UNIVERSITE DU QUEBEC

MEMOIRE

PRESENTE A L'UNIVERSITE DU QUEBEC A TROIS-RIVIERES

COMME EXIGENCE PARTIELLE

DE LA MAITRISE EN SCIENCES DE L'ACTIVITE PHYSIQUE

PAR

BERNARD OUELLET

"ANALYSE CINEMATIQUE ET CINETIQUE DES MEMBRES INFERIEURS LORS DE LA MONTEE D'UN ESCABEAU"

DECEMBRE 1988

Université du Québec à Trois-Rivières Service de la bibliothèque

Avertissement

L'auteur de ce mémoire ou de cette thèse a autorisé l'Université du Québec à Trois-Rivières à diffuser, à des fins non lucratives, une copie de son mémoire ou de sa thèse.

Cette diffusion n'entraîne pas une renonciation de la part de l'auteur à ses droits de propriété intellectuelle, incluant le droit d'auteur, sur ce mémoire ou cette thèse. Notamment, la reproduction ou la publication de la totalité ou d'une partie importante de ce mémoire ou de cette thèse requiert son autorisation.

RESUME

Un escabeau portatif ajustable a été mis au point afin d'évaluer et de comparer certains paramètres biomécaniques d'un usager en situation de montée. Les variables indépendantes étaient la pente, la hauteur verticale inter-marches et la profondeur de marche alors que les déplacements et les vélocités angulaires des articulations de la hanche, du genou et de la cheville du membre inférieur droit du sujet ainsi que l'activité électromyographique des muscles vastus lateralis, biceps femoris, tibialis anterior et gastrocnemius, constituaient les variables dépendantes.

Les 12 sujets masculins, sans déficience sensorimotrice avérée, ont participé sur une base volontaire à cette étude. Les 12 séries de 5 ascensions, totalisant 60 essais par sujet, ont été enregistrées. Ces douze séries représentant la combinaison des variables pente (65°, 75°, 80°), profondeur de marche (7.5 cm et 32 cm) et hauteur verticale inter-marches (27.5 cm et 31 cm) ont été contrebalancées partiellement par ordinateur, pour les sujets, à l'aide de nombres aléatoires. Les paramètres temporels, cinématiques et électromyographiques ont été échantillonnés à chaque essai, au taux de 200/s. durant 6 secondes. Un traitement statistique par analyse de variance, selon un plan

3 * 2 * 2 à mesures répétées, a permis d'évaluer l'impact des diverses configurations d'escabeau sur les indices dérivés des paramètres contractés et de les comparer aux variables indépendantes retenues pour fins d'étude.

Une faible variabilité intra-sujet indique que les patrons de montée individuels sont relativement constants alors que pour la variabilité inter-sujets, des valeurs supérieures à la variabilité intra-sujet sont obtenues, plus particulièrement au niveau de l'articulation de la cheville.

Comme aucun des paramètres de l'escabeau ne semble perturber de façon majeure le patron de montée des usagers, l'étude ne permet pas de privilégier une configuration particulière de l'escabeau. Cependant, notons que les modifications de pente provoquent le plus grand nombre d'effets significatifs dans les indices cinématiques et électromyographiques du cycle de montée; suivent en ordre d'importance décroissante, la hauteur verticale inter-marches et la profondeur de marche.

Les paramètres de l'escabeau conventionnel formé d'une pente de 75°, d'une hauteur verticale inter-marches de 31 cm ainsi que d'une profondeur de marche de 7.5 cm, constituent un jumelage qui répond de façon adéquate aux fonctions

mêmes de l'appareil. Toutefois, l'absence de contre-indication quant à la profondeur de marche utilisée, constitue un argument favorable à l'implantation d'une marche plus profonde, étant donné la plus grande stabilité offerte par cette dernière.

REMERCIEMENTS

Témoigner sa reconnaissance est un acte privilégié, mis à la disposition de l'auteur, pour remercier les personnes qui l'ont aidé dans la réalisation de son mémoire. A mon directeur de recherche, monsieur Jacques Dessureault professeur au Département des sciences de l'activité physique (DSAP), pour sa direction soignée et patiente, ainsi que pour ses connaissances prodiguées afin de mener à bien et à terme le présent document. A mon co-directeur de recherche monsieur Louis Laurencelle, également professeur au DSAP, pour ses judicieux conseils, sa conscience professionnelle et sa co-direction irréprochable.

Mes remerciements et toute ma gratitude à mes parents Georgette et Léo, qui sans ménagement m'ont encouragé jusqu'au dépôt du présent document. A mon frère Jean (défunt) qui a moussé l'intérêt et stimulé le désir d'accomplissement, à l'origine de la récolte d'aujourd'hui et tout particulièrement à ma conjointe madame Joanne Boyd pour son support moral et la pertinence de ses critiques au cours des différentes étapes de la réalisation de ce mémoire.

L'auteur désire également remercier ses compagnons d'études messieurs Steeve Asselin et Yves Lajoie ainsi que monsieur Alain Montplaisir (étudiant du premier cycle), pour leur contribution appliquée et soignée lors des séances d'enregistrement en laboratoire. Enfin, soulignons le support technique apporté par monsieur Claude Brouillette, technicien en électronique au DSAP, ainsi que l'apport particulier de monsieur Pierre Black professionnel de recherche au DSAP pour la rédaction des programmes ayant servi à extraire et à analyser les variables du présent document.

TABLE DES MATIERES

RESUME	:				•	•			•		•	•	•							i
REMERO	CIEM	ENTS .																		iv
LISTE	DES	TABLEA	UX.																	iх
LISTE	DES	FIGURE	s.																	х
CHAPIT	RES																			
I.	11	NTRODUC	TION	١.																1
		Locomo	tion	h	um	ai	ne.													2
		Problè	me.																	4
		But .																		5
		Limite	s de	1	'é	tu	de.													5
II.	RI	CENSIO	N DE	S	EC	RI	TS.													7
		Contac						'em		·e	et	, 1	.a	tr	oi	si	. èn	ne		
			t en	tr	'e	la	pr		ièr											12
		Contac	t en	tr	'е	la	pr		ièr											12
		Contac	t en t en	tr	·e	la le	pr 		ièr et	la	a d	leu	xi	èm	ne					
III.		Contac marche	t en t en	tr tr	·e····································	la le	pr so	1 •	ièr et	la	n d	leu	xi	èm	ne					13
III.		Contac marche Contac marche	t en t en OGIE	tr	·e····································	la le	pr 	01 .	ièr et	la	· a da .	leu	exi	èm	ne					13 25
III.		Contac marche Contac marche	t en t en OGIE	tr	· e · · · · · ·	la . le	pr		· · ·	la	a d	leu		èn	ne				 	13 25 25
III.		Contac marche Contac marche ETHODOL	t en t en OGIE	tr	'e . 'e	la . le .	pr sc		ièr . et			lev							 	13 25 25 25
III.		Contac marche Contac marche ETHODOL Sujets Instru	t en t en OGIE ment	tr	e ·	la . le	pr		ièr . et	lag									 	13 25 25 25 26
III.		Contac marche Contac marche ETHODOL Sujets Instru	t en t en OGIE ment ures des	tr	e et	la . le	pr		ièr . et	lag		. leu		. èm	. ne				 	13 25 25 25 26 28

IV.	RESULTATS
	Indices statistiques
	Cycle de montée
	Courbes électrogoniométriques 39
	Courbes électromyographiques 40
	Analyse qualitative 40
	Variabilité 41
	Variabilité intra-sujet 42
	Variabilité inter-sujets 43
	Tension musculaire
	Vastus lateralis 44
	Biceps femoris 45
	Tibialis anterior 46
	Gastrocnemius 46
	Analyse quantitative 50
	Cycle de montée 50
	Pente 50
	Hauteur verticale inter-marches 52
	Déplacement angulaire 54
	Pente
	Profondeur de marche
	Hauteur verticale inter-marches 59
	Vélocité angulaire 62
	Pente

	Hauteur verticale inter-marches 66
	Tension myoélectrique 69
	Pente
	Hauteur verticale inter-marches 76
	Interaction 80
	A * B
	A * C
	B * C
٧.	CONCLUSIONS ET RECOMMANDATIONS
	Conclusions
	Recommandations
REFERI	ENCES
ANNEX	ES
Α.	Consentement pour étude clinique
В.	Muscles et électrodes
C.	Schéma expérimental
D.	Séquence des conditions
E.	Analyse temporelle du cycle de montée
F.	Courbes moyennes et variabilité intra et
2,	inter-sujets
G.	Données brutes par variable
Н.	Plan expérimental
Ι.	Lexique des indices analysés
J.	Liste et description des programmes

LISTE DES TABLEAUX

TABLE.	A U	PA	GE
1.	Répartition des sujets selon les diverses conditions expérimentales		29
2.	Résumé des variables analysées dans la présente étude		36
3.	Cycle de montée (pente)		51
4.	Cycle de montée (hauteur verticale inter-marches).	53
5.	Déplacement angulaire (pente)		56
6.	Déplacement angulaire (profondeur de marche)		59
7.	Déplacement angulaire (hauteur verticale inter-marches)		61
8.	Vélocité angulaire (pente)		64
9.	Vélocité angulaire (hauteur verticale inter-marches)		67
10.	Tension myoélectrique (pente)		73
11.	Tension myoélectrique (hauteur verticale inter-marches)		78
12.	Interaction		82

LISTE DES FIGURES

F	IGURI	ES	PA(ΞE
	1.	Analyse temporelle du cycle de montée		9
	2.	Les quatre patrons de montée tirés et adaptés de l'étude de McIntyre (1983)		18
	3.	Représentation schématique de l'escabeau		27
	4.	Schéma d'un sujet effectuant une montée d'escabeau (le sujet est muni de ses électrodes, électrogoniomètres et de la semelle mécanique) .		32
	5.	Modèle d'une courbe type de déplacement angulaire		39
	6.	Modèle d'une courbe type de vélocité angulaire .		40
	7.	Modèle d'une courbe type de tension myoélectrique	-	41
	8.	Représentation graphique de la position du membre inférieur droit, du déplacement angulaire de la hanche et du genou ainsi que l'activité myoélectr que des muscles vastus lateralis et biceps femori	i-	48
	9.	Représentation graphique de la position du membre inférieur droit, du déplacement angulaire de la hanche, du genou et de la cheville ainsi que l'activité myoélectrique des muscles tibialis anterior et gastrocnemius	-	49
	10.	Figure représentant les indices pour lesquels une interaction significative est décelée		83

CHAPITRE I

Introduction

"Locomotion, a characteristic of animals, is the process by which the animal moves itself from one geographic position to another."

V.T. Inman

L'un des mouvements les plus importants réalisés par l'homme est son type de locomotion. Telle que décrite en exergue par Inman "la locomotion, une caractéristique de l'animal, est le processus grâce auquel l'animal se déplace d'un lieu à l'autre" (Inman et al., 1981, p.1). Fasciné par sa locomotion bipède, l'homme a toujours cherché à mieux comprendre comment il arrive à accomplir ses déplacements. C'est pourquoi plusieurs études en biomécanique humaine ont été orientées jusqu'à ce jour sur l'activité la plus souvent accomplie par l'homme, la marche. A cet effet, les premières recherches ont été réalisées à partir d'observations subjectives du phénomène, et conduites par des scientifiques de grande renommée tels Aristote, Léonard De Vinci, Galiléo Galiléi, Jacques Bernouilli, Louis DeLagrange, Leonhard Euler et Thomas Young, pour n'en nommer que quelques-uns. La plupart de ces scientifiques possédaient un intérêt particulier pour l'application de la mécanique aux problèmes

biologiques.

Par la suite, la méthode dite scientifique supplanta entièrement, en tant qu'outil de recherche, la méthode dite d'observation utilisée par les chercheurs cités auparavant. D'ailleurs Winter (1979) stipule qu'une évaluation quantitative du mouvement humain doit être précédée par une phase de mesures descriptives et que pour obtenir un diagnostic complet, il est essentiel de réaliser une analyse biomécanique. Frankel et Nordin (1980), quant à eux, définissent le champ d'intervention de la biomécanique comme étant l'application des lois de la physique et des concepts du génie à l'étude des mouvements; ainsi, l'analyse des mouvements corporels et des forces agissant sur ces corps, lors d'activités journalières, y reçoit une attention particulière.

Locomotion humaine

La connaissance de l'activité de locomotion bipède chez l'homme s'est raffinée au cours des siècles. Une brève revue de la littérature permet de dégager qu'au cours des dernières décennies, de nombreuses études ont été effectuées sur le patron moteur de la marche. Toutefois, peu d'entre elles se sont attardées à décrire une activité jugée presque aussi fondamentale que la marche, à savoir la montée d'un escabeau portatif.

L'escabeau est largement répandu au sein des divers corps de métier en tant qu'outil fonctionnel temporaire. En effet, différentes personnes utilisent fréquemment l'escabeau afin de satisfaire à certaines exigences imposées par la tâche à accomplir. Les métiers suivants peuvent être cités à titre d'exemples: briquetier, charpentier, électricien, maçon, menuisier, peintre, plâtrier; tous ceux-là, ainsi que les occupants d'un appartement ou d'une maison, sont des usagers potentiels de l'escabeau. L'objectif poursuivi par la présente étude est de faire ressortir les principaux paramètres cinématiques et électromyographiques (EMG) de l'usager en fonction de l'escabeau utilisé. Afin de répondre à cet objectif majeur, l'auteur a procédé à la conception d'un escabeau portatif permettant d'étudier expérimentalement certains éléments de l'escabeau conventionnel: pente, hauteur verticale inter-marches et profondeur de marche, qui seront les variables indépendantes de cette recherche. Soulignons toutefois que peu d'études ont jusqu'à présent traité de la co-variation de ces éléments.

Etant donné que l'activité dominante lors de la montée d'un escabeau provient des membres inférieurs, la présente étude concerne les déplacements angulaires inter-segments provoqués par l'activité musculaire agissant autour des

articulations impliquées. De façon plus spécifique, les variables dépendantes retenues sont: les déplacements et vélocités angulaires de la hanche, du genou et de la cheville du membre inférieur droit du sujet ainsi que l'activité électromyographique des muscles vastus lateralis, biceps femoris, tibialis anterior et gastrocnemius.

L'usage de l'escabeau, tout comme c'est le cas pour l'échelle et l'escalier, augmente les risques d'accidents, entraînant ainsi des absences fréquentes et parfois prolongées du travailleur (McIntyre D. R. & Bates B. T., 1982). De plus, la prolifération des modèles d'escabeau ainsi que l'augmentation du nombre d'usagers contribuent à une recrudescence des accidents reliés à l'emploi de l'escabeau. C'est pourquoi la présente étude, en plus de traiter des paramètres cinématiques et électromyographiques de mouvement, aidera à identifier des paramètres permettant d'évaluer la capacité du travailleur à reprendre son activité après blessure ou atteinte physique.

<u>Problème</u>

Quelles sont les modifications dans les paramètres dynamiques de la montée d'escabeau lorsque l'inclinaison de la pente, la profondeur de la marche, ainsi que l'espace vertical entre les marches covarient?

But

Le but de la présente étude est d'évaluer et de comparer les paramètres biomécaniques du patron de montée d'un escabeau. Les techniques que nous nous proposons d'utiliser sont l'électrogoniométrie et l'électromyographie de surface. Conséquemment, à partir d'un escabeau portatif aux dimensions variables, la phase dynamique du cycle de montée sera évaluée minutieusement.

Limites de l'étude

Cette étude se limite aux paramètres présentés précédemment.

Sans prétendre élucider entièrement le phénomène sous étude, notre objectif demeure l'investigation du patron de montée d'escabeau, à partir du membre inférieur droit, en vue d'une interprétation plus juste de la phase dynamique du cycle de montée.

Il est important de souligner que l'électromyographie ainsi que l'enregistrement de son signal présentent certaines limites. Notons, entre autres, que des facteurs tels le degré de précision obtenu lors de la pose des électrodes sur le muscle, le niveau de fatigue des sujets, l'épaissuer du tissu cutané, etc. peuvent influencer la technique et, subséquemment, l'analyse du signal

électromyographique.

De plus, l'électromyographie est une technique qui ne peut distinguer le travail musculaire positif du travail musculaire négatif; elle n'indique que l'activité de tension contractile. Toutefois, les parties positive et négative du travail musculaire peuvent être obtenues à partir des courbes de déplacement angulaire et subséquemment de celles des moments. Notons cependant que l'analyse des moments ne fait pas l'objet de cette étude et que seule l'activité contractile sera utilisée ici.

CHAPITRE II

Récension des écrits

La compréhension des diverses phases du cycle de montée est essentielle à l'analyse et à la description des concepts véhiculés dans le présent mémoire. Que nous parlions du cycle de montée ou de marche, les mêmes subdivisions du geste prévalent et doivent refléter la même réalité. Ainsi, en se référant au cycle de marche présenté par Inman et al. (1981), deux phases distinctes prennent place (Figure 1). La phase d'appui de chaque pied, lors de la marche à allure normale, est toujours plus longue que la phase d'envol, lorsque le pied est ramené vers l'avant et libre de tout support. Chaque phase d'appui débute et se termine avec la période durant laquelle les deux pieds sont en contact avec le sol: c'est aussi la période où le poids du corps est transféré d'un pied sur l'autre; nous appelons cette période la phase de double support. Lorsque le patron de marche est symétrique, les phases de double support sont de durées égales.

Selon le système de référence utilisé, il y a deux façons de subdiviser le cycle de marche: d'une part, on

peut considérer tout le corps, d'autre part les membres inférieurs seulement. Lorsque tout le corps est considéré, le cycle de marche est divisé en deux phases de double support et une phase de support simple. Par contre, lorsque seule l'action des membres inférieurs est considérée, les phases d'appui et d'envol sont les deux principales subdivisions. Si le patron de marche est symétrique, la phase d'appui est égale à la moitié du cycle complet ajoutée à la phase de double support; la phase d'envol, quant à elle, équivaut à la moitié du cycle complet, dont on soustrait la phase de double support.

Ainsi, la durée de la phase de double support détermine la durée des autres phases.

Dans les études portant sur la locomotion humaine, les segments qui présentent un intérêt particulier sont la cuisse, la jambe et le pied. Ainsi, la marche est accomplie grâce à l'action des muscles qui développent une tension et produisent une rotation des segments autour des articulations de la hanche, du genou et de la cheville. Par conséquent, ce sont les déplacements angulaires des segments indiqués que l'on mesure en cours de marche. Il en est de même lors de la montée d'un escabeau.

Le cycle de montée subdivisé en deux phases distinctes (appui et envol), relatives aux membres

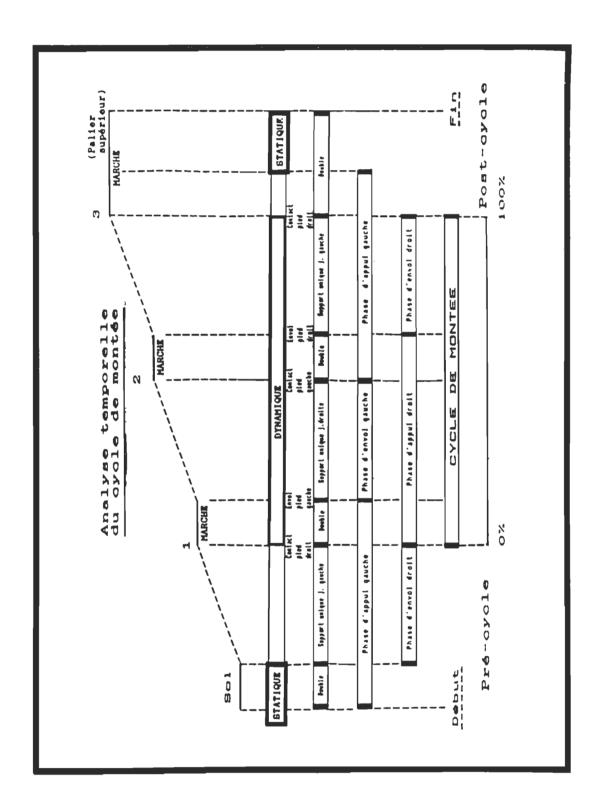


Figure 1. Division temporelle du cycle de montée (Adaptée de Inman et al., 1981).

inférieurs seulement, constitue le modèle d'après lequel les analyses électrogoniométriques, électromyographiques et temporelles seront effectuées dans la présente étude.

Dans une analyse sur la fonction du genou lors de la montée et de la descente d'escalier, Shinno (1971) cherche à établir la relation entre la flexion angulaire du genou et la pente de l'escalier chez une population japonaise adulte. Suite à cette analyse théorique, il démontre que pour l'ascension d'un escalier ayant une pente de 30°, le genou fléchit à 95°, comparativement à la marche et à la course où des valeurs respectives de 140° et 120° sont enregistrées. Il stipule ensuite que la stabilité du genou dépend principalement de la force de contraction du muscle quadriceps agissant sur la rotule, lorsque le genou est à demi fléchi. De plus, l'extension et la flexion du genou sont réalisées via l'équilibre entre deux forces qui s'opposent sur la rotule, à savoir le poids du corps et la force du muscle quadriceps. De façon plus particulière, lorsque le poids du corps repose sur une seule jambe, le vastus lateralis et le vastus medialis semblent sollicités davantage. Ainsi, le poids corporel et le relâchement de l'activité du quadriceps entraînent l'instabilité de l'articulation du genou, tant en montée qu'en descente d'escalier, plus particulièrement en descente. Les raisons qui motivent cette instabilité du genou en descente sont

les suivantes: (a) le genou a tendance à effectuer un mouvement de rotation sur lui-même, provoquant ainsi un relachement des structures entourant l'articulation du genou (screwing-home mechanism); (b) le quadriceps s'étire de façon passive et (c) la charge supplémentaire provoquée par la force d'attraction gravitationnelle accroît la vitesse de descente. Cependant, l'activité développée au niveau du muscle quadriceps est plus élevée en situation de montée qu'en situation de descente. Enfin, l'amplitude des courbes électromyographiques du biceps femoris (fléchisseur du genou) est peu élevée dans les deux conditions (montée vs descente). Malgré ce qu'elle révèle, cette étude ne fait aucune distinction entre les diverses phases du mouvement et ne fournit aucune indication quant à la durée des potentiels électriques des muscles et les valeurs cinématiques correspondantes.

Andriacchi, Andersson, Fermier, Stern et Galante (1980), dans une étude portant sur la mécanique des membres inférieurs lors de la montée d'escalier, révèlent que le déplacement angulaire moyen observé dans le plan sagittal, chez une population d'hommes adultes, est de 42° pour la hanche, 88° pour le genou et 27° pour la cheville. Ils démontrent de plus que la durée d'activation des muscles fléchisseurs du genou est relativement faible lorsque comparée à celle des extenseurs, tant en montée

qu'en descente.

Contact entre la première et la troisième marche.

Lors du passage de la première à la troisième marche, à l'instant où le pied établit son contact avec cette première, la hanche et le genou sont fléchis et l'articulation de la cheville est en flexion plantaire. Au fur et à mesure que le membre inférieur se dirige en position intermédiaire, au cours de ce premier contact avec l'escalier, la hanche et le genou s'étendent et la cheville effectue une légère flexion dorsale. C'est au cours de cette période que les extenseurs du genou (vastus medialis et rectus femoris) sont actifs et servent à équilibrer le mouvement de flexion du genou; ces extenseurs s'activent davantage pour étendre le genou. Le soleus est actif à partir du début du mouvement jusqu'à une position intermédiaire d'appui alors que le gastrocnemius est actif à partir de cette position jusqu'à la fin du premier contact. D'ailleurs, la hanche et le genou poursuivent leur extension tout au long de cette dernière partie, la cheville effectuant une flexion plantaire avant de libérer la première marche. Le biceps femoris devient actif juste avant la perte de contact et redevient actif au milieu de la phase d'envol lorsque le genou atteint sa flexion maximale; il en est ainsi pour le tibialis anterior. A partir de cette position

intermédiaire à l'envol, jusqu'au second contact (troisième marche), l'articulation de la hanche et du genou passent d'une flexion maximale à une extension alors que l'articulation de la cheville passe d'une position de flexion dorsale maximale à une flexion plantaire. Aucune activité musculaire ne fut observée entre la position intermédiaire d'envol et le contact avec la troisième marche lors de l'ascension.

Contact entre le sol et la deuxième marche.

D'autre part, lors du passage entre le plancher et la deuxième marche, les articulations de la hanche et du genou sont en extension presque complète alors que la cheville est en flexion plantaire. Ainsi, à partir de la phase intermédiaire d'appui jusqu'à la perte de contact avec le plancher, la hanche et le genou s'extensionnent progressivement, l'élévation corporelle étant amorcée principalement par le mouvement de flexion dorsale provenant de la cheville. Les fléchisseurs du genou (biceps femoris et gastrocnemius) s'activent après la prise de contact du talon avec le sol et poursuivent leur activité initiale jusqu'à la fin de la phase d'appui. Le soleus demeure actif à partir du contact jusqu'à la perte de contact avec le plancher, moment où il cesse d'être actif. Durant la phase d'envol, la hanche et le genou recherchent une position de flexion maximale puis

commencent à s'étendre légèrement au moment de la prise d'appui sur la deuxième marche. La cheville, quant à elle, passe rapidement de la flexion dorsale à la flexion plantaire juste avant de quitter le sol. En phase intermédiaire d'envol, la cheville est en flexion dorsale et elle passe en flexion plantaire et recouvre finalement une position neutre avant le second contact (deuxième marche). Le biceps femoris et le rectus femoris sont actifs à partir du début jusqu'à la phase intermédiaire d'envol. Enfin, le tibialis anterior s'active durant les premiers 80 % de la phase d'envol afin de relever et maintenir la pointe du pied droit.

En ce qui concerne l'étendue maximale obtenue dans les mouvements de flexion-extension, l'étude révèle qu'à la hanche, la plus grande flexion se produit durant la phase d'envol lors de l'ascension (41,9°) alors qu'au niveau du genou, elle se produit également durant la phase d'envol mais en descente d'escalier (87,9°). Toutefois, l'étude d'Andriacchi et al. (1980) révèle qu'aucune différence significative ne fut observée tant en situation de montée que de descente au niveau de la flexion de la hanche et du genou lors de la phase d'envol. Par contre, une différence significative est enregistrée (flexion de la hanche et du genou) au cours de la phase d'appui, lorsque l'on compare les montées et les descentes

effectuées à partir du plancher jusqu'à la deuxième marche, et de la première à la troisième marche.

Toutefois, durant la phase d'appui lors de la descente, le genou fléchit deux fois plus entre la troisième marche et la première marche (68,9°) qu'entre la deuxième marche et le plancher (28,9°). Le patron de mouvement en montée et en descente est similaire au niveau de l'articulation de la cheville durant la phase d'envol. Durant la phase d'appui par contre, la flexion dorsale est de moindre importance en situation de montée à partir du plancher jusqu'à la deuxième marche (10°) qu'en situation de descente entre la troisième et la première marche (24,7°). La plus grande flexion dorsale (27°) fut observée durant la phase intermédiaire d'appui lors de la descente, de la troisième marche à la première marche.

Bien que l'analyse cinématographique du patron de mouvement fut soigneusement menée dans cette étude, peu d'information est transmise quant au patron de montée emprunté. D'autre part, aucun critère de référence ne permet l'évaluation quantitative des seuils d'activation musculaire. Malgré une approche qualitative temporelle des moments d'entrée en action et de fin d'activité musculaire, il est impossible d'établir les seuils d'activation musculaire atteints lors de la montée et de la descente de l'escabeau.

Chercheur ayant effectué de nombreuses études biomécaniques portant sur l'usage des échelles, McIntyre (1982) démontre qu'une grande variabilité inter-essais dans le patron de montée existe chez des enfants âgés de 1,5 an et de 5,5 ans. Un patron de montée latéral fut le plus fréquemment employé par les sujets. L'étude démontre qu'une relation linéaire existe entre l'inclinaison de l'espace inter-marches et l'âge chez de jeunes enfants. En conclusion, il affirme (a) que les enfants âgés de 1,5 an et 5,5 ans utilisent un patron de montée peu consistant, (b) que les phases absolues d'envol et de contact diminuent au fur et à mesure que les sujets vieillissent, (c) que parallèlement à l'accroissement de l'âge, la chute du temps d'envol absolu du membre inférieur est plus importante que celle de la phase de contact en situation de montée, (d) que la diminution de la durée du contact des membres inférieurs dépend de l'âge, (e) que l'espace horizontal préféré entre les barreaux contactés est de 0,15 mètre, (f) que l'inclinaison préférée, entre les prises manuelles et pédestres consécutives, est dépendante de l'âge. Enfin, il note qu'une augmentation substantielle du nombre d'essais permettrait d'atteindre une meilleure constance dans le patron de montée des enfants.

Bien que cette étude effectuée chez les enfants révèle certaines facettes du patron de montée, elle ne saurait être applicable aux adultes, si ce n'est dans le contexte d'un apprentissage chez des sujets jeunes ou des novices.

Dans une autre étude, McIntyre (1983 a) identifie quatre patrons de montée d'une échelle (Figure 2). Ces patrons sont: (1) diagonal, (2) latéral, (3) latéral à quatre temps et (4) diagonal à quatre temps. Laissés au libre choix, les sujets ont démontré que les deux patrons d'ascension les plus fréquemment employés lors des essais ont été le latéral et le latéral à quatre temps.

Dans cette étude où les sujets optaient pour l'un ou l'autre patron de montée et dont la seule restriction consistait à utiliser les barreaux comme supports manuels et pédestres, McIntyre (1983 a) révèle que les deux patrons de mouvement les plus utilisés parmi les trois essais analysés sont le latéral (30,3 %) et le latéral à quatre temps (28,8 %). De plus, l'étude dévoile que seulement 31,8 % des sujets adoptent le même patron de montée au cours des trois essais. Au niveau des caractéristiques temporelles, les plus petites périodes furent obtenues pour le patron de montée diagonal à

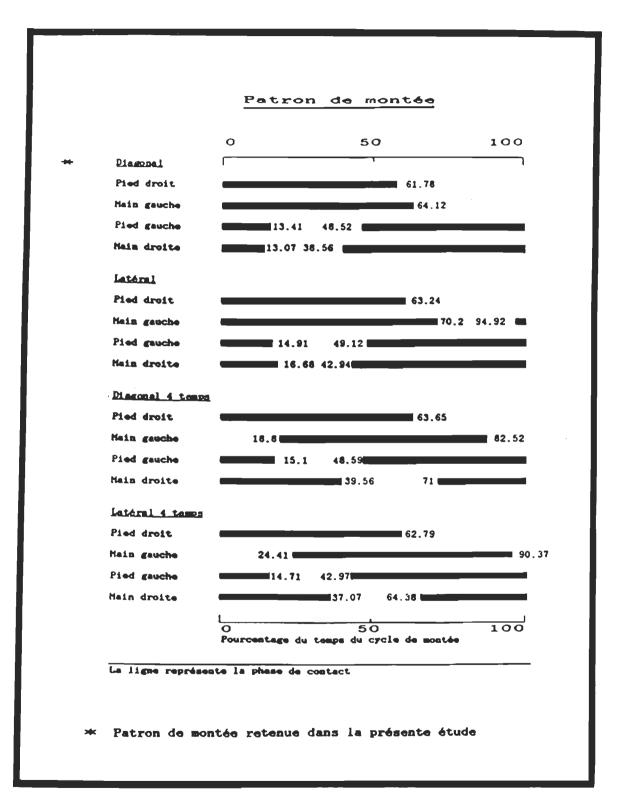


Figure 2. Les quatre patrons de montée tirés et adaptés de l'étude de McIntyre (1983).

quatre temps suivi par le latéral, le diagonal et le latéral à quatre temps alors que la variance temporelle entre les divers patrons de montée suit un ordre inverse, la plus grande variabilité étant obtenue avec le patron de montée diagonal à quatre temps. Il conclut en suggérant que cet évènement temporel de courte durée, temps minimal durant lequel moins de trois membres sont en contact avec les barreaux, influence le monteur et l'oriente vers un mauvais positionnement des pieds sur les barreaux. Le patron de montée diagonal à quatre temps pourrait constituer, selon lui, le plus grand potentiel de chutes à partir d'une échelle.

Selon Dewar (1977), cité dans McIntyre (1982), le patron de montée diagonal est le plus fréquemment employé: une séquence de mouvements du membre inférieur droit et du membre supérieur gauche suivie du membre inférieur gauche et du membre supérieur droit. D'autre part, son étude démontre que chez une population novice, une faible proportion des sujets utilise le patron de montée diagonal (15,22 %). L'étude révèle que parmi tous les patrons de montée, la phase de contact dure plus longtemps que la phase aérienne; entre autres, pour le patron de mouvement diagonal, le pied droit et la main gauche demeurent respectivement en contact avec les barreaux de l'échelle 61,78 % et 64,12 % du cycle total de montée. De plus, la

phase aérienne manuelle est de moindre durée que la phase aérienne pédestre.

McIntyre (1982) rend compte de l'effet de l'espace inter-barreaux sur le patron de montée d'une échelle. Il démontre clairement que le rôle principal de la main est de maintenir l'équilibre en direction perpendiculaire aux montants de l'échelle, en gardant la distance horizontale échelle-corps constante, et que la force déployée par le sujet est proportionnelle à la taille de celui-ci. D'autre part, la force transmise par les pieds permet d'orienter le corps en direction verticale. De plus, son étude révèle des différences temporelles significatives, attribuables aux espaces inter-barreaux. Sans toutefois faire référence au somatotype des sujets, McIntyre et ses collaborateurs (1982) démontrent qu'en augmentant l'espace inter-marches, la force moyenne déployée par la main, en direction perpendiculaire aux montants, augmente aussi. Les sujets de petite taille quant à eux enregistrent des valeurs supérieures aux autres sur ce dernier paramètre, surtout lorsque comparés aux sujets de grande taille. Les auteurs ajoutent qu'en réduisant l'espace inter-marches, une réduction des risques d'accidents est constatée. Enfin, ils soulignent que des écarts importants au niveau des caractéristiques temporelles, cinétiques et cinématiques du patron de montée, augmentent les risques d'accidents

chez le monteur.

McIntyre et al. (1983) étudient l'influence du type de chaussures sur l'équilibre et la force propulsive des membres inférieurs lors de la montée d'une échelle. Ils utilisent 14 sujets males et tentent de faire ressortir les similitudes et différences lors de la phase de contact du pied droit. Trois conditions expérimentales sont retenues: bottines de travail, souliers de travail et pieds nus. Les données cinématiques et cinétiques recueillies au cours des six essais enregistrés révèlent que: (a) les patrons de mouvement du membre inférieur droit sont consistants et rencontrent le principe de la chaîne cinétique relative aux activités de poussée; (b) la flexion dorsale maximale de la cheville correspond au moment où la force exercée est aussi la plus grande sur les barreaux; (c) lorsque comparés à la condition pieds nus, les deux types de chaussures réduisent en flexion dorsale; (d) enfin, que ces réductions en flexion dorsale n'affectent pas l'habileté du sujet à exercer des forces propulsives appropriées. Les auteurs remarquent de plus que lors de la phase de contact du pied droit, le mouvement du membre inférieur droit consiste en une extension de la cuisse, suivie d'une flexion de la jambe et d'une flexion dorsale du pied. Il est à noter qu'au cours de cette étude, les sujets n'avaient aucune

restriction quant au patron de montée à adopter, si ce n'est le fait de devoir établir leur contact initial sur la première marche avec le pied droit.

Tata, Peat, Grahame et Quanbury (1983) effectuent auprès de 18 sujets adultes, âgés de 23 à 53 ans, une analyse portant sur les quatre parties du muscle quadriceps femoris, à savoir, le vastus medialis oblique, le vastus medialis longus, le vastus lateralis et le rectus femoris. Simultanément aux données électromyographiques, les déplacements angulaires du genou lors de la montée et de la descente d'un escalier, dont la pente est de 38°, sont aussi enregistrés. Les résultats démontrent que le cycle de montée se subdivise en phases d'appui et d'envol dont les durées sont respectivement de 60 % et 40 %, tout comme pour la marche. Les données angulaires révèlent que deux changements de direction dans le mouvement angulaire du genou se produisent tant en montée qu'en descente. Les deux changements flexion-extension et extension-flexion se produisent en début de phase d'appui lors de l'ascension. De plus, la hauteur de la marche est le principal facteur influençant le degré de flexion au genou. L'analyse électromyographique identifie et localise la crête d'activité de chaque composante du muscle quadriceps femoris. Cette crête d'activité se manifeste entre 55° et

69° de flexion du genou lors de la montée. Enfin, l'amplitude relative de la crête d'activité électromyographique du quadriceps femoris, obtenue en relation au pourcentage de l'amplitude d'une contraction isométrique maximale volontaire, était plus grande lors de l'ascension de l'escalier. Ainsi, le recrutement d'un muscle dans une activité dynamique surpasse celui observé en situation isométrique statique et démontre que le mécanisme de contrôle neurologique des unités motrices n'est pas le même dans les deux cas; par contre, cette technique produit un signal de référence permettant des comparaisons entre le nombre d'unités motrices recrutées dans les courbes d'activité de chacun des vastes du quadriceps.

Gabbard, Miller & Thiebaud (1984) étudient, en relation avec l'angle de l'échelle, la flexion de la cheville en situations de montée et de descente. A des pentes d'échelles de 90°, 67°, 40°, 24°, 14° et 0° à partir de l'horizontale, l'étude cinématographique est effectuée chez 39 enfants dont l'âge varie entre 4 et 8 ans. Elle révèle que la plus grande variabilité (étendue des mouvements de la cheville à partir d'une position neutre de 90°) prend place aux pentes de 90°, 67° et 40°, et que, pour cette déviation, la plus grande variabilité est enregistrée lors du passage de la flexion dorsale à la

flexion plantaire. De plus, à tous les angles concernés, la flexion dorsale était toujours supérieure en montée plutôt qu'en descente. Des flexions plantaires minimales sont notées lorsque l'étendue du mouvement de flexion dorsale s'accroît. La plus grande déviation est enregistrée en flexion dorsale, lorsque l'échelle est en position horizontale. Enfin, le positionnement du pied sur les barreaux est relativement consistant à toutes les pentes; ainsi, 95 % des sujets font le contact avec le bout du pied (sauf en position horizontale); à 0° de pente, 71 % des sujets l'établissent avec le centre du pied, ce qui entraîne un mauvais positionnement des pieds et nécessite un niveau de sécurité plus élevé. Cependant, aucun contact avec le talon ne fut observé. Finalement. les auteurs démontrent que pour obtenir la plus grande étendue de mouvement, l'échelle doit avoir une pente de 40° à 90° par rapport à l'horizontale. De plus, il semble que l'échelle en position horizontale produise un niveau élevé de flexion dorsale.

En l'absence d'électromyographie, il est difficile ici de quantifier les modifications d'activité électrique musculaire relativement au degré de flexion de la cheville. Sans subdivision du cycle de montée en phases distinctes, il est hasardeux d'interpréter les résultats obtenus.

CHAPITRE III

Méthodologie

Sujets

Douze sujets masculins, sans déficience sensorimetrice apparente, agés de 18 à 43 ans (\overline{x} = 26,25, s = 8,39) sont recrutés pour participer sur une base volontaire à la présente étude (Annexe A).

Instruments et appareillage

Des électrogoniomètres couplés à des potentiomètres sont utilisés afin d'enregistrer l'angulation entre les segments adjacents de la hanche, du genou et de la cheville. Des électrodes de surface, jetables (Medi-Trace, Pellet, Ag/AgCl), sont disposées selon la méthode de Delagi et Perotto (1981) (Annexe B) afin de capter les potentiels électriques des muscles retenus dans la présente étude. Les signaux électromyographiques sont pré-amplifiés (X 1000), filtrés à l'aide d'un appareil Grass série 5, à 4 canaux, rectifiés puis filtrés en passe-bas à 6 Hz pour obtenir l'enveloppe linéaire positive du signal.

Un escabeau portatif a été conçu spécifiquement pour rencontrer les besoins de notre étude¹: ainsi, il est loisible de faire varier la pente (65°, 75°, 80°), la profondeur de marche (7,5 cm , 32,0 cm) ainsi que la hauteur verticale inter-marches (27,5 cm , 31,0 cm) (Figure 3).

Un ordinateur de marque Apple IIe et ses accessoires, incluant une carte de conversion analogique à numérique (Mountain Hardware), permettent l'acquisition en temps réel et le traitement initial des données, celles-ci étant conservées sur disquettes pour analyses ultérieures². Un indicateur de contact pédestre complète la liste des instruments requis pour l'étude.

Procédures

Les séances d'enregistrements électrogoniométriques et électromyographiques se sont tenues au Laboratoire de biomécanique du Département des sciences de l'activité

- 1. L'escabeau a été conçu par l'auteur et réalisé à l'atelier mécanique de l'U.Q.T.R. par M. Robert Drolet. Son coût de fabrication a été défrayé par une subvention obtenue du Fond Institutionnel de Recherche de l'U.Q.T.R.
- 2. Le programme d'acquisition des données a été conçu et réalisé par le professeur Louis Laurencelle.

Figure 3. Représentation schématique de l'escabeau.

physique de l'Université du Québec à Trois-Rivières (Le schéma expérimental de l'étude apparaît en Annexe C).

Douze séries de cinq ascensions, totalisant 60 essais par sujet, sont enregistrées. Les 12 séries représentent la combinaison des variables Pente (3 niveaux), Profondeur (2 niveaux) et Hauteur verticale inter-marches (2 niveaux). Le contrebalancement complet des 12 conditions étant impraticable, un contrebalancement partiel pour 12 sujets a été fait sur ordinateur, à l'aide de nombres aléatoires!. La contrainte imposée lors du contrebalancement est qu'une même transition de deux conditions, par exemple la condition 8 suivie de la condition 11, ne se retrouve pas chez plus de deux sujets. L'annexe D présente la séquence des conditions administrée à chacun des 12 sujets: le tableau 1 illustre la fréquence des transitions d'une condition à l'autre, nulle n'advenant plus de deux fois.

Tâche des sujets

Le sujet, placé debout devant l'appareil, attend le signal de départ de l'expérimentateur avant d'amorcer

1. Programme conçu et rédigé par le professeur Louis Laurencelle.

Tableau 1

Répartition des sujets (A,B,C,...,L) selon les diverses conditions expérimentales.

	Cc	nd	it	ic	n	i	+	1	(su	iv	ar	ıt)
		1	2	3	4	5	6	7	8	9	10	11	12
_	1		I K	J	A			В	С		G	F	D
1)	2	B		G A	С		E		L F	J H			
(actuel	3		B		L F	A A	С	E		К		Н	
ct	4					H F		J	G B	D	C	A	К
(a	5	G		E	В		F	Ĺ			D A	K	c
٠H	6	F	A		G	L		ם	J	В	К	C	
В	7		C	K H		G	Ā		D	F		J	В
i	8	H			J	C E		K G		A	В	D	F
u	9	CE			Н	В	J D	A	I			G	L
	10		Ы	F C		К			E	L			G A
	11		G F	L B	E	D			K A		H		J
	12	J	E	I	D		В	c F		G		Ĺ	

l'ascension de l'escabeau. La montée est effectuée en empruntant un patron de mouvement alternatif (diagonal à deux temps), le sujet n'utilisant que les marches comme points d'appui manuel et pédestre. Il s'immobilise sur la troisième marche, ce qui marque la fin du cycle de montée, et il attend, pour redescendre, le signal de fin de montée donné par l'expérimentateur.

Le cycle de montée s'effectue à partir du premier contact du pied droit sur la première marche jusqu'au second contact du pied droit sur la troisième marche (phase dynamique), alors que les deux phases statiques pré-cycle et post-cycle de montée coîncident respectivement avec le contact pied-sol et le contact de la troisième marche. Ces deux phases, dynamique et statique, délimitent le champ d'investigation du patron de montée d'un escabeau.

Partant de l'hypothèse que le cycle total de montée s'étend sur une période de 6 secondes, l'inscription des données se fait sur une période de quatre secondes pour la partie dynamique du cycle, alors que les deux autres secondes sont réparties également pour chacune des phases statiques pré-cycle et post-cycle de montée (Annexe E).

Electrogoniomètres et électrodes. Trois électrogoniomètres sont fixés, à l'aide de bandes élastiques, aux centres articulaires de la hanche, du genou et de la cheville du membre inférieur droit, respectivement (Figure 4). Douze électrodes de surface jetables (Medi-Trace, Pellet, Ag AgCl) permettent de recueillir l'activité électrique des muscles suivants: vastus lateralis, biceps femoris (longue portion), tibialis anterior et gastrocnemius (Annexe B).

Un indicateur de contact pédestre, avec semelle mécanique ajustable, est installé sous le pied droit du sujet. Ainsi, à chaque contact pied-sol ou pied-marche, un signal électrique, servant à déterminer à postériori le début et la fin du cycle de montée, est déclenché et enregistré sur micro-ordinateur.

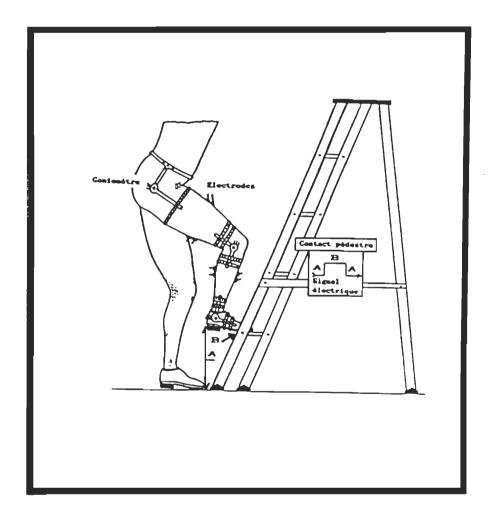


Figure 4. Schéma d'un sujet effectuant une montée d'escabeau (le sujet est muni de ses électrodes, électrogoniomètres et de la semelle mécanique).

Déroulement de l'expérience

Dès son arrivée, l'expérimentateur explique clairement au sujet le but et la nature de l'étude. Suite à la signature du formulaire de "Consentement pour étude clinique" (Annexe A), le sujet revêt un pantalon court, une camisole à manches courtes ainsi qu'un modèle de chaussures avec lequel il est familier, soulier ou espadrille. La phase préparatoire à la cueillette des données dure en moyenne une heure et démarre par la pose des électrogoniomètres et électrodes. La peau du sujet est préalablement rasée et nettoyée à l'aide de tampon alcoolisé, et les électrodes sont disposées au-dessus des points moteurs des muscles précités selon la méthode Delagi et Perotto (1981). Les fils sont pontés au-dessus de la peau à l'aide de ruban adhésif chirurgical (technique décrite par Knutsson et Richards, 1979) de façon à minimiser les artefacts pouvant provenir du contact des fils contre la peau des sujets. Puis, l'expérimentateur détaille les procédures à suivre lors de l'enregistrement des données et fait exécuter quelques essais de pratique afin de familiariser le sujet avec le patron de montée, un patron diagonal à deux temps, de même qu'avec les divers appareils. L'expérimentateur vérifie enfin les signaux provenant de chacun des huit canaux d'enregistrement.

Dès lors, l'étude débute, le sujet devant passer la séquence des 12 conditions qui lui est prescrite (Annexe D). Pour chaque condition, le sujet réalise cinq ascensions entrecoupées d'un intervalle durant lequel il redescend sur la base de départ; il peut s'asseoir s'il le désire. A la commande "Prêt", le sujet se positionne sur la base de départ et attend, en station verticale, la commande de début de l'ascension, "Go". A la fin de chaque condition, un temps de récupération de 5 minutes est alloué au sujet, cette période permettant d'ajuster l'escabeau aux conditions relatives à la série suivante.

Avant d'être sauvegardé, chaque essai est visualisé et pré-sélectionné via l'ordinateur, par l'expérimentateur. Après chaque série de cinq ascensions, la localisation et le bon fonctionnement des électrogoniomètres et des électrodes sont vérifiés.

CHAPITRE IV

Résultats

Les résultats présentés dans ce chapitre s'appuient sur une analyse méthodique du patron de montée d'un escabeau, appliquée au membre inférieur droit du sujet. Le modèle utilisé est constitué de trois grandes catégories de paramètres: les éléments, les dimensions extrinsèques et intrinsèques ainsi que les indices (Tableau 2). Les éléments font référence à la durée du cycle complet de montée, au déplacement et à la vélocité angulaire des segments du membre inférieur droit ainsi qu'à la tension musculaire de certains muscles importants dans l'exécution d'un tel geste. Les dimensions extrinsèques proviennent des paramètres proprement dits de l'escabeau: pentes (A1: 65°, A2: 75°, A3: 80°), profondeurs de marche (B1: 7.5 cm, B2: 32 cm), hauteurs verticales inter-marches (C1: 27.5 cm, C2: 31 cm). Les dimensions intrinsèques comportent les deux phases du cycle de montée (appui et envol), les paramètres relatifs aux articulations de la hanche, du genou et de la cheville ainsi que l'activité musculaire requise des muscles vastus lateralis (V.L.), biceps femoris (B.F.), tibialis anterior (T.A.) et gastrocnemius

Tableau 2
Résumé des variables analysées dans la présente étude.

	variables	variables	
Eléments	Dia	ensions	Indices
Tension musculaire (u volt)	A B C A+B A+C B+C A+B+C	V.L. B.F. T.A. G.	Intégrale Frac 75 (es) Frac 50 (es) Frac 25 (es) Pointe Latence (es et %) Hoyenne Variation
Vélocité angulaire (d e g. ⁻¹)	A B C A+B A+C B+C A+B+C	- Hanche - Genou - Cheviile	Pointe positive Pointe négative Pointe absolue Amplitude Délai (ms) Multiple (deg2)
Déplacement angulaire (degré)	A B C A+B A+C B+C A+B+C	- Hanche - Genou - Cheville	Trajet - Amplitude pré-maximale - Pointe - Latence (ms et %) - Amplitude post-maximale
Durée du cycle (es)	A B C A+B A+C B+C A+B+C	C Appui Envol	- Latence (es et %)

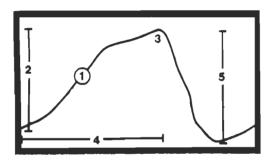
variables variables extrinsèques intrinsèques (G.) lors de la montée d'un escabeau. Enfin, des indices spécifiques d'analyse servent à expliquer l'effet des variables extrinsèques (effet simple et interaction) sur les variables intrinsèques.

Les courbes électrogoniométriques et électromyographiques ont été vincentisées et une moyenne calculée sur cinq essais d'une même condition sur chacun des sujets (moyenne intra-sujet) ainsi que sur l'ensemble des douze sujets (moyenne inter-sujets). De plus, les mesures d'indices spécifiques décrits au paragraphe précédent ont été pris à partir des données brutes de chaque courbe (Annexe G). Notons que seules les données relatives à la phase dynamique, c'est-à-dire celles du cycle de montée, ont été retenues pour fins d'analyse et de présentation, suite à la séance d'enregistrement en laboratoire. Des analyses de variance à plan factoriel (Annexe H), de forme Ar (3 pentes) * Br (2 profondeurs de marche) * Cr (2 hauteurs verticales inter-marches), ont permis d'évaluer l'impact des configurations d'escabeau sur le déplacement et la vélocité angulaire de la hanche, du genou et de la cheville, ainsi que sur la courbe de tension générée par l'activité musculaire des muscles pré-cités.

Indices statistiques

Pour fins d'analyse statistique, de nombreuses caractéristiques décrivant l'aspect des courbes de données brutes ont été déterminées quantitativement. Ces indices quantitatifs se regroupent en trois grandes catégories: les indices temporels, électrogoniométriques et électromyographiques. La procédure employée fut la suivante. D'abord une valeur d'indice était déterminée pour chacun des essais d'une condition, par sujet. Cinq valeurs étant ainsi obtenues, nous retirions à la fois la plus faible et la plus forte, et calculions la moyenne arithmétique des trois valeurs centrales, cette "moyenne tronquée" (Hill & Dickson, 1982; Hogg, 1979) étant la valeur retenue de l'indice pour la condition et le sujet considérés.

Les indices sont présentés sommairement plus bas. Le lecteur trouvera une description plus élaborée des indices à l'annexe I, et même la définition opératoire de ceux-ci dans le programme BASIC "Indices", qui les calcule, à l'annexe J.


Cycle de montée.

Des indices temporels, tels la durée du cycle complet de montée, la durée des phases d'appui et d'envol

ainsi que leurs centiles respectifs, permettent une analyse plus détaillée des effets provoqués par la modification des paramètres de l'escabeau sur le cycle de montée.

Courbes électrogoniométriques.

Cinq indices se dégagent d'une courbe-type de déplacement angulaire. Ils sont représentés à la figure suivante, l'ordonnée indiquant des valeurs angulaires, l'abscisse représentant le temps (Figure 5).

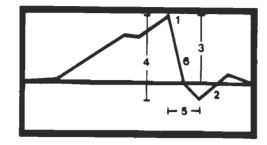

- 1. Trajet (déplacement angulaire lissé)
- 2. Amplitude pré-maximale
- 3. Pointe (angle maximal atteint)
- 4. Latence (délai en es et %)
- 5. Amplitude post-maximale.

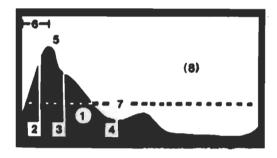
Figure 5. Modèle d'une courbe-type de déplacement angulaire.

Vélocité angulaire.

Six indices de vélocité angulaire ont été retenus afin de déterminer l'effet des modifications de

l'escabeau (Figure 6).

- i. Pointe positive
- 2. Pointe négative
- 3. Pointe absolue
- 4. Amplitude (△w)
- 5. Délai (At)
- 6. Accélération angulaire $(\triangle w / \triangle t)$.


Figure 6. Modèle d'une courbe-type de vélocité angulaire.

Courbes électromyographiques.

Le nombre d'indices représentatifs des courbes de tension musculaire s'élève à huit. Ces indices permettent d'évaluer l'impact des configurations de l'escabeau sur la tension musculaire développée. Ils servent également à détecter certaines caractéristiques des diverses conditions de travail sur l'escabeau (Figure 7).

Analyse qualitative

Cette section porte sur l'analyse descriptive qualitative des résultats. Elle se divise en deux

- 1. L'intégrale
- 2. Frac 25
- 3. Frac 50
- 4. Frac 75
- 5. Pointe eaximale
- 6. Latence (exprieée en %)
- 7. Hoyenne
- 8. Variation

Figure 7. Modèle d'une courbe-type de tension musculaire.

parties. La première traite de la variabilité des allures de courbes intra et inter-sujets; la seconde partie concerne l'analyse globale des courbes de tension musculaire.

<u>Variabilité</u>

Avant d'introduire l'analyse qualitative des courbes électrogoniométriques et électromyographiques, il est nécessaire de présenter les indices de variabilité intra-sujet et inter-sujets apparaissant à l'annexe F du présent document. L'ajout de ces indices permet de juger de la consistance qualitative (différence ou similarité) entre les courbes de déplacement angulaire de chaque articulation ainsi qu'entre les courbes de tension

musculaire de chaque muscle. Composée de trois unités, soit l'étendue minimale, moyenne et maximale, la variabilité intra-sujet est identifiée à la gauche de la variabilité inter-sujets dans la partie supérieure droite de chaque schéma. Afin de discerner plus facilement ces trois unités entre elles, nous avons pris soin d'y indiquer l'étendue moyenne à l'aide d'un trait plein.

L'observation des allures de courbes de déplacement angulaire et d'activité musculaire révèle, pour l'ensemble des conditions expérimentales, que la variabilité intra-sujet demeure constamment en deçà de la variabilité inter-sujets, comme d'ailleurs il se doit d'être.

Variabilité intra-sujet

Les allures de courbes du patron de montée attribuables au muscle biceps femoris (B.F.) diffèrent pour les trois conditions expérimentales suivantes (211, 212 et 322 de l'annexe F). La plus grande variabilité étant enregistrée sous la condition 212, à savoir, une pente de 75°, une profondeur de marche de 7.5 cm et une hauteur verticale inter-marches de 27.5 cm, cette condition représentant les paramètres d'un escabeau conventionnel.

Variabilité inter-sujets

Des différences majeures ont été relevées au niveau des allures de courbes du muscle biceps femoris pour les mêmes conditions (211, 212 et 322), la plus grande variabilité se situant à la condition 322: pente de 80°, profondeur de marche de 32 cm et une hauteur verticale inter-marches de 31 cm.

Au niveau articulaire, c'est à la cheville que des différences majeures sont notées. La variabilité intra-sujet indique une grande similitude entre les essais de chaque sujet d'une part, alors que d'autre part, la variabilité inter-sujets démontre clairement que chacun réagit différemment à la même condition expérimentale (Annexe F).

Tension musculaire

Les courbes électromyographiques des quatre muscles sélectionnés dans la présente étude sont représentées aux figures 8 et 9. Il s'agit des muscles vastus lateralis (V.L.), biceps femoris (B.F.), tibialis anterior (T.A.) et gastrocnemius (G.). Une courbe de déplacement angulaire moyenne est présentée parallèlement à la courbe de tension musculaire des muscles vastus lateralis, tibialis

anterior et gastrocnemius alors que deux courbes sont nécessaires dans le cas du biceps femoris, l'un pour le genou et l'autre pour la hanche, étant donné son caractère bi-articulaire. De plus, afin de faciliter la compréhension des évènements mécaniques et électromyographiques, le schéma du muscle concerné en situation de montée est représenté sur chaque figure correspondante.

<u>Vastus lateralis</u>. L'aspect bimodal de la courbe de tension musculaire du vastus lateralis persiste à travers l'ensemble des conditions expérimentales. Ces deux crêtes d'activité musculaire se situent respectivement vers le 10e et le 50e centile du cycle de montée, la première étant toujours supérieure à la seconde (Figure 8).

Dès le début du cycle, la tension musculaire du vastus lateralis s'accroît rapidement afin d'amorcer l'extension de l'articulation du genou. Au fur et à mesure que le genou s'étend, la tension musculaire décroît.

Cependant, vers la moitié du cycle de montée, une légère hausse de tension est observée. Peu après, vers le 60e centile, une tension de base persiste et demeure relativement stable jusqu'à la fin du cycle.

Biceps femoris. Seule une chute de tension musculaire, se manifestant vers la moitié du cycle de montée, marque l'allure de la courbe du biceps femoris (Figure 8). Trois conditions expérimentales captent plus particulièrement notre attention. Les conditions 211, 212 et 322 apparaissant à l'annexe F révèlent un accroissement drastique de la variabilité inter-sujets. De plus, le passage de la condition 211 à la condition 212 accroît, d'autre part, la variabilité intra-sujet.

L'ensemble des montées d'escabeau effectuées par les sujets corrobore la nature bi-articulaire ainsi que le rôle bi-fonctionnel du biceps femoris. En effet, ce muscle contribue à la fois au maintien de la station verticale du tronc (extension) et à la flexion du genou. Constamment en activité tout au long du cycle de montée, le biceps femoris se contracte progressivement du début du mouvement jusqu'à la moitié du cycle; il facilite ainsi l'extension de la hanche. Puis, la tension chute jusqu'à son niveau d'activité de base, près du 60e centile du cycle, afin que l'extension du genou puisse se compléter. Notons toutefois que le niveau d'activité de base du biceps femoris demeure supérieur à celui des autres muscles car il s'agit d'un muscle postural servant à stabiliser et à maintenir l'attitude correcte du tronc lors de la montée de l'escabeau.

<u>Tibialis anterior</u>. L'allure unimodale de la courbe d'activité musculaire du tibialis antérior subsiste à travers l'ensemble des conditions expérimentales observées. La crête de la tension musculaire du tibialis anterior se manifeste vers le 80e centile du cycle de montée (Phase d'envol, Figure 9).

La période dite phase aérienne (envol) du cycle de montée est particulièrement marquée par la flexion dorsale de la cheville. Outre le maintien d'une activité de base, tout au cours de la phase d'appui, la tension musculaire du tibialis anterior s'accroît principalement en phase d'envol. Elle atteint son maximum près de la fin du cycle de montée. L'articulation de la cheville passe, en début de phase d'envol, d'une pleine extension dorsale à une flexion dorsale maximale. Ce renversement de position angulaire constitue la phase la plus dynamique du mouvement de la cheville. Elle prépare la prise de contact pédestre permettant d'engendrer un second cycle de montée sur l'escabeau.

Gastrochemius. Egalement unimodale, l'allure de la courbe d'activité musculaire du gastrochemius demeure marquée par la chute abrupte de son niveau de tension, vers la moitié du cycle de montée. Cette chute se manifeste dans toutes les conditions expérimentales

observées (Figure 9).

La courbe du déplacement angulaire de la cheville permet de constater que la phase de transfert du poids corporel prend fin autour du 15e centile du cycle de montée. L'activité du muscle gastrocnemius reflète le plus cette prise en charge du poids corporel par la jambe de support. En effet, la tension musculaire s'accroît progressivement pour atteindre son niveau maximum près du 50e centile du cycle. La cheville atteint son extension dorsale maximale à la fin de la phase d'appui, au centile 60. Dès lors, la tension musculaire du gastrocnemius chute dramatiquement pour ne maintenir qu'un faible niveau d'activité jusqu'à la fin du cycle de montée.

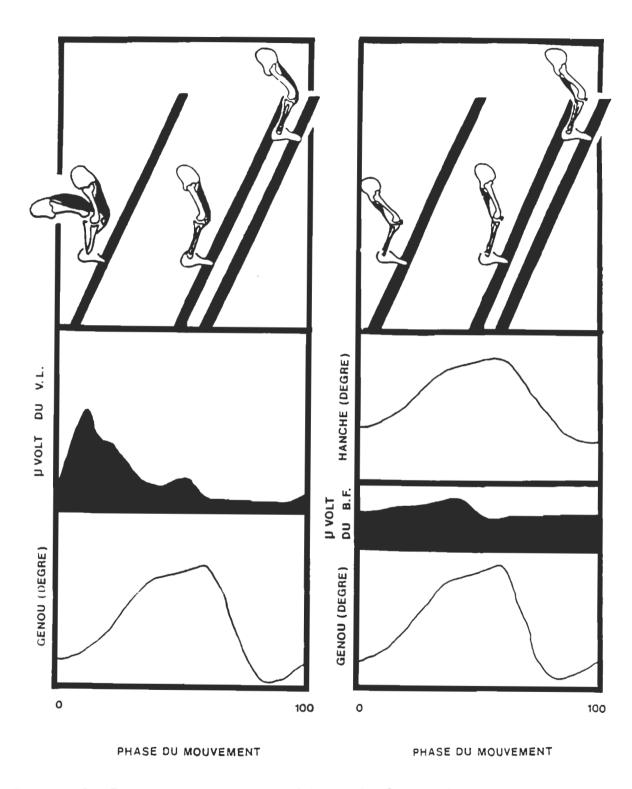


Figure 8. Représentation graphique de la position du membre inférieur droit, du déplacement angulaire de la hanche et du genou ainsi que l'activité myoélectrique des muscles vastus lateralis et biceps femoris.

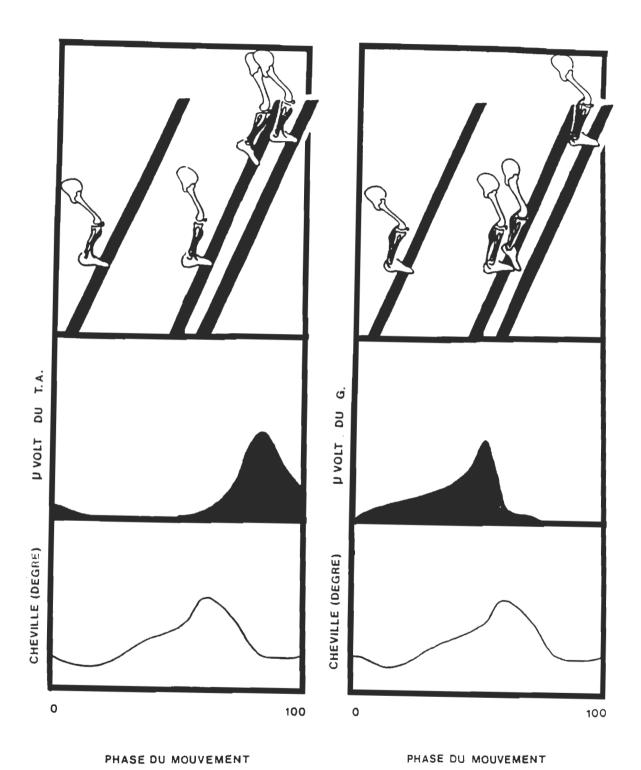


Figure 9. Représentation graphique de la position du membre inférieur droit, du déplacement angulaire de la hanche, du genou et de la cheville ainsi que l'activité myoélectrique des muscles tibialis anterior et gastrocnemius.

Analyse quantitative

Une analyse de variance à plan factoriel de forme A (3 pentes) * B (2 profondeurs de marche) * C (2 hauteurs verticales inter-marches), avec mesures répétées sur les trois facteurs, a permis d'évaluer l'impact des paramètres de l'escabeau (variables extrinsèques) sur des indices spécifiques aux variables intrinsèques portant sur les éléments de durée du cycle de montée, de déplacement et vélocité angulaires ainsi que de tension myoélectrique. Pour chacun des éléments apparaissant aux tableaux suivants, nous avons pris soin de représenter sous forme simplifiée, les indices significatifs provenant de l'analyse de variance, chacun étant suivi de son niveau de signification. Les indices pour lesquels des interactions significatives (A * B, A * C, B * C) entre les paramètres de l'escabeau ont été obtenues, sont regroupés et présentés à la fin du chapitre.

Cycle de montée

Pente

En fonction de l'augmentation de la pente, les résultats de l'analyse de variance indiquent un effet significatif de l'indice de durée du cycle de montée,

(F = 16.434; dl = 2,22; p < .01), sur celui du centile d'appui (F = 4.403; dl = 2,22; p < .05) ainsi que sur la phase d'envol (F = 13.04; dl = 2,22; p < .01).

Tableau 3

Résultats pour lesquels des valeurs significatives d'indices du cycle de montée ont été identifiées en fonction de la pente de l'escabeau.

			Pente	
Indices		A1 (65°)	A2 (75°)	A3 (80°)
Durée du cycle (ms) Centile d'appui (%) Phase d'envol (ms)	** * **	1670 59.2 680	1700 60.02 691	1830 56.03 806

Cycle de montée

La valeur des indices de durée du cycle de montée et de phase d'envol augmentent en fonction de l'accroissement de la pente, plus particulièrement lorsque la pente est plus abrupte (A3: 80°). Par contre, le centile d'appui, qui représente la durée du contact pédestre avec l'escabeau, se manifeste plus hâtivement en présence d'une pente abrupte (effet miroir de la phase d'envol); les sujets compensent donc pour le niveau de difficulté engendré par une pente abrupte, en réduisant la durée

^{*} Significatif à p < .05.

^{**} Significatif à p < .01.

relative (%) de la phase d'appui. Cette réduction de la durée relative de la phase d'appui indique que le sujet se déplace plus vite sur l'escabeau. Malgré un écart de 10° entre les pentes A1 et A2, une faible différence est enregistrée au niveau de la valeur des trois indices pour lesquels une influence significative fut observée.

Cependant, l'augmentation du degré d'inclinaison de l'escabeau jusqu'en position A3 (80°) nécessite un délai additionnel de la phase d'envol afin de compléter le cycle de montée; la valeur du centile d'appui en est davantage réduite.

Hauteur verticale inter-marches

Les résultats de l'analyse de variance révèlent l'influence de la hauteur verticale inter-marches sur certains indices. En effet, des effets significatifs sont décelés au niveau de l'indice de durée du cycle (F = 16.144; dl = 1,11; p < .01) ainsi que sur celui de la phase d'appui (F = 27.441; dl = 1,11; p < .01).

L'atteinte d'une marche plus haute nécessite une période de temps supplémentaire afin que les sujets puissent élever suffisamment la jambe droite pour compléter le cycle complet de montée. Ce temps supplémentaire de la durée du cycle de montée se manifeste particulièrement au niveau de la durée de la phase

Tableau 4

Résultats pour lesquels des valeurs significatives d'indices du cycle de montée ont été identifiées en fonction de la hauteur verticale inter-marches.

Cycle de montée

	Hauteur verticale inter-marches			
Indices	C1 (27.5 cm)	C2 (31 cm)		
Durée du cycle (ms) **	1696	1777		
Phase d'appui (ms) **	981	1035		

^{**} Significatif à p < .01.

d'appui. Notons toutefois que malgré que la durée de la phase d'appui par rapport à la hauteur verticale inter-marches ait été trouvée significative, aucune différence significative ne fut observée quant au centile d'appui exprimant en pourcentage la durée du contact pédestre avec l'escabeau.

De façon générale, la durée du cycle de montée est particulièrement affectée par le changement de pente ainsi que par la hauteur verticale inter-marches. Toutefois, notons que la profondeur de marche n'influence pas le déroulement du cycle de montée, tant dans sa durée que dans ses phases d'appui et d'envol. De façon plus

spécifique, l'augmentation de la durée du cycle de montée due à l'effet de pente se répercute plus particulièrement au niveau de la phase d'envol, et elle se traduit par une augmentation de sa durée. Par contre, la valeur du centile d'appui attribuable à l'augmentation de la pente diminue en proportion de l'augmentation du temps de la phase d'envol. Tel que stipulé auparavant, cette diminution du centile d'appui s'inscrit en tant qu'effet miroir de la durée relative de la phase d'envol. D'autre part, l'augmentation de la durée du cycle de montée attribuable à l'effet de la hauteur verticale inter-marches se répercute au niveau de la durée de la phase d'appui. Remarquons que pour atteindre une marche dont la hauteur est supérieure, les sujets doivent demeurer plus longtemps en contact avec l'escabeau afin d'appliquer une force de poussée plus grande et produire l'énergie essentielle à l'atteinte de la troisième marche.

Déplacements angulaires

La modification des paramètres de l'escabeau (pente, profondeur de marche et hauteur verticale inter-marches) influence significativement le déroulement mécanique du cycle de montée. Cinq indices se rapportant aux allures de courbes des déplacements angulaires de la hanche, du genou

et de la cheville sont ressortis significatifs de l'analyse de variance. Ces indices sont le trajet, l'amplitude pré-maximale, la pointe, la latence et l'amplitude post-maximale.

Pente

L'augmentation de la pente modifie la courbe de déplacement angulaire des articulations de la hanche, du genou et de la cheville au niveau de certains indices. effet significatif provenant de l'analyse de variance est décelé au niveau de l'indice de trajet du genou (F = 3.79; d1 = 2,22; p < .05) ainsi qu'au niveau de l'amplitude pré-maximale (extension dorsale) de la cheville (F = 4.61; d1 = 2,22; p < .05). Quant à la pointe de la courbe de déplacement angulaire de la hanche (extension maximale), un effet significatif est identifié (F = 6.621; dl = 2,22; p < .01) de même que pour la pointe de la cheville (extension dorsale maximale), (F = 3.898; dl = 2,22; p < .05). On retrouve un effet significatif attribuable à la pente au niveau de l'indice de latence pour les articulations de la hanche (F = 19.542; dl = 2,22; p < .01), du genou (F = 17.832; dl = 2,22; p < .01) et de la cheville (F = 26.12; dl = 2,22; p < .01). Enfin, l'indice d'amplitude post-maximale est significativement influencé au niveau de l'articulation du genou (F = 3.832; dl = 2,22; p < .05) ainsi qu'à la cheville (F = 5.205; dl =

2,22; p < .05).

Tableau 5
Résultats pour lesquels des valeurs significatives
d'indices du déplacement angulaire ont été
identifiées en fonction de la pente de l'escabeau.

				Pente	
Indices		-	A1 (65°)	A2 (75°)	A3 (80°)
Trajet	*	Genou	168	162	160
<u>Amplitude</u> p <u>ré-maximale</u>	*	Cheville	51.6	52.8	54.8
<u>Pointe</u>	** *	Hanche Cheville	152.34 109.05	144.161 111.04	145.9165 113.104
<u>Latence</u> (%)	** **	Hanche Genou Cheville	57.2 58.4 60.78	52.9 55.9 57.36	51.1 54.6 56.09
Amplitude post-maximale	*	Genou Cheville	82.236 44.427	78.813 46.771	78.771 47.653

Déplacements angulaires (degrés)

Ainsi, plus la pente est abrupte, plus le trajet (déplacement angulaire) parcouru par le genou est court. Cette diminution du trajet est attribuable au déplacement horizontal réduit du sujet vers l'escabeau, en pente abrupte (A3: 80°). Principalement réalisée en phase d'appui, l'amplitude pré-maximale (extension dorsale) de

^{*} Significatif à p < .05.

^{**} Significatif à p < .01.

la cheville est complétée en début de la phase d'envol pour les pentes A1 et A3. Seule la pente A2 permet à l'amplitude pré-maximale de la cheville d'être complétée en phase d'appui. L'amplitude pré-maximale de la cheville s'accroît en fonction de l'augmentation de la pente. La diminution de la distance horizontale sujet-escabeau attribuable à une pente plus abrupte sollicite une augmentation de l'extension dorsale de la cheville afin d'effectuer le passage de la première à la troisième marche. La pointe (extension maximale) de la hanche est grandement affectée par le passage d'une pente de 65° à une pente de 75° et/ou de 80°. Cette pointe se manifeste en tout temps, en phase d'appui. Lorsque la pente est douce, les sujets redressent davantage le tronc. La pointe de la cheville (extension dorsale maximale) croît en fonction de l'augmentation de la pente. Comme la distance horizontale sujet-escabeau diminue avec l'augmentation de la pente, elle nécessite donc une extension dorsale maximale (pointe) plus élevée de la cheville lors du passage de la première à la troisième marche. L'occurence relative de l'extension maximale (latence) de la hanche, du genou et de la cheville se manifeste plus hâtivement (compensation temporelle) en présence d'une pente abrupte. Indépendamment des trois pentes, la latence de l'extension maximale se manifeste en phase d'appui pour l'articulation de la hanche et du genou alors qu'elle se complète, pour

la cheville, en début de phase d'envol pour les pentes A1 et A3. L'amplitude post-maximale du genou (flexion) diminue en fonction de l'augmentation de la pente. Elle débute en fin de phase d'appui (au centile 60 du cycle) pour se terminer en fin de phase d'envol (centile 85) pour le genou. Par contre, l'amplitude post-maximale de la cheville (flexion dorsale) s'accroît en fonction de l'augmentation de la pente. Elle se réalise entièrement en phase d'envol pour les pentes A1 et A3.

Profondeur de marche

Les résultats de l'analyse de variance relatifs à la profondeur de marche révèlent un effet significatif au niveau du trajet et de l'amplitude post-maximale pour les articulations de la hanche et du genou. Ainsi, pour le passage de la condition B1 (7.5 cm) à la condition B2 (31 cm), des effets significatifs sont décelés au niveau de la courbe de déplacement angulaire pour l'indice de trajet de l'articulation du genou (F = 7.951; dl = 1,11; p < .05), l'indice d'amplitude post-maximale de l'articulation de la hanche (F = 6.52; dl = 1,11; p < .05) ainsi que pour l'articulation du genou (F = 6.176; dl = 1,11; p < .05).

Impliquant un plus grand déplacement horizontal du sujet vers l'escabeau, le trajet est directement influencé par l'augmentation de la profondeur de marche; de plus,

Tableau 6

Résultats pour lesquels des valeurs significatives d'indices du déplacement angulaire ont été identifiées en fonction de la profondeur de marche de l'escabeau.

			Profondeur	de marche
Indices			B1	B2
			(7.5 cm)	(32 cm)
Trajet	*	Genou	161.63	166.1
Amplitude post-maximale	*	Hanche Genou	62.2 4 78.9 44	64.03 80.995

^{*} Significatif à p < .05.

la flexion des articulations de la hanche et du genou (amplitude post-maximale) est augmentée. Un grand déplacement horizontal vers l'escabeau nécessite une flexion accrue de la hanche. Cette dernière élève le segment de la cuisse et provoque simultanément une flexion plus prononcée de l'articulation du genou. Ces flexions débutent en fin de phase d'appui et se terminent en fin de cycle de montée (phase d'envol).

Hauteur verticale inter-marches

Les effets de la hauteur verticale inter-marches ont

été identifiés par les résultats de l'analyse de variance. Trois indices significatifs ont été décelés à partir des courbes de déplacement angulaire des articulations de la hanche, du genou et de la cheville. Ce sont, tout d'abord, l'indice de trajet de la hanche (F = 18.843; dl = 1,11; p < .01) ainsi que celui du genou (F = 5.975; dl = 1,11; p < .05); deuxièmement, l'indice d'amplitude pré-maximale de la hanche (F = 15.891; dl = 1,11; p < .01) et celui du genou (F = 11.266; dl = 1,11; p < .01). Notons aussi l'indice d'amplitude post-maximale de l'articulation de la hanche (F = 17.384; dl = 1,11; p < .01), celui du genou (F = 5.09; dl = 1,11; p < .05) et finalement celui de la cheville (F = 6.644; dl = 1,11; p < .05).

Directement influencé par l'augmentation de la hauteur verticale inter-marches, l'accroissement du trajet est attribuable à la différence de la hauteur verticale inter-marches entre chaque condition. Cette élévation de la hauteur verticale inter-marches nécessite une flexion plus prononcée de l'articulation de la hanche et du genou, en début et en fin de cycle de montée. Se réalisant entièrement en phase d'appui, l'augmentation de l'amplitude pré-maximale est attribuable à cette différence de hauteur verticale inter-marches. C'est en début de cycle de montée que l'augmentation de l'amplitude pré-maximale s'accroît plus particulièrement. En effet,

Tableau 7

Résultats pour lesquels des valeurs significatives d'indices de déplacement angulaire ont été identifiées en fonction de la hauteur verticale inter-marches de l'escabeau.

DODIACOMONIO ANEKIATIOS (GOELOS)	Déplacements	angulaires	(degrés)
----------------------------------	--------------	------------	----------

			Hauteur v inter-man	
Indices			C1 (27.5 cm)	C2 (31 cm)
Trajet	**	Hanche Genou	110.875 161.2	116.93967 166.48
Amplitude pré-maximale	** **	Hanche Genou	44.574 67.6	47.5785 71.1
Amplitude post-maximale	** *	Hanche Genou Cheville	61.7 78.89 45.8935	64.6 81.05 46.6713

^{*} Significatif à p < .05.

une marche plus élevée occasionne, en début de phase d'appui, une flexion accrue de l'articulation de la hanche et du genou. L'amplitude post-maximale des articulations de la hanche, du genou et de la cheville est également influencée par l'augmentation de la hauteur verticale inter-marches. Débutant en fin de phase d'appui, la grandeur de l'amplitude post-maximale de la hanche est

^{**} Significatif à p < .01.

provoquée par la différence entre les hauteurs verticales inter-marches en fin de phase d'envol du cycle complet de montée.

Une vue d'ensemble de nos résultats dévoile

l'influence des paramètres de l'escabeau sur les indices

relatifs aux courbes de déplacements angulaires de la

hanche, du genou et de la cheville. Ainsi, on observe

d'une part qu'aucun indice en relation avec le déplacement

angulaire de la cheville n'est influencé significativement

par la profondeur de marche. D'autre part, aucun paramètre

de l'escabeau n'a su également influencer de façon

significative l'indice de trajet de la cheville et celui

de la pointe du genou.

Vélocité angulaire

La vélocité angulaire du comportement mécanique du membre inférieur droit, lors du cycle de montée, constitue l'objet de la présente section. Des six indices originaux servant à décrire l'effet entraîné par la modification des paramètres de l'escabeau, cinq furent trouvés significatifs. Ce sont la pointe négative, la pointe absolue, l'amplitude et le délai; de plus, un indice d'accélération permit de juger de l'importance du

changement d'orientation de la courbe de vélocité angulaire. Enfin, tout comme à la section précédente, ces indices ont été analysés à partir des trois articulations concernées par la présente étude: la hanche, le genou et la cheville.

Pente

L'analyse de la variance des indices inhérents aux courbes de vélocité angulaire obtenues en faisant varier le degré d'inclinaison de la pente de l'escabeau révèle certains effets significatifs. En effet, la pointe négative de l'articulation de la hanche (F = 8.363; dl = 2,22; p < .05) ainsi que la pointe absolue de la hanche (F = 12.675; d1 = 2,22; p < .01) et celle du genou (F = 22.465; dl = 2,22; p < .01) sont significativement influencées par une modification de la pente de l'escabeau. De plus, l'amplitude du genou (F = 11.608; dl = 2,22; p < .01) et le délai entre les pointes positive et négative de la courbe de vélocité angulaire de la hanche (F = 13.511; dl = 2,22; p < .01) et de la cheville (F = 13.511; dl = 2,22; p < .01)7.44; dl = 2,22; p < .01), sont aussi affectés par les variations de pente. Enfin, l'indice d'accélération de la hanche s'est révélé significatif lors des manipulations de pente (F = 8.836; dl = 2,22; p < .01).

Les résultats apparaissant au tableau 8 indiquent les

valeurs moyennes obtenues pour chacun des indices descripteurs de la courbe de vélocité angulaire en fonction des modifications de pente, indices ayant été trouvés significatifs.

Tableau 8

Résultats pour lesquels des valeurs significatives
d'indices de la vélocité angulaire ont été
identifiées en fonction de la pente de l'escabeau.

Vélocité angulaire (deg.s-1)

			Pente			
Indices			A1 (65°)	A2 (75°)	A3 (80°)	
<u>Pointe</u> négative	*	Hanche	1.1183	1.041	0.945	
<u>Pointe</u> absolue	**	Hanche Genou	1.057 1.987	0.958 1.757	0.77 1.561	
Amplitude	**	Genou	2.932	2.733	2.581	
<u>D</u> é <u>lai</u> (ms)	** **	Hanche Cheville	159.715 59.507	166.625 42.993	188.354 41.819	
<u>Accélé-</u> <u>ration</u> (∆w/∆t)	**	Hanche	2.535	2.411	1.99	

^{*} Significatif à p < .05.

Attribuable à l'effet de pente, la distance horizontale (sujet-escabeau) retarde le déroulement du cycle de montée parce que l'espace nécessaire à

^{**} Significatif à p < .01.

l'exécution du mouvement est réduit. L'indice de pointe négative de la courbe de vélocité angulaire de la hanche révèle un freinage du mouvement en fonction de l'augmentation de la pente de l'escabeau. Diminuant également en fonction de la pente, la pointe absolue révèle que l'articulation du genou dénote une vélocité supérieure aux autres articulations. Notons que l'augmentation de la pente atténue l'indice de pointe absolue des courbes de vélocité angulaire des articulations de la hanche et du genou. De plus, l'augmentation de la pente provoque une réduction de l'indice d'amplitude de l'articulation du genou. L'effet de pente occasionne une vélocité angulaire qui, originant d'un délai constant et d'une amplitude réduite, ralentit le déroulement du renversement de mouvement (extension flexion) de l'articulation du genou. Soulignons que ce changement d'orientation de la courbe de vélocité angulaire représente la période la plus dynamique du mouvement réalisé par l'articulation du genou. Enfin, cette période, dite la plus dynamique, localise la difficulté qu'engendre l'effet de pente sur la courbe de vélocité angulaire de l'articulation du genou, au cours d'un cycle complet de montée. Les courbes de vélocité angulaire des articulations de la hanche et de la cheville voient leurs indices de délai significativement affectés par l'effet de pente. Ainsi, lorsque le délai nécessaire

au changement d'orientation de position anatomique augmente pour l'articulation de la hanche, celui de la cheville s'atténue (effet miroir). La mécanique du membre inférieur, relative au cycle de montée, est inversément affectée au niveau des courbes de vélocité angulaire de la hanche et de la cheville. En décélérant sous l'effet de pente, l'articulation de la hanche inhibe le temps de passage du pied au-dessus de la seconde marche et réduit le délai nécessaire au renversement de position anatomique (extension - flexion) de la cheville.

Hauteur verticale inter-marches

Certains effets significatifs ont été décelés suite à l'analyse de variance effectuée sur les indices spécifiques aux courbes de vélocité angulaire de la hanche, du genou et de la cheville en fonction de la hauteur verticale inter-marches. Ainsi, l'indice de pointe absolue de l'articulation du genou (F = 9.429; dl = 1,11; p < .05) et l'indice d'accélération de la même articulation (F = 5.518; dl = 1,11; p < .05) sont les deux seuls indices pour lesquels la courbe de vélocité angulaire de l'articulation du genou a été significativement affectée par l'augmentation de la hauteur verticale inter-marches.

Ces résultats significatifs, soit les valeurs

moyennes obtenues sur chacun des indices descripteurs de la courbe de vélocité angulaire en fonction de la hauteur verticale inter-marches, apparaissent au tableau 9.

Tableau 9

Résultats pour lesquels des valeurs significatives d'indices de la vélocité angulaire ont été identifiées en fonction de la hauteur verticale inter-marches de l'escabeau.

Vélocité angulaire (deg.s-1)

			Hauteur verticale inter-marches			
Indices			C1 (27.5 cm)	C2 (31 cm)		
Pointe absolue	*	Genou	1.828	1.708		
<u>Accélé-</u> <u>ration</u> (△w/△t)	*	Genou	8.184	9.873		

^{*} Significatif à p < .05.

D'autre part la baisse de vélocité angulaire révélée par l'indice de pointe absolue de l'articulation du genou permet de cerner, sur la courbe de vélocité angulaire, l'importance du changement d'orientation du genou (extension - flexion) provoquée par une augmentation de la hauteur verticale inter-marches. D'autre part, l'indice d'accélération obtenu à partir de la même courbe de

vélocité angulaire révèle un accroissement de l'accélération en fonction d'une augmentation de hauteur. En effet, la réduction de l'indice de pointe absolue, attribuable à l'effet de hauteur verticale inter-marches, se réalise dans un délai qui n'est pas significativement modifié. Cela à pour conséquence d'augmenter l'accélération du genou au cours du cycle de montée (phase d'envol). Se situant au niveau de la période la plus dynamique du cycle de montée, l'indice d'accélération du genou dénote la présence d'un délai relativement constant chez les sujets. En effet, comme le trajet du genou et la durée moyenne du cycle de montée s'accroissent en fonction de la hauteur verticale inter-marches, une diminution de la vélocité angulaire du genou entraîne, chez l'ensemble des sujets, une compensation temporelle provoquant une hausse de l'accélération de l'articulation du genou. Ceci permet de respecter le délai d'exécution que le sujet s'est lui-même imposé.

En résumé, des trois paramètres de l'escabeau retenus pour fins d'analyse dans le présent projet, notons que la profondeur de marche n'a aucune influence significative au niveau des indices se rapportant aux courbes de vélocité angulaire de la hanche, du genou et de la cheville. La courbe de vélocité angulaire de l'articulation de la hanche, quant à elle, est affectée au niveau des indices

de pointe négative, pointe absolue, de délai et d'accélération, alors que celle du genou est affectée par les indices de pointe absolue et d'amplitude en fonction de la pente de l'escabeau. Finalement, la cheville est affectée, au niveau de l'indice du délai, par l'augmentation de la pente de l'escabeau. Enfin, la hauteur verticale inter-marches affecte les indices de pointe absolue et d'accélération de la courbe de vélocité angulaire de l'articulation du genou.

Tension myoélectrique

La dernière partie de ce chapitre porte sur l'analyse quantitative des indices significatifs ayant permis d'évaluer l'impact des diverses configurations de l'escabeau sur la tension musculaire développée au niveau des quatre muscles pré-sélectionnés: vastus lateralis (V.L.), biceps femoris (B.F.), tibialis anterior (T.A.) et gastrocnemius (G.). Les indices analysés sont présentés ci-après en deux volets: le premier est formé des valeurs d'indices se rapportant à l'intégrale (100%), frac 25, frac 50 et frac 75 alors que le second contient les autres indices de pointe maximale, de latence, de moyenne et de variation. Rappelons, en ce qui concerne les indices du premier volet, que l'intégrale dénote l'effort total

mesuré pour chaque muscle tandis que les FRAC sont des durées, c'est-à-dire des portions de l'indice global "durée", correspondant à différentes fractions de l'intégrale.

Une courbe de tension myoélectrique moyenne a été obtenue pour les douze sujets ayant participé à la présente recherche, ce pour chacune des conditions expérimentales retenues. Ainsi, seules la variation de la pente et celle de la hauteur verticale inter-marches ont affecté significativement les courbes de tension myoélectrique recueillies et ce sont leurs indices qui sont présentés aux tableaux 10 et 11. Quant aux indices touchant la profondeur de marche, ils se sont avérés non significatifs; c'est pourquoi, tout comme dans la section précédente, aucune mention supplémentaire n'en sera faite ici.

Pente

Premier volet:

Des indices caractéristiques obtenus à partir des courbes de tension myoélectrique ont été soumis à l'analyse de variance, en fonction du degré d'inclinaison (pente) de l'escabeau. Ces indices sont présentés au tableau 10.

Pour l'indice de l'intégrale, c'est-à-dire de la

surface totale comprise sous la courbe de tension myoélectrique, l'analyse de variance révèle un effet significatif pour le tibialis anterior (F = 12.574; dl = 2,22; p < .01) et le gastrocnemius (F = 39.429; d1 = 2,22; p < .01). Quant au délai nécessaire pour atteindre une fraction donnée de la valeur totale de l'intégrale, il se manifeste différemment au niveau de chacun des muscles retenus pour fins d'analyse. Ainsi, l'analyse de variance portant sur le délai nécessaire pour atteindre 25 pourcent de l'intégrale (frac 25) dénote une valeur significative de l'activité myoélectrique du tibialis anterior lors du passage d'une position de pente plus horizontale (65°) à une position plus abrupte (80°) (F = 9.2097; dl = 2,22; p < .01). Quant au délai nécessaire pour atteindre 50 pourcent de la valeur totale de l'intégrale (frac 50), les résultats de l'analyse de variance démontrent des valeurs significatives pour les muscles vastus lateralis (F = 16.901; dl = 2,22; p < .01), tibialis anterior (F= 7.821; dl = 2,22; p < .01) ainsi que pour les muscles biceps femoris (F = 3.533; dl = 2,22; p < .05) et gastrocnemius (F = 4.868; dl = 2,22; p < .05). Enfin, l'analyse de variance décèle une valeur significative pour l'indice frac 75, au niveau des muscles vastus lateralis (F = 24.05; d1 = 2,22; p < .01), biceps femoris (F = 8.072; d1 = 2,22; p < .01) et tibialis anterior (F = 10.439; dl = 2,22; p < .01).

Second volet:

Une seconde série d'indices relatifs à la tension myoélectrique en fonction de l'augmentation de la pente de l'escabeau a été soumise à l'analyse de variance. Ainsi, des valeurs significatives ont été obtenues sur les valeurs d'indices de pointe (crête maximale) pour les muscles vastus lateralis (F = 5.805; d1 =2,22; p < .01), tibialis anterior (F = 4.896; dl = 2,22; p < .05) et gastrocnemius (F = 4.337; dl = 2,22; p < .05). Quant au temps mis pour atteindre cette pointe maximale de tension (latence), il s'est avéré significatif pour les muscles biceps femoris (F = 6.672; dl = 2,22; p < .01), tibialis anterior (F = 6.559; dl = 2,22; p < .01) et gastrocnemius (F = 8.633; d1 = 2,22; p < .01). Les résultats de l'analyse de variance révèlent aussi que la valeur moyenne de tension myoélectrique est significativement influencée par l'augmentation de la pente pour les muscles vastus lateralis (F = 4.817; dl = 2,22; p < .05), tibialis anterior (F = 3.829; dl = 2,22; p < .05) ainsi que pour le muscle gastrocnemius (F = 25.264; d1 = 2,22; p < .01). Enfin, les résultats de l'analyse de variance révèlent un effet significatif, au niveau de l'indice de variation attribuable à l'effet de pente, pour le muscle vastus lateralis (F = 5.989; dl = 2,22; p < .01) ainsi que pour le muscle gastrocnemius (F = 17.452; dl = 2,22; p < .01).

Tableau 10 Résultats pour lesquels des valeurs significatives d'indices à la tension myoélectrique ont été identifiées en fonction de la pente de l'escabeau.

Tension myoélectrique

				Pentes	
Indices			A1 (65°)	A2 (75°)	A3 (80°)
<u>Intégrale</u>	** **	T.A. G.	161,991.09 204,944.18	170,315.00 227,599.00	193,150.00 268,559.30
<u>Frac 25</u> (ms)	**	Т.А.	814	885	978
Frac 50 (ms)	** * **	V.L. B.F. T.A. G.	547 763 1268 789	586 751 1290 750	642 792 1370 749
Frac 75 (ms)	** ** **	V.L. B.F. T.A.	997 1200 1439	1053 1204 1448	1164 1285 1547
Pointe (u volt)	** * *	V.L. T.A. G.	927.812 1591.847 2004.847	802.146 1693.569 2619.659	814.514 1830.499 2721.882
<u>Latence</u> (%)	** ** **	B.F. T.A. G.	44.889 83.569 51.813	39.699 80.549 49.708	36.549 81.222 48.569
Moyenne (u volt)	* * **	V.L. T.A. G.	347.743 490.993 625.562	319.457 498.563 668.784	321.602 530.087 741.099
<u>Variation</u>	** **	V.L. G.	347.41 820.403	288.486 932.931	2879.03 10 47 .88

^{*} Significatif à p < .05. ** Significatif à p < .01.

Premier volet:

L'augmentation de l'inclinaison (pente) de l'escabeau accroît la valeur de l'intégrale (surface totale de la courbe de tension myoélectrique) des muscles tibialis anterior et gastrocnemius. De plus, les délais nécessaires à l'atteinte des indices frac 25, frac 50 et frac 75 de l'ensemble des muscles analysés sont retardés. Soulignons que l'indice frac 25 des muscles vastus lateralis, biceps femoris et gastrocnemius ainsi que l'indice frac 75 du muscle gastrocnemius, n'ont pas significativement été influencés par l'augmentation de la pente de l'escabeau.

Principalement actif en phase d'appui, le muscle gastrocnemius, qui contribue à l'extension dorsale de l'articulation de la cheville (frac 50), doit accroître plus hâtivement son effort lorsque la pente augmente.

Comme le muscle tibialis anterior s'active principalement en fin de cycle de montée (phase d'envol), on peut considérer que c'est au niveau du passage au-dessus de la seconde marche que l'influence de la pente se fait tout particulièrement sentir. L'augmentation de la pente a pour effet de retarder jusqu'à un certain point la hausse de tension myoélectrique permettant la flexion dorsale de la cheville, juste avant la prise de contact sur la troisième marche. Finalement, les indices frac 50 et frac 75 des

muscles vastus lateralis et biceps femoris sont significativement retardés par l'influence de l'augmentation de la pente.

Second volet:

Quatre indices permettent également d'analyser l'influence de l'augmentation de la pente sur la courbe de tension myoélectrique des muscles vastus lateralis, biceps femoris, tibialis anterior et gastrocnemius. Ces indices sont la pointe, la latence, la moyenne et la variation.

Les indices de crête maximale (pointe), de moyenne ainsi que de variation du muscle vastus lateralis accusent une diminution de leurs valeurs respectives lors d'une inclinaison accrue de l'escabeau. Comme le déplacement horizontal (sujet-escabeau) est moindre en pente plus abrupte, il semble que l'augmentation de la pente partage l'effort habituellement réservé au muscle vastus lateralis, par une hausse de l'activité myoélectrique du gastrocnemius. Se réalisant pleinement en phase d'appui, le muscle gastrocnemius voit ses indices de pointe, de moyenne et de variation augmentés alors que le délai de la pointe (latence) est réduit sous l'influence de l'augmentation de la pente. Quant au muscle tibialis anterior, les indices de pointe et de moyenne s'élèvent alors que celui de la latence s'abaisse. Ainsi, c'est de

façon plus dynamique que le muscle tibialis anterior accroît son effort en fin de phase d'envol même si la pointe se manifeste plus hâtivement. Enfin, l'augmentation de la pente hâte légèrement le délai de la pointe (latence) du muscle biceps femoris.

Hauteur verticale inter-marches

L'analyse de variance, réalisée en fonction de la hauteur verticale inter-marches de l'escabeau, a décelé des effets significatifs provenant des indices spécifiques aux courbes de tension myoélectrique. Notons que seuls les indices du premier volet ont été significativement affectés. Ces indices sont présentés au tableau 11.

Pour la surface totale sous la courbe de tension myoélectrique (intégrale), un effet significatif est décelé, par l'analyse de variance, au niveau du muscle vastus lateralis (F = 13.356; dl = 1,11; p < .01). D'autre part, le délai nécessaire pour atteindre un certain pourcentage de la valeur de l'intégrale se manifeste différemment pour chacun des muscles pré-sélectionnés. Les analyses effectuées sur l'indice frac 25 révèlent un effet significatif attribuable à la différence de hauteur verticale inter-marches au niveau du muscle vastus lateralis (F = 7.738; dl = 1,11; p < .05), biceps femoris (F = 5.878; dl = 1,11; p < .05) et gastrocnemius

(F = 11.061; dl = 1,11; p < .01). Quant au délai nécessaire pour atteindre 50 pourcent de la valeur totale de l'intégrale (frac 50), les résultats de l'analyse de variance démontrent des effets significatifs au niveau des muscles vastus lateralis (F = 11.29; dl = 1,11; p < .05), biceps femoris (F = 8.352; dl = 1,11; p < .05), tibialis anterior (F = 22.117; dl = 1,11; p < .01) ainsi que pour le muscle gastrocnemius (F = 14.919; dl = 1,11; p < .01). Finalement, l'analyse de variance révèle des valeurs significatives pour l'indice frac 75 chez les quatre muscles analysés. On retrouve les effets significatifs de l'indice frac 75 au niveau des muscles vastus lateralis (F = 14.698; dl = 1,11; p < .01), biceps femoris (F = 10.402; dl = 1,11; p < .01), tibialis anterior (F = 18.936; dl = .01)1,11; p < .01) et gastrocnemius (F = 13.315; dl = 1,11; p < .01).

L'élévation de la hauteur verticale inter-marches a pour conséquence d'augmenter la valeur de l'intégrale du muscle vastus lateralis alors qu'elle retarde tous les délais nécessaires pour atteindre 25, 50 et 75 pourcent de la valeur totale de l'intégrale, pour l'ensemble des muscles analysés. Exceptionnellement, l'indice frac 25 du muscle tibialis anterior n'a pas été significativement affecté par la différence de hauteur verticale entre les marches.

Tableau 11

Résultats pour lesquels des valeurs significatives d'indices de la tension myoélectrique ont été identifiées en fonction de la hauteur verticale inter-marches de l'escabeau.

Tension myoélectrique

			Hauteur verticale inter-marches		
Indices		_	C1	C2	
			(27.5 cm)	(31 cm)	
<u>Intégrale</u>	**	V.L.	111,010.03	119,228.48	
Frac 25 (ms)	*	V.L.	253	272	
	*	B.F.	396	418	
	**	G.	458	489	
Frac 50 (ms)	*	٧.L.	573	611	
	*	$\mathbf{B}.\mathbf{F}.$	751	787	
	**	Т.А.	1278	1347	
	**	G.	740	786	
Frac 75 (ms)	**	V.L.	1042	1100	
	**	B.F.	1203	1257	
	**	T.A.	1440	1516	
	**	G.	922	974	

^{*} Significatif à p < .05.

Près de 75 pourcent de la valeur de l'intégrale du muscle vastus lateralis est atteint en phase d'appui lors du cycle de montée, bien que les sujets effectuent une extension du genou rendue nécessaire par une activité de

^{**} Significatif à p < .01.

montée d'un escabeau dont la hauteur verticale inter-marches est agrandie. Contribuant au mouvement d'extension de la cuisse sur la hanche ainsi qu'à la flexion de la jambe sur la cuisse, le muscle biceps femoris atteint son indice frac 75 au début de la phase d'envol (71% du cycle de montée). Il contribue tout particulièrement à l'extension de la cuisse sur la hanche en phase d'appui alors qu'il facilite la flexion de la jambe sur la cuisse en début de la phase d'envol. Complété en phase d'appui (54e centile du cycle de montée), l'indice frac 75 du muscle gastrocnemius contribue, dès que le transfert du poids est amorcé, à l'élévation du poids corporel par l'extension dorsale de la cheville. Pour sa part, le muscle tibialis anterior voit son indice frac 75 retardé jusqu'au centile 85 du cycle de montée (phase d'envol). Ainsi, l'indice frac 75 du muscle tibialis anterior retarde davantage la flexion dorsale de la cheville, afin de faciliter le passage du pied au-dessus de la seconde marche, lorsque la hauteur verticale est plus prononcée. La même tendance, c'est-à-dire un retard collectif dans le délai nécessaire à l'atteinte d'un certain pourcentage de la valeur totale de l'intégrale, se manifeste pour les indices frac 25 et frac 50 pour les quatre muscles présentés.

Une analyse globale des indices ayant été

significativement influencés par la modification des paramètres de l'escabeau révèle que: 1) la profondeur de marche n'affecte aucun indice musculaire; 2) aucun paramètre de l'escabeau n'a influencé significativement l'intégrale du biceps femoris; 3) seuls les indices du premier volet (intégrale, frac 25, frac 50 et frac 75) sont affectés par l'élévation de la hauteur verticale inter-marches; 4) l'ensemble des indices a été affecté par l'augmentation de la pente de l'escabeau.

Interaction

L'analyse de variance à trois dimensions, à mesures répétées (Ar * Br * Cr), subdivise les variables extrinsèques en trois interactions du premier ordre, A * B, A * C et B * C. Toutefois, notons qu'aucune interaction significative du second ordre (A * B * C) ne ressort de l'analyse de variance réalisée sur chacun des indices. La co-variation (interaction) attribuable aux variables extrinsèques, les paramètres de l'escabeau, influence les variables intrinsèques (phase, articulation, muscle) par l'intermédiaire d'indices. Le tableau 12 présente les résultats des indices pour lesquels des interactions significatives ont été identifiées.
L'interaction A * B (pente versus profondeur de marche)

est apparue pour la durée du cycle ainsi que pour les indices frac 50 et frac 75 du tibialis anterior. La latence du biceps femoris se retrouve en interaction A * C (pente versus hauteur verticale inter-marches).

Finalement, l'interaction B * C (profondeur de marche versus hauteur verticale inter-marches) frappe les indices de phase d'envol, de frac 25, frac 50 et frac 75 du muscle biceps femoris ainsi que l'indice de délai de la cheville.

Afin de faciliter l'interprétation de ces résultats, la figure 10 présente le graphique d'interaction de chaque indice. Toutefois, comme les graphiques d'interaction des indices frac 25, frac 50 et frac 75 du muscle biceps femoris présentent une allure similaire, seul le graphique d'interaction de l'indice frac 50 du muscle biceps femoris est présenté à la figure 10d. Les graphiques d'interaction des indices frac 50 et frac 75 du muscle tibialis anterior étant fort similaires, seul le graphique de l'interaction de l'indice frac 50 a été retenu pour fin de présentation (Figure 10e).

A * B

L'interaction A * B s'est révélée significative au niveau de l'indice de durée du cycle (F = 4.604;

Tableau 12 Résultats pour lesquels des valeurs significatives d'indices ont été identifiées en fonction d'une interaction du premier degré.

Interaction

Indices				A * B	
			A1 (65°)	A2 (75°)	A3 (80°)
<u>Durée du</u> cycle (ms)	*	B1 B2	1720 1629	1643 1757	1835 1834
<u>Frac 50</u> <u>T.A.</u> (ms)	*	B1 B2	1300 1237	1252 1329	1380 1362
Frac 75 T.A. (ms)	*	B1 B2	1477 1401	1404 1493	1551 1543
				A * C	9 8 8 1 1 1 1 1 1 1 1 1 1
<u>Latence du</u> <u>B.F.</u> (%)	*	C1 C2	42.389 47.389	38. 931 30. 08 3	37.584 35.514
				B * C	
			B1 (7.5	_	32 2 cm)
<u>Phase</u> <u>d'envol</u> (ms)	*	C1 C2	735 695	;	723 760
Frac 25 B.F. (ms)	*	C1 C2	404 412		387 125
<u>Frac 50</u> <u>B.F.</u> (ms)	*	C1 C2	766 772	3	737 802
Frac 75 B.F. (ms)	**	C1 C2	1219 1233	11	186 282
<u>Délai de la</u> <u>cheville</u> (ms)	*	C1 C2	236 205		239 282

^{*} Significatif à p < .05. ** Significatif à p < .01.

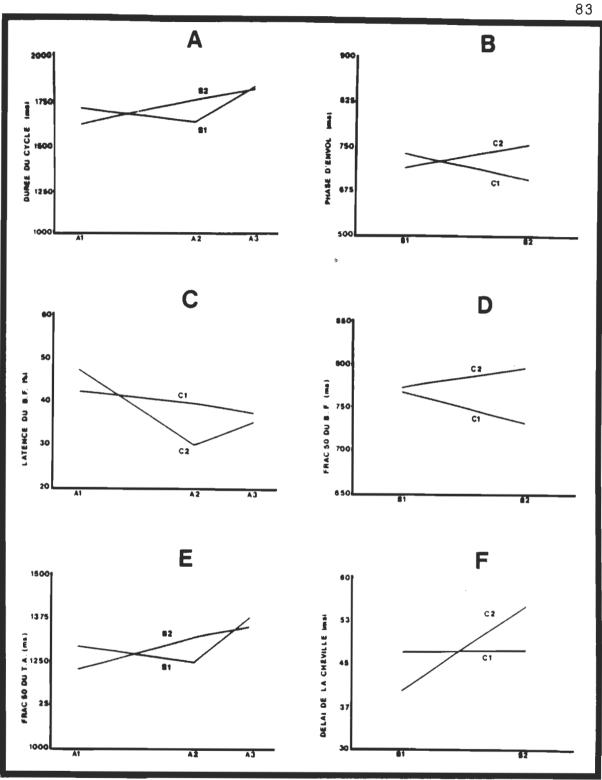


Figure 10. Représentations graphiques des indices pour lesquels une interaction significative est décelée: A) durée du cycle de montée (ms), B) phase d'envol (ms), C) latence du biceps femoris (%), D) frac 50 du biceps femoris (ms), E) frac 50 du tibialis anterior (ms) et F) délai de la cheville (ms).

dl = 1,11; p < .05) ainsi que pour les indices frac 50 (F = 3.965; dl = 1,11; p < .05) et frac 75 (F = 4.45; dl = 1,11; p < .05) du muscle tibialis anterior. Le tableau 12 présente les résultats des valeurs moyennes obtenus par indice pour chacun des paramètres de l'interaction concernée.

Durée du cycle: Les courbes d'interaction individuelle des douze sujets ayant participé à la présente étude révèlent que le patron de montée nécessite une durée du cycle similaire chez sept sujets lorsque la profondeur de marche est plus étroite (B1), tandis que huit sujets se regroupent autour d'une même valeur d'indice de durée du cycle, lorsque la profondeur de marche est plus large (B2). Cependant, notons que des patrons de courbes d'interaction nulles ou contraires apparaissent ailleurs. Somme toute, l'interaction A * B menée sur l'ensemble des sujets (Figure 10a) révèle, d'une part, une durée du cycle identique pour une marche profonde (B2); d'autre part, une marche étroite (B1), jumelée à une pente de 75° (A2), nécessite un marchandage entre la vitesse et l'équilibre (phénomène de compensation temporelle).

Frac 50 et 75 du tibialis anterior: Principalement située en phase d'envol, la distribution de la tension

myoélectrique du tibialis anterior est particulièrement modifiée (plus précoce) en pente A2 (75°), lorsque la marche est étroite (B1). En effet, une marche étroite (B1) hâte l'occurence des variables frac 50 et 75 du tibialis anterior en présence d'une pente de 75° (A2); alors qu'une marche profonde (B2) accroît le délai des variables frac 50 et frac 75 en fonction de l'accroissement de la pente (Figure 10e).

A * C

L'analyse de variance identifie un indice pour lequel un effet significatif a été décelé en fonction de l'interaction A * C, l'indice de latence du biceps femoris (F = 5.661; dl = 1,11; p < .05). Le tableau 12 présente la valeur moyenne de l'indice de chaque paramètre de l'interaction A * C. La figure 10c montre que la latence de la pointe du biceps femoris est, dans son ensemble, précipitée par l'augmentation de la pente. Toutefois, l'interaction A2-C2 hâte considérablement l'indice de latence du biceps femoris. Cette interaction modifie donc le patron de montée du biceps femoris.

B * C

L'indice de la phase d'envol (F = 6.059; dl = 1,11; p < .05) du cycle de montée ainsi que les indices frac 25 (F = 5.391; dl = 1,11; p < .05), frac 50 (F = 7.114; dl =

1,11; p < .05) et frac 75 (F = 9.623; dl = 1,11; p < .01) du muscle biceps femoris ont été significativement influencés par l'interaction B * C.

Phase d'envol: La courbe de l'interaction B * C de la figure 10b révèle l'effet opposé de la durée de la phase d'envol que provoque l'augmentation de la profondeur de marche sur la hauteur verticale inter-marches. La durée de la phase d'envol attribuable à une marche peu élevée (C1) est réduite par l'augmentation de la profondeur de marche; alors que celle relative à l'usage d'une marche élevée (C2), augmente en fonction de l'augmentation de la profondeur de marche. De plus, indépendamment de la hauteur verticale inter-marches, on observe que la durée de la phase d'envol diffère peu lorsque la marche est étroite (B1); alors qu'elle est amplifiée par une marche profonde (B2). Se rapprochant davantage d'une situation naturelle, la profondeur de marche B2, offrant une meilleure base de sustentation, augmente la durée de la phase d'envol et facilite ainsi l'atteinte d'une marche plus élevée (activité de grimpage).

Frac 50 du biceps femoris: Les délais auxquels se manifestent les indices frac 25, frac 50 et frac 75 de l'intégrale du muscle biceps femoris se comportent de façon similaire sous l'interaction B * C (profondeur de

marche vs hauteur verticale inter-marches). Avec une marche étroite (B1), la différence de hauteur (C1 vs C2) affecte peu le délai des variables frac 25, frac 50 et frac 75 (Figure 10d); par contre, une marche profonde (B2) influence inversement le délai des indices selon la hauteur de marche utilisée (C1 vs C2). Le délai des indices frac 25, frac 50 et frac 75 est hâté lorsque la hauteur est réduite (C1); alors que le délai est retardé par une hauteur élevée (C2). Comme la recherche d'un équilibre est de moindre importance en B2 (situation naturelle), les indices frac 25, frac 50 et frac 75 se manifestent plus rapidement, compte tenu d'un effort moins élevé en condition C1. La figure 10d montre l'effet facilitateur de l'interaction B2-C1 parce qu'elle permet un freinage plus hâtif de l'articulation du genou alors que l'interaction B2-C2 retarde le blocage de l'articulation du genou réalisée par l'intermédiaire du muscle biceps femoris.

Délai de la cheville: Le délai entre les pointes positive et négative de la courbe de vélocité angulaire de la cheville se réalise sans différence notable entre les profondeurs de marche (B1 vs B2) lorsque la hauteur de marche est réduite C1 (effet de plateau); par contre, la hauteur verticale inter-marches (C2) accroît considérablement l'indice du délai de la cheville (Figure

10f). Ainsi, la dynamique du mouvement de la cheville, réalisée entièrement en phase d'envol, est retardée par l'augmentation de la hauteur verticale inter-marches. Alors, le changement d'orientation de la position anatomique de la cheville se réalise sur une plus grande période de temps.

Les interactions A * B (Figure 10a et e) des indices de durée du cycle et de frac 50 et frac 75 du tibialis anterior offrent une allure de courbe croissante. Cependant, une perturbation origine de l'interaction A2-B1 pour chacun des indices. Par contre, l'interaction A * C révèle que la valeur de la latence du biceps femoris décroît avec l'augmentation de la pente pour les hauteurs verticales inter-marches C1 et C2. L'interaction des paramètres A2-C2 précipite encore plus la tendance décroissante de la latence du biceps femoris. Dans l'ensemble des interactions B * C (Figure 10b, d, f), l'augmentation de la hauteur verticale inter-marches (C1 vs C2) accroît la valeur des indices de phase d'envol, de frac 25, frac 50 et frac 75 du biceps femoris et de délai de la cheville, lorsque la profondeur de marche augmente (B1 vs B2).

CHAPITRE V

CONCLUSIONS ET RECOMMANDATIONS

La présente étude portait sur les patrons moteurs manifestés chez 12 sujets lors de la montée d'un escabeau, patrons touchant uniquement le membre inférieur droit de l'usager. L'escabeau lui-même, concu par l'auteur, pouvait présenter douze configurations distinctes, issues de la combinaison de trois variables expérimentales: la pente de l'axe servant d'appui pédestre (65°, 75° et 80°), la hauteur verticale inter-marches (27.5 cm et 31 cm) et la profondeur de marche (7.5 cm et 32 cm). Les indices analysés incluaient les données cinématiques dérivées d'une mesure continue du déplacement pour la hanche, le genou et la cheville, de même que des données d'effort musculaire, tirées de l'électromyographie de surface des muscles vastus lateralis, biceps femoris, tibialis anterior et gastrocnemius.

L'approche utilisée dans cette étude étant très analytique, riche en détails de toutes sortes, il est normal que les résultats présentés au chapitre précédent ne permettent pas de dégager aisément des conclusions générales. Nous en formulerons néanmoins quelques-unes sur

les plans théorique et pratique, et nous terminerons par la suggestion d'études complémentaires sur le sujet.

Les patrons moteurs individuels sont relativement constants pour l'ensemble de toutes les conditions expérimentales, ce qui est indiqué par une faible variabilité intra-sujet. C'est avec l'escabeau conventionnel (pente de 75°, profondeur de marche de 7.5 cm et une hauteur verticale inter-marches de 27.5 cm), qu'on obtient le patron de montée le moins consistant, ce pour le muscle biceps femoris. Malgré cela, compte tenu de la contribution relative du biceps femoris dans la montée d'escabeau, on ne peut pas prétendre à une instabilité du patron de montée ni à un accroissement des risques potentiels attribuables à l'escabeau conventionnel. Cependant, en ce qui a trait à la variabilité inter-sujets, des valeurs supérieures sont enregistrées lorsque comparées aux valeurs de la variabilité intra-sujet, les quotients inter/intra les plus élevés étant enregistrés au niveau de la cheville. Ce fort quotient indique probablement une différence dans les patrons d'activation musculaire, les phases du mouvement n'étant pas identiques d'un sujet à l'autre.

De toutes les manipulations d'escabeau effectuées dans la présente étude, aucune ne semble perturber de façon majeure le patron de montée des usagers. Il serait donc

hasardeux de vouloir émettre des préférences quant au paramètres de l'escabeau à privilégier lors de la conception. Il en est de même pour les facteurs de risque encourus par l'usager relativement à un type d'escabeau plutôt qu'un autre.

De façon particulière, de tous les indices significatifs obtenus en faisant varier les paramètres de l'escabeau, ceux provoqués par les modifications de pente apparaissent en plus grand nombre, suivis de ceux provenant de la variation de la hauteur verticale inter-marches, et enfin, ceux ayant trait à la profondeur de marche. En effet, l'inclinaison de l'escabeau semble affecter davantage la durée du cycle de montée, le trajet du genou ainsi que le transfert de l'effort musculaire du muscle vastus lateralis au muscle gastrocnemius. Quant à la hauteur verticale inter-marches, elle augmente l'amplitude de tous les déplacements angulaires des articulations concernées alors que la tension myoélectrique développée est relativement identique en termes quantitatifs, le délai pour atteindre un maximum de tension étant, quant à lui, sensiblement retardé au passage d'une hauteur verticale supérieure. Enfin, le seul effet qui se dégage suite à la modification de la profondeur de marche est le trajet parcouru par le genou.

L'escabeau conventionnel formé d'une pente de 75

degrés, d'une distance verticale inter-marches de 31 cm ainsi que d'une profondeur de marche de 7.5 cm, constitue un jumelage de paramètres qui semble répondre adéquatement aux fonctions mêmes de l'appareil. L'escabeau conventionnel offre, de par sa pente, des valeurs intermédiaires lorsque comparées aux autres pentes, en ce qui touche les paramètres cinématiques relatifs aux articulations de la hanche, du genou et de la cheville. Il en est autrement pour la tension myoélectrique qui atteint une valeur de crête maximale inférieure ainsi qu'une moyenne et une variance réduites. Quant à la hauteur verticale inter-marches, ce paramètre accroît d'emblée la durée du cycle de montée, le déplacement angulaire ainsi que la tension myoélectrique; cependant, la vélocité en est par contre réduite. Finalement la profondeur de marche de l'escabeau conventionnel accrost uniquement le déplacemment des articulations de la hanche et du genou. Notons qu'au niveau de l'interaction entre les paramètres de l'escabeau conventionnel, on retrouve une durée du cycle de montée qui, réduite au niveau de sa phase d'envol, raccourcit le délai nécessaire au changement d'orientation de la cheville. Par conséquent, la pointe du muscle biceps femoris se manifeste plus rapidement alors que pour le muscle tibialis anterior, l'ensemble de l'activité électromyographique intervient également tôt.

Recommandations

Bien que l'usage des électrogoniomètres offre un apercu du mouvement angulaire réalisé par l'articulation, ils n'offrent qu'une information relative par rapport à l'ensemble des segments corporels. En effet, comme la plupart des mouvements attribuables aux segments s'effectuent rarement suivant un seul axe, la source majeure d'erreurs provient directement de la technique proprement dite. De même, des erreurs de parallaxe, quoique perceptibles à l'oeil, demeurent non détectables par l'instrument de mesure. Ainsi, des mouvements compensatoires non mesurés par cette technique uniaxiale atténuent la portée de notre étude. Conséquemment, une étude cinématique tri-dimensionnelle devrait permettre de répondre à certaines des interrogations soulevées dans la présente recherche. Ainsi, la justesse des interprétations provenant des résultats s'en trouverait améliorée.

Différents mouvements de compensation surviennent lors de la perte d'équilibre, la plupart originant de la base de sustentation. En effet les dimensions et la nature de la base peuvent perturber l'activité de maintien de l'équilibre. L'emploi d'un escabeau nécessite un plus grand contrôle de la station verticale chez l'usager, station qui est essentiellement assurée par le muscle triceps sural

lorsque l'usager est arrêté sur l'escabeau. Des études ultérieures portant sur l'équilibre des usagers pourraient être entreprises à partir de différentes profondeurs de marche. Les phases statiques pré et post-cycle de montée de l'escabeau renferment, à postériori, les données cibles relatives à une telle évaluation.

L'escabeau conventionnel, on l'a dit, convient généralement à un usage qu'on lui prévoit. Toutefois, l'absence de contre-indication quant à la profondeur de marche utilisée, dans nos données, constitue un argument favorable à l'implantation d'une marche plus profonde, c'est-à-dire plus de 7.5 cm, vu la plus grande stabilité offerte par cette dernière.

REFERENCES

- Andriacchi T. P., Andersson B.J., Fermier R.W., Stern D. & Galante J.O. (1980). A Study of lower-limb mechanics during stair-climbing. <u>Journal of Bone & Joint Surgery</u>, 62-A (5).
- Bradford J. McFadyen & David A. Winter (1988). An integrated biomechanical analysis of normal stair ascent and descent. <u>Journal of Biomechanics</u>, vol. 21, no. 9, 733-744.
- Delagi E. F. & Perotto A. (1981) Anatomic guide for the

 electromyographer. (2nd Ed.). Illinois:

 C. C. Thomas.
- Frankel V. H. & Nordin M. (1980) Basic biomechanics of the skeletal system. Philadelphia: Lea & Febiger,
- Gabbard C., Miller G. & Thiebaud R. (1984) Ladder angle and ankle flexion while climbing. Perceptuel and Motor Skills, 59, 893-894.
- Hill Dickson (1982) Hogg (1979)

- Knutsson, E. & Richards, C. (1979) Different types of disturbed motor control in gait of hemiparetic patients. <u>Brain</u>. <u>95</u>, 475-486.
- McIntyre D. R. & Bates, B. T. (1982). Effects of rung spacing on the mechanics of ladder ascent. <u>Journal</u>
 of Human Movement Studies, 8, 55-72.
- McIntyre D. R. & al. (1982) Gait characteristics of children during free ascent climbing performances.

 Human Movement Science, 1 201-214.
- Mc Intyre D. R. (1983 a) Gait patterns during free choice ladder ascents. Human Movement Science, 2, 187-195.
- McIntyre D. R. (1983 b) The effects of shoe type on the stability and propulsive efforts of the lower limbs during ladder ascents. Human Movement Science, 2, 57-65.

- Shinno N. (1971) Analysis of knee function in ascending and descending stairs. Medecine and Sport, vol. 6:

 Biomechanics II, (pp. 202-207) (Karger, Basel).
- Tata J. A., Peat M., Grahame R.E. & Quanbury A.O. (1983)

 The normal peak of electromyographic activity of the quadriceps femoris muscle in the stair cycle.

 Anat. Anz. Jena, 153, 175-188.
- Winter D. A. (1979) <u>Biomechanics of human movement.</u>,
 Waterloo: John Wiley & Sons.

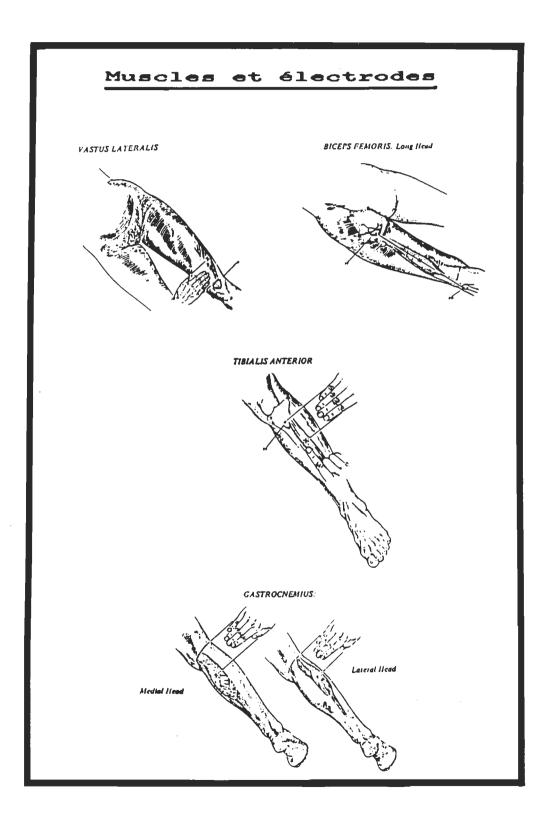
ANNEXE A

Consentement pour étude clinique

DEPARTEMENT DES SCIENCES DE L'ACTIVITE PHYSIQUE UNIVERSITE DU QUEBEC A TROIS-RIVIERES

LABORATOIRE DE BIOMECANIQUE

CONSENTEMENT POUR ETUDE CLINIQUE


Le but et la nature de la présente étude m'ont clairement été expliqués. Je sais donc que cette recherche vise à évaluer le taux d'activation musculaire et l'ampleur des déplacements angulaires des segments des membres inférieurs. Je réalise que les tests et évaluations auxquels je serai soumis sont destinés à mesurer l'activité musculaire et angulaire des segments inférieurs et ne constituent pas en soi un traitement.

Finalement, après avoir été informé des méthodes qui seront utilisées pour recueillir l'activité myoélectrique, les déplacements angulaires et les paramètres anthropométriques, j'offre, sans rémunération rattachée à ma participation, une période de quatre (4) heures aux fins de cette étude. Toutefois, tous les résultats seront disponibles sur demande.

Par la présente, je consens à participer à cette étude et autorise le chercheur dont le nom apparaît plus bas à me soumettre à l'étude ci-dessous.

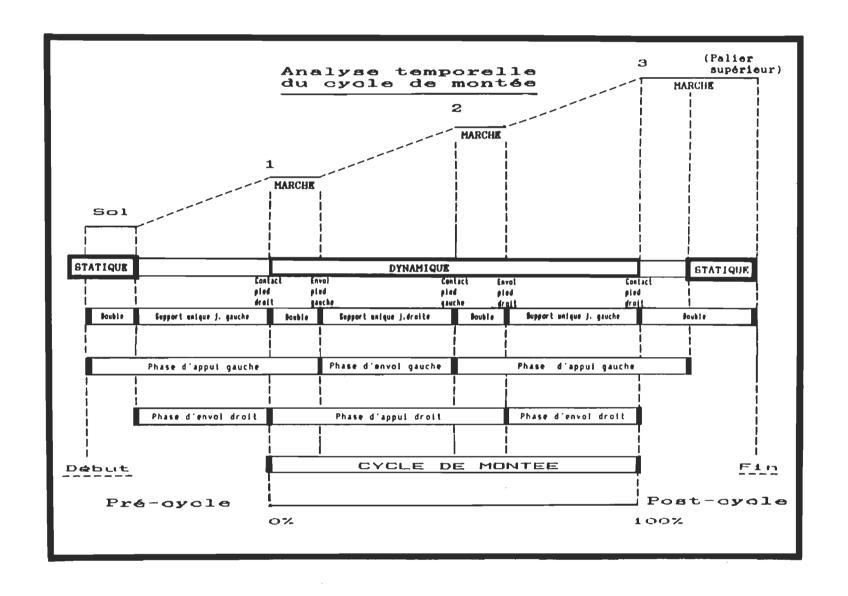
NOM DE L'ETUDE:	
témoin	sujet
date	chercheur

ANNEXE B Muscles et électrodes

ANNEXE C Schéma expérimental

SCHEMA EXPERIMENTAL A - Escabeau B - Caméra-vidéo C - Magnétoscope D - Imprimante E - Micro-ordinateur F - Amplificateur (EMG)

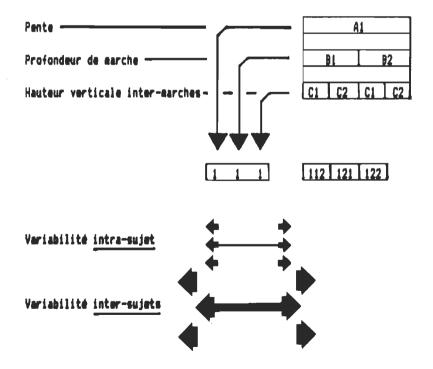
ANNEXE D

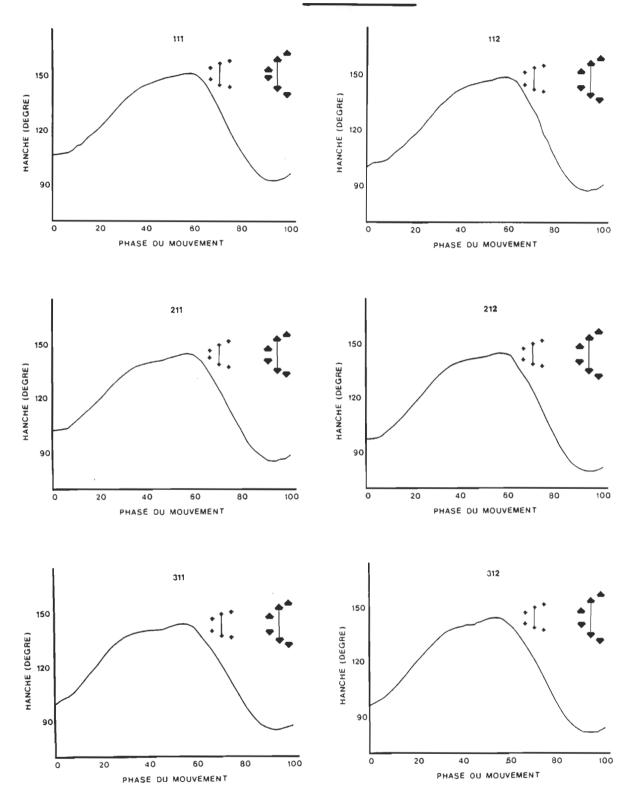

Séquence des conditions

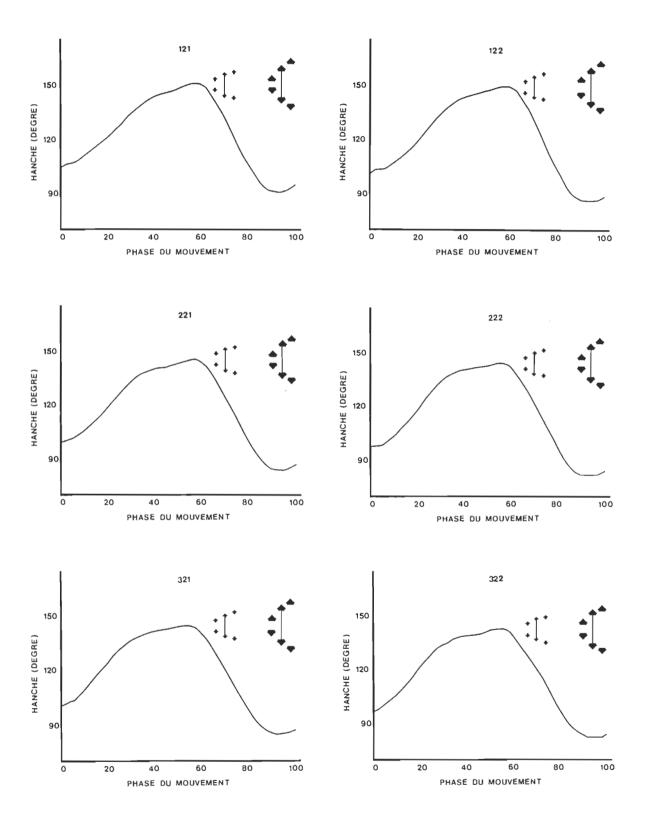
Séquence des conditions

1 2 3 4 5 0 7 8 9 10 11 12

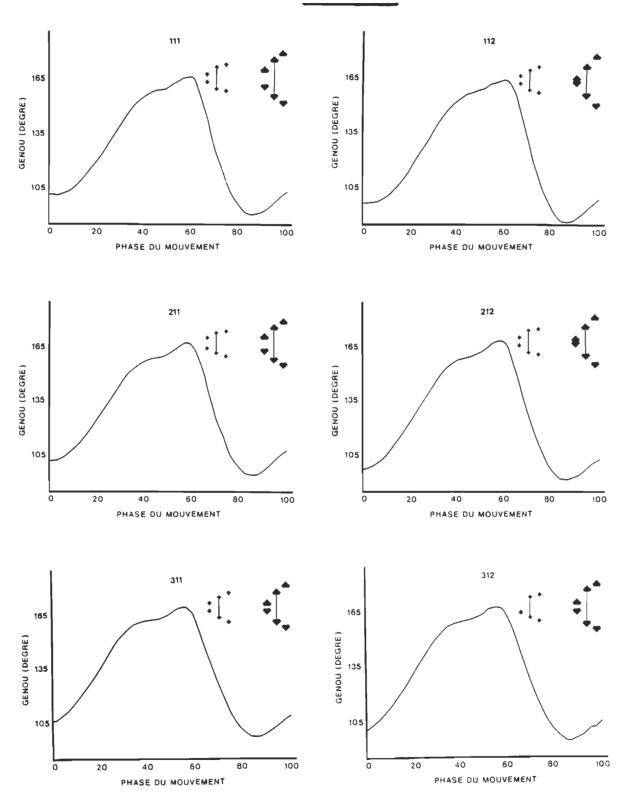
- A PI MI EL PI M2 E2 P3 M2 EL P2 M2 E2 P3 M1 EL P2 M2 EL P2 M2 EL P2 M1 E2 P1 M1 E2 P1 M2 EL F2 M1 EL P3 M1 E2 P3 M2 E2
- B P3 M2 E1 P1 M2 E1 P1 M1 E2 P1 M1 E1 P2 M2 E1 P3 M2 E2 P2 M1 E2 P3 M1 E1 P2 M1 E1 P1 M2 E2 P2 M2 E2 P3 M1 E2
- C P3 M1 E1 P1 M1 E1 P2 M2 E2 P2 M1 E1 P3 M2 E2 P2 M2 E1 P1 M1 E2 P1 M2 E2 P3 M1 E2 P1 M2 E1 P2 M1 E2 P3 M2 E1
- D PI M2 EI PI M1 E2 PI M1 E1 P3 M2 E2 PI M2 E2 P3 M2 E2 P3 M1 E1 P2 M1 E2 P2 M2 E1 P2 M2 E2 P3 M2 E1 P2 M1 E1 P3 M1 E2
- E P3 M1 E1 P1 M1 E1 P3 M2 E2 P1 M1 E2 P2 M1 E2 P3 M2 E1 P1 M2 E2 P3 M1 E2 P2 M2 E2 P2 M1 E1 P1 M2 E1 P2 M2 E1
- F P3 M1 E2 P1 M2 E1 P1 M2 E2 P2 M1 E1 P2 M1 E2 P1 M1 E1 P3 M2 E1 P1 M1 E2 P2 M2 E2 P3 M2 E2 P2 M2 E1 P3 M1 E1
- G P2 M1 E2 P1 M2 E2 P2 M3 E2 P2 M3 E2 P2 M2 E1 P2 M1 E1 P1 M1 E1 P3 M1 E2 P3 M2 E2 P3 M1 E1 P3 M2 E1 P2 M1 E2 P1 M2 E1
- H 92 M2 E2 P1 M1 E1 P2 M2 E1 P1 M2 E1 P3 M2 E1 P3 M2 E1 P3 M1 E2 P1 M1 E2 P3 M1 E1 P1 M2 E2 P2 M1 E1 P3 M2 E2 P2 M1 E2
- I F2 M1 E1 P1 M2 E2 P3 M2 E1 P3 M1 E2 P5 M1 E1 P2 M2 E2 P3 M2 E2 P1 M2 E1 F2 M2 E1 F2 M1 E2 P1 M1 E1 F1 M1 E2
- J P3 M1 E2 P1 M1 E2 P3 M1 E1 P2 M1 E2 P2 M2 E2 P1 M2 E2 P2 M2 E1 P3 M2 E1 P3 M2 E1 P1 M1 E1 P1 M2 E1 P2 M1 E1
- K PI M2 E2 F3 M2 E2 P1 M1 E1 P1 M1 E2 P2 M1 E2 P3 M1 E2 P2 M1 E1 P3 M2 E1 P2 M2 E2 F2 M2 E1 P1 M2 E1 F3 M1 E1
- L F2 H1 E2 P2 H1 E1 P2 H2 E1 F1 H1 E2 P2 H2 E2 P1 H1 E1 P3 H1 E2 P3 H1 E1 P3 H2 E2 P3 H2 E1 P1 H2 E1 P1 H2 E2

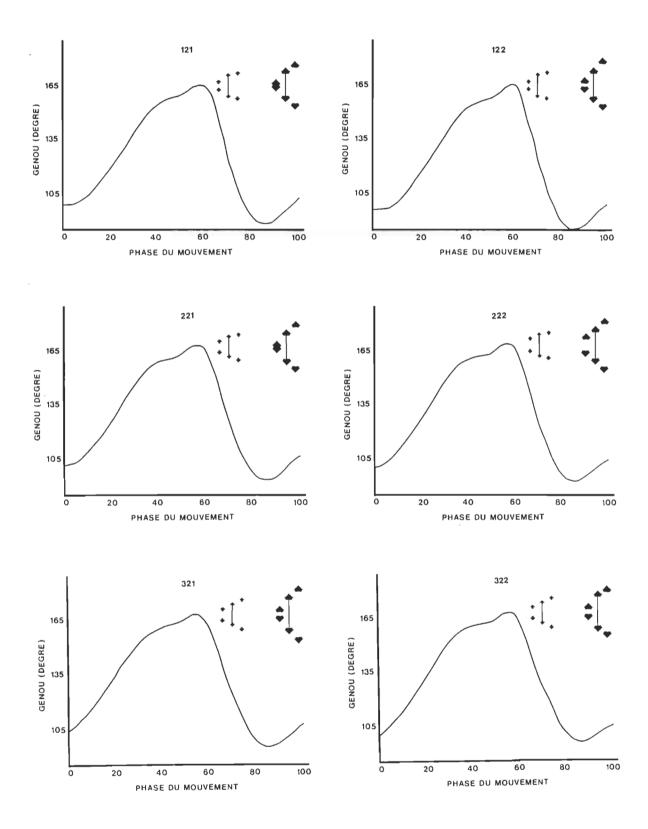

ANNEXE E Analyse temporelle du cycle de montée

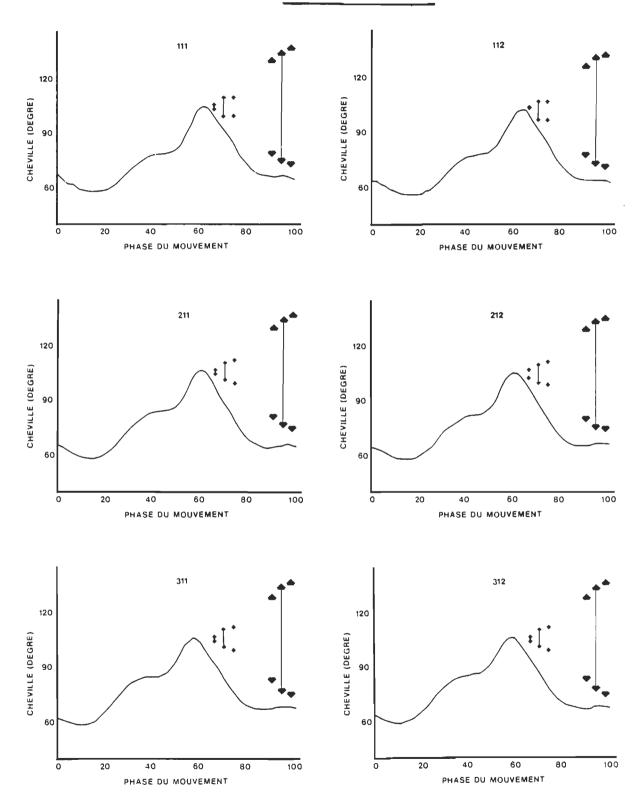

ANNEXE F Courbes moyennes et variabilité intra et inter-sujets

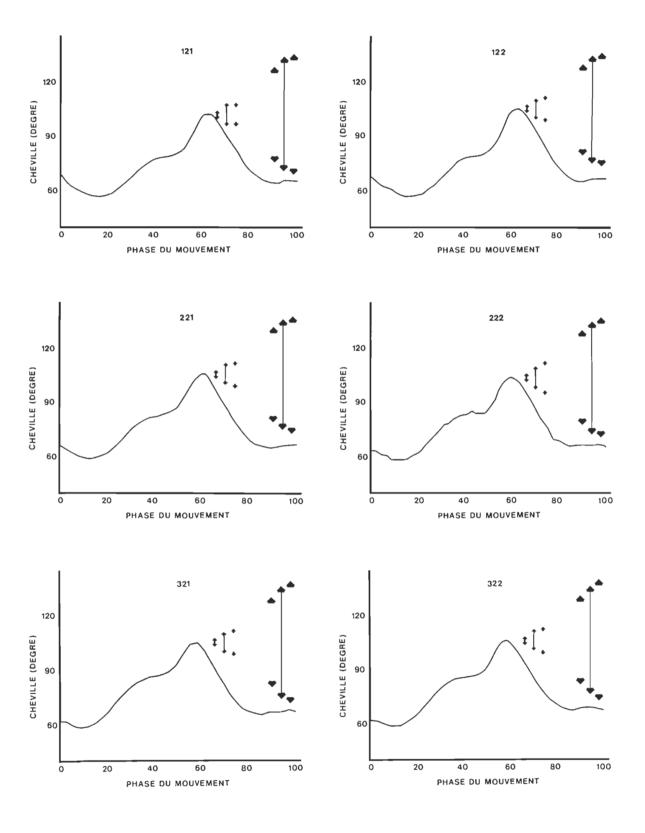

L'identification numérique de chaque figure de l'annexe F représente la condition expérimentale pour laquelle la courbe moyenne, dotée des indices de variabilité intra et inter-sujets, a été établie pour les articulations de la hanche, du genou ou de la cheville, ainsi que pour les muscles vastus lateralis, biceps femoris, tibialis anterior et gastrocnemius, en fonction de la phase du cycle de montée. Constituée de trois chiffres, l'identification numérique représente pour le premier chiffre l'inclinaison (pente) de l'escabeau; le second chiffre correspond à la profondeur de marche utilisée et le troisième identifie la hauteur verticale inter-marches. Les courbes individuelles, de durées variables, ont d'abord été vincentisées sur une échelle de 0 à 100, ce par interpolation linéaire proximale (ou locale). Une fois cette uniformisation des abscisses accomplie, la moyenne (MI) des cinq essais de chaque sujet a été établie pour chaque point (de 0 à 100), ainsi que l'écart-type (SI). Ensuite, la moyenne (MG) des 12 sujets a été prise à partir des MI, de même que l'écart-type (SG). C'est l'évolution de cette moyenne globale (MG) à travers les phases de la montée que représentent les courbes.

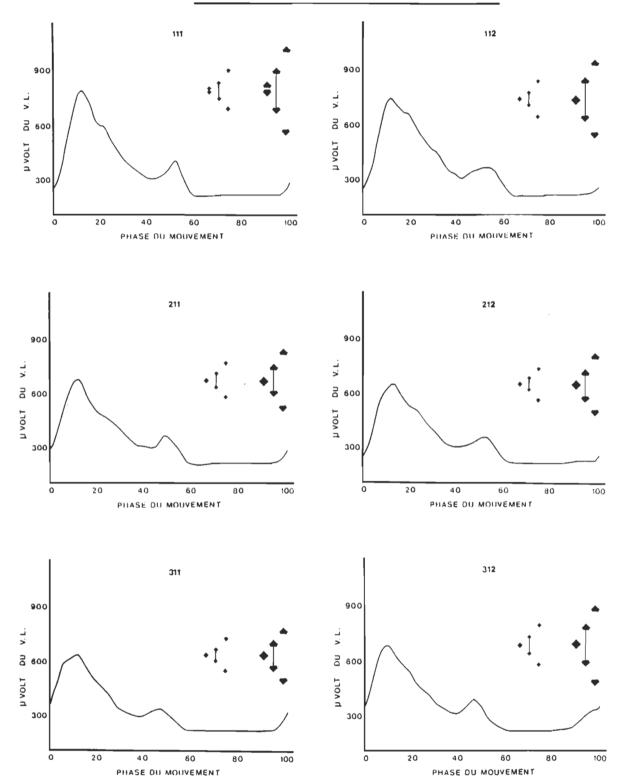
Les graphiques proposent aussi deux calibres permettant de juger de la précision des courbes moyennes, soit des indices de variabilité intra-sujet, et d'autres inter-sujets. La variabilité intra-sujet, en signes fins, est donnée selon 2minq(SI), 2moyq(SI), 2maxq(SI), moyq étant une moyenne quadratique, le tout moyenné pour toutes les phases. Les indices correspondants de variabilité inter-sujets, en signes gras, sont 2Kminq(SG), 2Kmoyq(SG), 2Kmaxq(SG), où K = 12 est un facteur de proportionnement de l'écart-type basé sur la moyenne de 12 sujets. La variabilité inter-sujets, qui contient implicitement la variabilité intra-sujet, est ordinairement plus forte que cette dernière.

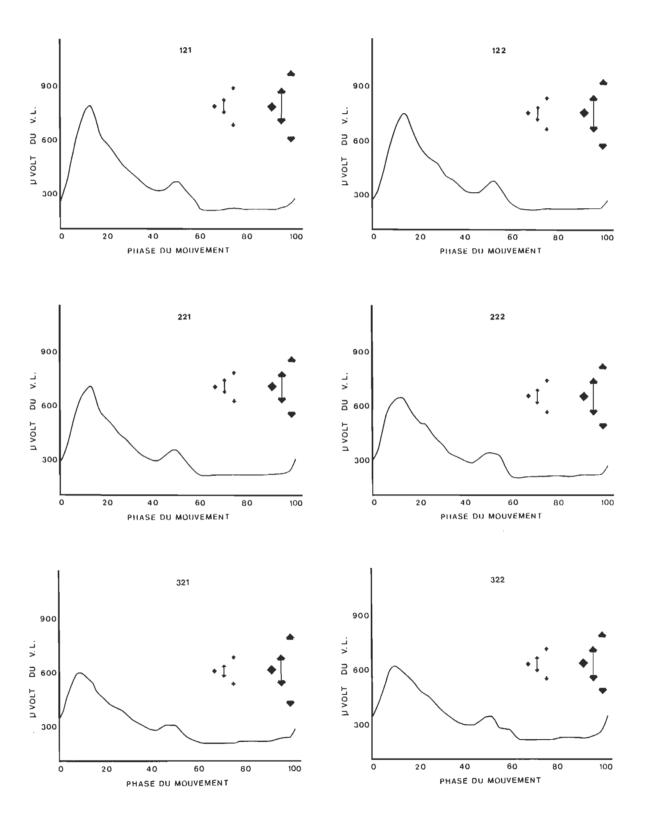


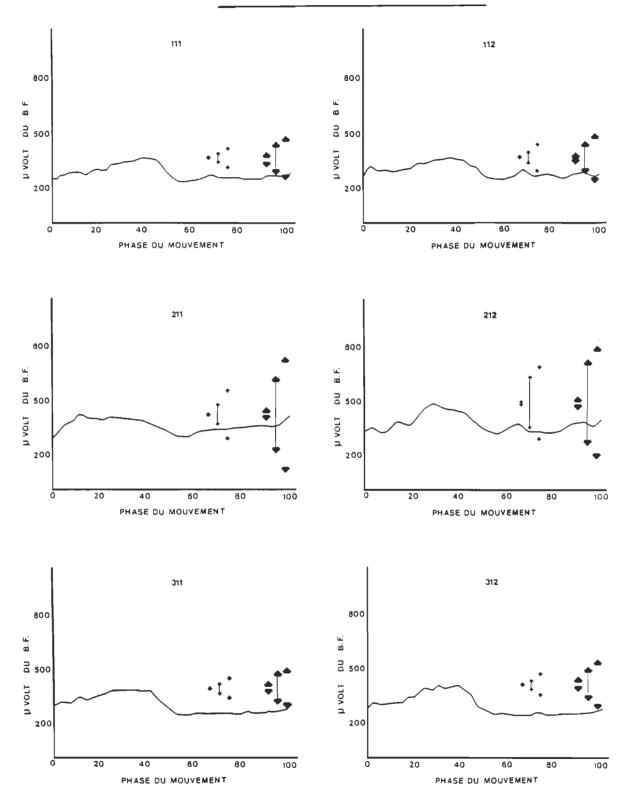

Hanche



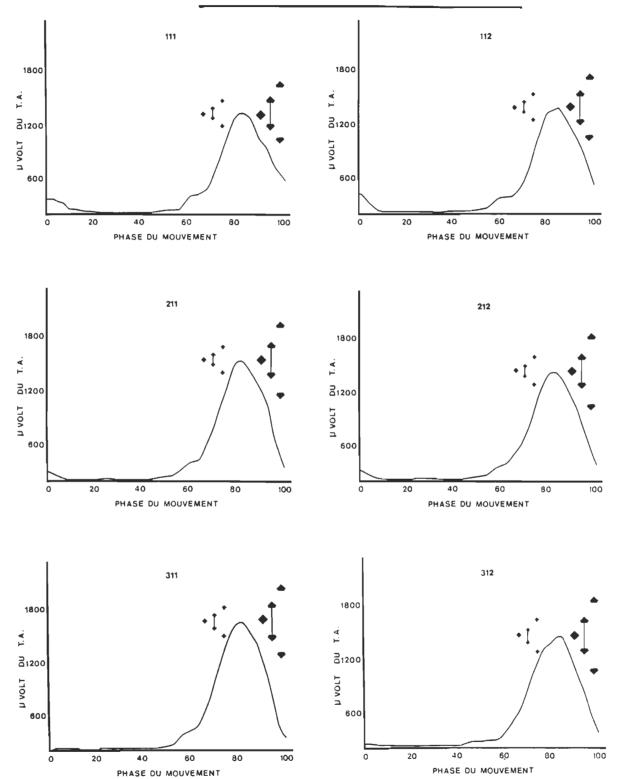

Genou

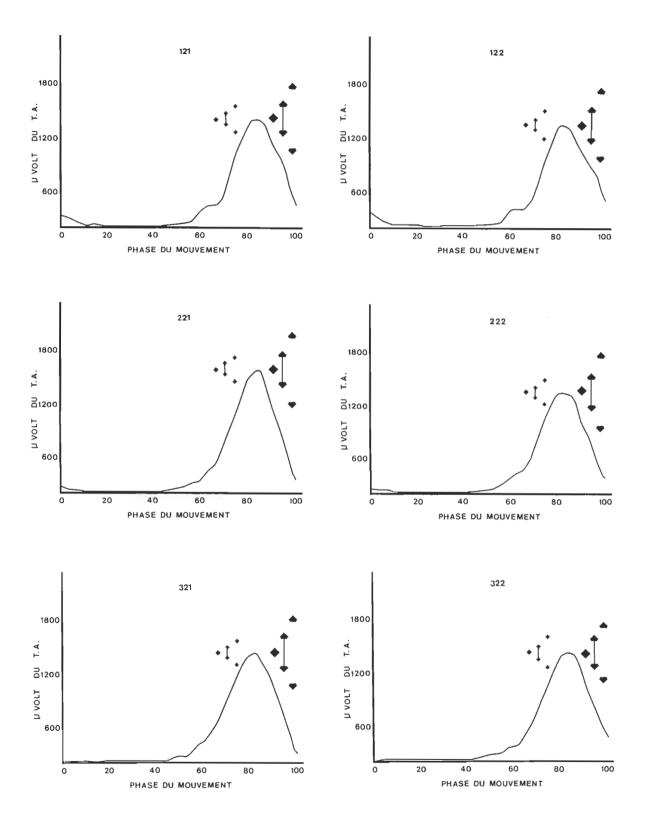


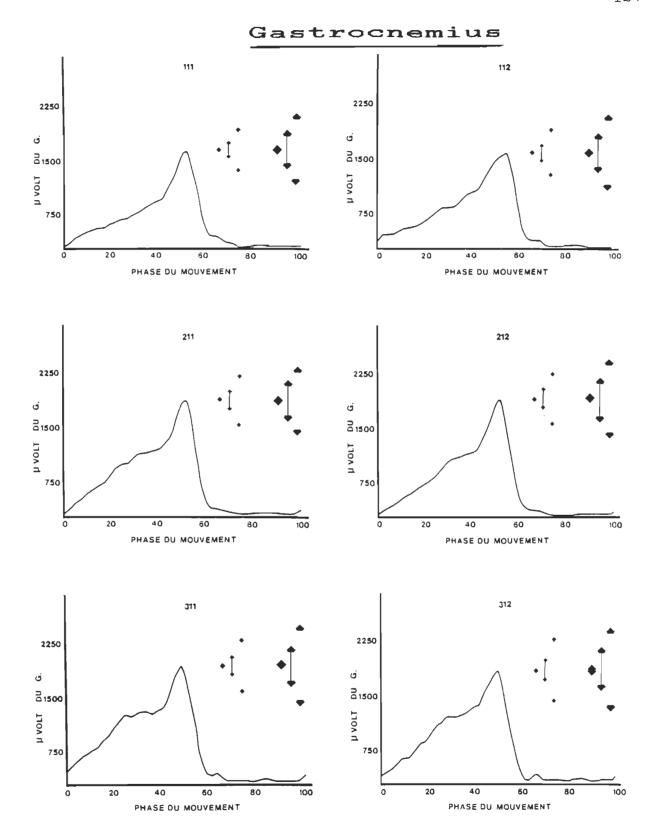

Cheville

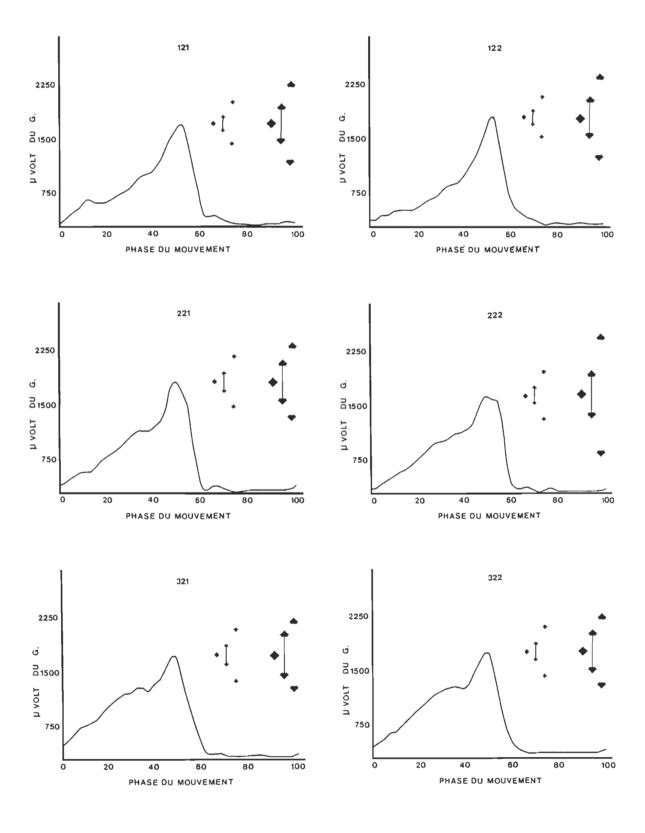


Vastus lateralis




Biceps femoris





Tibialis anterior

ANNEXE G Données brutes par variable

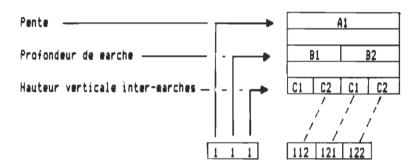
La liste suivante regroupe uniquement les valeurs des indices (variables) relatifs à la phase dynamique du cycle de montée. Notons que les valeurs d'indices se rapportant aux deux phases statiques pré et post-cycle de montée, recueillies lors de l'enregistrement des données, ont été retirées afin d'alléger le texte.

Chacune des données de l'annexe G origine de la moyenne tronquée calculée à partir de la valeur brute du même indice (variable) sur les cinq essais réalisés par sujet, par condition expérimentale. Chaque regroupement concerne les données d'un seul indice (variable). Les douze (12) colonnes correspondent aux douze (12) conditions expérimentales alors que chaque ligne renferme les données d'un seul sujet.

Les conditions expérimentales sont présentées selon une structure lexicographique. Constituée d'une unité fonctionnelle (identification numérique), chaque condition expérimentale renferme trois unités significatives (chiffres) identifiant les paramètres de l'escabeau utilisé. Ainsi, cette identification numérique représente pour le premier chiffre l'inclinaison (pente) de l'escabeau, le second chiffre correspond à la profondeur de marche utilisée et le troisième identifie la hauteur verticale inter-marches. Les données de chaque indice (variable) sont distribuées selon l'ordre des conditions expérimentales suivantes:

111 112 121 122 211 212 221 222 311 312 321 322

A1						
В	1		B2			
13	ε2	£1	C2			


A2						
91	B2					
C1 C2	C1 C2					

	A3						
	B1		92				
C1	C2	Ci	C2				

111	112	121	122

211 212 221 222	211	211	1 212	221	222
-----------------------	-----	-----	-------	-----	-----

311 312 321 322

Liste des variables

Var	0	Durée		Valeur	exprisée	en	gillised	onde	
Var	₩99A	Appui							
		Envol		•					
		Centile d'appui	i	Valeur	expri aée	en	pourcent	age	
Var	1	Intégrale	٧. ٤.	Valeur	exprisée	en	unité de	100	(aicro-volts)
Var			B.F.						,
Var	_		T.A.						
Var			8.		•	•		•	
Var	5	Hoyenne	V.L.	Valeur	exprisée	en	aicro-vo	lts	
Var		,	B.F.						
Var			T.A.						
Var			6.		*		•	#	
Var	9	Pointe	V.L.					*	
Var	10		B.F.			×		•	
Var	11		T.A.						
Var	12		6.		•		•	•	
Var	13	Latence	V.L.		expriate	en	aillise	cond	•
Var	14		B.F.		•				
Var	15		T.A.	•	•	•	_		
Var	16		6.	•	•		•		
Var		Latence	V.L.		exprisée			age	
Var			B.F.	•		4	_		
Var			T.A.		•	•			
Var	20		8.	•	•	•	•		
Var		Frac 25	V.L.		exprisée	en	aillisec	onde	
Var			B.F.	*	•				
Var			T.A.	•		•	•		
Var	24		8.	•	'		•		
Var	25	Frac 50	V.L.						
Var			B.F.	4					
Var			T.A.				•		
Var			6.	•	•	•	•		
Var	29	Frac 75	V.L.						
Var			B.F.				•		
Var			T.A.	•			•		
Var	32		8.	•		•	•		

Var 33 Var 34 Var 35 Var 36	Variation	V.L. B.F. T.A. 6.	Valeur	exprimée	en	unité
Var 40 Var 41 Var 42	Trajet	Hanche Genou Cheville	Valeur = =	exprimée 	e n •	degré
Var 43 Var 44 Var 45	Ampli pré- maximale	Hanche Genou Cheville	:	:		:
Var 46 Var 47 Var 48	Ampli post- maximale	Hanche Genou Cheville	:	:		-
Var 49 Var 50 Var 51	Pointe	Hanche Genou Cheville	:	:		:
Var 52 Var 53 Var 54	Latence	Hanche Genou Cheville	Valeur *	expri <i>ade</i>	# #	ailliseconde
Var 55 Var 56 Var 57	Latence	Hanche Genou Cheville	Valeur •	expri aée	en	pourcentage
Var 58 Var 59 Var 60	Pointe positive	Hanche Senou Cheville	Valeur	expriade	en *	deg. = 1
Var 61 Var 62 Var 63	Pointe négative	Hanche Genou Cheville	:	:		:
Var 64 Var 65 Var 66	Pointe absolue	Hanche Genou Cheville	:	:	:	:
Var 67 Var 68 Var 69	A s plitud e	Hanche Genou Cheville	:	:		•

Var	70	Délai (es)	Hanche	Valeur	expriaée	en	milliseconde
Var	71		Senou			Ħ	•
Var	72		Cheville	•	•		•
Var	73	Accélération	Hanche	Valeur	expri sée	en	deg2
Var	74		6enou	•			•
Var	75		Cheville				•

Liste des variables selon le muscle ou l'articulation

D 1	Intérnal a	11	1
V. C.	Intégrale	Var	_
	Frac 25	Var	
	Frac 50	Var	
	Frac 75	Var	
	Pointe	Var	
	Latence (ms)	Var	
	Latence (%)	Var	
	Moyenne	Var	
	Variation	Var	33
B.F.	Intégrale	Var	2
	Frac 25	Var	22
	Frac 50	Var	26
	Frac 75	Var	30
	Pointe	Var	10
	Latence (es)	Var Var	14
	Latence (%)	Var	18
	Hoyenne	Var	6
	Variation	Var	34
T.A.	Intégrale	Var	3
T.A.	Intégrale Frac 25	Var Var	
T.A.			23
T.A.	Frac 25	Var Var	23 27
T.A.	Frac 25 Frac 50	Var Var Var	23 27 31 11
T.A.	Frac 25 Frac 50 Frac 75	Var Var Var Var	23 27 31 11 15
T.A.	Frac 25 Frac 50 Frac 75 Pointe	Var Var Var	23 27 31 11 15
T.A.	Frac 25 Frac 50 Frac 75 Pointe Latence (ms)	Var Var Var Var	23 27 31 11 15 19
T.A.	Frac 25 Frac 50 Frac 75 Pointe Latence (ms) Latence (%)	Var Var Var Var Var	23 27 31 11 15 19 7
	Frac 25 Frac 50 Frac 75 Pointe Latence (ms) Latence (%) Moyenne Variation	Var Var Var Var Var Var	23 27 31 11 15 19 7 35
€.	Frac 25 Frac 50 Frac 75 Pointe Latence (ms) Latence (%) Moyenne Variation Intégrale	Var Var Var Var Var Var	23 27 31 11 15 19 7 35
	Frac 25 Frac 50 Frac 75 Pointe Latence (ms) Latence (%) Moyenne Variation Intégrale Frac 25	Var Var Var Var Var Var	23 27 31 11 15 19 7 35
	Frac 25 Frac 50 Frac 75 Pointe Latence (ms) Latence (%) Moyenne Variation Intégrale Frac 25 Frac 50	Var Var Var Var Var Var Var	23 27 31 11 15 19 7 35 4 24 28
	Frac 25 Frac 50 Frac 75 Pointe Latence (as) Latence (X) Moyenne Variation Intégrale Frac 25 Frac 50 Frac 75	Var Var Var Var Var Var Var	23 27 31 11 15 19 7 35 4 24 28
	Frac 25 Frac 50 Frac 75 Pointe Latence (ms) Latence (%) Moyenne Variation Intégrale Frac 25 Frac 50	Var Var Var Var Var Var Var	23 27 31 11 15 19 7 35 4 24 28
	Frac 25 Frac 50 Frac 75 Pointe Latence (ms) Latence (%) Moyenne Variation Intégrale Frac 25 Frac 50 Frac 75 Pointe Latence	Var Var Var Var Var Var Var Var Var Var	23 27 31 11 15 19 7 35 4 24 28 32 12 16
	Frac 25 Frac 50 Frac 75 Pointe Latence (ms) Latence (%) Moyenne Variation Intégrale Frac 25 Frac 50 Frac 75 Pointe Latence Latence	Var Var Var Var Var Var Var Var Var Var	23 27 31 11 15 19 7 35 4 24 28 32 12 16 20
	Frac 25 Frac 50 Frac 75 Pointe Latence (ms) Latence (%) Moyenne Variation Intégrale Frac 25 Frac 50 Frac 75 Pointe Latence	Var Var Var Var Var Var Var Var Var Var	23 27 31 11 15 19 7 35 4 24 28 32 12 16 20 8

Н	Trajet	Var 40
	Ampli pré-maxumale	Var 43
	Ampli post-maximale	Var 46
	Pointe	Var 49
	Latence (es)	Var 52
	Latence (%)	Var 55
	Painte positive	Var 58
	Pointe négative	Var 61
	Pointe absolue	Var 64
	Amplitude	Var 67
	Délai	Var 70
	Accélération	Var 73
8	Trajet	Var 41
	Ampli pré-eaximale	Var 44
	Ampli post-maximale	Var 47
	Pointe	Var 50
	Latence (es)	Var 53
	Latence (%)	Var 56
	Painte positive	Var 59
	Pointe négative	Var 62
	Pointe absolue	Var 65
	Amplitude	Var 68
	Délai	Var 71
	Accélération	Var 74
С	Trajet	Var 43
	Ampli pré-maximale	Var 45
	Ampli post-maximale	Var 48
	Pointe	Var 51
	Latence (ms)	Var 54
	Latence (%)	Var 57
	Painte positive	Var 60
	Pointe négative	Var 63
	Pointe absolue	Var 66
	Amplitude	Var 69
	Délai	Var 72
	Accélération	Var 75

VARO	0	1										
1	397	329	301	345	344	353	371	405	391	361	360	360
2	308	376	341	348	361	376	325	396	357	395	407	415
3	393	385	353	332	392	361	391	437	403	449	417	503
4	343	371	377	397	325	393	371	360	480	356	379	465
5	381	371	300	336	315	352	304	367	405	353	361	355
6	337	331	309	319	332	371	320	348	324	356	317	376
7	351	364	351	373	337	387	345	390	409	264	396	416
8	380	375	331	335	337	384	384	411	369	404	352	399
9	304	316	283	291	297	201	331	308	299	333	288	320
10	269	303	273	283	293	193	284	299	327	424	298	299
11	301	304	281	299	284	336	289	339	304	347	309	344
12	327	339	325	333	216	345	327	341	344	355	337	339

VARW99	0	1										
1	223	199	181	207	208	217	221	243	229	209	201	199
2	173	231	201	215	197	207	188	225	203	223	211	240
3	233	223	217	196	217	213	208	252	217	252	236	244
4	197	229	240	217	189	232	220	219	259	195	213	280
5	193	217	191	220	196	199	181	199	204	199	183	195
6	185	201	189	191	189	211	193	184	176	185	151	187
7	195	193	200	220	196	225	196	217	244	234	240	240
8	237	228	216	208	205	232	249	264	215	251	213	236
9	180	183	172	176	171	173	207	187	169	171	169	184
10	143	160	167	169	171	168	173	161	180	205	164	169
11	183	176	168	176	160	191	161	184	163	191	173	195
12	184	193	201	207	182	200	196	204	176	189	183	188
VARW99	0	i										
1 .	175	131	120	139	136	136	149	163	161	152	159	161
2	135	145	140	133	164	169	137	171	155	172	196	175
3	160	163	136	136	175	148	183	185	185	197	181	259
4	145	141	137	180	136	161	151	141	221	161	165	185
5	188	153	109	116	119	153	123	168	201	155	179	160
6	152	129	120	128	143	160	127	164	148	171	167	189
7	156	171	151	153	141	161	149	163	165	30	156	176
8	143	147	115	127	132	152	135	147	155	153	139	163
9	124	133	111	115	127	28	124	121	129	163	119	136
10	127	143	107	113	123	25	111	137	147	219	124	129
11	119	128	113	123	124	145	128	155	141	156	136	149
12	143	145	124	127	34	145	131	137	168	165	155	151
VARW99	0	1										
1	56	60	60	60	60	62	60	60	59	58	56	55
2	56	61	59	62	55	55	58	57	57	56	52	58
3	59	58	62	59	55	59	53	58	54	56	57	49
4	58	62	64	55	58	59	59	61	54	55	56	60
5	51	59	64	65	62	56	60	54	50	56	51	55
6	55	61	61	60	57	57	60	53	54	52	47	50
7	56	53	57	59	58	58	57	57	60	89	61	58
8	62	61	65	62	61	60	65	64	58	62	61	59
9	59	58	61	61	5 7	86	63	61	57	51	59	58
10	5 3	53	61	60	58	87	61	54	55	48	57	57
11	61	58	60	59	56	57	56	54	54	55	56	57
12	56	57	62	62	84	58	60	60	51	53	54	56

VAR1	-2	.01										
i	1121	1047	972	1041	1039	1106	1066	1260	1096	1064	1060	1114
2	797	935	1109	937	901	931	1108	978	1161	1230	954	998
3	992	1049	956	966	925	932	944	1051	939	1107	988	1194
4	1912	1935	1959	2026	1454	1708	1587	1750	1822	1612	1575	2029
5	1628	1543	931	1010	935	942	891	1001	1363	970	993	1208
6	1119	1093	984	1090	1049	1221	996	1123	990	1015	911	1126
7	1145	1286	1236	1230	1112	1199	1152	1230	1227	800	1180	1321
8	956	946	815	909	850	1130	920	1051	853	966	828	1029
9	1284	1404	1210	1255	1267	834	1311	1229	1142	1312	1192	1267
10	945	1038	971	989	981	702	974	1017	1111	2487	943	1026
11	1255	1241	1152	1306	1168	1337	1178	1364	1189	1371	1226	1475
12	1021	1043	1006	1122	703	1165	1014	1122	1107	1155	1077	1145
VAR2	-2	.01										
VHI.2	-4	.01										
ı	1001	764	713	866	826	861	839	1025	949	891	965	830
2	618	752	757	707	732	776	822	873	871	965	817	892
3	724	772	695	676	786	739	780	875	747	897	849	997
4	771	847	820	852	723	845	807	787	997	803	807	990
5	828	928	606	677	638	727	627	749	862	719	741	827
6	771	781	702	729	750	823	755	772	716	781	743	837
7	999	1097	1132	1240	985	1439	1037	1249	1379	879	1383	1463
8	844	1275	738	2143	4102	4400	889	962	1882	1195	1014	7007
9	859	930	905	837	889	602	968	935	830	940	792	905
10	826	962	855	868	888	632	804	975	1143	1435	878	928
11	1609	1709	1407	1850	1588	1662	1449	1714	1488	2060	1528	2148
12	727	767	709	742	511	825	759	789	815	923	796	812
VAR3	-2	.01										
,			1010	1417	1877	1417	1470	174/	1771	180/	1507	1017
1	1417	1335	1218	1417	1577	1413	1479	1746	1731	1596	1583	1817
2	1071	1151	2363	1184	1441	1559	2411	1423	2600	2423	1730	1405
3	1454	1460	1212	1284	1643	1510	1638	1760	1753	1890	1834 2218	221 4 3069
4	2177	2108	1847	2080	1688	2145	2062	2130	3172	2257		
5	1666	1827	946	1033	978	1201	1016	1167	2400	1241	1254 2418	2123 2444
6	2140	2122	2332	2499	2515	2691	2503	2350 1276	2378 1241	2518 876	1175	1288
7 8	130 4 1629	1267 1813	1187 1688	1496 1783	1353 1765	1292 1782	126 5 1947	1878	1826	2067	2018	1916
9	1885	2288	1761	2041	2149	1375	1940	2257	2180	2356	2249	2267
10	1456	1614	1480	1527	1918	1237	1666	1725	1918	2284	1758	1707
11	1890	1983	1808	1730	1842	2144	1774	1792	1851	1901	1795	1961
12	1239	1177	1189	1178	958	1477	1355	1536	1512	1560	1537	1403
14	1237	11//	1107	11/0	730	14//	1900	1000	1012	1300	1007	1700

VAR4	-2	.01										
ı	2088	2244	1928	2281	2515	2670	2473	2825	2630	2945	2529	2860
2	1368	1763	2657	1789	1742	1816	2796	1914	3302	3319	1987	2294
3	1279	1145	1026	1079	1347	1394	1403	1684	1720	1682	1589	1813
4	1847	2159	2077	1955	2420	2794	2553	2471	3074	2924	2844	2972
5	2037	2511	1115	1278	1251	1331	1177	1473	2373	1527	1469	2521
6	2760	2778	2519	2841	3282	3587	3000	3323	3172	3337	3182	3432
7	2298	2427	2611	2417	2527	2576	2324	2868	3343	2116	3406	3397
8 9	2008 2018	2262 2037	2080 1680	2198 1885	2296 2441	2691 1470	2141 1835	2190 2097	2982 2297	2820 2591	2453 2343	2608 2414
10	2528	2725	2740	2807	3372	2160	3176	3455	3893	4437	3752	3392
11	2370	2272	2174	2316	2271	2450	2385	2824	2461	2917	2601	3116
12	1364	1489	1569	1577	1183	1691	1652	1734	2076	2129	1911	1936
12	1304	1707	1307	13//	1103	1071	1032	1/37	20/0	2127	1711	1750
VAR5	0	1										
THILD	٠	•										
1	282	318	316	296	304	310	294	310	284	295	286	308
2	258	249	328	263	250	242	342	250	327	307	235	241
3	251	268	270	291	236	260	243	242	235	248	232	234
4	551	544	528	497	436	434	423	483	382	448	419	437
5	427	407	316	305	297	267	292	272	332	265	278	332
6	333	336	324	335	316	323	311	325	298	289	287	297
7	329	343	352	320	324	304	334	322	294	205	294	313
8	261	250	245	271	249	290	231	261	234	241	235	251
9	417	444	426	441	430	278	388	405	383	388	411	392
10	346	337	349	350	334	236	341	338	340	580	332	339
11	413	409	406	429	402	402	407	399	392	403	396	424
12	308	314	307	330	218	331	313	334	322	326	313	334
VAR6	0	1										
1	254	235	230	256	238	237	228	258	243	248	272	237
2	201	199	224	198	202	205	254	218	244	250	202	215
3	186	200	196	203	203	201	199	198	189	203	200	200
4	224	230	216	213	220	213	219	217	209	225	215	216
5	219	244	203	201	203	207	205	204	218	203	205	233
6	227	239	226	226	225	222	238	225	226	223	231	223
7	290	302	320	338	293	367	299	330	340	222	348	353
8	224	347	222	650	1135	1119	224	236	507	303	288	1792
9	283	291	322	297	295	203	286	309	280	285	278	283
10	303	311	313	309	303	216	293	327	342	338	303	307
11	569	555	510	613	570	508	500	505	494	612	496	619
12	227	226	221	223	166	248	236	234	234	258	239	241

VAR7	0	1										
1	360	404	407	407	461	405	407	439	429	438	436	514
2	358	308	677	345	402	411	736	367	727	626	415	337
3	361	379	351	405	423	419	408	397	433	430	421	421
4	627	571	495	518	512	538	560	571	665	642	601	657
5	457	495	326	303	314	345	340	336	561	347	357	574
6	644	640	744	762	773	748	748	694	718	722	775	657
7	375	356	350	391	406	327	361	336	299	227	293	304
8	436	482	516	517	509	460	517	454	498	523	578	487
9	625	724	609	714	733	457	576	743	746	721	780	710
10 11	548 627	532	529	540	666	415	584	584	577	530	607	578
12	383	668 360	636 364	594 349	640 288	646 443	605	552 449	614	556	580	57 L
12	303	300	307	347	200	773	424	447	430	464	454	414
VAR8	0	1										
L	538	689	623	666	734	736	709	671	673	829	692	814
2	439	490	779	491	497	497	866	491	909	813	484	559
3	323	300	299	316	349	379	370	380	420	386	382	363
4	527	609	548	481	738	708	679	866	652	834	768	639
5	559	692	381	381	411	377	387	394	592	416	415	689
6	831	860	830	885	997	985	945	948	1001	906	1003	926
7	657	679	769	637	737	667	696	754	815	544	866	831
8	525	617	65 6	650	699	659	553	534	781	724	698	654
9	669	648	597	664	799	490	564	696	777	797	792	740
10	937	885	991	998	1171	745	1134	1158	1162	1060	1243	1159
11	787	746	777	774	783	800	824	831	815	841	837	906
12	429	424	491	483	398	495	517	510	601	630	567	573
VAR9	0	1										
ı	925	1019	945	811	860	859	878	1009	746	844	927	927
2	632	583	1046	620	534	548	928	597	925	834	501	537
3	616	675	613	669	502	616	519	531	519	532	482	525
4	1585	1645	1753	1550	1342	1333	1187	1406	1174	1289	1246	1204
5	1317	1147	734	790	652	546	770	585	1014	626	587	959
6	845	827	796	896	748	710	771	808	660	585	584	647
7	859	1027	998	1041	998	710	927	901	655	570	766	777
8	495	509	448	493	457	454	397	419	362	386	365	423
9	1303	1377	1298	1487	1440	893	1181	1258	1267	1294	1470	1268
10	901	874	904	840	878	647	859	737	882	1916	820	926
11	927	838	889	910	859	821	851	863	823	816	844	830
12	693	839	707	840	504	788	664	757	695	690	651	728

VAR10	0	1										
1	501	3 85	330	452	375	406	341	503	395	510	469	361
2	270	265	370	254	286	274	494	410	399	569	279	338
3	215	294	229	344	321	261	297	248	250	272	245	317
4	317	331	305	282	304	278	321	279	267	346	283	346
5	305	481	242	236	237	259	267	250	313	243	248	372
6	338	395	416	356	314	332	381	312	317	309	382	322
7	511	675	920	980	469	769	539	542	724	400	666	683
8	312	624	320	996	2268	1960	356	392	793	573	567	2726
9	536	574	756	589	656	433	593	665	544	613	585	588
10	758	662	597	704	696	556	686	746	796	862	743	719
11	1042	1065	1042	1206	991	790	870	839	824	1025	731	1158
12	352	360	336	336	265	369	370	351	377	462	400	398
VAR11	0	1										
1	1058	1234	1269	1295	1512	1325	1316	1206	1349	1334	1332	1548
2	1133	908	2519	1013	1379	1417	2722	1104	2547	2421	1376	991
3	1177	1235	1162	1168	1584	1658	1510	1602	1637	1777	1482	1651
4	1925	1761	1728	1732	1504	1688	1818	1857	2737	2236	1949	2715
5	1699	1530	841	792	893	912	906	932	2289	1104	1064	2029
6	2163	2279	2392	2668	2818	2361	2741	2304	2581	2271	2490	2191
7	1175	1001	1091	1081	1470	1044	1251	1056	772	806	922	923
8	1110	1473	1690	1674	1719	1353	1524	1299	1714	1645	1999	1685
9	1971	2195	2209	2375	2532	1525	2212	2805	2417	2587	2515	2692
10	2081	2257	1731	2163	2331	1632	2191	2039	2132	2075	1874	1847
11	2088	2065	2194	1957	2101	2293	2090	2069	2267	2023	2143	1791
12	1026	1052	1079	989	933	1663	1460	1632	1529	1464	1493	1445
VAR12	٨											
VHR12	0	1										
1	2143	2541	2327	2747	2718	2933	2992	2356	2576	2924	2737	2820
2	1561	1905	3427	2009	1919	2048	3700	1777	3827	3298	1560	2304
3	893	743	868	907	939	1147	1055	1089	1275	1119	1133	1032
4	2633	2930	3723	2735	4162	4500	4146	4488	3703	3719	4101	3824
5	2278	3027	1415	1453	1208	1285	1208	1142	2582	1191	1212	2634
6	2105	2218	2330	2653	3084	2764	2973	2896	2574	3033	2552	2973
7	3344	2828	2917	3494	3165	3908	3508	3669	3059	2083	3677	3719
8	3694	3278	2955	3645	3200	3304	3178	4132	3228	4188	3665	3604
9	1811	1796	1653	2302	2365	1582	2052	2010	2168	2289	2056	1921
10	3699	3188	3514	3644	3671	2530	4006	4182	3594	4377	4063	3612
11	1645	1796	1970	1982	2161	2026	1950	2228	1892	1776	1891	2129
12	1766	2278	2221	2436	1481	2421	2249	2538	2634	3117	2606	2598

VAR13	0	1										
1	41	35	26	36	41	41	49	45	42	34	26	33
2	33	54	39	49	39	34	29	37	22	25	40	48
3	53	46	48	39	32	19	22	29	29	19	19	18
4	129	159	51	55	37	102	40	39	45	113	20	181
5	58	71	33	51	53	40	41	28	51	17	36	23
6	33	33	37	33	25	31	33	20	24	41	82	10
7	31	28	20	17	26	35	2 5	20	33	13	38	41
8 9	66	55	46	50	38	35	48	118	13	32	30	33
10	28 22	22 26	28 29	30 29	30 31	17	43	20	23	27	22	26
11	25	29	31	50	21	13 52	29 37	15	165	415	19	23
12	37	43	38	39	18	40		45	15	27	26	96
12	37	73	30	37	10	40	31	31	34	27	13	8
VAR14	0	1										
1	124	119	119	140	126	132	144	137	150	146	101	137
2	128	171	145	156	131	125	81	138	150	120	84	138
3	127	247	131	167	46	119	226	157	138	172	117	233
4	159	188	244	172	84	70	98	104	248	96	121	148
5	176	89	26	80	114	69	64	90	80	91	134	22
6	305	267	294	292	129	80	279	240	296	179	271	354
7	50	46	108	48	93	34	71	90	72	5	81	36
8	143	295	115	252	216	151	113	133	179	210	187	303
9	107	82	86	77	228	50	106	95	93	104	86	85
10	110	132	105	112	101	66	104	68	79	90	80	83
11	219	214	90	202	159	115	120	98	141	116	89	172
12	134	137	121	149	79	138	127	124	109	109	120	124
VAR15	0	1										
1	372	289	261	325	295	311	314	349	334	316	324	303
2	238	298	265	293	275	289	259	307	281	309	296	306
3	342	339	299	272	350	322	333	383	328	385	352	396
4	283	308	324	362	275	325	324	300	419	304	324	415
5	297	327	246	289	267	284	250	292	340	320	305	307
6	278	271	251	256	264	295	270	280	257 770	273	255	312
7	270	285	273	302	271	313	268	307	330	220	316	327
8 9	329 241	312 263	269 219	273 224	278 239	33 5 163	324 277	347 248	299 230	360 251	291 227	332
10	218	263 247	229	238	233	156	228	237	251	309	224	2 5 3 230
11	264	252	235	248	233	266	241	267	248	277	245	277
12	283	304	289	289	181	299	270	295	262	294	268	289
• •	-00	907	207	207	101	6/7	A/V	2/0	-04	6/7	-00	407

206 156 207 190 186 169	170 212 214 219 125	143 174 184 219	175 195 166	184 183	187 183	191	218	202	178	177	172
224 149 138 149 173	168 168 211 157 163 155 188	157 150 169 181 146 137 130 176	223 187 164 192 185 154 138 151 181	182 170 164 171 174 184 150 129 136 111	201 219 177 189 202 204 102 94 164 184	159 190 198 149 162 171 212 181 134 138	191 226 199 184 161 191 222 157 130 159 180	183 196 246 175 129 216 191 147 153 138 161	200 222 173 175 162 139 220 165 190 148 170	189 212 191 171 128 212 189 146 125 148 158	215 214 252 171 174 214 213 161 135 173 163
0	1										
11 11 14 38 15 10 9 17 9	11 15 12 43 19 10 8 14 7 9	9 11 14 13 11 12 5 14 10 10 11	11 14 12 13 15 10 4 16 10 10 16 12	12 11 9 11 16 8 7 12 10 11 7	11 9 5 26 11 8 9 8 6 4 15 12	13 9 6 10 14 10 7 12 13 10 13	11 9 7 11 8 5 5 5 29 6 5 13 9	10 6 7 9 12 6 8 3 8 50 5	9 7 5 33 4 13 3 8 8 9 6	7 10 5 5 10 27 10 9 8 7 8	9 11 4 42 7 3 10 8 8 8 28 2
0	1										
31 41 30 46 46 90 15 38 35 42 72	37 46 65 52 24 81 13 80 26 43	41 44 39 65 8 92 33 34 29 38	40 44 52 44 22 91 12 73 26 40 68	36 37 12 27 36 40 27 65 78 35	37 33 31 18 20 21 9 37 17 23 33	41 25 59 26 21 89 20 30 32 37 42	35 37 35 28 25 68 22 33 30 23	41 42 35 51 20 90 17 48 31 23 47	40 28 38 26 25 51 1 51 32 20 34	27 20 29 32 36 85 20 53 30 26 29	39 33 47 32 6 94 9 76 26 28
	174 2224 149 138 149 173 0 11 11 14 38 15 10 9 17 9 8 8 11	174 168 224 211 149 157 138 163 149 155 173 188 0 1 11 11 11 15 14 12 38 43 15 19 10 10 9 8 17 14 9 7 8 9 11 13 0 1 31 37 41 46 30 65 46 24 90 81 15 13 38 80 35 26 42 43 72 74	174	174	174	174	174	174	174 168 169 192 174 202 171 191 216 224 211 181 185 184 204 212 222 191 149 157 146 154 150 102 181 157 147 138 163 137 138 129 94 134 130 153 149 155 130 151 136 164 138 159 138 173 188 176 181 111 184 168 180 161 0 1 11 11 9 11 12 11 13 11 10 11 15 11 14 11 9 9 9 6 14 12 14 12 9 5 6 7 7 38 43 13 13 11 26 10 11 9 15 19 11 15 16 11 14 8 12 14 14 16 12 8 12 29 3 9 8 5 4	174	174 168 169 192 174 202 171 191 216 139 212 224 211 181 185 184 204 212 222 191 220 189 149 157 146 154 150 102 181 157 147 165 146 138 163 137 138 129 94 134 130 153 190 125 149 155 130 151 136 164 138 159 138 148 148 173 188 176 181 111 184 168 180 161 170 158 0 1 11 15 11 14 11 9 9 9 6 7 10 14 12 14 12 9 5 6 7 7 5 5 38 43 13 13 11 26 10 11 9 33 5 15 19 11 15 16 11 14 8 12 4 10 10 10 12

VAR19	0	1										
1	95	88	87	94	83	87	86	85	87	88	88	83
2	79	81	79	80	76	75	80	77	77	78	74	73
3	85	89	84	82	68	86	86	87	84	86	85	84
4	82	83	85	94	84	82	88	82	88	85	84	93
5	80	89	82	84	84	80	83	81	84	89	84	85
6	82	84	80	80	80	81	82	81	82	79	79	82
7	78	79	81	79	81	79	76	79	80	55	81	78
8 9	90 79	84 82	81 77	84 76	82 78	88 54	85 83	85 80	81 76	88	85 70	86 79
10	79	82	82	84	80	54	80	80	75	77 72	78 78	78
11	85	84	84	83	80	80	83	81	82	82	79	82
12	85	89	89	87	56	86	83	86	78	82	79	85
	-	•	σ,	ų,	50	00	00	00	70	01	,,	00
VAR20	0	1										
			40									
1 2	52	53	48	51	52	52	51	53	51	48	50	47
3	51 52	56 56	53 52	56 50	51 49	48 56	49 49	49 51	51 49	51	47 51	52 43
4	55	59	58	55	53	55	54	55	51	51 48	51 52	1 3
5	49	34	52	56	52	50	50	50	44	48	49	49
6	50	52	47	51	52	50	49	47	44	47	41	46
7	50	46	47	49	52	51	48	48	53	34	54	51
8	59	57	55	56	56	52	55	54	51	56	53	54
9	50	50	51	52	49	34	54	52	48	51	51	50
10	51	54	50	49	44	33	48	45	47	48	44	46
11	51	51	45	50	48	49	48	48	45	44	48	49
12	52	55	54	55	34	53	51	52	47	47	47	49
HAROL	•											
VAR21	0	1										
1	55	45	39	50	48	5 5	55	53	56	48	37	46
2	46	63	48	58	61	60	38	59	44	52	66	69
3	60	62	59	49	63	51	59	66	62	65	67	73
4	54	67	62	67	45	68	53	55	77	50	53	92
5	53	56	43	57	56	59	45	55	45	52	56	38
6	49	48	45	47	49	59	53	49	53	61	54	58
7	41	46	41	39	40	53	41	43	59	34	52	57
8	82	72	66	66	68	80	80	88	78	83	74	77
9	37	37	32	33	36	21	47	32	30	36	32	36
10	35	37	39	39	41	27	40	44	49	63	37	39
11	50	52	45	55 57	45	61	45	56	42	56 52	49	64
12	54	5 7	54	53	32	55	49	56	53	52	48	49

VAR22	0	1										
1 2 3 4 5 6 7 8 9 10 11	98 77 95 79 92 84 76 101 67 73 69	83 93 91 84 77 82 79 102 67 76 77 85	73 86 84 90 70 79 72 86 63 70 61 79	87 89 79 93 80 78 65 117 60 72 85 82	85 90 88 75 74 77 73 93 60 69 82 48	88 87 86 93 82 88 81 107 39 45 87	92 65 92 89 71 84 71 94 79 64 71	98 96 101 86 84 82 81 105 66 59 86 77	96 82 95 114 92 78 82 92 66 63 71	91 91 107 84 83 83 52 92 72 82 94 75	74 94 98 91 81 76 74 81 62 55 76 70	85 97 114 113 71 86 84 118 63 54 93 71
VAR23	0	1										
1 2 3 4 5 6 7 8 9 10 11	130 134 191 117 182 177 148 182 184 160 178	142 141 181 165 167 194 140 201 196 184 186 124	140 210 157 186 119 183 126 189 175 158 168 116	136 142 156 204 129 195 161 188 182 166 169	167 173 209 184 121 205 156 189 190 183 169 94	150 193 195 224 148 218 153 193 122 123 201 150	168 209 208 223 123 185 148 216 210 166 166 146	174 175 231 207 142 213 149 211 191 175 184 164	192 229 224 327 251 205 132 197 181 196 173 161	163 241 243 216 150 191 90 226 210 237 181 153	171 204 237 227 155 189 127 199 179 171 173 160	187 173 276 312 212 217 135 208 200 170 190 148
VAR24	0	1										
1 2 3 4 5 6 7 8 9 10 11	110 80 100 106 109 93 104 139 80 87 68 96	81 105 102 113 97 87 96 138 85 93 78	77 107 102 131 88 93 84 118 82 85 66	91 109 93 134 98 91 115 132 89 88 89 106	87 97 98 94 83 84 91 108 81 77 76 61	101 87 102 130 97 98 108 100 55 57 89 104	109 73 104 112 74 87 90 126 111 83 77 86	111 98 115 124 86 76 98 147 87 78 93	103 77 100 140 105 65 109 81 73 81 71	95 89 108 91 79 79 67 120 81 111 90	82 92 101 106 89 56 105 94 72 68 79	93 102 116 152 78 76 113 115 83 71 90

VAR25	0	1										
i	121	93	84	105	107	107	116	112	129	116	115	118
2	106	139	97	124	150	156	102	155	123	145	171	170
3	139	132	119	108	153	131	149	165	154	164	167	199
4	108	130	119	125	103	138	121	113	169	120	119	168
5	90	100	92	104	105	124	94	123	105	128	123	97
6	107	114	107	113	121	139	117	124	121	138	120	145
7	105	118	115	108	96	136	108	113	135	83	128	137
8	170	158	145	145	159	171	177	189	175	191	165	176
9	71	74	67	69	73	46	87	73	67	78	64	75
10	86	94	88	95	94	66	92	100	120	144	94	96
11	104	104	93	115	97	114	92	111	95	116	100	126
12	110	119	111	111	74	111	111	113	119	124	116	117
VAR26	0	1										
1	161	147	133	148	149	154	164	169	167	154	138	152
2	143	178	157	166	166	168	121	169	150	162	185	183
3	190	188	169	162	185	165	188	202	182	208	193	236
4	162	171	180	189	153	185	170	168	225	161	178	216
5	185	170	144	162	150	164	143	173	191	170	172	155
6	168	164	158	155	158	173	156	166	156	165	164	179
7	142	158	150	154	139	155	137	155	148	98	142	156
8	181	185	155	199	197	181	172	186	181	185	156	221
9	118	118	105	109	116	67	131	114	118	128	111	116
10	112	124	113	113	112	69	107	104	112	145	105	103
11	138	145	120	148	156	158	137	152	134	162	140	173
12	142	151	145	149	89	146	135	142	134	135	132	133
VAR27	0	1										
				0/4	5/4	07.	000	701	705	074	0/0	477
1	286	251	230	264	260	276	288	306	305	271	268	273
2	221	265	264	257	260	271	245	282	271	296	286	292
3	306	301	269	253	313	295	305	357 207	314	368 281	332 293	380
4 5	26 4 276	293 285	304 214	320 2 4 7	251 224	313 254	29 5 219	287 265	389 311	261	273 258	386 273
6	263	262	241	247	256	288	252	267	251	258	236	283
7	253	257	246	278	255	286	245	256	269	179	255	277
8	285	292	250	261	257	291	296	301	277	312	271	294
9	225	240	212	219	227	152	253	233	220	253	214	242
10	209	237	210	221	227	149	217	219	242	299	217	217
11	239	239	221	229	216	254	218	251	230	261	233	259
12	244	247	234	245	168	270	255	270	249	259	244	255

VAR28	0	1										
1	177	141	126	153	146	158	163	174	162	146	142	136
2	134	172	159	168	148	157	127	159	140	156	160	171
3	175	176	168	150	161	162	162	186	155	182	173	189
4	176	192	205	212	154	202	181	187	218	145	171	233
5	175	172	149	173	144	158	133	147	169	148	146	144
6	141	136	140	141	134	152	140	128	114	134	105	133
7	158	153	144	174	147	180	149	158	167	110	158	177
8	211	201	168	175	158	163	198	215	137	198	166	188
9	127	133	130	140	127	87	164	136	119	134	112	125
10	120	134	119	121	115	79	114	115	120	155	103	107
11	146	147	129	150	130	149	130	147	119	147	129	164
12	162	180	168	171	103	172	147	160	143	154	141	148
VAR29	0	1										
1	246	193	181	209	212	214	234	245	255	230	235	235
2	205	252	203	227	257	265	208	272	233	262	287	288
3	259	244	221	202	266	235	263	293	274	299	285	352
4	178	207	200	211	168	217	197	190	262	187	202	258
5	191	191	176	202	195	233	188	237	237	240	238	206
6 7	199	195 229	192 226	190 229	207 203	233 252	199 222	214 231	215 264	241 168	214 252	255 269
8	211 275	266	235	242	252	273	280	300	274	301	259	282
9	148	147	140	137	142	99	173	160	158	177	144	168
10	150	170	150	158	175	105	162	171	204	324	167	168
11	171	172	157	180	172	202	171	199	175	210	183	212
12	198	208	200	197	126	195	196	200	209	215	205	200
VAR30	0	1										
1	256	230	212	227	239	240	260	275	265	248	240	251
2	223	274	241	254	261	271	206	275	243	262	295	294
3	291	283	259	240	285	261	285	318	290	326	302	366
4	248	269	272	293	235	287	267	262	351	257	279	340
5	283	266	221	247	231	256	221	26 9	298	261	267	255
6	261	251	238	243	252	273	247	261	244	265	252	284
7	247	265	266	264	240	274	244	267	265	179	251	287
8	280	280	242	270	269	274	272	297	276	287	241	315
9	205	209	187	197	213	126	218	196	202	215	193	206
10	177	193	180	179	182	116	179	184	190	246	177	181
11	224	223	202	225	220	255 232	216	252	222 23 5	256 230	22 9 228	259 230
12	228	235	229	235	143	232	222	234	233	230	220	230

	VAR31	0	1										
					.								
	1	355	289	263	304	298	314	324	351	345	313	310	312
	2	251	309	292	294	290	307	270	319	297	325	323	333
	3	347	338	304	284	345	325	337	392	343	399	365	418
	4	300	329	334	361	283	348	329	318	428	311	331	422
	5	304	323	251	291	264	297	255	308	343	304	302	304
	6	290	290	268	274	285	319	278	296	276	292	262	317
	7	284	295	287	317	281	326	278	310	335	220	322	337
	8	331	327	280	291	286	332	333	350	309	352	302	336
	9	255	269	233	244	253	170	280	256	249	281	241	268
	10	230	257	234	242	248	164	238	243	270	331	245	246
	11	267	266	244	254	238	280	241	276	252	290	257	290
	12	284	296	281	292	188	301	282	301	278	300	276	289
	114676												
	VAR32	0	1										
	1	211	177	188	102	107	100	104	217	205	170	177	172
	1	211	172	155	182	183	189	194	217	205	178	177	172
•	2	165	216	192	200	190	202	161	204	182	201	205	219
	3	235	243	222	203	224	207	211	245	200	242	229	280
	4	207	221	223	239	174	222	201	202	253	176	196	260
	5	207	208	173	204	180	197	168	197	220	199	190	178
	6	185	175	173	171	172	191	174	170	158	169	145	179
	7	180	175	174	197	176	206	176	200	213	139	210	216
	8	229	221	188	193	189	205	219	230	192	226	193	218
	9	161	167	159	165	157	106	190	169	150	174	147	162
	10	140	161	141	144	144	96	142	140	153	197	134	139
	11	217	214	193	217	190	217	197	213	182	221	190	241
	12	191	201	190	193	118	195	176	189	169	176	167	175
	VAR33	0	1										
	44422	V	•										
	1	258	321	325	263	269	299	262	319	234	248	254	272
	2	188	166	337	192	142	131	328	151	284	222	112	127
	3	178	204	201	247	129	187	140	144	135	149	113	131
	4	752	726	702	662	539	525	470	632	412	520	474	512
	_	612	516	310	288	248	203	259	209	398	191	219	389
	5 6	289	271	263	278	220	245	227	256	207	188	173	193
	7	306	333	332	309	314	246	332	305	238	188	249	267
	8	106	105	332 88	121	86	90	332 67	78	238 57	62	52	86
	9	610	671	627	641	613	402	546	551	540	540	593	537
	10	325	314	351	326	315	223	320	303	313	771	308	318
		370	375	383	356	334	344	373	369	376	349	358	348
	11 12	264	27 5	250	292	205	315	3/3 26 5	322	280	281	258	293
	1.6	409	4/3	230	474	200	217	403	277	400	401	470	273

VAR34	0	1										
	1/0	00	77	(27	07	104	0.4		117	177	100	04
l 2	168 38	92 33	73 81	153 31	97 43	104 46	84 167	16 4 86	117 119	133 1 54	38 180	94 71
3	16	29	23	37	38	35	30	29	41	38	33	36
4	54	65	48	44	52	42	52	37	34	55	37	50
5	41	100	22	19	23	29	23	26	48	26	24	72
6	57	70	71	58	52	52	79	49	55	59	66	53
7	119	146	200	204	119	199	157	155	237	132	245	212
8	56	118	53	349	620	476	75	81	168	130	147	628
9	181	205	261	185	214	179	209	233	197	204	186	212
10	221	242	213	268	277	231	247	315	354	347	276	272
11	279	264	287	404	248	180	199	207	207	253	160	320
12	91	84	73	79	95	137	115	113	120	169	130	127
VAR35	0	1										
1	383	536	560	531	663	547	564	575	618	600	586	738
2	464	323	1214	418	594	613	1487	465	1388	1118	619	393
3	516	534	479	556	684	698	928	635	708	741	674	666
4	1083	973	834	923	830	930	1012	979	1327	1174	1075	1299
5	762	757	372	316	348	419	396	409	990	436	450	1011
6	1029	1102	1240	1313	1341	1261	1324	1171	1330	1070	1245	1057
7	493	407	389	500	582	373	480	396	243	250	245	268
8	598	728	809	813	793	640	785	621	747	802	931	707
9 10	1088 966	1296 9 5 9	1063 880	1331 969	1343	806 774	1050 1040	1389 1035	1337 985	1335 970	1438 1051	1290 954
11	1013	1131	1086	924	1238 1079	1113	1004	910	1051	857	953	829
12	441	410	402	376	403	603	598	655	580	623	609	548
••	***	7.0	102	0,0	100	000	0,0	000	000	010	007	0.10
VAR36	0	1										
***************************************	·	•										
1	744	1003	898	980	1071	1182	1190	1024	1002	1386	989	1357
2	494	598	1218	619	670	611	1259	657	1280	1117	607	768
3	284	215	239	262	334	384	409	430	551	438	413	409
4	652	825	816	617	1171	1153	1022	1084	1005	1297	1187	957
5	714 1177	965 1249	423 998	411 1201	440 1441	397 1458	392 1345	415 1347	709 1398	422 1245	470 1399	907 12 98
6 7	1020	1035	1184	1034	1101	1021	1078	1140	1304	849	1358	1362
8	798	886	918	1073	945	956	773	833	1145	972	930	904
9	841	800	684	817	1124	652	779	916	1090	1096	1109	1125
10	1595	1472	1597	1753	2050	1435	2112	2079	2116	1951	2257	2101
11	522	511	616	528	598	640	642	669	781	673	748	593
12	447	509	556	581	472	604	606	672	812	873	749	781

VAR40	0	1										
1 2 3 4 5 6 7 8 9 10 11	110 122 106 119 123 120 123 95 104 109 106 110	93 119 113 121 121 126 133 90 112 124 116 122	96 118 121 115 117 117 119 93 112 114 107	110 116 114 131 121 118 140 85 116 125 118	98 127 101 116 122 116 120 74 107 100 107 81	115 140 115 127 123 124 157 103 71 73 110 135	105 140 100 115 114 132 130 100 111 103 99 121	121 122 108 126 118 136 145 100 114 111 111	106 133 106 112 116 120 116 72 111 113 100 118	115 147 129 114 111 115 77 94 126 130 113 126	102 137 124 108 120 111 123 90 112 94 100 115	107 139 100 111 119 126 124 109 120 93 122 118
VAR41	0	1			•							
1 2 3 4 5 6 7 8 9 10 11	169 152 150 172 167 156 173 164 174 176 138 175	158 165 187 183 167 157 171 180 178 183 147 178	156 155 187 172 158 143 171 162 182 177 146 169	170 162 189 184 175 143 173 174 187 184 153 185	156 151 130 164 163 140 168 171 185 177 149 113	164 157 183 182 169 152 195 174 116 119 159 171	160 138 169 169 163 160 174 166 186 180 152	170 153 145 181 162 161 187 166 188 181 161 180	151 140 142 168 155 141 168 163 174 176 151	165 149 170 161 147 124 114 171 183 193 154 172	154 145 156 164 170 129 170 159 183 168 150 166	162 156 147 169 144 153 185 173 178 177 158 174
VAR42	0	1										
1 2 3 4 5 6 7 8 9 10 11	105 136 80 83 97 91 107 97 101 143 118 135	111 141 90 86 99 89 82 102 104 145 130	94 132 87 80 93 80 87 94 97 146 124 133	103 145 89 79 101 88 104 92 124 156 137	111 146 78 79 97 92 105 95 116 159 136 93	116 142 91 88 102 98 108 84 83 125 149	115 138 88 82 99 97 106 99 163 155 140	117 147 81 85 101 95 104 97 132 293 149 147	115 137 91 85 106 98 95 90 134 151 144	117 132 87 82 98 89 70 97 115 167 147	105 144 86 80 101 85 94 93 117 144 152 249	117 162 91 87 100 97 103 90 110 150 147

VAR43	0	1										
1	48	38	38	45	36	46	39	49	41	42	40	39
2	55	54	52	51	57	60	63	56	60	68	65	67
3	44	46	49	45	39	43	38	42	42	53	49	36
4	49	49	47	54	45	50	47	49	42	42	40	45
5	51	54	50	52	51	48	49	50	39	34	40	38
6	51	56	50	50	51	54	51	55	40	47	36	52
7	49	54	47	56	49	66	52	58	48	31	54	49
8	38	34	35	34	25	40	38	33	20	34	31	41
9 10	43 40	47 48	46 44	47 49	45 38	29 29	45	46	45	51	44	50
11	43	45	43	45	41	43	40 36	44 43	47 38	53 49	38 39	34 50
12	45	50	43	49	35	60	52	1 3	54	58	57	57
12	73	20	73	٠,	33	80	JZ	3/	JŦ	30	37	37
VAR44	0	1										
1	69	70	65	70	64	75	70	69	63	72	59	69
2	68	69	64	68	67	70	61	68	66	68	65	72
3	62	78	74	75	53	74	68	62	60	74	61	60
4	65	71	69	75	64	73	67	73	66	64	64	71
5	71	74	67	75	68	76	68	72	66	60	68	58
6	67	68	59	61	60	68	66	66	51	53	45	65
7	79	76	76	79	75	87	76	82	74	48	75	77
8	72	76	69	74	70	75	70	70	60	72	62	72
9	76	80	78	82	82	52	78	82	76	81	81	80
10	72 57	7 5	72	76 (2	76	52	77	76	76	82	72	76
11 12	57 71	62 76	63 72	62 79	62 49	66 77	65 73	69 80	6 4 71	67 75	63 72	65 74
12	/1	/0	12	/ 7	77	//	73	٥٧	/1	/3	12	/ 7
VAR45	0	i										
1	52	56	47	52	56	57	56	58	55	58	56	57
2	59	60	56	63	62	63	59	63	60	61	61	63
3	41	45	43	45	39	47	45	43	46	45	44	46
4	39	40	38	36	36	40	37	39	37	37	37	39
5	45	49	44	50	44	50	46	48	52	48	48	50
6	45	44	38	43	46	47	47	46	48	44	42	48
7	50	40	42	51	48	50	47	50 48	48 49	34 51	47 49	49
8 9	47 53	50 54	47 49	45 61	48 60	44 39	49 58	48 60	57	59	56	48 58
10	53 67	6 9	4 7 68	72	75	50	72	69	73	76	78	75
11	54	59	57	58	64	68	63	66	68	67	68	68
12	62	64	63	66	43	64	64	64	66	69	67	69

VAR46	0	1										
1	56	51	53	58	56	64	59	65	60	65	59	60
2	62	59	62	60	65	76	75	64	73	77	70	68
3	59	65	68	67	59	68	62	59	56	73	76	56
4	63	64	63	70	69	71	66	72	64	67	64	61
5	62	63	52	68	64	69	60	65	64	70	70	75
6	62	67	63	65	63	68	71	76	74	64	68	72
7	66	69	64	76	67	82	71	79	58	41	62	64
8 9	54 59	53 63	54 63	50 67	45	61 41	57 63	54	45	5 7	57	62 69
10	64	71	66	72	60 58	42	60	67 61	65 59	71 61	68 53	56
11	61	67	62	68	60	61	58	60	59	62	57	67
12	60	65	58	64	43	72	65	68	58	63	5 7	57
••	•	•	00	01	10	′ •	00	00	00	00	• /	•
VAR47	0	1										
YMN7/	U	•										
1	81	76	75	81	73	78	75	80	71	77	76	74
2	72	76	72	74	66	72	64	68	64	69	65	67
3	74	90	91	90	64	88	84	72	69	83	78	73
4	85	88	86	92	82	88	83	87	82	79	81	83
5	83	85	80	86	79	84	78	81	79	81	84	79
6	75	78	70	70	69	74	77	83	75	62	72	77
7	87	85	86	88	84	97	85	91	82	57	83	89
8	82	91	82	86	84	84	81	81	85	84	82	85
9	86	86	90	91	90	58	91	92	87	91	90	87
10	86	89	85	89	83	5 7	86	86	84	86	81	87
11	68	74	73	74	76 57	79	76 70	79	76	79 04	76 80	78
12	85	88	83	89	53	81	78	84	85	86	80	84
•												
VAR48	0	1										
				. –								
1	45	49	41	45	50	51	50	52	51	51	46	52
2	56	56	54	59	63	62	59	62	60	58	61	62
3	32	36	33	35 75	31	38	37	32	37	37	36	38
4	33	32	33 41	35 44	33 46	36 47	36 46	36 48	34 49	35 48	34 50	36 47
5 6	4 3	45 37	32	36	4 6 39	41	41	41	44	36	36	42
7	46	38	38	44	45	47	44	44	39	30	38	45
8	38	43	38	38	38	34	41	38	38	40	41	38
9	37	39	36	39	46	27	39	45	42	45	45	44
10	59	61	58	63	66	42	61	70	55	71	59	60
11	49	54	55	52	60	63	61	65	63	61	64	59
12	54	54	54	56	34	52	53	55	52	5 2	70	52

VAR49	0	1										
1	162	162	162	160	154	157	152	155	154	152	146	145
2	153	147	149	147	150	147	158	144	152	156	157	155
3	155	152	157	150	143	147	142	139	145	153	159	137
4	153	150	151	153	145	143	143	142	140	137	139	136
5	159	157	161	160	153	151	155	151	149	146	146	149
6	155	155	154	153	150	150	151	152	152	143	150	151
7	158	159	158	160	153	158	156	158	149	101	155	147
8	146	141	144	140	132	143	142	139	131	137	138	147
9	155	154	151	154	150	96	146	146	147	147	145	148
10	154	151	154	156	149	96	148	148	153	153	148	140
11	139	138	136	135	134	132	127	129	128	136	129	134
12	152	153	157	154	101	154	153	154	159	159	164	160
VAR50	0	1										
1	169	169	167	167	171	176	175	171	171	176	172	175
2	167	162	165	159	168	172	167	165	172	173	173	167
3	186	179	178	176	181	179	175	187	181	180	176	177
4	166	168	169	172	169	172	171	172	170	171	169	171
5	167	166	164	166	164	170	164	165	175	168	169	173
6	163	163	158	157	159	164	167	169	167	154	163	169
7	171	171	174	173	172	179	173	177	174	115	174	177
8	169	172	167	169	171	170	171	171	173	174	172	176
9	177	178	177	174	178	119	182	179	178	179	180	178
10	175	177	173	177	178	121	180	181	183	186	181	181
11	164	166	171	167	172	173	173	174	176	174	173	172
12	172	171	169	173	116	176	173	177	179	179	177	179
VAR51	0	1										
1	126	129	123	126	131	132	131	129	130	134	128	134
2	147	148	145	150	152	152	148	153	152	151	152	154
3	123	126	125	126	123	129	129	126	131	128	128	130
4	129	128	131	127	127	130	128	130	128	129	128	130
5	141	145	141	144	145	145	143	146	148	146	147	147
6	126	126	123	126	130	130	128	130	131	131	127	130
7	129	113	113	132	129	135	132	133	128	87	125	131
8	131	126	125	120	123	116	132	135	127	129	130	123
9	128	127	127	130	136	88	129	132	132	135	133	134
10	49	52	48	54	54	38	55	52	58	64	59	57
11	31	33	32	38	38	41	37	42	41	43	43	45
12	52	55	54	56	38	56	56	56	57	58	56	59

VAR52	0	1										
1 2 3 4 5 6 7 8 9 10 11	211 168 242 208 195 187 192 241 168 154 176	181 224 239 234 208 187 182 211 171 175 174 198	162 197 215 231 168 173 191 191 161 154 164 189	196 208 196 239 197 180 183 192 163 159 172 190	185 194 220 188 186 176 178 181 158 163 162 100	201 197 227 233 172 204 159 226 108 108 186 151	206 172 212 213 172 181 189 236 191 157 157	207 213 253 214 190 176 211 196 163 156 184 171	204 193 185 266 191 171 221 147 157 177 159 176	194 211 245 188 181 177 118 210 171 217 182 161	167 203 232 209 188 141 211 177 158 153 169 176	175 224 196 267 149 192 170 228 168 160 195
VAR53	0	1										
1 2 3 4 5 6 7 8 9 10 11	235 171 238 211 198 197 199 244 159 154 182 193	200 219 240 237 206 197 190 236 164 177 177 205	174 189 213 235 170 182 196 202 156 152 164 194	207 211 197 241 196 185 217 205 161 160 178 199	215 201 221 187 185 189 194 202 161 164 162 127	223 204 227 237 195 208 226 227 109 109 187 204	225 178 217 215 170 186 196 238 178 162 158 189	245 216 252 214 184 187 217 245 169 158 185 201	236 201 220 268 192 178 239 213 151 176 159 182	214 221 254 189 193 183 152 245 181 218 184 191	200 211 239 209 189 149 233 212 156 156 170 180	204 234 244 272 180 194 236 165 161 197
VAR54	0	1										
1 2 3 4 5 6 7 8 9 10 11	234 182 242 215 218 208 201 250 179 162 183 198	202 237 242 241 224 203 194 241 182 185 179 210	182 213 217 244 188 185 199 208 170 161 168 201	208 217 199 250 222 189 218 211 176 165 179 206	213 207 229 195 197 195 197 207 172 170 163 128	220 210 229 244 205 212 227 231 115 112 189 207	221 184 221 222 179 191 197 240 206 168 161 193	243 223 254 221 213 193 218 247 180 157 186 204	234 204 221 277 210 184 243 215 165 180 162 183	209 226 256 197 203 187 156 245 194 223 188 195	201 215 240 216 203 152 239 214 167 162 172	200 238 245 279 200 199 242 238 184 165 197

VAR55	0	1										
1 2	54 55	55 59	53 58	55 59	53 54	55 51	56 53	50 54	54 54	53 53	46 51	49 54
3	60	63	61	59	56	63	56	59	45	57	56	41
4	60	63	61	59	58	59	58	59	55	53	56	59
5	52	58	59	57	59	48	5 7	52	48	52	52	41
6	57	57	56	55	53	54	55	51	52	53	45	52
7	55	50	53	48	55	38	53	53	54	31	54	41
8 9	63 55	60 54	58 57	59 55	52 52	59 36	59 58	48 54	39 52	54 51	52 55	57 52
10	57	59	56	56	5 5	37	55	53	54	52	54	52 53
11	59	58	58	57	57	56	55	54	52	53	54	55
12	58	59	58	57	31	42	54	51	52	46	52	52
VAR56	0	1										
AHVJO	v	1										
1	59	61	58	60	62	61	61	60	60	59	57	57
2 -	57	60	57	60	56	53	56	55	57	56	53	57
3	60	63	61	59	58	63	57	58	56	59	57	50
4	61	64	62	60	58	60	59	59	5 5	54	56	60
5 6	52 59	55 60	60 58	58 58	58 57	56 56	57 56	51 53	50 54	53 54	52 49	50 5 2
7	57	52	54	56	58	57	55	5 5	5 8	38	59	57
8	64	63	62	62	61	58	62	60	57	61	59	60
9	52	52	54	55	54	37	54	55	50	54	54	52
10	57	59	56	56	56	38	57	53	54	52	54	53
11	60	59	58	58	57	56	56	54	53	54	54	56
12	58	60	60	60	39	59	58	58	54	54	53	55
VAR57	0	1										
1	59	62	60	60	61	60	60	59	60	58	58	56
2	60	63	63	63	58	55	57	57	58	57	54	58
3	60	63	62	60	59	63	58	59	56	58	57 50	50
4 5	62 58	6 5 63	65 62	62 66	60 62	62 58	61 60	61 58	57 53	55 56	58 56	62 57
6	61	62	59	59	59	57	58	55	55	55	50	53
7	57	53	55	56	58	57	55	55	59	39	60	58
8	66	64	64	64	62	58	62	61	58	62	60	61
9	59	57	60	60	57	39	62	59	56	58	59	56
10	60	61	59	58	58	39	59	53	55	54	57	55
11	60	59	60	59	57	56	56	56	54	55	55	57
12	60	62	62	62	39	60	59	59	54	55	54	56

VAR58 3 1

.875 1.083 .667 .708 1.083 1.042 .708 1.208 1 .708 .833 1.125 . 75 .708 .792 . 75 .75 .625 .833 .75 .792 .833 .833 .833 .5 .5 .542 . 5 . 5 . 583 .5 .5 .667 .542 .542 .5 .875 .75 .75 .625 .667 .583 .625 .625 .542 .667 .583 . 5 .792 .792 .875 .75 . 75 .75 .958 .708 .875 .708 .708 .792 .917 .917 1.083 1.167 .958 1.292 .917 - 1 6 .917 .667 1.125 1.167 .833 .792 .75 1.042 1.167 1.5 1.542 1.5 .917 .708 1.083 .542 .5 .5 .5 .458 .542 .5 .583 . 458 .5 .5 .5 .542 .625 .708 . 75 .667 .417 . 625 . 75 .667 . 75 .708 .75 .5 10 .833 .708 .833 .833 .583 .833 .542 .667 .667 . 625 . 625 11 .708 .75 .75 .583 .958 .833 . 75 .75 .583 .958 .792 .917 .792 12 .75 .75 .75 .625 .958 .833 .958 1 .958 .917 1

VAR59 3 1

.899 .899 .899 .824 .899 .899 .899 .899 1.124 .899 .899 .899 2 .899 .899 .899 .899 .899 .899 .899 1.049 1.124 .974 1.049 1.124 .899 .974 .899 .899 .674 .974 .899 .824 .899 1.049 .749 .749 1.199 1.049 .899 1.124 .899 1.124 .899 .974 .824 .899 .899 .899 .899 .899 .899 .899 .899 .899 .974 .899 .899 .899 .899 .899 .899 .899 .899 .899 .899 .974 .899 .749 .899 .974 7 .899 1.198 .899 .974 1.273 1.049 1.273 .974 .674 .974 1.198 .899 .899 .899 .899 .899 .974 .899 1.049 .824 1.199 .899 1.124 1.049 1.049 1.124 1.124 .974 .749 1.049 1.124 1.348 1.124 1.199 1.199 .899 .974 .899 .599 .899 .899 .899 .899 .899 10 .899 .899 11 .899 .899 .899 .899 .899 .899 .974 .899 .899 .899 1.124 1.049 1.049 .899 .974 .749 1.049 1.049 1.273 1.273 1.273 1.348 1.199

VAR60 3 1

1 1.23 1.292 1.169 1.107 1.046 1.107 1.23 1.107 1.107 1.046 1.107 1.107 1.907 1.945 1.476 1.845 2.091 2.03 1.845 2.214 2.03 1.907 1.907 2.46 3 1.107 1.292 1.107 1.353 1.23 1.476 1.23 1.353 1.107 1.292 1.353 1.107 1.476 1.538 1.23 1.23 1.353 1.476 1.292 1.476 1.107 1.292 1.23 1.169 5 1.107 1.415 1.538 1.292 1.415 1.415 1.415 1.107 1.538 1.23 1.353 1.292 1.476 1.107 1.23 1.252 1.476 1.415 1.107 1.538 1.292 1.476 1.415 1.538 1.292 1.476 1.415 1.538 1.599 1.415 1.538 1.845 1.415 1.107 1.845 1.722 2.091 1.968 2.091 1.415 1.046 1.476 1.538 1.476 1.476 1.476 1.476 1.476 1.476 1.476 1.476 1.476 1.476 1.476 1.476 1.476 1.476 1.476 1.476 1.538 1.5476 1.722 1.599 1.538 1.538 1.538 1.538 1.538 1.538 1.5476 1.722 1.599 1.538 1.538 1.538 1.538 1.538 1.538 1.5476 1.722 1.599 1.538 1.538 1.538 1.538 1.538 1.5476 1.722 1.599 1.538 1.538 1.538 1.538 1.5485 1.722 1.599 1.538 1.538 1.5485 1.722 1.599 1.538 1.538 1.508

VAR61 3 1

```
1 -.792 -.917 -.917 -.975 -.958 -1 -.958 -1 -.958
                                                       -1 -.917 -.958
 2 -1.292-1.333 -1.25-1.167-1.417 -1.25-1.167-1.083-1.208
                                                         -1 -.917-1.083
 3 -1.042-1.125-1.208-1.208 -.875-1.083 -.833 -.875 -.792 -.875 -.958 -.583
 4 -1.083-1.208 -1 -1-1.083 -1 -1-1.083 -.75 -.917 -.875 -.75
      -1 -1 -1.25-1.167 -1.25-1.208-1.125 -.958 -.833
                                                        -1-1.042
    -1.25-1.417-1.083-1.083-1.292 -.958-1.292 -1.25-1.333 -.875-1.083
                                                                   -1
 7 -1.083-1.167-1.292 -1.25-1.375-1.208-1.417-1.417 -.958 -.75-1.083-1.125
    -.75 -.75-1.042 -.833 -.75 -.792 -.75 -.917 -.75 -.792 -.875 -.792
   -.958 -.917-1.042-1.125 -.875 -.542 -.875 -1 -.917
                                                        -1 -1 -.875
10 -1.25-1.542 -1.25-1.667-1.042 -.708-1.125-1.042 -1 -.958 -.833 -1
11 -1.208-1.333 -1.25-1.083 -1-1.042-1.208-1.042 -.958 -.958 -.958 -1.25
12 -1.083-1.125 -1 -1 -.667-1.125-1.042
                                            -1 -.958
                                                       -1 -.958 -.917
```

VAR62 3 1

```
1 -1.798-1.873-1.798-1.798-1.798-1.798-1.798-1.573-1.648-1.648-1.348-1.798
2 -2.172-1.798-1.798-1.798-1.798-1.798-1.723-1.498-1.348-1.348-1.348
3 -1.798-2.022-2.547-2.472-1.423-1.947-1.798-1.348-1.573-1.498-1.498-1.348
4 -2.247-2.247-2.247-1.873-2.172-1.798-1.947-1.873-1.348-1.648-1.798-1.798
5 -1.723-1.798-2.097-2.097-2.097-1.873-1.873-1.648-1.648-1.573-1.873-1.573
6 -1.798-1.798-1.648-1.573-1.423-1.348-1.798-1.573-1.423-1.199-1.348-1.348
7 -1.947-1.798-1.798-1.798-1.948-1.873-1.873-1.798-1.498-1.049-1.723-1.798
8 -1.798-1.947-2.022-2.097-1.947-1.348-1.798-1.573-1.648-1.798-1.348
9 -2.097-1.947-2.322-2.322-2.247-1.199-2.097-2.172-2.097-2.097-2.322-1.947
10 -2.397-2.247-2.472-2.397-2.247-1.348-2.022-1.947-1.348-1.423-1.798-1.798
11 -1.798-1.798-1.873-1.798-1.798-1.798-1.947-1.723-1.648-1.348-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1.648-1.573-1
```

VAR63 3 1

```
1 -.861-1.599-1.107 -1.23-1.415-1.107-1.538-1.415-1.722-1.415 -1.23-1.784
2 -1.538-1.476-1.476-1.476-1.538-1.538-1.661-1.476-1.538-1.292-1.476-1.476
3 -.8 -.8-1.107 -.861 -.738-1.046 -.8-1.107-1.107 -.8 -.738 -.615
4 -.984 -.738 -.8 -.8 -.923 -.738 -.8 -.8 -.738 -.984 -.8 -.738
5 -1.046-1.107-1.107-1.292-1.292 -1.23-1.169-1.107 -.984 -1.23-1.476-1.169
6 -.923 -.923 -.923 -.984 -.984 -.984-1.107 -.923-1.046 -.984-1.107 -.8
7 -1.23 -.861 -.8-1.046-1.107-1.107-1.107-1.107-1.107 -.738 -.984-1.107
8 -.984-1.046-1.107 -.923-1.107 -.8-1.107 -.8-1.107-1.107-1.107-1.107 -.923
9 -1.107-1.292-1.169-4.674-1.107-3.137-7.258-5.782-5.105-1.169-4.367 -1.23
10 -1.599-1.538-1.538-1.722-1.538-2.952-1.661-8.734-3.321-2.153-1.476-1.845
11 -1.476-1.292-1.169-1.784-1.476-1.415-1.599-1.353-1.415-1.415-1.353-1.046
12 -1.107-1.046-1.292-1.107 -.738-1.046-1.107-1.107-1.292 -.984-6.212 -.923
```

VAR64 3 1

```
1 -.333 1.208 .375 .625 -.958 -1 .583 -.25 1 -.292 .25 .542
2 -1.292-1.333 -1.25-1.167-1.417 -1.25-1.167-1.083-1.208 -1 .167-1.083
3 -1.042-1.125-1.208-1.208 -.875-1.083 -.833 -.875 -.792 -.875 -.958 -.25
4 -1.083-1.208 -1 -1-1.083 -1 -1-1.083 -.75 -.917 -.875 -.75
5 -1 -.417 -1.25-1.167 -1.25-1.208-1.125 -.958 -.333 -1-1.042 -1
6 -1.25-1.417 -.417-1.042-1.292 1.125-1.292 .458-1.333 -.875 .333 1.125
7 -.417-1.167-1.292 -1.25-1.292 1.5 1.5 .5 .375 -.167 .375-1.125
8 -.75 -.75-1.042 -.833 -.75 -.792 -.75 -.667 -.75 -.792 -.875 -.792
9 -.958 -.917-1.042-1.125 -.875 -.542 -.875 -1 -.917 -1 -1 -875
10 -1.25-1.542 -1.25-1.667-1.042 -.708-1.125-1.042 -1 -.833 -.833 -1
11 -1.208-1.333 -1.25-1.083 -.333-1.042-1.208-1.042 -.958 .333 -.958 -1.25
12 -1.083-1.125 -1 -1 -.667-1.125-1.042 -.333 1 .375 .375 .25
```

VAR65 3 1

```
1 -1.798-1.873-1.798-1.798-1.798-1.948-1.798-1.573-1.573-1.648-1.348-1.798
2 -2.172-1.798-1.798-1.798-1.798-1.798-1.723-1.498-1.348-1.348-1.348
3 -1.798-2.022-2.547-2.472-1.423-1.947-1.798-1.348-1.573-1.498-1.498-1.348
4 -2.247-2.247-2.247-1.873-2.172-1.798-1.947-1.873-1.348-1.648-1.798-1.798
5 -1.723-1.798-2.097-2.097-2.097-1.873-1.873-1.648-1.648-1.573-1.873-1.573
6 -1.798-1.798-1.648-1.573-1.423-1.348-1.798-1.573-1.423-1.199-1.348-1.348
7 -1.873-1.798-1.798-1.798-1.948-1.873-1.873-1.798-1.498-1.049-1.723-1.798
8 -1.798-1.947-2.022-2.097-1.947-1.348-1.798-1.573-1.648-1.798-1.348
9 -2.097-1.947-2.322-2.322-2.247-1.199-2.097-2.172-2.097-2.097-2.322-1.947
10 -2.397-2.247-2.472-2.397-2.247-1.348-2.022-1.947-1.348-1.348-1.798-1.798
11 -1.798-1.798-1.873-1.798-1.798-1.798-1.947-1.723-1.723-1.348-1.648-1.573
12 -2.022-2.172-1.798-1.947-1.273-1.873-1.798-1.873-1.648-1.573-1.423
```

VAR66 3

```
1 1.23-1.476 1.169 .246-1.415 .369 -.8-1.415-1.722-1.415 -.492-1.784
2 1.907 1.845 1.476 1.845 2.091 2.03 1.845 2.214 2.03 1.907 1.907 2.46
3 1.107 1.292 1.107 1.353 1.23 1.476 1.23 1.353 1.107 1.292 1.353 1.107
4 1.476 1.538 1.23 1.23 1.353 1.476 1.292 1.476 1.107 1.292 1.23 1.169
5 1.107 1.415 1.538 -.492 1.415 .492 1.415 1.107 1.538 .492 .492 .492
6 1.107 1.23 1.292 1.476 1.415 1.292 1.292 1.661 1.538 1.599 1.415 1.538
7 1.845 1.415 1.107 1.845 1.722 2.091 1.968 2.091 1.415 1.046 1.476 1.538
8 1.476 1.476 1.476 1.476 1.476 1.353 1.538 1.661 1.476 1.907 1.599 1.722
9 1.107 1.415 .246 6.335 1.476 .923 4.305 4.244 7.258 1.353 .8 .369
10 -.615 .554 .43 .492 -.554 3.752 -.67717.283 2.522 1.538 .554 -.615
11 1.845 2.091 1.784 2.091 1.907 1.784 .615 1.722 .554 .308 .615 2.214
```

VAR67 3 1

1.5 2.083 1.833 1.958 1.583 1.708 2 2.125 1.958 1.792 1.792 2.083 2.083 1.958 1.917 2.125 1.875 2 1.875 2.083 1.833 1.792 1.917 1.542 1.625 1.792 1.708 1.375 1.625 1.333 1.375 1.458 1.458 1.5 1.083 1.833 2.083 1.792 1.667 1.708 1.583 1.625 1.75 1.292 1.5 1.458 1.25 1.792 1.792 2.125 2 2 1.958 2 1.667 1.833 1.708 1.75 1.833 2 2.083 2.375 2.125 2.208 2.5 2.25 1.625 2.208 2.125 2.167 2.417 1.917 2 2.042 2,25 2.583 2.75 2.958 2.875 1.917 1.5 2.208 1.958 1.292 1.25 1.542 1.333 1.208 1.375 1.25 1.5 1.208 1.333 1.333 1.333 1.5 1.542 1.75 1.875 1.583 .958 1.458 1.708 1.583 1.75 1.708 1.625 2.042 2.25 2.125 2.5 1.625 1.208 1.958 1.708 1.708 1.583 1.375 1.625 1.917 2.125 2.083 1.708 1.958 1.917 1.958 1.833 1.542 1.875 1.75 2.125 12 1.833 1.875 1.75 1.75 1.292 2.083 1.875 2 1.958 1.917 1.917 1.792

VAR68 3 1

1 2.697 2.697 2.697 2.697 2.697 2.697 2.847 2.697 2.397 3.071 2.547 2.247 2.697 2.071 2.697 2.697 2.697 2.697 2.697 2.697 2.697 2.697 2.697 2.692 2.622 2.696 2.322 2.397 2.622 2.697 2.996 3.445 3.37 2.097 2.996 2.697 2.172 2.397 2.547 2.247 2.097 4 3.446 3.296 3.146 2.996 3.071 2.921 2.846 2.846 2.172 2.547 2.697 2.697 2.622 2.697 2.996 2.996 3.071 2.772 2.772 2.547 2.547 2.472 2.772 2.472 6 2.697 2.697 2.472 2.547 2.322 2.247 2.697 2.547 2.247 2.022 2.172 2.247 2.846 2.996 2.772 2.772 2.72 2.472 4.622 2.896 2.996 2.772 2.772 2.922 3.146 2.996 3.071 2.547 1.723 2.697 2.996 2.697 2.846 2.996 3.446 3.371 3.221 1.947 3.146 3.371 3.446 3.146 3.52 3.146 1.947 2.926 3.071 2.846 2.322 2.322 2.697 2.692 2.247 2.547 2.696 3.071 3.221 2.697 2.996 2.023 2.921 2.698 3.146 2.991 2.622 2.921 2.692 2.921 2.692

VAR69 3

1 2.337 2.952 2.337 2.337 2.583 2.337 2.706 2.46 2.706 2.399 2.276 2.891 2.506 3.321 2.952 3.383 3.567 3.567 3.506 3.69 3.567 3.26 3.26 3.936 3.907 2.091 2.337 2.214 1.968 2.583 2.03 2.46 2.214 2.091 2.091 1.722 4 2.522 2.276 2.091 2.03 2.276 2.276 2.091 2.276 1.845 2.276 2.03 1.968 5 2.153 2.583 2.645 2.583 2.706 2.583 2.583 2.153 2.522 2.46 2.768 2.522 6 2.03 2.153 2.214 2.46 2.399 2.399 2.46 2.645 2.583 2.583 2.522 2.46 2.768 2.522 2.399 3.075 2.276 1.907 2.891 2.829 3.198 3.075 3.321 2.522 1.784 2.522 2.583 8 2.46 2.522 2.583 2.337 2.706 2.583 2.153 2.583 2.46 2.583 3.014 2.706 2.583 9 2.337 2.706 2.33711.994 2.583 8.42616.29911.07112.486 2.522 8.611 2.399 13.075 3.075 3.014 3.567 3.075 6.704 3.07525.648 6.704 5.105 3.137 3.444 11 3.321 3.444 2.952 3.875 3.383 3.198 3.383 3.137 3.014 3.075 2.891 3.26 12 2.891 2.891 2.891 2.899 1.907 3.075 2.952 2.768 3.321 2.95215.069 2.829

VAR70	0	1										
1	166	108	137	139	204	164	159	134	138	158	156	166
2	119	134	127	172	115	166	147	136	135	158	191	150
3	223	188	108	170	236	219	150	270	236	198	145	326
4	169	185	177	194	91	214	189	146	269	204	103	258
5	168	227	190	220	190	198	189	216	257	253	213	260
6	158	157	130	147	150	167	162	164	196	159	161	203
7	164	189	211	189	159	192	156	197	229	143	245	234
8	183	199	160	168	208	231	237	199	255	268	189	212
9	120	143	131	135	129	91	140	130	147	175	147	141
10	172	212	174	172	184	111	184	190	209	168	151	147
11	86	83	97	152	113	107	125	163	200	168	123	92
12	153	147	147	166	97	155	158	167	169	182	173	178
VAR71	0	1										
											4	
l	123	140	142	115	131	201	119	182	72	126	130	116
2	110	154	128	142	90	59	132	28	23	22	81	28
3	178	41	78	34	196	87	82	222	172	51	96	231
4	29	29	111	40	92	32	137	29	186	134	66	119
5	160	173	150	180	139	133	150	153	188	185	161	201
6	150	142	129	120	141	138	140	117	108	114	119	75
7	120	71	63	31	107	31	36	30	35	83	79	39
8	120	83	119	83	91	66	36	33	45	38	38	42
9	124	122	106	105	126	82	124	128	100	150	123	125
10	112	92	83	63	121	84	139	129	62	96	95	62
11	105	100	99	102	51	83	53	72	86	124	119	29
12	99	129	146	133	19	29	145	65	67	36	34	39
UADZO	^											
VAR72	0	1										
,	74	170	90	80	27	37	121	117	134	34	27	155
l	76	138					45					50
2	22	23	49	48	36	44		48	49	48	48	
3	49	22	149	81	34	31	21	19	21	21	22	45
4	99	53	61	65 70	17	20	19	19	19	21	16	96 25
5	28	27	24	30	24	23	28	27	33	30	23	25
6	42	30	30	33	19	19	28	20	25	19	17	29
7	22	20	53	23	23	22	23	24	29	17	26	25
8	49	17	18	43	19	21	18	85	17	16	17	18
9	51	19	108	40	19	12	9	14	42	22	11	21
10	54	63	72	56	39	9	49	25	10	24	28	19
11	160	66	53	165	91	148	109	140	144	138	81	34
12	71	65	110	113	51	79	73	115	54	77	49	81

```
VAR73
      1
          1
           4.1
                2.7
                     3.3
                          1.6
                               2.1
                                     2.5
                                           3.7
                                               3.2
                                                     2.1
                                                          2.5 2.3
      3.3
           2.8
                3.2
                     2.5
                           4.1
                                2.3
                                     2.9
                                            3
                                                3.5
                                                     2.5
                                                          1.8
                                                               2.7
           1.7
 3
      1.5
                3.7
                     2.1
                           1.3
                                1.6
                                     2.4
                                           1.1
                                                1.3
                                                     1.7
                                                          2.2
      2.1
           2.2
                2.1
                     1.7
                           4.7
                                1.5
                                     1.7
                                            3
                                                     1.5
                                                          2.9
                                                1
                                                                1
5
      2.3
           1.5
                2.3
                     1.9
                           2.1
                                  2
                                     2.1
                                           1.5
                                                1.4
                                                     1.3
                                                          1.5
                                                               1.4
      2.8
                3.2
 6
           3.1
                     2.9
                           3.3
                                2.6
                                     2.7
                                           3.1
                                                                2.2
                                                2.2
                                                     2.1
                                                          2.6
7
      2.4
           2.2
                 2
                     2.4
                           3.1
                                2.9
                                     3.9
                                           2.9
                                                1.5
                                                     1.4
                                                          1.7
                                                               1.7
8
      1.4
           1.3
                  2
                     1.6
                           1.2
                               1.8
                                     1.1
                                           2.3
                                                - 1
                                                      - 1
                                                          1.4
                                                               1.3
9
      2.7
           2.3
                2.6
                     2.9
                           2.5
                               1.4
                                     2.2
                                           2.6
                                                2.3
                                                     2.1
                                                          2.3
                                                               2.3
      2.5
           2.1
10
                2.5
                     3.1
                           1.8
                               1.5
                                     2.2
                                           1.9
                                                1.7
                                                     1.8
                                                          1.9
                                                               2.3
      4.3
            5
11
                4.3
                     2.2
                           3.5
                               3.5
                                     3.3
                                           2.2
                                               1.6
                                                     2.3
                                                          2.8
                                                               4.5
12
      2.4
           2.5
                2.3
                     2.1
                          1.7 2.7
                                    2.4
                                          2.4
                                               2.3
                                                     2.3
                                                         2.3
                                                               2
VAR74
      1
          1
          3.9
                4.2
                     4.7
                          4.1 3.1
                                     4.7 2.6 15.7 3.8
      5.5 3.6
                4.3
                     3.8 12.5 22.2
                                     3.9 20.1 24.5 25.8 12.3
                                                              23.9
       3 14.4 13.9 21.1
                          2.2 10.9
                                     8.8
                                           2 2.9 10.7
                                                          8.5
                                                               1.9
     24.5 22.6
               8.7 15.1 10.5 19.3
                                     4.2 19.9
                                               2.2
                                                    3.8 12.8
                                                               7.3
5
     3.3
          3.1
                3.9
                     3.3
                          4.3
                               4.2
                                     3.7
                                         3.4
                                               2.7
                                                     2.7
                                                          3.4
                                                               2.4
                          3.3
                               3.2
     3.5
          3.8
               3.7
                     4.1
                                     3.9 7.5
                                               7.6
                                                    6.5
                                                          6.2 12.5
7
     4.8 13.3 12.7 18.5 10.7 20.8
                                     18 20.5 14.3
                                                     6.7 12.1 15.9
     6.9 11.2
                6.5 11.8 10.1 12.1 15.6 15.9 10.6 15.1 14.7 12.4
9
     5.1
          5.2
                6.9
                     6.7
                          5.1
                               3.1
                                      5
                                          5.3
                                               6.9
                                                     4.3
                                                          5.8
10
     6.1 10.8 11.9 13.7
                          5.1
                               3.1
                                    4.3 4.5 13.3
                                                    5.5
                                                         5.7 11.6
     5.2 5.3
                     5.2 15.1
                               9.8 15.1 13.1 7.7 3.7
11
                5.8
                                                         4.3 19.1
     12.7 5.1 3.7 4.7 13.7 20.1 3.9 14.3 12.9 15.5 17.5 14.5
12
VAR75
       1
     9.5 4.3 5.7 8.7 18.3 15.1 8.2 6.6 7.1 14.1 16.6 3.8
     31.7 29.1 12.1 14.5 22.3 17.5 15.9 15.3
                                               15 15.1 14.3 15.8
     9.7 19.8
               3.5
                     6.3 16.9 21.2 18.6 25.6 21.4
                                                    19 18.2 11.4
                     6.5 27.3 22.8 22.2 23.4 18.7 20.7 25.4 11.1
     6.9
          8.7
               7.1
     15.8
           19 22.9 17.3
                           22 22.5 17.9 15.5 16.8 17.5 23.9 20.2
     9.8 16.2 20.2 16.5
                           25
                               26 18.9 27.1 20.8 26.2 30.9 16.3
     28.4 21.6
               7.9 25.9 25.8 30.3 26.8 26.7 17.6 15.3 18.7 20.3
     12.8 30.7 29.5 14.1 28.2 19.3 30.1 20.3 31.3 37.1 31.1 26.9
               7.7 93.3 25.4 81.4 461.3 310.8 151.4 23.9 311.5 22.7
     17.6 29.2
10
     11.4
          9.7
                9.8
                     12 19.9 162.9 18.5 314.6 266.9
                                                    45 25.1
                                                              36.4
```

11

4.5

8.1

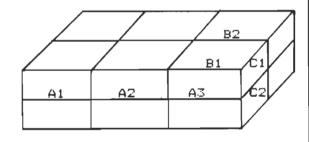
14 11.1

6.7

9.5

4.6 17.7 4.5

7.1 4.2 4.3 5.1 10.9


5.8 5.1 7.7 8.1 5.7 13.6 7.4 54.3

ANNEXE H Plan expérimental

PLAN EXPERIMENTAL

- 12 Sujets 5 Essais

Flan:	Ar	*	Br	*	Cr	
	3		2		2	
	ρ		Р		н	
	e		r		à	
	n		٥		u	
	t		f		t	
	e		0		e	
	5		n		u	
			ď		r	
			e		5	
			u			i
			r		٧	n
			5		e	t
					r	6
			d		t	r
			е		i	-
					С	•
					à	a
			a		1	r
			r		6	C
			C		5	h
			h			e
						5

ANNEXE I

Lexique des indices analysés

Lexique des indices analysés

Indices temporels

Durée du cycle:

Le temps (ms) compris entre le premier et le second contact effectué par le pied droit lors d'un cycle complet de montée sur l'escabeau (appui et envol).

Phase d'appui:

Le temps (ms) pendant lequel le sujet est en contact pédestre avec l'escabeau au cours d'un cycle complet de montée.

Phase d'envol:

Le temps (ms) compris entre la fin du premier contact pédestre sur la première marche jusqu'à la reprise de contact par le même pied sur la troisième marche.

Centile d'appui:

La durée du contact pédestre avec l'escabeau, exprimée en pourcentage d'un cycle complet de montée.

Indices de déplacement angulaire

Trajet:

Amplitude totale du déplacement angulaire (degrés) lors d'un cycle complet de montée. Ces déplacements sont représentés sous forme de courbe, préalablement lissée à l'aide d'une moyenne mobile de 11 points, et la somme des écarts absolus entre points consécutifs donne la mesure de trajet total (degrés).

Amplitude pré-maximale:

Différence angulaire absolue (degrés)
entre les valeurs minimale et maximale du
trajet dans la première partie de la
courbe du trajet total.

Pointe:

Valeur maximale (degrés) sur la courbe de déplacement angulaire atteinte par l'articulation concernée.

Latence:

Délai (%) mis pour atteindre la pointe maximale sur la courbe de déplacement angulaire, exprimée en fonction de la durée du cycle complet de montée (ms) ainsi qu'en pourcentage (%) du cycle.

Amplitude post-maximale:

Différence angulaire absolue (degrés) entre les valeurs maximale et minimale du trajet dans la seconde portion de la courbe de trajet total.

Indices de vélocité angulaire

Pointe positive:

La valeur maximale de la crête positive prise sur la courbe de vélocité angulaire de chaque articulation de la hanche, du genou et de la cheville (deg.-1).

Pointe négative:

La valeur maximale de la crête négative prise sur la courbe de vélocité angulaire de chaque articulation de la hanche, du genou et de la cheville (deg.-1).

Pointe absolue:

La plus forte des deux valeurs absolues de pointes maximales (positive ou négative) prise sur la courbe de vélocité angulaire (deg.-1).

Max ([Pointe positive] , - [Pointe négative])

Amplitude

La différence entre la pointe de vélocité angulaire positive et négative (deg.-1).

Pointe positive - Pointe négative

Délai:

L'intervalle temporel entre les pointes maximales (positive et négative), pour chaque articulation (ms).

 \triangle t = |t (Pointe positive) - t (Pointe négative)|

Accélération:

Estimé de l'accélération angulaire moyenne entre les pointes maximales, obtenue en divisant l'amplitude par le délai (deg.-2).

Indices musculaires

L'Intégrale:

La surface totale comprise sous la courbe de tension myoélectrique, obtenue à l'aide d'une méthode d'intégration numérique se rapprochant de la méthode des trapèzes.

Cette valeur de l'intégrale calculée à partir des données brutes représente l'effort musculaire total (u volts).

Frac 25, 50, 75:

Ces valeurs représentent respectivement le délai (ms) nécessaire pour atteindre 25, 50 et 75 pourcent de la valeur totale de l'intégrale au cours d'un cycle complet de montée (ms).

t

Frac $p^* = t$ tel que Σ xi / Int. = p

0

* p = 0.25, 0.50, 0.75

Pointe:

La crête maximale de la courbe de tension myoélectrique. Cette pointe est déterminée sur une bande de 5 points consécutifs moyennés (u volts).

Latence:

Le temps (ms et en %) mis pour atteindre la pointe maximale de tension myoélectrique, sélectionnée au point médian d'une bande de 5 points consécutifs (ms).

Moyenne:

La valeur moyenne de la courbe de tension myoélectrique, obtenue par le quotient de l'intégrale divisé par la durée du cycle complet de montée (u volts).

Variation:

La variation, un écart absolu moyen reflétant la fluctuation de la tension myoélectrique pour un cycle complet de montée. L'indice se calcule comme:

$$\begin{array}{ccc}
 & k-1 \\
 & \sum_{0} & Mj - Moyenne \\
 & 0 & \\
 & & k
\end{array}$$

et
$$Mj = \frac{1}{5}$$
 $\sum_{i=0}^{4} x5j + i$

ANNEXE J
Liste et description
des programmes

Liste et description des programmes

- 1 Scopex
- 2 Transcopex
- 3 Référence
- 4 Indices
- 5 Regroupe
- 6 Regroupe variables
- 7 Anova Ouellet
- 8 Appui
- 9 Prog V99
- 10 Centiles
- 11 Transfor-EMG-100%
- 12 Moyenne (cycle et essais)
- 13 Interintra

Le programme SCOPEX a été rendu possible grâce à la conception et à la participation soutenue du professeur Louis Laurencelle.

La plupart des programmes ont été conçus et rédigés par M. Pierre Black.

Plusieurs variables du programme INDICES ont été proposées par M. Louis Laurencelle.

Description des programmes

Scopex:

Recueille les données des huit canaux analogiques, trois d'origine électrogoniométrique et quatre d'origine électromyographique, de même que les données provenant de l'indicateur de touche pédestre. Scopex reconstitue en un fichier informatique (sur disquette) les données de chaque canal, pour chacun des essais.

Transcopex:

A partir du facteur d'amplification retenu lors de l'enregistrement, le programme calcule et reporte sur une base commune les données de chaque canal électromyographique.

Référence:

Permet l'examen visuel et la décomposition des données d'un essai en
trois parties distinctes de début,
cycle de montée et fin, à travers
les huit canaux.

Indices:

Programme principal de dépouillement des données brutes et d'évaluation des variables. Ce programme permet d'extraire, à partir de chacun des canaux, les indices relatifs aux allures de courbes électrogoniométriques et électromyographiques. De plus, il effectue la moyenne tronquée de chaque variable sur les cinq essais effectués par condition pour chaque sujet.

Regroupe:

Regroupe en un fichier commun les indices (variables) provenant de toutes les conditions et subdivisions par sujet.

Regroupe variables:

Regroupe, par variable, les résultats des 12 sujets, pour toutes les conditions et subdivisions (début, cycle de montée et fin).

Anova Ouellet: Effectue l'analyse de variance sur chacune des variables, à partir des données (moyennes tronquées) des conditions de chaque sujet (12 X 12) et

ce, successivement pour toutes les données de début, cycle de montée et fin.

Appui:

Permet d'inspecter les données et de déterminer la durée de la phase d'appui de chaque essai, pour chacune des conditions et chacun des sujets.

Prog **V99**:

Calcule le pourcentage qu'occupe la phase d'appui par rapport au cycle de montée.

Centiles:

Contribue à exprimer les indices retenus comme des pourcentages du cycle complet de montée.

Transfor-EMG-100%: Transforme les données brutes,
constituées de n points successifs
(n variables), en courbes "vincentisées"
de 100 points chacune.

Moyenne (cycle et essais):

Calcule et sauvegarde la courbe moyenne des 5 essais vincentisés en 100 points, pour chacune des conditions de chaque sujet.

Interintra:

Calcule la courbe moyenne de chaque condition sur les 12 sujets, sauvegarde et imprime le graphique de chaque courbe; évalue la variance intra-sujet et inter-sujets pour chaque point, et en extrait le minimum, la moyenne et le maximum à travers les 100 points.

1 Scopex

```
10 REM
  20 REM APPLESCOPE
  30 HOME
  40 PRINT CHR$ (4); "BLOAD ACC A/D (BIN), A$300"
  50 INPUT "CANAUX, DUREE, FRED ?"; K, DU, HZ
  60 JB = 12 # 4096 + 4 # 256
  90 H = 14318000 / (HZ + 14) - 1.5
  100 HH = INT (H / 256):HB = H - 256 + HH
   110 NP = INT (HZ + DU):NN = 65536 - NP
  120 POKE 9,K
  130 POKE 1022,0: POKE 1023,3
  140 POKE JB + 11,64
  150 POKE JB + 4.HB
  160 POKE JB + 5,HH
  170 POKE 8.0
  175 PRINT "PESEZ UNE TOUCHE !"
  176 GET A$
  180 POKE 6,88: POKE 7,96: CALL 6
  190 REM BOUCLE D'ESSAI
  200 POKE JB + 14,128 + 64: REM AUT
  210 POKE 6,0: POKE 7,64: REM ADR DE BASE
  220 POKE 10,NN / 256: POKE 11,NN - 256 * PEEK (10)
  265 CC = 181 / 255
  270 POKE 8,1
  271 PM = INT ((NP - 1) / 280) P = 0
  272 I = 16384 + P + K + 280
  273 \text{ J} = 16383 + (P + 1) + K + 2801 \text{ IF } (P + 1) + 280 > \text{NP THEN J} = 16383 + \text{NP} + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 + 16383 
  274 HGR : POKE - 16302,0
  275 HCOLOR= 3
  276 FOR II = I TO J STEP K: FOR JJ = 0 TO K - 1: HPLOT (II - I) / K,180 - PEE
K (II + JJ) + CC: NEXT: NEXT
  278 IF PEEK (8) = 0 THEN POKE JB + 14,64
  279 SET A$:X = ASC (A$)
  280 IF X = 13 THEN 290
  281 IF NOT (X = 8 OR X = 21) THEN 278
  282 IF X = 8 THEN P = P - (P > 0)
  283 IF X = 21 THEN P = P + (P < PM)
  284 GOTO 272
  290 IF PEEK (8) > 0 THEN 290
  292 POKE JB + 14,64
```

```
300 GET A$
350 REM
360 REM SAUVESARDE DES DONNEES
370 REM
380 TEXT
390 HOME
400 INPUT "VOULEZ-VOUS SAUVER CET ESSAI ?";S$
401 IF S$ = "0" THEN 439
402 IF S$ = "N" THEN 403
403 INPUT "VOULEZ VOUS CHANGER LA DUREE, FREQUENCE ETC ?"; R$
404 IF R$ = "0" THEN 60T0 50
405 IF R$ = "N" THEN 60TO 60
420 IF S$ = "0" THEN 440
430 1F S$ = "N" THEN 50
439 INPUT "QUEL EST LE NOM DE LA FILIERE ?";N$
440 PRINT CHR$ (4): "BSAVE "N$: ", A16384, L": NP + K
445 GOT8 403
450 HOME
460 GOTO 50
500 A = 12 * 4096 + 16 * 13
502 INPUT C
```

504 PRINT PEEK (A + C): 60TO 504

2 Transcopex

```
3 K = 8
5 DIM BX(100),AX(100)
10 REM
20 REM TRANSCOPECHAISE
30 REM RENSEIGNEMENT
35 HOME
40 INPUT "COMBIEN DE FILIERES (MAX10)?";N
50 PRINT : PRINT
60 FOR H = 1 TO N: PRINT "?NOM DE LA FILIERE";H; ": ": INPUT N$(H): NEXT H
70 INPUT "TEMPS D'ECHANTIONNAGE (SEC)?: ";T
80 NT = 1600 + T:YY = 1200
90 HOME
120 IMPUT "QUEL EST L'AMPLIFICATION DU EMG1 ?:"; A(1)
130 INPUT "QUEL EST L'AMPLIFICATION DU EMG2 ?: "; A(2)
140 INPUT "QUEL EST L'AMPLIFICATION DU EMG3 ?: "; A(3)
150 INPUT "QUEL EST L'AMPLIFICATION DU EM64 ?:"; A(4)
190 REM DIMENSION
210 DIM VOX(100), VX(101,8), EX(YY)
220 D$ = CHR$ (4)
230 HOME
240 VTAB 13: HTAB 14: FLASH : PRINT "UN INSTANT S.V.P!": NORMAL
250 FOR H = 1 TO N
260 PRINT D$; "BLOAD "; N$(H); ", A24576, D1"
270 J = 0
275 HOME
276 VTAB 13: HTAB 10: PRINT "JE CHERCHE LES CYCLES"
280 ZZ = 24575:C = 1:D = 0
290 FOR I = ZZ TO 24576 + NT STEP K
300 D = D + 1
310 IF PEEK (I + B) = 246 AND PEEK (I + 16) < 200 THEN GOTO 340
330 6010 360
340 BZ(C) = D
350 \text{ AZ}(C - 1) = D2R = R + 1
355 PRINT BX(C):C = C + 1
360 NEXT I
365 TR = R / 2
366 C = C - 2
372 HOME
373 FOR T = 1 TO C
374 HOME
375 VTAB 13: HTAB 13: FLASH : PRINT "JE CALCULE": NORMAL
```

```
380 F = J
385 J = 0:I = 0
390 FOR Z = 0 TO 6
392 FOR I = (24576 + (BX(T) + 8)) TO 24576 + (AX(T) + 8) STEP K
395 J = J + i
400 IF Z > 3 THEN 60TO 430
410 EX(J) = (PEEK(I + Z) * .0178 + 0.3E - 0.3) * 1000000 / (980 * A(Z + 1))
420 GOTO 470
430 \text{ EX}(J) = \text{PEEK } (I + Z) + -1.2678 + 292.8169
470 NEXT I
500 L = 0:J = 0
600 \ V0X(0) = EX(1)
630 D1 = (AX(T) - BX(T) - 1) / 99
640 SC = D1
645 I = 0
650 FOR I = 1 TO 99
660 D2 = INT (SC)
670 D3 = SC - D2
680 IF D3 < .5 THEN 730
690 \text{ VOX}(1) = (EX(D2) + (1 - D3)) + (EX(D2 + 1) + D3)
720 GOTO 760
730 VOX(I) = (EX(D2) + D3) + (EX(D2 + 1) + (1 - D3))
760 SC = SC + D1
770 NEXT I
780 P = AX(T) - BX(T)
790 \ VOX(100) = EX(P - 2)
820 IF Z = 0 THEN HOME
940 FOR I = 0 TO 100
950 \ V\chi(I,1) = I
960 \ V\chi(I,Z + 2) = V0\chi(I)
970 NEXT I
990 PRINT "J'AI TERMINE LE CANAL 4"; Z + 1
991 NEXT Z
992 HOME
993 VTAB 9: HTAB 10: FLASH : PRINT "JE SAUVEGARDE LES DONNEES!!!": NORMAL
995 CALL 1002
1000 D$ = CHR$ (4)
1010 PRINT D$; "OPEN "; "$>"; N$(H); T; ", D2"
1020 PRINT D$; "WRITE"; "S>"; N$(H);T
1030 PRINT 100
1040 PRINT 8
1050 PRINT R$
1060 PRINT L
1070 PRINT VN$
1080 PRINT VNS
1090 PRINT VN$
1100 PRINT VN$
1110 PRINT 8
1120 PRINT ID$
```

```
1130 FOR I = 1 TO 8

1140 PRINT 100

1150 FOR J = 0 TO 100

1160 PRINT V2(J,I)

1170 NEXT J

1180 NEXT I

1190 PRINT D$; "CLOSE"; "S>"; N$(H); T

1200 I = 0:TI = 0: NEXT T

1210 NEXT H

1220 END
```

3 Référence

```
10 HIMEM: 8192
 20 TEXT
 30 HOME
 32 CALL 1002
 35 NC = 0:NP = 0:CP = 0:CX = 0:CY = 0:AC = 0:CZ = 0:CV = 0:6 = 0:FL = 0:6Z = 0:
KK = 0
 40 REM
 50 REM RECHERCHE DE REFERENCE
 40 REM
 70 D$ = CHR$ (4)
 80 ONERR 60TO 820
 90 PRINT "QUEL EST LE NOM DE VOTRE FICHIER "
 100 INPUT "PESEZ SUR (Y) POUR LE CATALOG ":NF$
 110 IF NF$ = "Y" THEN 870
 120 PRINT : INPUT "QUEL EST LE CANAL DE REFERENCE? ": CR: HOME
 130 VTAB 12: HTAB 9: PRINT "JE CHERCHE LE FICHIER ":NF$
 140 PRINT D$; "BLOAD"; NF$; ", A16384"; ", D2"
 150 HOME
 160 VTAB 12: HTAB 3: PRINT "LE FICHIER "; NF$; " EST EN MEMOIRE"
170 REM
 180 REM AFFICHAGE DES DONNEES
190 REM
200 VIAB 14: HIAB 3: PRINT "PRET POUR LE GRAPHIQUE PESEZ (RETURN)": GET A$
210 HOME
215 NC = 0:NP = 0:CP = 0:CX = 0:CY = 0:AC = 0:CZ = 0:CV = 0:6 = 0:FL = 0:6Z = 0
:KK = 0
220 HOME : VTAB 22: PRINT : INPUT " QUELLE EST LA VITESSE D'ECHANTILLONNAGE (H
Z)? "; VE
230 HOME: VTAB 22: PRINT: INPUT * COMBIEN DE CANAUX AVEZ-VOUS? *:CC
240 HOME : VTAB 22: PRINT : INPUT "QUEL EST LE TEMPS D/ECHANTILLONNAGE (SEC)?
": TE
250 NP = VE # TE:CP = NP / 280
260 HGR : HCOLOR= 3: VTAB 20
270 HPLOT 0,0 TO 279,0 TO 279,159 TO 0,159 TO 0,0
280 CX = CC + INT (CP):CY = 159 / 255:A = 16384:A1 = A + CR - 1
290 FOR X = 0 TO 279:Y = 159 - CY * PEEK (A1 + X * CX): HPLOT X,Y: NEXT X
295 FOR X = 0 TO 279:Y = 159 - CY * PEEK (16389 + X * CX): HPLOT X,Y: NEXT X
300 IF GZ THEN 670
310 HOME : VTAB 22: INPUT " AUTORISEZ-VOUS LE GRAPHIQUE? (Y/N) ":TA$
320 IF TA$ = "Y" THEN 380
330 IF TA$ < > "N" THEN 310
```

```
340 GOTO 20
 350 REM
 360 REM APPARITION DU CURSEUR
 370 REM
 380 PB = 20:RR = 10:C = 0
 390 HOME: VTAB 22: PRINT "PESEZ SUR (.) POUR LA BAUCHE"
 400 VTAB 23: PRINT "ET SUR (.) POUR LA DROITE"
 410 VTAB 24: PRINT "PESEZ SUR (B) POUR ACCEPTER LA BORNE"
420 IF FL THEN 450
430 PB = 20:RR = 10
440 FL = 1
450 PB = PB + 2
460 GET R$: IF R$ = "," THEN PN = PB - (PB > 0): GOTO 500
470 IF R$ = "." THEN PN = PB + (PB < 279): GOTG 500
480 IF R$ = "B" THEN 540
490 GOTO 460
500 HCOLOR= 0: HPLOT PB.159 - RR TO PB.168 - RR
510 PB = PN:RR = PEEK (A1 + CX * PB) * CY - 2
520 HCOLOR= 3: HPLOT P8,159 - RR TO P8,168 - RR
530 GOTO 460
540 C = C + 1:8%(C) = PN
550 HPLOT PB.1 TO PB.159
560 HOME : VTAB 22
570 PRINT "LA BORNE ":C:" EST EN MEMOIRE"
580 PRINT "VOULEZ-VOUS UNE AUTRE BORNE? (Y/N) "; GET BA$
590 IF BA$ = "Y" THEN 390
600 IF BA$ ( ) "N" THEN 580
610 HOME : VTAB 22: PRINT "VOULEZ-VOUS VERIFIEZ LES AUTRES CANAUX? (Y/N) ": 6E
T BA$
620 IF BA$ = "Y" THEN 650
630 IF BA$ ( ) "N" THEN 610
640 GOTO 901: REM ROUTINE DE %
650 IF 6Z THEN 670
660 GZ = 1: HCOLOR= 0: GOTO 280
670 INPUT "QUEL CANAL VOULEZ-VOUS VERIFIER? ";CV
680 IF CZ THEN 770
690 IF CV > CC THEN 670
700 CV = CV - 1
710 HCOLOR= 3
720 HPLOT 0.159 - PEEK (A + CV) + CY
730 FOR X = 1 TO 279:AV = A + CX + X + CV: HPLOT X,159 - PEEK (AV) * CY: NEXT
740 AC = CV
750 CZ = 1
760 GOTO 610
770 HCOLOR= 0
780 \text{ CZ} = 0
790 HPLOT 0,159 - PEEK (A + AC) + CY
800 FOR X = 1 TO 279:AV = A + CX * X + AC: HPLOT X,159 - PEEK (AV) * CY: NEXT
```

```
810 GOTO 690
 820 IF PEEK (222) ( > 6 THEN 1490
 830 HOME
 840 PRINT "FICHIER INEXISTANT"
 850 PRINT : INPUT "VOULEZ-VOUS VERIFIER LE CATALOG (Y/N)? ";Y$
 860 IF Y$ = "Y" THEN 870
 865 IF Y$ ( > "N" THEN 840
 867 GOTO 880
 870 PRINT D$: "CATALOG": 1.D2"
 880 PRINT : PRINT "PESEZ SUR RETURN POUR CONTINUER": GET A$: HOME : GOTO 70
 890 PRINT *VOUS AVEZ UNE ERREUR **: PEEK (222)
 900 PRINT "A LA LIGNE": PEEK (218) + PEEK (219) # 256
 901 INPUT "VOULEZ-VOUS RECOMMENCER LE GRAPHIQUE ? (Y/N)":R6$
 902 HOME : VTAB 22
 903 IF RG$ = "Y" THEN 210
 905 IF R6$ < > "N" THEN 901
 910 NC = C / 2: HOME : VTAB 22: PRINT "VOUS AVEZ "; NC; " CYCLES": GET A$
 920 FOR S = 1 TO C: BB%(S) = B%(S) + C%: NEXT
930 FOR J = 1 TO NC
940 HOME : VTAB 22: PRINT "IDENTIFIEZ LES CYCLES A ANALYSER"
 950 VTAB 23: PRINT "CYCLE"; J; " (Y/N) ": INPUT 00$(J):
953 IF 00$(J) < > "Y" AND 00$(J) < > "N" THEN 940
 956 NEXT J
 960 G = 0:P = 0
970 FOR J = 1 TO NC
 980 IF QQ$(J) = "N" THEN 6 = 6 + 1: GQTQ 1010
 990 P = P + 1:LC(P) = BBX(J + I + G) - BBX(J + G):TT(P) = LC(P) / CC / 200:KK =
 (KK + TT(P)) / P:PC(P) = LC(P) / CC
 1000 \text{ BD}\chi(P) = A + BB\chi(J + G):G = G + 1
 1005 PRINT "LE CYCLE "; J; " A UNE DUREE DE "; TT(P); " SECONDE": GET A$
 1010 NEXT J
 1020 HOME : VTAB 22: PRINT "PRET POUR L'ANALYSE DES CYCLES (RETURN)"
 1030 PRINT "VOUS AVEZ EN MOYENNE "; KK; " SEC/CYCLE": GET A$
 1040 FOR E = 1 TO P
 1050 HOME : VTAB 22: PRINT "NOM DU CYCLE ";E;" DU FICHIER ";NF$: INPUT NC$
 1060 NC$ = NF$ + NC$
 1070 AN = 30000:HC = INT (PC(E) / 256):HB = PC(E) - HC = 256
 1080 POKE AN, HC: POKE AN + 1, HB
 1090 \text{ AW} = \text{AW} + 1
 1110 FOR [ = 1 TO CC - 1
1120 FOR J = 1 TO PC(E)
1130 POKE AW + (I - 1) + PC(E) + J, PEEK (BD%(E) + (I - 1) + (J - 1) + CC): NE
XT J: NEXT I
1140 AV = AW + CC + PC(E)
 1150 LL = AV - 30000 + 1
 1160 PRINT CHR$ (4): "BSAVE "; NC$: ", A30000, L"; LL; ", D2"
 1170 PRINT "LA LONGUEUR DE VOTRE FICHIER"
 1180 PRINT "EST DE ";PC(E);" POINTS"
 1190 FLASH : PRINT "VEUILLEZ LE PRENDRE EN NOTE": NORMAL : GET A$
```

```
1200 NEXT E

1210 INPUT "VOULEZ-VOUS ANALYSER UN AUTRE FICHIER? (Y/N) "; AF$

1220 IF AF$ = "Y" THEN 10

1230 IF AF$ ( > "N" THEN 1210

1240 PR# 6

1490 PRINT "ERREUR "; PEEK (222)

1500 STOP
```

4 Indices

```
10 REM INDICES
11 DIM MM(12)_MM$(12)
12 DATA 1466,1419,942,1772,1020,2249,925,890,1301,1758,1031,734
14 FOR A = 1 TO 12: READ MM(A): NEXT
15 DATA A.B.C.D.E.F.G.H.I.J.K.L
16 FOR A = 1 TO 12: READ MM$(A): NEXT
20 DIM E(800)
22 DIM FE(4.2)
25 DIM V(800)
27 DIM PL(800), MS(800)
30 DIM CT(2)
32 DIM ACC (75,4)
36 HOME
37 PRINT "SUR IMPRIMANTE ? ";: GET A$: PRINT
38 IF A$ = "0" THEN IN = 1: 60T0 40
39 IF A$ < > "N" THEN 37
40 PRINT : INPUT "TYPE DE FICHIER (D,C QU F) ? ":TF$
45 PRINT : INPUT "NOMBRE DE CANAUX ? ";CC
47 PRINT : PRINT PEEK (109) + PEEK (110) * 256: PRINT
50 PRINT
52 \text{ CT}(0) = 25 \text{:CT}(1) = 50 \text{:CT}(2) = 75
70 INPUT "NOM DE LA SERIE DE FICHIERS ? ":NS$
72 IF NS$ = "Y" THEN 1208
73 QQ$ = LEFT$ (NS$,1)
74 FOR S = 1 TO 12: IF QQ$ = MM$(S) THEN MF = MM(S): 60TO 78
75 NEXT
78 PRINT : INPUT "NOMBRE DE FICHIERS ? "INF
80 FOR FF = 1 TO NF
82 ID$ = NS$ + STR$ (FF) + TF$ + STR$ (FF)
87 HOME
90 FOR T = 5 TO CC_1MG(T) = 9999_1MD(T) = 9999_1 NEXT
100 CALL 1002
102 D$ = CHR$ (4)
112 FOR X = 1 TO N<sub>1</sub>C(X) = 1: NEXT
140 HOME : VTAB 9: HTAB 10: PRINT "JE CHARGE LE FICHIER "
142 PRINT
145 HTAB 10
150 PRINT ID$1" EN MEMOIRE"
160 PRINT D$; "BLOAD "; ID$; ", A30000, D2"
165 LF = PEEK (30000) * 256 + PEEK (30000 + 1)
166 PRINT : PRINT "LE NOMBRE DE POINTS/CANAL = ";LF
```

```
170 FOR I = 1 TO CC
 175 PRINT "JE TRAITE LE CANAL ": I: PRINT
 190 \text{ VE}(I) = 0:\text{MAX}(I) = 0
 195 \text{ MN}(I) = 9999:\text{MX}(I) = 0
 200 EP = 5
 210 FOR J = 1 TO LF
 215 IF I > 4 THEN 580
 230 E(J) = ( PEEK (30002 + (I - 1) + LF + (J - 1)) + 0.0946 + .3599) + 1000 / 5
 240 TG(I) = TG(I) + E(J)
 245 IF J > 5 THEN 255
 250 \text{ SM} = \text{SM} + \text{E}(J)_1 \text{XAM}(I) = \text{SM}_2 \text{ GOTO } 300
 255 \text{ SM} = \text{SM} - \text{E}(J - \text{EP}) + \text{E}(J)
 260 IF SM \rightarrow XAM(1) THEN XAM(1) = SM:LT(1) = J - 2
 300 NEXT
 305 IF ( > 4 THEN 650
 310 IT(I) = TG(I) / LF
 330 \text{ HY3M}(I) = XAM(I) / EP
 335 \text{ MT3M}(I) = \text{LT}(I)
 340 \text{ MC3M}(I) = \text{MT3M}(I) / \text{LF}
 350 \text{ SM} = 0
 355 IF I > I THEN 410
 360 \text{ T1} = INT (TG(1) / MF + 0.5)
 365 R1 = INT (IT(1) / MF * 1000 + 0.5) / 1000
 370 P1 = INT (MY3M(1) / MF + 1000 + 0.5) / 1000
 410 FOR K = 1 TO LF
 420 RT(I) = RT(I) + E(K)
 430 RP = INT (RT(I) / TG(I) * 100 + 0.5)
 440 IF RP < CT(X) THEN 475
 450 IF RP = CT(X) THEN FE(I,X) = K: 60T0 470
 460 \text{ FE}(I,X) = (K + K - 1) / 2
 470 X = X + 1: IF X > 2 THEN 476
 475 NEXT K
 476 RR = 5
 480 KK = INT (LF / RR)
 490 FOR ZZ = 0 TO LF - RR + 1 STEP RR: MJ = 0
 495 FOR ZK = 1 TO RR:MJ = MJ + E(ZZ + ZK): NEXT
 500 VE(I) = VE(I) + ABS(MJ / RR - IT(I)): NEXT
 505 \text{ VE}(I) = \text{VE}(I) / \text{KK} + \text{SQR} (RR)
 550 GOTO 800
 580 IF I = 5 THEN E(J) = ( PEEK (30002 + (I - 1) * LF + (J - 1))) * - 0.7499
+ 203.7245: GOTO 300
 590 IF I = 6 THEN E(J) = (PEEK (30002 + (I - 1) * LF + (J - 1))) * 1.3483 - 9
0.8078: GOTO 300
600 IF I = 7 THEN E(J) = \{ PEEK (30002 + \{I - 1\}) + LF + (J - 1) \} \} + 1.1071 - 3
1.137
605 60T0 300
 650 R = 5
```

```
652 \text{ CX} = 279 / (LF + 1)
655 S = 0: FOR K = 1 TO 2 * R + 1:S = S + E(K): NEXT :D = 2 * R + 1
457 FOR K = R + 1 TO LF - RiV(K) = S / Di IF V(K) > MAX(1) THEN MAX(1) = V(K):
IM(I) = K
658 S = S - E(K - R) + E(K + R + 1): NEXT
663 S = 0: FOR K = R + 2 TO LF - R:S = S + ABS (V(K) - V(K - 1)): NEXT :TJ(1)
= S:S = S + LF / (LF - 2 + R)
664 VTAB 22
670 FOR Z = R + 1 TO TM(I): IF V(Z) < MG(I) THEN MG(I) = V(Z)
680 FOR Z = TM(I) TO LF - R: IF V(Z) \in MD(I) THEN MD(I) = V(Z)
685 NEXT
690 \text{ A1(I)} = \text{MAX(I)} - \text{MG(I)}
695 \text{ A2(1)} = \text{MAX(I)} - \text{MD(I)}
700 LPA(I) = TM(I) / LF
705 R = L:K = 1
720 FOR T = R + K + 1 TO LF - R - K
725 PL(T) = 0:MS(T) = 0
730 FOR J = 0 TO K:PL(T) = PL(T) + E(T + R + J):MS(T) = MS(T) + E(T - R - J):
NEXT
735 V(T) = (PL(T) - MS(T)) / ((K + 1) + (2 + R + K))
740 REM TROUVER MAX+ ET MAX-
745 REM ABS(MAX) ET MAX+-MAX-
750 IF V(T) > MX(I) THEN MX(I) = V(T):LX(I) = T
755 IF V(T) \in HN(I) THEN HN(I) = V(T) : LN(I) = T
757 NEXT T
758 DT(I) = ABS (LX(I) - LN(I))
760 AH(I) = MX(I) - HN(I)
762 \text{ MB}(1) = \text{MX}(1)
765 IF ABS (MN(I)) > MX(I) THEN MB(I) = MN(I)
770 RT(I) = AM(I) / DT(I)
800 NEXT I
805 REM
807 PR# IN
808 PRINT
810 REM IMPRIMER LES RESULTATS
815 REM
816 \times = 11:Y = 19:Z = 27:W = 35
820 PRINT "FICHIER "; ID$
822 PRINT : HTAB 17: PRINT "MUSCLES": PRINT
823 PRINT : PRINT "NOMBRE DE POINTS = ":LF
825 PRINT : PRINT "CANAL"; TAB( X + 2); "1"; TAB( Y + 2); "2"; TAB( Z + 2); "3";
TAB( W + 2): 4
827 FOR H = 1 TO 4:T6(H) = INT (T6(H) + 0.5): NEXT
830 PRINT : PRINT "INTEGRALE"; TAB( X);TG(1); TAB( Y);TG(2); TAB( Z);TG(3); TA
B( W):T6(4)
832 FOR H = 1 TO 4:II(H) = INT (IT(H) + 0.5): NEXT
835 PRINT : PRINT "RATIO "; TAB( X); II(1); TAB( Y); II(2); TAB( Z); II(3); TA
B( W): [[(4)
```

```
838 FOR H = 1 TO 4:MY3M(H) = INT (MY3M(H) + 0.5): NEXT
 840 PRINT : PRINT "POINTE "; TAB( X); MY3M(1); TAB( Y); MY3M(2); TAB( Z); MY3M(
3); TAB( W); MY3M(4)
 B42 FOR H = 1 TO 4:MT3M(H) = INT (MT3M(H) + 0.5): NEXT
 845 PRINT : PRINT "LATENCE "; TAB( X):MT3M(1); TAB( Y):MT3M(2); TAB( Z):MT3M(
3); TAB( W); MT3M(4)
 848 FOR H = 1 TO 4:MC3M(H) = INT (MC3M(H) = 100 + 0.5); NEXT
 850 PRINT: PRINT "CENTILE ": TAB( X): MC3M(1): "%": TAB( Y): MC3M(2): "%": TAB(
Z);MC3M(3);"%"; TAB( W);MC3M(4);"%"
 855 PRINT : PRINT "FRACT25"; TAB( X); FE(1,0); TAB( Y); FE(2,0); TAB( Z); FE(3,0)
; TAB( W); FE(4.0)
 860 PRINT : PRINT "FRACT50"; TAB( X); FE(1,1); TAB( Y); FE(2,1); TAB( Z); FE(3,1)
; TAB( W); FE(4.1)
 865 PRINT : PRINT "FRACT75"; TAB( X);FE(1,2); TAB( Y);FE(2,2); TAB( Z);FE(3,2)
; TAB( W);FE(4,2)
 868 FOR ZZ = 1 TO 4:VE(ZZ) = INT (VE(ZZ) + 0.5): NEXT
 870 PRINT : PRINT "VARIATION"; TAB( X); VE(1); TAB( Y); VE(2); TAB( Z); VE(3); TA
B( W): VE(4)
872 PRINT : PRINT "CANAL 1": TAB( 10):"INTEG/MAX": TAB( 21):"RATIO/MAX": TAB(
32); "POINTE/MAX"
873 PRINT: PRINT TAB( 15); T1; TAB( 25); R1; TAB( 35); P1
875 PRINT: PRINT: HTAB 15: PRINT "SONIOMETRES": PRINT
880 PRINT "CANAL": TAB( 15);5; TAB( 25);6; TAB( 35);7
882 FOR T = 5 TO 7:TJ(T) = INT (TJ(T) + 0.5): NEXT
983 PRINT : PRINT "TRAJET"; TAB( 15);TJ(5); TAB( 25);TJ(6); TAB( 35);TJ(7)
884 FOR T = 5 TO 7:A1(T) = INT (A1(T) + 0.5): NEXT
885 PRINT : PRINT "AMPLITUDE"; TAB( 15); A1(5); TAB( 25); A1(6); TAB( 35); A1(7)
887 FOR T = 5 TO 7:A2(T) = INT (A2(T) + 0.5): NEXT
890 PRINT : PRINT TAB( 15); A2(5); TAB( 25); A2(6); TAB( 35); A2(7)
893 FOR T = 5 TO 7:MAX(T) = [NT (MAX(T) + 0.5): NEXT
895 PRINT : PRINT "POINTE"; TAB( 15); MAX(5); TAB( 25); MAX(6); TAB( 35); MAX(7)
900 PRINT : PRINT "LATENCE"; TAB( 15); TM(5); TAB( 25); TM(6); TAB( 35); TM(7)
902 FOR T = 5 TO 7:LPA(T) = INT (LPA(T) # 100 + 0.5); NEXT
905 PRINT : PRINT "CENTILE"; TAB( 15); LPA(5); "X"; TAB( 25); LPA(6); "X"; TAB( 35
):LPA(7):"%"
910 PRINT : PRINT : HTAB 15: PRINT "VELOCITE": PRINT
915 FOR T = 5 TO 71MX(T) = INT (MX(T) + 1000 + 0.5) / 10001 NEXT
920 PRINT : PRINT "POINTE +"; TAB( 15); MX(5); TAB( 25); MX(6); TAB( 35); MX(7)
925 FOR T = 5 TO 7: HN(T) = INT (HN(T) + 1000 + 0.5) / 1000: NEXT
930 PRINT : PRINT "POINTE -"; TAB( 15); MN(5); TAB( 25); MN(6); TAB( 35); MN(7)
935 FOR T = 5 TO 7:MB(T) = INT (MB(T) + 1000 + 0.5) / 1000: NEXT
940 PRINT : PRINT "POINTE ABS."; TAB( 15); MB(5); TAB( 25); MB(6); TAB( 35); MB(7
945 FOR T = 5 TO 7:AM(T) = INT (AM(T) * 1000 + 0.5) / 1000: NEXT
946 PRINT: PRINT "AMPLITUDE "; TAB( 15); AM(5); TAB( 25); AM(6); TAB( 351; AM(7)
950 PRINT: PRINT "DELTA T "; TAB( 15);DT(5); TAB( 25);DT(6); TAB( 35);DT(7)
```

952 FOR I = 5 TO 7:RT(I) = INI (RT(I) + 1000 + 0.5) / 5: NEXT

```
955 PRINT : PRINT *ACCELERATION*; TAB( 15);RT(5); TAB( 25);RT(6); TAB( 35);RT(
71
958 \ ACC(0,FF - 1) = LF
959 PS = 0
960 FOR H = 1 TO 4:ACC(4 + PS + H,FF - 1) = TG(H): NEXT :PS = PS + 1
 965 FOR H = 1 TO 4:ACC(4 + PS + H,FF - 1) = IT(H): NEXT :PS = PS + 1
 970 FOR H = 1 TO 4:ACC(4 * PS + H.FF - 1) = MY3M(H): MEXT :PS = PS + 1
 975 FOR H = 1 TO 4:ACC(4 * PS + H.FF - 1) = MT3M(H); NEXT :PS = PS + 1
 980 FOR H = 1 TO 4:ACC(4 # PS + H,FF - 1) = MC3M(H): NEXT :PS = PS + 1
985 FOR V = 1 TO 4:ACC(4 * PS + V,FF - 1) = FE(V,0): NEXT V:PS = PS + 1
 990 FOR W = 1 TO 4:ACC(4 * PS + W,FF - 1) = FE(W,1): NEXT W:PS = PS + 1
 995 FOR Y = 1 TO 4 \text{ ACC} (4 + PS + Y, FF - 1) = FE(Y, 2) 1 NEXT Y1PS = PS + 1
 1000 FOR X = 1 TO 4:ACC(4 * PS + X,FF - 1) = VE(X): NEXT X:PS = PS + 1
 1001 \text{ ACC}(37,FF - 1) = T1
1002 \text{ ACC}(38.FF - 1) = R1
1003 \ ACC(39.FF - 1) = P1
1004 PS = 39
1005 FOR L = 1 TO 3:ACC(PS + L,FF - 1) = TJ(L + 4): NEXT :PS = PS + 3
1010 FOR L = 1 TO 3:ACC(PS + L,FF - 1) = A1(L + 4): NEXT :PS = PS + 3
1015 FOR L = 1 TO 3:ACC(PS + L,FF - 1) = A2(L + 4): NEXT :PS = PS + 3
1020 FOR L = 1 TO 3:ACC(PS + L,FF - 1) = MAX(L + 4): NEXT :PS = PS + 3
1025 FOR L = 1 TO 3:ACC(PS + L,FF - 1) = TM(L + 4): NEXT :PS = PS + 3
1030 FOR L = 1 TO 3:ACC(PS + L.FF - 1) = LPA(L + 4): NEXT :PS = PS + 3
1035 FOR L = 1 TO 3iACC(PS + L, FF - 1) = MX(L + 4)i NEXT : PS = PS + 3
1040 FOR L = 1 TO 3:ACC(PS + L,FF - 1) = MN(L + 4): NEXT :PS = PS + 3
1042 FOR L = 1 TO 3:ACC(PS + L.FF - 1) = MB(L + 4): NEXT :PS = PS + 3
1044 FOR L = 1 TO 3:ACC(PS + L,FF - 1) = AM(L + 4): NEXT :PS = PS + 3
1046 FOR L = 1 TO 3:ACC(PS + L,FF - 1) = DT(L + 4): NEXT :PS = PS + 3
 1048 FOR L = 1 TO 3:ACC(PS + L,FF - 1) = RT(L + 4): NEXT
 1051 PRINT : PR# 0
1052 NEXT FF
1054 D$ = CHR$ (4)
1055 60TO 1400
1058 CALL 1002
1059 D$ = CHR$ (4)
1060 AA$ = RIGHT$ (NS$,3)
1062 FI$ = 99$ + AA$ + TF$
1065 PRINT D$; "OPEN ":FI$
1070 PRINT D$; "WRITE ":FI$
 1072 PRINT NF
1073 PRINT CC
1075 FOR K = 0 TO 75
1085 PRINT ACC(K,0)
1090 NEXT
 1095 PRINT D$1 "CLOSE ":FI$
 1200 STOP
 1208 PRINT CHR$ (4); "CATALOG"
 1209 PRINT : PRINT
 1210 GOTO 70
```

```
1400 HOME

1405 VTAB 10: PRINT "CHANGER LA DISQUETTE"

1410 PRINT "DU LECTEUR D2"

1415 GET T$: PRINT

1500 FOR Z = 0 TO 75

1505 NI = ACC(Z,0):AX = ACC(Z,0):SM = ACC(Z,0)

1510 FOR Y = 1 TO NF - 1:SM = SM + ACC(Z,Y)

1515 IF ACC(Z,Y) < NI THEN NI = ACC(Z,Y): GOTO 1530

1520 IF ACC(Z,Y) > AX THEN AX = ACC(Z,Y)

1535 ACC(Z,0) = (SM - AX - NI) / 3

1540 NEXT

1550 GOTO 1058
```

5 Regroupe

```
10 INPUT "SUJET ?";S$: DIM P$(3):P$(1) = "D":P$(2) = "C":P$(3) = "F"
20 V$ = "COMB-" + S$: PRINT CHR$ (4); "OPEN ";V$;",D2"
30 FOR P = 1 TO 3: FOR J = 1 TO 3: FOR K = 1 TO 2: FOR L = 1 TO 2:U$ = S$ + S
TR$ (100 * J + 10 * K + L) + P$(P)
40 PRINT CHR$ (4); "OPEN ";U$;",D1"
50 FOR I = -2 TO 75: PRINT CHR$ (4); "READ ";U$: INPUT X: PRINT CHR$ (4); "W
RITE ";V$: PRINT X: NEXT
60 PRINT CHR$ (4); "CLOSE ";U$
70 NEXT: NEXT: NEXT: NEXT
80 PRINT CHR$ (4); "CLOSE"
```

6 Regroupe variables

```
I HOME
2 INPUT "DEBUT ? ":DB
3 INPUT "FIN ? ":FI
4 DIM VAR(15,35,11)
5 FOR SU = 0 TO 11
6 CH = SU + 65
7 S = CHR + (CH)
10 V$ = "COMB-" + S$
13 PRINT : PRINT : PRINT
15 PRINT : PRINT "ENTRER LA DISQUETTE DU SUJET"
16 PRINT : FLASH : PRINT V$: NORMAL : PRINT : PRINT *DANS LE LECTEUR 1*
18 INPUT A$
27 PRINT CHR$ (4); "OPEN "; V$; ", DI"
28 PRINT CHR$ (4): "READ "; V$
30 FOR J = 0 TO 35
50 FOR I = - 2 TO 75: IMPUT X: IF I < DB OR I > FI THEN 60
52 \text{ VAR}(I - OB, J, SU) = X
60 NEXT : NEXT
75 PRINT CHR$ (4); *CLOSE *; V$
80 NEXT SU
85 FOR VR = DB TO FI
86 99 = VR - DB
90 U$ = "VAR" + STR$ (VR)
95 PRINT CHR$ (4); "OPEN "; U$; ", D2"
100 PRINT CHR$ (4); "WRITE ";U$
110 FOR 1 = 0 TO 11
120 FOR J = 0 TO 35
130 PRINT VAR(QQ,J,I)
140 NEXT : NEXT
200 PRINT CHR$ (4); "CLOSE "; U$
210 NEXT VR
215 FOR T = 1 TO 10: PRINT "": NEXT
220 PRINT : PRINT "Termine"
```

7 Anova Ouellet

```
10 N = 12:P = 3:Q = 2:R = 2:TT = N + P + Q + R
   12 DIM NN$(3):NN$(1) = "DEBUT":NN$(2) = "CYCLE":NN$(3) = "FIN"
   20 DIM RR(N,P,Q,R),T(N,P * Q),V1(N),V2(P * Q),TM(P,Q,R).
   25 INPUT *NOM DU FICHIER ?*; N$
   26 FOR NN = 1 TO 3
  28 CALL 1002: PRINT CHR$ (4): "OPEN ":N$: PRINT CHR$ (4): "READ ":N$
  33 FOR I = 1 TO N
  34 IF NN > 1 THEN FOR J = 1 TO (NN - 1) * P * Q * R: INPUT X: NEXT
  35 FOR J = 1 TO P: FOR K = 1 TO Q: FOR L = 1 TO R: INPUT RR(I.J.K.L): NEXT: N
EXT : NEXT
  36 IF NN ( 3 THEN FOR J = 1 TO (3 - NN) * P * Q * R: INPUT X: NEXT
  37 NEXT I
  39 PRINT CHR$ (4); "CLOSE"
  42 PR# 1: PRINT
  50 PRINT N$;" - "; NN$(NN): PRINT
  53 S1 = 0:S2 = 0: FOR J = 1 TO P: FOR K = 1 TO Q: FOR L = 1 TO R:TM(J,K,L) = 0:
  FOR I = 1 TO N:X = RR(I,J,K,L):TM(J,K,L) = TM(J,K,L) + X:S1 = S1 + X:S2 = S2 + X:S1 = S1 + X:S1 = S1 + X:S2 = S2 + X:S1 = S1 + X:S1 = S1
X # X: NEXT : NEXT : NEXT : NEXT
  55 C = S1 + S1 / TT:VD = 0
  57 FOR J = 1 TO P: FOR K = 1 TO Q: FOR L = 1 TO R:X = TM(J.K.L) / N:VD = VD +
X # X: PRINT TAB( 11 * L + 25 * K - 34); INT (X * 1000 + 0.5) / 1000;; NEXT : N
EXT : PRINT : NEXT : PRINT
  60 FOR I = 1 TO NI FOR J = 1 TO PIT(I,J) = RR(I,J,1,1) + RR(I,J,1,2) + RR(I,J,1,2)
2,1) + RR(I,J,2,2): NEXT : NEXT : Z1 = N: Z2 = P: GOSUB 500: V0 = WL: V1 = WC: V2 = W
  65 PRINT "SUJETS"; TAB( 10); N - 1; TAB( 16); VO / (N - 1): PRINT
  66 PRINT "ANGLE(A)"; TAB( 10); P - 1; TAB( 16); V1 / (P - 1); TAB( 28); V1 / V2 *
  67 PRINT "A X Se"; TAB( 10); (N - 1) * (P - 1); TAB( 16); V2 / ((N - 1) * (P - 1
)): PRINT
 70 FOR I = 1 TO N: FOR K = 1 TO Q:T(I,K) = 0: FOR J = 1 TO P:T(I,K) = T(I,K) +
  RR(I,J,K,1) + RR(I,J,K,2): NEXT: NEXT: NEXT: 21 = N:22 = Q: GOSUB 500: V3 = WC
:V4 = #I
 73 PRINT "PROF(B)": TAB( 10):Q - 1: TAB( 16):V3 / (Q - 1): TAB( 28):V3 / V4 *
(N-1)
 75 PRINT "B X Sa": TAB( 10): (N - 1) * (Q - 1): TAB( 16): V4 / ((N - 1) * (Q - 1)
)): PRINT
 80 FOR I = 1 TO N: FOR L = 1 TO R: T(I,L) = 0: FOR J = 1 TO P: T(I,L) = T(I,L) +
 RR(I,J,1,L) + RR(I,J,2,L): NEXT: NEXT: NEXT: NEXT: Z1 = N:Z2 = R: GOSUB 500:V5 = WC
1V6 = WI
```

```
83 PRINT "HAUT(C)"; TAB( 10);R - 1; TAB( 16);V5 / (R - 1); TAB( 28);V5 / V6 *
(N - 1)
85 PRINT "C X Ss"; TAB( 10); (N - 1) + (R - 1); TAB( 16); V6 / ((N - 1) + (R - 1
)): PRINT
90 FOR I = 1 TO N: FOR J = 1 TO P: FOR K = 1 TO Q:T(I, (J - 1) * Q + K) = RR(I,
J.K.1) + RR(I,J,K.2): MEXT : NEXT : NEXT : Z1 = N:Z2 = P * Q: GOSUB 500
91 V7 = WC - V1 - V3:V8 = WI - V2 - V4
 92 PRINT "A x B": TAB( 10): (P-1) + (Q-1): TAB( 16): (P-1) + (Q-1)
): TAB( 28): V7 / V8 + (N - 1)
94 PRINT "AB X Ss"; TAB( 10); (N - 1) * (P - 1) * (Q - 1); TAB( 16); V8 / ((N -
1) * (P - 1) * (Q - 1); PRINT
100 FOR I = 1 TO N: FOR J = 1 TO P: FOR L = 1 TO R: T(I, (J - 1) + R + L) = RR(I
,J,1,L) + RR([,J,2,L): NEXT : NEXT : NEXT : Z1 = N:Z2 = P + R: GOSUB 500
102 V9 = WC - V1 - V5:VA = WI - V2 - V6
104 PRINT "A X C": TAB( 10): (P - 1) + (R - 1): TAB( 16): V9 / ((P - 1) + (R - 1
)): TAB( 28): V9 / VA * (N - 1)
106 PRINT "AC X Ss": TAB( 10):(N - 1) * (P - 1) * (R - 1); TAB( 16):VA / ((N -
1) * (P - 1) * (R - 1)): PRINT
110 FOR I = 1 TO N: FOR K = 1 TO Q: FOR L = 1 TO R:T(I.(K - 1) * R + L) = RR(I
,1,K,L) + RR(I,2,K,L) + RR(I,3,K,L): NEXT: NEXT: NEXT: Z1 = N:Z2 = Q + R: 60SU
B 500
112 VB = WC - V3 - V5:VC = WI - V4 - V6
114 PRINT "B X C": TAB( 10); (Q - 1) * (R - 1); TAB( 16); VB / ((Q - 1) * (R - 1
)); TAB( 28); VB / VC * (N - 1)
116 PRINT "BC X Ss"; TAB( 10); (N - 1) * (Q - 1) * (R - 1); TAB( 16); VC / ((N -
1) * (Q - 1) * (R - 1)); PRINT
118 VD = (N + VD - C) - V1 - V3 - V5 - V7 - V9 - V8:VE = S2 - C - WT - V1 - V2
- V7 - V8 - V9 - VA - VD
120 PRINT "AxBxC"; TAB( 10); (P - 1) + (Q - 1) + (R - 1); TAB( 16); VD / ((P - 1
) \pm (Q - 1) \pm (R - 1); TAB( 28); VD / VE \pm (N - 1)
122 PRINT "ABCxSs": TAB( 10):((N - 1) + (P - 1) + (Q - 1) + (R - 1)): TAB( 16)
tVE / ((N-1) + (P-1) + (Q-1) + (R-1))
 499 NEXT : PRINT : PRINT : PR# 0: PRINT : GOTO 25
 500 \text{ WL} = 02 \text{ WC} = 02 \text{ WT} = 02 \text{ FOR } J = 1 \text{ TO } Z22 \text{ V2}(J) = 02 \text{ NEXT}
 505 FOR I = 1 TO Z1:V1(I) = 0: FOR J = 1 TO Z2:X = T(I,J):WT = WT + X + X:V1(I)
= V1(I) + X_1V2(J) = V2(J) + X_1 NEXT : ML = ML + V1(I) + V1(I) : NEXT
 510 FOR J = 1 TO Z2: MC = MC + V2(J) * V2(J): MEXT
 520 WL = Z1 + WL / TT - C
 522 WC = 12 # WC / TT - C
 524 NT = Z1 + Z2 + NT / TT - C
 526 WI = WT - WL - WC
 528 RETURN
```

8 Appui

```
10 HIMEM: 8192
 20 TEXT
 30 HOME
 32 CALL 1002
 35 NC = 0:NP = 0:CP = 0:CX = 0:CY = 0:AC = 0:CZ = 0:CV = 0:6 = 0:FL = 0:6Z = 0:
KK = 0
 40 REM
 50 REM RECHERCHE DE REFERENCE
 60 REM
 70 D$ = CHR$ (4)
 80 ONERR 60TO 820
 90 PRINT "QUEL EST LE NOM DE VOTRE FICHIER "
 100 INPUT "PESEZ SUR (Y) POUR LE CATALOG ":NF$
110 IF NF$ = "Y" THEN 870
 120 CR = 8
 130 VTAB 12: HTAB 9: PRINT "JE CHERCHE LE FICHIER ":NF$
 140 PRINT D$; "BLOAD"; NF$; ", A16384"; ", D2"
 150 HOME
 160 VTAB 12: HTAB 3: PRINT "LE FICHIER ";NF$;" EST EN MEMOIRE"
 170 REM
 180 REM AFFICHAGE DES DONNEES
 190 REM
 200 VTAB 14: HTAB 3: PRINT "PRET POUR LE GRAPHIQUE PESEZ (RETURN)": GET A$
 210 HOHE
 215 NC = 0:NP = 0:CP = 0:CX = 0:CY = 0:AC = 0:CZ = 0:CV = 0:6 = 0:FL = 0:6Z = 0
:KK = 0
 216 VE = 200:CC = 8:TE = 6
 250 NP = VE * TE:CP = NP / 280
 260 HGR : HCOLOR= 3: VTAB 20
 270 HPLOT 0,0 TO 279,0 TO 279,159 TO 0,159 TO 0,0
 280 CX = CC + INT (CP):CY = 159 / 255:A = 16384:A1 = A + CR - 1
 290 FOR X = 0 TO 279:Y = 159 ~ CY * PEEK (A1 + X * CX): HPLOT X.Y: NEXT X
 295 FOR X = 0 TO 279:Y = 159 - CY + PEEK (16389 + X + CX): HPLOT X,Y: NEXT X
 300 IF 61 THEN 670
 310 HOME : VTAB 22: INPUT " AUTORISEZ-VOUS LE GRAPHIQUE? (Y/N) ";TA$
 320 IF TA$ = "Y" THEN 380
 330 IF TA$ ( > "N" THEN 310
 340 GOTO 20
 350 REM
 360 REM APPARITION DU CURSEUR
 370 REM
```

```
380 PB = 20:RR = 10:C = 0
390 HOME : VTAB 22: PRINT "PESEZ SUR (,) POUR LA GAUCHE"
400 VTAB 23: PRINT "ET SUR (.) POUR LA DROITE"
410 VTAB 24: PRINT "PESEZ SUR (B) POUR ACCEPTER LA BORNE"
420 IF FL THEN 450
430 PB = 20:RR = 10
440 \text{ FL} = 1
450 PB = PB + 2
460 GET R$: IF R$ = "." THEN PN = PB - (PB > 0): 60T0 500
470 IF R$ = "." THEN PN = PB + (PB < 279): 60TO 500
480 IF R$ = "B" THEN 540
490 GOTO 460
500 HCDLOR= 0: HPLOT PB.159 - RR TO PB.168 - RR
510 PB = PN:RR = PEEK (A1 + CX * PB) * CY - 2
520 HCOLOR= 3: HPLOT PB,159 - RR TO PB,168 - RR
530 6010 460
540 C = C + 1:BX(C) = PN
550 HPLOT PB.1 TO PB.159
560 HOME : VTAB 22
570 PRINT "LA BORNE ";C;" EST EN MEMOIRE"
580 PRINT "VOULEZ-VOUS UNE AUTRE BORNE? (Y/N) ": GET BA$
590 IF BA$ = "Y" THEN 390
600 IF BA$ ( > "N" THEN 580
610 HOME : VTAB 22: PRINT "VOULEZ-VOUS VERIFIEZ LES AUTRES CANAUX? (Y/N) ": SE
T RAS
620 IF BA$ = "Y" THEN 650
630 IF BA$ < > "N" THEN 610
640 GOTO 901: REM ROUTINE DE %
650 IF 62 THEN 670
660 6Z = 1: HCOLOR= 0: 60TO 280
670 INPUT "QUEL CANAL VOULEZ-VOUS VERIFIER? ":CV
680 IF CZ THEN 770
690 IF CV > CC THEN 670
700 CV = CV - 1
710 HCOLOR= 3
720 HPLOT 0,159 - PEEK (A + CV) # CY
730 FOR X = 1 TO 279:AV = A + CX * X + CV: HPLOT X.159 - PEEK (AV) * CY: NEXT
740 AC = CV
750 - CZ = 1
760 60TO 610
770 HCGLOR= 0
780 CZ = 0
790 HPLOT 0,159 - PEEK (A + AC) + CY
800 FOR X = 1 TO 279:AV = A + CX * X + AC: HPLOT X,159 - PEEK (AV) + CY: NEXT
810 60TO 690
820 IF PEEK (222) < > 6 THEN 1490
830 HOME
```

```
840 PRINT "FICHIER INEXISTANT"
 850 PRINT : INPUT "VOULEZ-VOUS VERIFIER LE CATALOG (Y/N)? ";Y$
 860 IF Y$ = "Y" THEN 870
865 IF Y$ < > "N" THEN 840
867 GOTD 880
870 PRINT D$: "CATALOG": ".D2"
880 PRINT: PRINT "PESEZ SUR RETURN POUR CONTINUER": GET A$: HOME: GOTO 70
890 PRINT "VOUS AVEZ UNE ERREUR #": PEEK (222)
900 PRINT "A LA LIGNE": PEEK (218) + PEEK (219) # 256
901 INPUT "VOULEZ-VOUS RECOMMENCER LE GRAPHIQUE ? (Y/N) ": RG$
902 HOME : VTAB 22
903 IF RG$ = "Y" THEN 210
905 IF R6$ < > "N" THEN 901
910 NC = C / 2: HOME : VTAB 22: PRINT "VDUS AVEZ "; NC; " CYCLES": GET A$
920 FOR S = 1 TO C:BBZ(S) = BZ(S) * CX: NEXT
930 FOR J = 1 TO NC
940 HOME : VTAB 22: PRINT "IDENTIFIEZ LES CYCLES A ANALYSER"
950 VTAB 23: PRINT "CYCLE":J:" (Y/N)": INPUT 00$(J):
953 IF 00$(J) < > "Y" AND 00$(J) < > "N" THEN 940
956 NEXT J
960 G = 0:P = 0
970 FOR J = 1 TO NC
980 IF 00$(J) = "N" THEN 6 = 6 + 1: 60TO 1010
990 P = P + 1:LC(P) = BBX(J + 1 + 6) - BBX(J + 6):TT(P) = LC(P) / CC / 200:KK =
 (KK + TT(P)) / P:PC(P) = LC(P) / CC
1000 \text{ BD}\chi(P) = A + BB\chi(J + G):G = G + 1
1005 PRINT "LE CYCLE "; J; " A UNE DUREE DE "; TT(P); " SECONDE": GET A$
1010 NEXT J
 1020 HOME: VTAB 22: PRINT "PRET POUR L'ANALYSE DES CYCLES (RETURN)"
 1030 PRINT "VOUS AVEZ EN MOYENNE "; KK; " SEC/CYCLE": GET A$
 1040 FOR E = 1 TO P
 1050 HOME : VTAB 22: PRINT "NOW DU CYCLE ";E;" DU FICHIER ";NF$: INPUT NC$
1060 NC$ = NF$ + NC$
1070 AM = 30000:HC = INT (PC(E) / 256):HB = PC(E) - HC * 256
1080 POKE AW, HC: POKE AW + 1, HB
1090 \text{ AW} = \text{AW} + 1
1110 FOR I = 1 TO CC - 7
1120 FOR J = 1 TO PC(E)
1130 POKE AW + (I - 1) * PC(E) + J, PEEK (BDX(E) + (I - 1) + (J - 1) * CC): NE
XT J: NEXT I
1140 AV = AN + CC + PC(E)
1150 LL = AV - 30000 + 1
 1170 PRINT "LA LONGUEUR DE VOTRE FICHIER"
1180 PRINT "EST DE ";PC(E); " POINTS"
1190 FLASH : PRINT "VEUILLEZ LE PRENDRE EN NOTE": NORMAL : GET A$
1200 NEXT E
1210 INPUT "VOULEZ-VOUS ANALYSER UN AUTRE FICHIER? (Y/N) "; AF$
1220 IF AF$ = "Y" THEN 10
 1230 IF AF$ < > "N" THEN 1210
```

1240 PR# 6

1490 PRINT "ERREUR "; PEEK (222)

1500 STOP

9 Prog V99

```
10 DIM VO(12,12),V99(3,12,12)
12 FOR I = 1 TO 12: PRINT "SUJ ";I: FOR J = 1 TO 12: PRINT J; TAB( 4);: INPUT
V99(1,I,J): NEXT: PRINT: NEXT
20 PRINT CHR$ (4); "OPEN VARO,D1": PRINT CHR$ (4); "READ VARO"
30 FOR I = 1 TO 12 * 12: INPUT X: NEXT
35 FOR I = 1 TO 12: FOR J = 1 TO 12: INPUT VO(I,J): NEXT: NEXT
40 PRINT CHR$ (4); "CLOSE VARO"
45 FOR I = 1 TO 12: FOR J = 1 TO 12:V99(2,I,J) = VO(I,J) - V99(1,I,J):V99(3,I,J) = V99(1,I,J) / VO(I,J): NEXT: NEXT
50 PRINT CHR$ (4); "OPEN V99,D2": PRINT CHR$ (4); "WRITE V99"
55 FOR I = 1 TO 12: FOR K = 1 TO 3: FOR J = 1 TO 12: PRINT V99(K,I,J): NEXT:
NEXT: NEXT
60 PRINT CHR$ (4): "CLOSE"
```

10 Centiles

200 PRINT CHR\$ (4); "CLOSE": RETURN

```
5 DIM NP(432), VV(432)
10 N = 0: GOSUB 100
20 FOR I = 1 TO 432: INPUT NP(I): NEXT
30 GOSUB 200
40 FOR N = 21 TO 32: GOSUB 100
45 FOR I = 1 TO 432: INPUT X:VV(I) = INT (100 * X / NP(I) + 0.5): NEXT
50 GOSUB 200
60 N$ = "VAR" + STR$ (N + 60)
61 PRINT CHR$ (4); "OPEN"N$; ",D2"
62 PRINT CHR$ (4); "WRITE"N$
64 FOR I = 1 TO 432: PRINT VV(I): NEXT
70 GOSUB 200: NEXT
100 N$ = "VAR" + STR$ (N): PRINT " ":N$;: INPUT R$
103 PRINT CHR$ (4); "OPEN"N$; ",D1"
104 PRINT CHR$ (4); "READ"N$: RETURN
```

11 Transfor-EMG-100%

```
10 REM TRANS-EMG-X-MAGIE GRAF
 15 HOME
 20 DIM V1X(100,7),E(800)
 30 REM
 35 CALL 1002
 40 HOME : PRINT "COMBIEM DE FICHIER A ANALYSER? ": INPUT N
 45 IF N > 8 THEN 40
 50 PRINT "COMBIEN DE CANAUX? ": INPUT CC
 60 D$ = CHR$ (4); HOME
 70 FOR I = 1 TO M: PRINT "QUEL EST LE NOM DU FICHIER ": I: PRINT "PESEZ SUR (Y)
 POUR LE CATALOS *: INPUT NF$(I)
 75 IF NF$(I) = "Y" THEN 1208
 80 HOME
 110 NEXT I
 111 DIM C(N)
 112 FOR X = 1 TO N
 113 PRINT " FICHIER ":NF$(X)
 114 PRINT: INPUT "AMPLIFICATION? ":C(X)
 115. NEXT X: PRINT
 116 PRINT " ACCEPTER? (Y/N)";: INPUT W$
 117 IF W$ = "Y" THEN 120
118 IF W$ < > "N" THEN 116
119 GOTO 40
 120 I = 0
 130 FOR F = 1 TO N
 140 HOME : VTAB 12: HTAB 10: PRINT "JE CHARGE LE FICHIER "
 150 VTAB 13: HTAB 10: PRINT "NUMERO ";F;" EN MEMOIRE"
 160 PRINT D$; "BLOAD "; NF$(F); ", A24576"; ", D2"
 165 LF(F) = PEEK (24576) + 256 + PEEK (24576 + 1)
 166 PRINT : PRINT "LE NOMBRE DE POINTS/CANAL = ":LF(F)
 167 GET Q$: PRINT
 170 FOR I = 1 TO CC - 1
180 Z = Z + 1
 190 HOME : VTAB 12: HTAB 5: PRINT "JE TRANSFORME LES DONNEES BRUTES"
 200 VTAB 13: HTAB 5: PRINT "DU CANAL ":Z
201 IF Z > 4 THEN 6Z = 1: 60TO 210
210 FOR J = 1 TO LF(F)
215 IF 6Z THEN 280
270 E(J) = ( PEEK (24578 + (I - 1) * LF(F) + (J - 1)) * 0.0946 + .3599) * 1000
/ (5 * C(F)): 60T0 310
```

```
280 IF I = 5 THEN E(J) = (PEEK (24578 + (I - I) + LF(F) + (J - I))) + -0.74
99 + 203.7245: 60T0 310
290 IF I = 6 THEN E(J) = (PEEK (24578 + (I - 1) + LF(F) + (J - 1))) + 1.3483
- 90.8078; 60TO 310
300 IF Z = 7 THEN E(J) = (PEEK (24579 + (I - 1) + LF(F) + (J - 1))) + 1.1071
- 31.137
310 NEXT J
320 HOME : VTAB 12: HTAB 5: PRINT "JE TRANSFORME LES DONNEES DU CANAL ": Z
 330 VTAB 13: HTAB 5: PRINT "EN 1-100%"
340 \text{ V1X}(1.1) = \text{E}(1):\text{D1} = (\text{LF}(\text{F}) - 1) / 99
350 SC = D1 + 1
360 FOR T = 2 TO 99
370 D2 = INT (SC)
380 D3 = SC - D2
410 V1Z(T,I) = (E(D2) + (1 - D3)) + (E(D2 + 1) + D3)
440 SC = SC + D1: NEXT T
450 \text{ V1}\chi(100.1) = E(LF(F))
 455 NEXT I
460 FOR L = 1 TO 100: VIX(L,0) = L: NEXT L
465 GZ = 0
470 HOME : PRINT "QUEL NOM DONNEZ-VOUS AU CYCLE ":F
480 PRINT "ECRIRE S>XXXX POUR MAGIE-GRAF ": INPUT MG$
490 HOME : VTAB 12: HTAB 5: PRINT "JE TRANSFORME LE CYCLE ";F: VTAB 13: HTAB 5
: PRINT "EN FICHIER MAGIE-GRAF"
500 PRINT D$; "OPEN"; MG$
510 PRINT D$; "WRITE"; MG$
520 PRINT 100
530 PRINT 8
540 PRINT R$
550 PRINT 2
560 PRINT VN$
570 PRINT VN$
580 PRINT VN$
590 PRINT VN$
600 PRINT 8
610 FOR I = 0 TO 7
620 PRINT ID$
630 PRINT 100
640 FOR J = 1 TO 100
650 PRINT V1%(J,I)
660 NEXT J
670 NEXT I
680 PRINT D$; *CLOSE*; NC$; CALL 1002: D$ = CHR$ (4)
690 Z = 0: NEXT F
700 HOME : VTAB 12: HTAB 5: PRINT "VOULEZ-VOUS EFFECTUER UNE"
 710 VTAB 13: HTAB 5: PRINT "AUTRE TRANSFORMATION (Y/N) "
720 VTAB 14: HTAB 5: INPUT AA$
 730 IF AA$ = "Y" THEN RUN
 740 IF AA$ < > "N" THEN 700
```

```
750 PR® 6
1201 IF PEEK (222) < > 6 THEN 1210
1202 HOME
1203 PRINT "FICHIER INEXISTANT"
1204 PRINT: INPUT "VOULEZ-VOUS VERIFIER LE CATALOG (Y/N)? ";Y$
1205 IF Y$ = "Y" THEN 1208
1206 IF Y$ < > "N" THEN 1203
1207 GOTO 1209
1208 PRINT D$; "CATALOG "; ",D2"
1209 PRINT: PRINT "PESEZ SUR RETURN POUR CONTINUER": GET A$: HOME: GOTO 60
1210 POKE 216,0
1211 PRINT "A LA LIGNE"; PEEK (218) + PEEK (219) * 256
1500 PRINT "CORRIGEZ L'ERREUR ET PESEZ SUR"
1510 PRINT "RETURN POUR CONTINUER": GET A$
1520 GOTO 15
```

12 Moyenne (cycle et essais)

```
10 REM MOYENNE (CYCLE ET ESSAIS)
20 REM
25 CALL 1002
30 DIM AZ(100,8),A1Z(100,8).MZ(100,8)
40 D$ = CHR$ (4): HOME
52 INPUT "PESEZ SUR (Y) POUR LE CATALOG "; CA$
54 IF CA$ = "Y" THEN 1210
55 INPUT " COMBIEN DE CYCLE A MOYENNER? "; CM
60 FOR A = 1 TO CM
70 PRINT "QUEL EST LE NOM DU FICHIER "; A: INPUT N$(A): MEXT A
80 D$ = CHR$ (4)
90 FOR 8 = 1 TO CM
100 HOME : VTAB 12: HTAB 5: PRINT "JE CHERCHE LE FICHIER ":N$(B)
110 PRINT D$; "OPEN"; N$(B); ",D2"
120 PRINT D$; *READ*; N$(B)
130 INPUT W
140 INPUT X
150 INPUT R$
160 INPUT D
170 INPUT VN$
L80 INPUT VN$
190 INPUT VN$
200 INPUT VN$
210 INPUT X
230 FOR C = 1 TO X
235 INPUT ID$
240 INPUT W
250 FOR J = 1 TO #
260 INPUT AZ(J,C)
270 \text{ A1Z}(J,C) = \text{AZ}(J,C) + \text{A1Z}(J,C)
280 NEXT J: NEXT C
290 PRINT D$; "CLOSE"; N$(B)
300 NEXT B
305 HOME : VTAB 12: HTAB 5: PRINT "JE CALCULE LA MOYENNE"
310 FOR C = 1 TO X
320 FOR J = 1 TO #
330 MX(J,C) = A1X(J,C) / CM
340 NEXT J: NEXT C
350 HOME : VTAB 12: HTAB 5: PRINT "J'AI TERMINE LA MOYENNE"
360 VTAB [3: HTAB 5: PRINT "QUELLE SERA SON NOW (S>XX)?"
370 VTAB 14: HTAB 5: INPUT MG$
```

```
380 PRINT D$; "GPEN"; MG$; ", D2"
390 PRINT D$; "WRITE"; MG$
400 PRINT 100
410 PRINT B
420 PRINT R$
430 PRINT 2
440 PRINT VN$
450 PRINT VN$
460 PRINT VN$
470 PRINT VNS
480 PRINT 8
490 FOR C = 1 TO 8
500 PRINT ID$
510 PRINT 100
520 FOR J = 1 TO 100
530 PRINT MX(J,C)
540 NEXT J
550 NEXT C
560 PRINT D$; "CLUSE"; MG$
570 PRINT D$; "LOCK"; MG$
580 HOME : PRINT "VOULEZ-VOUS FAIRE UNE AUTRE MOYENNE?"
590 INPUT "(Y/N)";AM$
600 IF AMS = "Y" THEN RUN
610 IF AM$ ( > "N" THEN 580
620 PR# 6
1201 IF PEEK (222) < > 6 THEN 1230: HOME
1202 HOME
1203 PRINT "FICHIER INEXISTANT"
1204 PRINT : INPUT "VOULEZ-VOUS VERIFIER LE CATALOG (Y/N)? ";Y$
1205 IF Y$ = "Y" THEN 1210
1206 IF Y$ ( > "N" THEN 1203
1207 60TO 1220
1210 PRINT D$; "CATALOG "; ", D2"
1220 PRINT : PRINT "PESEZ SUR RETURN POUR CONTINUER": GET A$: HOME : GOTO 55
1230 PRINT : PRINT "YOUS AVEZ UNE ERREUR # "; PEEK (222)
1240 PRINT "A LA LIGNE"; PEEK (218) + PEEK (219) * 256: PRINT : PRINT
1500 PRINT "CORRIGER L'ERREUR ET PESEZ SUR"
1510 PRINT "RETURN POUR CONTINUER": GET A$: HOME
1520 GOTO 55
```

13 Interintra

```
10 REM INTERINTRA
 20 DIM V1%(100,7),E(800)
 25 DIM V2(100,7)
 27 DIM YOM(7), XAM(7), NIM(7)
 28 DIM MM(7), IM(7), TRA(7)
 30 DIN MOY(7,12), MAX(7,12), MIN(7,12)
 32 DIM C(5), VTX(112,7), VMX(100,7)
 33 DIM SVAR(7).XX(12)
 35 DIN VR(100,7), NN(7), NX(7), NY(7)
 38 HOME
 39 PRINT PEEK (110) # 256 + PEEK (109): GET A$: PRINT
 40 INPUT "TYPE DE FICHIER (D,C OU F) ? ";TF$
 42 PRINT : INPUT "NOMBRE DE SUJETS ? "; NU
 45 PRINT : INPUT "NOMBRE DE CANAUX ? ":CC
 50 FOR X = 1 TO CC::MX(X) = 0:MM(X) = 0:IM(X) = 9999:MN(X) = 9999: FOR D = 1 T
0.12:MAX(X,D) = 0:MIN(X,D) = 9999: NEXT : NEXT
 60 D$ = CHR$ (4): HOME
 65 FOR NS = 1 TO NU
 70 PRINT "NOM DE LA SERIE DE FICHIERS ?"
72 PRINT "DU SUJET ";NS;: INPUT NS$
 75 IF NS$ = "Y" THEN 1208
80 HOME
82 INPUT "NOMBRE DE FICHIERS A ANALYSER (MAX=5) ? ";N
 85 IF N > 5 THEN 82
 112 FOR X = 1 TO N<sub>2</sub>C(X) = 1: NEXT
130 FOR F = 1 TO N
 135 \text{ NF} (F) = \text{NS} + \text{STR} (F) + \text{TF} + \text{STR} (F)
140 HOME : VTAB 9: HTAB 10: PRINT "JE CHARGE LE FICHIER "
150 VTAB 10: HTAB 10: PRINT "NUMERO ";F;" EN MEMOIRE"
 160 PRINT D$; "BLOAD "; NF$(F); ", A30000, D2"
165 LF(F) = PEEK (30000) + 256 + PEEK (30000 + 1)
166 PRINT : PRINT "LE NOMBRE DE POINTS/CANAL = ";LF(F)
 170 FOR I = 1 TO CC
190 VTAB 16: HTAB 5: PRINT "JE TRANSFORME LES DONNEES BRUTES"
200 VTAB 17: HTAB 5: PRINT "DU CANAL ":I
210 FOR J = 1 TO LF(F)
215 IF I > 4 THEN 280
270 \text{ E(J)} = (PEEK (30002 + (I - 1) + LF(F) + (J - 1)) + 0.0946 + .3599) + 1000
/ (5 + C(F)): 60T0 310
280 IF I = 5 THEN E(J) = (PEEK (30002) + (I - 1) * LF(F) + (J - 1))) * - 0.7
499 + 203.7245: 60T0 310
```

```
290 IF I = 6 THEN E(J) = (PEEK (30002 + (I - 1) + LF(F) + (J - 1))) + 1.3483
- 90.8078: GOTO 310
 300 IF I = 7 THEN E(J) = (PEEK (30002 + (I - 1) + LF(F) + (J - 1))) + 1.1071
- 31.137
 310 NEXT
 320 HOME : VTAB 12: HTAB 5: PRINT "JE TRANSFORME LES DONNEES DU CANAL ":I
 330 VTAB 13: HTAB 5: PRINT "EN 1-100%"
 340 \text{ VIX}(1,I) = \text{VIX}(1,I) + (E(I) + CO)IDI = (LF(F) - I) / 99
 345 \ V2(1,I) = V2(1,I) + E(1) ^ 2
 350 \text{ SC} = D1 + 1
 360 FOR T = 2 TO 99
 370 D2 = INT (SC)
 380 D3 = SC - D2
 410 \text{ VIX}(T,I) = \text{VIX}(T,I) + ((E(D2) + (1 - D3)) + (E(D2 + 1) + D3) + C0)
 415 \ V2(T,I) = V2(T,I) + ((E(D2) + (1 - D3)) + (E(D2 + 1) + D3)) ^ 2
 440 SC = SC + D1: NEXT T
 450 V12(100,I) = V12(100,I) + (E(LF(F)) + C0)
 455 \ V2(100,I) = V2(100,I) + E(LF(F)) ^ 2
 460 NEXT I
 462 NEXT F
 465 FOR T = 1 TO CC: FOR K = 1 TO 100: YM%(K,T) = INT (V1%(K,T) / N + CO): V2(K
T_{*}(T) = (V_{*}(K,T) - N + V_{*}(K,T) ^ 2) / (N - 1): NEXT : 
 510 FOR T = 1 TO 100: FOR S = 1 TO CC
 515 \text{ SVAR}(S) = \text{SVAR}(S) + \text{V2}(T.S)
 517 \text{ VT}\chi(T,S) = \text{VT}\chi(T,S) + \text{VM}\chi(T,S)
 518 \text{ MOY}(S,NS) = \text{MOY}(S,NS) + \text{V2}(T,S)
 520 IF V2(T,S) > MAX(S,NS) THEN MAX(S,NS) = V2(T,S)
 525 IF V2(T,S) \in MIN(S,NS) THEN MIN(S,NS) = V2(T,S)
 530 VR(T,S) = VR(T,S) + VHX(T,S) ^ 2
 540 NEXT : NEXT
 550 FOR R = 1 TO CC
 553 \text{ MOY(R.NS)} = \text{MOY(R.NS)} / 100: \text{NEXT}
 565 FOR T = 1 TO 100: FOR S = 1 TO CC: V1X(T,S) = 0: V2(T,S) = 0: NEXT : NEXT
 570 NEXT NS
 600 FOR T = 1 TO 100: FOR S = 1 TO CC: VTX(T,S) = VTX(T,S) / NU
 604 IF VTZ(T,S) > MM(S) THEN MM(S) = VTZ(T,S)
 607 IF VTX(T,S) < IM(S) THEN IM(S) = <math>VTX(T,S)
 610 \text{ VR}(T,S) = 5 * (\text{VR}(T,S) - \text{NU} * \text{VTZ}(T,S) ^ 2) / (\text{NU} - 1)
 612 IF VR(T,S) > MX(S) THEN MX(S) = VR(T,S)
 614 IF VR(T,S) < MN(S) THEN MN(S) = VR(T,S)
 617 \text{ TRA(S)} = \text{TRA(S)} + \text{VR(T,S)}
 620 NEXT : NEXT
 625 FOR Z = 1 TO CC:MY(Z) = TRA(Z) / 100
 430 FOR ZZ = 1 TO NU
 635 \text{ NIM}(Z) = \text{NIM}(Z) + \text{MIM}(Z,ZZ)
 640 \text{ YOM}(Z) = \text{YOM}(Z) + \text{MOY}(Z,ZZ)
 645 \times AM(Z) = XAM(Z) + MAX(Z,ZZ)
 647 NEXT
 450 \text{ NIM}(Z) = \text{NIM}(Z) / \text{NU}
```

```
651 \text{ YOM}(Z) = \text{YOM}(Z) / \text{NU}
652 \text{ XAM}(Z) = \text{XAM}(Z) / \text{NU}
655 \text{ NIM}(Z) = SQR \left( \text{NIM}(Z) / (NU - 1) \right)
660 \text{ YOM}(Z) = SQR (YOM(Z) / (NU - 1))
665 \text{ XAM}(Z) = SQR (XAM(Z) / (NU - 1))
666 \text{ MN}(Z) = SQR (MN(Z) / (NU - 1))
667 \text{ MX}(Z) = SQR (MX(Z) / (NU - L))
668 \text{ MY}(Z) = SQR (MY(Z) / (NU - 1))
670 NEXT
675 HOME: PRINT "QUEL NOM DONNEZ-VOUS A CE FICHIER?"
680 PRINT "ECRIRE S>XXXX POUR MAGIE-GRAF ": INPUT MG$
690 DATA 72,72,76,76,80,80,90,90,94,94,98,98
695 FOR A = 1 TO 12: READ XX(A): NEXT
700 FOR L = 1 TO 100: VT%(L,0) = L: NEXT
710 FOR L = 101 TO 112:VTX(L,0) = XX(L - 100): NEXT
715 GOTO 900
720 PRINT D$; "OPEN"; MG$
725 PRINT D$; "WRITE"; MG$
730 PRINT 112
735 PRINT 8
740 PRINT R$
745 PRINT 2
750 FOR E = 1 TO 4: PRINT VN$: NEXT
755 PRINT B
760 FOR I = 0 TO 7
765 PRINT ID$
770 PRINT 112
775 FOR J = 1 TO 112
780 PRINT VT%(J, I)
785 NEXT
790 NEXT
795 PRINT D$; "CLOSE"; MG$
800 STOP
900 FOR M = 1 TO 7
905 \ VTX(101,M) = MM(M) + MIM(M)
910 VT%(102,N) = MM(N) - NIM(N)
915 \text{ VT}(103, \text{M}) = \text{MM}(\text{M}) + \text{YOM}(\text{M})
920 \text{ VT}(104, \text{M}) = \text{HM}(\text{M}) - \text{YOM}(\text{M})
925 \text{ VT}(105, \text{M}) = \text{MM}(\text{M}) + \text{XAM}(\text{M})
930 VTX(106,N) = NM(H) - XAM(N)
935 \ VTX(107,M) = MM(M) + MN(M)
940 \text{ VT}(108,N) = MM(N) - MN(N)
945 \text{ VT}(109, \text{H}) = \text{HH}(\text{H}) + \text{HY}(\text{H})
950 \text{ VT}(110, \text{M}) = \text{MM}(\text{M}) - \text{MY}(\text{M})
955 \text{ VT}(111, \text{M}) = \text{MM}(\text{M}) + \text{MX}(\text{M})
960 \text{ VT}(112, \text{M}) = \text{MM}(\text{M}) - \text{MX}(\text{M})
965 NEXT
970 60T0 720
1208 PRINT D$; "CATALOG, D2"
1210 GOTO 70
```