency converter (CFC). The CBCM technique passed the 

validation procedures successfully and its profile that was obtained matched the hypothesis. 

As for the optical biosensor, its surface was increased to the VPNP phototransistor 32 

x 32 arrays instead of 16 x 16 arrays, in the light of the fact that the sensitivity of the 

optical sensor depends on the exposed area to the light. In addition, the chip contains ail the 

required resistors on-chip. The device passed the validation procedures and it passed the 

experimental procedures that were performed from low to high concentration of bacteria on 

this device specifically. 

The electrochemical impedance spectroscopy (EIS) has ail of its stages implemented 

on-chip including the voltage controller and signal-processing unit along with their 

associating capacitors and resistors. The system passed the validation tests and a profile 

resulted as expected from the sensor as a part of the MLoC system. 

As for the CMOS Microcoil biosensors technique, the entire sensor implemented on-

chip includes the IDMA sited on top of the microcoils for magnetic field manipulation. 

This system ran perfectly and the manipulation on the sensing surface where the magnetic 

particle was located was performed by observing the variation of the impedance of the 

output. The aforementioned approaches (the CBCM, Optical and EIS methods) required 

sample pre-treatment steps and signal amplification strategies, which caused sorne 

complications and challenges. The CMOS microcoil solved bath challenges at once 

through the manipulation of the magnetic particles on the sensing layer in addition to the 

contamination problem that the CBCM and the microfluidic channel were suffering from. 

This technique will leave the sensors clean and reusable. 
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The two types of IDMA; the on-chip using CMOS technology for planar CMOS 

Microcoil sensor and the OFF -chip on MFCI surface using soft photolithography technique 

inside the cleanroom were helpful and significantly aided the MLoC system to come to the 

light and bring the results as expected. 

The experimental set-up has a key role in running the MLoC system. The Labview code 

that was written especially for this system was as a definite bonus in making the 

experimental set-up easier and let the MLoC system come to the light as a new generation. 

All the aforementioned biosensors worked separately as expected and successfully 

passed all the validation tests. However, the chip is able to run more than one experiment 

using the different techniques if a multiplexer is added to the interface of the MLoC 

system. This could be considered as a future work suggestion. 

The recent MLoC system is still suffering from off-chip components that should be 

added to make the system fully IC. In the future, all of the se external components can be 

added on-chip and implemented on-chip as weil. The MLoC system can be updated to a 

more efficient system through adding a wireless unit on board and receiving the data off the 

chip by a special receiver. An EDP technique is one of the more common techniques that 

are widely used but it is not available on the MLoC and it can be added to the MLoC 

system for it to become more comprehensive and integrated. 
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Appendix A: Labview Programming and Source Code 

Dl. Labview Programming 

Front page 

Page 1 

Page 2 
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Page 3 

Page4 

Page 5 
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D2. Icons and Descriptions 

Elapsed Time4 

Elapsed Time: Indicates the amount of time that has elapsed since the specified start time. 

This Express VI is configured as follows: Time Target: 0.001 sAuto Reset: Off 

t'bOX) 

Convert to Dynamic Data2 

Convert to Dynamic Data: Converts numeric, Boolean, waveform and array data types to the 
dynamic data type for use with Express vis. 

Write To Measurement File 

Write To Measurement File: Writes data to a text-based measurement file (.Ivm) or binary 
measurement file (.tdm). This Express VI is configured as follows: Mode: Save to one file. 
Filename: D:\UQTR\Labview_tut\Cm.tdms If a file already exists: Append to file 

I?!'-?II 
?!)I.. Merge Errors.vi 

C:\Program Files\Nationallnstruments\LabVIEW 8.2\vi.lib\Utility\error.llb\Merge Errors.vi 

~~  niScope Configure Trigger Edge.vi 

C:\Program Files\National 1 nstruments\LabVI EW 8.2\instr.lib\n iScope\Configu re\Trigger\ 
niScope Configure Trigger Edge.vi 

Read From Spreadsheet File (DBL).vi 

C:\Program Files\Nationallnstruments\LabVIEW 8.2\vi.lib\Utility\file.llb\Read From Spreadsheet 
File (DBL).vi 

Read From Spreadsheet File.vi 

C:\Program Files\National 1 nstruments\LabVIEW 8.2\vi.lib\Utility\file.llb\Read From Spreadsheet 
File.vi 

Write To Spreadsheet File (string).vi 

C:\Program Files\National Instruments\LabVIEW 8.2\vi.lib\Utility\file.llb\Write To Spreadsheet 
File (string).vi 

Write To Spreadsheet File (DBL).vi 

C:\Program Files\National Instruments\LabVIEW 8.2\vi.lib\Utility\file.llb\Write To Spreadsheet 
File (DBL).vi 

Write To Spreadsheet File.vi 

C:\Program Files\National Instruments\LabVIEW 8.2\vi.lib\Utility\file.llb\Write To Spreadsheet 
File.vi 
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niScope Close.vi 

C:\Program Files\Nationallnstruments\LabVIEW 8.2\instr.lib\NISCOPE\niScope Close.vi 

rl: .. FGENI 
,. niFgen Close.vi 

C:\Program Files\National Instruments\LabVIEW 8.2\instr.lib\niFgen\niFgen.LLB\niFgen 
Close.vi 

~  NI_MAPro.lvlib:Extract Single Tone Information 1 Chan.vi 

C:\Program Files\National Instruments\LabVIEW 8.2\vi.lib\measure\matone.llb\Extract Single 
Tone Information 1 Chan.vi 

[1;1 rI'\! . NI_MAPro.lvlib:Extract Single Tone Information.vi 

C:\Program Files\National Instruments\LabVIEW 8.2\vi.lib\measure\matone.llb\Extract Single 
Tone Information.vi 

WDT Index Channel DBL.vi 

C:\Program Files\National Instruments\LabVIEW 8.2\vi.lib\Waveform\WDTOps.llb\WDT Index 
Channel DBL.vi 

~~  
liÊl Index Waveform Array.vi 

C:\Program Files\National Instruments\LabVIEW 8.2\vi.lib\Waveform\WDTOps.llb\lndex 
Waveform Array.vi 

niScope Abort.vi 

C:\Program Files\National Instruments\LabVIEW 8.2\instr.lib\niScope\Acquire\Fetch\niScope 
Abort.vi 

niScope Multi Fetch WDT.vi 

D:\UOTR\Labview_tut\niScope Multi Fetch WDT.vi 

niScope Fetch (poly).vi 

C:\Program Files\National Instruments\LabVIEW 8.2\instr.lib\niScope\Acquire\Fetch\niScope 
Fetch (poly).vi 

niScope Initiate Acquisition.vi 

D:\UOTR\Labview_tut\niScope Initiate Acquisition.vi 

niFgen Initialize.vi 

D:\UOTR\Labview_tut\niFgen Initialize.vi 
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~ 
~ niScope Commit.vi 

C:\Program Files\Nationallnstruments\LabVIEW 8.2\instr.lib\niScope\Utility\niScope Commit.vi 

fE:l niScope Configure Trigger (poly).vi 

C:\Program Files\National 1 nstruments\LabVI EW8.2\instr.lib\niScope\Config ure\ Trigger\niScope 
Configure Trigger (poly).vi 

niScope Configure Horizontal Timing.vi 

C:\Program Files\National Instruments\LabVI EW8.2\instr. lib\NISCOPE\Configure\Hori zontal\ 
niScope Configure Horizontal Timing.vi 

~  niScope Configure Chan Characteristics.vi 

C:\Program Files\National Instruments\LabVIEW 8.2\instr.lib\NISCOPE\Configure\Vertical\ 
niScope Configure Chan Characteristics.vi 

niScope Configure Vertical.vi 

C:\Program Files\National Instruments\LabVIEW 8.2\instr.lib\NISCOPE\Configure\Vertical\ 
niScope Configure Vertical.vi 

niScope Initialize.vi 

D:\UQTR\Labview_tut\niScope 1 nitialize. vi 

niFgen Configure Output Mode.vi 

C:\Program Files\National Instruments\LabVIEW 
Configure Output Mode.vi 

niFgen Configure Standard Waveform.vi 

C:\Program Files\National Instruments\LabVIEW 
Configure Standard Waveform.vi 

rorGE"1 
!>-f\, 

niFgen Initiate Generation.vi 

8.2\instr.lib\niFgen\niFgen.LLB\niFgen 

8.2\instr.lib\niFgen\niFgen.LLB\niFgen 

C:\Program Files\National Instruments\LabVIEW 8.2\instr.lib\niFgen\niFgen.LLB\niFgen Initiate 
Generation. vi 

C:\Program 
Commit.vi. 

niFgen Commit.vi 

Files\National 1 nstruments\LabVI EW 8.2\instr.lib\niFgen\niFgen.LLB\niFgen 
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03: Block diagram 
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Appendix B: Experimental Procedures' Images for (MLoC) 
system 

Figure BI. The entire multibiosensors, on the left; the final MLoC system mounted on 

PGA68 socket, on the right; the layout of MLoC. 

Figure B2. On left; the experimental setup, on right the sensing surfaces used through 

out the work. 



242 

Figure B3. On the left; the Microfluidic channels (MFC) associated with schematic, on 

right the; MFC for EIS. 

Figure B4. On the left; MLoC system and MFCs; on right; the main components of the 

experiments. 

Figure B5. On the left; CBCM experiment run, on the right; the optical experiment run. 
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Figure B6. On the left; the starting up of the runs, on the right; optical run in darkness. 

Figure B7. On the left; the fluorescence through MFC over the MLoC, on right; general 

experiment view. 

(a) (b 
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f;ht'tn"k 

Figure B8. On the left; the CBCM experiment setup associated with schematic on the 

right. 
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Figure B9. On the left; the IDMA for EIS experiments associated with schematic on 

right. 

(.) (b) 

Figure BIO. On the left; the IDMA for magnetic experiments associated with schematic 

on right. 

Figure BIl. The layout of the entire MLoC. 
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Appendix C: French summery for the entire of the thesis 

1. Le problème et le cadre général de la recherche 

Dorénavant, les principales méthodes de détection de pathogènes sont basées sur la 
culture de Pétri; le comptage des colonies, enzyme-linked immunosorbent assay (ELISA); 
sur la base des anticorps ou de la réaction en chaîne par polymérase (PCR); la détection des 
acides nucléiques à l'aide des techniques et des puces de l'ADN. La raison existe au niveau 
de la grande sélectivité et la fiabilité de ces techniques, qui ont des forces et des faiblesses 
différentes. La Culture et le comptage des colonies est la méthode la plus ancienne et celle 
qui est généralement considérée comme la référence. Elle permet la détection des cellules 
viables, mais son inconvénient est le fait qu'elle exige beaucoup de travail et peut prendre 
jusqu'à plusieurs jours avant de donner des résultats. Les biocapteurs sont des acteurs 
relativement nouveaux dans le domaine de la détection des pathogènes et de leurs 
performances. Ils sont généralement limités par l'utilisation de l'élément de reconnaissance 
biologique. Ces éléments de reconnaissance existent pour la plupart des anticorps et des 
séquences d'ADN. Bien que les méthodes basées sur l'ADN et malgré leur bonne sélectivité 
et leur stabilité à long terme; il reste incapable de discriminer entre les cellules viables et 
non viables et les biocapteurs à base d'anticorps, d'autre part, ils peuvent souffrir de croix 
de liaison des autres bactéries, qui se traduiraient par de faux positifs. En outre, les 
anticorps sont généralement très coûteux à produire. 

La miniaturisation des biocapteurs est l'une des tendances récentes visant à la fois des 
performances accrues et la portabilité avec faible coût pour la production de masse. Pour ce 
faire, tous les paramètres géométriques et opérationnels doivent passer par l'optimisation 
adéquate. Cependant, il est à la fois long et coûteux d'étudier les effets de ces paramètres 
sur les performances par prototypage conventionnel. L'approche moderne de prototypage 
numérique est la formulation de modèles mathématiques qui décrivent le mieux le système 
et utiliser de puissants ordinateurs pour trouver les paramètres de conception optimales. Ce 
n'est pas seulement de réduire le coût de l'expérimentation en réduisant le nombre 
d'expériences nécessaires pour analyser un problème particulier, mais il peut aussi être 
utilisé pour étudier les problèmes qui sont difficiles ou coûteux de tester et de faire une 
extrapolation aux régions incultes. Développement et production de miniatures instruments 
et dispositifs analytiques peuvent atteindre un certain nombre d'avantages, d'ailleurs 
analyser rapidement de très petites quantités de substance, il peut aussi effectuer l'analyse 
sur place et l'analyse dans les zones de sécurité. Micro / Nanochip dispositifs d'analyse qui 
conduisent à multi / single Lab-on-a-chip appareils sont microdispositifs qui fusionnent 
avec la technologie microfluidique fonctions électriques et / ou mécaniques pour l'analyse 
des volumes minuscules de l'échantillon biologique. Microdeivces analytiques peuvent 
effectuer un voyage à travers deux façons de produire des instruments plus souples et plus 
petits. Tout d'abord, le développement de l'ensemble des systèmes miniaturisés dans 
lesquels ils sont des dispositifs capables et attrayants pour l'analyse des ~ femto-et-atto 
quantités molaires d'échantillons biologiques et de la biomédecine, et d'autre part, le 
développement de systèmes dédiés en accélérant le développement de capteurs chimiques, 
groupements de capteurs, et des microcapteurs. En outre, la miniaturisation pourrait être en 
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mesure de produire un instrument combinant ou en césure miniaturisée éléments simples 
basés sur différents principes de fonctionnement sans pour autant sacrifier leur polyvalence. 

La combinaison des deux anticorps liés à la surface pour l'identification et l'interaction 
de surface pour processus de détection est le mécanisme des techniques classiques de 
détection. Cette technique présente des limites à cause de l'insuffisance de liaison 
biomoléculaire à la surface de détection. Ceci est dû au fait que la liaison biomoléculaire 
est trop petite pour passer de la suspension et se lie à la surface fonctionnalisée de 
détection. Récemment, la spécification et le comportement des biocapteurs ne réussissent 
pas à surmonter ce problème grave en raison de leur sensibilité, la spécificité, une 
sélectivité et une précision améliorée. Par conséquent, le laboratoire multi-technologie sur 
une seule puce (MLoC) améliore les techniques de détection modernes en incluant capacitif 
(CBCM), optique, électrochimique (EIS) et techniques magnétiques tout sur une seule 
puce.  CMOS / technologies MEMS, canal microfluidique intégré, le tri et l'identification 
biomoléculaire cellules sur une sorte de substrats tels que le verre, polymère ou en 
plastique sont à la base de biocapteurs modernes (c.-à MLoC, micro total des systèmes 
analytiques ~ TAS), etc. . .. ). Notez que la miniaturisation des systèmes de détection 
permet une détection plus rapide des volumes de minuscules cellules biomoléculaires que 
celle des techniques d'analyse macroscopique, ce qui facilite la séquence nouvelle 
génération de biocapteurs qui présentent la détection rapide des échantillons biologiques, 
l'amenant à être en forme pour le point de soin de diagnostic. Les performances des 
biocapteurs doivent être suffisamment élevées pour détecter des pathogènes à de faibles 
concentrations de cellules biomoléculaires, ce qui est suffisant pour causer une maladie. De 
tels transducteurs peuvent jouer un rôle important pour la surveillance de la contamination 
des sources d'eau par des agents pathogènes. Par conséquent, effectuer une détection 
réussie à faible concentration dépend du moment fiabilité, la sensibilité à court et à obtenir 
des résultats, qui deviennent les principales caractéristiques de biocapteurs. La mesure de 
ce faible niveau de concentration doit passer à travers un protocole à partir de l'endroit où 
l'échantillon ramasse. Puis la surface passe par modification suivie par le traitement qu'il se 
lie à la surface de détection jusqu'à ce que finalement le système lit les résultats. 

Les approches mentionnées ci-dessus à ce jour (le CBCM, les méthodes optiques et EIS) 
nécessitent des étapes de prétraitement et de stratégies d'amplification du signal, qui 
provoquent des complications et des défis. Par conséquent, ce travail présente un 
microsystème qui intègre un système ID MA , ce qui peut conduire à des systèmes de 
biocapteurs très fonctionnels et polyvalents, permet la détection de bactéries avec une 
grande sensibilité et rapidité du temps de réponse sur la base de CMOS microbobine. Les 
particules magnétiques sont idéales pour résoudre les deux problèmes à la fois, puisque les 
champs magnétiques peuvent facilement être manipulés. 

2. Originalité 

La thèse comprend une variété de techniques pour les transducteurs de biocapteurs dans 
une seule puce. Cette puce dispose de tous les biocapteurs mis en œuvre à l'aide de la 
technologie TSMC CMOSP35 disponibles par le biais de la Société canadienne de 
microélectronique (CMC), ce qui conduit à une nouvelle génération de multibiosensors, 
nommé multi-Iaboratoires sur une puce uriique (MLoC) du système en augmentant sa 
sensibilité. La mise en œuvre du système MLoC présente une capacité éminente à atteindre 
une grande performance à la détection d'échantillons biologiques. La réalisation de cet 
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objectif dépend du développement et de la fabrication à faible coût jetable OFF-puce 
d'interface canal microfluidique (MFCI) en l'intégrant aux réseaux de microélectrodes 
interdigitées (IDMA) en utilisant la technique de photolithographie douce dans la salle 
blanche. 

En outre, une conception nouvelle est proposée pour chacun des quatre biocapteurs. Pour la 
technique CBCM, une nouvelle couche située au-dessus du condensateur de référence est 
proposée. Cette couche est constituée de deux métaux qui le protègent contre toute 
contamination extérieure au cours de l'exécution de l'essai sans modifier la valeur de sa 
capacité. Pour le biocapteur optique, et la lumière du fait que la sensibilité du capteur 
optique dépend de la surface exposée à la lumière, la surface augmente au VPNP 
phototransistor 32 x 32 au lieu de matrices 16 x 16, également, la puce contient toutes les 
résistances nécessaires sur la puce. Pour la technique d'impédance électrochimique (EIS), 
toutes ses étapes mises en œuvre sur une puce comprennent le contrôleur de tension et une 
unité de traitement de signaux avec leurs condensateurs et des résistances associés. Pour la 
technique de biocapteurs ~ ne CMOS, l'ensemble du capteur mis en œuvre sur une 
puce comprend l'IDMA situé sur la partie supérieure des microbobines de manipulation du 
champ magnétique. Le travail comprend deux types d'IDMA, sur puce utilisant la 
technologie CMOS pour CMOS microbobine capteur et OFF -puce sur la surface MFCI 
utilisant la technique de photolithographie douce à l'intérieur de la salle blanche. J'ai écrit le 
code Labview pour bien contrôler l'expérience et de nous fournir des informations utiles. 

3. Objectifs 

Ce travail vise principalement l'élaboration d'un biocapteur novateur intégrant des 
technologies d'avant-garde qui permettra la détection et la quantification de bactéries 
pathogènes vivantes. Pour atteindre cet objectif les éléments suivants ont été développés et 
fabriqués d'une façon propriétaire: 

(i) Un circuit intégré de lecture d'un tableau des microélectrodes interdigitées (IDMA). 

(ii) Un faible canal jetable à faible coût de type microfluidique qui se compose d'un 
réseau de microélectrodes interdigitées pour les mesures d'impédance et 
microbobines pour la génération du champ magnétique. 

(iii)L'intégration de la puce microélectrode avec une interface microfluidique d'un 
canal simple (MFCI) agit comme électrode de travail pour les mesures de 
spectroscopie d'impédance électrochimique (off-chip). 

(iv)La caractérisation, le test et la validation du système intégré avec différents types de 
récepteurs de reconnaissance pour détecter des bactéries différentes. 

L'utilisation de la programmation Labview pour faciliter le fonctionnement de l'installation 
et pour recueillir les informations afin de transcrire les résultats et les préparer pour l'étude 
et l'analyse. 

4. La Méthodologie 
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Comme indiqué, les méthodes traditionnelles de biocapteurs demandent beaucoup de 
travail et prennent jusqu'à plusieurs jours pour obtenir des résultats. La miniaturisation des 
biocapteurs est l'une des tendances récentes visant à la fois des performances accrues et la 
portabilité avec faible coût pour la production de masse. Pour ce faire, tous les paramètres 
géométriques et opérationnels doivent passer par l'optimisation adéquate. 
L'accomplissement de cette miniaturisation peut être réalisé par l'utilisation de la 
technologie TSMC CMOSP35 disponible par le biais de la Société canadienne de 
microélectronique (CMC) pour concevoir et fabriquer la puce. 

4.1 Stratégie de conception de la recherche 
L'objectif de ce travail peut être atteint en développant les systèmes miniaturisés 

attrayants pour l'analyse des pico-, femto-et-atto quantités molaires d'échantillons 
biologiques et de la biomédecine, et d'autre part, le développement de systèmes dédiés en 
accélérant le développement de capteurs chimiques et microcapteurs. En outre, la 
miniaturisation pourrait être en mesure de produire un instrument combinant des éléments 
simples miniaturisés basés sur différents principes de fonctionnement sans pour autant 
sacrifier leur polyvalence. 

4.2 Une méthodologie Redimensionnement CMOS 
Redimensionnement des transistors CMOS est une étape cruciale pour le retraitement 

des circuits analogiques. Une migration de la technologie peut être réalisée par le 
redimensionnement de la méthodologie qui devrait maintenir ou faire progresser et 
améliorer la conception en termes de performance, réduction de la superficie et de la 
consommation [48]. La méthodologie de redimensionnement de transistors CMOS passe 
principalement par la définition des caractéristiques qui devraient être le maintien, puis la 
détermination des tailles des transistors en trouvant le ratio d'aspect à la lumière des 
résultats de mesure. 

4.3 Les outils de recherche 
CMOSP35 TSMC technologie disponible par la Société canadienne de micro-

électronique (CMC) pour concevoir et fabriquer la puce a été utilisée pour redimensionner 
les transistors et obtenir la migration des technologies de l'échelle macro à l'échelle micro 
ou petites. Le montage expérimental utilise le logiciel Labview pour l'extraction des 
résultats. 

4.4 L'analyse des données 
De sorte que le lieu du montage expérimental est analysé et manipulé pour être utilisé 

pour la validation du système. 

4.5 Limites et défis 
Un des biocapteurs traditionnels, le système NMC a ses limites en raison de la taille de 

la cellule biomoléculaire. Par conséquent, il est nécessaire de se familiariser avec 
l'application et de concevoir le biocapteur. Jusqu'à présent, cela demeure un défi pour les 
chercheurs dans ces domaines. 
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5. Structure de la thèse 

La thèse offre une variété de techniques pour la proposition de biocapteurs 
transducteurs. La seule puce dispose de toutes les biocapteurs mis en place en son sein, ce 
qui conduit à une nouvelle génération de multibiosensors désignée comme puce multi-
laboratoires-sur-une seule puce (MLoC). 

La thèse est organisée en six chapitres et trois annexes. Le premier chapitre traite la 
problématique, les objectifs, l'originalité, la méthodologie, les informations générales sur 
les techniques des biocapteurs, la fonction , l' l'infrastructure et les récepteurs. En outre, il 
examine les éléments d'instrumentation, de la reconnaissance dans la conception des 
biocapteurs et de l'immobilisation. Le deuxième chapitre se déroule sur la capacité CMOS 
biocapteur basée sur la conception et la simulation des charge-Mesures de capacité 
(CBCM), puis les techniques de fabrication. Le chapitre trois se déroule sur la deuxième 
technique qui est le développement des biocapteurs optiques de CMOS : une seule puce qui 
couvre la spectroscopie optique, la conception VPNP, le fonctionnement, les 
caractéristiques et la structure, puis à la fin du chapitre on trouve la procédure suivie par 
expérience. Le chapitre quatre traite la spectroscopie d'impédance électrochimique de 
biomolécules de détection électrochimique, faisant parti des principes de biocapteurs, des 
architectures et des comportements, des techniques de détection électrochimique. La 
microfabrication IDMA et ses influences sur les caractéristiques et les avantages sont 
détaillés. Ensuite, le chapitre aborde le non faradique et des modes d'approche faradiques. 
Des mesures impédimétriques de suivi de l'architecture de surface et les modifications ainsi 
que la détection de pathogènes E-Coli sont discutés. À la fin du chapitre, il y al ' illustration 
de la modélisation du circuit équivalent du système immunocapteur. Le chapitre cinq se 
concentre sur la dernière technique qui est CMOS microbobines et sur la manipulation du 
champ magnétique, il couvre au début la gamme IC CMOS microbobine, la conception de 
circuits de commande numérique, les biocapteurs impédimétriques pour immuno-
magnétique à base de perles qui impliquent des systèmes et des composants, les biocapteurs 
impédimétriques basés sur la technologie CMOS, le comportement et la caractérisation des 
microbobines utilisant le concept d'impédance. La modélisation du circuit équivalent du 
système immunocapteur, les protocoles dispositifs expérimentaux et la détection des agents 
pathogènes array (IDMA) microélectrodes interdigitées. Le dernier chapitre (chapitre six) 
résume les conclusions générales pour l'ensemble du système. Il indique également les 
contributions et suggestions pour les travaux futurs et les défis. 


