UNIVERSITE DU QUEBEC

MEMOIRE PRESENTE A

L'UNIVERSITE DU QUEBEC A TROIS-RIVIERES

COMMME EXIGENCE PARTIELLE POUR L'OBTENTION

t

DE LA MAITRISE ES SCIENCES (PHYSIQUE)

PAR

-

MOHAMED SADDEK BOUMERZOUG

METHODE VARIATIONNELLE DANS LE PROBLEME

QUANTIQUE DE TROIS CORPS

JUIN 1986

Université du Québec à Trois-Rivières

Service de la bibliothèque

<u>Avertissement</u>

L'auteur de ce mémoire ou de cette thèse a autorisé l'Université du Québec à Trois-Rivières à diffuser, à des fins non lucratives, une copie de son mémoire ou de sa thèse.

Cette diffusion n'entraîne pas une renonciation de la part de l'auteur à ses droits de propriété intellectuelle, incluant le droit d'auteur, sur ce mémoire ou cette thèse. Notamment, la reproduction ou la publication de la totalité ou d'une partie importante de ce mémoire ou de cette thèse requiert son autorisation.

A mes parents

REMERCIEMENTS

Je tiens à exprimer mes sincères remerciements au Docteur John Miletic, directeur de recherche, pour avoir accepté de me guider dans ce travail.

Je veux également exprimer ma reconnaissance au Docteur Louis Marchildon avec lequel j'ai énormément appris sur la mécanique quantique et son vaste domaine d'application.

Mes remerciements vont également au Docteur Adel Antippa pour ses précieux conseils pédagogiques.

Je remercie aussi le Docteur Jerzy Sochanski du service de l'informatique, pour son aide dans la programmation ainsi que le Docteur Camille Chapados, grâce à qui ce travail a pris sa forme définitive. Je remercie également les professeurs et chercheurs du département de physique et tous ceux qui ont participé de près ou de loin à la réalisation de ce travail.

RESUME

Le problème quantique de trois particules, dans le cas où une particule est fixe, interagissant par un potentiel coulombien est ramené à un problème variationnel. Un calcul détaillé de l'énergie dans l'état fondamental est présenté et les résultats numériques correspondants sont obtenus pour les atomes à deux électrons. Au lieu de considérer le système de coordonnées interparticulaires qui satisfont la relation triangulaire, ce qui présente un inconvénient pour les limites d'intégration, nous avons choisi un système de coordonnées (x,t,u) de manière que les variables x et u soient indépendantes dans leurs domaines de variation. Afin de tenir compte de la corrélation électron-électron et en s'inspirant des articles de Srivastava" et Mu-Shiang"", la fonction d'onde est choisie de telle sorte que la distance rie entre les deux électrons est exprimée explicitement par une fonction logarithmique. Nous utilisons deux paramètres variationnels et nos résultats sont nettement meilleurs que ceux qui utilisent deux et trois paramètres.

*: M. K. Srivastava, R. K. Bhaduri, and A. K. Dutta,

Phys. Rev. A <u>14</u>, 1961 (1976) **: Wu. Mu-Shiang, Phys. Rev. A <u>26</u>, 1762 (1982)

TABLE DES MATIERES

P	a	a	e
-		_	_

RESUME	ii
REMERCIEMENTS	iii
TABLE DES MATIERES	iv
LISTE DES TABLEAUX	vi
LISTE DES FIGURES	vii
INTRODUCTION	1
CHAPITRES	
I. FORMULATION DU PROBLEME	5
I.1 Cas général	5
I.2 Cas particulier traité	10
I.3 Choix du système de coordonnées	14
II. METHODE DE CALCUL	17
II.1 Equivalence entre l'équation de Schrödinger et	
le principe variationnel	17
II.2 Etat fondamental	19
II.3 Etats excités	22
III. CALCUL VARIATIONNEL	26
III.1 Choix de la fonction d'onde	26
III.2 Détermination de l'énergie du niveau fonda-	
mental	30
III.3 Calcul de $\langle r_{12} \rangle$ et $\langle r_1 \rangle$	42
IV. PASSAGE DU CALCUL ANALYTIQUE AU CALCUL NUMERIQUE	45

IV.1 Principe de calcul utilisé par le sous-pro-	
gramme ZXMIN	45
IV.2 Procédé des calculs numériques	47
IV.3 Ordinogramme du programme utilisé	51
V. RESULTATS ET DISCUSSION	54
V.1 Energie de l'état fondamental	54
V.2 Entrainement du noyau	55
V.3 Résulats	57
V.4 Corrélation électron-électron	58
V.4.1 Approximation de Hartree-Fock	64
V.4.2 Modèle de charge effective	64
V.4.3 Distribution de la variable r _{iz}	65
CONCLUSION	72
BIBLIOGRAPHIE	74
ANNEXE A: Listage du programme (INPUT, OUTPUT) utilisé pour	-
les calculs numériques	76
ANNEXE B: Listage du sous-programme ZXMIN utilisé pour la	
détermination des paramètres s et c	86
ANNEXE C: Listage du sous-programme DCADRE utilisé pour	
l'évaluation des intégrales	100
ANNEXE D: Equation de Schrödinger dans le système de	
coordonnées du centre de masse et coordonnées	
relatives	114

LISTE DES TABLEAUX

Tableau

Page

1	Différents opérateurs correspondant à Z = 1	59
2	Différents opérateurs correspondant à Z = 2	60
3	Différents opérateurs correspondant à Z = 3	61
4	Différents opérateurs correspondant à Z = 4	62
5	Energie de l'état fondamental (-E _o) en u.a	63
6	Effet de la corrélation électron-électron	70

LISTE DES FIGURES

Figure

1

1	Système de trois particules, chacune définie par sa	
	masse et sa charge	6
2	Atome à deux électrons. Le noyau est pris comme cen-	
	tre du référentiel	11
З	Atome à deux électrons, représenté dans le système	
	de coordonnées r, θ et ϕ	13
4	Comparaison des fonctions de corrélation	29
5	Comparaison des fonctions de distribution de r_{12} .	69
6	Fonctions de distribution de r _{ie} pour l'atome	
	d'hélium	70

INTRODUCTION

Le problème de trois corps en mécanique quantique, consiste à résoudre l'équation de Schrödinger relative à un système quantique composé de trois particules et assujetti à un potentiel connu V (dans notre cas, coulombien):

$$H\Phi = E\Phi$$
(1)

où H est l'hamiltonien du sytème, Φ est la fonction d'onde correspondante et E est la valeur propre de l'énergie.

Nous nous sommes proposés d'étudier ce problème dans le cas où une des particules est fixe. Les masses, les charges des particules et le potentiel d'interaction sont donnés. Afin de donner la forme la plus simple au problème et le rendre analytiquement traitable il faut choisir le système de coordonnées le plus commode. Il faut aussi choisir la méthode approchée appropriée au problème qui dans notre cas est la méthode variationnelle. L'équation (1) peut être résolue de manière exacte dans très peu de cas. Dans la plupart des cas on utilise des méthodes approchées. Le premier succès en ce sens fut réalisé par Hylleraas⁽¹⁾ (1928) pour l'atome d'hélium. Cette méthode fut ensuite développée par Hart et Herzberg^(E) (1957). Pekeris⁽³⁾(1958) utilisa le système de coordonnées

$$u = r_{1} + r_{2} - r_{12}$$
$$v = r_{2} + r_{12} - r_{1}$$
$$w = r_{1} + r_{12} - r_{2}$$

où r_1 et r_2 sont les distances respectives des deux électrons au noyau et r_{12} la distance entre eux. Ces coordonnées avaient l'avantage, par rapport aux coordonnées interparticulaires et elliptiques, utilisées par ses prédécesseurs, d'être indépendantes dans leurs domaines de définition. Pekeris proposa la fonction d'onde :

$$\Phi = \exp\{-(u+v+w)\}\sum_{lm_{1}} C_{lm_{1}} L_{(u)} L_{(v)} L_{(w)}$$
(2)

où L_n est le polynôme de Laguerre normalisé d'ordre n. Pour déterminer les C_{1mn} , cet auteur introduisit cette fonction d'onde dans l'équation de Schrödinger, il utilisa les relations entre les fonctions successives de Laguerre et leurs dérivées et il obtint un nombre de relations de récurrence compliquées entre les C_{1mn} . Pour tout nombre donné de termes, les relations de récurrence nécessitaient des équations linéaires déterminant les C_{1mn} et la solution de ces équations linéaires était équivalente à résoudre un problème variationnel linéaire. Pekeris développa une fonction d'onde contenant 1078 termes et trouva l'énergie de l'état fondamental de l'atome d'hélium avec une précision de 1/107. Jusqu'à présent ce calcul demeure le plus précis. Frost⁽⁴⁾ (1964), en se basant sur les calculs de Pekeris, a utilisé la fonction d'onde :

$$\Phi = \exp\{-(u+v+w)\}\sum_{n=1}^{\infty}C_{n=1}u^{n}v^{m}w^{n}$$
(3)

où u, v et w sont les coordonnées périmètriques. Au lieu de déterminer les C_{1mn} comme dans le cas de Pekeris, cet auteur a calculé directement les éléments matriciels H_{ij} et S_{ij}

où
$$H_{ij} = \int \Phi_* H \Phi_j d\tau et S_{ij} = \int \Phi_* \Phi_j d\tau$$

avec H et S qui satisfont l'équation de Schrödinger

$$(H-ES)C = 0$$

à l'aide des relations de récurrence qu'il a définies. Ainsi, il a pu résoudre l'équation séculaire :

$$|H-ES| = 0$$

en utilisant des matrices allant jusqu'au 84x84 termes. Il a obtenu une bonne convergence. Le système de coordonnées périmètriques a permis à Pekeris et Frost d'obtenir séparément des résultats précis. Il fut démontré par Wang (1967)⁽⁵⁾ que le système de coordonnées périmètriques ne peut exister pour un système de plus de trois particules. C'est pourquoi les deux méthodes n'ont pu être généralisées aux atomes à plusieurs électrons et aux systèmes moléculaires. D'autres approches ont été tentées en introduisant les harmoniques sphériques⁽⁶⁾ de type k. Dans cette dernière méthode, l'équation de Schrödinger pour le système de trois particules est réduite en un nombre infini d'équations différentielles d'une seule variable. Cependant il fut trouvé que la convergence du développement en harmoniques sphériques de type k est très lente⁽⁷⁾, et un très grand nombre d'équations différentielles couplées doivent être résolues numériquement pour avoir une bonne précision.

Récemment, beaucoup de travaux ont été faits^(8,7,10) en utilisant quelques paramètres variationnels avec des résultats intéressants. En s'inspirant de ces travaux, le présent travail a pour but de trouver une fonction d'onde avec peu de paramètres représentant le système de trois particules interagissant par un potentiel coulombien dans le cas où une des particules est fixe.

4

CHAPITRE I

FORMULATION DU PROBLEME

I.1 CAS GENERAL

Soit un système de trois particules, chacune définie par sa masse mi et sa charge qi (fig. 1). Ce système est assujetti à deux sortes d'interactions: 1) les interactions électrostatiques et 2) les interactions magnétiques. Désignons par G l'opérateur des interactions magnétiques. Cet opérateur dépend des spins, des positions et des vitesses des particules (11. p301)

$$G = G(\vec{s}_1, \vec{s}_2, \vec{s}_3, \vec{r}_1, \vec{r}_2, \vec{r}_3, -i\hbar\Delta_1, -i\hbar\Delta_2, -i\hbar\Delta_3) \qquad (1.1)$$

Soit V l'opérateur des interactions électrostatiques:

$$V = \frac{q_1 q_2}{|\vec{r}_1 - \vec{r}_2|} + \frac{q_1 q_3}{|\vec{r}_1 - \vec{r}_3|} + \frac{q_2 q_3}{|\vec{r}_2 - \vec{r}_3|}$$
(1.2)

Dans une approximation où les faibles interactions de spin-orbite sont négligées, les variables décrivant le mouvement spatial et celles caractérisant le spin peuvent être séparées. En désignant les spins par leurs projections suivant oz, la fonction d'onde totale du système s'écrit:

$$\Psi = \Phi(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, t) S(s_{12}, s_{22}, s_{32})$$
(1.3)

<u>Fiqure 1</u>: Système de trois particules, chacune définie par sa masse et sa charge.

où $S(s_{12}, s_{22}, s_{32})$ désigne la partie de la fonction d'onde dépendant du spin. L'évolution dans le temps d'un tel système est régie par l'équation de Schrödinger:

$$i\hbar\frac{\partial\Psi}{\partial t} = \left[\frac{-\hbar^2}{2}\sum_{i=1}^{3}\frac{\Delta_x}{m_x} + G_{i} + V\right]\Psi \qquad (1.4)$$

Si on ne tient compte que des interactions électrostatiques (les interactions magnétiques peuvent être traitées comme perturbations), l'équation de Schrödinger devient:

$$i\hbar \frac{\partial \Psi}{\partial t} = \left[\frac{-\hbar e}{2} \sum_{i=1}^{3} \frac{\Delta_{i}}{m_{i}} + V \right] \Psi$$
(1.5)

caractérise l'état dynamique du système à un instant donné. Elle est reliée à la probabilité dP pour que les trois particules soient trouvées à l'instant t, dans les éléments de volumes:

$$d\vec{r}_{1} = dx_{1} dy_{1} dz_{1} , d\vec{r}_{2} = dx_{2} dy_{2} dz_{2} = t d\vec{r}_{3} = dx_{3} dy_{3} dz_{3}$$

$$par: dP = C \left| \Psi(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, t) \right|^{2} d\vec{r}_{1} d\vec{r}_{2} d\vec{r}_{3} \qquad (1.6)$$

où C est une constante de normalisation. Cette dernière est introduite afin que la probabilité de trouver le système dans tout l'espace soit égale à 1. (12, pes)

$$C \int |\Psi(r_{1}, r_{2}, r_{3}, t)|^{2} d\vec{r}_{1} d\vec{r}_{2} d\vec{r}_{3} = 1 \qquad (1.7)$$

Comme le potentiel considéré ne dépend pas du temps et dépend seulement des distances interparticulaires, on peut chercher des solutions stationnaires de l'équation (1.5). Nous les chercherons sous la forme:

$$\Psi(\vec{r}, \vec{r}, \vec{r}, \vec{r}, t) = \Phi(\vec{r}, \vec{r}, \vec{r}, \vec{r}) g(t)$$
 (1.8)

En portant (1.8) dans (1.5), il vient:

$$i\hbar\Phi(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3}) - \frac{dg(t)}{dt} = g(t) \left[\frac{-\hbar^{2}}{2} \sum_{i=1}^{3} \frac{\Delta_{i}\Phi(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3})}{m_{i}} \right] + V(r_{12},r_{13},r_{23})g(t)\Phi(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3}) \quad (1.7)$$

En divisant les deux membres de (1.9) par $g(t) \Phi(\vec{r_1}, \vec{r_2}, \vec{r_3})$:

$$\frac{1}{g(t)} \frac{dg(t)}{dt} = \frac{1}{\Phi(\vec{r_{1}}, \vec{r_{2}}, \vec{r_{3}})} \left[\frac{-\dot{h}^{2}}{2} - \frac{\Delta_{i} \Phi(\vec{r_{1}}, \vec{r_{2}}, \vec{r_{3}})}{m_{i}} \right] + V(\vec{r_{12}}, \vec{r_{13}}, \vec{r_{23}})$$
(1.10)

Le premier membre de l'équation ci-dessus dépend de t, tandis que le deuxième membre dépend des variables de position $(\vec{r_1}, \vec{r_2}, \vec{r_3})$. Cela n'est possible que si tous les deux sont égaux à une constante que nous appelerons E.

Donc:

$$\frac{i\hbar}{g(t)} = E \qquad (1.11)$$

$$\left[\frac{-h^2}{2}\sum_{i=1}^{3}\frac{\Delta_i}{m_i}+V\right]\Phi = E\Phi \qquad (1.12)$$

L'équation (1.11) est simple à intégrer:

$$g(t) = A \exp(-iEt/h)$$
(1.13)

et $\Phi(\vec{r_1},\vec{r_2},\vec{r_3})$ doit vérifier:

$$\begin{bmatrix} -\frac{h^2}{2} & \sum_{i=1}^{3} & \Delta_x \\ \hline & m_x & + & V \end{bmatrix} \Phi = E\Phi \qquad (1.14)$$

L'équation (1.14) est une équation aux valeurs propres. Elle n'admet de solutions que lorsque E prend des valeurs particulières dites valeurs propres de H. L'ensemble des valeurs de E constitue le spectre de l'énergie. Le problème revient donc à résoudre l'équation aux valeurs propres:

 Φ est le vecteur propre de H correspondant à la valeur propre E. H est l'hamiltonien du système:

$$H = T + V \tag{1.16}$$

T est l'opérateur de l'énergie cinétique du système:

$$T = -\frac{F_{12}}{2} \sum_{i=1}^{3} \frac{\Delta_{1}}{m_{1}}$$
(1.17)

 \triangle , est l'opérateur laplacien relatif à la particule i:

$$\Delta_{1} = \frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial y_{1}^{2}} + \frac{\partial^{2}}{\partial z_{1}^{2}} \qquad (1.18)$$

et V est l'opérateur de l'énergie potentielle du système, défini par l'équation (1.2). r_1 est le vecteur de position de la particule i et $|\vec{r}_1 - \vec{r}_3|$ est la distance entre la particule i et la particule j

$$\left|\vec{r}_{2} - \vec{r}_{3}\right| = \sqrt{(\chi_{2} - \chi_{3})^{2} + (\gamma_{2} - \gamma_{3})^{2} + (z_{1} - z_{3})^{2}}$$

I.2 CAS PARTICULIER TRAITE

Nous considérerons le cas des atomes à deux électrons (fig. 2) et nous déterminerons la fonction d'onde et l'énergie E_o dans l'état fondamental. Nous calculerons aussi d'autres paramètres qui permettent de comprendre le comportement des atomes à deux électrons. La contribution du spin ne sera pas prise en considération. On suppose que le noyau est fixe avec une masse infinie. Cette approximation est justifiée par le fait que la masse du proton est environ 2000 fois celle de l'électron. Le système d'unités considerées est le système d'unités atomiques ($\hbar = e = m = 1$). L'expression de l'opérateur hamiltonien devient:

$$H = - \frac{\Delta_{1}}{2} - \frac{\Delta_{2}}{2} - \frac{Z}{r_{1}} - \frac{Z}{r_{2}} + \frac{1}{r_{12}} (1.19)$$

où Z est la charge nucléaire et ri est la distance de l'électron i au noyau.

L'équation (1.14) est difficile à résoudre car les variables ne se séparent pas. Aucune solution analytique n'a encore été trouvée. La difficulté est due à la présence de la variable r_{12} qui se trouve dans l'expression de V.

•

<u>Figure 2</u>: Atome à deux électrons. Le noyau est pris comme centre du référentiel.

Désignons par \overrightarrow{L} l'opérateur du moment cinétique orbital, $\overrightarrow{L} = \overrightarrow{L}_1 + \overrightarrow{L}_2$, et par L_z sa projection suivant oz. L₁ est l'opérateur du moment cinétique de l'électron i.

$$L_{z} \Phi = -i \left(\frac{\partial \Phi}{\partial \mu_{1}} + \frac{\partial \Phi}{\partial \mu_{2}} \right) = 1 \Phi \qquad (1.20)$$

où l est la valeur propre de L_Z correspondant à la fonction propre $\Phi^{(13)}$, P^{174}). Pour l'état fondamental (l = 0), l'application de L_Z sur une fonction d'onde donne zéro, ce qui implique que la fonction d'onde ne dépend pas de Ψ_4 et Ψ_2 séparément mais de ($\Psi_4 - \Psi_2$). Elle dépend de l'angle entre r₁ et r₂ mais pas de l'orientation de chaque angle (fig. 3). En appliquant le même raisonnement pour les autres directions on conclut que la fonction d'onde d'un atome à deux électrons dans l'état fondamental dépend de la position relative des deux électrons mais ne dépend pas de l'orietation du système entier:

$$\Phi \equiv \Phi(r_1, r_2, r_{12}) \tag{1.21}$$

En vertu du principe de Pauli la fonction d'onde (1.3) doit être antisymétrique par rapport à toute permutation des électrons. Lorsque l'atome est dans l'état fondamental les composantes de spin des deux électrons sur un axe oz sont opposées (principe d'exclusion de Pauli), la valeur propre de S², S désignant le spin total, est nulle et par conséquent celle de S_z l'est également. Or à S = O lui correspond la fonction d'onde dépendant du spin antisymétrique^(14, p120). Donc, pour

Figure 3: Atome à deux électrons représenté dans le système de coordonnées r, θ et γ .

.

que (1.3) soit antisymétrique, la partie de la fonction d'onde dépendant des variables de position doit être symétrique:

$$\Phi = \Phi(r_1, r_2, r_{12}) = \Phi(r_2, r_1, r_{12}) \qquad (1.22)$$

I.3 CHOIX DU SYSTEME DE COORDONNEES

Notons l'importance du choix du système de coordonnées. Il est directement lié au choix de la fonction d'onde et à la nature des intégrales à évaluer. Tenant compte de (1.21), il est utile de passer du système de coordonnées cartésiennes au système de coordonnées interparticulaires:(r₁,r₂,r₁₂) L'expression de l'hamiltonien devient:⁽⁴⁾

$$H = -\frac{1}{2} \left[\frac{\partial^{2}}{\partial r_{1}^{2}} + \frac{2}{r_{1}} \frac{\partial}{\partial r_{1}} \right] - \frac{1}{2} \left[\frac{\partial^{2}}{\partial r_{2}^{2}} + \frac{2}{r_{2}} \frac{\partial}{\partial r_{2}} \right] - \left[\frac{1}{2} \left[\frac{\partial^{2}}{\partial r_{2}^{2}} + \frac{2}{r_{2}} \frac{\partial}{\partial r_{2}} \right] \right] - \left[\frac{1}{2} \left[\frac{\partial^{2}}{\partial r_{2}^{2}} + \frac{2}{r_{2}} \frac{\partial}{\partial r_{2}} \right] \right] - \left[\frac{1}{2} \left[\frac{\partial^{2}}{\partial r_{2}^{2}} + \frac{2}{r_{2}} \frac{\partial}{\partial r_{2}} \right] \right] \frac{\partial^{2}}{\partial r_{1} \partial r_{2}} - \left[\frac{r_{2}^{2} + r_{12}^{2} - r_{1}^{2}}{2r_{2}r_{12}} \right] \frac{\partial^{2}}{\partial r_{1} \partial r_{2}} - \frac{2}{r_{2}} - \frac{2}{r_{1}} - \frac{2}{r_{2}} + \frac{1}{r_{12}} \right] \frac{\partial^{2}}{\partial r_{1} \partial r_{2}}$$

$$(1.23)$$

Les coordonnées r_1 , r_z et r_{1z} sont reliées par la relation triangulaire:

$$0 \leq |r_1 - r_2| \leq r_{12} \leq r_1 + r_2$$
 (1.24)

D'où le domaine de définitions:

$$r_{1} - r_{2} \leq r_{12} \leq r_{1} + r_{2}$$

$$0 \leq r_{2} \leq r_{1} < \infty$$

$$0 \leq r_{1} < \infty$$

$$(1.25)$$

et

L'élément de volume d'un tel système est donné par: (15, p1737) $d\tau = 8\pi^2 r_{12} r_{12} r_{12} dr_{12} dr_{12} dr_{12}$ (1.27)

Cependant si on considère le système de coordonnées:

$$x = r_{1} + r_{2} - r_{12}$$

$$t = r_{1} - r_{2}$$

$$u = r_{12}$$
(1.28)

dont le domaine de définition s'obtient de la relation (1.24) on voit que l'inégalité (1.24) est équivalente à:

$$|r_{1} - r_{2}| - r_{1} \leq 0 \leq r_{1} + r_{2} - r_{2}$$
 (1.29)

soit

$$|r_{1} - r_{2}| \leq r_{12}$$

 $0 \leq r_{1} + r_{2} - r_{12} < \infty$ (1.30)
 $0 \leq r_{12} < \infty$

Ce système présente l'avantage par rapport au système de coordonnées interparticulaires du fait que les domaines de définition de x et u sont indépendants l'un de l'autre.

$$0 \leq x < \infty$$
, $0 \leq u < \infty$ et $-u \leq t \leq u$ (1.31)

L'élément de volume d τ 's'obtient de d τ par la relation:

$$d\tau' = d\tau J^{-1}$$
 (1.32)

.

où J est le jacobien de la transformation:

$$J^{-1} = \begin{bmatrix} \frac{\partial r_{1}}{\partial x} & \frac{\partial r_{1}}{\partial t} & \frac{\partial r_{1}}{\partial u} \\ \frac{\partial r_{2}}{\partial x} & \frac{\partial r_{2}}{\partial t} & \frac{\partial r_{2}}{\partial u} \\ \frac{\partial r_{12}}{\partial x} & \frac{\partial r_{12}}{\partial t} & \frac{\partial r_{12}}{\partial u} \end{bmatrix}$$
(1.33)

En portant (1.33) dans (1.32), il vient:

$$d\tau' = 8\pi^{2} - \frac{u(x + u + t)(x + u - t)}{2} - \frac{1}{2} - \frac{dxdtdu}{2}$$

Soit

$$d\tau' = \pi^2 [(x + u)^2 - t^2] u dx dt du$$
 (1.34)

CHAPITRE II

METHODE DE CALCUL

Nous exposons dans ce chapitre le principe de la méthode variationnelle. Nous montrons que la résolution de l'équation de Schrödinger est équivalente à un calcul d'extremum, et que ce principe s'applique à la détermination de l'énergie du niveau fondamental et des états excités.

II.1 EQUIVALENCE ENTRE L'EQUATION DE SCHRODINGER ET LE PRIN-CIPE VARIATIONNEL

Montrons que la résolution de l'équation de Schrödinger:

est équivalente à la recherche des extrema de la quantité

$$I = \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle} = \frac{\int \Phi^* H \Phi d\tau}{\int \Phi^* \Phi d\tau}$$
(2.2)

Considérons une variation arbitraire $\delta\Phi$ de Φ .

Donc, l'équation (2.3) s'écrit:

.

$$\delta I = \frac{\langle \Phi | \Phi \rangle \langle \delta \Phi | H | \Phi \rangle + \langle \Phi | H | \delta \Phi \rangle - \langle \Phi | H | \Phi \rangle \left[\langle \delta \Phi | \Phi \rangle + \langle \Phi | \delta \Phi \rangle \right]}{\langle \Phi | \Phi \rangle^2} = 0$$
(2.3)

Donc, l'équation (2.3) est équivalente à:

$$\frac{\langle \overline{\Phi} | \overline{\Phi} \rangle}{\langle \overline{\Phi} | \overline{\Phi} \rangle + \langle \overline{\Phi} | H | \overline{\Psi} \overline{\Phi} \rangle} - \frac{\langle \overline{\Phi} | \overline{\Phi} \rangle}{\langle \overline{\Phi} | \overline{\Phi} \rangle} \left[\frac{\langle \overline{\Phi} | \overline{\Phi} \rangle}{\langle \overline{\Phi} | \overline{\Phi} \rangle + \langle \overline{\Phi} | \overline{\Psi} \overline{\Phi} \rangle} \right] = 0 \quad (5.4)$$

Utilisant (2.2), il vient:

(2.5) peut aussi s'écrire:

$$\langle S\Phi | H-I | \Phi \rangle + \langle \Phi | H-I | S\Phi \rangle = 0$$
 (2.6)

La variation $\delta\Phi$ étant arbitraire, on peut la remplacer par i $\delta\Phi$.

(2.6) devient:

$$-i\langle\delta\Phi|H-I|\Phi\rangle + i\langle\Phi|H-I|\delta\Phi\rangle = 0 \qquad (2.7)$$

(2.6) + i(2.7) donne:

$$2\langle S\Phi | H-I | \Phi \rangle = 0$$
 (2.8)

et (2.6) - i(2.7) donne:

$$2\langle \Phi | H-I | \delta \Phi \rangle = 0 \tag{2.9}$$

(2.8) et (2.9) sont équivalentes à:

 $\langle \delta \Phi | H - I | \Phi \rangle = 0 \tag{2.10}$

$$\langle \Phi | H-I | \delta \Phi \rangle = 0 \tag{2.11}$$

H étant hermitique,

$$\langle \Phi | H-I | \delta \Phi \rangle = \langle \delta \Phi | H-I | \Phi \rangle^{*}$$
(2.12)

Ainsi les relations (2.10) et (2.11) sont équivalentes, on peut

garder simplement la première.

Donc, l'équation (2.3) s'écrit:

$$\langle \delta \Phi | H - I | \Phi \rangle = \int \delta \Phi^* (H - I) \Phi d\tau = 0$$
 (2.13)

Pour que δI soit zéro quel que soit $\delta \Phi$ il faut et il suffit que:

$$(H-I)\Phi = 0$$
 (2.14)

La solution de l'équation de Schrödinger est donc équivalente à la recherche des extrema de I.

II.2 ETAT FONDAMENTAL

Soit à résoudre l'équation aux valeurs propres:

où H est l'opérateur hamiltonien ne dépendant pas du temps qui décrit le système physique considéré, Φ une fonction propre à laquelle on associe $|\Phi\rangle$, un vecteur normalisable de l'espace de Hilbert correspondant à la valeur propre E de l'énergie.

En général, l'équation (2.15) est difficile à résoudre et il y a très peu de cas où elle peut être résolue exactement. Dans la majorité des cas on a recours à des méthodes approximatives⁽¹⁶⁾. Alors, la méthode variationnelle est principalement utilisée pour trouver une borne supérieure à l'énergie du niveau fondamental. Parmi toutes les fonctions d'onde susceptibles de représenter le système physique d'hamiltonien H, on considère les fonctions $\Phi(\mu_1, \mu_2, \dots, \mu_p)$ normalisables dépendant d'un certain nombre de paramètres indépendants et ajustables. Soient $|u_n\rangle$ les états normalisés de H et correspondant aux valeurs propres E_n . Puisque les $|u_n\rangle$ forment un système complet de vecteurs, $|\Phi\rangle$ peut être écrit comme une combinaison linéaire des états $|u_n\rangle$.

$$|\Phi\rangle = \Sigma_{n}C_{n}(\mu_{1},\mu_{2},\ldots,\mu_{p})|u_{n}\rangle$$
(2.16)

où C_n est tel que $|C_n|^2$ est la probabilité de trouver le système dans l'état $|u_n\rangle$.

La valeur moyenne, $\langle H \rangle_{e}$, de H dans l'état $|\Phi\rangle$ est:

$$\langle H \rangle_{\infty} = \frac{\int \Phi^{*} H \Phi d\tau}{\int \Phi^{*} \Phi d\tau} = \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle}$$
 (2.17)

L'indice $_{\infty}$ dans $\langle H \rangle_{\infty}$ indique que la forme de la fonction $\langle H \rangle_{\infty}$ varie avec les différents Φ possibles.

En portant (2.16) dans (2.17), il vient:

$$\langle H \rangle_{\infty} = \frac{\sum_{\lambda} C_{\lambda}^{*} \langle u_{\lambda} | H | \Sigma_{\lambda} C_{\lambda} u_{\lambda} \rangle}{\sum_{\lambda} C_{\lambda}^{*} \langle u_{\lambda} | \Sigma_{\lambda} C_{\lambda} u_{\lambda} \rangle}$$
$$= \frac{\sum_{\lambda \downarrow} C_{\lambda}^{*} C_{\lambda} \langle u_{\lambda} | H | u_{\lambda} \rangle}{\sum_{\lambda \downarrow} C_{\lambda}^{*} C_{\lambda} \langle u_{\lambda} | u_{\lambda} \rangle}$$
(2.18)

Les $|u_n\rangle$ étant les vecteurs propres de H, on a:

$$H|u_{3}\rangle = E_{3}|u_{3}\rangle \tag{2.19}$$

La condition d'orthonormalité donne

$$\langle u_{1} | u_{3} \rangle = \delta_{1,3}$$

$$(2.20)$$

$$ou \quad \delta_{1,3} = \begin{cases} 1 & i=j \\ 0 & i\neq j \end{cases}$$

Donc, (2.18) s'écrit:

.

$$\langle H \rangle_{\infty} = \frac{\sum_{i,j} C_{\lambda} C_{j} E_{j} \delta_{\lambda,j}}{\sum_{i,j} C_{\lambda} C_{j} \delta_{\lambda,j}} = \frac{\sum_{\lambda} |C_{\lambda}|^{2} E_{\lambda}}{\sum_{\lambda} |C_{\lambda}|^{2}}$$
(2.21)

En appelant E_{\circ} le niveau fondamental, on a:

$$E_{o} \leq E_{n}$$
 (2.22)

$$où n = 0, 1, 2, \ldots$$

Donc, en remplaçant dans (2.21) E_1 par E_0 et tenant compte de (2.22), il vient:

$$\frac{\left(\Sigma_{\lambda}|C_{\lambda}|^{2}\right)E_{\circ}}{\left(\Sigma_{\lambda}|C_{\lambda}|^{2}\right)} \leq \frac{\Sigma_{\lambda}|C_{\lambda}|^{2}E_{\lambda}}{\Sigma_{\lambda}|C_{\lambda}|^{2}}$$
(2.23)

En simplifiant l'expression du premier membre de l'équation (2.23), il vient:

$$E_{0} \leq \frac{\sum_{i} |C_{i}|^{2} E_{i}}{\sum_{i} |C_{i}|^{2}}$$
(2.24)

En comparant (2.24) et (2.21), il vient:

$$E_o \leq \langle H \rangle_{a}$$
 (2.25)

Donc pour chaque $\Phi(\mu_1,\mu_2,\ldots,\mu_p)$ et pour toute valeur de μ_1,μ_2,\ldots,μ_p la valeur moyenne $\langle H \rangle_{\Phi}$ dans l'état $\Phi \rangle$ est une borne supérieure de l'énergie de l'état fondamental E₀. En particulier si les μ_1,μ_2,\ldots,μ_p sont choisis de façon à rendre $\langle H \rangle_{\Phi}$ minimale, c'est-à-dire satisfaisant aux relations:

$$\frac{\partial \langle H \rangle_{\infty}}{\partial \mu_{1}} = 0$$

$$\frac{\partial \langle H \rangle_{\infty}}{\partial \mu_{2}} = 0$$

$$\frac{\partial \langle H \rangle_{\infty}}{\partial \mu_{2}} = 0$$
(2.26)

on aura:

$$E_{o} \leq \langle H \rangle_{gmin} \leq \langle H \rangle_{g}$$
 (2.27)

 $\mu_1', \mu_2', \ldots, \mu_p'$ sont les valeurs particulières de $\mu_1, \mu_2, \ldots, \mu_p$ qui rendent $\langle H \rangle_{\infty}$ minimale, pour une fonction d'onde donnée. La valeur $\langle H \rangle_{\infty}$ sera d'autant plus près du niveau fondamental E_o qu'on aura choisi pour Φ , une fonction plus voisine de l'état propre Φ_o correspondant à la valeur propre E_o.

II.3 ETATS EXCITES

Les énergies des états excités peuvent être calculées pourvu que la fonction d'onde & choisie soit orthogonale aux fonctions propres des énergies plus basses. Désignons par $E_{\circ}, E_{1}, E_{2}, \ldots, E_{n}$ les valeurs propres ordonnées correspondant aux vecteurs propres $|u_{\circ}\rangle, |u_{1}\rangle, |u_{2}\rangle, \ldots, |u_{n}\rangle$, orthonormaux de H, c'est-à-dire, posons

$$E_0 \leq E_1 \leq E_2 \leq \dots \leq E_n \tag{2.29}$$

où E_o est l'énergie du niveau fondamental. Puisque les $|u_n\rangle$ forment un système complet dans l'espace de Hilbert, Φ peut être exprimée comme une combinaison linéaire des $|u_n\rangle$:

$$\Phi > = \Sigma_{na_n} |u_n >$$
 (2.30)

et
$$\langle \Phi | = \Sigma_{n} a_{n}^{*} \langle u_{n} |$$
 (2.31)

Si on désigne l'état excité par j , $|\Phi\rangle$ sera orthogonale à tous les $|u_n\rangle$ pour n = 1,2,...j-1, c'est-à-dire:

$$a_n = 0$$
 pour $n = 1, 2, ..., j-1$ (2.32)

$$avec \quad a_n = \langle u_n | \Phi \rangle = \int u'_n \Phi d\tau \qquad (2.33)$$

et
$$a_n^* = \langle \Phi | u_n \rangle = \int \Phi^* u_n d\tau$$
 (2.34)

Si on ne connait pas les formes exactes des fonctions d'onde des niveaux plus bas, on prend des solutions approchées (calculées par la methode variationnelle, par exemple).

Montrons que la valeur moyenne $\langle H \rangle_{\infty}$, de l'hamiltonien dans l'état Φ constitue une borne supérieure à l'énergie de l'état excité considéré. Pour des raisons de simplicité on suppose & normée. Alors la valeur moyenne <H>æ s'écrit:

$$\langle H \rangle_{\infty} = \langle \Phi | H | \Phi \rangle = \int \Phi^* H \Phi d\tau$$
 (2.35)

Considérons le terme $\langle \Phi | H | \Phi \rangle - E_3$:

$$\langle \Phi | H | \Phi \rangle - E_{3} = \langle \Phi | H | \Phi \rangle - \langle \Phi | E_{3} | \Phi \rangle$$

= $\langle \Phi | H - E_{3} | \Phi \rangle$ (2.36)

En substituant (2.30) et (2.31) dans (2.36), il vient:

$$\langle \Phi | H | \Phi \rangle - E_{3} = \sum_{n,n'} a_{n'an}^{*} \langle u_{n'} | H - E_{3} | u_{n} \rangle$$
 (2.37)

Les $|u_n\rangle$ étant des vecteurs propres de H,

$$H|u_{n}\rangle = E_{n}|u_{n}\rangle \tag{2.38}$$

En portant (2.38) dans (2.37), il vient:

$$\langle \Phi | H | \Phi \rangle - E_{3} = \sum_{n,n'} *_{n'a_{n}} (E_{n} - E_{3}) \langle u_{n'} | u_{n} \rangle$$
 (2.39)

Les |un> sont orthonormaux:

$$\langle u_n | u_n \rangle = \delta_{n,n'}$$
 (2.40)

avec $\delta_{n,n'} = \begin{cases} 1 \text{ si } n=n' \\ 0 \text{ si } n\neq n' \end{cases}$

alors, (2.39) devient:

$$\langle \Phi | H | \Phi \rangle - E_{3} = \sum_{n|a_{n}|^{2}} (E_{n} - E_{3})$$
 (2.41)
= $\sum_{n=1}^{j-1} |a_{n}|^{2} (E_{n} - E_{3}) + \sum_{n=j}^{j-1} |a_{n}|^{2} (E_{n} - E_{3})$

or d'après (2.32), $a_n = 0$ pour n = 1, 2, ..., j-1

donc, (2.41) devient:

$$\langle \Phi | H | \Phi \rangle - E_{3} = \sum_{n \leq j} |a_{n}|^{2} (E_{n} - E_{3})$$
 (2.42)

d'après (2.29), il vient:

 $\langle \Phi | H | \Phi \rangle - E_3 \ge 0$

Soit
$$\langle \Phi | H | \Phi \rangle \ge E_3$$
 (2.43)

La condition supplémentaire pour le choix de la fonction d'onde des états excités rend l'application d'une telle méthode aux états excités assez difficile à moins que les fonctions d'onde approchées pour les états de basses énergies ne contiennent pas beaucoup de termes et fournissent des résultats précis. Car la condition sur les fonctions d'onde des états excités est qu'elles soient orthogonales aux fonctions d'onde des états de basses énergies. Donc plus les fonctions d'onde des états de basses énergies sont simples plus on a des facilités pour construire des fonctions orthogonales à celles-ci. A cela il faut ajouter d'autres paramètres physiques dont il faut tenir compte, tel que la corrélation entre électrons et l'effet d'écran causé par le fait que les électrons sont plus ou moins proches du noyau. En somme, les calculs seraient plus compliqués '14' que dans le cas que nous traitons. D'ailleurs, ce problème est en dehors de notre travail.

25

CHAPITRE III

CALCUL VARIATIONNEL

III.1 CHOIX DE LA FONCTION D'ONDE

Pour le choix de la fonction d'onde, on se guide par l'intuition physique ou bien on utilise les indications fournies par d'autres approches^(0,9,10).

Les nombreux auteurs^{(0,7,10}'qui ont considéré le problème de l'état fondamental des atomes à deux électrons ont conS²⁴, truit des fonctions d'ondes à partir du modèle (17, p24)

$$\Phi_{0}(r_{1}, r_{2}) = (\alpha^{3}/\pi a_{0}) \exp\{-\alpha(r_{1}+r_{2})/a_{0}\}$$
(3.1)

Dans ce modèle, on suppose que les électrons se déplacent indépendamment l'un de l'autre dans le champ du noyau. α est un paramètre variationnel, r, et r₂ sont les distances respectives des deux électrons au noyau et a₀ = \hbar^2/me^2 est le rayon de Bohr. La contribution du spin n'est pas considérée ici. Le paramètre α est interprété comme étant une charge effective vue par chaque électron en présence de l'autre. α doit être inférieur à la charge réelle Z, car chaque électron en présence de l'autre est empêché de voir la charge complète du noyau. Puisque l'interaction coulombienne joue un rôle important dans le comportement des atomes à deux électrons, la fonction d'onde doit dépendre de la distance r_{12} entre les deux électrons et le choix de cette dépendance doit être judicieux. Si on désigne par $f(r_{12})$ la partie de la fonction d'onde dépendant de r_{12} , alors $f(r_{12})$ doit croître avec r_{12} car lorsque les deux électrons s'éloignent l'un de l'autre, le plus proche du noyau constitue un effet d'écran par rapport au second. En introduisant la dépendance en r_{12} , nous tenons compte explicitement de la répulsion électron-électron.

On s'est inspiré des travaux de Srivastava⁽¹⁰⁾ et Mu-Shiang⁽¹⁷⁾ pour le choix de f(r₁₂). Le premier auteur a proposé que f(r₁₂) soit proportionnelle à $exp(r_{12})$ et le second à proposé que cette fonction soit proportionnelle à r₁₂. Le résultat du second est meilleur que celui du premier car r₁₂ croît moins vite que $exp(r_{12})$ et la fonction d'onde originale ne se trouve pas trop modifiée pour un r₁₂ assez grand. Dans notre modèle on choisit:

$$f(r_{12}) \equiv \ln(r_{12} + e)$$
 (3.2)

Cette fonction a pratiquement le même comportement que les deux fonctions précédentes pour r_{12} faible mais croît beaucoup moins vite pour r_{12} assez grand et par conséquent elle représente mieux le fait que lorsque les deux électrons sont éloignés, ils interagissent faiblement. La figure 4 illustre ces relations.

e est la base du logarithme népérien (e = 2.71828..); il est introduit afin que:

27
$$f(r_{1e}) \equiv 1$$
 (3.3)
 $r_{1e} = 0$

c'est-à-dire qu'il n'y aura pas de corrélation. Finalement on utilise la fonction d'onde suivante:

$$\Phi(r_1, r_2, r_{12}) = \{\ln(r_1, e^+, e) + c(r_1 - r_2)^2\} \exp\{-s(r_1 + r_2)\}$$
(3.4)

où s et c sont deux paramètres variables qu'il faut déterminer et l'exposant 2 de (r_1-r_2) est introduit pour raison de symétrie car Φ doit être symétrique en r_1 et r_2 dans le cas de l'état fondamental (chap. I, p12). Le paramètre s indique l'effet d'écran que cause l'électron proche du noyau à celui qui est loin. Le paramètre c conditionne la dépendance de la fonction d'onde de la variable (r_1-r_2) . On devrait s'attendre à une valeur faible de c car la fonction d'onde dépend plus de r_{12} que de (r_1-r_2) .

On voit que pour $r_{12} = 0$, et $r_1 = r_2$:

$$\Phi = \exp(-s(r_1 + r_2))$$
(3.5)
$$r_{12} = 0$$

On retrouve la fonction d'onde sans corrélation (3.1).

œ

et
$$\lim \Phi = 0$$

 $(r_1 + r_2) \longrightarrow$

Car

 $\lim \exp\{-s(r_1+r_2)\} = 0$ $(r_1 + r_2) \longrightarrow \infty$

28

Figure 4: Comparaison des fonctions de corrélation.

et d'après la relation triangulaire:

Donc, r_1+r_2 constitue une borne supérieure à $|r_1-r_2|$ et à r_{12} .

III.2 DETERMINATION DE L'ENERGIE DU NIVEAU FONDAMENTAL

Nous avons montré (chap. II) que la résolution de l'équation aux valeurs propres:

.

$$H\Phi = E\Phi \qquad (3.6)$$

revient à minimiser l'expression:

$$I = \frac{\int \Phi^* H \Phi d\tau}{\int \Phi^* \Phi d\tau}$$
(3.7)

Dans notre cas, Φ étant réelle, (3.7) s'écrit:

$$I = \frac{\int \Phi H \Phi d\tau}{\int \Phi^2 d\tau}$$
(3.8)

où H est l'hamiltonien du système:

$$H = -\frac{\Delta_1}{2} - \frac{\Delta_2}{2} + V \tag{3.9}$$

En portant (3.9) dans (3.8), il vient:

$$I = \frac{-\frac{2}{2}\int \Phi \bigtriangleup_{1} \Phi d\tau -\frac{2}{2}\int \Phi \bigtriangleup_{2} \Phi d\tau + \int \Phi \nabla \Phi d\tau}{\int \Phi^{2} d\tau}$$
(3.10)

L'intégrale contenant l'opérateur laplacien \triangle peut être

écrite en utilisant le théorème de Green^(14, p147)

$$-\int \Phi \bigtriangleup_{\star} \Phi d\tau = + \int (\bigtriangledown_{\star} \Phi)^2 d\tau \qquad (3.11)$$

où i est relatif à l'électron i, ainsi, l'expression (3.10) devient:

$$I = \frac{\int \left[\frac{1}{2} \left[\left(\nabla_{\pm} \Phi \right)^{2} + \left(\nabla_{\Xi} \Phi \right)^{2} \right] + \Phi \nabla \Phi \right] d\tau}{\int \Phi^{2} d\tau}$$
(3.12)

Utilisant le système de coordonnées (x,t,u):

$$x = r_1 + r_2 - r_{12}$$

 $t = r_1 - r_2$ (3.13)
 $u = r_{12}$

l'équation (3.8) prend la forme:

$$I = \int_{N}^{1} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{u} \int_{0}^{u} \int_{0}^{u} \left[(x + u)^{2} - t^{2} \right] \left[\left(\frac{\nabla_{1} \Phi}{2} \right)^{2} + \left(\frac{\nabla_{2} \Phi}{2} \right)^{2} + \Phi \nabla \Phi \right]$$
(3.14)

$$a\dot{u} N = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{u} \left[(x + u)^{2} - t^{2} \right] \Phi^{2}$$
(3.15)

Pour l'intégration sur t on s'est limité seulement aux valeurs positives de t et nous avons multiplié l'élément de volume par 2, car la fonction d'onde et l'hamiltonien sont symétriques en t et la contribution à l'intégrale de -t et de +t est la même. Pour pouvoir exprimer explicitement $(\nabla_1 \Phi)^2 + (\nabla_E \Phi)^2$ en fonction de x, t et u, nous l'exprimons d'abord en fonction de r₁, r_E et r₁₂.

$$\nabla_{1} \Phi = \begin{bmatrix} \frac{\partial \Phi}{\partial \times 1} \\ \frac{\partial \Phi}{\partial \times 1} \\ \frac{\partial \Phi}{\partial Y_{1}} \\ \frac{\partial \Phi}{\partial Z_{1}} \end{bmatrix} = \begin{bmatrix} \frac{\partial \Phi}{\partial \Gamma_{1}} & \frac{\partial \Gamma_{1}}{\partial \times 1} + \frac{\partial \Phi}{\partial \Gamma_{12}} & \frac{\partial \Gamma_{12}}{\partial \times 1} \\ \frac{\partial \Phi}{\partial \Gamma_{1}} & \frac{\Gamma_{1}}{Y_{1}} + \frac{\partial \Phi}{\partial \Gamma_{12}} & \frac{\partial \Gamma_{12}}{\partial Y_{1}} \\ \frac{\partial \Phi}{\partial \Gamma_{1}} & \frac{\Gamma_{1}}{Z_{1}} + \frac{\partial \Phi}{\partial \Gamma_{12}} & \frac{\partial \Gamma_{12}}{\partial Z_{1}} \end{bmatrix}$$
(3.16)

$$\vec{\Gamma}_{1} = \begin{pmatrix} x_{1} \\ y_{1} \\ z_{1} \end{pmatrix}; \quad \vec{\Gamma}_{1E} = \begin{pmatrix} x_{E} - x_{1} \\ y_{E} - y_{1} \\ z_{E} - z_{1} \end{pmatrix}$$
(3.17)

$$r_{1} = \sqrt{x_{1}^{2} + y_{1}^{2} + z_{1}^{2}}$$
(3.18)

$$r_{12} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
(3.17)

$$\nabla_{1} \Phi = \begin{bmatrix} \frac{\partial \Phi}{\partial \Gamma_{1}} & \frac{x_{1}}{\Gamma_{1}} - \frac{\partial \Phi}{\partial \Gamma_{12}} & \frac{(x_{2} - x_{1})}{\Gamma_{12}} \\ \frac{\partial \Phi}{\partial \Gamma_{1}} & \frac{y_{1}}{\Gamma_{1}} - \frac{\partial \Phi}{\partial \Gamma_{12}} & \frac{(y_{2} - y_{1})}{\Gamma_{12}} \\ \frac{\partial \Phi}{\partial \Gamma_{1}} & \frac{z_{1}}{\Gamma_{1}} - \frac{\partial \Phi}{\partial \Gamma_{12}} & \frac{(z_{2} - z_{1})}{\Gamma_{12}} \end{bmatrix}$$
(3.20)

$$\nabla_{1} \Phi = \stackrel{\wedge}{\Gamma_{1}} \frac{\partial \Phi}{\partial \Gamma_{1}} - \stackrel{\wedge}{\Gamma_{1E}} \frac{\partial \Phi}{\partial \Gamma_{1E}}$$
(3.21)

où \vec{r}_1 et \vec{r}_{12} sont des vecteurs unitaires de directions respectives suivant \vec{r}_1 et \vec{r}_2 .

$$\hat{\Gamma}_{1} = \begin{pmatrix} \frac{X_{1}}{\Gamma_{1}} \\ \frac{Y_{1}}{\Gamma_{1}} \\ \frac{Z_{1}}{\Gamma_{1}} \end{pmatrix}; \quad \hat{\Gamma}_{12} = \begin{pmatrix} \frac{X_{2} - X_{1}}{\Gamma_{12}} \\ \frac{Y_{2} - Y_{1}}{\Gamma_{12}} \\ \frac{Z_{2} - Z_{1}}{\Gamma_{12}} \end{pmatrix}$$
(3.22)

De (3.21) on obtient:

$$(\nabla_{1}\Phi)^{2} = \left(\frac{\partial\Phi}{\partial r_{1}}\right)^{2} + \left(\frac{\partial\Phi}{\partial r_{1e}}\right)^{2} - 2\hat{r}_{1}\hat{r}_{1e}\frac{\partial\Phi}{\partial r_{1}}\frac{\partial\Phi}{\partial r_{1}}\frac{\partial\Phi}{\partial r_{1e}}$$
(3.23)

$$\hat{\Gamma}_{1}, \hat{\Gamma}_{12} = \frac{x_{1}(x_{2} - x_{1}) + y_{1}(y_{2} - y_{1}) + z_{1}(z_{2} - z_{1})}{\Gamma_{1}\Gamma_{12}}$$

$$= \frac{1}{r_{1}r_{12}} \left[x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2} - (x_{1}^{2} + y_{1}^{2} + z_{1}^{2}) \right]$$
(3.24)

Utilisant les relations:

$$x_{1}x_{2} = -\frac{1}{2} \left[(x_{2} - x_{1})^{2} - x_{1}^{2} - x_{2}^{2} \right]$$

$$y_{1}y_{2} = -\frac{1}{2} \left[(y_{2} - y_{1})^{2} - y_{1}^{2} - y_{2}^{2} \right]$$

$$z_{1}z_{2} = -\frac{1}{2} \left[(z_{2} - z_{1})^{2} - z_{1}^{2} - z_{2}^{2} \right]$$
(3.25)

(3.24) s'écrit:

$$\bigwedge_{r_1 r_{12}}^{n} = \frac{1}{r_1 r_{12}} \left\{ -\frac{1}{2} \left[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 \right] \right\}$$

.

$$+ \frac{1}{2} \left(\frac{z^{2}}{x_{1}} + y^{2}_{1} + z^{2}_{1} \right) + \frac{1}{2} \left(\frac{z^{2}}{x_{2}} + y^{2}_{2} + z^{2}_{2} \right) - \left(\frac{z^{2}}{x_{1}} + y^{2}_{1} + z^{2}_{1} \right) \right\}$$
(3.26)

en utilisant (3.18) et (3.19), (3.26) devient:

$$\bigwedge_{r_1r_1e}^{\Lambda} = \frac{r_e^{\lambda} - r_1^{\lambda} - r_{1e}^{\lambda}}{2r_1r_{1e}}$$
(3.27)

En portant (3.27) dans (3.23), il vient:

$$(\nabla_{1}\Phi)^{2} = \left(\frac{\partial\Phi}{\partial r_{1}}\right)^{2} + \left(\frac{\partial\Phi}{\partial r_{1}e}\right)^{2} + \frac{r_{1}^{2} + r_{1e}^{2} - r_{e}^{2}}{r_{1}r_{1e}} \frac{\partial\Phi}{\partial r_{1}} \frac{\partial\Phi}{\partial r_{1e}}$$
(3.28)

De la même manière on calcule:

$$(\nabla_{z}\Phi)^{2} = \left(\frac{\partial\Phi}{\partial r_{z}}\right)^{2} + \left(\frac{\partial\Phi}{\partial r_{1z}}\right)^{2} + \frac{r_{z}^{2} + r_{1z}^{2} - r_{1}^{2}}{r_{1}r_{1z}} \frac{\partial\Phi}{\partial r_{z}} \frac{\partial\Phi}{\partial r_{1z}}$$
(3.29)

(3.28) + (3.29) donne:

$$(\nabla_{1}\Phi)^{2} + (\nabla_{E}\Phi)^{2} = \left(\frac{\Im\Phi}{\Imr_{1}}\right)^{2} + \left(\frac{\Im\Phi}{\Imr_{E}}\right)^{2} + 2\left(\frac{\Im\Phi}{\Imr_{1E}}\right)^{2}$$
$$+ \frac{r_{1}^{2} + r_{1E}^{2} - r_{E}^{2}}{r_{1}r_{1E}} \frac{\Im\Phi}{\Imr_{1}} \frac{\Im\Phi}{\Imr_{1E}} + \frac{r_{E}^{2} + r_{1E}^{2} - r_{1}^{2}}{r_{E}r_{1E}} \frac{\Im\Phi}{\Imr_{E}} \frac{\Im\Phi}{\Imr_{E}} (3.30)$$

De (3.30) nous pouvons exprimer $(\nabla_1 \Phi)^2 + (\nabla_2 \Phi)^2$ dans le système de coordonnées (x,t,u):

$$\frac{\partial \Phi}{\partial r_{1}} = \frac{\partial \Phi}{\partial x} \frac{\partial x}{\partial r_{1}} + \frac{\partial \Phi}{\partial t} \frac{\partial t}{\partial r_{1}} + \frac{\partial \Phi}{\partial u} \frac{\partial u}{\partial r_{1}}$$
$$= \frac{\partial \Phi}{\partial x} + \frac{\partial \Phi}{\partial t}$$
(3.31)

$$\frac{\partial \Phi}{\partial r_{E}} = \frac{\partial \Phi}{\partial x} \frac{\partial x}{\partial r_{E}} + \frac{\partial \Phi}{\partial t} \frac{\partial t}{\partial r_{E}} + \frac{\partial \Phi}{\partial u} \frac{\partial u}{\partial r_{E}}$$
$$= \frac{\partial \Phi}{\partial x} - \frac{\partial \Phi}{\partial t} \qquad (3.32)$$

$$\frac{\partial \Phi}{\partial r_{12}} = \frac{\partial \Phi}{\partial x} \frac{\partial x}{\partial r_{12}} + \frac{\partial \Phi}{\partial t} \frac{\partial t}{\partial r_{12}} + \frac{\partial \Phi}{\partial u} \frac{\partial u}{\partial r_{12}}$$

$$= -\frac{2\Phi}{2\times} + \frac{2\Phi}{2}$$

.

En remplaçant r_1 , r_2 et r_{12} en fonction de x, t et u on trouve:

$$\frac{r_{1}^{2} + r_{12}^{2} - r_{2}^{2}}{r_{1}r_{12}} = 2 \left[\frac{(x + u)t + u^{2}}{u(x + u + t)} \right]$$
(3.33)

.

$$\frac{r_{e} + r_{1e} - r_{1}}{r_{1}r_{1e}} = 2 \left[\frac{-(x + u)t + u^{2}}{u(x + u - t)} \right]$$
(3.34)

Ainsi, (3.30) devient:

$$(\nabla_{\mu}\Phi)^{2} + (\nabla_{\mu}\Phi)^{2} = \left(\frac{\partial\Phi}{\partial x} + \frac{\partial\Phi}{\partial t}\right)^{2} + \left(\frac{\partial\Phi}{\partial x} - \frac{\partial\Phi}{\partial t}\right)^{2} + 2\left(\frac{\partial\Phi}{\partial u} - \frac{\partial\Phi}{\partial x}\right)^{2} + 2\left(\frac{\partial\Phi}{\partial u} - \frac{\partial\Phi}{\partial x}\right)^{2} + 2\left(\frac{\partial\Phi}{\partial u} + \frac{\partial\Phi}{\partial u}\right)^{2} + 2\left(\frac{\partial\Phi}{\partial u} + \frac{\partial\Phi}$$

.

$$= \left(\frac{3\Phi}{3\pi}\right)^{2} + \left(\frac{3\Phi}{3t}\right)^{2} + \frac{2\Phi}{3\pi}\frac{3\Phi}{3t} + \frac{3\Phi}{3\pi}\frac{3\Phi}{3t} + \left(\frac{3\Phi}{3\pi}\right)^{2} + \left(\frac{3\Phi}{3\pi}\right)^{2} - 4\frac{3\Phi}{3\pi}\frac{3\Phi}{3\pi}\frac{3\Phi}{3\pi}$$
$$-\frac{2\Phi}{3\pi}\frac{3\Phi}{3\pi}\frac{3\Phi}{3\pi} + 2\left(\frac{3\Phi}{3\pi}\right)^{2} + 2\left(\frac{3\Phi}{3\pi}\right)^{2} + \frac{3\Phi}{3\pi}\frac{3\Phi}{3\pi}\frac{3\Phi}{3\pi} - \left(\frac{3\Phi}{3\pi}\right)^{2} + \frac{3\Phi}{3\pi}\frac{3$$

Les expressions:

$$4 - 2 \frac{(x + u)t + u^{2}}{u(x + u + t)} - 2 \frac{-(x + u)t + u^{2}}{u(x + u - t)}$$

et
$$2 \frac{(x + u)t + u^{2}}{u(x + u + t)} - 2 \frac{-(x + u)t + u^{2}}{u(x + u - t)}$$

se réduisent respectivement à:

$$\frac{4 \times \left[u(x + u) + t^{2} \right]}{u \left[(x + u)^{2} - t^{2} \right]}$$

$$4 t \times (x + 2u)$$
(3.36)

et

En portant (3.36) dans (3.35), il vient:

 $\overline{u\left[(x + u)^2 - t^2\right]}$

$$(\nabla_{1}\Phi)^{2} + (\nabla_{2}\Phi)^{2} = \frac{4\times\left[u(x+u)+t^{2}\right]}{u\left[(x+u)^{2}-t^{2}\right]}\left[\left(\frac{\partial\Phi}{\partial x}\right)^{2}-\frac{\partial\Phi}{\partial x}\frac{\partial\Phi}{\partial u}\right]$$
$$+ 2\left[\left(\frac{\partial\Phi}{\partial u}\right)^{2}+\left(\frac{\partial\Phi}{\partial t}\right)^{2}\right]$$
$$+ \frac{4t\times(x+2u)}{u\left[(x+u)^{2}-t^{2}\right]}\left[\frac{\partial\Phi}{\partial t}\frac{\partial\Phi}{\partial u}-\frac{\partial\Phi}{\partial t}\frac{\partial\Phi}{\partial x}\right]$$

Finalement:

$$(\nabla_{\mu}\Phi)^{2} + (\nabla_{\Xi}\Phi)^{2} = \frac{2}{u[x + u)^{2} - t^{2}} \left\{ 2 \times \left[u(x + u) + t^{2} \right] \frac{\partial \Phi}{\partial x} \left(\frac{\partial \Phi}{\partial x} - \frac{\partial \Phi}{\partial u} \right) \right\}$$
$$+ u \left[(x + u)^{2} - t^{2} \right] \left[\left(\frac{\partial \Phi}{\partial u} \right)^{2} + \left(\frac{\partial \Phi}{\partial t} \right)^{2} \right]$$
$$+ 2t \times (x + 2u) \frac{\partial \Phi}{\partial t} \left(\frac{\partial \Phi}{\partial u} - \frac{\partial \Phi}{\partial x} \right) \right\}$$
(3.37)

D'après (3.9), la valeur moyenne de l'hamiltonien s'écrit:

$$\langle H \rangle = \langle T \rangle + \langle V_1 \rangle + \langle V_2 \rangle + \langle V_{12} \rangle$$
(3.38)

avec
$$T = -\frac{\Delta_1}{2} - \frac{\Delta_2}{2}$$
 (3.39)

$$V_1 = -\frac{Z}{r_1}$$
, $V_2 = -\frac{Z}{r_2}$ et $V_{12} = \frac{1}{r_{12}}$ (3.40)

Utilisant (3.11) et (3.37), l'expression de <T> s'écrit:

$$\langle T \rangle = \frac{1}{N} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\omega} \left\{ 2x \left[u(x + u) + t^{2} \right] \frac{\partial \Phi}{\partial x} \left(\frac{\partial \Phi}{\partial x} - \frac{\partial \Phi}{\partial u} \right) \right\}$$
$$+ u \left[(x + u)^{2} - t^{2} \right] \left[\left(\frac{\partial \Phi}{\partial u} \right)^{2} + \left(\frac{\partial \Phi}{\partial t} \right)^{2} \right]$$
$$+ 2tx(x + 2u) \frac{\partial \Phi}{\partial t} \left(\frac{\partial \Phi}{\partial u} - \frac{\partial \Phi}{\partial x} \right) \right]$$
(3.41)

Avec N =
$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} dt \, u \left[(x + u)^{2} - t^{2} \right] \Phi^{2} \qquad (3.42)$$

En remplaçant Φ par l'expression (3.4) qui en système de coordonnées (x,t,u) s'écrit:

$$\Phi(x,t,u) = \{\ln(u + e) + ct^2\}\exp\{-s(x + u)\}$$
 (3.43)

$$\left(\frac{\partial \Phi}{\partial x}\right)^{2} - \frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial u} = \left[\frac{\sin(u + e)}{u + e} + \frac{\sec^{2}}{u + e}\right] \exp\{-2s(x + u)\}$$

$$\equiv (P_{1} + P_{2}t^{2})\exp\{-2s(x + u)\}$$
(3.44)
$$\left(\frac{\partial \Phi}{\partial u}\right)^{2} + \left(\frac{\partial \Phi}{\partial t}\right)^{2} = \left[-s\ln(u + e) + \frac{1}{u + e}\right]^{2} + s^{2}c^{2}t^{4} + \left[4c^{2} - 2sc\left(-s\ln(u + e) + \frac{1}{u + e}\right)\right]t^{2} \cdot exp\{-2s(x + u)\}$$
$$\equiv (P^{2} + s^{2}c^{2}t^{4} + P_{3}t^{2})exp\{-2s(x + u)\}$$
(3.45)

$$\frac{\partial \Phi}{\partial t} \left(\frac{\partial \Phi}{\partial u} - \frac{\partial \Phi}{\partial x} \right) = \frac{2ct}{u + e} \exp\{-2s(x + u)\}$$
(3.46)

En portant (3.44), (3.45) et (3.46) dans (3.41), il vient:

$$\langle T \rangle = \frac{1}{N} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\omega} \int_{0}^{\omega} \left\{ \left[(2ux^{2} + 2u^{2}x) + 2xt^{2} \right] \left(P_{1} + P_{P}t^{2} \right) + \left[u(x^{2} + u^{2} + 2ux) - ut^{2} \right] \left(P^{2} + s^{2}c^{2}t^{4} + P_{P}t^{2} \right) + \frac{4c}{u + e} t^{2} (x^{2} + 2ux) \right\} exp(-2s(x + u))$$
(3.47)

Les intégrales sur t sont de la forme:

$$\int_{0}^{u} \frac{u^{n+1}}{n+1}$$
(3.48)

et sur x sont de la forme:

$$\int_{0}^{\infty} x^{n} \exp(-2sx) dx = \frac{n!}{(2s)^{n+1}}$$
(3.49)

39

En intégrant par rapport à t et x, (3.47) s'écrit:

$$\langle T \rangle = \frac{1}{N} \int_{0}^{\infty} \left(\left(\frac{u}{2s^{3}} + \frac{u^{2}}{2s^{2}} \right) \left(P_{1}u + P_{2} \frac{u^{3}}{3} \right) + \frac{1}{2s^{2}} \left(P_{1} \frac{u^{3}}{3} + P_{2} \frac{u^{3}}{5} \right) \right) \\ + u \left(\frac{1}{4s^{3}} + \frac{u^{2}}{2s} + \frac{u}{2s^{2}} \right) \left(P^{2}u + s^{2}c^{2} \frac{u^{3}}{5} + P_{3} \frac{u^{3}}{3} \right) \\ - \frac{u}{2s} \left(P^{2} \frac{u^{3}}{3} + (sc)^{2} \frac{u^{7}}{7} + P_{3} \frac{u^{5}}{5} \right) \\ + 4c \left(\frac{1}{4s^{3}} + \frac{u}{2s^{2}} \right) \frac{u^{3}}{3(u + e)} \right) \exp(-2su)$$
(3.50)

En remplaçant 🛛 par (3.43), (3.42) s'écrit:

$$N = \int_{0}^{\infty} du \int_{0}^{\infty} dx \left[\frac{u}{dt} u \left[(x+u)^{2} - ut^{2} \right] \left[\ln(u+e) + ct^{2} \right]^{2} exp(-2s(x + u)) \right]$$
(3.51)

En intégrant par rapport à t et x, (3.51) devient:

$$N = \int_{0}^{\infty} \left\{ u \left(\frac{1}{4s^{3}} + \frac{u^{2}}{2s} + \frac{u}{2s^{2}} \right) \left(u \ln 2(u+e) + c^{2} \frac{u^{3}}{5} + 2c \frac{u^{3}}{3} \ln(u+e) \right) - \frac{u}{2s} \left(\frac{u^{3}}{3} \ln^{2}(u+e) + c^{2} \frac{u^{7}}{7} + 2c \frac{u^{3}}{5} \ln(u+e) \right) \right\} \exp(-2su) \quad (3.52)$$

L'expression de l'énergie potentielle du système est:

$$V = -\frac{Z}{r_{1}} - \frac{Z}{r_{2}} + \frac{1}{r_{1e}}$$
(3.53)

Sa valeur moyenne s'écrit:

$$\langle V \rangle = - \langle \frac{Z}{r_1} \rangle - \langle \frac{Z}{r_2} \rangle + \langle \frac{1}{r_{12}} \rangle$$
 (3.54)

V et Φ étant symétriques en r₁ et r₂, (3.54) s'écrit:

$$\langle V \rangle = -2 \langle \frac{Z}{r_{1}} \rangle + \langle \frac{1}{r_{12}} \rangle$$

$$\langle \frac{Z}{r_{1}} \rangle = \frac{\int \Phi(Z/r_{1}) \Phi dr}{\int \Phi^{2} dr}$$
(3.55)
(3.56)

En passant au système de coordonnées (x,t,u), (3.56) s'écrit:

$$\langle \frac{Z}{r_{1}} \rangle = \frac{1}{N} \int_{0}^{\infty} \int_{0}^{\omega} \int_{0}^{\omega} \int_{0}^{\omega} \left\{ \frac{2Z}{(x + u + t)} \left[(x + u)^{2} - t^{2} \right] \left[\ln(u + e) + ct^{2} \right]_{0}^{2} \right\}$$

$$= \frac{1}{N} \int_{0}^{\infty} \int_{0}^{\omega} \int_{0}^{\omega} \int_{0}^{\omega} t^{2} 2Zu(x + u - t) \left[\ln(u + e) + ct^{2} \right]^{2} exp(-2s(x + u))$$

$$= \frac{1}{N} \int_{0}^{\omega} \int_{0}^{\omega} \int_{0}^{\omega} \int_{0}^{\omega} t^{2} 2Zu(x + u - t) \left[\ln(u + e) + ct^{2} \right]^{2} exp(-2s(x + u))$$

$$(3.57)$$

En intégrant par rapport à t et x, (3.57) devient:

$$\langle \frac{Z}{r_{1}} \rangle = \frac{1}{N} \int_{0}^{\infty} du 2Zu \left(\frac{1}{4s^{2}} + \frac{u}{2s} \right) \left(u \ln 2/u + e \right) + c^{2} \frac{u^{3}}{5} + 2c \frac{u^{3}}{3} \ln (u + e) \right) \right),$$

$$\langle \frac{1}{r_{12}} \rangle = \frac{\int \Phi(1/r_{12}) \Phi d\tau}{\int \Phi^2 d\tau}$$
(3.57)

En passant au système de coordonnées (x,t,u), (3.59) s'écrit:

$$\langle \frac{1}{\Gamma_{12}} \rangle = \frac{1}{N} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\omega} \int_{0}^{u} \left[(x+u)^{2} - t^{2} \right] \left[\ln(u+e) + ct^{2} \right]^{2} \exp\{-2s(x+u)\}$$
(3.60)

En intégrant par rapport à t et x, (3.60) s'écrit:

$$\left\langle \frac{1}{r_{12}} \right\rangle = \frac{1}{N} \int_{0}^{\infty} \left\{ \left(\frac{1}{4s^{3}} + \frac{u^{2}}{2s} + \frac{u}{2s^{2}} \right) \left(u \ln 2(u+e) + c^{2} \frac{u^{3}}{5} + \frac{u^{3}}{2s} + \frac{u^{3}}{2s} \right) \right\} + \frac{1}{2s} \left(\frac{u^{3}}{3} \ln (u+e) \right) - \frac{1}{2s} \left(\frac{u^{3}}{3} \ln^{2} u+e \right) + c^{2} \frac{u^{7}}{7} + 2c \frac{u^{3}}{5} \ln (u+e) \right) \right\},$$

$$exp(-2su) \qquad (3.61)$$

N est defini par (3.51).

III.3 CALCUL DE <r_2> et <r_>

Pour évaluer la dimension des atomes considérés, nous calculons la distance moyenne séparant chaque électron du noyau. D'autre part, pour comprendre l'effet de la répulsion électronique nous calculons la distance moyenne séparant les deux électrons que nous comparons avec celle trouvée à partir du modèle sans corrélation (3.1).

$$\langle r_1 \rangle = \frac{\langle \Phi | r_1 | \Phi \rangle}{\langle \Phi | \Phi \rangle} = \frac{\int \Phi^2 r_1 d\tau}{\int \Phi^2 d\tau}$$
 (3.62)

Dans le système de coordonnées (x,t,u), (3.62) s'écrit:

$$\langle r_{1} \rangle = \frac{1}{N} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \left\{ \frac{u}{dt} \left\{ \frac{1}{-(x + u + t)u} \left[(x + u)^{2} - t^{2} \right] \left[\ln(u + e) + ct^{2} \right]^{2} \right\} \right\}.$$

$$exp\{-2s(x + u)\}$$
(3.63)

En intégrant par rapport à t et x, (3.63) devient:

$$\langle r_{1} \rangle = \frac{1}{N} \int_{0}^{\infty} \frac{1}{2} \left\{ u \left(\frac{3}{8s^{4}} + \frac{3u}{4s^{3}} + \frac{3u^{2}}{4s^{2}} + \frac{u^{3}}{2s} \right) \left(\frac{u^{3}}{3} \ln^{2}(u+e) + c^{2} \frac{u^{3}}{5} + 2c \frac{u^{3}}{3} \ln(u+e) \right) - u \left(\frac{1}{4s^{2}} + \frac{u}{2s} \right) \left(\frac{u^{3}}{3} \ln^{2}(u+e) + c^{2} \frac{u^{7}}{7} + 2c \frac{u^{3}}{5} \ln(u+e) \right) \right\} exp(-2su)$$

$$(3.64)$$

$$\langle r_{12} \rangle = \frac{\langle \Phi | r_{12} | \Phi \rangle}{\langle \Phi | \Phi \rangle} = \frac{\int \Phi r_{12} \Phi d\tau}{\int \Phi^2 d\tau}.$$
 (3.65)

Dans le système de coordonnées (x,t,u), (3.65) s'écrit:

$$\langle r_{12} \rangle = \frac{1}{N} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{u} dx \int_{0}^{u} dt u^{2} [(x+u)^{2}-t^{2}] [\ln(u+e) + ct^{2}]^{2} exp(-2s(x+u))$$
(3.66)

En intégrant par rapport à t et x, (3.66) devient:

$$\langle r_{12} \rangle = \frac{1}{N} \int_{0}^{\infty} \frac{du}{du} \left(\frac{1}{4s^{3}} + \frac{u^{2}}{2s} + \frac{u}{2s^{2}} \right) \left(u \ln^{2}(u+e) + c^{2} \frac{u^{3}}{5} + 2c \frac{u^{3}}{3} \ln(u+e) \right) - \frac{u}{2s} \left(\frac{u^{3}}{3} \ln^{2}(u+e) + c^{2} \frac{u^{7}}{7} + 2c \frac{u^{5}}{5} \ln(u+e) \right) \exp(-2su)$$
(3.67)

La fonction d'onde sans corrélation (3.1), en système de coordonnées (x,t,u) et en unités atomiques s'écrit:

$$\Phi_{0} = (\alpha^{3}/\pi) \exp\{-\alpha(x + u)\}$$
 (3.68)

$$\langle r_{1} \rangle = \frac{2}{\alpha^{6}} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{u} \frac{1}{(x+u+t)u[(x+u)^{2}-t^{2}]exp\{-2\alpha(x+u)\}} (3.69)$$

$$\langle r_{12} \rangle = \frac{2}{\alpha^{6}} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{u} dx \int_{0}^{u} dt \ u^{2} \left[(x+u)^{2} - t^{2} \right] \exp\{-2\alpha(x+u)\}$$
(3.70)

Les intégrales par rapport à x et u sont de la forme (3.49) et par rapport à t sont de la forme (3.48). Un calcul simple mène à:

$$\langle r_1 \rangle = \frac{26}{16\alpha}$$
 et $\langle r_{12} \rangle = \frac{35}{16\alpha}$ (3.71)

Les paramètres obtenus à partir du modèle (3.4) sont évalués numériquement. Le passage du calcul analytique au calcul numérique est expliqué dans le chapitre IV.

CHAPITRE IV

PASSAGE DU CALCUL ANALYTIQUE

AU CALCUL NUMERIQUE

Dans le programme que nous avons utilisé, il s'agit de déterminer les valeurs des paramètres s et c introduits dans (3.4), pour lesquels la valeur moyenne de l'hamiltonien, <H>, définie par (3.10) est minimale. La minimisation se fait par le sous-programme ZXMIN. Pour évaluer les intégrales contenues dans l'expression de <H>, ZXMIN utilise le sous-programme DCADRE. Ces deux sous-programmes sont tirés de la programmathèque IMSL (INTERNATIONAL MATHEMATICAL AND STATICAL LIBRARIES. INC). Pour plus de détails sur ces sous-programmes, voir les références 20 et 21. Le calcul est fait pour les atomes H⁻, He, Li⁺ et Be⁺⁺.

Le sous programme ZXMIN étant l'élément principal de notre programme, nous donnons ci-dessous le principe de calcul qu'il utilise.

IV.1 PRINCIPE DE CALCUL UTILISE PAR LE SOUS-PROGRAMME ZXMIN :

La détermination du minimum de l'hamiltonien est basée sur la méthode de plus grande pente, c'est-à-dire à partir d'un point de la surface, on se déplace dans le sens du gradient de cette fonction.

Pour expliquer comment se fait la recherche du minimum, considérons une fonction:

$$F = f(x_1, x_2, \dots, x_m) \tag{4.1}$$

Nous pouvons en un point faire le développement en série de Taylor et écrire:

$$F(X_{i} + \Delta X_{i}) = F(X) + \sum_{i=1}^{m} \frac{\partial F}{\partial X_{i}} \Delta X_{i} + \frac{1}{2} \sum_{i=1}^{m} \frac{\sum_{k=1}^{m} \frac{\partial F}{\partial X_{i} \partial X_{k}}}{\sum_{k=1}^{m} \frac{\partial F}{\partial X_{i} \partial X_{k}}} \Delta X_{i} \Delta X_{k} \quad (4.2)$$

Nous négligeons les termes du développement de Taylor supérieurs au deuxième ordre. L'extrémum de la fonction définie par le développement (4.2) est localisé en un point de coordonnées $X_i + \Delta X_i$ tel que:

$$\frac{\partial F}{\partial x_{i}} = \sum_{\kappa=1}^{m} \frac{\partial F}{\partial x_{i} \partial x_{\kappa}} \Delta X_{\kappa}$$
(4.3)

 $o\dot{u}$: $i = 1,2,3,4,\ldots,m$

Il nous suffit de résoudre (4.3) pour déterminer les ΔX_i . La méthode de solution est une méthode itérative. A partir de l'itération j, connaissant les X , et après avoir déterminé les ΔX_i^j à l'aide de (4.3) on passe à l'itération j+1.

$$X_{i}^{j+1} = X_{i}^{j} + \alpha^{j} \bigtriangleup X_{i}^{j}$$

$$(4.4)$$

où α est une constante tel que : $0 < \alpha^{3} < 1$ (4.5)

Dans chaque itération, il faut déterminer la valeur α^{\downarrow} de

telle sorte que X_i^{jH} soit un extrémum de la fonction considérée dans la direction définie par (4.4). Dans ce cas il faut résoudre l'équation:

$$\frac{\partial F}{\partial x} = 0 \qquad (4.6)$$

Après avoir déterminé α qui rend dans la direction définie par (4.4) la fonction optimum, nous aurons la relation:

$$X_{i}^{j+1} = X_{i}^{j} + \alpha^{j} \Delta X_{i}^{j}$$
 (4.7)

Nous continuerons ainsi jusqu'à ce que la distance séparant deux itérations successives soit compatible avec la précision demandée.

IV.2 PROCEDE DES CALCULS NUMERIQUES:

Nous fixons d'abord tous les paramètres que nous utilisons. Z: valeur de la charge Z du noyau, ZZ(I) est donné dans le DATA ZZ.

X(1): estimation initiale du paramètre s, à partir de laquelle nous désirons commencer l'itération, X1(I) est donné dans le DATA X1. Pour chaque atome on doit choisir une valeur initiale proche de la charge Z du noyau car s est interprété comme un paramètre qui indique l'effet d'écran (chap. III, p29). X(2): estimation initiale du paramètre c. On doit choisir une valeur proche de zéro (chap. III, p29).

NSIG: la précision avec laquelle on désire déterminer s et c. MAXFN: le nombre maximum d'itérations demandé. Il faut donner pour MAXFN une valeur assez élevée afin que le calcul ne s'arrête pas avant d'approcher le minimum de la fonction considérée.

IOPT: paramètre concernant l'initialisation de $\frac{\partial^2 F}{\partial s \partial c}$, IOPT = 2

 $\int_{1}^{2} F$ veut dire que ____, va être initialisée à une matrice diagonale. 253c

A et BB(I): borne inférieure et supérieure d'intégration, BB(I) est donné dans le data BB.

RERR: erreur relative désirée pour l'évaluation des intégrales.

ARREI, AERRJ, AERRK, AERRL, AERRM et AERRN sont les erreurs absolues désirées pour l'évaluation des intégrales (3.50), (3.58), (3.61) (3.51), (3.64) et (3.67).

Après la définition des différents paramètres, l'énoncé CALL ZXMIN déclenche le sous-programme ZXMIN .

la fonction à minimiser est:

F = (RI(D) - 2RJ(D) + RI(K))/RL(D)

οù

 $F = \langle H \rangle$, $RI(D)/RL(D) = \langle T \rangle$, $-2RJ(D)/RL(D) = 2\langle V_1 \rangle$.

et $RK(D)/RL(D) = \langle V_{12} \rangle$.

<H>: la valeur moyenne de l'hamiltonien du système, définie par (3.38) <T>: énergie cinétique du système, définie par (3.50) 2<V1>: l'énergie potentielle d'interaction entre les deux électrons et le noyau, définie par (3.58).

 V_{12} : énergie potentielle d'interaction entre les deux électrons, définie par (3.61).

F est introduite par la sous-routine FUNCT qui est appelée lors de chaque itération.

F étant définie en fonction de RI(D), RJ(D), RK(D) et RL(D), la sous-routine FUNCT fait appel aux sous-programmes: FUNCTION RI(D), FUNCTION RJ(D), FUNCTION RK(D) et FUNCTION RL(D).

RI(D), RJ(D), RK(D) et RL(D) sont les noms des sous programmes FUNCTION qui donnent les valeurs des intégrales (3.50),(3.58), (3.61) et (3.52):

Pour évaluer la valeur des fonctions à l'intérieur des bornes d'intégrations les sous-programmes FUNCTION RI(D), FUNC-TION RJ(D), FUNCTION RK(D) et FUNCTION RL(D) font appel respectivement aux sous-programmes: FUNCTION F1(U), FUNCTION F2(U), FUNCTION F3(U) et FUNCTION F4(U).

Tous les calculs numériques étant executés nous imprimons: 1) les valeurs finales de s et c,

2) IER, qui est un paramètre tel que IER = 0 indique que tous
les calculs ont été effectués avec la précision demandée,
3) ERROR: est une estimation de l'erreur absolue due au programme numérique,

4) D(H)/DS et D(H)/DC = estimations de H/Js et H/Jc pour les valeurs finales de s et c,

5) <V₁₂>: valeur moyenne de l'énergie potentielle d'interaction entre les deux électrons, définie par (3.51),
6) <V>: valeur moyenne de l'énergie potentielle totale du système, définie par (3.54),

7) <V₁>: valeur moyenne de l'énergie potentielle d'interaction entre l'un des électrons et le noyau, définie par (3.58), 8) <T> : valeur moyenne de l'énergie cinétique du système, définie par (3.50),

9) <V>/<T>: ce terme est imprimé afin de comparer nos résultats avec le théorème du viriel (13, p.400) qui prévoit que cette quantité doit être égale à -2,

10) E : valeur moyenne de l'énergie totale du système,

11) $\langle R_{12} \rangle$: estimation de la distance moyenne séparant les deux électrons, définie par (3.67),

12) $\langle R_1 \rangle$: estimation de la distance moyenne séparant l'un des électrons et le noyau, définie par (3.64).

IV.3 ORDINOGRAMME DU PROGRAMME UTILISE:

La partie comprise entre D et E de cet ordinogramme correspond à l'appel du sous-programme ZXMIN dans l'énoncé CALL ZXMIN.

CHAPITRE V

RESULTATS ET DISCUSSION

V.1 ENERGIE DE L'ETAT FONDAMENTAL

Expérimentalement l'énergie de l'état fondamental n'est pas accessible directement. C'est le potentiel d'ionisation I qu'on peut mesurer. Il est égal à la différence des énergies de l'atome une fois ionisé E_1 et de l'atome neutre dans son état fondamental $E_0^{(13)}$, piei).

$$I = E_{k} - E_{0} \tag{5.1}$$

L'énergie d'un atome ionisé à deux électrons est égale à l'énergie d'un atome à un seul électron avec une charge nucléaire Z. Elle est égale à l'énergie de l'atome hydrogénoïde correspondant^(13, pi21).

$$E_{x} = -\frac{Z^{2}}{2}$$
, (u.a) (5.2)

Utilisant (5.1) et (5.2), l'énergie de l'état fondamental d'un atome à deux électrons s'écrit:

$$E_{\circ} = -I - \frac{Z^2}{2}$$
 (5.3)

V.2 ENTRAINEMENT DU NOYAU

Nous avons supposé auparavant (chap. I, p10) que le noyau est fixe du fait que sa masse est très grande par rapport à celle de l'électron. Lorsqu'on tient compte de son mouvement, l'équation de Schrödinger s'écrit:

$$\frac{-\hbar^{2}}{2m}\left(\bigtriangleup_{1} + \bigtriangleup_{e}\right)\Phi - \frac{\hbar^{2}}{2M}\bigtriangleup_{e}\Phi + (V-E)\Phi = 0 \qquad (5.4)$$

.

R(X,Y,Z) et M sont respectivement le vecteur de position et la masse du noyau. En introduisant les coordonnées du centre de masse et les coordonnées relatives:

$$\vec{U} = \frac{1}{M + 2m} (\vec{MR} + \vec{mr_1} + \vec{mr_2})$$

$$\vec{R}_1 = \vec{r}_1 - \vec{R}$$

$$(5.5)$$

$$\vec{R}_2 = \vec{r}_2 - \vec{R}$$

l'équation de Schrödinger devient (voir annexe D):

$$-\frac{\hbar^2}{2(M+2m)} \triangle_{c} - \frac{\hbar^2}{2\mu} (\triangle_{R1} + \triangle_{R2}) - \frac{\hbar^2}{M} \nabla_{R1} \nabla_{R2} + (V-E) \Phi = 0$$
(5.6)

où l'indice c, est relatif au centre de masse. L'expression de V est:

$$V = -\frac{Z}{R_{1}} - \frac{Z}{R_{2}} + \frac{1}{R_{1} - R_{2}}$$
(5.7)

Comme le potentiel ne dépend pas de la variable U mais dépend seulement de R₁, R₂ et $|\vec{R_1} - \vec{R_2}|$, on peut séparer le mouvement de l'ensemble des trois particules en mouvement de centre de masse et en mouvement relatif. La solution de (5.6) peut alors être écrite sous la forme:

$$\Phi = \Phi_{R}(R_{1}, R_{2}, \left| \vec{R}_{1} - \vec{R}_{2} \right|) \Phi_{C}(U) , \quad E = E_{C} + E_{R} \quad (5.8)$$

L'équation de Schrödinger pour le mouvement relatif s'écrit:

$$-\frac{\hbar^{2}}{2\mu}\left(\Delta_{R^{1}}+\Delta_{R^{2}}\right)\Phi_{R}-\frac{\hbar^{2}}{M}\nabla_{R^{1}}\nabla_{R^{2}}\Phi_{R}+(V-E)\Phi_{R}=0$$
(5.9)

Si on traite le terme $(-\hbar^2/M) \bigtriangledown_{R_1} \bigtriangledown_{R_2}$ par la théorie des perturbations indépendantes du temps⁽¹⁴⁾, l'équation de Schrödinger pour le mouvement relatif et correspondant à l'hamiltonien non perturbé s'écrit:

$$-\frac{\triangle_{R1} + \triangle_{R2}}{2} \Phi_{R} + \frac{\mu}{h^{2}} (V-E) \Phi_{R} = 0$$
 (5.10)

Alors si on compare l'équation (5.10) avec celle où l'on considère que la masse du noyau est infinie.

$$-\frac{\triangle_{1} + \triangle_{2}}{2} \Phi + (V-E) \Phi = 0, \quad (u.a) \quad (5.11)$$

on remarque qu'il y a en plus le facteur μ/\hbar^2 dont l'effet peut être calculé. Nous devons seulement redéfinir notre système d'unités. Si nous posons, $\hbar = e = \mu = 1$, nous retrouvons l'équation (5.11). A ce moment la valeur propre de l'énergie devrait être multipliée par le facteur

La correction au premier ordre à l'énergie sera:

$$\mathcal{E}_{i} = \frac{m}{M} = -E_{\infty} \tag{5.13}$$

où E est l'énergie en unités atomiques correspondant à une masse du noyau infinie.

V.3 RESULTATS

Dans les tableaux 1 à 4, nous donnons les valeurs numériques des différents opérateurs. Tous les résultats sont donnés en unités atomiques, c'est-à-dire que l'énergie est deux fois l'unité de Rydberg^(14, pB) et les distances en unités de rayon de Bohr.

Une façon de tester notre fonction d'onde est de calculer la quantité (<V>/<T>), que nous avons introduite dans la sixième ligne des tableaux 1 à 4. Le théorème du viriel^(13, p400) prévoit que cette quantité doit être égale à -2. Dans la première ligne, les paramètres s et c sont donnés ainsi que ∂ <H>/ ∂ s et ∂ <H>/ ∂ c. Le paramètre ERROR indique l'erreur due au programme numérique et IER = 0 indique que les calculs ont été fait avec les précisions demandées.

Dans le tableau 5 nous donnons les résultats numériques avec quatre chiffres significatifs de l'énergie des atomes à deux électrons dans l'état fondamental. Nous avons également inclu quelques résultats récents afin de les comparer avec les nôtres. On voit qu'avec deux paramètres variationnels nous obtenons des résultats nettement meilleurs que ceux obtenus à partir de deux^(?) et trois^(1?) paramètres variationnels. Nos résultats sont comparables avec la meilleure approximation⁽³⁾ obtenue à partir d'une fonction d'onde de 252 termes.

V.4 CORRELATION ELECTRON-ELECTRON

Pour comprendre l'effet de la corrélation électron-électron, nous comparons dans le tableau 6 les valeurs de différents opérateurs obtenus à partir des modèles (3.1) et (3.4). Pour le modèle (3.1), on a (22, 242):

 $\langle T \rangle = \alpha^2$, $\langle V \rangle = -2Z\alpha + (5/8)\alpha$ et $\langle 1/r_{12} \rangle = (5/8)\alpha$

Alors que $\langle r_1 \rangle$ et $\langle r_{12} \rangle$ sont données par (3.71)

avec
$$\alpha = 1.6875$$

Finalement, en comparant notre méthode avec la méthode utilisant les harmoniques sphériques de type K, notre valeur pour l'énergie de l'atome d'hélium dans l'état fondamental est meilleure que la valeur -2.892 u.a obtenue à partir de seize équations différentielles couplées⁽⁷⁾.

Pour montrer l'effet de la répulsion électron-électron et la nécessité de la dépendance de la fonction d'onde de la distance r_{12} entre les deux électrons, nous exposons deux méthodes

<u>Tableau 1</u>

<u>Différents opérateurs correspondant à Z =1</u>

S= .73499	C= .12065	D <h>/DS=</h>	•26E-06	D <h>/DC</h>	=17E-04	5 IER= 0
<v12>=</v12>	.331748083	ERROR=	.263	79E-11	IER=	0
<v1>= -</v1>	.689088180	ERROR=	•272	248E-11	IER=	0
<v>= -1</v>	•046428278	ERROR=	.8087405	02E-11	<v>=<v1< td=""><td>12>+2<v1></v1></td></v1<></v>	12>+2 <v1></v1>
≺т≳≓	.522613165	ERROR=	.292	251E-11	IER=	0
<v>/<t> =</t></v>	-2.0023	ERROR=	.1101250	45E-10		
E =	5238151	ERROR=	. 446	96E-11	E= <t>+-</t>	(V>
<r12>= 3</r12>	5.960297747	ERROR=	.4728461	58E-10	IER=	0
<r1>= 12</r1>	.395001982	ERROR=	• 5362396	43E-10	IER=	0

D<H>/DS et D<H>/DC sont des estimations de 3<H>/3s et de 3<H>/3c IER = 0 veut dire que les calculs ont été effectués avec la précision demandée.

ERROR : erreur absolue due aux calculs numériques.

<V1> : valeur moyenne de l'énergie potentielle d'interaction

entre l'un des électrons et le noyau, en u.a.

E : énergie totale du système de trois particules, en u.a.

<R12>: valeur moyenne de r_{12} , en u.a.

 $\langle R_1 \rangle$: valeur moyenne de r_1 , en u.a.

<u>Tableau 2</u>

<u>Différents opérateurs</u>	correspondant	à Z=2
------------------------------	---------------	-------

S= 1.79638 C= .136	76 D <h>/DS=</h>	•28E-06	D <h>/DC:</h>	=31E-05	IER= 0
<v12>= .95060484</v12>	00 ERROR=	•106	03E-11	IER=	0
	64 ERROR=	• 698	16E-10	IER=	0
<v>= -5.8036251</v>	28 ERROR=	•1406932	46E-09	<v>=<v1< td=""><td>2>+2<v1></v1></td></v1<></v>	2>+2 <v1></v1>
<t>= 2.9011555</t>	69 ERROR=	•998	03E-12	IER=	0
<v>/<t> = -2.0005</t></v>	ERROR=	.1416912	71E-09		
E = -2.9024696	ERROR=	•139	82E-09	E= <t>+«</t>	<v></v>
<r12>= 1.4091683</r12>	52 ERROR=	.2419606	04E-10	IER=	0
<r1>= .9694931</r1>	91 ERROR=	• 4 099688	345E-10	IER=	0

-

ï

<u>Tableau 3</u>

S= 2.82546	C= .16376	D <h>/DS=</h>	•66E-06	D <h>/DC=</h>	• 62E-0	5 IER= 0
<v12>= 1</v12>	1.566716548	ERROR=	• 474	72E~12	IER=	0
<v1>= -8</v1>	8.062933117	ERROR=	•263	85E-10	IER=	0
<v>= -14</v>	.559149687	ERR0R≖	• 5324495	94E-10	<v>=<v< td=""><td>12>+2<v1></v1></td></v<></v>	12>+2 <v1></v1>
<t>= 7</t>	* • 280647363	ERROR=	•794	28E-12	IER=	0
<v>/<t> =</t></v>	-1.9997	ERROR=	•5403924	13E-10		
E = -7.	2785023	ERROR=	• 533	30E-10	E= <t>+</t>	<v></v>
<Ŗ12>=	.861306154	ERROR=	.1870156	68E-10	IER=	0
<r1>=</r1>	.173163110	ERROR=	,1081315	74E-10	IER=	0
		1				

ł

i

Différents opérateurs correspondant à Z=3

Tableau 4

S= 3.84	325 C= .19041	D <h>/DS=·</h>	- . 18E-06	D <h>/D</h>	C=18E-0	5	IER=	0
<v12>=</v12>	2.185824309	ERROR=	•698	14E-12	IER=	0		
<v1>=</v1>	-14.749423937	ERROR=	•841	68E-12	IER=	0		
<v>=</v>	-27,313023565	ERROR=	•2381499	21E-11	<v>=<v< td=""><td>12>·</td><td>+2<v1< td=""><td>></td></v1<></td></v<></v>	12>·	+2 <v1< td=""><td>></td></v1<>	>
<t>=</t>	13,659575897	ERROR=	.113	55E-11	IER=	0		
< v> / <t></t>	= -1,9996	ERROR=	.3517024	14E-11				
E =	-13.6534477	ERROR≠	•257	82E-11	E= <t>+</t>	·< v >		
<r12>=</r12>	.619705973	ERROR=	•5439414	00E-10	IER=	0		
<r1>=</r1>	•022707040	ERROR=	,1934561	95E-10	IER=	0		

Différents opérateurs correspondant à Z=4

<u>Tableau 5</u>

Atomes à	Deux (7)	Trois(18)	Nos	Meilleure	Résul- tats expé-
deux	paramètres	paramètres	calculs	approxi-	rimentaux
électrons				mation (3)	(23)
H(-)	0.506	0.5213	0.5238	0.5278	0.5277
He	2.873	2.8994	2.9024	2.9037	2.9037
Li(+)	7.246	7.2757	7.2785	7.2799	7.2804
Be(++)	13.621	13.6513	13.6534	13.6556	13.6574

Energie de l'état fondamental (-E_o) en u.a

Toutes les valeurs sont données en u.a.

L'écart à la valeur expérimentale est: -0.0039, -0.0013,

-0.0019 et -0.0040 pour H⁻, He, Li⁺ et Be⁺⁺.
dues à différents auteurs dans lesquelles les modèles de fonctions d'onde ne contiennent pas la variable rie.

V.4.1 Approximation de Hartree-Fock

Pour résoudre l'équation de Schrödinger (5.11), l'approximation de Hartree-Fock tient compte du principe de Pauli (la fonction d'onde totale doit être antisymétrique par rapport aux permutations des électrons). Comme la fonction d'onde, dépendant du spin et correspondant à l'état fondamental, est antisymétrique (chap. I, p12), la partie de la fonction d'onde dépendant des variables de position doit être symétrique et elle s'écrit:

$$\Phi = v(r_1)v(r_2) \tag{5.14}$$

v(r₁) et v(r₂) doivent être orthonormales et $\langle \Phi | H | \Phi \rangle$, la valeur moyenne de H dans l'état Φ ,doit être stationnaire pour toute variation δv . En introduisant les multiplicateurs de Lagrange et prenant pour Φ l'expression (5.14), l'ensemble des conditions précédentes mène à un système d'équations dont la solution détermine l'énergie du niveau fondamental, (pour plus de détail sur la méthode,voir ref. 24). La solution numérique d'un tel système^(ES, pEB) mène à une valeur de l'énergie de l'atome d'hélium dans l'état fondamental E₀ = -2.861 u.a.

V.4.2 Modèle de charge effective

Au lieu de considérer l'expression (3.1) que nous avons introduite au chapitre III, Srivastava^(?) considère l'expression suivante:

$$\Phi(r_1, r_2) = \exp\{-\alpha(\beta r_2 + r_3)\}$$
(5.15)

avec

$$r_{>} = \max(r_{1}, r_{2})$$
 et $r_{<} = \min(r_{1}, r_{2})$ (5.16)

 α et β sont deux paramètres variables tel que $\beta_{<1}$. Dans ce cas l'électron se trouvant à la distance r> voit une charge du noyau β fois celle vue par l'électron se trouvant à la distance r<. Donc l'électron le plus loin du noyau voit une charge inférieure à celle vue par l'électron le plus proche. Un calcul variationnel mène à une valeur de l'énergie de l'atome d'hélium dans l'état fondamental E₀ = -2.873 u.a.

V.4.3 Distribution de la variable rie

En comparant les résultats obtenus à partir des deux modèles que nous avons exposés ci-dessus avec les nôtres, nous justifions la nécessité de la dépendance de la fonction d'onde de la variable r_{12} . A cause de la répulsion coulombienne, le deuxième électron doit affecter le champ dans lequel se déplace le premier. Ceci va se manifester dans les valeurs moyennes de la distance entre les deux électrons, $\langle r_{12} \rangle$, et dans l'énergie potentielle d'interaction entre les deux électrons, $\langle 1/r_{12} \rangle$. Nous devons nous attendre à une augmentation de $\langle r_{12} \rangle$ lorsqu'on tient compte de la répulsion électronique dans la fonction d'onde, par rapport à la valeur calculée à partir du modèle (3.1) sans corrélation. La valeur moyenne, $\langle A \rangle$, de l'observable A se calcule à partir de la relation:

$$\langle A \rangle = \frac{\int \Phi^* A \Phi d\tau}{\int \Phi^* \Phi d\tau}$$
 (5.17)

D'autre part, on peut définir la moyenne de rie par l'équation:

$$\langle r_{12} \rangle = \int_{0}^{\infty} r_{12} F(r_{12}) dr_{12}$$
(5.18)

où F(r₁₂) est la fonction de distribution de la variable r_{12} . De là, on voit que F(r_{12}) est reliée à la fonction d'onde Φ par:

$$\int_{0}^{\infty} \Gamma_{12}F(r_{12})dr_{12} = \frac{\int \Phi^{*}r_{12}\Phi d\tau}{\int \Phi^{*}\cdot\Phi d\tau}$$
(5.19)

Dans le système de coordonnées (x,t,u) l'expression (5.19) est équivalente à:

$$\int_{0}^{\infty} uF(u) du = \frac{\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} dt \{u[(x + u)^{2} - t^{2}]\Phi^{*}u\Phi\}}{\int_{0}^{\infty} du \int_{0}^{\infty} \int_{0}^{u} dt \{u[(x + u)^{2} - t^{2}]\Phi^{*}\Phi\}}$$
(5.20)

Afin de trouver l'expression de $F(r_{12})$ pour une fonction d'onde donnée, on calcule le facteur de r_{12} dans l'intégrale du numérateur du deuxième membre de (5.19) en intégrant sur les variables autres que r_{12} alors que le dénominateur est une constante multiplicative qu'on évalue numériquement.

F peut être calculée à partir de l'expression (3.4). Pour comprendre l'effet de la répulsion électronique, on la compare avec celle calculée à partir de l'expression (3.1), dans la-

- 18. M. K. Srivastava, R. K. Bhaduri and A. K. Dutta, Phys. Rev A 14, 1961 (1976)
- 19. Wu. Mu-Shiang, Phys. Rev A 26, 1762 (1982)
- 20. C. De Boor, Mathematical Software (Academic Press, New-York, 1971)
- 21. R. Fletcher, Fortran Subroutine For Minimisation by Quasi-Newton Method, Repport R7125 AERE (Harwell, England, June 1972)
- 22. H. A. Bethe and R. W. Jackiw, Intermediate Quantum Mechanics, 2nd edition (Benjamin, New-York, 1968)
- 23. W. S. Charles, N. S. Silverman, Phys. Rev A <u>127</u>, 830 (1962)
- 24. D. R. Hartree, The Calculation of Atomic Structure (Wiley, New-York, 1957)
- 25. F. F. Charlotte, The Hartree-Fock Method for Atoms: a Numerical Approach (Wiley, New-York, 1977)
- 26. R. J. Tweed, J. Phys B 5, 810 (1972)

quelle les électrons sont considérés comme indépendants dans leurs déplacements.

A partir de l'expression (3.1), nous obtenons:

$$F(u) = (\alpha^{3}/6)(3u^{2} + 6\alpha u^{3} + 4\alpha^{2}u^{4})exp(-2\alpha u)$$
(5.21)

et à partir de l'expression (3.4), nous trouvons:

$$F(u) = \frac{1}{N} \left\{ u \left(\frac{1}{4s^3} + \frac{u^2}{2s} + \frac{u}{2s^2} \right) \left(u \ln^2(u+e) + \frac{c^2 u^3}{5} + \frac{c^2 u^3}{5} \right) + \frac{c u^3 \ln(u+e)}{3} \right) \\ + \frac{c u^3 \ln(u+e)}{3} \right\} \\ - \frac{u}{2s} \left(\frac{u^3 \ln^2(u+e)}{3} + \frac{c^2 u^7}{7} + \frac{2c u^3 \ln(u+e)}{5} \right) \right\} exp(-2su)$$
(5.22)
Où
$$N = \int_0^\infty u \int_0^\infty dx \int_0^u dt (u L(x + u))^2 - t^2] \Phi^* \Phi)$$
(5.23)

Sur la figure 5 nous comparons les fonctions de distribution pour H⁻, He, Li⁺ et Be⁺⁺. On voit que la probabilité pour que les deux électrons se meuvent à une courte distance l'un de l'autre croît avec la charge nucléaire. $\langle r_{12} \rangle$ varie de 0.6 u.a pour le cas de Be⁺⁺ où Z=4 à 3.9 u.a pour H⁻ où Z=1, (tableaux 1 à 4).

Sur la figure 6 nous comparons les fonctions de distribution dans le cas de l'atome d'hélium, obtenues respectivement à partir des modèles (3.1) et (3.4). D'après les courbes (1) et (2) de cette figure on voit que la probabilité pour que

ANNEXE A

Listage du programme (INPUT, DUTPUT) utilisé

pour les calculs numériques

PROGRAMINTEG(INPUT, OUTPUT)

C C С CE PROGRAMME DETERMINE LES VALEURS DES PARAMETRES S ET C С POUR LESQUELS <H> LA VALEUR MOYENNE DE L'HAMILTONIEN DANS L'ETAT FONDAMENTAL EST MINIMUM. C POUR CES MEMES VALEURS ON CALCULE: C: <vi>LA VALEUR MOYENNE DE L'ENERGIE POTENTIELLE D'INTERACTION Ċ ENTRE L'UN DES ELECTRONS ET LE NOYAU. C <vil>> = L'ENERGIE POTENTIELLE D'INTERACTION ENTRE LES DEUX С C ELECTRONS. <V> =<V12> +2<V12; L'ENERGIE POTENTIELLE D'INTERACTION DU SYSTEME.</pre> С <TD: L'ENERGIE CINETIQUE DU SYSTEME.</pre> C E = <T> +<V>;L'ENERGIE TOTALE DU SYSTEME. С <R1>: LA DISTANCE MOYENNE DE L'UN DES DEUX ELECTRONS AU NOYAU. С <R12>: LA DISTANCE MOYENNE ENTRE LES DEUX ELECTRONS. С С С NOTONS QUE CE PROGRAMME PEUT ETRE UTILISE DANS LE CAS С OU LE MODELE DE FONCTION D'ONDE EST DIFERENT DU NOTRE, С С DANS CE CAS IL FAUT REMPLACER F1(U), F2(U), ... F6(U), PAR LEURS EXPRESSIONS RESPECTIVES С (:

```
AERRL=1. 0E-12
        AERRM=1. 0E-10
        AERRN=1, OE-10
С
С
        APPEL AU SOUS PROGRAMME QUI MINIMISE <H>
С
        CALL ZXMIN(FUNCT, N, NSIG, MAXFN, IOPT, X, H, G, F, W, IER)
        S = X(1)
        C≃X(2)
С
С
        DCADRE EST UN SOUS PROGRAMME QUI EVALUE L'INTEGRALE
С
        SIMPLE POUR UNE FONCTION ET UN INTERVALE DONNES
С
С
        RM ET RN SONT RESPECTIVEMENT LES INTEGRALES SUR U DANS
        L'INTERVALE A, B DE F5(U) ET F6(U)
С
С
        RM=DCADRE(F5, A, B, AERRM, RERR, ERRORM, IERM)
        RN=DCADRE(F6, A, B, AERRN, RERR, ERRORN, IERN)
С
С
С
        Z_{v} = -\langle Z/R1 \rangle = \langle V1 \rangle
        \chi_{J=-RJ(D)/RL(D)}
С
        ZI = \langle T \rangle
        ZI = RI(D)/RL(D)
С
        ZK = \langle 1/R12 \rangle = \langle V12 \rangle
        ZK = RK(D)/RL(D)
        ZO = 2\langle V1 \rangle + \langle V12 \rangle = -2\langle Z/R1 \rangle + \langle 1/R12 \rangle = \langle V \rangle
С
        20=2 *2J+2K
С
        ZL = \langle V \rangle / \langle T \rangle
        ZI = ZO/ZI
С
        ZM = \langle R12 \rangle
        ZM = RM/RL(D)
С
        ZN = <R1>
        ZN=RN/RL(D)
С
```

C ESTIMATION DES EURREURS ABSOLUES DUES A L'INTEGRATION NUMERIQUE
ERRORZJ=ERRORJ+ERRORL
ERRORZK=ERRORK+ERRORL
ERRORZI=ERRORI-ERRORL
ERRORZM#ERRORNEERRORL
ERRORZN=ERRORL
ERRORZO=2. #ERRORZJ+ERRORZK
C ERRORE EST RELATIVE A <h></h>
ERRORE=ERRORI+2. *ERRORJ+ERRORK+ERRORL
ERRORZL=ERRORZI+ERRORZO
(:
C IMPRESSION DES RESULTAIS
C
PRINT 05, I
05 FORMAT(////// 10%, (ATOHE A DEUX ELECTRONS: $Z = (, 11)$
PRINT 10
10 FORMAI(10X, '++++++++++++++++++++++++++++++++++++
PRINT 15
15 FORMAT(10X, /
₩ <u></u> ´, /)
PRINT 20, X(1), X(2), G(1), G(2), IER
20 FORMAT(7,10X, 'S=',F8.5,2X, 'C=',F7.5,2X, 'D <h>/DS=',E8.2,2X,</h>
'D <h>/DC=', E8. 2, 2X, 'IER=', I3, //)</h>
PRINT 25, ZK, ERRORZK, IERK
25 FORMAT(10X, ' <v12>=', F15, 9, 4X, 'ERROR=', E15, 5, 4X, 'IER=', I4, //)</v12>
PRINT 30, ZJ, ERRORZJ, IERJ
30 FORMAT(10X, ' <v1>= ', F15, 9, 4X, 'ERROR=', E15, 5, 4X, 'IER=', I4, //)</v1>
PRINT 35, ZO, ERRORZO
35 FORMAT(10X, ' <v>= ', F15, 9, 4X, 'ERROR=', E15, 9, 4X,</v>
/ (V)==(V12)+2(V1)/, //)
PRINT 40, ZI, LRRURZI, IERI
40 FURMAT(10X) (CL2= ()F15, 9, 4X, (ERRUR=()E15, 5, 4X, (LER=()14, //)
45 FURMATTIOX, 1922/912 = 17F8.477X7 (ERRUR= 17E15.9777)
E.K.TDE DOVED FIRIOUSE

.

```
FORMAT(10X) (E = 5 F12, 7, 7X) (ERROR= 5 E15, 5, 4X) (E=<T>+<V> 5 ///)
50
      PRINT 55, ZM, ERRORZM, IERM
55
      FORMAT(10X) (<R12)= () F15, 9, 4X) (ERROR= () E15, 9, 4X) (IER= () I4, //)
      PRINT 60, ZN, ERRORZN, IERN
      FORMAT(10X, '<R1>= ', F15, 9, 4X, 'ERROR=', E15, 9, 4X, 'IER=', I4, //)
60
      PRINT 65
      FURMAT(10X, '_____
65
     łł_____(,/)
C
70
      CONTINUE
      END
С
С
      FONCTION A MINIMISER <H> = <T> -2<Z/R1> +<1/R12>
С
      SUBROUTINE FUNCT(N, X, F)
      INTEGER N
      REAL X(2), F
      COMMON/PAR/S, C
      S=:X(1)
      (2) \times (2)
      F = (RI(D) - 2, *RJ(D) + RK(D)) / RL(D)
      RETURN
      END
С
      R1(D) = INTEGRALE SUR U DE F1(U) DANS L'INTERVALE A, B
С
(;
      FUNCTION RI(D)
      COMMON/PAR1/A, B, AERRI, AERRJ, RERR, ERRORI, IERI, ERRORJ, IERJ
     #, AERRK, AERRL, ERRORK, ERRORL, IERK, IERL, AERRM, AERRN
     #, ERRORM, ERRORN, IERM, IERN
      EXTERNAL F1
      RI=DCADRE(F1, A, B, AERRI, RERR, ERRORI, IERI)
      RETURN
      END
```

С

```
С
      RJ(D) = INTEGRALE SUR U DE F2(U) DANS L'INTERVALE A, B
С
      FUNCTION RJ(D)
      COMMON/PAR1/A, B, AERRI, AERRJ, RERR, ERRORI, IERI, ERRORJ, IERJ
     #, AERRK, AERRL, ERRORK, ERRORL, IERK, IERL, AERRM, AERRN
     #, ERRORM, ERRORN, IERM, IERN
      EXTERNAL F2
      RJ=DCADRE(F2, A, B, AERRJ, RERR, ERRORJ, IERJ)
      RETURN
      END
С
С
      RK(D) = INTEGRALE SUR U DE F3(U) DANS L'INTERVALE A, B
С
      FUNCTION RK(D)
      COMMON/PAR1/A, D , AERRI, AERRJ, RERR, ERRORI, IERI, ERRORJ, IERJ
     #, AERRK, AERRL, ERRORK, ERRORL, IERK, IERL, AERRM, AERRN
     #, ERRORM, ERRORN, IERM, IERN
                                    ,
      EXTERNAL F3
      RK=DCADRE(F3, A, B, AERRK, RERR, ERRORK, IERK)
      RETURN
      END
С
С
      RL(D) = INTEGRALE SUR U DE F4(U) DANS L'INTERVALE A, B
С
      FUNCTION RL(D)
      COMMON/PAR1/A, B, AERRI, AERRJ, RERR, ERRORI, IERI, ERRORJ, IERJ
     #, AERRK, AERRL, ERRORK, ERRORL, IERK, IERL, AERRM, AERRN
     #, ERRORM, ERRORN, TERM, TERN
      EXTERNAL F4
      RL=DCADRE(P4, A, B, AERRL, RERR, ERRORL, IERL)
      RETURN
      END
С
С
С
      FI(U) EST TELLE QUE <I> =(1/RL(D))*RI(D)
```

.

С

REAL FUNCTION F1(U) COMMON/PAR/S,C REAL U

C

```
Y=2.7182818
W=1.DQ(U+Y)
P=-S*W+1./(U+Y)
P1=S*W/(U+Y)
P3==2.*P*S*C+4.*C**2
A1=(U/(2.*S**3)+U**2/(2.*S**2))*(P1*U+P2*U**3/3.)
A2=(P1*U**3/3.+P2*U**5/5.)/(2.*S**2)
A3=U*(1/(4.*S**3)+U**2/(2.*S)+U/(2.*S**2))
A4=P**2*U*(3*C)**2*U**5/5.+P3*U**3/3.
A5==U*(P**2*U**3/3.+(S*C)**2*U**3/3.
A5==U*(P**2*U**3/3.+(S*C)**2*U**3/3.)
A5==U*(P**2*U**3/3.+(S*C)**2*U**3/3.)
A5==U*(P**2*U**3/3.+(S*C)**2*U**3/3.)
A5==U*(P**2*U**3/3.+(S*C)**2*U**3/3.)
A5==U*(P**2*U**3/3.+(S*C)**2*U**3/3.)
```

С

RELURN. FMD

С

```
C
```

```
C F2(U) EST TELLE QUE <Z/R1> = (1/RL(D))*RJ(D)
```

```
C
```

```
REAL FUNCTION F2(U)
COMMON/PAR/S(C
COMMON/PAR2/2
RFAL U
```

С

Y=2.7182018 W=EUG(U+Y) Q1=U*(1/(4.*S**2)+U/(2.*S)) Q2=W**2*U+C**2*U**5/5.+2.*W*C*U**3/3. F2=2.*Z*Q1*Q2*EXP(-2.*S*U)

```
RETURN
      END
(:
(:
С
      FO(U) EST TELLE QUE \langle 1/R12 \rangle = \langle 1/RL(D) \rangle *RK(D)
C
      REAL FUNCTION F3(U)
      COMMON/PAR/S, C
      REAL U
C
      Y=2.7102810
      W≈1.D(C(U+Y))
      T1=(17(4, #5##3)+U##27(2, #5)+U7(2, #5##2))
      T2=W%%2%U+C%%2%U%%575,+2,%C%W%U%%373,
      T3=-(Ux+2*U+*3/3 +C++2*U+*7/7, +2, +C+W*U+*5/5, )/(2, +5)
      F3=(T1#T2+T3)#EXP(-2.#5#U)
(:
      RETURN
      END.
()
(:
С
      F4(U) EST TELLE QUE RL(D) = INTEGRALE SUR U DANS L'INTERVALE A, B
(:
      REAL FUNCTION F4(U)
      COMMON/PAR/5, C
      REAL U
С
      Y=2.7102810
      W=L8G(UFY)
      B1=U*(1/(4.*S**3)+U**2/(2.*S)+U/(2.*S**2))
      B2=W**2*U+C**2*U**5/5,+2,*C*W*U**3/3,
      B3=-U*(W**2*U**3/3.+C**2*U**7/7.+2.*C*W*U**5/5.)/(2.*S)
      F4=(B1*B2+B3)*EXP(-2.*S*U)
С
      RETURN
                                             .
```

END

```
C
      REAL FUNCTION F5(U)
      COMMON/PAR/S, C
      REAL U
C
      Y=2,7182818
      W = L(OG(U+Y))
      W_1 = U_*(1/(4, *S**3) + U**2/(2, *S) + U/(2, *S**2))
      W2=W**2*U+C**2*U**5/5.+2.*C*W*U**3/3.
      W3=--U*(W**2*U**3/3.+C**2*U**7/7.+2.*C*W*U**5/5.)/(2.*5)
      F5=U*(W1*W2+W3)*EXP(-2.*S*U)
C
      RETURN
      END
C
C
С
      F6(U) EST TELLE QUE \langle R1 \rangle \approx (1/RL(D)) * RN(D)
C
      REAL FUNCTION F6(U)
      COMMON/PAR/S, C
      REAL U
C
      Y=2.7102818
      W≔LOG(U+Y)
      G1=U*(3/(8,*5**4)+3,*U/(4,*5**3)+3,*U**2/(4,*5**2))
     #+U**4/(2,*S)
      G2=W**2*U**3/3.+C**2*U**5/5.+2.*C*W*U**3/3.
      G3=--U*(1/(4.*S**2)+U/(2.*S))
      G4=W**2*U**3/3.+C**2*U**7/7.+2.*W*C*U**5/5.
      F6=0.5*(G1*G2+G3*G4)*EXP(-2.*S*U)
С
      RETURN
```

F5(U) EST TELLE QUE $\langle R12 \rangle = (1/RL(D)) * RM(D)$

END

С

ANNEXE B

<u>Listaqe du sous-programme ZXMIN utilisé pour</u>

<u>la détermination des paramètres s et c</u>

C C C	PURPOSE	-	MININUH OF A FUNCTION OF N VARIABLES USING A QUASI-NEWTON METHOD	ZXMIN ZXMIN ZXMIN
0 0 0	USAGE	-	CALL ZXHIN (FUNCT, N, NSIG, MAXFN, IOPT, X, H, G, F, W, IER)	ZXMIN ZXMIN ZXMIN
	ARGUMENTS	FUNCT -	A USER SUPPLIED SUBROUTINE WHICH CALCULATES THE FUNCTION F FOR GIVEN PARAMETER VALUES X(1),X(2),,X(N). THE CALLING SEQUENCE HAS THE FOLLOWING FORM	Z X MI N Z X MI N Z X MI N Z X MI N
			GALL FUNCT (N,X,F) WHERE X IS A VECTOR OF LENGTH N. FUNCT MUST APPEAR IN AN EXTERNAL STATEMENT	ZXMIN ZXMIN ZXMIN
C C		N -	IN THE CALLING PROGRAM. FUNCT MUST NOT ALTER THE VALUES OF X(I),I=1,,N OR N. THE NUMBER OF PARAMETERS (I.E., THE LENGTH	ZXMIN ZXMIN ZXMIN
C C C		NSIG -	OF X) (INPUT) CONVERGENCE CRITERION. (INPUT). THE NUMBER	ZXMIN ZXMIN ZXMIN
С С С			PARAMETER ESTIMATES. THIS CONVERGENCE CONDITION IS SATISIFIED IF ON TWO SUCCESSIVE ITERATIONS, THE PARAMETER	ZXMIN ZXMIN ZXMIN

, [1AXFN -	ESTIMATES (1.E., X(I), I=1,,N) AGREE, COMPONENT BY COMPONENT, TO NSIG DIGITS. MAXIMUM NUMBER OF FUNCTION EVALUATIONS (1.E., CALLS TO SUBPOUTINE FUNCT) ALLOWED. (INPUT) OPTIONS SELECTOR. (INFUT) IOPT = 0 CAUSES ZXMIN TO INITIALIZE THE HESSIAN MATRIX H TO THE IDENTITY MATRIX. IOPT = 1 INJICATES THAT H HAS BEEN INITIALIZED BY THE USER TO A POSITIVE DEFINITE MATRIX. IOPT = 2 CAUSES ZXMIN TO COMPUTE THE CIAGONAL VALUES OF THE HESSIAN MATRIX AND SET H TO	ZXMIN ZXMIN ZXMIN ZXMIN ZXMIN ZXMIN ZXMIN ZXMIN ZXMIN ZXMIN
	,	A DIAGONAL MATRIX CONTAINING THESE VALUES. IOPT = 3 CAUSES ZXMIN TO COMPUTE AN ESTIMATE OF THE HESSIAN IN H.	ZXMIN ZXMIN ZXMIN
,	x –	VECTOR OF LENGTH & CONTAINING PARAMETER VALUES. ON INFUT, X MUST CONTAIN THE INITIAL PARAMETER ESTIMATES. ON GUTPUT, X CONTAINS THE FINAL PARAMETER ESTIMATES AN DETERMINED BY ZXPIN.	ZXMIN ZXMIN ZXMIN ZXMIN ZXMIN ZXMIN
,	H -	VECTOR OF LENGTH N# (N+1)/2 CONTAINING AN	ZXHIN
		ESTIMATE OF THE HESSIAN MATRIX D**2F/(UX(I)DX(J)), I,J=1,,N. H IS STURED IN SYMMETRIC STORAGE MODE. ON INFUT, IF IOPT = 0, 2, OR 3 ZXMIN INIT.A- LIZES H. AN INITIAL SETTING OF H BY THE USER IS INDICATED BY IOPT=1. H MUST BE POSITIVE DEFINITE. IF IT IS NOT, A TERMINAL ERROR OCCURS. ON OUTPUT, H CONTAINS AN ESTIMATE OF THE HESSIAN AT THE FINAL PARAMETER ESTIMATES (1.E., AT X(1),X(2),,X(N)) A VECTOR OF LENGTH N CONTAINING AN ESTIMATE	Z X MI N Z X MI N
(-	A VEGICIA OF LENGTH A CONTAINING AN ESTIMATE	T V DE N

ĺ

i.	С		- • •	OF THE GRADIENT DEVOX(I), I=1,, N AT THE	ZXMIN
	С			FINAL PARAMETER ESTIMATES. (OUTPUT)	ZXMIN
	C		F	- A SCALAR CONTAINING THE VALUE OF THE FUNCTION	ZXMIN
	С			AT THE FINAL PARAMETER ESTIMATES. (OUTPUT)	ZXHIN
ł	C		W	- A VECTOR OF LENGTH 3*N USED AS WORKING SPACE.	ZXHIN
i	Ċ			ON OUTPUT, WORK(1), CONTAINS FOR	ZXNIN
-	C			I = 1, THE NORM OF THE GRADIENT (I.E.,	ZXHÍN
İ	Ĉ			SORT (G(1)**2+G(2)**2++G(N)**2))	ZXHIN
	C			I = 2, THE NUMBER OF FUNCTION EVALUATIONS	ZXMIN
н н- х	Ċ			PERFOFMEC.	ZXMIN
	C			I = 3, AN ESTIMATE OF THE NUMBER OF	ZXMIN
	Č			SIGNIFICANT DIGITS IN THE FINAL	ZXMIN
	Č			PARAMETER ESTIMATES.	ZXHIN
ļ	C		IER	- ERROF PARAMETES (OUTPUT)	ZXHIN
	C			TERMINAL ERROP	ZXMIN
	C			1EF = 129 IMPLIES THAT THE INITIAL HESSIAN	ZXHIN
!	С			USED BY ZXMIN IS NOT POSITIVE DEFINITE,	ZXHIN
	С			EVEN AFTER ADDING A MULTIPLE OF THE	ZXHIN
	C			IGENTITY TO MAKE ALL DIAGONAL-ELEMENTS	ZXHĪN
I.	С			POSITIVE.	ZXMIN
1	С			IER = 130 IMPLIES THAT THE ITERATION WAS	ZXHIN
ļ · ·	Ĉ			TERMINATED DUE TO ROUNDING ERRORS	ZXMÍN
	С			BECOMING DOMINANT. THE PARAMETER	ZXMIN
1	C			ESTIMATES HAVE NOT BEEN DETERMINED TO	ZXMIN
	C			NSIG DIGITS.	ZXMIN
i	С			IER = 131 IMPLIES THAT THE ITERATION WAS	ZXMIN
	С			TERMINATED BECAUSE MAXEN WAS EX(EDED.	ZXHIN
	.	SUBROUTINE	ZXMIN	(FUNCT,N,NSIG,MAXFN,IOPT,X,H,G,F,W,IER)	ZXMIN
	С			SPECIFICATIONS FOR ARGUMENTS	ZXHIN
Ĺ		1 NT EGER		N, NSIG, MAXFN, I (PT, IER	ZXHIN
	2012 222 2	REAL		X(N),G(N),H(1),F,W(1)	ZXHIN
	С			SPECIFICATIONS FOR LOCAL VARIABLES	ZXMIN
		INTEGER		IG,IGG,LS,IDiFF,LR,IJ,I,J,NM1,JJ,JP1,L,KJ,K,	ZXMIN
		Б.		IFN,LINK,ITN,II,IM1,JNT,NP1,JB,NJ	ZXMIN

.

87

	REAL	HEPS, AX, ZERO, ONF, HALF, SEVEN, FIVE, THELVE, TEN, HH,	ZXMIN
	• •	$E_1 = E_2 + 7 + 6 V S + 6 G S + S T G = 77 + 6 N E M + P + 2 + M + M + 2 + E + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$	
	■ 1	F12.F21.F22.HMAX.HMIN	
	ΔΤΑΟ	REPS/1641400000 f0 00000000002.4X/0.1/	
	ΠΔΤΔ	7ER0/0-0/-0NE/1-0/-HALE/0-5/-	
	₽ E E E E E E E E E E E E E E E E E E E	SEVEN $/7 \cdot 0/ \cdot ET VE/5 \cdot 0/ \cdot 1$ bel VE/12.0/	
	*	TEN/10.0/.P1/0.1/	
С		INITIALIZATION	
Ĉ		FIRST EXECUTABLE STATEMENT	
•	1 = 3 = 0		ZXMIN
	HH = SORT (REPS)		ZXMIN
	H2 = SQFT(HH)		ZXMIN
	EPS = TEN** (+NSIG)		ZXHIN
	IG = h		ZXMIN
	166 = N+N		ZXMIN
	1S = 1GG		ZXMIN
	1C1FF = 1		ZXMIN
	II = Ii		ZXMIN
	W(1) = -ONE		ZXM1N
	W(2) = ZFO		ZXMIN
	W(3) = ZEKO		ZXMIN
С		EVALUATE FUNCTION AT STARTING POINT	ZXHIN
	LO 5 I=1,N		ZXMIN
	G(I) = X(I)		ZXMIN
	5 CONTINUE		ZXMIN
	CALL FUNCT (N,G,F)		ZXMIN
	1 FN = 1		ZXMIN
	1F (ICPT.:Q.1) 60	10.50	ZXMIN
С		SET OFF-LIAGUNAL ELEMENTS OF H TO 0.0	JZXMIN
	1F (N.EG.1) GO TO	20	ZXMIN
	1J = 2		ZXMIN
	00 15 I=2,N		ZXMIN
	IC 10 J=2,I		ZXMIN

	H(JJ) = ZFFO	ZXHIN
	IJ = IJ+1	ZXMIN
	10 CONTINUE	ZXMIN
	IJ = IJ + I	ZXMIN
	15 CONTINUE	ZXHIN
	20 IF (ICPT.NL.B) GO TO 30	ZXMIN
C C	SET DIAGONAL FLEMENTS OF H TO ONE	ZXMIN
	$\mathbf{I} \mathbf{J} = 0$	ZXHIN
	DO 25 $I = 1, N$	ZXMIN
	I = I I + I	ZXMIN
	H(IJ) = ONE	ZXMIN
	25 CONTINUE	ZXMIN
	GO TO 95	ZXMIN
C	GET DIAGONAL ELEMENTS OF HESSIAN	ZXMIN
	30 IM1 = 1	ZXMIN
	NM1 = 1	ZXMIN
	NP1 = N+1,	ZXHIN
	DO 35 I=2,NP1	ZXMIN
	$HHH = H2 \neq AMA \times 1 (ABS (X (IM1)), AX)$	ZXMIN
	G(1M1) = X(1M1) + HHH	ZXMIN
	CALL .NCT(N,G,F2)	ZXMIN
	G(IM1) = X(IM1) - HHH	ZXMIN
	CALL FUNCT(N,G,FF)	ZXMIN
	H(NM1) = (FF-F+F2-F)/(HHH+HHH)	ZXMIN
;	G(1M1) = X(IM1)	ZXMIN
	IM1 = I	ZXMIN
	NM1 = I + NM1	ZXMIN
	35 CONTINUE	ZXHIN
	1FN = IFN+N+N	ZXMIN
	IF (IOPT.NE.3 .OR. N.LO.1) GO TO 50	ZXMIN

	GET THE REST (OF THE HESSIAN	ZXMIN
JJ = 1			ZXMIN
11 = 2			ZXMIN

í Č

989

```
N, S=1 6+ 00
                                                                                 ZXMIN
          GHH = H2*AMA \times 1(L \cup S(X(I)), AX)
                                                                                 ZXMIN
          10 40 J=1, JJ
                                                                                 ZXMIN
             HHH = H2* AMAX1(ABS(X(J)), AX)
                                                                                 ZXHIN
             G(1) = X(1) + GHH
                                                                                 ZXMIN
             G(J) = X(J) + HHH
                                                                                 ZXMIN
             CALL FUNCT (N, G, F22)
                                                                                 ZXMIN
             G(I) = X(I) - GHH
                                                                                 ZXHIN
             CALL FUNCT (N, G, F12)
                                                                                 ZXMIN
             G(J) = X(J) - HHH
                                                                                 ZXMIN
             CALL FUNCT (N, G, F11)
                                                                                 ZXHIN
             G(I) = X(I) + GHH
                                                                                 ZXMIN
                                                                                 ZXMIN
             GALL FUNCT (N, G, F21)
             H(11) = (F22-F21-F12+F11)/(4.*HHH*GHH)
                                                                                 ZXMIN
             G(J) = X(J)
                                                                                 ZXHIN
             II = II + 1
                                                                                 ZXMIN
          CUNFINUE
                                                                                 ZXMIN
   40
                                                                                 ZXMIN
          G(1) = X(1)
                                                                                 ZXMIN
          JJ = JJ+1
          II = .1 + 1
                                                                                 ZXMIN
                                                                                 ZXMIN
   45 CONTINUE
                                                                                 ZXMIN
      IFN = IFN + ((N^{+}N^{-}N)^{+}2)
                                       ADD MULTIPLE OF IDENTITY TO
                                                                                 ZXMIN
С
C
                                       MAKE DIAGONAL ELEMENTS POSITIVE
                                                                                 ZXMIN
                                                                                 ZXMIN
   50 \text{ HMIN} = H(1)
                                                                                 ZXMIN
       HMAX = H(1)
                                                                                 ZXMIN
       NM1 = 1
                                                                                 ZXH1N
      DO 55 1=1.N
                                                                                 ZXMIN
          HMIN = AMIN1(HMIN, H(NM1))
                                                                                 ZXMIN
          HMAX = AMAX1(HMAX, H(NM1))
                                                                                 ZXMIN
          NM1 = NM1 + I + 1
                                                                                 ZXMIN
   55 CONTINUE
       HMIN = AMAX1(0.01^{4}(ABS(HMAX)+ABS(HMIN))-HMIN,0.0)
                                                                                 ZXMIN
                                                                                 ZXMIN
       NM1 = 1
       DO 60 1=1.N
                                                                                 ZXMIN
```

			H(NM1) = H(NM1) + HM	1 1	ZXMIN	
	13		NM1 = NM1 + I + 1		ZXMIN	
			60 CUNTINUE		ZXMIN	
		С		FAUTOR H TO LEVEL-TRANSPOSE	ZXMIN	
	+C		16 = 14		ZXMIN	
			IF (N.GT.1) GO TO 65		ZXMIN	
			1F (H(1).GT.ZEFO) GO	TO 95	ZXMIN	
			H(1) = ZEPO		ZXMIN	
			$\mathbf{I} \mathbf{F} = 0$		ZXMIN	
			GO TO 90		ZXMIN	
			65 NM1 = N-1		ZXMIN	
) = (L		ZXMIN	
			DO 85 J=1,N		ZXMIN	
			JF1 = J+1		ZXMIN	
			l+l l = l l		ZXMIN	
			(L)H = LLH		ZXHIN	
			IF (HJJ.GT.ZERO) G	O TO 70	ZXHIN	
			H(JJ) = 71RO		ZXMIN	
			IF = IF - 1		ZXMIN	
•			GO 10 85		ZXMIN	
			70 1F (J.EQ.N) GO TO	85	ZXMIN	
					ZXMIN	
			L = 0		ZXMIN	
			60 80 L=JP1,N		ZXMIN	
			L = L+1		ZXHIN	
			I J = I J + I - 1		ZXMIN	
	:		V = H(I,J) / H J J		ZXMIN	
			KJ = IJ			
			00 75 K=1,N	17 1		
			H(KJ+L) = H(KJ + LJ = H(KJ) + V		
			KJ = KJ + K			
			75 CONTINUE			
			H(T(1)) = A			

	80	CONTINE		ZXMIN
	85	CONTINUE		ZXMIN
	90	IF (IR.EQ.N) GO TO 95		ZXHIN
		IER = 129		ZXHIN
				ZXMIN
· • • • • • • • • • • • • • • • • • • •	95	ITN = 0		ZXHIN
		DF = -ONE		ZXHIN
C			EVALUATE GRADIENT W(IG+I),I=1,,N	ZXMIN
	100	LINK = 1		ZXMIN
		GO TO 280		ZXMIN
	105	CONTINUE		ZXHIN
C			BEGIN ITERATION LOOP	ZXMIN
Ū		IE (IEN.GE.MAXEN) GO TO 240		ZXMIN
		ITN = ITN + 1		ZXMIN
		DO 110 I=1.N	·	ZXHIN
		W(I) = -W(IG+I)		ZXHIN
	110	GONTINUE		ZXMIN
C			DETERMINE SEARCH DIRECTION W	ZXHIN
Ğ			BY SOLVING H♥W = -G WHERE	ZXMIN
C			H = L I DIL - TRANSPOSE	ZXMIN
		1F (IR.LT.N) GO TO 140		ZXMIN
C			N .EQ. 1	ZXMIN
		G(1) = W(1)		ZXMIN
	-	IF (N.GT.1) GO TO 115		ZXMIN
		W(1) = W(1)/H(1)		ZXMIN
		GO TO 140		ZXMIN
C			N .GT. 1	ZXMIN
-	115	iI = 1		ZXMIN
С			SOLVE L [#] W = -G	ZXMIN
		DO 125 I=2,N		ZXHIN
		IJ = II		ZXMIN
		$1 \downarrow = II + I$		ZXMIN
I		V = W(I)		ZXHIN
,		IM1 = I - 1		ZXMIN
		DO 120 J=1,IM1		ZXMIN

W(N) = W(N)/H(II) $JJ = II$ $MM1 = N-1$ $G0 135 NJ=1, NM1$ $J = N-NJ$ $JP1 = J+1$ $JJ = JJ-JP1$ $V = W(J)/H(JJ)$ $IJ = JJ$ $D0 130 I=JP1, N$ $IJ = IJ+I-1$ $V = V-H(IJ)=W(I)$ 130 CONTINUE	Z X MI N Z X MI N
W(J) = V 135 CONTINUE C 140 RELX = ZERO	ZXMIN ZXMIN INE STEP LENGTH ALPHA ZXMIN ZXMIN
GSU = ZF G DO 145 1,N W(IS+1) = W(I) DIFF = ABS(W(I))/AMAX1(ABS(X(I))) RELX = AMAX1(RELX,DIFF) GSO = GSO+W(IG+1)*W(I) 145 CONTINUE	Z X MI N Z X MI N

· .	IF (FELX.EQ.ZEFO) GO TO 245	7 X MT N
	AEPS = EPS/RELX	ZXMIN
	IER = 130	ZXMIN
	IF (GS0.GE.ZEFO) GO TU 245	7 X MI N
	IF (DF.EQ.ZERO) GO TO 245	ZXMTN
	1 ER = 0	7 X M T N
	ALPHA = (+DF+DF)/GS0	7 Y MT N
	1F (ALPHA.LE.ZEKO) ALPHA = ONE	
	ALPHA = AMIN1(ALPHA, ONE)	ZYNTN
	IF (LUIFF.EQ.2) ALPHA = AMAX1(P1.ALPHA)	7 X M T N
	FF = F	ZXMEN
	TOT = ZEHO	7 X HI N
	JNT = 0	7 X MT N
C	SEARCH ALCNG X +ALPHA+W	7 X MT N
150	IF (IFN.GL.MAXEN) GO TO 240	ZXMIN
	DO 155 I=1.N	ZXHIN
	$W(I) = X(I) + ALPH \mu \in W(IS + I)$	ZXHIN
155	CONTINUE	ZXMIN
	CALL FUNCT (N, H, F1)	ZXMIN
	IFN = IFN+1	ZXMIN
	1F (F1.GE.F) GO TO 160	ZXHIN
	$F_{2} = F$	ZXMIN
	TOT = TOT+ALPHA	ZXMIN
160	IER = 0	ΖΣΗΣΝ
	F = F1	ZXHIN
	DO 165 I=1,N	ZXHIN
	X(1) = W(1)	ZXMIN
165	CONTINUE	ZXHIN
	IF (JNT-1) 170, 200, 205	ZXMIN
170	IF (IFN.GE.MAXEN) GO TO 240	ZXMIN
	DJ 175 I=1,N	ZXMIN
	W(1) = X(1) + ALPHA + W(1S + I)	ZXHIN
175	CONTINUE	ZXMIN
	CALL FUNCT (N,H,F1)	ZXMIN
	IFN = IFN+1	7 V MT LI

.

	IF (F1+F2.GE.F+F .AND. SEVEN#F1+FIVE#F2.GT.TWELVE#F) JNT = 2	ZXHIN
	TÖT = ,TOT +ÁL PHÁ	ZXHIN
	ALPHA = ALPHA+ALPHA	ZXMIN
	GO TO 160	ZXHIN
180	CONTINUE	ZXHIN
	IF (F.FQ.FF AND, IDIFF.EQ.2 AND, RELX.GT.EPS) IER = 130	7 X M T N
	IF (ALPHA.LT.AEPS) GO TO 245	7XMIN
	IF (IFN.GE.MAXEN) GO TO 240	7XHIN
	ALPHA = HALF + ALPHA	7 X MT N
	00.185 I = 1.N	7 X MT N
	$W(I) = X(I) + ALPHA^* H(IS + I)$	7XMTN
185	CONTINUE	7 X MT N
- • •	GALL FUNCT (N+W+F2)	7 X MT N
	IFN = IFN+1	ŽXMIN
	IF (F2.GE.F) GO TO 195	7XMIN
	TOT = TOT + ALPHA	7 X MI N
	IER = 0	ZXMIN
	F = F2	ZXHÌN
	GO 190 I=1,N	ZXMIN
	X(I) = W(I)	ZXHIN
190	CONTINUE	ZXHIN
	GO TO 200	ZXMIN
195	Z = F1	ZXMIN
	1F (F1+F.GT.F2+F2) Z = ONL+HALF*(F-F1)/(F+F1-F2-F2)	ZXMIN
	Z = A HAX1(P1,Z)	ZXMIN
	ALPHA = Z* ALPHA	ZXMIN
`	JNT = 1	ZXMIN
	GO TO 150	ZXMIN
200	1F (TOT.LT.AEPS) GO TO 245	ZXMIN
205	ALPHA = TOT	ZXMIN
С	SAVE OLD GRACIENT	ZXMIN
	0.0 210 I=1.N	ZXMIN

1F (F1.GE.F) GO TO 205

| ,

> 9 U

ZXMIN

		J	
		W(I) = W(IG+I)	ZXMIN
	210	CONTINUE	ZXMIN
С		EVALUATE GEACIENT W(IG+I), I=1,,N	ZXMIN
		LINK = 2	ZXHIN
		GO TO 280	ZXMIN
	215	IF (IFN.GE.MAXFN) GO TO 240	ZXMIN
		GYS = ZEFC	ZXHIN
		DO 220 I=1,N	ZXMIN
		GYS = GYS + W (IG + I) * W (IS + I)	ZXMIN
		W(IGG+I) = W(I)	ZXHIN
	220	CONTINUE	ZXHIN
		DF = FF-F	ZXHIN
		DGS = GYS - GSO	ZXMIN
		IF (DGS.LE.ZERO) GO TU 105	ZXMIN
		IF (OGS+ALPHA+GSO.GT.ZFFC) GO TO 230	ZXMIN
С		UPDATE HESSIAN H USING	ZXŇÍN
C		COMPLEMENTARY DFP FORMULA	ZXHIN
		SIG = UNE/GSO	ZXMIN
		IR = -IR	ZXHÍŇ
		CALL ZXMJN(H,N, H,S1G,G, IK, 0, ZERO)	ZXHIN
		DO 225 I=1,N	ZXMIN
		G(I) = W(IG+I) - W(IGG+I)	ŻXMIN
	225	CONTINUE	ZXMIN
		SIG = ONE/(ALPHA#DGS)	ZXMIN
		IR = -IR	ŽXNIN
		CALL ZXHJN(H,N,G,SIG,W,IE,0,ZERO)	ZXMIN
		GO TO 105	ZXMIN
C		UPDATE HESSIAN USING	ZXHIN
C		DFP FORNULA	ZXHIN
	230	ZZ = ALPHA/(DGS-ALPHA*GSO)	ZXMIN
		SIG = -ZZ	ZXMIN
		CALL ZXMJN(H,N,W,S,G,G,IF,O,FEPS)	ZXHIN
		$Z = DGS^* ZZ - ONE$	ZXHIN
		DO 235 1=1,N	ZXMIN
		$G(I) = W(IG+I) + Z^*W(IGG+I)$	ZXHIN

	235	CONTINUE		ZXMIN	
		$SIG = ONE / (ZZ*DGS^{2}DGS)$		ZXHIN	
(CALL ZXMJN(H,N,G,SIG,W,IK,0	,ZERO)	ZXMIN	
		GO TO 105		ZXMIN	
	240	$1 \dot{E} R = 1.31$		ZXHIN	
1	C		MAXEN FUNCTION EVALUATIONS	ZXMIN	
1		GO TU 250		ZXMIN	
	245	5 1F (101FF.EQ.2) GO TO 250		ZXMIN	
1	С		CHANGE TO CENTRAL DIFFERENCES	ZXMIN	
		10IFF = 2		ZXHIN	
		GO TO 100		ZXMIN	
	250	1F (IER.NE.0) GU TO 255		ZXMIN	
		IF (RELX.LE.EPS) GO TO 255		ZXMIN	
		GO TO 100		ZXMIN	

С	HOVE GRADIENT TO G AND RETURN	ZXMIN
255	GNRM = ZERO	ZXMIN
	00 260 1=1,N	ZXMÍN
	G(1) = W(1G+1)	ZXMIN
	GNHM = GNRM + G(I) * G(I)	ZXMIN
260	CONTINUE	ZXMIN
	GNRM = SGRT(GNPM)	ZXMÍN
	W(1) = GNHM	ZXMIN
	W(2) = IFN	ZXMIN
	W(3) = -ALOG10(AMAX1(REPS, RELX))	ZXHIN
С	$COMPUTE H = L^{m}D^{m}L - TFANSPOSE$	ZXMIN
	1F (N.EQ.1) GO TO 9000	ZXMIN
	NP1 = N+1	ZXMIN
	NM1 = N-1	ZXMIN
	$JJ = (N^{*}(NP1))/2$	ZXMIN
	DÖ 275 JB=1, NM1	ZXHIN
	JP1 = NP1 - JB	ZXMIN
	JJ = JJ = JP1	ZXMIN
	(LL)H = LCH	ZXHIN
	LL = LI	ZXHIN

```
L = 0
                                                                               ZXMIN
         00 270 I=JP1,N
                                                                               ZXMIN
             L = L + 1
                                                                               ZXHIN
             IJ = IJ+I-1
                                                                               ZXHIN
             V = H(IJ)™HJJ
                                                                               ZXMIN
             KJ = IJ
                                                                               ZXMIN
             DO 265 K=I,N
                                                                               ZXMIN
                H(KJ+L) = H(KJ+L)+H(KJ) \neq V
                                                                               ZXMIN
                KJ = KJ + K
                                                                               ZXMIN
  265
             CONTINUE
                                                                               ZXMIN
             H(IJ) = V
                                                                               ZXHIN
  270
         CONTINUE
                                                                               ZXMIN
          HJJ = H(JJ)
                                                                               ZXMIN
  275 CONTINUE
                                                                               ZXMIN
      GO TO 9000
                                                                               ZXMIN
C
                                      EVALUATE GRADIENT
                                                                               ZXHIN
  280 IF (101FF.E0.2) GD TO 290
                                                                               ZXMIN
С
                                      FORWAFL DIFFEPENCES
                                                                               ZXMIN
С
                                        GRA<sup>-</sup>IENT = W(IG+I), I=1,...,N
                                                                               ZXMIN
      DO 265 I=1.N
                                                                               ZXMIN
          Z = HH^{*}AMAX1(ABS(X(I)),AX)
                                                                               ZXMIN
          ZZ = X(I)
                                                                               ZXMIN
         X(1) = ZZ + Z
                                                                               ZXHIN
         CALL FUNCT (N.X.F1)
                                                                               ZXMIN
         W(1G+1) = (F_1-F)/Z
                                                                               ZXMIN
          X(1) = 27
                                                                               ZXMIN
  285 CONTINUE
                                                                               ZXHIN
      i FN = 1 FN + N
                                                                               ZXMIN
      GO TO (105, 215), LINK
                                                                               ZXM1N
С
                                      CENTRAL DIFFERENCES
                                                                               ZXMIN
С
                                        GRAPIENT = H(IG+I), I=1,...,N
                                                                               ZXMIN
  290 DO 295 1=1,N
                                                                               ZXMIN
         Z = HH^*AMAX1(AUS(X(I)),AX)
                                                                               ZXMIN
         ZZ = X(I)
                                                                               ZXMIN
                                                                               ----
         X(1) = 77+7
```

		LXMIN
	CALL FUNCT(N,X,F1)	ZXHIN
	×(1) = ZZ-Z	ZXHIN
	GALL FUNCT(N,X,F2)	ZXHIN
	W(IG+1) = (F1-F2)/(Z+Z)	ZXHIN
	\times (1) = ZZ	ZXHIN
295	CONTINUE	ZXHIN
	IFN = IFN+N+N	ZXHIN
	GO TO (105, 215), LINK	ZXHIN
9000	CONTINUE	ZXHIN

	IF (IER.NE.D) CALL UERTS) (IER, 6HZXMIN)	ZXMIN	
9005	RETURN	ZXMIN	
	END	ZXHIN	1

.

ANNEXE C

Listage du sous-programme DCADRE utilisé

pour l'évaluation des intégrales

С				DCADRE
С	PUFPOSE		NUMEFICAL INTEGRATION OF A FUNCTION USING	DCADRE
С			CAUTIOUS ADAPTIVE ROMBERG EXTRAPOLATION	DCADRE
С				DCADRE
C	USAGE	-	FUNCTION DCADEE (F,A,B,AERR,RERR,ERROF,IER)	DCADRE
C				DCADRE
С	ARGUMENTS	DCADRE -	ESTIMATE OF THE INTEGRAL OF F(X) FROM A TO B.	DCADRE
C			(OUTPUT).	DCADRE
С	F	-	A SINGLE-ARGUMENT REAL FUNCTION SUBPROGRAM	DCADRE
С			SUPPLIED BY THE USER. (INPUT)	DCADRE
С			F MUST BE DECLARED EXTERNAL IN THE	DCADRE
 C	17 TH AND THE STATE OF STATE		CALLING PROGPAM.	DCADRE
C	I	А,В —	THE TWO ENDPOINTS OF THE INTERVAL OF	DCADRE
C			INTEGRATION. (INPUT)	DCADRE
C	·····	AERR -	DESIRED ABSOLUTE ERROR IN THE ANSWER. (INPUT)	DCADRE
С	F	RERR -	DESIRED RELATIVE ERROR IN THE ANSWER. (INPUT)	DCADRE
С	f	ERROR -	ESTIMATED BOUND ON THE ABSOLUTE ERROR OF	DCADRE
C			THE OUTPUT NUMBER, ECADRE. (OUTPUT)	DCADRE
С]	I EP –	ELR OF PARAHETER. (OUTPUT)	DCADRE
С			WARNING ERROR(WITH FIX)	DCADRE
C			IER = 65 IMPLIES THAT ONE OR MORE	DCADRE
С			SINGULARITIES HERE SUCCESSFULLY HANDLED.	DCADRE

+

- C	IER = 66 IMFLIES THAT, IN SOME	DCADRE
С	SUBINTERVAL(S), THE ESTIMATE OF THE	DCADRE
C	INTEGRAL WAS ACCEPTED MERELY BECAUSE THE	DCADRE
С	ESTIMATED ERROR WAS SMALL, EVEN THOUGH NO	DCADRE
C	REGULAR BEHAVIOF WAS RECOGNIZED.	DÖADRE
С	TERMINAL ERROR	DCADRE
С	IEF = 131 INDICATES FAILURE DUE TO	DCADRE
С	INSUFFICIENT INTERNAL WORKING STOPAGE.	DCADRE
С	IER = 132 INPICATES FAILURE DUE TO	DCADRE
C	TOO MUCH NOISE IN THE FUNCTION (RELATIVE	DCADRE
C	TO THE GIVEN ERROR REQUIREMENTS) OR	DCADRE
С	DUE TO AN ILL-BEHAVED INTEGRAND.	DCADRE
Ċ	IER = 133 INDICATES THAT REFR IS GREATER	DCADRE
C	THAN 0.1, OR RERR IS LESS THAN 0.0, OR	DČÁDRE
С	RERF IS TOO SHALL FOR THE PRECISION OF	DCADRE
C	THE MACHINE.	DCADRE
Ċ		DCADRE
С	PRECISION/HARDWARE - SINGLE AND DOUBLE/H32	DCADRE
С	- SINGLE/H36,H48,H60	DCADRE
С		DCADRE
С	REQD. IMSL ROUTINES - UERTST, UGETLO	DCADRE
С		DCADRE
С	NOTATION - INFORMATION ON SPECIAL NOTATION AND	DCADRE
С	CONVENTIONS IS AVAILABLE IN THE MANUAL	DCADRE
C	INTRODUCTION OR THRCUGH IMSL ROUTINE UHELP	DCADRE
C		DCADRE
С	REMARKS 1. DCADRE CAN, IN HANY CASES, HANDLE JUMP	DCADRE
C	DISCONTINUITIES. SEE DOCUMENT REFERENCE FOR FULL	DCAGRE
C	DETAILS.	DCADRE
С	2. THE RELATIVE ERROR PARAMETER RERR MUST BE IN THE	DCADRE
C	INTERVAL (0.0,0.1) INCLUSIVELY. FOR EXAMPLE,	DCADRE
C	RERR = 0.1 INDICATES THAT THE ESTIMATE OF THE	DCADRE
С	INTEGRAL IS TO BE COFRECT TO ONE DIGIT, WHEREAS	DCADRE
С	RERF = .0001 CALLS FOR FOUR DIGITS OF ACCURACY.	DCADRE
С	IF DCADRE DETERMINES THAT THE RELATIVE ACCURACY	DCAGRE

· · -- · ·

ERRA = ABSTAERRY

. .

101

-

	STEFMN = LENGTH/(THO**MXSTGE))	DCADRE	
	STEFNM = AMAX1 (LENGTH, AES (A)	, ABS (B)) # TEN	DCADRE	
	STAGE = HALF		DCADRE	
	ISTAGE = 1		DCADRE	
	FNSIZE = ZEPO	-	DCADRE	- 1
	PREVER = ZERO		DCADRE	
	REGLAR = .FALSE.		DCADRE	
Ć		THE GIVEN INTERVAL OF INTEGRATION	DCADRE	
÷ C		IS THE FIFST INTERVAL CONSIDERED.	DCADRE	
	BEG = A		DCADRE	
·····	FBEG = F(BEG) + HALF		DCADRE	
	TS(1) = FBEG		DCADRE	
	IBEG = 1		DCADRE	
1	EDN = 8		DCADRE	
1	FENC = F(EDN) + HALF		DCADRE	
	TS(2) = FEND		DCADRE	
	IENC = 2		DCADRE	<u> </u>
	5 RIGHT = .FALSE.		DCADRE	
C		INVESTIGATION OF A PARTICULAR	DCADRE	
C		SUBINTERVAL BEGINS AT THIS POINT.	DCADRE	
I	10 STEP = EDN - BEG		DCADRE	
	ASTEP = ABS(STEP)		DCADRE	
	IF (ASTEP .LT. STEPMN) GO TO	205	DCADRE	
	HRERR = STEPNM+ASTEP		DCADRE	
I	IF (HRERF .EQ. STEPNH) GO TO	205	DCADRE	
! ·	T(1,1) = FBEG + FEND		DCADRE	
:	TABS = ABS(FBEG) + ABS(FEND)		DCADRE	
	L = 1		DCADRE	
	N = 1		DCADRE	~
1	H2CONV = .FALSE.		DCADRE	
1	AITKEN = .FALSE.		DCADRE	
ļ	15 LH1 = L		DCADRE	
	L = L + 1		DCADRE	
C		CALGULATE THE NEXT TRAPEZOID SUM,	DCADRE	
C		T(L,1), WHICH IS BASED ON #N2# + 1	DCADRE	-
) C		EQUTSPACED FOINTS. HERE,	DCADRE	
C		$N_2 = N_2^* = 2^{\# \#} (L - 1)$.	DCADRE	- Ö
-				M .

· · · · · · ·

.

~	N2 = N + N	DCADRE
1	$FN = N^2$	DCADRE
	ISTEP = (IEND + IBEG)/N	DCADRE
	1F (ISTEP .GT. 1) GO TO 25	DCADRE
	IT = IFND	DCADRE
1	IEND = IEND + N	DCADRE
	IF (IEND .GT. MAXTS) GO TO 200	DCADRE
	HOVN = STEP/EN	DCADRE
	III = IEND	DCADRE
	FI = ONF	DCADRE
	$DO_{20} T = 1.N2.2$	DCADRE
•	IS(III) = IS(II)	DCADRE
	TS(III-1) = F(EDN - FI + HOVN)	DCADRE
	$F_{1} = F_{1} + T_{WO}$	DCADRE
	III = III + 2	DCADRE
	11 = 11 + 1	DCADRE
	20 CONTINUE	DCADRE
	ISTEP = 2	DCADRE
	25 ISTEP2 = 18EG + ISTEP/2	DCADRE
	SUM - 75LO	DCADPE
		DCAORE
	DATADS - ZENO DA TATSTERZ, TEND, TSTER	DCAORE
	$\frac{10.5012-151EFC91EH09151EF}{C11M} = C11M$	DCADRE
	SOM = SOM + ISTIV	DCADRE
	SUMADS - SUMADS - ADSTISTIT	DCADRE
-	$T(1 - 1) = T(1 + 1 - 1)^{4} H(1) E_{4} SUM/EN$	DCADEE
	TAPC = TC - TYT HARTY SOUTH T	DCADPE
	N = N2	DCAORE
Ć	GET PRELIMINARY VALUE FOR EVINTE	DCADRE
ů C	ERCH LAST TRAPEZOTE SUM AND UPDATE	DCAORE
č	THE ERROR REQUIREMENT FERGCALF	DCADRE
C	FOR THIS SUBINTERVAL.	DCADRE
Ŭ	IT = 1	DCADRE
	VINT = STEP*T(L,1)	DCADRE
	TABTLM = TABS*TEN	DCADRE

1 11 F. C. . . .

_....

2 !	FNSIZE = AMAX1 (FNSIZE, ABS(T(L, 1)))	DCADRE	1 1 1
	ERGL = ASTEP*FNSIZE*TEN	UCAURE	
_	ERGOAL = STAGE AMAX1(ERRA, EFRRAABS(CURESI+VINI))	DUADRE	
C	COMPLETE ROW L AND COLUMN L OF TT	DUADRE	
C	ARRAY.	DUADRE	- 1
	FEXTRP = ONE	UGAURE	
	DO 35 I=1,LM1	DCADRE	
	$\underline{FEXTRP = FEXTRP FOUR}$	DCADRE	_
	T(I,L) = T(L,I) - T(L-1,I)	DCADRE	
	T(L,I+1) = T(L,I) + T(I,L)/(FEXTRPONE)	DCADRE	
	35 CONTINUE	DCADRE	-
	ERREF = ASTEP#ABS(T(1,L))	DCADRE	
С	FRELIMINARY DECISION PROCEDUFE	DCADRE	,
<u>C</u>	IF L = 2 AND T(2,1) = T(1,1),	DCADRE	
С	GO TO 135 TO FOLLOW UP THE	DCADRE	
С	IMPRESSION THAT INTERGRAND IS	DCADRE	ļ
С	STRAIGHT LINE.	DCADRE	
	1F (L .GT. 2) GO TO 40	DCADRE	
	HRERR = TABS + P1 + ABS (T(1,2))	DCADRE	
	IF (HRERF .EQ. TABS) GU TO 135	DCADRE	
14.00	GO TO 15	DCADRE	-1
С	CACULATE NEXT RATIOS FOR	DCADRE	i
C	COLUMNS 1L-2 OF T-TABLE	DCADRE	i i
Č	KATIO IS SET TO ZERO IF DIFFERENCE	DCADRE	
Ċ	IN LAST TWO ENTRIES OF COLUMN IS	DCADRE	
č	A BOUT ZERO	DCADRE	1
···· · · · · · · · · · · · · · · · · ·	40 DO 45 J=2.1N1	DCAURE	
	$D^{T}FF = TFRO$	DCADRE	
	HEFEE = TARTIMACRS(T(T-1,1))	DCADRE	
	TE (EEED NE TART N OTEE - T(T-1) N()/T(T-1))	DCAGRE	
	T(T = 1 M = 0 C		I
	$I (I = I) L \Pi I = U I F F$		
	TE (ARS/EDUE_T(1.1.81)) . LE HOTOL & CO TO 60	DCADRE	
	$ = \frac{1}{2} = \frac$	DCADKE	
	AF (I(1)LM1) OEMO ZEKUI UU IU 20 NE (ARS(1)HO-ARS(1)(1)H1)N OT UMETIN CO TO 470	DCADRE	
	TE () EO 3) CO TO 18 TE () EO 3) CO TO 18		, LA
	17 VL + E418E	DCAUKE	õ
1	TAUNNY - OFALSEO	DUADKE	C(I

· . --

I.	IF (ABS((T(1,LM1)-T(1,L-2))/T(1,LM1)) .LE. AITTOL) GO TO 75	DCADRE
	50 IF (REGLAR) GO TO 55	DCADRE
,	IF (L .EQ. 4) GO TO 15	DCADRE
	HRERK = ERGL + EPREF	DCADRE
1	55 IF (ERRER .GT. ERGOAL .AND. HRERR .NE. ERGL) GO TO 175	DCADRE
	GO TU 145	DCADRE
`C	CAUTIOUS KONBERG EXTRAPOLATION	DCADRE
	60 IF (H2CONV) GO TO 65	DCADRE
	AITKEN = .FALSE.	DCADRE
	H2CONV = .TRUE.	DCADRE
	65 FEXTRP = FOUP	DCADRE

. - _-

مويد دويقد المساد منيها

(70 IT = IT + 1	DCADRE
	$VINT = STEP^{V}T(L,IT)$	DCADRE
	ERRER = ABS(STEP/(FEXTRP-UNE)+T(IT+1,L))	DCADRE
,	IF (EF.REF .LE. EFGOAL) GG TO 160	DCADRE
	HRERR = ERGL +ERREF	DCADRE
1	IF (HRERR .EQ. ERGL) GO TO 160	DCADRE
	IF (IT .EQ. LM1) GO TO 125	DCADRE
	IF (T(IT,LM1) .EQ. ZERO) GO TO 70	DCADRE
	IF (T(IT,LM1) .LE. FEXTRF) GO TO 125	DCADRE
	IF (ABS(T(IT,LM1)/FOUR+FEXTRP)/FEXTRP .LT. AITTOL)	DCADRE
	1 FEXTRP = FEXTRF*FOUR	DCADRE
	GO TO 70	DCADRE
С	INTEGRAND HAY HAVE X HALPHA TYPE	DCADRE
С	SINGULARITY	DCADRE
C	RESULTING IN A RATIO OF #SING#	= DCADRE
C	2** (ALFHA + 1)	DCADRE
; ;	75 IF (T(1,LH1) .LT. AITLON) GO TO 17	DCADRE
	IF (AITKEN) GO TO 80	DCADRE
	H2CONV = .FALSE.	DCADRE
÷	AITKEN = .TRUE.	DCADRE
	$80 \ FEXTRP = T(L-2,LM1)$	DCADRE
	IF (FEXTRP .GT. FOURP5) GO TO 65	DCADRE
1	IF (FEXTRP .LT. AITLOW) GO TO 175	DCADRE
I L	IF (ABS(FEXTRP-T(L-3,LM1))/T(1,LM1) .GT. H2TOL) GO TO 175	DCADRE

106

—

. . ..

-

SING = FEXTPP	DCADRE
FEXTR1 = ONE/(FEXTRP - ONE)	DCADRE
AIT(1) = ZERO	DCADRE
DO 85 I=2,L	DCADRE
AIT(I) = T(I,1) + (T(1,1)-T(1-1,1))*FEXTH1	DCADRE
R(I) = T(1, I-1)	DCADRE
DIF(I) = AIT(I) - AIT(I-1)	DCADRE
85 CONTINUE	DCADRE
IT = 2	DCADRE
90 VINT = STEP AIT(L)	DCADRE
ERRER = ERRER*FEXTM1	DCADRE
HRERR = ERGL +EFREP	DCADRE
IF (ERRER .GT. ERGOAL .AND. HRERR .NE. ERGL) GO TO 95	DCADRE
IER = HAXO(IER,65)	DCADRE
GO TO 160	DCADRE
95 IT = IT + 1	DCADRE
IF (IT .EQ. LM1) GO TO 125	DCADRE
IF (IT .GT. 3) GO TO 100	DCADRE
H2NEXT = FOUR	DCADRE
SINGNX = SING+SING	DCADRE
100 IF (H2NEXT .LT. SINGNX) GO TO 105	DCADRE
FEXTRP = SINGNX	DCADRE
SINGNX = SINGNX+SINGNX	DCADRE
GO TO 110	DCADRE
105 FEXTEP = H2NEXT	DCADRE
H2NEXT = FOUR# H2NEXT	DCADRE
110 DO 115 I=IT,LM1	DCADRE
R(I+1) = ZERO	DCADRE
HKERK = TABTLH + ABS(DIF(I+1))	DCADRE
IF (HRERR .NE. TABTLM) R(I+1) = UIF(I)/DIF(I+1)	DCADRE
115 CONTINUE	DCADRE
H2TFEX = -H2TOL*FEXTRP	DCADRE
IF (H(L) - FEXTRP .LT. H2TFEX) GO TO 125	DCADRE
IF (R(L-1)-FEXTRP .LT. H2TFEX) GO TO 125	DCADRE
ERREF = ASTEP*ABS(DIF(L))	DCADRE
FEXTM1 = ONE/(FEXTEP - CNE)	DCADRE
DO 120 I=IT,L	DCADRE

		120	AIT(I) = AIT(I) + DIF(I)* DIF(I) = AIT(I) - AIT(I+1 CONTINUE	FEXTM1)	UCAURE DCADRE DCAGRE
/	20		GO TO 90		DCADRE
	С			CURRENT TRAPEZOID SUM AND RESULTING	DCADRE
	C			EXTFAPOLATED VALUES DID NOT GIVE	DCADRE
	С			A SMALL ENCUGH "ERFER".	DCADRE
	С			NOTE HAVING PREVER .LT. ERFER	DCADRE
`~	C			IS AN ALMOST CERTAIN SIGN OF	DCADRE
	C			BEGINNING TROUBLE WITH IN THE FUNG-	DCADRE
ļ	С			TION VALUES. HENCE, A HATCH FOR,	DCADRE
	, Ç.			AND CONTFOL OF, NOISE SHOULD	DCADRE
	C			BEGIN HERE.	DCADRE
		125	FEXTRP = AMAX1 (PREVER/ELKER,	AITLOW	DCADRE
			$\frac{PREVER}{ERFER}$	· · ·	DCADRE
:					DLADRE
!			LE LEII .UI. Z .ANU. ISIAUE	OLIO MASIGEI GUIU 170	DCAURE
۰.			HEED - ERCLAFEDET		DCADEE
			TE LEGET OT FECONI AND		DCADRE
			GO TO 15	NERR ONES ERGET GO TO ITO	DCADRE
·	C		00 10 17	INTEGRAND HAS LUNP (SEE NOTES)	DCADRE
	Ŭ	1.3.0	HRERE = ERGL+ERREE		DCADRE
			IF (ERREF .GT. EPGOAL .AND.	HRERR INF. EEGL) GO TO 170	DCADRE
	C			NOTE THAT $24FN = 244L$	DCADRE
			DIFF = $ABS(T(1,L))$ *(FN+FN)		DCADRE
			GO TO 160		DCADRE
	C			INTEGRAND IS STRAIGHT LINE	DCADRE
	C			TEST THIS ASSUMPTION BY COMPARING	DCADRE
i 	C		· · · · · · · · · · · · · · · · · · ·	THE VALUE OF THE INTEGRAND AT	DCADRE
	C			FOUR #RANDCMLY CHOSEN# POINTS WITH	DCADRE
	C			THE VALUE OF THE STRAIGHT LINE	DCADRE
	<u> </u>			INTERFOLATING THE INTEGRAND AT THE	DCADRE
}	C			THO END POINTS OF THE SUB-INTERVAL	DCADRE
i.	C	175	SLODE - (FEND_EREC) #THO	IF VEST IS PASSED, AUGEPT *VINI*	DCAURE
		125	SLOFE - TENDERDENT INU		DUADRE.
		FBEG2 = FBEG + FBEG		DCADRE	
----------	--	--	---------------------------------------	--------	
		DO 140 I = 1, 4			
	DIFF = ABS(F(BEG+RN(I)*STEP) + FBEG2-RN(I)*SLOPE)			DCADRE	
	HRERR = TABTLM+DIFF IF(HRERR .NE. TABTLM) GO TO 155			DCADRE	
				DCADRE	
	140	CONTINUE		DCADRE	
		GO TO 160		DCADRE	
	С		NOISE MAY BE DOMINANT FEATURE	DCADRE	
	<u>C</u>		ESTINATE NOISE LEVEL BY COMPARING	DCADRE	
	C		THE VALUE OF THE INTEGRAND AT	DCADRE	
	C		FOUP *RANDCHLY CHOSEN* POINTS WITH	DCADRE	
÷.,	Ç		THE VALUE OF THE STRAIGHT LINE	DCADRE	
	С		INTERPOLATING THE INTEGRAND AT THE	DCADRE	
	С		THO ENDPOINTS. IF SMALL ENOUGH,	DCADRE	
	C		ACC FPT #VINT#	DCADRE	
	145	SLOPE = (FEND-FBEG)*TWO		DCADRE	
		FBEG2 = FBEG + FBEG		DCADRE	
		$\underline{\mathbf{I}} = \underline{1}$		DCADRE	
	150	DIFF = ABS(F(BEG+RN(I) + STEP))	- FBEG2-RN(I)*SLOPE)	DCADRE	
	155	ERRER = AMAX1(ERRER,ASTEP*DI	FF)	DCADRE	
		HRERF, = ERGL + ERREF		DCADRE	
		IF (ERRER .GT. ERGDAL .AND.	HRERR .NE. ERGLI GO TO 175	OCADRE	
		I = 1+1		DCAURE	
		IF (I .LE. 4) 60 10 150		UCAURE	
	-	IER = 66		UCADRE	
	C		INTERGRATION OVER CURRENT SUB-	DCADRE	
<u> </u>	<u> </u>		INTERVAL SUCCESSFUL	DCADRE	
	C		ADC + VINT+ TO + UCAURE+ AND + ERKER+	DCADRE	
	C		TO #ERFOR*, THEN SET UP NEXT SUB-	DCADRE	
	C		INTERVAL, IF ANY.	DCADRE	
	160	CADRE = CADRE + VINT		DCADRE	
	Colomb Information	ERROF. = ERROR + EFFER	· · · ·	DCADRE	
		IF (FIGHT) GO TO 165		DCADRE	
		ISTAGE = ISTAGE - 1		DCADRE	
		IF (ISTAGE .EQ. 0) GO TO 220		DCADRE	
		REGLAF = REGLSV(ISTAGE)		DCADRE	

......

-

season and season

۰.

109

-

		_	BEG = BEGIN(ISTAGE)	DCADRE
/	EDN = FINIS(ISTAGE)			DCADRE
			CUREST = CUREST - EST(ISTAGE+1) + VINT	DCADRE
			IENC = IBEG - 1	DCADRE
			FENC = TS(IEND)	DCADRE
			IBEG = IBEGS(ISTAGE)	DCADRE
			GO TO 180	DCADRE
	1	165	CUREST = CUREST + VINT	DCADRE
			STAGE = STAGE+STAGE	DCADRE
			IEND = IBEG	DCADRE
		-	IBEG = IBEGS(ISTAGE)	GCADRE
			EDN = BEG	DCADRE
			BEG = BEGIN(ISTAGE)	DCADRE
			FENC = FBEG	DCADRE
			FBEG = TS(IBEG)	DCADRE
			GO TO 5	DCADRE
	C		INTEGRATION OVER CURPENT SUBINTERVAL	DCADRE
	С		IS UNSUCCESSFUL. MARK SUBINTERVAL	DCADRE
	C		FOR FURTHER SUBDIVISION. SET UP	DCADRE
	C		NEXT SUBINTER VAL .	DCADRE
	1	170	REGLAR = .TRUE.	DCADRE
	1	175	IF (ISTAGE .EQ. MXSTGE) GO TO 205	DCADRE
			IF (RIGHT) GO TO 185	DCADRE
i			REGLSV(ISTAGE+1) = REGLAP	DCADRE
			BEGIN(ISTAGE) = BEG	DCADRE
1			IBEGS(ISTAGE) = IBEG	DCADRE
!			STAGE = STAGE HALF	DCADRE
	1	180	RIGHT = .TRUE.	DCADRE
			BEG = (BEG+EDN) #HALF	DCADRE
			IBEG = (IBEG + IEND)/2	DCADRE
	_		TS(IBEG) = TS(IBEG) + HALF	DCADRE
			FBEG = TS(IBEG)	DCADRE
			GO TO 10	DCADRE
	185 NNLEFT = IBEG - IBEGS(ISTAGE)		NNLEFT = IBEG - IBEGS (ISTAGE)	DCADRE
			IF (IEND+NNLEFT .GE. MAXTS) GO TO 200	DCADRE
1			III = IBEGS(ISTAGE)	DCADRE
II = IEND			II = IEND	DCADRE

-		DO 190 1=III.IBEG		DCADRE
		TT = TT + 1		DCADRE
1		TS(II) = TS(I)		DCADRE
!	190	CONTINUE		DCADRE
		DO 195 I=18EG.II		DCADRE
		TS(III) = TS(I)		DCADRE
180 C. N. C.		III = III + 1	The subset of the state and all subset along the state of	DCADRE
	195	CONTINUE		DCADRE
		IEND = IEND + 1		DCADRE
		IBEG = IEND - NNLEFT		DCADRE
		FENC = FBEG		DCADRE
		FBEG = TS(IBEG)		DCADRE
		FINIS(ISTAGE) = EDN	· · · · ·	DCADRE
		EDN = BEG		DCADRE
		BEG = BEGIN(ISTAGE)		DCADRE
		BEGIN(ISTAGE) = EDN		DCADRE
•		REGLSV(ISTAGE) = FEGLAR		DCADRE
`	_	ISTAGE = ISTAGE + 1		DCADRE
		REGLAR = REGLSV(ISTAGE)		DCADRE
		EST(1STAGE) = VINT		DCADRE
		CUREST = CUREST + EST (ISTA)	GE)	DCADRE
		GO TO 5		DCADRE
	C		FAILURE TO HANDLE GIVEN INTEGRA-	DCADRE
	С		TION PROBLEM	DCADRE
	200	IER = 131		DCADRE
		GO TC 215		DCADRE
	205	IER = 1.32		DCADRE
, — —				UCADRE
	210	1 ER = 1.33	· ·	DUADRE
,	215	CAURE = CUREST + VINT		UCAGRE
	220	UCAUKE = CAUKE		UCAURE
	9000	CUNTINUE		UCAUKE
	0.005	IF LER .NE. UF CALL UERTS	I (IER, GHUCADRE)	DCADRE
- 39	9005	<u>KEIUKN</u>	 .	DCADRE
1		ENU		UCAURE

-

المراشين

C SUBINTERVAL(S), THE ESTIMATE OF THE DCADRE C INTEGRAL WAS ACCEPTED MERELY BECAUSE THE DCADRE C ESTIMATED ERRCR WAS SMALL, EVEN THOUGH NO DCADRE C REGULAR BEHAVIOF WAS RECOGNIZED. DCADRE C TERMINAL ERROR DCADRE	
C INTEGFAL WAS ACCEPTED MERELY BECAUSE THE DCADRE C ESTIMATED ERRCR WAS SMALL, EVEN THOUGH NO DCADRE C REGULAR BEHAVIOF WAS RECOGNIZED. DCADRE C TERMINAL ERROR DCADRE	
C ESTIMATED ERRCR HAS SMALL, EVEN THOUGH NO DCADRE C REGULAR BEHAVIOF HAS RECOGNIZED. DCADRE C TERMINAL ERROR DCADRE	····
C FEGULAR BEHAVIOF WAS RECOGNIZED. DCADRE C TERMINAL ERROR DCADRE	
C TERHINAL ERROR DCADRE	
•	
C IEF = 131 INCICATES FAILURE DUE TO DCADRE	
C INSUFFICIENT INTERNAL WORKING STOPAGE. DCADRE	
C IER = 132 INPICATES FAILURE DUE TO DCADRE	
C TOO MUCH NOISE IN THE FUNCTION (RELATIVE DEADRE	
C TO THE GIVEN ERFOR REQUIREMENTS) OR DCADRE	
C DUE TO AN ILL-BEHAVED INTEGRAND. DCADRE	
C IEF = 133 INDICATES THAT REFR IS GREATER DCADRE	
C THAN 0.1, OK RERE IS LESS THAN 0.0, OR DCADRE	
C RERE IS TOO SHALL FOR THE PRECISION OF DEADRE	
C THE HACHINE. DCADRE	
DCADRE	
C PRECISION/HARDWARE - SINGLE AND DOUBLE/H32 DCADRE	
C - SINGLE/H36,H48,H60 DCADRE	
C	
C REQD. INSL ROUTINES - UERTST, UGETIO DCADRE	
C	
C NOTATION - INFORMATION ON SPECIAL NOTATION AND DEADRE	
C CONVENTIONS IS AVAILABLE IN THE MANUAL DCADRE	
C INTRODUCTION OF THECUGH INSL FOUTINE UHELP DEADRE	
C	
C REMARKS 1. DCADRE CAN. IN MANY CASES. HANDLE JUMP DCADRE	
C DISCONTINUITIES, SEE DOCUMENT REFERENCE FOR FULL DCADRE	
C DETAILS. DCAORE	-
C 2. THE RELATIVE FRROR PAPAMETER RERR MUST BE IN THE DCADRE	
C INTERVAL (0.0.0.1) INCLUSIVELY. FOR EXAMPLE. DCADRE	
C RERR = 0.1 INDICATES THAT THE ESTIMATE OF THE DEADRE	
C INTEGRAL IS TO BE COFRECT TO ONE DIGIT. WHEREAS DEADRE	
C RERF = . 0001 CALLS FOR FOUR DIGITS OF ACCURACY. DCADRE	
C IF DCADRE DETERMINES THAT THE RELATIVE AGGURACY DCAGRE	

· · ·

• ·

7			E FOUTO CLAUST OF DETECTO TED TO DET	0.0.0.0.0
;	C		REQUIREMENTS CANNUL BE SALISFIED, IER IS SEL TU	DUAURE
1	С		133 (RERR SHOULD BE LARGE ENOUGH THAT, WHEN ADDED	DCAURE
! j	C		TO 100.0, THE PESULI IS A NUMBER GREATER THAN	DCADRE
1	С		100.0).	DCADRE
1	С	3.	THE ABSOLUTE ERROR PARAMETER, AERR, SHOULD BE NON-	DCADRE
5	<u>C</u>		NEGATIVE. IN ORDER TO GIVE A REASONABLE VALUE FOR	DCADRE
ſ	C		AERR, THE USER MUST KNOW THE APPROXIMATE MAGNITUDE	DCADRE
	Ç		OF THE INTEGRAL BEING COMPUTED. IN MANY CASES IT IS	DCADRE
	С		SATISFACTORY TO USE AERR = 0.0. IN THIS CASE, ONLY	DCADRE
į	С		THE RELATIVE ERROR REQUIREMENT IS SATISFIED IN THE	DCADRE
i.	С		COMPUTATION.	DCADRE
Ì	C	4.	EVEN WHEN IER IS NOT EQUAL TO 0, DCADRE RETURNS THE	DCADRE
	С		BEST ESTIMATE THAT HAS BEEN COMPUTED.	DCADRE
I	С		QUOTING FROM THE DOCUMENT REFERENCE- A VERY CAUTIOUS	DCADRE
	С		MAN WOULD ACCEPT DCADRE ONLY IF IER IS 0 OR 65. THE	DCADRE
	С		MERELY REASONABLE MAN WOULD KEEP THE FAITH EVEN IF	DCADRE
•	С		IER IS 66. THE ADVENTURCUS MAN IS QUITE OFTEN PIGHT	DCADRE
	С		IN ACCEPTING DEADRE EVEN IF IER IS 131 OR 132.	DCADRE
	С	5.	DCADFE MAY RETURN WRONG ANSWERS IF F HAS A PERIODIC	DCADRE
	С		FACTOR WITH HIGH FREQUENCY AND THE INTERVAL (A,B)	DCADRE
1	Ċ		CONTAINS AN INTEGRAL NUMBER OF PERIODS. IN THIS CASE	DCADRE
	C		THE EASIEST FIX IS TO DIVIDE THE INTERVAL INTO TWO	DCADRE
	С		SUBINTEFVALS (A.C) AND (C.B) SUCH THAT NEITHER	DCADRE
	Č		CONTAINS AN INTEGRAL NUMBER OF PERIODS (PICK C AT	DCADRE
	C		RANDOH), AND CALL DCADEF TO INTEGRATE OVER EACH	DCADRE
	C		SUBINTER VAL.	DCADRE
	Č			DCADRE
	Ĉ	COPYRIGHT	- 1978 BY IMSL. INC. ALL RIGHTS RESERVED.	DCADRE
	Ĉ			DCADRE
	Ċ	WAERANTY	- INSL FARRANTS ONLY THAT INSL TESTING HAS BEEN	DCADRE
	C		AFFLIED TO THIS CODE. NO OTHER WARRANTY.	DCADRE
	C		EXPRESSED OF IMPLIED, IS APPLICABLE.	DCADRE
	Ċ			DCADRE
	C -			DCADRE
	С			DCADRE
		REAL FUNCT	ION DCADKE (F,A,B,AERR,REFR,ERKCR,IER)	DCADRE
	С		SPECIFICATIONS FOR ARGUMENTS	DCADRE

- - -

ANNEXE D

<u>Equation de Schrödinger dans le système de coordonnées</u> <u>du centre de masse et coordonnées relatives</u>

Il s'agit d'exprimer l'équation (5.5) dans le système de coordonnées du centre de masse et coordonnées relatives

$$\vec{R}_{1} = (X_{1} - X_{1}, Y_{1} - Y_{1}, Z_{1} - Z) = (X_{1}, Y_{1}, Z_{1})$$
(D.1)

$$\overline{R}_{2} = (x_{2} - X, y_{2} - Y, z_{2} - Z) = (X_{2}, Y_{2}, Z_{2})$$
(D.2)

$$\frac{1}{W} = \frac{1}{M+2m} (MX+mx_1+mx_2, MY+my_1+my_2, MZ+mz_1+mz_2)$$
(D.3)
$$\frac{\partial}{\partial x} = \frac{\partial U_x}{\partial x} \frac{\partial}{\partial U_x} + \frac{\partial X_1}{\partial x} \frac{\partial}{\partial x_1} + \frac{\partial X_2}{\partial x} \frac{\partial}{\partial x_2}$$
(D.4)

et

$$\frac{\partial^{2}}{\partial x^{2}} = \left(\frac{\partial U_{x}}{\partial x}\right)^{2} \frac{\partial^{2}}{\partial U_{x}^{2}} + \frac{\partial U_{x}}{\partial x} \frac{\partial x_{1}}{\partial x} \frac{\partial^{2}}{\partial U_{x}} + \frac{\partial^{2}}{\partial U_{x}} \frac{\partial^{2}}{\partial x_{1}} + \frac{\partial^{2}}{\partial U_{x}} \frac{\partial^{2}}{\partial x_{1}} + \frac{\partial^{2}}{\partial x} \frac{\partial^{2}}{\partial x_{2}} + \frac{\partial^{2}}{\partial x} \frac{\partial^{2}}{\partial x_{1}} + \frac{\partial^{2}}{\partial x} \frac{\partial^{2}}{\partial x_{1}} + \frac{\partial^{2}}{\partial x} \frac{\partial^{2}}{\partial x_{2}} + \frac{\partial^{2}}{\partial x} \frac{\partial^{2}}{\partial x_{2}} + \frac{\partial^{2}}{\partial x} \frac{\partial^{2}}{\partial x} \frac{\partial^{2}}{\partial x} + \left(\frac{\partial x_{1}}{\partial x}\right)^{2} \frac{\partial^{2}}{\partial x_{1}} + \left(\frac{\partial x_{2}}{\partial x}\right)^{2} \frac{\partial^{2}}{\partial x_{2}} + \frac{\partial^{2}}{\partial x} \frac{\partial^{2}}{\partial x} + \frac{\partial^{2}}$$

+
$$2\frac{\partial U_{\times}}{\partial x}\frac{\partial x_{2}}{\partial x}\frac{\partial^{2}}{\partial U_{\times}\partial x_{2}}$$
 + $2\frac{\partial x_{2}}{\partial x}\frac{\partial x_{1}}{\partial x}\frac{\partial^{2}}{\partial x_{1}\partial x_{2}}$ (D.5)

De la même manière on calcule $\frac{j^2}{j\gamma^2}$ et $\frac{j^2}{jz^2}$, ainsi

$$\begin{split} \triangle_{R} &= \left(\frac{M}{M+2m}\right)^{2} \left[\frac{\partial^{2}}{\partial U_{x}^{2}} + \frac{\partial^{2}}{\partial U_{y}^{2}} + \frac{\partial^{2}}{\partial U_{z}^{2}}\right] \\ &+ \frac{\partial^{2}}{\partial x_{x}^{2}} + \frac{\partial^{2}}{\partial y_{x}^{2}} + \frac{\partial^{2}}{\partial z_{x}^{2}} + \frac{\partial^{2}}{\partial x_{z}^{2}} + \frac{\partial^{2}}{\partial y_{z}^{2}} + \frac{\partial^{2}}{\partial z_{z}^{2}} \\ &- \left(\frac{2M}{M+2m}\right) \left[\frac{\partial^{2}}{\partial U_{x}\partial x_{x}} + \frac{\partial^{2}}{\partial U_{y}\partial y_{x}} + \frac{\partial^{2}}{\partial U_{y}\partial y_{x}} + \frac{\partial^{2}}{\partial U_{z}\partial z_{x}}\right] \\ &- \left(\frac{2M}{M+2m}\right) \left[\frac{\partial^{2}}{\partial U_{x}\partial x_{z}} + \frac{\partial^{2}}{\partial U_{y}\partial y_{z}} + \frac{\partial^{2}}{\partial U_{y}\partial y_{z}} + \frac{\partial^{2}}{\partial U_{z}\partial z_{z}}\right] \\ &+ 2 \left[\frac{\partial^{2}}{\partial x_{x}\partial x_{z}} + \frac{\partial^{2}}{\partial y_{x}\partial y_{z}} + \frac{\partial^{2}}{\partial z_{x}\partial z_{z}}\right] \end{split}$$
(D.6)

et

$$\frac{\partial^{2}}{\partial x_{1}^{2}} = \left(\frac{\partial U_{x}}{\partial x_{1}}\right)^{2} \frac{\partial^{2}}{\partial U_{x}^{2}} + \left(\frac{\partial X_{1}}{\partial x_{1}}\right)^{2} \frac{\partial^{2}}{\partial X_{1}^{2}} + \left(\frac{\partial X_{2}}{\partial x_{1}}\right)^{2} \frac{\partial^{2}}{\partial X_{2}^{2}}$$

$$+ 2 \frac{\partial U_{x}}{\partial x_{1}} \frac{\partial X_{1}}{\partial x_{1}} \frac{\partial^{2}}{\partial U_{x} \partial X_{1}} + 2 \frac{\partial U_{x}}{\partial x_{1}} \frac{\partial X_{z}}{\partial x_{1}} \frac{\partial^{2}}{\partial U_{x} \partial X_{z}}$$

$$+ 2 \frac{\partial X_{z}}{\partial x_{1}} \frac{\partial X_{1}}{\partial x_{1}} \frac{\partial^{2}}{\partial U_{x} \partial X_{1}} + 2 \frac{\partial U_{x}}{\partial x_{1}} \frac{\partial X_{z}}{\partial x_{1}} \frac{\partial^{2}}{\partial U_{x} \partial X_{z}}$$

$$(D.7)$$

De la même manière on calcule $\frac{\partial^2}{\partial y_1^2}$ et $\frac{\partial^2}{\partial z_1^2}$, ainsi

$$\Delta_{1} = \left(\frac{m}{M+2m}\right)^{2} \left[\frac{\partial^{2}}{\partial U_{x}^{2}} + \frac{\partial^{2}}{\partial U_{y}^{2}} + \frac{\partial^{2}}{\partial U_{x}^{2}} + \frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial y_{1}^{2}} + \frac{\partial^{2}}{\partial z_{1}^{2}} + \frac{\partial^{2}}{\partial z_{1}^{2}} + \frac{\partial^{2}}{\partial z_{1}^{2}} \right]$$

$$+ 2\left(\frac{m}{M+2m}\right) \left[\frac{\partial^{2}}{\partial U_{x}\partial x_{1}} + \frac{\partial^{2}}{\partial U_{y}\partial y_{1}} + \frac{\partial^{2}}{\partial U_{x}\partial z_{1}} \right] \qquad (D.8)$$

Le même calcul donne

$$\Delta_{2} = \left(\frac{m}{M+2m}\right)^{2} \left[\frac{\vartheta^{2}}{\vartheta U_{x}^{2}} + \frac{\vartheta^{2}}{\vartheta U_{y}^{2}} + \frac{\vartheta^{2}}{\vartheta U_{x}^{2}} + \frac{\vartheta^{2}}{\vartheta X_{z}^{2}} + \frac{\vartheta^{2}}{\vartheta X_{z}^{2}} + \frac{\vartheta^{2}}{\vartheta Z_{z}^{2}}\right] + 2\left(\frac{m}{M+2m}\right) \left[\frac{\vartheta^{2}}{\vartheta U_{x}^{2}} + \frac{\vartheta^{2}}{\vartheta U_{y}^{2}} + \frac{\vartheta^{2}}{\vartheta U_{y}^{2}} + \frac{\vartheta^{2}}{\vartheta U_{z}^{2}} + \frac{\vartheta^{2}}{\vartheta U_{z}^{2}} \right]$$
(D.9)

Utilisant (D.6), (D.8) et (D.9)

$$\frac{1}{M} \bigtriangleup_{R} + \frac{1}{m} \left[\bigtriangleup_{1} + \bigtriangleup_{2} \right] = \left[\frac{M}{(M+2m)^{2}} + \frac{2m}{(M+2m)^{2}} \right] \left[\frac{j^{2}}{j \sqcup_{x}^{2}} + \frac{j^{2}}{j \sqcup_{y}^{2}} + \frac{j^{2}}{j \sqcup_{y}^{2}} + \frac{j^{2}}{j \sqcup_{x}^{2}} + \frac{j^{2}}$$

où c est relatif au centre de masse Utilisant (D.10) 116

6

$$-\frac{\hbar^{2}}{2}\left[\frac{1}{M}\bigtriangleup_{R}+\frac{1}{m}\left(\bigtriangleup_{1}+\bigtriangleup_{2}\right)\right]$$

Devient en posant $\frac{1}{M} + \frac{1}{M} = \frac{1}{M}$

$$\frac{-\tilde{h}}{2(M+2m)} \Delta_{C} - \frac{\tilde{h}}{2\mu} \left(\Delta_{R1} + \Delta_{R2} \right) - \frac{\tilde{h}}{M} \nabla_{R1} \nabla_{R2} \qquad (D.11)$$

.

En portant cette relation dans (4.4) on trouve l'équation (4.6)