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Le document ci-joint présente les résultats de mon travail de recherche 

effectué dans le cadre d'une maîtrise scientifique (classe B) en Sciences de 

l'Environnement (programme 3403). Le but de cette recherche était 

d'étudier les causes de la perte de l'insecticide biologique Bacillus 

thuringiensis serovar. israelensis (B. t. i. ) en rivières. Pour se faire, il 

était nécessaire de mesurer la dispersion du larvicide (B. t. i. ) dans l'eau 

de rivière, puis de déterminer si la toxine de B. t. i . se retrouvait dans 

l'eau de la nappe hyporhéique ou associée aux substrats benthiques tels la 

mousse, l'herbe, le périphyton et les sédiments. 

Problématique 

Le B. t. i. est un larvicide biologique de plus en plus utilisé lors des 

programmes de contrôle des insectes piqueurs. La ou les toxines 

responsables de son activité sont produites par la bactérie au moment de la 

sporulation. Suite à sa production en fermenteur la ou les toxines sont 

préparées en diverses formulations en y ajoutant des produits et des 

additifs propres à favoriser la dispersion, la miscibilité avec l'eau, la 

conservation ainsi que l'ingestion par les larves. Ce dernier paramètre est 

primordial car il est reconnu que le mécanisme d'intoxication par le 

B. t. i. est déclenché dans un milieu hautement alcalin (pH::::: 1 0), ce qui est 

le cas de l'intestin moyen des larves de diptères. Ce mode d'action 

particulier explique la très haute spécificité du B. t. i. et du même coup, le 

distingue des insecticides de contact. 

Lors de la préparation du larvicide, on s'efforce d'obtenir un maximum 

de toxines associées aux éléments de formulation sous forme particulaire 

de taille optimale allant de 35 à 50 Jlm. Il est maintenant reconnu que ce 



gabarit rencontre les critères de sélectivité alimentaire des organismes 

cibles. 

Le B . t. i. offre une spécificité marquée pour les larves de certains 

diptères (mouches noires et moustiques), car contrairement aux produits 

chimiques, il ne produit que très peu d'effets sur la faune non-cible. 

D'autres événements contribuent à augmenter l'utilisation du B. t. i .. En 

effet, il s'agit souvent de l'unique alternative pour contrer les foyers de 

résistance aux produits chimiques, et de plus il est parfois le seul produit 

autorisé par législation, sur certains territoires. 

Cependant, sous certaines conditions d'application, ce larvicide biologique 

offre dans les cours d'eau, des performances médiocres en raison d'une 

portée réduite. La portée d'un produit (larvicide) se définit comme étant 

la distance en aval du point d'épandage à laquelle un taux de mortalité 

souhaité (normalement 95%) est maintenu. Une portée réduite aura pour 

conséquence la multiplication des sites d'épandage le long du cours d'eau à 

traiter, ce qui augmentera le coût des opérations de contrôle. Par 

opposition, les produits chimiques (de nature soluble) se caractérisent par 

des portées pouvant aller à des dizaines de km alors que le B. t. i., dans 

les pires conditions ne portera qu'à des dizaines de mètres. 

Il existe une corrélation entre la faible portée du B. t. i. et certaines 

caractéristiques des rivières, tels le faible débit, la densité de la végétation 

aquatique, le rapport élevé entre la surface des substrats et le volume 

d'eau. Cependant, à notre connaissance, aucune étude n'a eu pour objet de 

déceler la présence du B. t. i. associé à différents substrats benthiques ou à 

tout autres éléments de rivière. Nous considérons les divers 



compartiments que sont les substrats tels la mousse (Platylonella lescurii ), 

les herbes (Gramineae sp ), le périphyton, les sédiments et la zone 

hyporhéique, comme pouvant jouer un rôle de réservoirs (puits) dans 

lesquels une partie de la fraction toxique du B. t. i. soit susceptible d'être 

déplacée et retenue, au détriment du volume d'eau courante accessible aux 

larves de mouches noires, organisme cible du B. t. i. en eau courante. Ce 

travail prétend contribuer à une meilleure compréhension du 

comportement du B. t. i. en rivières, à identifier les causes de la perte 

puis mesurer l'importance relative de ces dernières. 

Résumé des résultats de l'étude 

Les résultats de l'étude et les mises au point techniques nécessaires à sa 

réalisation ont donné lieu à la rédaction de trois articles. 

Un premier, article intitulé "Loss of B. t. i. larvicidal activity and its 

distribution in benthic substrates and the hyporheic zone of streams" 

rédigé en conformité avec le "Journal canadien des sciences halieutiques et 

aquatiques" (Canadian Journal of Fisheries and Aquatic Sciences) présente 

les conclusions se rapportant de manière spécifique à la problématique. 

Cette étude confirme que les doses de B. t. i. (Tableau 1), calculées à 

partir de l'aire sous les courbes des Figures lb, 1 d et 1 f, diminuent de 

manière exponentielle (Figure 2) en aval du point d'épandage. Les divers 

substrats benthiques contribuent à retenir une partie des cristaux toxiques 

(Tableau 4). Par ordre croissant d'importance, les contributions des 

substrats sont de 5% pour les sédiments et le périphyton combinés, de 

10% pour la mousse seule, alors qu'aucune perte significative n'a pu être 

correlée à la présence d'herbes. Les larves, ainsi que l'ensemble des 



organIsmes filtreurs présents dans le cours d'eau au moment de 

l'application du B. t. i. peuvent contribuer pour 5% de la perte, et cela en 

prenant des taux d'ingestion et des densités de population extrêmes. La 

principale cause du retrait rapide de B. t. i. est imputable à sa pénétration 

dans la couche hyporhéique. Les concentrations en larvicide des 

échantillons d'eau provenant de sondes à des profondeurs de 15, 20, 30 

cm (Figure 3) sous le lit de la rivière, (Figure 3), montrent que la zone 

hyporhéique contribue à elle seule, pour plus de la moitié du B. t. i. 

perdu., à débit hyporhéique égal à celui du cours d'eau (Tableau 2). 

L'ensemble des résultats de cette partie de recherche indique que la 

mesure directe du B. t . i. par essais sur des larves néonatales de 

moustiques a permis de mesurer la perte de larvicide sur un cours d'eau 

et de déceler la présence de toxicité associée aux substrats benthiques et à 

la zone hyporhéique jusqu'à une profondeur de 65 cm (Tableau 3). Cela 

permet de saisir l'importance des interactions de la zone hyporhéique en 

regard du matériel particulaire et d'ouvrir des voies en vue de 

l'amélioration des formulations de B. t. i .. 

Ayant de nombreux échantillons à analyser, nous devions avoir recours à 

la congélation afin d'en minimiser la détérioration. Nous avons mesurer 

l'effet de la congélation et celui de la présence de matière en suspension 

sur des solutions aqueuses de B. t. i., semblables aux échantillons de 

terrain. Les résultats de cette deuxième partie sont présentés dans l'article 

intitulé "Effects of Freezing and Field-Collected Substrates on the 

Efficacy of Bacillus thuringiensis serovar. israelensis as Determined 

Through Bioassays in the Laboratory" dont la rédaction se conforme aux 

exigences de la revue "Biocontrol Science and Technology". 



Afin de démontrer l'effet de la congélation et celui de la concentration en 

B. t. i . au moment de la congélation, des solutions de 1, 10, 100 et 1000 

mg/l ont été préparées congelées et décongelées 0, 1, 2 et 3 reprises, puis 

testées à une concentration finale de 50 ~g/L. Les résultats de le Tableau 1 

indiquent que la concentration au moment de la congélation n'a pas d'effet 

sur la mortalité alors que chaque cycle gel-dégel additionnel impose une 

baisse de mortalité des échantillons. En valeurs absolues, les mortalités 

passent de 100% à 64% suite à la première congélation, puis à 46% à la 

deuxième congélation, alors que la troisième réduit la mortalité à 38% de 

la valeur initiale. Ces valeurs indiquent que la perte de mortalité est de 

forme exponentielle négative. 

Les essais, sur larves de moustiques, de solutions contenant une 

concentration fixe de B. t. i., mais des concentrations en seston pouvant 

excéder 5 fois la valeur normale dans le cours d'eau étudié, indiquent 

qu'il existe une corrélation entre la perte de mortalité et l'augmentation 

de la quantité de matière en suspension (Figure 2). De manière à mesurer 

la présence de toxines de B. t. i. associées aux végétaux, le protocole 

expérimental implique de broyer 500 mg de plantes dans 20 ml d'eau. 

Nous avons fait une série de solutions de concentration allant de 750 à 

5000 ~g/L de B. t. i. toutes préparées avec 12,5 mg/L de mousse broyée. 

La pente et la concentration médiane létale (CL50) de cette droite 

standard, obtenues par analyse probit, servent de point de comparaison 

avec les paramètres d'une droite standard préparée avec la même 

substance, mais sans la mousse. La CL50 passe de 52 à 2282 ~g/L en 

présence de la mousse alors que les pentes sont semblables (Figure 3). 

Ceci indique que la présence d'une grande quantité de matière solide dans 



les échantillons de B. t. i. ne modifie pas le mécanisme d'action de la 

toxine, puisque la pente de la droite n'est pas changée, alors que la CL50 

augmente par un facteur de 44 fois. 

Devant l'importance de l'effet provoqué par la congélation d'une solution 

aqueuse de B. t. i., pouvant initialement produire 60% de mortalité, nous 

avons voulu faire une étude plus approfondie de l'effet du gel/dégel sur 

des solutions de B. t. i.. Cette fois, le protocole expérimental incluait 

l'analyse de séries de solutions de B. t. i. non-congelées ou congelées 1,2, 

3 et 4 fois. Les tests effectués à partir de ces séries de solutions ont permis 

de révéler l'effet du gel sur les paramètres des droites probits (pentes des 

droites et CL50). Les résultats de cette troisième partie se retrouvent dans 

l'article intitulé "Reduction of mortality rates and CL50 of B. t. i. aqueous 

suspensions due to freezing and thawing" rédigé suivant les exigences de 

la revue "Journal of the American Mosquito Control Association". Les 

résultats de le Tableau 2, ligne B, confirment que la concentration d'une 

solution au moment de la congélation est sans effet. Cette ligne regroupe 

des droites probit complètes faites à partir de solutions congelées à 1, 5, 

10, et 20 mg/L. Un test de X 2 est utilisé pour mesurer le parallélisme et 

l'homogénéité des CL50 des droites probits obtenues à partir des 

différentes préparations, mais pour un même nombre de cycles gel-dégel. 

Les X 2 de la ligne F indique que les 19 droites obtenues ne sont pas toutes 

parallèles entre elles, alors que les X 2 des lignes G et H montrent que les 

13 droites obtenues après 0, 1 et 2 cycles de gel-dégel sont parallèles entre 

elles tout comme les 6 droites obtenues après 3 et 4 congélations. Ce 

regroupement des courbes 0-1-2 et 3-4 est visible sur la Figure IF. On 

voit aussi l'augmentation de la CL50 à mesure que le nombre de cycle 



gel/dégel est augmenté. Les valeurs de la CL50 du groupe de test pour un 

nombre donné de cycle gel-dégel, sont présentée au Tableau 3. La figure 

2 montre que la CL50 augmente de façon exponentielle en fonction du 

nombre de cycles. Cette partie démontre qu'à chaque congélation, un 

échantillon contenant du B. t. i . perd de sa toxicité. 

L'ensemble des travaux de terrain et des travaux de laboratoire dont cette 

recherche a fait l'objet contribuent à une meilleur connaissance du B. t. i .. 

Nous avons démontré que la présence de matière en suspension et la 

congélation de solutions de B. t. i., influençait la réponse des essais sur 

larves de moustiques. Dans le futur, on aura intérêt à tenir compte de ces 

deux paramètres lors de la préparation de protocoles expérimentaux afin 

de valider les résultats des essais biologiques. La détection de toxines de 

B. t. i. associées à certains substrats benthiques et dans la nappe 

hyporhéique viennent élucider les causes de la perte rapide du B. t. i . en 

eau courante. L'importance relative des pertes est susceptible d'orienter 

les travaux visant à améliorer les formulation de ce produit. L'importance 

de la rétention de B . t . i . dans la zone hyporhéique aura sans doute un 

impact sur les travaux concernant le transport et la rétention de matériel 

particulaire en rivière. 
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Loss of Bacillus thuringiensis var. israelensis 

Larvicidal Activity and its Distribution in Benthic 

Substrates and the Hyporheic Zone of Streams 

Abstract 

Numerous field trials have indicated that the effectiveness of Bacillus 

thuringiensis var. israelensis (B. t. i. )is limited by a poor carry in 

streams. So far the mechanisms responsible for the removal of 

toxicity from a stream have not been identified. Two streams were 

treated with B. t. i. and experiments were conducted in order to 

monitor the transfer of B. t. i. toxicity from the channel water to 

different compartments of the stream habitat. These inc1uded benthic 

substrates such as sediments, periphyton covering bedrocks, 

vegetation (moss and grass) and water samples taken from hyporheic 

probes (15, 35 and 65 cm deep). To measure the B. t. i. toxic activity, 

aIl samples were analyzed by bioassays using mosquito neonate larvae. 

B. t. i. was detected in water samples taken from the probes, and the 

results indicate that shallow underflow could account for a significant 

fraction of B. t. i. loss. Another fraction of the loss can be accounted 

for by other compartments of the stream habitat, as confirmed by 

successfull monitoring of toxicity associated to benthic substrates. 

Introduction 

Shortly after being isolated by Goldberg and Margalit (1977), 

Bacillus thuringiensis var. israelensis (B. t. i. ) was developed as a 

microbial insecticide and commercialy formulated into primary 
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powders, wettable powders, aqueous concentrates, emulsions and 

granular formulations. It is currently applied in rivers, streams and 

ponds as a larvicidal control agent for blackflies and mosquitoes. A 

proteinaceous crystal (o-endotoxin) produced during sporulation of 

B. t. i . is responsible for its activity. A widely accepted model for its 

mode of action, proposed by Knowles et al. (1989), involves the 

binding of the toxines) to receptors of the epithelial midgut cells of 

the larvae. The ingestion of the product by the target organisms has 

been recognized as the first and necessary step of the intoxication 

process. In order to meet the requirements of larval selective feeding 

due to cephalic fan ray sizes and spacing (Kurtak 1978), this biocide 

is made into particulate formulations (Molloy et. al. 1984). Studies 

conducted on the periphytic fauna (nontarget organisms) 

demonstrated the high specificity of the B. t. i. toxin (Back et al. 

1985, Merrit et al. 1989). This product is also biodegraded under 

natural conditions so it is not accumulated along the trophic chain. 

These facts make the product a suitable alternative to traditional 

insecticides when environmental concerns prevent the use of 

chemicals or to overcome cases of resistance to the latter. 

Many field and laboratory trials have showed that B. t. i. 

formulations offer a mu ch shorter carry distance in rivers than that 

observed when chemical larvicides are being used. The carry of a 

larvicide is the distance downstream of the application point at which 

a given efficacy (usually 95% mortality) is maintained. If this 

distance is reduced, the application points have to be closer (thus 

more numerous) along a given stretch of river. This, in turn, has a 
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major drawback on the economics of a control program. So far we 

know that the carry is reduced under certain field conditions, but to 

our knowledge nobody has ever looked at the distribution of the 

B. t. i. toxic activity simultaneously in the main-channel water of a 

stream and in the natural surrounding stream compartments 

(vegetation, periphyton, sediments, hyporheic zone). Physical, 

chemical or immunological methods to detect the presence of the 

proteic crystals in field samples have serious background problems 

and do not give a true indication of the toxic activity. Furthermore, 

field mortality counts reflect an observed and final toxicity useful in 

a very specific situation, the one prevailing at the time of the 

experiment. Because of the preceeding, the study of the behavior of 

B. t. i. in flowing water has been interpreted mainly from spore, 

viable or total cell counts (Undeen and Colbo 1980, Frommer et al. 

1981a & 1981b, Merritt et al. 1989) or from larval mortality (Lace y 

& Lacey 1981, Lacey and Undeen 1984). Although it is generally 

assumed that spores disperse in water in a similar manner as the 

toxic fraction of B. t. i., Ohana et al. (1987) have demonstrated that 

spore counts and toxicity were discordant in the presence of mud. 

Recently Merritt et al. (1989) concluded that "direct spore counts in 

river water samples may not accurately reflect B . t. i. carry or 

toxicity" . 

The literature supplies useful information on the behavior of B. t. i. 

in rivers. Results of field trials conducted in Newfounland streams, 

having flow rates ranging from 200 to 3400 L·min- 1, showed a 

positive correlation between downstream carry and stream flow 
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rates, the carry being longer with higher discharge values (Colbo 

and Undeen 1980). This hypothesis of positive correlation of carry 

and dis charge as been widely accepted (Gaugler and Finney 1982, 

Undeen and Lacey 1982, Riley and Fusco 1990). But Lacey and 

Undeen (1984) in a comparative study of 3 B. t. i. formulations 

(Teknar WDC (Sandoz), Vectobac WP (Abbott) and Bactimos WP 

(Biochem)) stated that, according to their results, the observed carry 

was not influenced by different discharges, although they admitted 

that the difference in discharge values may have been insufficient to 

produce a significant difference in the carry of the larvicide. 

Undeen and Colbo (1980) also suggested that the large substrate­

surface-area/volume ratio inherent in small streams could be the 

main factor of removal of B. t. i. by stream flora and fauna. It 

introduced the notion that flow rates alone could only be used as 

crude estimators of the carry and that accurate means of evaluating 

the stream substrate surface area were needed to predict the carry 

more accuratly. The density of vegetation in a stream is directly 

related to the total interacting surface and sorne shared the opinion 

that vegetation (and other natural substrates) afforded a significant 

contribution to the removal of toxic activity from the channel water 

(Fromer et al.1981 b, Lacey and Undeen 1984, Undeen et al. 1984). 

Following laboratory evaluations of a commercial primary powder 

formulation, Sinègre et al. (1981) suggested that sedimentation of the 

active particles could be responsible for reducing the efficacy of 

B. t. i. formulations, but Molloy et al. (1984) indicated that the 

settling rate of Teknar® in still water was less than 5 mm·h- 1. To 
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prevent sedimentation, an oil based formulation of Teknar® was 

developed, it was believed that keeping as much active moiety near 

the surface of the water would provide a better carry. The study of 

Lacey and Heitzman (1985) on the efficacy of seven flowable 

concentrate formulations failed to indicate an improved performance 

of this type of formulation compared to aqueous concentrates. 

Althought many hypotheses have been put forward to explain the 

loss of B. t. i . toxicity in flowing water, nobody has ever looked for 

the presence of B. t. i. in sediments, periphyton or aquatic vegetation 

and none estimated their contribution in reducing the carry of this 

larvicide. 

Whatever the mechanism of removal of the B. t. i. toxic crystal, it is 

possible to estimate contributing field parameters. The behavior of 

the concentration of larvicide along the stream can be modelled by a 

diffusion-transport equation (Taylor 1953, Khalig 1978). Chalifour 

et al. (1990) and Chalifour and Delfour (1991) successfully 

integrated this relation into an optimization model of insecticide 

treatments with B. t. i. in rivers . 

Numerous studies have indicated that there is an important exchange 

of water between the main channel of a stream and a zone 

immediately below it. This part of the stream is called the hyporheic 

zone and it contains an interstitial viable habitat (Stanford and Ward 

1988). It is characterized as being spatially limited to no more than a 

few meters, in most cases centimeters, below and away from the 

river channel. This zone has been studied in the perspective of solute 
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ex change and transport (Bencala 1983, Triska et al. 1989 and 1990) 

and with regard to its denitrification potential (Duff and Triska 

1990). Our study attempted to assess the presence of B. t. i. toxic 

activity in this compartment of river habitat. 

Field trials were conducted in two streams, and we used bioassays to 

study the behavior of aB. t. i. based formulation injected into the 

streams and to measure the relative role that the different stream 

compartments play in the removal of the B. t. i. toxic crystals. 

Study site Fraser 

Studies were conducted in June 1990, October 1990 and June 1991 at 

the outlet of Petit Lac Fraser, in the Réserve Saint-Maurice, in the 

southem Laurentian region of the province of Québec (460 56' N), 

(73 0 04' W). The lake empties through a small cascade (1.9 m high) 

and the stream flows rapidly in small pools and riffles with an 

average slope of 4% over the studied section that mns from 20 to 

215 m from the outlet. The stream bed is quite diversified, 

consisting of sandy areas to small pebbles and large rocks. An 

injection station (injection point) was located 20 m from the outlet 

and the open-channel sampling stations were located downstream 

from the injection point at 30, 107 and 215 m in 1990 and a 

hyporheic probe was driven to a depth of 15 cm at 75 m. In June 

1991 an open-channel sampling station was located at 75 m together 

with a hyporheic probe driven to a depth of 20 cm. In October 1990 

three probes reaching down to 15, 35 and 65 cm were driven side by 

side at this same location. Moss (Platylonella lescurii ) covered more 
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than 50% of the substrate surface in the first 70 m of the stream but 

less than 10% of the remaining section. Aquatic vegetation 

(gramineae family) was present at a few locations along the first 

100 m section. Periphyton covered the cobbles and pebbles to a 

variable extent according to current velocity and the shading 

afforded by the forest cover. Small pools, where sediments settles, 

were found in various locations along the last 100 m stretch. 

Study site Boitel 

In 1991 the studies performed were extended to a second stream. 

Ruisseau Boitel is the outlet of Lac Boitel (460 57' N), (73 0 02' W), 

also located in the Réserve Saint-Maurice. This stream flows 

turbulently for 1.5 km in a steep-sided valley shaded by mixed 

forest. A uniform gradient precludes the presence of pools. The 

stream bed is composed of rock material ranging from gravel and 

sand to large boulders (somewhat larger than the average substrate 

of Ruisseau du Petit Lac Fraser) and the moss coverage is minimal 

compared to the former site. The injection point was located about 

10 m from a small riffle wich indicated the beginning of the lake 

outlet. An open-channel sampling station together with a 30 cm deep 

hyporheic probe was located at 876 m. 

Materials and methods 

Field trials 

Four field experiments were conducted in order to assess a) the 

dispersion of B. t. i. toxicity (measured by bioassays) in open 

8 



channel, b) its presence in the hyporheic zone, and c) its association 

with natural substrates su ch as periphyton, vegetation and sediments. 

1) Starting in June 1990, we measured the carry of B. t. i. in the 

Fraser stream and looked for toxic activity transfer from the channel 

water onto natural substrates such as: periphyton, sediments, moss 

and grass, and into the water of the hyporheic zone. Sampling was 

performed before, during and after a 20 min injection of larvicide 

into the open-channel water. 

2) We ran a second experiment in October 1990. Following a 10 

min injection of larvicide into the open-channel water, we sampled 

the moss in order to investigate the dynamics of B. t. i. toxic crystal 

sorption/desorption process (by the moss) over a 5 h period. 

Simultaneously, we sampled water from hyporheic probes at various 

depths (15, 35 and 65 cm) to obtain information on the penetration 

and displacement of B. t. i. beneath the stream bed. 

3) In June 1991 we injected B. t. i. into the Fraser stream for 20 

min and an open-channel sampling station was located beside the 

hyporheic probe at 75 m. 

4) In June 1991 we injected B. t. i. into the Boitel stream for 20 min 

to assess the presence of B. t. i. in the hyporheic zone as far as 876 m 

from the injection point. 

Stream discharge measurements 

The flow rates were calculated on each day of field experiments. 

Water velocity was measured using a Pygmy CUITent meter (Kahl 
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Scientific Instrument Corp., California, U.S .A.). The total cross 

section of the stream was separated into 30 cm wide sub-sections, the 

water velocity was measured at mid-depth of each sub-section. The 

average velocity was used to calculate the partial flow of a given 

sub-section, they were then summed to give the total stream 

discharge. The discharges at the time of experiments were 150 

L·sec-1 in the Fraser stream in June 1990, 175 L·sec- 1 in October 

1990, 225 L·sec-1 in June 1991, and 375 L·sec-1 in the Boitel 

stream in June 1991. These figures were used to decide on the 

appropriate mass of B. t. i . and rhodamine needed so that they would 

be detected at all stations using bioassays and a fluorometer. In 

addition, the discharge figures were necessary to assess the total mass 

of larvicide passing at a given station in order to calculate the loss in 

mass unit. The mass of B. t. i . passing throught a given section of the 

stream is the product of the dose times the discharge of the stream, 

where the dose is the product of the B. t. i . concentration by the total 

time of passage (mg/L x min or mg·min·L-l) . 

Hyporheic probes 

The hyporheic probes were made of a 4 cm (ID) steel pipe mounted 

with a solid cone shaped tip welded to the bottom, and perforated 

with 35 small holes in its lower 8 cm. At least 24 hours before the 

experiments, they were driven to the desired depth (from the center 

of the perforations), and flushed (using a bilge pump) until samples 

of c1ear water could be retrieved with a 50 ml syringe mounted with 

the appropriate length of 3 mm (ID) Tygon tubing.The length of the 
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sampling apparatus was adjusted to reach down to the level of the 

center of the perforations. 

Injection procedure 

Injections of rhodamine WT as weIl as B. t. i. were performed using 

a 20 L Mariotte bottle. This technique aIlowed us to make the 

addition of rhodamine WT or B. t. i . at a steady rate throughout the 

dripping period. We adjusted the bottle outlet so the desired mass of 

product would drip at a rate of 1 liter per minute (L·min- 1). The 

injection was done in the main channel of the stream far enough 

upstream of the first sampling station to ensure complete vertical 

mixing of the product before it reached it. AlI sampling schedules 

were synchronized with the beginning of the injection period. 

Rhodamine WT tracings 

In order to maximize the information that we can get out of a set of 

B. t. i. experiments, a preliminary tracing with the fluorescent dye 

rhodamine WT (Crompton &Knowles, Pennsylvania, U.S.A., the 

stock solution is 200 g. L -1) was performed to estimate the time of 

passage and the diffusion pattern of the larvicide in the stream and in 

the hyporheic zone. We used 325 ml (June 1990) and 75 ml (June 

1991) of rhodamine WT in the Fraser stream, and 125 ml in the 

Boitel stream, June 1991. These volumes were adequate to visuaIly 

locate the position (time wise) of the rhodamine slug at aIl stations 

and to produce a fluorescent signal in samples taken from the 

hyporheic probes and from the open-channel water. After the 

tracing, the samples were immediatly analysed for rhodamine 
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content using a Turner fluorometer (model 110). The results were 

used to decide on the final sampling schedule to be folIowed during 

the B. t. i. treatment. The rhodamine and the B. t. i. treatments were 

performed on successive days making discharge measurements each 

moming to ensure that no significant changes had occured during the 

night. 

Larvicide (B . t. i . ) tracings 

The tracings were performed by injecting a mass of B. t. i . (Teknar 

HPD®, Zoëcon lot # 0080227, 3000 Aedes aegypti units per mg, 

used throughout this study) sufficient to produce 100% mortality of 

the black fly larvae over the entire studied segment. It consisted of 

2.84 and 2.50 L in the Fraser stream in June 1990 and 1991 

respectively, and 4.70 L in the Boitel stream (June 1991). Artificial 

substrates made of undulated plastic tiles were installed at different 

locations 2-3 days before treatment to permit larval attachment and 

after treatment, to assess the mortality in the stream. 

Sampling procedure 

Rhodamine samples were collected by hand in the open channel by 

plunging a 30 ml glass boule into the water at the desired time. They 

were drawned from the hyporheic probes using a 50 ml syringe by 

pulling the plunger gradually over a 6 to 10 seconds time period, 

and placed in glass botdes. Water samples containing B. t. i. were 

obtained in a similar manner but they consisted of 125 ml volumes 

collected in plastic disposable containers. 
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Substrates were collected in different fashions according to their 

nature. The top layer of sediments was collected by suction through 

a 7 mm (ID) Tygon tubing. Periphyton samples were obtained by 

shaking for a minute a given volume of pebbles (500 ml) with 200 

ml of water in a 1.5 L plastic container. This method was prefered 

over hand-brushing of individual stones because it ailowed a random 

sampling of substrates that included stones we would not necessarily 

be able to hold and brush. Vegetation (moss and grass) was sampled 

by hand and the mate rial placed in 18 oz sterile sampling bags 

(Whirl-Pak). All samples were collected 60 to 90 minutes after the 

passage of the B . t. i . slug. Before injection, stream water and 

samples of ail types were collected to serve as controls. In addition a 

sample of the B . t. i . solution from the Mariotte bottle was taken 

back to the laboratory and diluted before freezing. Dilutions of 

known concentrations were used to make a standard bioassay curve 

of B. t. i. with neonate larvae. 

Preservation and treatment of samples 

B. t. i. samples were kept in coolers before being placed at -25°C 

(samples of June 1990), or kept in a refrigerator at 4°C (samples of 

October 1990 and June 1991). The frozen samples were thawed out 

at 4°C the day before bioassaying. The necessary volume of liquid 

samples (15 to 20 ml) were transferred to test tubes and the samples 

were returned to the refrigerator or to the freezer after the assays 

were completed. AH the tubed samples were aHowed to stand at 

room tempe rature for 2 hours before bioassays, to prevent a cold 
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shock to the test organlsms. Dilutions were made to generate 

mortalities between 10 and 90%. 

Samples containing sediments and periphyton were exposed to the 

larvae undiluted or diluted as needed. By comparing the mortalities 

to a standard curve we obtained the B.t.i. concentration (in Jlg·L-l of 

formulation) of the samples, By filtration (0.22 Jlm) and drying at 

100 oC for 24 hours we measured the mass of solids by volume units 

of samples, this allowed us to transform these mortality figures in 

mass units of B.t.i. per mass unit of substrates. Samples of 500 mg of 

the strained vegetal substrates (moss or grass) were crushed in 20 ml 

of stream water using a 30 ml tissue grinder (Potter-Elvehjem). The 

resulting preparation was exposed to the larvae after appropriate 

dilution. 

Bioassays 

In order to make sure that we would really be foilowing the toxin on 

different substrates and in the hyporheic zone, we used bioassays. In 

the present study, bioassays were performed under laboratory 

conditions using either Aedes triseriatus (Say) or Aedes atropalpus 

(Coquillett) neonate larvae. This choice was prompted by the fact 

that freshly hatched organisms offer a greater physiological 

synchronicity and a greater sensitivity. The method used was based 

on the one described by Ibarra and Federici (1987) in which a single 

neonate larva is placed in an individual weil of a microtiter plate (96 

holes) and then exposed to dilutions of the samples to be tested. In 

order to minimize experimental variations, ail samples were assayed 
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in triplicates of 32larvae, perfonned on 3 successive days using eggs 

of the same degree of maturity. The mortality counts were made 

after 24 hours of contact. The mortality obtained with field samples 

was then compared with a standard curve (made with B .t.i. in stream 

water) in order to detennine the concentration of B.t.i. toxic activity 

(expressed in Jlg of formulation per liter) present in the unknown 

samples. 

To illustrate the increased sensitivity of neonates, it is worth 

mentioning that for a series of B .t.i. suspensions prepared in distilled 

water, the median lethal concentration (Le50) is 10 to 12 times 

smaller than with early 4TH instar larvae. This technique not only 

allowed us to determine small amounts of B.t.i. in various samples, 

but also permitted us to process up to 8 samples per day including a 

standard curve. 

Statistical analysis 

Each set of bioassays was statistically analyzed using probit analysis 

(Finney 1971). The percent mortality (in probit units) is expressed 

by a linear relation, determined by a maximum likelihood 

procedure, as a function of the logarithm of the concentration (in 

Jlg·L-l). Natural mortalities are taken into account using Abbott's 

formula. From the regression line, we were able to convert the 

mortality rate obtained for a given sample into concentration of 

B .t.i. formulation. 
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Results 

Figure 1 (la to If) shows the results obtained at the 3 open-channel 

stations after the rhodamine WT and the Teknar® HPD injections.on 

the Fraser stream in June 1990. Figure la represents the results of 

the rhodamine WT tracing and Figure lb, the results of the B. t. i. 

tracing at the first station, located 30 m downstream from the 

injection point. The rhodamine and the B. t. i. curves (la and lb) 

are located around the same position on the time scale, this is also 

true for the pairs of curves (Fig lc-ld and le-If) representing the 

rhodamine WT and B. t. i. tracing at the second (l07 m) and third 

(l95 m) stations. At 107 m (lc and Id), we can see a reduction in 

concentration values of both curves and a spreading out or trailing 

on the time scale. This spreading and trailing is even more 

prononced at the last station (l95 m, Fig If) where the B. t. i. 

concentrations reach a maximum of 5 mg-L-1 compared to 16 and 

10 mg-L -1 at the first and second stations, respectively. The 

maximum concentrations of rhodamine WT are 375, 325 and 275 

Ilg-L-1 at the 30, 107 and 195 m stations, respectively. 

From these figures, we can ca1culate the dose (in mg-min -L -1) for 

each open-channel water station by estimating (numerically) the area 

under the concentration curve. The product of the dose by the 

measured discharge (in L-min-1) at the time of the treatment gives 

the quantity of product in mass unit (mg or kg) that passed at each 

station (Table 1). Knowing that we injected a total of 2.84 kg of 

B. t. i., the percentage of loss of larvicide at the different stations Can 
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be calculated and are presented in the far right column. We can see 

that 30 meters downstream from the injection point (station 1) 15% 

of the larvicide failed to be detected in the open-channel water. At 

the 107 m and the 195 m stations the loss was 46% and 67%, 

respectively. According to a one-dimensional diffusion-convection 

model, the decrease of the dose over the 3 stations respects a negative 

exponential curve (Fig 2a). After a natural logarithmic 

transformation of the dose (Fig 2b) and using a linear regression 

procedure we obtained a removal length (xr) of 174 meters. This 

coefficient (xr) corresponds to the rate of decrease of the dose in the 

exponential model and it is a function of the removal coefficient and 

the mean velocity of the one-dimensionnaI advection-diffusion 

equation (Khalig, 1978). The individual contributions of the 

different compartments considered in the present paper (moss, grass, 

hyporheic zone, periphyton and sediments) are contributing to this 

removal coefficient. 

The importance of the hyporheic zone in the removal of B. t. i. was 

never studied before. Figure 3a and 3b shows the results of 

rhodamine WT and B. t. i. sampling in a 15 cm deep hyporheic 

probe located 75 m from the injection point (Fraser, June 1990). 

Both were found undemeath the stream bed. Compared to the curves 

of the open-channel stations (Fig la to Id) we observed that the 

maximum concentrations are lower, the curves are delayed and 

trailed longer. Compared to the B. t. i. concentrations at the first 2 

open-channel stations (16 and 10 mg·L-l), the maximum in this 

hyporheic probe was 1.7 mgoL-l. Since B. t. i. was found moving 
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under the stream bed for the first time, this experiment was repeated 

in June 1991 on the same stream. A probe reaching a depth of 20 cm 

and an open-channel sampling station were located side by side at 75 

m downstream from the injection point. It allowed us to superpose 

both, open-channel and hyporheic curves in Fig 3c and 3d. Again we 

found the same type of curve in the open-channel water and the 

B. t. i. concentrations in the hyporheic compartment reached about 

20% of the maximum value in the open-channel. In addition, we can 

see that B. t. i. curve is delayed and trailed behind after the passage 

of the slug in the open-channel (Fig 3d). In June 1991, we ran a 

similar experiment in the larger Boitel stream with an open-channel 

and a hyporheic sampling station (30 cm deep) located 876 m from 

the injection point (Fig 3e and 3f). The maximum concentration of 

B. t. i. in the hyporheic probe is reduced and its arrivaI is delayed as 

compared to the open-channel station. Although the samples were 

drawned from a greater depth, the maximum B. t. i. concentration in 

the hyporheic samples reached 75% of the maximum value of the 

open channel compared to 20% of the maximum open channel B. t. i. 

concentration when samples were drawned from 20 cm deep, on the 

Fraser stream (Fig 3d). 

To calculate the corresponding doses of B. t. i. that passed at a 

sampling depth in the hyporheic zone in order to assess the mass of 

B. t. i. moving under the stream, we wou Id need to know the 

corresponding discharge of this hyporheic compartment. But to get 

that estimation is very tedious and offers a limited confidance in the 

results. It depends on the volume of the hyporheic zone which can 
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easily exceed the volume of the open channel. In their study, 

Stanford and Ward (1988) estimated the volume of the hyporheic 

habitat on a studied section of the Flathead River (USA), to be 3 x 

108 m3 compared to 1.22 x 105 m3 for the stream channel. Triska 

et al. (1989) estimated that the interstitial water volume of a studied 

section of Little Lost Man Creek (USA) was at least equal to, or 

probably greater than the surface water volume. In addition, the 

heterogeneity in porosity and permeability of the stream bed 

mate rial is a source of variation in water retention and conductance, 

that make the measurement of the hyporheic discharge an extremely 

difficult task and thus irrelevant to the scope of this study. 

From the results of the 1990 trial, we calculated the dose going 

through the 15 cm probe and then calculated hypothetical masses of 

B. t. i. that would have passed throught the hyporheic probe 

according to different discharge values (Table 2). During this tracing 

experiment the dis charge in the open channel was 150 L·s-l, if we 

assume a 300 L's-l discharge in the hyporheic zone this would 

produce a 0.94 kg loss of B. t. i. which is greater than the totalloss 

measured between the first and second stations (0.86 kg). But at the 

stream discharge value, the hyporheic compartment would account 

for 55 % of the total loss found between the first two stations (Table 

2). 

In October 1990, we performed an additional experiment with 

hyporheic probes driven to 15, 35 and 65 cm depths in the Fraser 

stream to analyse the B. t. i. penetration in the stream bed. Results in 

Table 3 show that following the beginning of the injection, it took 
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less than 5 min for the larvicide to reach down to 15 cm under the 

stream bed, less than 10 min to reach 35 cm and was detectable in the 

sample collected at 60 min from the 65 cm probe. The maximum 

hyporheic B. t. i. concentration was 2.98 mg.L-l at 15 cm compared 

to 25 mg·L -1 the open channel. Samples from the deeper probes 

reached 0040 and 0.36 mg·L-l suggesting that the water exchanges 

between the main channel and the hyporheic zone were significant in 

the first 15 cm but decreased sharply between 20 and 35 cm at this 

particular location (considering the 20 cm probe in June 1991). 

The mortalities observed for B. t. i. toxicity associated with benthic 

substrates are presented in Table 4. Among the vegetation collected, 

B. t. i. toxic crystals were found in much greater quantity on the 

moss than on the grass, the mortality rates being as high as 100% and 

as low as 7%, respectively. In fact, the mortalities obtained with the 

grass collected after the stream had been treated with B. t. i. are 

similar to the controls (Table 4), indicating that this type of 

vegetation is not retaining much of the toxic crystals. 

Because of the importance of the moss coverage in the first section 

of the Fraser stream (more than 50%) and thus, the large interacting 

surface it represented, we monitored (October 1990) the dynamic 

association/dissociation of the B. t. i. toxicity with this substrate. The 

results of this test are presented in Fig. 4. We can see that following 

an injection of B. t. i. at a rate of 25 mg·L-l for 10 minutes in the 

open channel, the moss sampled in the stream at 50 m became more 

and more toxic reaching a maximum 45 minutes after the beginning 

of the injection. The B. t. i. concentration values presented for the 
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moss samples are the results of bioassays after crushing 500 mg of 

strained moss in 20 ml of water. At the maximum concentration 

value (45 min) bioassays results indicated that the 20 ml suspension 

contained 0.12 mg of B. t . i. ; considering that 0.12 mg of B. t. i. 

was associated with 500 mg of moss, then as much as 240 mg of 

B. t. i. was present for each kg of strained moss. 

After that peak, the toxic activity decreases slowly to half of that 

maximum value four hours later. This indicates a relatively strong 

but reversible association of the larvicide with this natural substrate. 

In order to account for the entire loss of the 0.84 kg of B. t. i. that 

occured between the first and second open-channel stations, a density 

of 25 kg·m-2 of moss would have been necessary over that section of 

the stream. We estimated the density of the moss coverage over this 

section to be no more than 2 to 3 kg·m -2. At such density this 

substrate alone would account for 10% of the loss. 

The asssays performed on periphyton samples gave mortalities as 

high as 82% at 30 m and 30% at 107 m (Fraser, June 1990), 

indicating that this substrate is also interacting with B. t. i. (Table 4). 

If we make the hypothesis that the maximum rate of B. t. i. 

association with this substrate is the same than the one calculated for 

the moss (240 mg·kg- 1), and considering an average periphyton 

density of 0.2 kg·m-2 (dry mass) over the stream bed surface area 

between the first and second station (77 m by an average width of 

1.82 m), we come-up with a total of 6.7 g of B. t. i. formulation that 

would have been removed by this substrate. Even with a periphyton 
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density as high as 1 kg·m-2, this benthic substrate al one would 

account for only 4% of the B. t. i. removal. 

The mortalities from the moss and periphyton samples taken from 

both streams in 1991 are significant but somewhat lower than the 

year hefore. This is consistant with the fact that the doses injected in 

1991 were lower than the one in 1990. There was little toxicity 

associated with the sediments (Table 4). Due to the profile of the 

stream, the pools in which we sampled sediments were located at 

142, 187 and 202 m downstream of the injection point. These 

distances do not seem to he the sole factor of the low mortality rates 

because the moss sampled at 205 m on the same occasion gave 83% 

mortality. 
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Discussion 

For the first time, direct measurement of B .t.i. concentrations (in 

mg·L-l of a formulation) using bioassays was performed to monitor 

the carry and the loss of this larvicide in a stream. The use of the 

neonate bioasssay procedure guaranteed that we were really looking 

at the dispersion of the toxic fraction of the larvicide and not a 

component (spore or viable count) of the formulation. 

Because we intended to elucidate where the B.t.i. toxic activity was 

migrating to, the outlet of Petit Lac Fraser, a stream with a short 

removallength (xr) of 174 m, fulfilled our needs. This length value 

represents the distance at which the dose will be 37% of the initial 

dose. It is an instant picture of a treated stream and can vary 

according to stream profile and parameters such has discharge rate, 

density of natural substrates and the extent of the hyporheic zone. 

This removallength is also indicative of the field carry potential of a 

given formulation. In the prevailing conditions on the Fraser in June 

1990, the loss of B.t.i. toxic crystal was distributed over a relatively 

restricted substrate-area, allowing it to be detected. After analysing 

the open-channel water sampled at the three stations, we calculated 

that, along the first 174 m stretch downstream of the injection point, 

1.79 kg of B .t.i. formulation (63% of the injected mass) had been 

transfered from the open-channel water to other compartments of 

the stream habitat. 

Significant fractions of the missing B .t.i. were recovered in sorne 

compartments of the stream habitat. This is the first time that 
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hyporheic probes were used to study B .t.i. and we found an 

important portion of the dose under the stream hed, thus incapable of 

killing black fly larvae. We estimated that, sediments and periphyton 

would each account for about 1 % of the loss, moss (Platylonella 

lescurii ) could take up to 10% of the lost larvicide and the 

hyporheic zone accounted for 55%, or more, of the totalloss. The 

remaining portion of the loss (::::30%) could be attributed to 

underestimation of sorne contributions or that sorne were 

overlooked. For example, although the measured surface of the 

section was 140 m2, the true bed surface in contact with the B. t. i . 

toxic crystals was actually much higher. Even if we could measure 

this parameter it still would account for a small percentage of the 

total removal. 

It is difficult to evaluate the true contribution of the sediments in the 

B. t. i. removal because this substrate could he interacting with the 

larvicide not only at its interface with the channel water but at 

different levels as the water flows through the channel before it 

reaches the hyporheic zone. At the time of the experiment we were 

suspecting only a surface interaction, that is why we did not sample 

deeper into the sediments. Even if it has a small B. t. i. retention 

capacity, compared to moss and periphyton, the density of sediments 

in the stream (considering not only the surface but the entire volume 

of it) could make this substrate play a role at least equivalent to the 

periphyton in the removal of B. t. i. activity. 

In agreement with Frommer et al. (1981 a, 1981 b) who found that 

the presence of vegetation did not change mortality in aB. t. i. 
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treated stream, the smooth ribbon-like grass leaves did not retain 

much of the B .t.i. toxicity while the large surface moss did, 

suggesting that the surface area of a given substrate is influencing its 

retaining capability. We do not know yet if the B .t.i. is retained to 

substrates by a mechanical or chemical mechanism but a test using 

different B .t.i. formulations would help to elucidate this matter. 

Although a few authors have hypothesized that benthic substrates 

could play a role in the removal of B. t. i. to explain its poor carry, 

this is the first time that actual B. t. i. toxicity has been found to be 

associated with sorne substrates, thus making it unavailable for 

ingestion by filtering black fly larvae. Our results also confirmed the 

data obtained by Back et al. (1985) who found that streams treated at 

high dosage with B. t. i. induced a large mortality of Blepharicidae, 

a periphyton grazing Diptera. 

The hyporheic discharge estimation al one could make up the 

difference, the 55% contribution of this zone is estimated by taking 

an equal discharge value as the one in the open channel (150 L·s-l), 

but at 200 L·s-l (Table 2) this compartment would account for 74% 

of the loss. The other compartments could hardly make-up for the 

difference, even if their importance were greater than estimated. 

Sorne of the larvicide is removed by the filtering action of the black 

fly larvae present in the stream. A study performed by Morin et al. 

(l988b) on the same stream indicated that the ingestion rate of the 

black fly larvae was around 10-3 mm3·min- 1. Taking into account 

that the passage of the B. t. i. slug took no more than 30 min, a total 

of 2.8 x 107 larvae feeding continuously during that period would 

25 



have been necessary to remove the entire 0.84 kg of B. t. i. that was 

lost over this section. We estimated that the larval density at the time 

of the experiment was less than 1 larva per cm2, compared to a 

density of 20 larvae·cm-2 that would be needed to account for the 

entire removal of the larvicide. According to these figures, the entire 

mass of material ingested by the larvae during the experiment would 

account for 5 % of the total loss. According to Ross and Wallace 

(1983) and Morin et al. (l988a), ingestion of total seston by filter­

feeders would only account for less than a few percent of the 

B. t. i. injected. 

The river bed material (sand and debris) is likely to act as a filter for 

the water flowing through it. The trials performed with hyporheic 

probes at different depths showed that an heterogenous permeability 

prevails in the riverbed material. It appears that the permeability 

varied with the location of the probes and is a reflection of the 

morphological differences between the two streams. At a depth of 20 

cm in the Fraser stream (June 1991), the maximum concentration 

reached 20% of the open-channel concentration (Fig. 3d) compared 

to 75% at a depth of 30 cm in the Boitel stream in June 1991 (Fig. 

3±), and the trial of fall 1991 revealed that the speed of diffusion 

varied with depth, B .t.i. had reached the 15 cm probe after 5 

minutes, the 35 cm probe after 10 minutes while it took an hour to 

get to a depth of 65 cm (Table 3). If indeed the river bed material 

acts as a filter, we expect the larger particules to be retained in the 

first layer and that only finer size particules are allowed to make it 

as far as 65 cm. The B .t.i. trapped in this filter-like material would 
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be prevented from coming back to the channel water thus accounting 

for the exponential loss of larvicide that we observed. It could also 

explain why only low concentrations of B .t.i. made it to the 35 cm 

probe. We believe that the rushes of water in small turbulent streams 

could flush away filter forming material (vegetation, debris, sand, 

etc.), thus keeping a certain portion of the hyporheic zone "open" to 

the main channel. Larger and slower flowing rivers are likely to 

allow the formation of a less permeable frontier between the open 

channel and the hyporheic zone, thus reducing the water exchange 

and keeping more of the larvicide available to the target organisms 

(blackfly larvae) thus contributing to a longer carry. 

In conclusion 

The neonate larval technique was successfully used to monitor 

dispersion curves of B .t.i. in streams and to measure directly the loss 

of toxicity. It was also a very useful method to estimate the B .t.i. 

toxic activity in different compartments of the stream. Spore counts, 

have been considered as a standard technique to monitor B .t.i. 

toxicity but now that the preparations tend to be mainly sporeless, 

this sensitive, rapid and field adaptable method should be used as a 

standard procedure in field work involving B.t.i. 

The contribution of the hyporheic zone to the B .t.i. dispersion and 

loss in rivers had not been previously considered. The results 

obtained indicate that this compartment plays a major role in B. t. i. 

removal compared to natural substrates. 
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B. t. i. formulations have not really improved over the years, as far 

as downstream carry is concemed. Compared with chemical 

larvicides which, being solubles, have a much better rate of exchange 

between the hyporheic zone and the open channel water, B. t. i., a 

particulate larvicide, is most likely being trapped in this hyporheic 

zone. 

Whether or not B. t. i. formulations can be improved to reduce their 

interactions with benthic substrates and to have a better exchange 

between the two zones remains to be seen but our results indicate that 

these factors should now be taken into consideration. 
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Table 1. Calculated doses of rhodamine WT and B. t. i. that passed at 

the open-channel stations. The corresponding masses of B. t. i., 

obtained from the product of the dose times the stream discharge 

(150 L·s -1), are presented in fourth column . The percent loss of 

larvicide at the three distances , downstream from the injection 

point are showed in the fifth column . 

Station Rhodamine B. t. i. B. t. i. B. t. i 
distance dose dose mass loss 

(m) (mg·min ·L-1) (mg·min·L-1) (kg) (%) 

0 7 .22 315 .6 2.84 0 

30 7 .00 267 .0 2.40 1 5 

107 6 .67 171 .5 1.54 46 

195 6.26 103.2 0.93 67 
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Table 2. Calculated masses of B. t. i. that would have passed by the 15 cm 

deep hyporheic probe located at 75 m (Fraser, June 1990), according to 

different underflow discharge values. An actual dose of 53.05 mg·min·L-1 

was calculated for this probe. The loss of B. t. i. between the 30 and 107 m 

(1 st and 2nd stations) being 0.86 kg , the losses in percent of this value 

corresponding to different dis charge figures are presented. 

Discharge Mass Loss 
(L·s-1 ) (kg) (%) 

200 0.64 74 

150( 1 ) 0.47 55 

75 0.24 28 

35 0.11 1 3 

( 1 ) discharge at the time of experiment 
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Table3. Concentration of larvicide in samples taken from hyporheic 

probes driven at three different depths in order to assess the penetration 

and displacement of toxicity undemeath the stream bed. It followed a 10 

min injection of B.t.i. in the open-channel water. The probes were located 

at 75 m in the Fraser stream, October 1990. 

Depth (cm) 15 35 65 

Times (min) Concentrations in mg· L -1 

0 0.00 0.00 0.00 

5 2.49 0.00 * 
10 * 0.18 * 
15 2.98 0.30 0.00 

20 * 0.30 * 
25 0.98 * * 
30 0.44 * 0.00 

40 * 0.40 * 
45 0.40 * 0.00 

60 0.48 0.36 0.36 

80 * 0.31 0.30 

90 0.44 * * 
100 * 0.17 0.22 

120 0.02 * 0.02 

300 0.02 * 0.02 

* no sample was collected at that time 
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Table 4. Percentage of mortality from bioassays performed on benthic 

substrates in arder ta detect the presence of B .t.i. taxie cystals 60 ta 90 

minutes after the passage of aB .t.i. slug. 

Elements Location Date Control Treated 

substrates substrates 

Moss Fraser 30m June 1990 1 98 

Fraser 107m June 1990 1 100 

Fraser 20Sm June 1990 1 83 

Fraser SOm June 1991 0 33 

Boitel June 1991 1 64 

20m 

Grass Fraser 7Sm June 1990 3 1 

Fraser 20Sm June 1990 3 7 

Periphyton Fraser 30m June 1990 0 82 

Fraser 107m June 1990 0 30 

Fraser 30m June 1991 0 4 

Boitel 67m June 1991 1 68 

Sediments1 Fraser 142m June 1990 2 10 

Fraser 187m June 1990 2 3 

Fraser 202m June 1990 2 7 

1 Because of the stream profile, we could not collect sediments at 

stations above 142 m. 

38 



Fig. 1. Results of the rhodamine WT (left) and the B. t. i. (right) tracing at 

3 stations located at 30, 107 and 195 meters from the injection point. Each 

experimental point is the result of sample analysis using a fluorometer for 

rhodamine and neonate bioassays for B. t. i . . They are presented in J.lg·L-1 

and in mg-L -1, respectively. 
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Fig. 2. The left side (a) presents the doses mesured at the injection point 

and at the three open-channel stations, plotted against their respective 

sampling position (in meters). The naturallog of these doses against the 

distances and the removallength (xr) calculated from the regression line are 

presented in (b). 
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Fig.3. Rhodamine WT (a) and B. t. i. (b) concentrations in samples drawn 

from a 15 cm deep hyporheic probe located at 75 m in the Fraser stream, 

June 1990. At the same location in June 1991, rhodamine WT (c) and B. t. 

i. (d) concentration, were drawn from a 20 cm deep probe and in the open­

channel water above. In (e) we can see the passage of the rhodamine WT 

simultaneously in the open-channel and in the hyporheic zone at a station 

located 876 meters from the injection point in the Boitel stream, June 1991. 

In (f) we can see the results of the B. t. i. tracing at this location. 
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Fig. 4. Dynamic of the B. t. i. attachment/detachment process to 

moss following a 10 minute injection of B. t. i. in the open-channel 

water. The toxicity of the moss is presented in mg·L-l following 

bioassays on preparations of cru shed moss in water. The maximum 

rate of toxicity associated with the moss (arrow) has been converted 

in mg of B. t. i. formulation per kg of strained moss. 
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ABSTRACT 

Numerous field trials have been undertaken to better understand the 

behaviour (persistence, dispersion etc.) of Bacillus thuringiensis serovar. 

israelensis (B.t.i.) formulations when treating rivers or streams for 

blackfly control. After an extensive sampling of water and natural 

substrates (periphyton, sediments, moss), freezing is a useful procedure to 

prevent enzymatic deterioration or bacterial growth in samples before 

bioassays are to be performed. Using Aedes triseriatus neonate larvae, we 

quantified the effect on potency of freezing and thawing of B.t.i. 

suspensions at operational field concentrations. In addition, as samples 

varied in their content of natural substrates we tested the hypothesis that the 

, presence of such suspended solids affected the mortality response of larvae. 

Our results showed that these parameters are of significant importance and 

should be accounted for when comparing bioassays performed on 

previously frozen or turbid samples. 
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INTRODUCTION 

Since the discovery of Bacillus thuringiensis serovar. israelensis 

(B.t.i.) (Goldberg & Margalit, 1977), its activity against mosquito and 

blackfly larvae has been well documented (Undeen & Nagel, 1978; Gaugler 

& Finney, 1982; Molloy et al., 1984). Due to the lack of direct methods for 

measuring the presence of the toxic crystals (physical, chemical or 

immunological methods) the toxicity (potency) of field samples was 

interpreted mainly from spore counts (Undeen & Colbo, 1980; Frommer 

et al., 1981a & 1981b; Merritt et al., 1989; Matanmi et al., 1990) or 

bioassays (Lace y & Lacey, 1981). When using bioassay procedures, field 

samples may have to be kept for variable periods of time before assaying. 

In such cases, samples are usually frozen or kept at 4°C to prevent or 

minimize, enzymatic deterioration of the crystals or bacterial growth. But 

the stability of B.t.i. toxic crystals has only been investigated for 

temperatures ranging from lOto 35 oC (Mulligan et al., 1980; Ignoffo 

et al., 1981a; Sinègre, 1981; Guillet et al., 1982), at 50 oC (Ignoffo, 1982). 

These authors have found that the toxic activity was remarkably stable 

under these experimental conditions. 

The presence of natural substrates (e. g. particulate material) has been 

shown to decrease toxicity by altering the feeding behavior of larvae and/or 

interaction wit:J:1)B.t.i. crystals, (Mulla et al., 1982; Van Essen & Hembree, 

1982; Dupont & Boisvert, 1986; Merritt, 1987; Morin et al., 1988). The 

purpose of most of these studies was to find the effect of suspended matter, 

sediments or vegetation on the residual efficacy of B.t.i. primary powders 

or formulations in the field. In our study, as we intended to assess the 
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movement of B .t.i. from open channel water into different compartments 

of the stream habitat, such as sediments, aquatic vegetation and epilithic 

periphyton (microfloral growth covering rocks), it was decided to 

determine whether these materials, collected in the field could affect larval 

mortality under laboratory conditions. The effect of water turbidity and the 

presence of suspended matter has also received considerable attention in the 

past (Ignoffo et al., 1981b; Standaert, 1981; Ramoska et al., 1982; 

Silapanuntakul et al., 1983; Guillet et al., 1985; Karch et al., 1991). These 

authors unanimously agreed that a reduction of potency was correlated with 

the presence of suspended matter. 

We are seeking to study where the loss of B.t.i. larvicidal activity 

occurs when treating a river for blackfly control. In such a study, stream 

water samples, periphyton and vegetation (moss and herb) have to be 

frozen until they are tested for larvicidal activity. Because of the lack of 

literature on the effect of freezing and thawing on B .t.i. samples containing 

various amounts of suspended matter, periphyton or moss, we undertook a 

study to determine if these conditions would affect the toxic activity of the 

samples, and if so, to quantify the loss of activity in order to be able to 

determine the original amounts of activity present in samples before 

freezing or in the absence of suspended matter. 
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MATERIALS AND METHODS 

Bioassay 

In the present study bioassays were performed under laboratory 

conditions using Aedes triseriatus (Say) neonate larvae. This choice was 

prompted by the fact that freshly hatched larvae offer a greater 

physiological synchronicity and a greater sensitivity to B .t.i .. The method 

used was based on the one described by Ibarra and Federici (1987) in which 

a 'single neonate larva is placed in an individual weIl of a micro titre plate 

(96 holes) and then exposed to dilutions of the samples to be tested. In 

order to minimize experimental variations, aIl samples were assayed in 

triplicates using 32 larvae for each treatment, performed on 3 successive 

days using eggs at the same stage of maturity. Mortality counts were made 

after 24 h and statistically analyzed using probit analysis (Finney, 1971; 

Hubert, 1984). The mortality obtained was then compared with a standard 

curve (prepared with dilutions of B .t.i. in stream water) in order to 

estimate B.t.i. toxic activity (expressed in Jlg of formulation per litre) 

present in the unknown samples. 

To illustrate the increased sensitivity of neonate larvae, it is worth 

mentioning that for a series of B .t.i. suspensions prepared with Teknar 

HPD® (Zoëcon lot # 0080227, used throughout this study) in distilled 

water, a median lethal concentration (LC50) of 50 Jlg·L-l was obtained 

compared with a LC50 of 600 Jlg·L-l for early 4th instar larvae. This 

technique not only allowed us to determine small amounts of B.t.i. in 

various samples, but also permitted us to process up to 8 samples per day 

including a standard curve. 

5 



Freeze-thaw procedure 

In order to quantify the effect of freezing and thawing on B.t.i. 

toxicity, a series of B.t.i. suspensions was prepared at 1, 10, 100 and 1000 

mg·L -1 in distilled water. Each one was separated in four equal volumes 

and the following procedure was applied to each of the four concentrations. 

One sample was kept at 4°C, a second was frozen once (-25°C) then thawed 

and kept at 4°C, a third was frozen-unfrozen twice and kept at 4°C and a 

fourth sample was frozen-unfrozen three times and kept at 4°C. We then 

ended up with four identical series of B.t.i. suspensions that were frozen 

and thawed 0, 1, 2 and 3 times. These preparations were then diluted for 

final testing at a concentration of 50 ~g·L-1. This concentration was 

selected following preliminary neonate larvae bioassays, indicating around 

50-60% mortality after 24 h of contact. Furthermore, at this level, changes 

in potency are most-clearly demonstrated when using probit analysis 

(Finney, 1971; Hubert, 1984). 

Suspension of natural substrates 

Since we were dealing with various amounts of suspended matter in 

field samples, two different series of solutions were prepared to assess the 

modification to B.t.i. toxicity brought about by solids suspended in water. 

A first series of suspensions was prepared at 50 ~g·L-1 of B.t.i. and with 

different concentrations (0.2, 0.6, 1.2, 2.4, 4.1 and 5.5 mg· L -1) of 

suspended material. Suspended material was obtained by the following 

procedure. It was determined by filtration through a 0.22 ~m type GS filter 

followed by drying 24 h at 100°C, that untreated stream water contained 2 

mg·L-1 of dried matter. The water was then centrifuged at 4 000 g for 30 

6 



min at 4°C and the pellet resuspended in distilled water to make a stock 

solution at 12 mg·L-1. From this suspension, various dilutions were made, 

to provide six solutions containing the same initial amount of B.t.i. (50 j.lg 

of Teknar HPD per litre) but with variable amounts of suspended matter. 

These preparations were tested without freezing. 

Preliminary observations had indicated that after field application not 

only was there a sm ail amount of B.t.i. associated with moss present in a 

stream, but that moss greatly affected the mortality response when 

bioassayed. Because of these observations, a second series of B .t.i. standard 

concentrations ranging between 750 and 5 000 j.lg·L-l, was prepared, each 

containing 12.5 g·L-1 of the moss Platylonella lescurii (Sull). Moss was 

field collected, strained through a sieve to remove excess water, weighed, 

finely crushed and then added to the various suspensions of B.t.L Again, 

these preparations were tested unfrozen. In order to measure the anticipated 

masking effect of the crushed moss on the mortality response, the probit 

line, representing the mortality (in probit units) as a function of the log of 

the dose (in J..lg·L-1 of Teknar HPD), was compared with the response by 

larvae to a series of B.t.i. standards prepared with stream water only. 

RESULTS 

Bioassay results after freeze-thaw cycles 

The results presented in Table 1 indicate that the four series of 

frozen-thawed solutions behaved according to the same pattern, regardless 

of the three orders of magnitude (1 to 1 000 mg·L -1) of the tested 

concentrations. A decrease of toxicity can be observed after each of the 

freeze-thaw cycles for ail concentrations at which the B.t.i. suspenSIOns 
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were frozen (first 4 columns). The pooled results of the four series 

computed in the fifth column, showed a reduction in mortality of 22% over 

the first freeze-thaw cycle and a reduction of Il and 5% for the second and 

third freeze-thaw cycles, respectively. The data was normalized by dividing 

aIl four mean mortality figures by the mean (61 %) obtained without 

freezing. This normalization is shown in Fig 1, where the decrease after 

various freeze-thaw treatments is 36, 18 and 8% respectively. 

Table 1: 

Figure 1: 

We fitted a negative exponential curve to these values to represent the loss 

of mortality after each freeze-thaw and we obtained the relation: 

y= 93.9*10 -0.14 n (R2 = 0.97, P< 0.05), where y is the mortality rate and 

n the number of freeze-thaw cycles. 

Bioassay results with suspended matter and a fixed concentration 

of B .t.i. 

Results from bioassays with a constant concentration of B .t.i. and a 

concentration range of suspended material showed that the presence of the 

material was correlated with the loss of potency (Fig 2). We observed that 

the samples containing higher levels of suspended mate rial displayed the 

lowest mortality. Although the six values are not perfectly aligned, the 

tendency of such solids to decrease toxicity is statistically significant. A 
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simple linear correlation test at a confidence degree of more than 95% 

(P< 0.05), confirmed that there is a linear relationship between the two 

variables. 

Figure 2: 

The regression line obtained is described by the relation: y = 66.7 - 3.0 x 

(R2 = 0.69, P< 0.05), where y is the mortality (%) and x the amount of 

dried suspended matter in mg·L-1. When the portion of the curve covering 

our experimental values is considered as linear, then the addition of the 

first 5 mg·L-1 of suspended matter to a B.t.i. suspension with an initial 

potency achieving 67% mortality, produces a reduction to 52% mortality. 

This represents a 22% drop of potency. The results indicate that the 

presence of 22 mg·L-1 of dried suspended matter (or more) in B.t.i. 

suspensions of 50 llg' L -1 or less, would be sufficient to lower the sensitivity 

of the assay below the detection limit. 

Bioassay results with vegetation and variable concentrations of 

B.l.i. 

To assess the way in which standard curves of mortality rates versus 

the log of concentration of B.t.i. could be affected by the presence of a 

constant amount (12.5 g. L -1) of stream moss, the results from B.t.i. 

standards prepared with this vegetation is compared to B.t.i. standards 

prepared without moss (Fig 3). The most striking effect produced by the 

addition of the 12.5 g. L -lof crushed moss is the shift of the Le50 from 52 
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(95% confidence interval (CI): 46-58) to 2 282 Jlg·L-l (95% CI: 2 085-

2 497), a 44 fold increase. 

Figure 3: 

Furthennore, the equations of these curves are respectively 

y = 1.9 x + 1.14 without moss and y = 2.2 x - 3.11 with moss; where y is 

the probit and x the log of the B.t.i. concentrations. Because the accepted 

values of slopes for B.t.i. assays range from 1.5 to 6 (Ibarra & Federici 

1987), the value of the slope obtained when moss is present is an indication 

that the bioassays are still valid under such conditions. Controls with and 

without moss gave 1 % and 0% mortality rates and both curves were fitted 

by maximum likelihood probit using Abbott's fonnula to take into account 

the low levels of natural mortality. The parallelism of the se two pro bit lines 

was tested using the method described by Hubert (1984). A X2 value of 

1.823 was calculated, indicating that the lines did not differ significantly in 

their parallelism and that the presence of the moss did not affect the mode 

of action of the B.t.i. toxic crystal. 

DISCUSSION 

Our results indicated that freezing and thawing of B.t.i. suspensions 

decreases the toxic activity of this larvicide. We suspect that freezing could 

promote flocculation (or aggregation) of B.t.i. crystals. If such is the case, 

we can conceive that, if only one or a few crystals are sufficient to kill a 
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larva after ingestion, then following an agregation of 10 or 50 crystals, this 

lump if ingested by a neonate would only kill a single larva instead of 

many. This would cause an apparent decrease in potency of a sample. In 

addition, if the aggregates are large enough that they exceed the range of 

particle sizes that a specifie instar is able to ingest, the reduction of activity 

after freezing, could he less apparent on older larvae, such as a 4th instar. 

Regardless of the process involved, the first freeze-thaw cycle caused a 

36% loss of toxicity. The results of the effect of freezing and thawing on 

B.t.i. suspensions indicate that if frozen material is to be used for eventual 

bioassay testing, appropriate procedures (choice of instar, number of 

cycles) should he included in the protocol so that the mortality obtained can 

be transformed into a corrected toxicity hefore freezing of the samples. 

Our observations that toxicity is correlated with the presence of 

suspended material in B.t.i. preparations are consistent with previous 

studies. According to Guillet et al., (1985), a sharp decrease in efficacy of 

B .t.i. formulations is observed when water turbidity increases. Standaert 

(1981), Mulla et al., (1982), Ramoska et al., (1982) and Silapanuntakul et 

al., (1983), aIl noticed a reduction in mortality when B. thuringiensis H-14 

was prepared with pond water compared to distilled water. Karch et al., 

(1991) concluded that a Vectobac® 12-AS aqueous suspension of B.t.i. had 

a poor efficacy against Culex quinquefasciatus (Say) larvae in polluted 

gutter water. Ignoffo et al.,(1981b) found that about half of the B.t.i. 

activity was bound by 2% pond water solids and concluded that this 

reduction could be due to B .t.i. crystals binding to organic materials in 

sediments, rather than inactivation of B .t.i. by the solids per se . Compared 

to the above results we have shown that the presence of small amounts (less 
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than 5.5 mg·L-1) of suspended material can have a significant effect on the 

dose-mortality response of a B.t.i. preparation. Furthermore, the presence 

of crushed moss at 1.25% (12.5 g·L -1) reduced larval mortality to a level 

44 times less than obtained without moss. Whether this reduction is caused 

by binding to natural substrates or degradation of the toxic crystals is not 

known, but these observations are of great importance especially if the 

persistence of B.t.i. toxic activity (i.e. activity of crystals only) is 

monitored in bodies of water containing variable quantities of suspended 

material. Indeed, most authors have not taken this into account in their 

persistence studies. It could be that the persistence of B .t.i. toxic crystals in 

water is probably much longer than has previously been reported. 

This study has shown that the loss of B .t.i. potency related to the 

presence of suspended material is of importance and should be accounted 

for when analysing field samples. It could cause significant variation when 

comparing field efficacy of B.t.i. preparations between different countries; 

for example, African river waters are usually much more turbid than 

North American stream waters, resulting in a reduced efficacy. 

In conclusion, we have found that samples containing B.t.i. toxic 

crystals will give a variable dose-mortality response based on the quantity 

of material present in the samples and whether the samples are frozen or 

not. AlI the relationships that we have found indicate a lowering of B .t.i. 

potency. This could have a significant effect on conclusions derived from 

persistence, absorption or efficacy studies of B .t.i. formulations. 
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Table 1: Percent mortality of Aedes triseriatus (+ SE) observed after 
freeze-thaw cycles of B.t.i. suspensions prepared at different 
concentrations. AlI samples were assayed at the same final concentration 
of 50 J.lgoL-l. AlI controls were Iess than 3%. 

Number 
of freeze- Concentrations in mgoL-l Mean 

Normalized 
thaw 

1 10 100 1000 Value Value cycles 

0 55 (+4) 65 (+8) 50 (+8) 73 (+8) 61 (+12) 100 (+20) 

1 42 (±5) 36 (+8) 33 (+2) 45 (±7) 39 (+7) 64 (+11) 

2 28 (+8) 22 (±5) 34 (+6) 29 (+7) 28 (+7) 46 (+12) 

3 19(+11) 26 (±5) 27 (+5) 20 (+7) 23 (+7) 38 (+12) 
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Figure 1: Decrease in larval mortality (normalized value + SE) induced by 

aB .t.i. preparation at 50 J.lg-L -1 after freeze-thaw cycles. 

21 . 



100 

80 
....--. 
~ 

60 '-" 
>. 

~ 
1:: 40 0 

::E 
20 

0 
0 1 2 3 

Number of cycles 

Figure 1 



Figure 2: Percentage mortality (+ SE) of neonate Aedes triseriatus larvae 

fed with aqueous B.t.i. suspension (50 ~g·L-1) containing various 

concentrations (mg· L -1) of suspended solids. 
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Figure 3: Probit response to B.t.i. preparation tested in the presence of 12.5 

g·L-l ofmoss (.) or in the absence ofmoss (0). 
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ABSTRACT. When studying the behavior (carry, dispersion, persistence) of 

Bacillus thuringiensis var israelensis (B .t.i. ) formulations used in the 

treatment of rivers or streams for black fly control, a large number of 

samples containing smalI quantities of B.t.i. are required for proper analysis. 

Freezing is a useful procedure to prevent enzymatic alteration or bacterial 

growth in samples before bioassays are to be performed. Using Aedes 

atropalpus neonate larvae, we studied the effect of freezing and thawing of 

B.t.i. aqueous suspensions by looking at mortality response parameters su ch 

as the slope and the LCso of the probit regression. Initial concentration 

values of 1, 5, 10 and 20 mg/liter at the moment of freezing of the B.!.i. 

suspensions did not of significantly affect toxicity. The number of freeze­

thaw cycles greatly increased the LCso values, without much change to the 

slope of the log-probit regressions. We derived an equation that allowed us 

to compensate for the loss of toxicity of a given B.!.i. sample, knowing the 

number of freeze-thaw cycles. 
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INTRODUCTION 

Due to the lack of direct methods for measuring the presence of the 

Bacillus thuriengiensis israelesis (B .t.i. ) toxic crystals (physical, chemical 

or immunological methods) the toxicity (potency) of field samples is 

interpreted mainly from spore counts (Undeen and Colbo 1980, Frommer et 

al. 1981a, 1981b, Merritt et al. 1989, Matanmi et al. 1990) or bioassays 

(Lacey and Lacey 1981). When using a bioassay, a direct toxicity of a given 

sample is measured in mg/liter of formulation or in units per ml. Studies of 

the behavior (persistence, dispersion) of B .t.i. formulations in rivers, 

streams or ponds involves collecting a large number of samples which cannot 

be processed immediately. Thus, field samples may have to be kept for 

variable periods of time before assaying. In such cases, samples are usually 

frozen or kept at 4°C in order to prevent, or to minimize, enzymatic 

deterioration of the crystals or bacterial growth. 

Unfortunately, the stability of B.t.i. toxic crystals has only been 

investigated for temperatures ranging from 10 to 35 oC (Mulligan et al. 

1980, Ignoffo et al. 1981, Sinègre 1981, Guillet et al. 1982), at 50 oC 

(Ignoffo et al. 1982), and at 80 oC (Dempah2). These authors have found that 

the toxic activity of dry powders or formulations was remarkably stable at 

those temperatures. 

Because of the absence of literature on the effect of freezing and 

thawing on B .t.i. suspensions, we conducted a study to establish if the 

2 Dempah, J. 1979. Essais de Bacillus thuringiensis israelensis sur les moustiques. Rapport. D. E. 

A. Entomologie Medicale , Fac. des Sciences, Paris XI, et Lab. ORSTOM, Bondy, France. 
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freeze-thaw procedure would affect the toxic activity of the crystals, and to 

determine how it might modify parameters su ch as the LCso and the slope in 

probit mortality curves. 

MATERIALS AND METIIODS 

To observe the decrease in mortality and the effect of different initial 

concentrations of B.t.i. , we prepared a series of suspensions which were 

frozen-thawed up to four times and subsequently diluted and bioassayed. 

From the results we were able to work out a simple equation to compensate 

for the loss of activity of frozen-thawed B.t.i. aqueous suspensions. 

Bioassays : Bioassays were performed under laboratory conditions 

(20-22 OC) using Aedes atropalpus (Coquiilett) neonate larvae because 

freshly hatched organisms offer a greater physiological synchronicity and a 

greater sensitivity (Ibarra and Federici, 1987). The method used was based 

upon the one described by these authors, in which a single neonate larva was 

placed in an individual weil of a microtiter plate (96 holes) and then exposed 

to various chemical concentrations. In order to minimize experimental 

variability, ail samples were assayed in 3 replicates of 321arvae, using eggs 

of the same degree of maturity. Mortality counts were made after 24 hours. 

The technique permitted us to process up to 20 microtiter plates per day. 
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Freeze-thaw procedure : Experiments were conducted to assess if B .t.i. 

suspensions prepared at different initial concentrations would give the same 

mortality response when diluted and bioassayed, and to evaluate if a single 

freeze-thaw cycle of those B.t.i. suspensions would affect the mortality 

response. B.t.i. concentrations of 1, 5, 10 and 20 mg/liter were prepared in 

distilled water using Teknar HPD® (Zoëcon lot # 0080227). These 

concentrations cover the range suggested by the company for treating black 

fly larvae in streams. Each suspension was divided into 2 equal volumes and 

each of the 4 concentrations was either kept at 4°C or frozen once at - 25°C 

and then thawed out at room temperature. We ended up with 2 identical 

series of 4 B .t.i. concentrations that were either unfrozen or frozen-thawed 

once. Before the bioasssay, each preparation was diluted in distilled water 

for testing mortality response at final concentrations of 25, 50, 100 and 200 

~g/liter. These concentrations were selected following preliminary neonate 

larvae bioassays to cover a range of mortality from 10 to 90%. The 

bioassays were performed on 3 successive days (August 6-8) as presented in 

Table 1. 

The results from this first series showed that all bioassays with samples 

unfrozen or frozen once had similar mortality response curves whatever 

their initial concentration, although there was sorne decrease in mortality 

after freezing, thus another experiment was prepared using a 20 mg/liter 

concentration, selected so that enough toxic activity would be left after 

multiple freeze-thaw cycles. Equal volumes of this suspension were frozen­

thawed 0, 1, 2, 3 and 4 times. Each of these samples was then diluted at 

testing concentrations varying from 50 to 750 ~g/liter before bioassays. To 
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ensure the validity of probit analysis, we tried to obtain 3 concentration 

values on either side of the LCso. 

One additional series of bioassays was performed in triplicate for 

unfrozen samples and samples frozen once (Table 1, test 5). For samples 

frozen two, three and four times, bioassays were done in triplicate on three 

different days (September 17-24-25) as presented in Table 1. 

Statistical analysis : Each set of bioassays was statistically analyzed 

using probit analysis (Finney 1971). The percentage of mortality (in probit 

units) is expressed by a linear relation, determined by a maximum likelihood 

procedure, as a function of the logarithm of the concentration (in Ilg/liter). 

Natural mortalities were taken into account using the Abbott's formula 

(Abbott 1925). 

To demonstrate the independance of mortality responses for a given 

number of freeze-thaw cycles performed on samples at different 

concentration at the time of freezing, we used the statistical approach 

developed by Hong et al. (1988). This approach consisted in the 

determination of a single probit line called a "grand probit" (GP) from 

multiple toxicity test data. To achieve this, the individual probit lines (for a 

given number of freeze-thaw cycle) were pooled and using a parallelline 

technique (Finney 1971, Hubert 1984) a common slope and LCso were 

calculated for the grouped data. Then, X 2 tests were used to confirm the 

hypothesis of the homogeneity of the individual probit slopes (parallelism) 

and LCso. If the calculated X2 values (for each parameter) were lower than 

the critical X2 values, it indicated at the 95% confidence level, that the probit 

slopes were parallel and the LC50 homogenous. These statistics were used 
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also to demonstrate parallelism of single probit lines obtained when grouping 

aIl tests for 0, 1 and 2 freeze-thaw cycles, and with 3 and 4 cycles. 
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RESULTS 

Freezing at four different concentrations : In Table 2 line A and B we 

present the calculated X2 values for parallelism and LCso homogeneity test. 

Line A represents the tests performed on the probit lines (maximum 

likelihood) obtained from unfrozen B.t.i. suspensions prepared at 1, 5, 10 

and 20 mg/l. Line B represents X 2 values for parallelism and LCso 

homogeneity tests for the same concentrations, but frozen once. Since the 

critical X2 value at 4 d.f. is 9.49 for a 95% confidence level (Zar 1984) and 

that the X2 of line A and B are helow this value, we can conclude that 

whatever the concentration at the time of freezing was, the probit lines are 

parallel and the LCsos.are homogenous. Furthemore the low X2 values for 

unfrozen suspensions (line A) are an indication that the neonate bioassay 

technique is reliable. There seem to be a difference in the behavior of the 

B.t.i. suspensions after one freezing cycle. This can he seen by the greater X2 

values after freezing the suspension once compared to unfrozen suspensions 

(Table 2, line B compared to line A) and by a greater dispersion of the 

mortality values around the grand probit line (Fig. lB compared to Fig. 

lA). 

Freeze-thaw treatment : In Table 2line C, D and E we present the X2 

values for parallelism and LCso homogeneity test after multiple freeze-thaw 

cycles of B.t.i. suspensions prepared at 20 mg/l. Since the critical X2 value at 

2 d.f. is 5.99 for a 95% confidence level (Zar 1984) and that aIl calculated 

X 2 are below that value, it indicates that the separate tests for a given number 

of cycles have similar slopes and LCsO values, ensuring the reliability of the 

grand pro bit grouping. 
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In Fig. IF we can see that the grand probit (GP) lines after 0, 1 and 2 

cycles on the upper part have similar slope values, and the GP lines after 

cycles 3 and 4 share a similar slope value. After the totality of the assays (0, 

1, 2, 3 and 4 cycles) were put together (Table 2 line F), the analysis of 

paraIlelism failed because the calculated X2 (36.85) is higher than the critical 

value of 28.87 (18 d.f.) for a 95% confidence level (Zar 1984). After 

grouping the tests for 0, 1 and 2 freeze-thaw cycles (Table 2, line G), we can 

see that the lines are paraIlel (critical X2 = 21.03 , calculated X2 = 11.37). 

Furthermore, grouping the tests for 3 and 4 cycles (Table 2, line H) also 

shows that this group of lines are parallel (critical X 2 = Il.07 , calculated X 2 

= 7.58). We calculated an average slope value of 2.024 for 0, 1 and 2 cycles 

which is statisticaIly different than 2.453 after 3 and 4 freeze-thaw cycles. 

The absence of overlapping of the Le50 values presented in Table 3, 

indicates that each freeze-thaw treatment is directly and significantly 

modifying the median lethal concentration value. Furthermore, we can see 

that the 95% el are aIl within 7% of the Le50 values. Figure 2 shows the 

effect on the Leso (n) when the number of freeze-thaw cycles (n) is 

increasing. We modeled this increase of Leso exponentially by the equation 

Le50 (n) = a 10 ~ n (1) 

where n = 0, 1, 2, 3, or 4. After calculation of the regression line (R2 = 
0.99) on the dependant variable log (Leso (n)), we obtained the estimated 

parameters: a = 79.22 and ~ = 0.15. The parameter a corresponds to the 

predicted Le50 (0) (unfrozen), and ~ is the rate of increase of the Le50 after 

freezing. 

9 



Correction of mortality after n freeze-thaw cycles: For each number 

of cycles (n), we have a probit line given by, 

Yn = an + bu x (2) 

where Y n is the mortality expressed in probit units, an is the intercept, bu 

the slope of the probit line and X is the logarithm of the concentration. It is 

known (Hubert, 1984) that the LeSO is given by, 

Log ( Leso (n) ) = ( 5 - an ) / bn (3) 

then (2) can he written as, 

y n = 5 + bu ( X - log ( LeSO (n) ) ) (4) 

Using equation (1) and the parallelism of the probit lines for n = 0, 1 and 2, 

with their ca1culated common slope m = 2.024, after rearranging (4) it 

becomes, 

y n = 5 + m ( X - log ( a. 10 ~ n » 

or y n = 5 + m ( X - (log (LeSO (0» + ~ n) ) (5) 

From this relation, the lost of mortality (in probit units) for a given 

concentration, after n freeze-thaw cycles compared to an unfrozen one, is 

expressed by, 

Yo-Yn=m~n (6) 

where Y 0 is the mortality for the unfrozen suspension. In our case, using 

Teknar HPD® and Ae. atropalpus neonate larvae as test organisms, we 
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obtained Y 0 :::: y n + 0.3 n (0.3 being the product of the pro bit slope (m) by 

the rate of increase of the LCso after freezing (~)). 

DISCUSSION 

The fact that there are sporeless B.t.i. formulations now available will 

increase the necessity of using bioassays or direct toxicity tests to mesure 

B .t.i. activity in streams or ponds. Regardless of the technique, numerous 

field samples will have to be frozen and subsequently tested for toxicity. It is 

then important to assess the effect of freezing on B.t.i. aqueous suspensions. 

The tests performed on the hypothesis that the regression lines are 

parallel for the preparations at different concentration values (Table 2 line A 

and B) indicated that the concentrations (in the range considered here) at the 

time of freezing do not have to he taken into account. This means that the 

field samples frozen at different initial concentrations will he affected 

according to the same pattern. On the other hand, the results of freezing­

thawing indicate that the number of cycles has a direct influence on the 

magnitude of the B.t.i. toxicity alteration (Table 3 and Fig. 1 and 2). Indeed, 

for a single freeze-thaw cycle the LCso value of 109.99 Ilg/liter represents a 

24% reduction in mortality. At the extremes, after 4 freeze-thaw cycles, the 

LCso value is increased from 78 to 300 Ilg/liter, indicating a 6.25 fold 

decrease in mortality. To illustrate, a concentration giving 50% mortality 

would give less than 8% after 4 freeze-thaw cycles. 

Figure 1 shows a greater dispersion of individual experimental values 

around the OP line after 4 freeze-thaw cycles. Because the manipulations 

were do ne in the same manner for aIl the samples, this increased variability 

suggests that the properties of our B .t.i. preparations could have heen 
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modified by the freezing treatment, making it more difficult to be 

resuspended homogeneously after thawing. It is suspected that freezing 

promotes flocculation (or aggregation) of B.t.i. crystals. If su ch is the case, 

we can conceive that if only one or a few crystals are sufficient to kill a 

larva, flocculation of crystals would create a large particle that would only 

kill a single larva instead of many, thus reducing the mortality although the 

concentration is not modified. In addition, if the aggregates are large 

enough, they could exceed the range of particle sizes that a specific instar is 

able to ingest. In such a case, the reduction of activity following freeze-thaw 

cycles, could be less severe on larger larvae such as a 4th instar. 

Freezing damage to the B.t.i. toxic proteins could also account for the 

reduction of mortality. During freezing, substantial enhancements of solute 

concentration occur in the liquid within the layer surrounding the ice nucleus 

(Steponkus 1984). Depending on the nature of the solute, it could induce a 

local change of pH and modify the active domain of the toxin crucial for 

binding to the plasma membrane of cells (Sarjeet et al. 1989). In a largely 

accepted mechanism of action proposed by Knowles et al. (1989), initial 

binding of the o-endotoxin is a necessary step, thus a modification of affinity 

or binding capability willlikely reduce the potency of a given preparation. 

Regardless of the process involved, the results presented here clearly 

indicate an important loss of toxic activity after an aqueous suspension of 

B.t.i. has been frozen and thawed. These observations should be an incentive 

to include an appropriate procedure to bioassay previously frozen material. 

Adding the necessary additional samples sufficient to get the estimated 

parameter of reduction (~) in relation (6), and using the procedure described 

in "Correction of mortality after n freeze-thaw cycle" we demonstrated that 
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it is possible to calculate the toxic activity that would originally be present, 

from results obtained with previously (and repeatedly) frozen-thawed 

mate rial. Equation (6) tells us that the loss of mortality (in probit units) for a 

given suspension, after n freeze-thaw cycles compared to an unfrozen one is 

almost 0.3 n. A different correction factor is expected if the bioassays are 

performed using different instars or species or if a different B .t.i. 

formulation is being studied, because the rate of increase of the LC50 after 

freezing is an intrinsic factor of a formulation. The procedure used in this 

experiment could be useful to decide the proper way to manage storing and 

handling of a large number of B .t.i. samples. 
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Table 1. Schedule of bioassays that were perfonned on 32 larvae on 

successive days, August 6, 7 and 8, or in triplicates of 32 larvae on 

September 17, 24 and 25. The concentration (mg/liter) of Bacillus 

thuringiensis var israelensis suspensions at the time of freezing is presented 

in brackets. 

Number of freeze-thaw cycles 
Test no. 0 1 2 3 4 

1 Aug.6-8 Aug.6-8 
(1) (1) 

2 Aug.6-8 Aug.6-8 
(5) (5) 

3 Aug.6-8 Aug.6-8 
(10) (10) 

4 Aug.6-8 Aug.6-8 
(20) (20) 

5 Sep. 17 Sep. 17 Sep. 17 Sep. 17 Sep. 17 
(20) (20) (20) (20) (20) 

6 Sep. 24 Sep. 24 Sep. 24 
(20) (20) (20) 

7 Sep.25 Sep.25 Sep. 25 
(20) (20) (20) 
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Table 2. Chi-square validation tests for parallelism and homogeneity of the 

LC50S after the maximum likelihood for individual tests. Values in line A 

and B represent the analysis of the probit lines obtained with preparations 

unfrozen or frozen once at an initial concentration of 1, 5, 10 and 20 

mg/liter. Line C, D and E are the results from a preparation of 20 mg/liter 

frozen-thawed 2, 3 or 4 times. Line F, G and H are the analyses of the 

grouping of the various tests. 

Number of Number of Parallelism Homogeneity 
cycles tests X? X? 

A 0 5 0.74 2.62 
B 1 5 8.80 4.21 
C 2 3 1.06 2.08 
D 3 3 1.57 1.43 
E 4 3 5.86 2.74 
F 0-1-2-3-4 19 36.85 
G 0-1-2 13 11.37 
H 3-4 6 7.58 
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Table 3. Probit equations, LC50S and 95% confidence intervals obtained 

from the grand probit analysis incorporating multiple data tests (5 separate 

tests for 0 and 1 freeze-thaw cycle, 3 separate tests for 2, 3 and 4 cycles). 

Cycle Probit equation 

0 y = 1.975 X + 1.266 

1 Y = 2.016 X + 0.884 

2 Y = 2.100 X + 0.345 

3 Y = 2.488 X - 0.907 

4 Y = 2.422 X - 1.001 

20 

LC50 

77.77 

109.99 

164.50 

236.79 

300.08 

95 % confidence 

interval 

72.64 - 83.27 

102.49 - 118.04 

153.26 - 176.56 

222.90 - 251.55 

281.71 - 319.65 



Fig. 1. Grand probit lines of mortality responses to Bacillus thuringiensis 

var israelensis suspensions submitted to (0), (1), (2), (3) and (4) freezing 

cycles. Assays for 0 and 1 cycle (Fig A and B) consisted of 5 different tests, 

performed on preparations frozen at 1, 5, 10 and 20 mg/liter. Preparations 

of 20 mg/liter were frozen 2, 3 and 4 times and tested 3 times (Fig C, D and 

E). Figure F displays aIl the grand probit lines together in order to better 

visualize the parallelism and the LCso shift after multiple freeze-thaw cycles. 
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Fig. 2. Relation between the median lethal concentration and the number of 

freeze-thaw cycles. 
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