UNIVERSITÉ DU QUÉBEC

MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À TROIS-RIVIÈRES COMME EXIGENCE PARTIELLE DE LA MAÎTRISE ÈS SCIENCES (PHYSIQUE)

PAR

RICHARD OKAMBAWA

MESURE DU FACTEUR DE COMPRESSIBILITÉ DE DIVERS GAZ PAR LA MÉTHODE DIÉLECTRIQUE

MAI 1994

Université du Québec à Trois-Rivières

Service de la bibliothèque

<u>Avertissement</u>

L'auteur de ce mémoire ou de cette thèse a autorisé l'Université du Québec à Trois-Rivières à diffuser, à des fins non lucratives, une copie de son mémoire ou de sa thèse.

Cette diffusion n'entraîne pas une renonciation de la part de l'auteur à ses droits de propriété intellectuelle, incluant le droit d'auteur, sur ce mémoire ou cette thèse. Notamment, la reproduction ou la publication de la totalité ou d'une partie importante de ce mémoire ou de cette thèse requiert son autorisation.

REMERCIEMENTS

J'exprime ma vive gratitude au professeur Tapan K. Bose du Département de physique de l'Université du Québec à Trois-Rivières, directeur du Groupe de recherche sur les diélectriques, qui a accepté de diriger mon travail de recherche. Ses conseils ont su me donner la persévérance et l'enthousiasme qui m'ont permis de mener à bien ce projet. Il m'a de plus accordé un support financier fort utile.

J'adresse mes remerciements les plus chaleureux au professeur Jean-Marie St-Arnaud qui a bien voulu co-diriger mon travail de recherche. Ses conseils et sa disponibilité ont permis la bonne exécution de mon projet.

Je remercie le docteur Jacques Huot qui a su, en peu de temps, m'initier aux manipulations et monsieur Jean Hamelin pour l'appréciable aide apportée en informatique. Mes remerciements s'adressent aussi à tous les membres du Groupe de recherche sur les diélectriques qui ne ménagent aucun effort pour apporter aide et assistance.

Je remercie les professeurs du département de physique, en particulier le professeur Louis Marchildon pour l'enseignement de qualité dispensé.

Je remercie le personnel de l'atelier de mécanique de l'Université du Québec à Trois-Rivières pour leur disponibilité et la qualité du travail. Je remercie pareillement mesdames Lucie Bellemare et Jacqueline Moreau pour l'aide apportée pendant l'impression de ce travail. J'exprime ma profonde reconnaissance aux professeurs Tapan K. Bose et Jean-Marie St-Arnaud pour la patience et la compréhension dont ils ont fait preuve pendant les moments difficiles que j'ai vécus. Leur soutien ainsi que celui de tous les membres du Groupe de recherche sur les diélectriques a contribué au recouvrement de ma santé.

Je remercie finalement mes parents et amis, en particulier mon épouse Brigitte pour son soutien indéfectible.

RÉSUMÉ

La mesure absolue de la permittivité statique d'un échantillon gazeux en fonction de sa pression, associée à l'évaluation indépendante des deuxième et troisième coefficients du viriel de la constante diélectrique fournit des valeurs très précises de la concentration molaire volumique (densité molaire) et du facteur de compressibilité. La méthode diélectrique a été appliquée avec succès à des échantillons de méthane sec et humide.

Les valeurs du facteur de compressibilité obtenues à partir des trois premiers coefficients du viriel de la constante diélectrique se comparent bien aux valeurs expérimentales disponibles et aux valeurs calculées à partir des équations d'état de Goodwin, GERG et AGA-8. Avec l'équation de Goodwin par exemple, l'accord se fait avec un écart relatif maximum de 0,08% entre 0 et 12 MPa.

L'étude effectuée pour le méthane pur sur les isothermes 298,15 et 323,15 K montre que le facteur de compressibilité varie peu avec la température.

Une étude systématique réalisée avec des échantillons de méthane humide dont les fractions molaires d'eau atteignent 95·10⁻⁶ a montré que l'influence de l'eau sur le facteur de compressibilité est négligeable.

TABLE DES MATIÈRES

REMERCIEMENTS	ii
RÉSUMÉ	iv
TABLE DES MATIÈRES	v
TABLE DES SYMBOLES ET CONSTANTES PHYSIQUES	vii
LISTE DES TABLEAUX	viii
LISTE DES FIGURES	x

INTRODUCTION	1
Bibliographie de l'introduction.	

CHAPITRE 1	THÉORIE	• • • • • • • • • • • • • • • • • • • •	5
------------	---------	---	---

- 1.1 Équation d'état d'un gaz.
- 1.2 Facteur de compressibilité.
- 1.2.1 Définition et intérêt.
- 1.2.2 Techniques de mesure.

.

- 1.3 Dépendance des paramètres diélectriques et thermodynamiques.
- 1.4 Conséquences des différentes formulations des propriétés d'état.
- 1.5 Coefficients du viriel de la constante diélectrique de mélanges de gaz.

Bibliographie du chapitre 1

- 4.1 Polarisabilité totale de la molécule de méthane.
- 4.2 Évaluation du premier coefficient du viriel de la constante diélectrique de mélanges gazeux à partir de leur composition.
- 4.3 Influence du nombre de termes conservés dans le développement en série sur la précision du facteur de compressibilité.

ANNEXES

3

ANNEXE	A	Texte du programme informatique de calcul du facteur de	
		compressibilité	73
ANNEXE	в	Principe et méthode de préparation des échantillons de	
		gaz humide	82
ANNEXE	С	Recommandations des revues aux auteurs de publication	86

vi

Grandeur	Symbole	Dimension ¹	Valeur et/ou unité
Position, coordonnée	$\vec{r}_{i}(x_{i}, y_{i}, z_{i})$	L ([テ _ュ])	m_
Volume, élément de volume	ν,dτ	L ³	m ³
Température	Т	Θ	K
Quantité de matière	n	Q	mol
Concentration molaire		-	7
volumique ou densité	ρ	QL ⁻³	mol m ⁻³
molaire ²			
Fraction molaire	х	1	-
Coefficients du viriel			
thermophysiques:		7 4	7 4
- Deuxième coefficient	В	L,0.1	$m^{2} mol^{-1}$
- Troisième coefficient	С	L ⁶ Q ⁻²	m ^o mol ⁻²
Coefficients du viriel de			
la constante diélectrique:		7 1	7 1
- Premier coefficient	A_{ϵ}		m ² mol ²
- Deuxième coefficient	B	L°Q ⁻ 2	m ^o mol ⁻²
- Troisième coefficient	C		m ^y mol ⁻³
Pression	P	ML ['] T ²	Pa 27 -1
Constante d'Avogadro ³	N	Q ⁻	$6,022136 \cdot 10^{23} \text{ mol}^{-1}$
Constante des gaz parfaits ⁴	R	ML ² T ² Q	8,31447 J mol'K'
Facteur de compressibilité	Z	2^{1}	
Constante de Boltzmann ³	k	$ML^{2}T^{-3}$	1,380658·10 ⁻²⁵ JK ⁻¹
Capacité électrique	C	M ⁻ 'L ⁻ T ⁺ I ²	F - 1 1
Valeur du champ électrique	E		NC '=Vm '
Permittivité du vide	ϵ_0	M'L JT'I'	8,854188 10 ' Fm '
Facteur constant de la loi	· • · • 1		
de Coulomb	$(4\pi\epsilon_0)$	ML ⁻ T ⁻ 1 ⁻	8,988755·10 ′ F m
Permittivite relative	ϵ	x - 1 - 2 - 4 - 2	
Permittivite	ee 		Fm ·
Moment alpotatre	μ	$1^{11}L([[\mu]])$ $1^{2}m^{2}T 6y^{2}$	
POTALISADITICE.	α	T-T-W-	F M

TABLE DES SYMBOLES ET CONSTANTES PHYSIQUES

ı

¹Les grandeurs de base sont représentées par : L (longueur), M (masse), T (temps), I(intensité du courant électrique), θ (température thermodynamique), Q (quantité de matière). Pour les grandeurs vectorielles, la dimension est celle du module du vecteur. ²Le terme légal recommandé par les institutions de normalisation (Bureau de normalisation du Québec,

[&]quot;Le terme légal recommandé par les institutions de normalisation (Bureau de normalisation du Québec, BNQ 9990-901/1977-02-07, National Bureau of Standards, LC1132-1982, AFNOR, NF X 02-004-1974) est concentration molaire volumique.

⁵ The 1986 Adjustment of the Fundamental Physical Constants, CODATA Task Group on Fundamental constants. ⁴ Moldover, M.R., Trusler, J.P.M., Edwards, T.J., Mehl, J.B. and Davis, R.S., J. Res. Natl. Bur. Stand. 93, 85 (1988)

⁽¹⁹⁸⁸⁾ ⁵On passe aisément d'une relation exprimée dans le système SI à une relation en ues-cgs en remplaçant la permittivité ϵ_0 du vide par $(4\pi)^{-1}$; 1D=3,3356683·10⁻⁵⁰Cm, 1Cm=0,29979·10¹² ues=0,29979·10⁵⁰ D; $\alpha_{SI} = 4\pi\epsilon_0$ α_{cgs} , 1Fm²=0,8988·10⁶ cm²; $\epsilon_{SI} = \epsilon_{cgs}$.

LISTE DES TABLEAUX

Chapitre 2

Tableau l	Les	trois	premiers	coeff	fici	ent	3	du	vi	ri	el	d	е	la	C	on	st	an	te
	diél	ectriq	ue du méth	ane .	•			• •	•					•			•		24

Chapitre 3

- Tableau IValeurs expérimentales de Z_3 pour le méthane sec à 298,15 K etvaleurs calculées selon les équations Goodwin (Z_{GO}) , GERG (Z_{GE}) et AGA8 (Z_{AG}) et AGA8 (Z_{AG})

Tableau IV Valeurs expérimentales de Z3 pour le méthane renfermant 95

ppm(v	7) d	l'eau	et	va	leur	s (al	cu	lé	es	d	'aı	près	le	s	éq	ua	ti	on	s	Go	od	wi	n,
GERG	et	AGA	8,	à	298,1	15	к				•	•			•				•		•	•		53

Chapitre 4

- Tableau 4.1 Valeurs de la polarisabilité totale de la molécule de méthane calculées à partir des valeurs expérimentales du premier coefficient du viriel de la constante diélectrique62
- Tableau 4.2 Valeurs de la polarisabilité totale de la molécule de méthanefournies par la littérature63

Tableau	4.4	Per	rmittivit	és	relativ	ves	et	le	s	troi	is	pr	em	iè	re	8	ap	pr	OX.	im	at	io	ns
		du	facteur o	de	compres	ssib	il:	ité	du	ı mé	tha	ine	g	az	eu	x	en	f	on	ct	io	n	de
		la	pression	à	298,15	к		•••				•	•		•	•		•		•	•		68

LISTE DES FIGURES

Chapitre 2

Chapitre 3

- Fig. 3 Graphique donnant CM RT/P en fonction de P/RT pour le méthane à

298,15 K: points expérimentaux et courbe de régression 56

- Fig. 6 Déviations (%) des valeurs expérimentales de Z pour le méthane pur par rapport aux valeurs calculées selon l'équation GERG ... 99
- Fig. 7 Déviations (%) des valeurs expérimentales de Z pour le méthane pur par rapport aux valeurs calculées selon l'équation AGA8 . . . 60

Chapitre 4

INTRODUCTION

L'étude de l'imperfection des gaz est une préoccupation permanente en thermodynamique et en physique moléculaire. L'investigation des propriétés du gaz réel permet en effet de mieux comprendre les interactions moléculaires et d'élaborer des équations d'état permettant de prédire les caractéristiques thermophysiques. Cette étude est appliquée dans l'industrie du gaz à la mesure des quantités de gaz stocké ou transporté, les erreurs de mesure ayant des répercussions financières considérables.

La permittivité d'un échantillon gazeux dépend directement de sa densité. La mesure de la permittivité en fonction de la pression pour différentes isothermes fournit un ensemble de propriétés importantes en physique fondamentale et appliquée.

L'objectif de notre projet de recherche est l'application de la technique diélectrique à la détermination de la densité (ou du facteur de compressibilité qui en dépend). La méthode diélectrique présente en effet des avantages par rapport aux techniques couramment utilisées.

Des progrès ont été réalisés ces dernières années en ce qui concerne la mesure de la permittivité et de la pression¹⁻⁷. Les valeurs du facteur de compressibilité déduites de ces mesures sont donc très précises: l'incertitude relative maximale de nos mesures du facteur de compressibilité du méthane pur à 298,15 K est de 0,12% pour P ~15 MPa.

La méthode diélectrique présente donc des avantages par rapport aux techniques traditionnelles. La technique diélectrique, comme la technique

optique, ne nécessite pas une mesure de volume. Une importante source d'erreur se trouve ainsi éliminée. La prise des mesures est rapide, le matériel diélectrique est robuste, commode et aisément miniaturisable. Par ailleurs, nous nous proposons d'étudier dans quelles conditions on peut évaluer le facteur de compressibilité Z uniquement à partir du premier coefficient du viriel de la constante diélectrique.

La méthode consiste à mesurer la permittivité relative statique (mesures effectuées à 1 kHz) du gaz étudié, entre 0 et 12 MPa [$\epsilon = f(P)$]. Le traitement de ces données fournit les valeurs du premier coefficient du viriel de la constante diélectrique, A_{ϵ} , et du second coefficient du viriel thermophysique, B. Ce dernier n'est pas utilisé dans les calculs suivants mais sert à tester la fiabilité des mesures effectuées. Le deuxième et le troisième coefficient du viriel de la constante diélectrique, B_{ϵ} et C_{ϵ} sont déterminés par la technique de l'expansion. Le facteur de compressibilité Z = f(P) est évalué à partir des valeurs de A_{ϵ} , B_{ϵ} , C_{ϵ} et des données $\epsilon = f(P)$ et T.

Le gaz naturel et le méthane, son principal constituant, ayant fait l'objet de nombreux travaux, nous avons choisi le méthane comme l'objet de notre étude. Nous étudierons pour le méthane pur les isothermes T = 298,15 K et T = 323,15 K, conditions couramment rencontrées dans la littérature. Comme le gaz naturel n'est jamais rigoureusement sec ^{8,9}, nous avons étudié l'influence de la présence de l'eau à partir d'échantillons de méthane humide dont les fractions molaires d'eau vont de $20 \cdot 10^{-6}$ à $95 \cdot 10^{-6}$. Nous comparons nos valeurs expérimentales de Z à des valeurs calculées à partir d'équations d'état empiriques ou à des valeurs expérimentales obtenues par d'autres chercheurs.

Ce mémoire comprend quatre parties.

Le chapitre 1 présente brièvement les bases théoriques de la méthode diélectrique, les détails étant exposés dans les deux chapitres suivants.

Dans le chapitre 2, nous déterminons le facteur de compressibilité du méthane pur afin de juger de la fiabilité de la méthode diélectrique. Ce chapitre est un article publié dans Fluid Phase Equilibria, 88, 137 (1993).

Le chapitre 3 traite de l'influence de la présence de quantités relativement faibles de vapeur d'eau sur du méthane. Cette étude a été publiée dans International Journal of Thermophysics, 13, 685 (1992).

Le chapitre 4 présente d'autres résultats déduits de nos travaux : évaluation de la polarisabilité de la molécule de méthane, vérification de la règle de calcul du premier coefficient du viriel de la constante diélectrique d'un mélange de gaz à partir des coefficients du viriel de ses constituants, contribution des différents coefficients du viriel au facteur de compressibilité.

BIBLIOGRAPHIE DE L'INTRODUCTION

1	Buckingham, A. D., Cole, R. H., Sutter, H., J. Chem. Phys., 52,
	5960 (1970).
2	Sutter, H., Cole, R. H., J. Chem. Phys., 52, 132 (1970).
3	Bose, T. K., Cole, R. H., J. Chem. Phys., 52, 140 (1970).
4	Bose, T. K., Sochanski, J. S., Cole, R. H., J. Chem. Phys., 57, 3592

- 5 Kirouac, S., Bose, T. K., J. Chem. Phys., 64, 1580 (1976).
- 6 Huot, J., Thèse de doctorat, Université Laval (1990).

(1972).

4

٦

- 7 Huot, J., Bose, T. K., J. Chem. Phys., 95, 2683 (1991).
- 8 Danan, J., Monnier, I., Bulletin BNM, 57, 41 (1984).
- 9 Joffrion, L. L., Eubank, P. T., J. Chem. Eng. Data, 34, 215 (1989).

CHAPITRE 1

THÉORIE

1.1 Équation d'état d'un gaz

Les paramètres d'état pression (P), volume (V) et température (T) décrivent l'état d'un échantillon gazeux. Deux de ces trois paramètres suffisent pour déterminer l'état d'une masse gazeuse donnée. L'interdépendance de P, V et T s'exprime par une relation du type

$$f(P, V, T) = 0 (1.1)$$

que l'on appelle équation d'état ou équation caractéristique. La recherche de cette équation compte beaucoup dans l'étude des gaz.

L'équation d'état du gaz réel est un développement en série du viriel de puissances de la concentration molaire volumique ou densité molaire :

$$\frac{P}{RT} = \rho + B \rho^2 + C\rho^3 + \dots$$
 (1.2)

où B, C, ... sont respectivement le second, le troisième... coefficient du viriel thermophysique, R la constante universelle des gaz parfaits, ρ la concentration molaire volumique ou densité molaire du gaz, c'est-à-dire le quotient n / V de sa quantité de matière n par son volume V.

Les expressions des coefficients B et C sont établies en physique statistique¹ pour le gaz monoatomique classique pur.

Le coefficient B est donné par:

$$B = -2\pi N \int_{0}^{\pi} \left[\exp(-U(r)/kT) - 1 \right] r^{2} dr \qquad (1.3)$$

où U(r) est le potentiel intermoléculaire, \vec{r} la position d'une molécule dans le repère centré sur sa voisine.

L'expression générale du troisième coefficient est:

$$C = -\frac{N^2}{3V} \iiint_V (x_{12}-1) (x_{13}-1) (x_{23}-1) dr_1 dr_2 dr_3$$
(1.4)

où

$$x_{ij} = \exp \left[- U(r_{ij}) / kT \right].$$
 (1.5)

 $U(r_{ij})$ est le potentiel intermoléculaire de la paire de molécules i et j; $r_{ij}=|\vec{r}_j-\vec{r}_i|$ est la distance des molécules étiquetées i et j, $dr_i=dx_i$ $dy_i dz_i$ est l'élément de volume dans lequel se trouve la molécule i de coordonnées cartésiennes (x_i , y_i , z_i), V est le volume de l'échantillon de gaz.

Physiquement, B décrit les interactions à deux corps, C les interactions à trois corps. La signification physique des coefficients du viriel d'ordre supérieur à trois n'est pas connue; pour l'instant, on se contente de les considérer comme des paramètres d'ajustement numérique.

L'état gazeux parfait correspond au cas limite du gaz dont les molécules, suffisamment éloignées les unes des autres (gaz dilué, pression relativement faible) n'interagissent pas. L'équation caractéristique du gaz parfait est la limite de (1.2) dans ces conditions:

$$\frac{P}{RT} = \rho = \frac{n}{V}.$$
 (1.6)

1.2 Facteur de compressibilité

1.2.1 Définition et intérêt

L'équation (1.2) permet d'obtenir les différentes approximations de la densité molaire ρ qui décrit l'état du gaz. Il est commode de ramener cette équation sous une forme semblable à celle de l'équation (1.6) en introduisant le facteur de compressibilité Z, grandeur sans dimension décrivant, comme la densité, l'état du gaz réel et la manière dont son comportement s'écarte de celui du gaz idéal :

$$Z = \frac{P}{RT} \frac{1}{\rho} \tag{1.7}$$

On détermine Z à partir de diverses mesures; c'est une fonction de la pression, de la température et de la composition du gaz. Le facteur de compressibilité présente un intérêt aussi bien fondamental qu'appliqué. En thermodynamique, la mesure du facteur de compressibilité permet d'établir l'équation d'état du gaz réel; dans l'industrie du gaz, cette mesure permet d'évaluer des grandeurs thermophysiques connexes (masse volumique, masse, énergie de combustion...)

1.2.2 Techniques de mesure

Diverses méthodes de mesure du facteur de compressibilité Z sont

basées sur la mesure directe des paramètres d'état. Elles sont dites PVT. Il s'agit de la technique d'expansion de Burnett et des méthodes à volume constant ou variable²⁻⁴. Ces méthodes présentent l'avantage de l'accès relativement direct à l'information recherchée; leur faiblesse réside dans l'incertitude sur la mesure du volume ou de la masse, ce qui réduit la précision de ρ ou de Z.

D'autres méthodes exploitent la dépendance de certaines grandeurs physiques vis-à-vis des paramètres d'état. Achtermann et al.^{5,6} et Bose et al.⁷ ont développé la méthode optique (mesure de l'indice de réfraction par interférométrie, en fonction de la pression) pour la mesure de Z. Cette technique n'exigeant pas de mesure de volume, elle fournit des valeurs aussi précises que celles des méthodes PVT. De plus, les mesures sont plus rapides. Comparativement à la méthode optique, la méthode diélectrique présente l'avantage de la robustesse du matériel et la facilité de miniaturisation.

1.3 Dépendance des paramètres diélectriques et thermodynamiques

La permittivité diélectrique, comme l'indice de réfraction, dépend directement de la densité de l'échantillon gazeux étudié. Clausius et Mossotti ont donné une relation valable pour le gaz idéal, liant la permittivité, la densité et la polarisabilité du gaz^{8,9}. Pour le gaz réel, on peut écrire la relation de Clausius-Mossotti sous la forme d'un développement en série du viriel de puissances de la densité molaire ρ ¹⁰:

$$\frac{\epsilon - 1}{\epsilon + 2} \frac{1}{\rho} = A_{\epsilon} + B_{\epsilon}\rho + C_{\epsilon}\rho^{2} + \dots$$
 (1.8)

où ϵ est la permittivité relative de l'échantillon de permittivité absolue $\epsilon_0 \epsilon$, ϵ_0 étant la permittivité du vide; A_{ϵ} , B_{ϵ} , C_{ϵ} , ... sont les coefficients du viriel de la constante diélectrique. A_{ϵ} , B_{ϵ} et C_{ϵ} représentent respectivement l'interaction d'une molécule isolée avec le champ externe, l'interaction entre deux molécules, l'interaction entre trois molécules. Ce qui a été dit dans le paragraphe 1.1 concernant les coefficients du viriel thermophysique d'ordre supérieur à trois est valable pour les coefficients du viriel de la constante diélectrique d'ordre supérieur à trois. Ces coefficients ne dépendent pas de la densité, varient avec la fréquence et en général avec la température¹¹.

Les expressions de A_{ϵ} et de B_{ϵ} ont été établies par Buckingham et Pople par la mécanique statistique classique. Le premier coefficient du viriel de la constante diélectrique est donné par ¹²⁻¹⁴ :

$$A_{\epsilon} = \frac{N}{3\epsilon_0} \left(\alpha_0 + \frac{\mu_0^2}{3kT} \right)$$
(1.9)

où N est la constante d'Avogadro, α_0 la polarisabilité totale d'une molécule isolée, $\vec{\mu}_0$ le moment dipolaire permanent de la molécule. La polarisabilité α_0 est définie par :

$$\vec{\mu}_{ind} = \alpha_0 \vec{E}$$
 (1.10)

où $\vec{\mu}_{ind}$ est le moment induit dans la molécule par le champ \vec{E} agissant sur la molécule; pour une molécule ne présentant pas de moment dipolaire permanent comme le méthane (principal constituant des échantillons gazeux dont nous étudions les propriétés), l'expression (1.9) devient :

$$A_{\epsilon} = \frac{N\alpha_0}{3\epsilon_0} \cdot \tag{1.11}$$

Le deuxième coefficient du viriel de la constante diélectrique est

donné par ¹²⁻¹⁴ :

$$B_{\epsilon} = \frac{N^2}{3\epsilon_0 \Omega} \int \left\{ \left[\frac{1}{2} \frac{\partial \left(\vec{\mu}_1 + \vec{\mu}_2\right)}{\partial E_0} \cdot \vec{u} - \alpha_0 \right] + \frac{1}{3kT} \left(\frac{1}{2} \left(\vec{\mu}_1 + \vec{\mu}_2\right)^2 - \mu_0^2 \right) \right\} \exp\left(-\frac{U_{12}}{kT}\right) d\tau \quad (1.12)$$

 $\vec{\mu}_1$ et $\vec{\mu}_2$ sont respectivement les moments dipolaires des molécules numéro l et 2, $\vec{\mu}_0$ le moment dipolaire permanent d'une molécule isolée; \vec{E}_0 est le champ électrique externe uniforme appliqué au matériau diélectrique; \vec{u} est le vecteur unitaire de même direction que le champ électrique externe; τ représente les coordonnées moléculaires, U_{ij} est le potentiel intermoléculaire entre les molécules numérotés i et j, k est la constante de Boltzmann, T la température absolue, Ω , donné par

$$\Omega = \frac{1}{v_{\pi}} \int d\tau_i \tag{1.13}$$

est l'intégrale sur toutes les coordonnées angulaires et

$$(\Omega V_{\rm m})^{-1} \exp\left(-\frac{U_{\rm ij}}{kT}\right) d\tau \tag{1.14}$$

la probabilité de trouver une molécule j au voisinage de la molécule de référence i dans un élément de volume d τ .

Les détails du principe de la méthode et de la procédure expérimentale pour évaluer A_{ϵ} , B_{ϵ} , et C_{ϵ} sont exposés dans les chapitres 2 et 3.

1.4 Conséquences des différentes formulations des propriétés d'état

La fusion des équations (1.2) et (1.8) donne :

$$\frac{\epsilon - 1}{\epsilon + 2} \frac{RT}{P} = A_{\epsilon} + (B_{\epsilon} - A_{\epsilon}B) \frac{P}{RT} + [C_{\epsilon} - 2B(B_{\epsilon} - A_{\epsilon}B) - A_{\epsilon}C] \left(\frac{P}{RT}\right)^{2} + \dots (1.15)$$

La détermination de la permittivité ϵ du gaz en fonction de sa pression P pour une température T fournit la valeur de A_{ϵ} par ajustement numérique. Dans la pratique, on mesure la capacité C(P) du condensateur plan ayant comme diélectrique le gaz à la pression P, et la capacité à vide C(0); on en déduit les valeurs de la permittivité ϵ .

 B_{ϵ} est mesuré par la méthode différentielle à cause de l'énorme erreur systématique¹⁵ qu'entraînerait l'utilisation de l'équation (1.14). En effet, les résultats expérimentaux montrent qu'en général, B_{ϵ} contribue très faiblement au terme ($B_{\epsilon} - A_{\epsilon}B$) de cette équation (1.14). Pour le méthane à 298,15 K par exemple, $A_{\epsilon}B \approx 6,551 \cdot 10^{-6} \times (-42 \cdot 10^{-6}) \approx 275 \cdot 10^{-12} \text{ m}^6 \cdot \text{mol}^{-2}$ et $B_{\epsilon} = 7,77 \cdot 10^{-12} \text{ m}^6 \text{mol}^{-2}$ (chapitre 2, tableau 1). Une erreur relative de 5% (ordre de grandeur de la dispersion des valeurs de B mesurées par divers auteurs ¹⁶) conduit à une erreur d'environ 100% sur B_{ϵ} . C'est pourquoi B_{ϵ} et C_{ϵ} sont déterminés par la méthode différentielle. Les détails de cette méthode sont donnés dans les chapitres 2 et 3.

1.5 Coefficients du viriel de la constante diélectrique de mélanges de gaz

Les coefficients du viriel de la constante diélectrique d'un mélange de n gaz purs s'expriment en fonction des coefficients du viriel et des fractions molaires des gaz mélangés¹⁴ :

$$A_{\epsilon} = \sum_{i=1}^{n} x_i A_{\epsilon_i}, \qquad (1.16)$$

$$B_{\epsilon} = \sum_{\substack{i=1 \\ j=1}}^{n} \sum_{j=1}^{n} x_{j} x_{j} B_{\epsilon_{ij}}, \qquad (1.17)$$

$$C_{\epsilon} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} x_{i} x_{j} x_{k} C_{\epsilon_{ijk}}.$$
(1.18)

Nous vérifierons la loi exprimée par (1.16) pour les mélanges binaires méthane-eau. La détermination des termes croisés intervenant dans (1.17) et (1.18) sort du cadre de ce travail.

.

.2

BIBLIOGRAPHIE DU CHAPITRE 1

1	Hill, T. L., An introduction to Stastistical Thermodynamics,
	Addisson-Wesley, London (1962).
2	Burnett, E. S., J. Appl. Mech. Trans., ASME A58, 136 (1936).
3	Douslin, D. R., Harrison, R. H., Moore, R. T., McCullough, J. P.,
	J. Chem. Eng. Data, 9, 358 (1964).
4	Ellington, R. T., Eakin, B. E., J. Chem. Eng. Prog., 59, 80 (1963).
5	Achtermann, H. J., Bose, T. K., Rogener, H., St-Arnaud, J. M., Int.
	J. Thermophys., 7, 709 (1986).
6	Achtermann, H. J., Baehr, H. D., Bose, T. K., J. Chem. Thermodynamics,
	21, 1023 (1989).
7	Bose, T. K., St-Arnaud, J.M., Achtermann, H. J., Sharf, R., Rev. Sci.
	Instrum., 57, 26 (1989).
8	Mossotti, P. F., Bibl. Univ. Modena, 6, 193 (1847).
9	Clausius, R., Die Mechanische Wärmtheorie, vol. II, Braunchwerch
	(1879).
10	Hill, N. E., Vaughan, W. E., Price A. H., Davies M., Dielectric
	properties and molecular behaviour, Van Nostrand-Reinhold, London
	(1969).
11	Diller, D.E., J. Chem. Phys., 49, 3096 (1968).
12	Buckingham, A. D., Pople, J. A., Trans Faraday Soc., 51, 1029 (1955).
13	Böttcher, C. J. F., Theory of Electric Polarization, vol.1, Elsevier,
	Amsterdam (1973).
14	Sutter, H., Dielectric and Related Molecular Processes, vol. 1, The
	Chem. Soc., London, 65 (1972).
15	Bose, T. K., in Phenomena induced by intermolecular interactions, Ed.

G. Birnbaum, Plenum, New-York (1985).

.

.

16 Dymond, J. H. and Smith, E. B., The Virial coefficients of pure gases and mixtures, Clarendon Press, Oxford (1980).

CHAPITRE 2

PRECISE DETERMINATION OF THE COMPRESSIBILITY FACTOR BY USING DIELECTRIC CONSTANT MEASUREMENTS

J.M. St-Arnaud^a, T.K. Bose^a, R. Okambawa^a and D. Ingrain^b

^aGroupe de recherche sur les diélectriques, Département de physique, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec, G9A 5H7 (Canada).

^bDirection des Etudes et Techniques Nouvelles, Gaz de France, 361 Ave du Président Wilson, 93211 La Plaine St-Denis, Cedex (France).

Keywords: compressibility factor, density, Clausius-Mossotti function, dielectric constant, expansion technique, dielectric virial coefficients, methane.

ABSTRACT

We show that the precise determination of the dielectric virial coefficients combined with the absolute value of the dielectric constant leads to very accurate values of the density. The higher order dielectric virial coefficients of the Clausius-Mossotti expansion are obtained by using an expansion technique. The compressibility factor of methane determined by using the first three dielectric virial coefficients are compared with the Goodwin equation of state. At 298.15 K and up to about 8 MPa, the compressibility factor calculated with the first two dielectric virial coefficients attains a difference of the order of 0.07% with the Goodwin equation of state. Between 8 MPa and 12 MPa, the first three dielectric virial coefficients are necessary to maintain the same order difference. The compressibility factor of methane determined by the dielectric method for two isotherms (298.15 K and 323.15 K) and pressures up to 15 MPa, compare with the best PVT and refractive index values.

INTRODUCTION

Various methods exist for the determination of the compressibility factor. The most commonly used methods are the Burnett (1936) expansion technique, the constant or variable expansion technique, the constant or variable volume methods (Ellington and Eakin (1963)) and the optical method as proposed by Achtermann et al. (1986,1989) and Bose et al. (1986). The purpose of this article is to show that the dielectric constant measurements like the refractive index measurements can lead to precise determination of the compressibility factor.

This article is divided into four sections: (1) mathematical development; (2) experimental procedure; (3) experimental results and (4) conclusions.

MATHEMATICAL DEVELOPMENT

The compressibility factor Z is given by

$$Z = P/\rho RT \tag{1}$$

where P is the pressure, R the universal gas constant, T the absolute temperature and ρ the molar density. We intend to determine ρ from the Clausius-Mossotti relation for the dielectric constant ϵ . This relation is given by

$$P_{t} = CM/\rho = [(\epsilon-1)/(\epsilon+2)\rho]$$
⁽²⁾

where P_t is the total polarization and $CM = (\epsilon - 1)/(\epsilon + 2)$. The later may be expanded in a virial series as:

$$CM = A_{\epsilon}\rho + B_{\epsilon}\rho^2 + C_{\epsilon}\rho^3 + \dots$$
 (3)
where A_{ϵ} , B_{ϵ} and C_{ϵ} are respectively the first, the second and the third

dielectric virial coefficient.

From eqn. (3), the first approximation for the density is

$$\rho_1 = CM/A_{\epsilon} \tag{4}$$

With this value of density, we get the first approximation for the compressibility factor

$$Z_1 = (P/RT) \left(A_{\epsilon}/CM \right) \tag{5}$$

The second approximation for ρ is given by

$$\rho_2 = CM/A_{\epsilon} - (B_{\epsilon}/A_{\epsilon})(CM/A_{\epsilon})^2$$
⁽⁶⁾

Replacing eqn. (6) in eqn. (1), we get the second approximation for the compressibility factor

$$Z_2 = (P/RT) \left[A_{\epsilon} / CM + B_{\epsilon} / A_{\epsilon} \right]$$
⁽⁷⁾

The third approximation for the density is given by

$$\rho_{3} = \frac{CM}{A_{\epsilon}} - \frac{B_{\epsilon}}{A_{\epsilon}} \left[\frac{CM}{A_{\epsilon}} \right]^{2} + \frac{2B_{\epsilon}^{2} - A_{\epsilon}C_{\epsilon}}{A_{\epsilon}^{2}} \left[\frac{CM}{A_{\epsilon}} \right]^{3}$$
(8)

which leads to

,

.

$$Z_{3} = \frac{P}{RT} \left[\frac{A_{\epsilon}}{CM} + \frac{B_{\epsilon}}{A_{\epsilon}} + \left(\frac{A_{\epsilon}C_{\epsilon} - B_{\epsilon}^{2}}{A_{\epsilon}^{3}} \right) CM \right]$$
(9)

Determination of Z can be obtained from accurate measurements of P, T, $\epsilon,~{\rm A}_{\epsilon},~{\rm B}_{\epsilon}$ and ${\rm C}_{\epsilon}.$

EXPERIMENTAL PROCEDURE

The first dielectric virial coefficient, A_{ϵ} , is obtained by measurements of the dielectric constant ϵ as a function of pressure. The equation of state

$$P/\rho RT = 1 + B_{\rm p}\rho + \dots$$
 (10)

where B_p , the second pressure virial coefficient is combined with eqn. (3) to give

 $[(\epsilon-1)RT]/[(\epsilon+2)P] = A_{\epsilon} + (B_{\epsilon}-A_{\epsilon}B_{P})(P/RT) + \dots$ (11)

A plot of the left hand side of eqn. (11) versus P/RT generally gives a straight line in the low pressure region (P < 1.5 MPa) with the intercept A_{ϵ} and the slope $(B_{\epsilon}-A_{\epsilon} B_{p})$. Values of A_{ϵ} determinated in this way can be reliable to a few parts in 10⁴, being dependent on the accuracy of the measured quantities ϵ , P and T.

In eqn. (11), B_{ϵ} is only a small fraction of the second term. So, a very small error on $(B_{\epsilon}-A_{\epsilon}B_{p})$ can lead to a large error in B_{ϵ} [Bose (1985)].

In order to determine precisely the second (B_{ϵ}) and the third (C_{ϵ}) dielectric virial coefficients, we used an expansion technique developed by Buckingham et al. (1970). This method essentially consist in first measuring the sum of capacitances of two similar cells, one of which is filled with gas at density ρ and the other is evacuated. The gas is then allowed to fill both cells, the density is almost halved, and the sum of capacitances is measured again. In this process, the linear term in density remains the same before and after the expansion, but the quadratic and higher orders change. Therefore, the second and the third dielectric virial coefficients are determined by the change in total capacitance. Details of this expansion technique are given by Kirouac and Bose (1976) and Huot and Bose (1991).

The expansion of $(\epsilon-1)\rho^{-1}$ as a function of density is given by

$$(\epsilon - 1)\rho^{-1} = A_{\epsilon}' + B_{\epsilon}'\rho + C_{\epsilon}'\rho^2 + \dots$$
(12)

The coefficients of this expansion are related to those of the Clausius-Mossotti function [eqn.(3)] through the following relations:

$$A_{\epsilon}' = 3 A_{\epsilon}$$
(13)

20

$$B_{\epsilon}' = 3(B_{\epsilon} + A_{\epsilon}^2)$$
⁽¹⁴⁾

$$C_{\epsilon}' = 3(C_{\epsilon} + 2 A_{\epsilon}B_{\epsilon} + A_{\epsilon}^{3})$$
⁽¹⁵⁾

Let the volumes of the capacitor cells A and B be respectively given by $V_A = V(1+\delta)$ and $V_B = V(1-\delta)$ where δ is small. Each cell contains capacitors of geometric capacitance $C_A = C(1+\Delta)$ and $C_B = C(1-\Delta)$ where Δ is small. Let A initially contain a gas of dielectric constant ϵ_1 and density ρ_1 while B is evacuated. On opening the value between A and B, the change of capacitance, D_A , is given by:

$$\frac{D_{\mathsf{A}}}{C} = (\epsilon_1 - 1) (\delta - \Delta) - B_{\epsilon}' \rho_1^2 - \frac{3}{4} C_{\epsilon}' \rho_1^3 \left(1 + \frac{\delta}{3}\right) + \dots$$
(16)

Similarly, let B initially contain a gas of dielectric constant ϵ_2 and density ρ_2 while A is evacuated, the change of capacitance, D_g , on expanding the gas from B to A is:

$$\frac{D_{\rm B}}{C} = -(\epsilon_2 - 1) \ (\delta - \Delta) - B_{\epsilon}' \rho_2^2 - \frac{3}{4} \ C_{\epsilon}' \rho_2^3 \left(1 - \frac{\delta}{3}\right) + \dots$$
(17)

Expressing the densities ρ_1 and ρ_2 in terms of (ϵ_1-1) and (ϵ_2-1) via the eqn.(12), we get

$$\rho_{1} = \frac{\epsilon_{1}-1}{A_{\epsilon}'} - \frac{B_{\epsilon}'}{A_{\epsilon}'^{3}} (\epsilon_{1}-1)^{2} + \frac{2 B_{\epsilon}'^{2} - A_{\epsilon}' C_{\epsilon}'}{A_{\epsilon}'^{5}} (\epsilon_{1}-1)^{3} + \dots$$
(18)

$$\rho_{2} = \frac{\epsilon_{2}-1}{A_{\epsilon}'} - \frac{B_{\epsilon}'}{A_{\epsilon}'^{3}} (\epsilon_{2}-1)^{2} + \frac{2 B_{\epsilon}'^{2}-A_{\epsilon}'C_{\epsilon}'}{A_{\epsilon}'^{5}} (\epsilon_{2}-1)^{3} + \dots$$
(19)

Then, by replacing the values ρ_1 and ρ_2 in eqns. (16) and (17) by eqns. (18) and (19), we get on combining eqns. (16) and (17)

$$\frac{D_{A}}{C(\epsilon_{1}-1)} + \frac{D_{B}}{C(\epsilon_{2}-1)} = -\frac{B_{\epsilon}'}{2A_{\epsilon}'^{2}}[(\epsilon_{1}-1) + (\epsilon_{2}-1)] + \frac{1}{2}\left[\frac{B_{\epsilon}'^{2}}{A_{\epsilon}'^{4}} - \frac{3C_{\epsilon}'}{4A_{\epsilon}'^{3}}\right][(\epsilon_{1}-1) + (\epsilon_{2}-1)]^{2} + \dots$$
(20)

For the quadratic term in eqn.(20), we made the assumption that $\epsilon_1 \approx \epsilon_2$. On plotting the left hand side against $[(\epsilon_1-1) + (\epsilon_2-1)]$, one can, with eqns. (14) and (15), determine B_{ϵ} from the slope and C_{ϵ} from the curvature.

The schematic diagram of the experimental set up is presented in Fig. 1. The dielectric measurements were carried out using a decade transformer bridge, (General Radio, type 1621), and a precision capacitance standard of 100 pF (GR 1408-B). The precision on capacitance measurement is estimated to be 3×10^{-6} pF. The cells used were of the three terminal type. Each cell has a set of parallel plates 3.18 cm in diameter. The separation between the plates is adjusted to have a geometrical capacitance of about 10 pF. The plates were made of copper for better thermal conductivity. Details of construction may be obtained from Huot and Bose (1991).

The measuring system (dielectric cells and valves) was immersed into a controlled temperature bath. Temperature was controlled by a circulating bath (Haake, model A82) within ± 0.01 K and was measured using a thermistor calibrated against a platinum resistance thermometer (Guildline 9540). The uncertainty in temperature measurements is 0.01 K.

The pressures were measured with a quartz pressure transducer (Paroscientific, model 740). This transducer was calibrated against a pressure standard manufactured by Desgranges and Huot (Model 5213) with an uncertainty of the order of 5x10⁻⁵. A polynomial for the pressure values in

Fig. 1 Schematic diagram of the experimental set up using the dielectric technique. C: compressor; G: gas; GN: generator; PG: pressure gauge; VP: vacuum pump; CTB: controlled temperature bath.

term of the readings on the transducer was fitted for the purpose of calibration. Considering the fitting and small errors due to the temperature, the final uncertainty is estimated to be of the order of 1×10^{-4} for pressures above 1.5 MPa. The methane was obtained from Matheson Company and had a minimum purity of 99.99%. The humidity, measured with an hygrometer (MCM, model Dewmatic 600 D) was less than 5 ppm.

For all the results reported here, we included a correction for the effect of pressure on geometric capacitance C_{G} , of the cells. The relation between $C_{G}(P)$ the geometric capacitance at pressure P and the vacuum geometric capacitance $C_{G}(0)$ is:

$$C_{\rm G}(P) = C_{\rm G}(0) [1 - KP] \tag{21}$$

where K is the compressibility. For copper, K is equal to 2.4 x 10⁻⁶ MPa⁻¹. Corrections to A_{ϵ} , B_{ϵ} and C_{ϵ} , are respectively given by KRT/3, (KRT/3)($A_{\epsilon}+B_{p}$), and (KRT/3)(A_{ϵ} B_{p} + $B_{\epsilon}-2R_{\epsilon}^{2}$ + C_{p}), where C_{p} is the third pressure virial coefficient.

EXPERIMENTAL RESULTS

The first dielectric virial coefficient A_{ϵ} is determinated from the intercept when we plot the left hand side of eqn. (11) versus P/RT. Figure 2 shows a typical plot at 323.15 K for the determination of A_{ϵ} . Table 1 gives values of A_{ϵ} , B_{ϵ} and C_{ϵ} at 298.15 K and 323.15 K respectively and a comparision with values measured by Bose et al. (1972). We note that A_{ϵ} for CH₄, a nonpolar gas, is practically independent of temperature. Generally, for a nonpolar gas, A_{ϵ} needs to be measured only at one temperature. Figure 3 presents a plot of the left hand side of eqn. (20) as a function of $[(\epsilon_1-1)+(\epsilon_2-1)]$ for the determination of B_{ϵ} and C_{ϵ} . Figure 4 shows a plot of B_{ϵ} as a fonction of 1/T. The experimental measurements at various temperatures are quite consistant within the limits of error.

T	$A_{\epsilon} \cdot 10^{6}$	$B_{\epsilon} \cdot 10^{12}$	C _e · 10 ¹⁸	
(K)	(m ³ ·mol ⁻¹)	(m ⁶ ·mol ⁻²)	(m ⁹ ·mol ⁻³)	References
279.80	6.538±0.003	8.14±0.29	-297±48	Bose et al (1972)
298.15	6.551±0.002			Present work
298.15		7.77 ^a	-284 ^a	Bose et al (1972)
322.50	6.541±0.003	7.29±0.32	-268±50	Bose et al (1972)
323.15	6.553±0.002	6.95±0.29	-266±50	Present work

The first three dielectric virial coefficients of CH4

TABLE 1

^a Extrapolated from Bose et al. (1972).

In Table 2, we give the values of the compressibility factors calculated at 298.15 K for three different approximations and values of the dielectric constant as a function of pressure. Z_1 is calculated from eqn. (5) which includes only the first term (A_{ϵ}) of the Clausius-Mossotti relation [eqn.(3)]. Z_2 is calculated by taking the first two coefficients $(A_{\epsilon}$ and $B_{\epsilon})$ [see eqn.(7)] and Z_3 is obtained with the first three coefficients $(A_{\epsilon}, B_{\epsilon})$ and C_{ϵ}) [eqn.(9)]. In Table 3, we present the first three approximations of the compressibility factor $(Z_1, Z_2, \text{ and } Z_3)$ as a function of pressure at 323.15 K.

Fig. 2 Clausius-Mossotti function of CH_4 at 323.15 K as a function of P/RT.

Fig. 3 Plot of $D_A/[(\epsilon_1-1)C]+D_B/[(\epsilon_2-1)C]$ as a function of $(\epsilon_1-1)+(\epsilon_2-1)$ for CH_4 at 323.15 K.

a.

Fig. 4 Plot of B_{ϵ} as a function of 1/T: our value [•]; Bose et al. (1972) [•].

Fig. 5 Deviation (%) of experimental values of Z_3 from Z_G : our values [•]; Douslin et al. (1964) [0]; Trappeniers et al. (1979) [\triangle].

Fig. 6 Deviation (%) of experimental values of Z_3 from Z_G : our values [•]; Bose et al. (1986) [\Box]; Douslin et al. (1964) [\circ]; Trappeniers et al. (1979) [Δ].

TABLE 2

.

Dielectric constant and the first three approximations of the compressibility factor of gaseous CH_4 as a function of pressure at 298.15 K.

Р	∈ -1			
(MPa)	± 6x10 ⁻⁷	z ₁	z ₂	z ₃ .
15.024	0.1539013	0.8135±0.0004	0.8207±0.0006	0.8187±0.0010
14.068	0.1430161	0.8169±0.0004	0.8236±0.0006	0.8218±0.0009
13.031	0.1311002	0.8223±0.0004	0.8285±0.0006	0.8270±0.0009
12.026	0.1195458	0.8292±0.0004	0.8349±0.0006	0.8337±0.0008
11.009	0.1078948	0.8378±0.0004	0.8431±0.0006	0.8421±0.0008
10.016	0.0966735	0.8477±0.0004	0.8525±0.0006	0.8517±0.0007
9.0046	0.0854428	0.8592±0.0004	0.8635±0.0006	0.8628±0.0007
8.0055	0.0746026	0.8717±0.0004	0.8756±0.0005	0.8750±0.0006
6.9989	0.0639898	0.8855±0.0004	0.8888±0.0005	0.8884±0.0006
5.9419	0.0532045	0.9009±0.0004	0.9038±0.0005	0.9035±0.0006
5.0061	0.0439861	0.9153±0.0004	0.9177±0.0005	0.9175±0.0005
3.9999	0.0344304	0.9314±0.0004	0.9333±0.0005	0.9332±0.0005
2.9999	0.0252922	0.9481±0.0004	0.9495±0.0005	0.9494±0.0005
1.9683	0.0162464	0.9655±0.0005	0.9665±0.0005	0.9664±0.0005

TABLE 3

Dielectric constant and the first three approximations of the compressibility factor of gaseous CH_4 as a function of pressure at 323.15 K.

Р	ϵ -1			z ₃	
(MPa)	±6x10 ⁻⁷	z ₁	Z2		
13.988	0.1219029	0.8730±0.0004	0.8785±0.0004	0.8772±0.0007	
13.057	0.1130489	0.8762±0.0004	0.8814±0.0004	0.8803±0.0006	
12.017	0.1031503	0.8810±0.0004	0.8858±0.0004	0.8848±0.0006	
11.027	0.0937737	0.8866±0.0004	0.8909±0.0004	0.8901±0.0006	
10.031	0.0844145	0.8932±0.0004	0.8972±0.0004	0.8965±0.0005	
9.0245	0.0750761	0.9008±0.0004	0.9043±0.0004	0.9038±0.0005	
8.0038	0.0657576	0.9093±0.0004	0.9125±0.0004	0.9121±0.0005	
7.0069	0.0568233	0.9186±0.0004	0.9213±0.0004	0.9210±0.0005	
6.0127	0.0481016	0.9285±0.0004	0.9309±0.0004	0.9306±0.0005	
5.0001	0.0394301	0.9393±0.0004	0.9412±0.0004	0.9411±0.0005	
3.9984	0.0310730	0.9505±0.0004	0.9520±0.0004	0.9519±0.0005	
3.0000	0.0229674	0.9623±0.0004	0.9634±0.0005	0.9634±0.0005	
2.0015	0.0150941	0.9743±0.0005	0.9751±0.0005	0.9751±0.0005	

Uncertainty in the determination of Z_3 is related to uncertainties in P, R, T, CM, A_{ϵ} , B_{ϵ} and C_{ϵ} . A close examination of the terms involved in Z_3 points to the fact that the main contribution to Z_3 comes from the first term $Z_1 = (P/RT)$ (A_{ϵ}/CM). As one can see from Table 2, Z_1 contributes up to 99% to Z_3 in the low pressure region. The remaining contribution which involves B_{ϵ} and C_{ϵ} , becomes more important at high pressure. In Z_1 , the experimental error comes mainly from CM/P and is due to systematic errors such as the plate deformation under pressure, calibration of the pressure transducer, gas purity as well as random error in the measurements of the capacitance under vacuum and under pressure. Generally, the systematic error in CM/P is not transferred to Z_1 if one calculates the compressibility factor by using the same CM/P data that are used to obtain A_{ϵ} . In fact, we have

$$A_{\epsilon} = RT \lim_{CM_{\star}P \to 0} (CM/P)$$
(22)

and

$$Z_{1} = \left(\frac{P}{RT}\right) \left(\frac{A_{\epsilon}}{CM}\right) = \left(\frac{CM}{P}\right)^{-1} \lim_{CM, P \to 0} \left(\frac{CM}{P}\right)$$
(23)

Due to the partial error compensation in the data reduction, the uncertainty in Z_1 is dominated by the random error in the capacitance measurement.

The uncertainties in B_{ϵ} and C_{ϵ} are respectively of the order of 4% and 17% which lead to uncertainties of the order of 2 x 10⁻⁴ and 3 x 10⁻⁴ in Z_3 at 15 MPa. The other uncertainties in Z_3 are due to the temperature T (± 0.01K) and the universal gas constant R. Those uncertainties are respectively of the order of 3 x 10⁻⁵ and 7 x 10⁻⁵.

One may also worry about the importance of the adsorption of the gas on the walls of the cell and on the plates of the capacitor. In our dielectric method, the effect of the adsorption on Z is negligible for two reasons. First, the absolute value of the dielectric constant being dependent only on the density in the gas phase, Z_1 is not affected by the adsorption. Second, in the expansion experiment to determine B_{ϵ} and C_{ϵ} , the adsorption is almost totally cancelled if one assumes a linear variation of adsorption as a function of pressure.

CONCLUSIONS

At 298.15 K, Fig. 5 illustrates that our experimental values of Z_3 are in good agreement with the experimental values of Douslin et al. (1964) and Trappeniers et al. (1979) with respect to the Goodwin (1974) equation of state. Values of Z_3 calculated at 323.15 K are in good agreement with the experimental values of Bose et al. (1986), Douslin et al. (1964) and Trappeniers et al. (1979) with respect to the Goodwin (1974) equation of state up to 15 MPa (see Fig.6). The first approximation Z_1 of the compressibility factor is within 0.2% of Z_3 up to about 5 MPa. Z_2 calculated with the first two dielectric virial coefficients attains a difference of the order of 0.07% with the Goodwin equation of state at about 8 MPa. Between 8 and 12 MPa, the first three dielectric virial coefficients are necessary to maintain the same order of difference.

ACKNOWLEDGMENTS

The authors thank J. Huot for taking some experimental data. Also, we thank J. Hamelin for helping in computer programs. We are indebted to

Dr. M. Jaeschke of Ruhr Gas for lending us the quartz pressure transducer (Paroscientific, model 740).

+

REFERENCES

- Achtermann, H.J., Bose, T.K., Rogener, H. and St-Arnaud, J.M., 1986. Precise determination of the compressibility factor of methane, nitrogen and their mixtures from refractive index measurements. Int. J. Thermophys., 7: 709-720.
- Achtermann, H.J., Baehr, H.D. and Bose, T.K., 1989. An optical method for the determination of the (pressure, amount of substance density, temperature) relation. Measurements of ethene in the temperature range from 283.15 to 373.15 K at pressures up to 30 MPa. J. Chem. Thermodynamics, 21: 1023-1043.
- Bose, T.K., Sochanski, J.S. and Cole, R.H., 1972. Dielectric and pressure virial coefficients of imperfect gases. Octupole moments of CH₄ and CF₄. J. Chem. Phys., 57: 3592-3595.
- Bose, T.K., 1985. A comparative study of the dielectric, refractive and Kerr virial coefficients in "Phenomena Induced by Intermolecular Interactions" (Ed.G. Birnbaum), Plenum, 49-66.
- Bose, T.K., St-Arnaud, J.M., Achtermann, H.J. and Scharf, R., 1986. Improved method for the precise determination of the compressibility factor from refractive index measurements. Rev. Sci.Instrum., 57: 26-32.
- Buckingham, A.D., Cole, R.H. and Sutter, H., 1970. Direct determination of the imperfect gas contribution to dielectric polarization. J. Chem. Phys. 52: 5960-5961.
- Burnett, E.S., 1936. Compressibility determination without volume measurements. J. Appl. Mech. Trans. ASME A58: 136-140.
- Douslin, D.R., Harrison, R.H., Moore, R.T. and McCullough, J.P., 1964. P-V-T relations for methane. J. Chem. Eng. Data, 9: 358-363.

- Ellington, R.T. and Eakin, B.E., 1963. Techniques for P-V-T measurements. Chem. Eng. Prog., 59: 80-88.
- Goodwin, R.D., 1974. The thermophysical properties of methane from 90 K to 500 K at pressures to 700 bar. Technical Note 653, Natl. Bur. Stand. Boulder, Colorado, U.S.A.
- Huot, J. and Bose, T.K., 1991. Determination of the quadrupole moment of nitrogen from the dielectric second virial coefficient. J. Chem. Phys., 94: 3849-3854.
- Kirouac, S. and Bose, T.K., 1976. Polarizability and dielectric properties of helium. J. Chem. Phys., 64: 1580-1582.
- Trappeniers, N.J., Wassenaar, T. and Abels, J.C., 1979. Isotherms and thermodynamics properties of methane at temperatures between 0° and 150° C and at densities up to 570 amagat. Physica, 98A: 289-297.

CHAPITRE 3

APPLICATION OF THE DIELECTRIC CONSTANT MEASUREMENTS TO STUDY THE INFLUENCE OF THE SMALL QUANTITIES OF WATER VAPOUR ON THE COMPRESSIBILITY FACTOR OF METHANE.

J.M. St-Arnaud^{1,a}, T.K. Bose¹, R. Okambawa¹ and D. Ingrain²

- ¹ Groupe de recherche sur les diélectriques, Département de physique, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec - G9A 5H7, Canada.
- ² Direction des Etudes et Techniques Nouvelles, Gaz de France, 361 Ave du Président Wilson, 93211 La Plaine St-Denis, Cedex, France.

a) Author to whom the correspondance should be addressed.

ABSTRACT

Dielectric measurements have been applied successfully to obtain accurate values of the compressibility factor of methane in the presence of the small quantities of water vapour [20, 65 and 95 ppm(v)]. Up to about 95 ppm(v)

of H_2O in CH_4 , the compressibility factor decreases very slighty in the presence of H_2O . The compressibility factor of dry CH_4 determined by the dielectric method is compared with the best PVT results and the Goodwin equation of state. The compressibility factor of CH_4 having small quantities of water vapour is compared with the Goodwin, GERG and AGA8 equations.

KEY WORDS: Clausius-Mossotti function, compressibility, dielectric constant, dielectric virial coefficients, expansion technique, methane, water.

1. INTRODUCTION

Natural gas contains quite frequently small quantities of water vapour. It is important to determine whether the presence of water influences in anyway the compressibility factor of CH_4 . The purpose of this article is to show that the dielectric measurements can lead to precise determination of the compressibility factor of CH_4 in the presence of small quantities of water vapour (up to about 95 ppm(v)). Since an electrical measuring technique is more amenable to technology transfer, the dielectric measurement appears to be very appropriate for industrial measurement of the compressibility factor.

2. MATHEMATICAL DEVELOPMENT

i

÷.

The compressibility factor Z is given by

$$Z = P/\rho RT \tag{1}$$

where P is the pressure, R is the universal gas constant, T is the temperature and ρ is the molar density. We intend to determine ρ from the Clausius-Mossotti relation for the dielectric constant ϵ . This relation is given by

$$P_{t} = CM/\rho = [(\epsilon - 1) / (\epsilon + 2)\rho]$$
(2)

where P_t is the total polarization and $CM = (\epsilon-1)/(\epsilon+2)$. The later can be expanded in a virial series as:

$$CM = A_{\epsilon}\rho + B_{\epsilon}\rho^{2} + C_{\epsilon}\rho^{3} + \dots$$
(3)

where A_{ϵ} , B_{ϵ} and C_{ϵ} are respectively the first, the second and the third dielectric virial coefficients.

From Eq. (3), the first approximation for the density is

$$\rho_1 = CM/A_{\epsilon} \tag{4}$$

With this value of density, we get the first approximation for the compressibility factor

$$Z_1 = (P/RT) (A_{\epsilon}/CM)$$
⁽⁵⁾

The second approximation for ρ is given by

$$\rho_2 = CM/A_{\epsilon} - (B_{\epsilon}/A_{\epsilon})(CM/A_{\epsilon})^2$$
(6)

Replacing Eq. (6) in Eq. (1), we get the second approximation for the compressibility factor

$$Z_2 = (P/RT) \left[A_{\epsilon}/CM + B_{\epsilon}/A_{\epsilon} \right]$$
(7)

The third approximation for the density is given by

$$\rho_{3} = \frac{CM}{A_{\epsilon}} - \left[\frac{B_{\epsilon}}{A_{\epsilon}}\right] \left[\frac{CM}{A_{\epsilon}}\right]^{2} + \left[\frac{2B_{\epsilon}^{2} - A_{\epsilon}C_{\epsilon}}{A_{\epsilon}^{2}}\right] \left[\frac{CM}{A_{\epsilon}}\right]^{3}$$
(8)

which leads to

,

$$Z_{3} = \left[\frac{P}{RT}\right] \left[\frac{A_{\epsilon}}{CM} + \frac{B_{\epsilon}}{A_{\epsilon}} + \left(\frac{A_{\epsilon}C_{\epsilon}-B_{\epsilon}^{2}}{A_{\epsilon}^{3}}\right) \left[CM\right]\right]$$
(9)

The compressibility factor Z can be obtained from accurate measurements of P, T, ϵ , A_{ϵ} , B_{ϵ} and C_{ϵ} .

3. EXPERIMENTAL PROCEDURE

The experimental procedure consists in developing a dielectric method for the determination of the compressibility factor of CH_4 with traces of water present in the gas.

3.1 Dielectric Method

The first dielectric virial coefficient, A_{ϵ} , is obtained by measuring the dielectric constant ϵ as a function of pressure from 0 to 1.2 MPa. Equation of state given by

$$P/\rho RT = 1 + B_{\rm p}\rho + C_{\rm p}\rho^2 + \dots$$
 (10)

where $B_{\rm p}$ and $C_{\rm p}$ are respectively the second and third pressure virial

coefficients, is combined with Eq. (3) to give

$$[(\epsilon-1)RT]/[(\epsilon+2)P] = A_{\epsilon} + (B_{\epsilon}-A_{\epsilon}B_{\mathsf{P}})(P/RT) + \dots$$
(11)

A plot of the left hand side of Eq. (11) versus (P/RT) generally gives a straight line in the low pressure region with the intercept A_{ϵ} and the slope $(B_{\epsilon}-A_{\epsilon} B_{p})$. Values of A_{ϵ} determined in this way can be reliable to a few parts in 10⁴, being dependent on the accuracy of the measured quantities ϵ , P and T. In Eq. (11), B_{ϵ} is only a small fraction of the second term. So, a very small error in $(B_{\epsilon}-A_{\epsilon}B_{p})$ can lead to a large error [1] in B_{ϵ} .

In order to determine precisely the second (B_{ϵ}) and the third (C_{ϵ}) dielectric virial coefficients, we used an expansion technique developed by Buckingham et al. [2]. This method essentially consists in first measuring the sum of capacitances of two similar cells, one of which is filled with gas at density ρ and the other evacuated. The gas is then allowed to fill both cells, the density is almost halved, and the sum of capacitances is measured again. In this process, the linear term in density remains the same before and after the expansion, but the quadratic and higher orders change. Therefore, the second and the third dielectric virial coefficients are determined by the change in total capacitance. Details of this expansion technique are given by Kirouac and Bose [3] and Huct and Bose [4].

Let two quasi-identical cells (A and B) be respectively of volumes $V_A = V (1 + \delta)$ and $V_B = V (1 - \delta)$ where δ is small and $V = (V_A + V_B)/2$. The cells contain respectively capacitors of geometric capacitance $C_A = C_o(1+\Delta)$ and $C_B = C_o(1-\Delta)$ where Δ is small. Let A initially contain a gas of dielectric constant ϵ_1 and density ρ_1 while B is evacuated. The change of capacitance, D_A , on opening the value is:

$$\frac{D_{A}}{C_{o}(\epsilon_{1}-1)} = (\delta - \Delta) - \left[\frac{B_{\epsilon} + A_{\epsilon}^{2}}{6A_{\epsilon}^{2}}\right] (\epsilon_{1}-1) + \left[\frac{4B_{\epsilon}^{2} - 3A_{\epsilon}C_{\epsilon} + 2B_{\epsilon}A_{\epsilon}^{2} + A_{\epsilon}^{4}}{36A_{\epsilon}^{4}}\right] (\epsilon_{1}-1)^{2} + \left[\frac{C_{\epsilon} + 2A_{\epsilon}B_{\epsilon} + A_{\epsilon}^{3}}{36A_{\epsilon}^{3}}\right] \delta (\epsilon_{1}-1)^{2}$$

$$(12)$$

where the density ρ_1 has been expressed in terms of the dielectric constant ϵ_1 . Similarly, if B initially contain a gas of dielectric constant ϵ_2 and density ρ_2 while A is evacuated, the change of capacitance, D_B, on opening the value is:

$$\frac{D_{B}}{C_{0}(\epsilon_{2}-1)} = -(\delta - \Delta) - \left[\frac{B_{\epsilon} + A_{\epsilon}^{2}}{6A_{\epsilon}^{2}}\right](\epsilon_{2}-1)$$

$$+ \left[\frac{(4B_{\epsilon}^{2} - 3A_{\epsilon}C_{\epsilon} + 2B_{\epsilon}A_{\epsilon}^{2} + A_{\epsilon}^{4})}{36A_{\epsilon}^{4}}\right](\epsilon_{2}-1)^{2}$$

$$- \left[\frac{C_{\epsilon} + 2A_{\epsilon}B_{\epsilon} + A_{\epsilon}^{3}}{36A_{\epsilon}^{3}}\right]\delta(\epsilon_{2}-1)^{2}$$
(13)

Then, by combining Eqs (12) and (13), we get:

8

5

$$\frac{D_{A}}{C_{0}(\epsilon_{1}-1)} + \frac{D_{B}}{C_{0}(\epsilon_{2}-1)} = -\left[\frac{B_{\epsilon}+A_{\epsilon}^{2}}{6A_{\epsilon}^{2}}\right]\left[(\epsilon_{1}-1)+(\epsilon_{2}-1)\right]$$

$$+ \frac{1}{2}\left[\frac{4B_{\epsilon}^{2}-3A_{\epsilon}C_{\epsilon}+2B_{\epsilon}A_{\epsilon}^{2}+A_{\epsilon}^{4}}{36A_{\epsilon}^{4}}\right]\left[(\epsilon_{1}-1)+(\epsilon_{2}-1)\right]^{2}$$
(14)

For the quadratic term in Eq. (14), we assumed that $\epsilon_1 \approx \epsilon_2$. On plotting the left hand side against $[(\epsilon_1 - 1) + (\epsilon_2 - 1)]$ one can determine B_{ϵ} from the slope and C_{ϵ} from the curvature.

The schematic diagram of the experimental set up is presented in Fig. 1. The dielectric measurements were carried out using a decade transformer bridge, (General Radio, type 1621), and a precision capacitance standard of 100 pF (GR 1408-B). The precision on capacitance measurement is estimated to be 3×10^{-7} . The cells used were of the three terminal type. Each cell has a set of parallel plates 3.18 cm in diameter. The separation between the plates is adjusted to have a geometrical capacitance of about 10 pF. The plates were made of copper for better thermal conductivity. Details of construction may be obtained from Huot and Bose [4]. The measuring system (dielectric cells and valves) was immersed into a constant temperature bath. Temperature was controlled by a circulating bath (Haake, model A82) within ±0.01 K and was measured using a thermistor calibrated against a platinum resistance thermometer (Guildline 9540). The uncertainty in temperature measurements is 0.01 K.

The pressures were measured with a quartz pressure transducer (Paroscientific, model 740). This transducer was calibrated against a pressure standard manufactured by Desgranges and Huot (Model 5213) having a precision of the order of 0.005%. A polynomial for the pressure values in terms of the readings on the transducer was fitted for the purpose of Considering the fitting and small errors due to the calibration. temperature, the final precision is estimated to be of the order of 1 x 10^{-4} for pressures above 1.5 MPa. The methane was obtained from Matheson Company and had a minimum purity of 99.99%. The humidity, measured with a calibrated hygrometer (MCM, model Dewmatic 600 D) was less than 5 ppm(v).

For all the results reported here, we included a correction for the effect of pressure on geometric capacitance C_{G} of the cells. The relation between $C_{G}(P)$ the geometric capacitance at pressure P and the vacuum geometric

capacitance C_c(0) is:

$$C_{G}(P) = C_{G}(0) [1-KP]$$
 (15)

where K is the compressibility. For copper, K is equal to 2.4 x 10^{-6} MPa⁻¹. Corrections to A_{ϵ} , B_{ϵ} and C_{ϵ} , are respectively given by KRT/3, (KRT/3)($A_{\epsilon}+B_{p}$), and (KRT/3)(A_{ϵ} B_{p} + $B_{\epsilon}-2R_{\epsilon}^{2}$ + C_{p}).

3.2 Preparation and measurement of the quantity of water vapour.

Various quantities of water vapour in CH_4 were added by taking account of the partial pressure of water vapour. Schematic diagram of the experimental set-up is shown in Fig. 2. The amount of water vapour was measured with an hygrometer. After an equilibrium time of the order of 12 hours, measurements of the quantity of water vapour were carried out at atmospheric pressure while maintaining a 500 mL·min⁻¹ flow in the hygrometer. The measurements were done before and after the determination of Z and gave the following mean values: 20 ± 3 ppm(v), 65 ± 6 ppm(v) and 95 ± 10 ppm(v).

4. EXPERIMENTAL RESULTS AND DISCUSSION

Using Eq. (11), we obtain A_{ϵ} for dry CH_4 to be (6.551 ± 0.002) x 10⁻⁶ m³·mol⁻¹ (see Fig.3). The above value is corrected for pressure as shown in Eq. (15). The determination of the second (B_{ϵ}) and third (C_{ϵ}) dielectric virial coefficients were obtained with the expansion method by Bose et al. [5]. At 298.15 K, the extrapolated values are $B_{\epsilon} = 7.77 \times 10^{-12} \text{ m}^6.\text{mol}^{-2}$ and $C_{\epsilon} = -284 \times 10^{-18} \text{ m}^9.\text{mol}^{-3}$.

Since the quantity of water vapour added to CH_4 is very small, we determine Z for $CH_4 - H_2O$ by using the same values of A_6 , B_6 and C_6 as for dry CH_4 .

In Table I, we compare our experimental values of Z_3 for CH₄ with values calculated according to the GERG [6], AGA8 [7] and Goodwin [8] equations of state. One can see from Fig. 4, that our values of Z_3 are in good agreement with the experimental values of Douslin et al. [9] and Trappeniers et al. [10] with respect to the Goodwin equation of state. In Tables II, III and IV, we present our experimental values of Z_3 for mixtures of CH₄ - H₂O having respectively water content of the order of 20, 65 and 95 ppm(v). As the quantity of water is very small for all mixtures, we compared our values of Z_3 with values calculated according to the Goodwin, GERG and AGA8 equations of state for dry CH₄. In Figs. 5, 6 and 7, we illustrate the deviation $[(Z_3 - Z_{EQ}) / Z_{EQ}]$ % as a function of pressure for dry CH₄ and mixtures of CH₄ - H₂O respectively.

Precisions in the determination of Z_3 are of the order of 0.07% for pressures less than 10 MPa and of the order of 0.10% between 10 and 15 MPa. As presented in Tables II to IV, and illustrated in Figs. 6 and 7, our experimental values of Z_3 agree well with the GERG and the AGA-8 equations of state. The differences in Z between dry CH₄ and the three mixtures CH₄ - H₂0 are less than the uncertainties on Z.

Determination of the compressibility factor of dry CH_4 and mixtures $CH_4 - H_20$ show that the compressibility factor decreased very slighty due to the presence of water vapour in small quantities (up to 95 ppm(v)). This decreasing is of the order of the uncertainties.

ACKNOWLEGMENTS

.

We are grateful to Mr. Jean-Paul Coquand of Gaz de France for suggesting the problem. We would like to thank Mr. J. Huot for taking some experimental data and Mr. J. Hamelin for helping us with computer programs. We are indebted to Dr. M. Jaeschke of Ruhrgas for lending us the quartz pressure transducer.

REFERENCES

- T.K. Bose, in "Phenomena Induced by Intermolecular Interactions" Ed. G. Birnbaum, (Plenum, New York, <u>1986</u>).
- A.D. Buckingham, R.H. Cole and H. Sutter, J. Chem. Phys., <u>52</u>: 5960 (1970).
- 3. S. Kirouac and T.K. Bose, J. Chem. Phys., <u>64</u>: 1580 (1976).
- 4. J. Huot and T.K. Bose, J. Chem. Phys., 94: 3849 (1991).
- T.K. Bose, J.S. Sochanski and R.H. Cole, J. Chem. Phys., <u>57</u>: 3592 (1972).
- 6. M. Jaeschke, S. Audibert, P. van Caneghem, A.E. Humphreys, R. Janssenvan Rosmalen, Q. Pellar, J.P.J. Michels, J.A. Schouten and C.A. Ten Seldam, "High Accuracy Compressibility Factor Calculation for Natural Gases and Similar Mixtures by Use of a Truncated Virial Equation". GERG TM2, VDI, Verlag, Düsseldorf, (1988).
- K.E. Starling, "Compressibility and Supercompressibility for Natural Gas and other Hydrocarbon Gases". AGA Transmission Measurement Committee Report, No. 8 (1985).
- R.D. Goodwin, "The Thermophysical Properties of Methane from 90 K to 500 K at Pressures to 700 bar". Technical Note 653, Nat. Bur. Stand., Boulder, Colorado, USA, <u>1974</u>.
- D.R. Douslin, R.H. Harrison, R.T. Moore and J.P. McCullough, J. Chem. Engr. Data, <u>9</u>: 358 (1964).
- N.J. Trappeniers, R. Wassenaar and J.C. Abels, Physica, <u>98A</u>, 289 (1979).

LIST OF THE TABLES

ŧ

- Table I: Comparison between the experimental values (Z_3) for dry CH_4 at 298.15 K and values calculated from Goodwin (Z_{GO}) , GERG (Z_{GE}) and AGA8 (Z_{AG}) equations.
- Table II: Comparison at 298.15 K between the experimental values (Z_3) for CH₄ having 20 ppm(v) of H₂O and values calculated from Goodwin, GERG and AGA8 equations.
- Table III: Comparison at 298.15 K between the experimental values (Z_3) for CH₄ having 65 ppm(v) of H₂O and values calculated from Goodwin, GERG and AGA8 and equations.
- Table IV : Comparison at 298.15 K between the experimental values (Z_3) for CH₄ having 95 ppm(v) of H₂O and values calculated from Goodwin, GERG and AGA8 equations.

CAPTIONS TO FIGURES

- Fig. 1: Schematic diagram of the system using the dielectric technique. A and B: dielectric cells; C: compressor; CB: capacitance bridge; CTB: controlled temperature bath; G: gas cylinder; GN: generator; PG: pressure gauge; VP: vacuum pump.
- Fig. 2: Schematic diagram of the system for preparation and measurements of the amount of water vapour. A: buffer cylinder; B and C: sampling cylinder; F: filter; FL: flowmeter; FM: fine metering valve; H: hygrometer; M: pressure gauge; P: gas purifier; R: pressure regulator; RV: relief valve; V: valve; VL: no-return valve; W: water condensation.
- Fig. 3: Clausius-Mossotti function of CH₄ at 298.15 K as a function of P/RT. Points are experimental and the curve is the least squares fit.
- Fig. 4: Deviations (%) of the experimental values of Z from Z_{GO} values calculated using the Goodwin equation of state as a reference.
- Fig. 5: Deviations (%) of the experimental values Z_3 from values calculated using the Goodwin equation of state as reference.
- Fig. 6: Deviation (%) of the experimental values Z₃ from values calculated using the GERG equation of state as a reference.
- Fig. 7: Deviations of the experimental values of Z_3 from values calculated using the AGA8 equation of state as a reference.

Table I. Comparison at 298.15 K between our experimental values (Z_3) for dry CH_4 and values calculated from Goodwin (Z_{GO}), GERG (Z_{GE}) and AGA8 (Z_{AG}) equations.

.

a

PRESSURE	COMPRESSIBILITY FACTOR					
P (MPa)	$z_3 \pm \Delta z_3$	z _{go}	z _{ge}	Z _{AG}		
15.002 14.532 13.987 13.018 12.056 11.014 10.043 9.0339 8.0296 7.0007 6.0086 5.0079 3.9980 3.0004 2.0011 1.4987 1.4001 1.3000 1.2001 1.1001 1.0002 0.9001 0.8001 0.7001 0.6001 0.5001 0.4001 0.3001	$\begin{array}{c} 0.8187 \pm 0.0009\\ 0.8201 \pm 0.0009\\ 0.8221 \pm 0.0008\\ 0.8271 \pm 0.0008\\ 0.8335 \pm 0.0007\\ 0.8420 \pm 0.0007\\ 0.8514 \pm 0.0006\\ 0.8625 \pm 0.0006\\ 0.8748 \pm 0.0005\\ 0.8748 \pm 0.0005\\ 0.9026 \pm 0.0005\\ 0.9026 \pm 0.0005\\ 0.9176 \pm 0.0004\\ 0.9335 \pm 0.0004\\ 0.9496 \pm 0.0004\\ 0.9747 \pm 0.0004\\ 0.9764 \pm 0.0004\\ 0.9781 \pm 0.0004\\ 0.9815 \pm 0.0004\\ 0.9815 \pm 0.0004\\ 0.9815 \pm 0.0004\\ 0.9849 \pm 0.0004\\ 0.9849 \pm 0.0004\\ 0.9884 \pm 0.0004\\ 0.9884 \pm 0.0004\\ 0.9901 \pm 0.0005\\ 0.9918 \pm 0.0005\\ 0.9918 \pm 0.0005\\ 0.9953 \pm 0.0006\\ \end{array}$	0.8174 0.8189 0.8211 0.8263 0.8329 0.8416 0.8512 0.8625 0.8747 0.8883 0.9022 0.9170 0.9327 0.9490 0.9658 0.9744 0.9760 0.9777 0.9794 0.9770 0.9794 0.9811 0.9828 0.9845 0.9845 0.9845 0.9845 0.9845 0.9879 0.9896 0.9913 0.9930 0.9947	 0.8417 0.8512 0.8624 0.8747 0.8884 0.9024 0.9174 0.9332 0.9493 0.9493 0.9493 0.9493 0.9659 0.9743 0.9760 0.9777 0.9794 0.9811 0.9828 0.9845 0.9845 0.9845 0.9845 0.9879 0.9897 0.9914 0.9931 0.9948	0.8186 0.8200 0.8221 0.8270 0.8333 0.8419 0.8513 0.8624 0.8747 0.8884 0.9025 0.9176 0.9333 0.9495 0.9495 0.9660 0.9744 0.9761 0.9778 0.9778 0.9775 0.9812 0.9829 0.9846 0.9863 0.9880 0.9897 0.9914 0.9931 0.9948		

Table II. Comparison at 298.15 K between our experimental values (Z_3) for CH_4 having 20 ppm(v) of H_2O and values calculated from Goodwin (Z_{GO}) , GERG (Z_{GE}) and AGA8 (Z_{AG}) equations.

a.

.

GE	· AG	-			
PRESSURE		COMPRESSIB	ILITY FACT	OR	
P (MPa)	z ₃ ±	Δz ₃	z_{go}	z _{ge}	Z _{AG}
15.081	0.8185 ±	0.0009	0.8172		0.8184
14.027	0.8220 ±	0.0008	0.8209		0.8219
13.037	0.8269 ±	0.0008	0.8261		0.8268
12.019	0.8337 ±	0.0007	0.8331		0.8336
10.990	0.8422 ±	0.0007	0.8418	0.8419	0.8421
10.028	0.8515 ±	0.0006	0.8514	0.8513	0.8514
9.0149	0.8627 ±	0.0006	0.8627	0.8626	0.8626
7.9900	0.8752 ±	0.0005	0.8752	0.8752	0.8752
7.0112	0.8883 ±	0.0005	0.8881	0.8882	0.8883
6.0236	0.9024 ±	0.0005	0.9019	0.9022	0.9023
5.0033	0.9177 ±	0.0004	0.9170	0.9175	0.9176
4.0044	0.9332 ±	0.0004	0.9326	0.9331	0.9332
3.0035	0.9496 ±	0.0004	0.9489	0.9492	0.9494
1.9737	0.9666 ±	0.0004	0.9663	0.9663	0.9664
1.5038	0.9745 ±	0.0004	0.9743	0.9742	0.9743
1.4006	0.9762 ±	0.0004	0.9760	0.9760	0.9761
1.3000	0.9780 ±	0.0004	0.9777	0.9777	0.9778
1.1965	0.9797 ±	0.0004	0.9795	0.9795	0.9795
1.0424	0.9823 ±	0.0004	0.9821	0.9821	0.9822
0.8914	0.9849 ±	0.0004	0.9846	0.9847	0.9847
0.8000	0.9865 ±	0.0004	0.9862	0.9862	0.9863
0.6943	0.9882 ±	0.0004	0.9880	0.9880	0.9881
0.5253	0.9910 ±	0.0005	0.9908	0.9909	0.9910
0.3296	0.9943 ±	0.0006	0.9942	0.9943	0.9943

	PRESSURE			COMP	RESSIBILITY	Y FACTOR	
	P (MPa)	z ₃ ±		Δz3	z_{go}	\mathbf{z}_{GE}	Z _{AG}
	15.089	0.8182	±	0.0009	0.8171		0.8184
	14.016	0.8218	±	0.0008	0.8209		0.8219
	12.879	0.8277	±	0.0008	0.8271		0.8278
	12.012	0.8336	±	0.0007	0.8332		0.8336
	11.014	0.8418	±	0.0007	0.8416	0.8416	0.8419
	10.031	0.8513	±	0.0006	0.8513	0.8513	0.8514
	9.0409	0.8622	±	0.0006	0.8624	0.8623	0.8623
	8.0397	0.8744	±	0.0005	0.8746	0.8745	0.8746
	7.0238	0.8879	±	0.0005	0.8879	0.8880	0.8881
	6.0010	0.9025	±	0.0005	0.9023	0.9025	0.9026
	5.0134	0.9173	±	0.0004	0.9169	0.9173	0.9175
	4.0076	0.9330	±	0.0004	0.9326	0.9330	0.9332
	3.0138	0.9490	±	0.0004	0.9488	0.9491	0.9492
	1.9946	0.9658	±	0.0004	0.9659	0.9660	0.9661
	1.5069	0.9740	±	0.0004	0.9742	0.9742	0.9743
	1.4001	0.9758	±	0.0004	0.9760	0.9760	0.9761
	1.2999	0.9774	±	0.0004	0.9777	0.9777	0.9778
	1.2001	0.9792	±	0.0004	0.9794	0.9794	0.9795
	1.0999	0.9809	±	0.0004	0.9811	0.9811	0.9812
	1.0000	0.9825	±	0.0004	0.9828	0.9828	0.9829
	0.9000	0.9841	±	0.0004	0.9845	0.9845	0.9846
	0.8000	0.9858	±	0.0004	0.9862	0.9862	0.9863
	0.7000	0.9874	±	0.0004	0.9879	0.9879	0.9880
	0.6001	0.9891	±	0.0005	0.9896	0.9897	0.9897
	0.5001	0.9908	±	0.0005	0.9913	0.9914	0.9914
	0.4001	0.9925	±	0.0005	0.9930	0.9931	0.9931

Table III. Comparison at 298.15 K between our experimental values (Z_3) for CH_4 having 65 ppm(v) of H_2O and values calculated from Goodwin (Z_{GO}) , GERG (Z_{GE}) and AGA8 (Z_{AG}) equations.

.

Table IV. Comparison at 298.15 K between our experimental values (Z_3) for CH_4 having 95 ppm(v) of H_2O and values calculated from Goodwin (Z_{GO}) , GERG (Z_{GE}) and AGA8 (Z_{AG}) equations.

ī

.

PRESSURE	COMPRESSIBILITY FACTOR					
P (MPa)	Z ₃	±	Δz ₃	z _{go}	z _{ge}	Z _{AG}
15.050	0.8183	±	0.0009	0.8173		0.8185
14.017	0.8218	±	0.0008	0.8210		0.8219
13.012	0.8269	±	0.0008	0.8263		0.8270
12.024	0.8335	±	0.0007	0.8331		0.8336
11.011	0.8418	±	0.0007	0.8416	0.8417	0.8419
10.030	0.8513	±	0.0006	0.8513	0.8513	0.8514
9.0172	0.8624	±	0.0006	0.8626	0.8626	0.8626
8.0189	0.8746	±	0.0005	0.8748	0.8748	0.8748
5.9630	0.9029	±	0.0005	0.9028	0.9031	0.9032
5.0117	0.9172	±	0.0004	0.9169	0.9173	0.9175
4.0122	0.9328	±	0.0004	0.9325	0.9329	0.9331
3.0003	0.9492	±	0.0004	0.9490	0.9493	0.9494
2.0009	0.9655	±	0.0004	0.9658	0.9659	0.966
1.5005	0.9739	±	0.0004	0.9743	0.9743	0.9744
1.3976	0.9756	±	0.0004	0.9761	0.9760	0.9761
1.2999	0.9772	±	0.0004	0.9777	0.9777	0.9778
1.1990	0.9789	±	0.0004	0.9794	0.9794	0.9795
1.0015	0.9822	±	0.0004	0.9828	0.9828	0.9829
0.9016	0.9839	±	0.0004	0.9844	0.9845	0.9846
0.7989	0.9856	±	0.0004	0.9862	0.9862	0.9863
0.6997	0.9871	±	0.0004	0.9879	0.9879	0.9880
0.5973	0.9887	±	0.0005	0.9896	0.9897	0.9898
0.5001	0.9902	±	0.0005	0.9913	0.9914	0.9914

თ თ

Fig. 3

Fig. 4

Fig. 5

տ Ծ

Fig. 7
CHAPITRE 4

AUTRES RÉSULTATS

4.1 Polarisabilité totale de la molécule de méthane

D'après l'équation (1.11), le premier coefficient du viriel de la constante diélectrique d'un gaz dont les molécules ne présentent pas de moment dipolaire permanent est indépendant de la température. Nos résultats (table 1, chapitre 2) et divers travaux expérimentaux¹⁻⁴ sont en désaccord avec cette prédiction. On observe expérimentalement un accroissement de la polarisabilité totale lorsque la température croît.

Nous nous proposons ici de calculer les valeurs de la polarisibilité totale de la molécule de méthane à partir des valeurs expérimentales du premier coefficient du viriel de la constante diélectrique pour les isothermes étudiées.

L'équation (1.11) donne l'expression de la polarisabilité totale α_0 de la molécule isolée :

$$\alpha_0 = \frac{3A_\epsilon \ \epsilon_0}{N} \quad . \tag{4.1}$$

L'incertitude relative correspondante est :

$$\frac{\Delta \alpha_0}{\alpha_0} = \frac{\Delta A_{\epsilon}}{A_{\epsilon}} + \frac{\Delta \epsilon_0}{\epsilon_0} + \frac{\Delta N}{N}.$$
 (4.2)

Nous utilisons pour le calcul numérique des valeurs approchées des constantes physiques ϵ_0 et N (cf. Table des symboles et constantes physiques) telles que leurs incertitudes relatives soient négligeables devant l'incertitude relative de A_{ϵ} :

$$\frac{\Delta\epsilon_0}{\epsilon_0} \quad et \quad \frac{\Delta N}{N} \ll \frac{\Delta A_{\epsilon}}{A_{\epsilon}} \tag{4.3}$$

La relation (4.2) devient alors :

٠

$$\frac{\Delta \alpha_0}{\alpha_0} \sim \frac{\Delta A_{\epsilon}}{A_{\epsilon}} \quad et \quad \Delta \alpha_0 = \frac{3\epsilon_0 \Delta A_{\epsilon}}{N} \quad (4.4)$$

Le tableau 4.1 regroupe nos résultats et le tableau 2 donne les valeurs de α_0 fournies par la littérature.

Tableau 4.1 Valeurs de la polarisabilité totale de la molécule de méthane calculées à partir des valeurs expérimentales du premier coefficient du viriel de la constante diélectrique.

T (K)	$10^6 A_{\epsilon}$ m ³ mol ⁻¹	$10^{40} \alpha_0$ F m ²	
268,15	6,546 ± 0,002	2,8874 ± 0,0009	
298,15	6,551 ± 0,002	2,8896 ± 0,0009	
323,15	6,553 ± 0,002	2,8904 ± 0,0009	

Méthode	10 ⁴⁰ α ₀ F m ²	références
diélectrique	2,8816	5,6
mécanique quantique	2,6591	5,7

Tableau 4.2 Quelques valeurs de la polarisabilité totale de la molécule de méthane fournies par la littérature.

4.2 Évaluation du premier coefficient du viriel de la constante diélectrique des mélanges gazeux à partir de leur composition

Les mélanges gazeux étudiés ne renferment que deux constituants (méthane et eau), la relation (1.19) devient :

$$A_{\epsilon} = xA_{\epsilon_1} + (1-x)A_{\epsilon_2} \tag{4.5}$$

 A_{ϵ} , A_{ϵ_1} et A_{ϵ_2} sont respectivement le premier coefficient du viriel

de la constante diélectrique du mélange gazeux, de la vapeur d'eau pure et du méthane pur; x est la fraction molaire de la vapeur d'eau dans le mélange. L'incertitude sur A_{ϵ} est:

$$\Delta A_{\epsilon} = (A_{\epsilon_1} + A_{\epsilon_2}) \Delta x + x \Delta A_{\epsilon_1} + (1 - x) \Delta A_{\epsilon_2}$$
(4.6)

Nous déterminons A_{ϵ_1} par le calcul en utilisant la relation (1.9). La polarisibilité de la molécule d'eau, $\alpha_0 = 1,636\cdot 10^{-40}$ Fm² et la valeur de son

moment dipolaire permanent $\mu_0 = 6,188 \cdot 10^{-30}$ Cm sont données dans la littérature⁵. Le calcul donne $A_{\epsilon_1} = (74,0 \pm 0,2) \ 10^{-6} \ m^3 \ mol^{-1}$. Nous avons mesuré $A_{\epsilon_2} = (6,551 \pm 0,002) \ 10^{-6} \ m^3 \ mol^{-1} \ a \ 298,15 \ K \ (tableau \ l, \ chapitre \ 2).$

Le tableau 4.3 présente les valeurs mesurées $(A_{\epsilon mes})$ et calculées $(A_{\epsilon cal})$ du premier coefficient du viriel de la constante diélectrique des mélanges étudiés et les écarts relatifs $(A_{\epsilon cal} - A_{\epsilon mes})/A_{\epsilon mes}$.

Tableau 4.3 Premier coefficient du viriel de la constante diélectrique des mélanges gazeux méthane-eau étudiés: valeurs mesurées, valeurs calculées et écarts relatifs, T=298,15 K.

Fraction molaire d'eau 10 ⁶ x	A_{ϵ} mes	$A_{\epsilon \ cal}$	écart relatif ($A_{\epsilon \text{ cal}} - A_{\epsilon \text{ mes}}$)/ $A_{\epsilon \text{ mes}}$ (%)
0	6,551 ± 0,002	6,551 ± 0,002	0
20	6,553 ± 0,002	6,552 ± 0,002	-0,015
60	6,556 ± 0,002	6,555 ± 0,003	-0,015
95	6,557 ± 0,002	6,558 ± 0,003	0,015

On remarque le très bon accord entre les valeurs mesurées et calculées du premier coefficient du viriel de la constante diélectrique, les écarts relatifs n'exédant pas 0,015% en valeur absolue.

4.3 Influence du nombre de termes conservés dans le développement en série sur la précision du facteur de compressibilité.

Nous nous proposons ici d'étudier dans quelle mesure le polynôme donnant le facteur de compressibilité Z peut être tronqué tout en offrant la précision désirée sur l'intervalle de pression considéré.

Les incertituces relatives sur les trois premières approximations du facteur de compressibilité sont respectivement :

$$\Delta z_1 = z_1 \left[\frac{\Delta(P/RT)}{P/RT} + \frac{\Delta A_{\epsilon}}{A_{\epsilon}} + \Delta(CM) \right]$$
(4.7)

$$\Delta Z_{2} = \Delta Z_{1} + \left(\frac{\Delta(P/RT)}{P/RT} + \frac{\Delta B_{\epsilon}}{B_{\epsilon}} + \frac{\Delta A_{\epsilon}}{A_{\epsilon}}\right) \left(\frac{p}{RT} - \frac{B_{\epsilon}}{A_{\epsilon}}\right)$$
(4.8)

$$\Delta Z_{3} = \Delta Z_{2} + \left(\frac{\Delta(P/RT)}{P/RT} + 2\frac{\Delta A_{\epsilon}}{A_{\epsilon}} + \frac{\Delta C_{\epsilon}}{C_{\epsilon}} + \frac{\Delta(CM)}{CM}\right) \frac{C_{\epsilon} \cdot CM}{A_{\epsilon}^{2}} \frac{P}{RT} + \left[2\frac{\Delta B_{\epsilon}}{B_{\epsilon}} + \frac{\Delta(CM)}{CM} + \frac{3\Delta A_{\epsilon}}{A_{\epsilon}} + \frac{\Delta(P/RT)}{P/RT}\right] \frac{B_{\epsilon}^{2}CM}{A_{\epsilon}^{3}} \frac{P}{RT}$$

$$(4.9)$$

où

$$CM = \frac{\epsilon - 1}{\epsilon + 2} \tag{4.10}$$

Pour apprécier l'importance relative des termes entrant dans le calcul de Z_3 (chapitre 2, équation 9), analysons les valeurs numériques pour P = 12,017 MPa et T = 323,15 K. Les rapports Z_1/Z_2 et Z_1/Z_3 valent respectivement 0,9946 et 0,9957; cela veut dire que le terme (P/RT)(A_{ϵ}/CM) (en fait Z_1) contribue pour plus de 99% à Z_2 et Z_3 .

Les expressions données ci-dessus montrent que les précisions sur la détermination des coefficients A_{ϵ} , B_{ϵ} et C_{ϵ} influencent à des degrés divers le facteur de compressibilité. Les précisions sur A_{ϵ} , B_{ϵ} et C_{ϵ} sont respectivement de 0,04%, 4% et 19%. La grande précision de la mesure de A_{ϵ} (faible incertitude relative) est impérative pour l'obtention d'une bonne précision sur la mesure de Z. La contribution des termes en B_{ϵ} et C_{ϵ} ne devient appréciable dans Z_{3} que pour des pressions élevées comme l'indiquent le tableau 4.1 et la figure 4.1.

En résumé, pour une précision fixée, le nombre de termes à conserver dans le développement donnant Z dépend du domaine de pression considéré. Pour des pressions n'excédant pas 5 MPa, le facteur de compressibilité obtenu uniquement à partir du premier coefficient viriel est évalué à 0,2% près. Entre 5 et 8 MPa, l'utilisation des deux premiers coefficients viriels permet de déterminer Z à 0,07% près par rapport à l'équation d'état de Goodwin.

à.

TABLEAU 4.4

.

×

Permittivités relatives et les trois premières approximations du facteur de compressibilité du méthane gazeux en fonction de la pression à 298,15 K.

P	<i>€</i> -1			
(MPa)	±6.10 ⁻⁷	z ₁	z ₂	z ₃
12 020	0 1104744	0 8282 + 0 0004	0 8351 + 0 0006	0 9339 + 0 0009
11 010	0.1194744	0.8293 ± 0.0004	0.8351 ± 0.0006	0.8338 ± 0.0008
11.019	0.1080113	0.8378 ± 0.0004	0.8431 ± 0.0006	0.8420 ± 0.0008
9.9964	0.0964473	0.8481 ± 0.0004	0.8528 ± 0.0006	0.8520 ± 0.0007
9.0891	0.0863649	0.8583 ± 0.0004	0.8626 ± 0.0006	0.8619 ± 0.0007
8.02//	0.0748361	$0.8/16 \pm 0.0004$	0.8754 ± 0.0005	0.8749 ± 0.0006
7.0562	0.0645792	0.8848 ± 0.0004	0.8882 ± 0.0005	$0.88/8 \pm 0.0006$
6.0067	0.0538537	0.9001 ± 0.0004	0.9029 ± 0.0005	0.9027 ± 0.0006
5.0029	0.0439520	0.9156 ± 0.0004	0.9179 ± 0.0005	0.9177 ± 0.0005
4.0028	0.0344512	0.9316 ± 0.0004	0.9335 ± 0.0005	0.9334 ± 0.0005
2.9965	0.0252590	0.9483 ± 0.0004	0.9498 ± 0.0005	0.9497 ± 0.0005
2.0007	0.0165205	0.9653 ± 0.0005	0.9663 ± 0.0005	0.9663 ± 0.0005
1.4994	0.0122538	0.9739 ± 0.0005	0.9747 ± 0.0005	0.9746 ± 0.0005
1.4000	0.0114184	0.9757 ± 0.0005	0.9763 ± 0.0005	0.9763 ± 0.0005
1.3000	0.0105803	0.9774 ± 0.0005	0.9780 ± 0.0005	0.9780 ± 0.0005
1.2001	0.0097463	0.9793 ± 0.0005	0.9798 ± 0.0005	0.9798 ± 0.0005
1.1002	0.0089157	0.9811 ± 0.0005	0.9817 ± 0.0005	0.9817 ± 0.0005
0.9987	0.0080777	0.9827 ± 0.0005	0.9832 ± 0.0005	0.9832 ± 0.0005
0.8999	0.0072646	0.9843 ± 0.0005	0.9848 ± 0.0005	0.9848 ± 0.0005
0.8000	0.0064444	0.9861 ± 0.0005	0.9865 ± 0.0005	0.9865 ± 0.0005
0.7000	0.0056275	0.9878 ± 0.0005	0.9882 ± 0.0005	0.9882 ± 0.0005
0.6001	0.0048141	0.9897 ± 0.0006	0.9900 ± 0.0006	0.9900 ± 0.0006
0.5001	0.0040038	0.9914 ± 0.0006	0.9916 ± 0.0006	0.9916 ± 0.0006
0.4000	0.0031961	0.9932 ± 0.0006	0.9934 ± 0.0006	0.9934 ± 0.0006
0.3000	0.0023920	0.9951 ± 0.0007	0.9952 ± 0.0007	0.9952 ± 0.0007

68

Figure 4.1 Écarts relatifs (%) entre les valeurs de Z calculées selon l'équation AGA-8 et nos mesures de Z₁, Z₂ et Z₃.

69

BIBLIOGRAPHIE DU CHAPITRE 4

- 1 Bose, T.K., Sochanski, J.S., Cole, R.H., J. Chem. Phys., 57, 3593 (1972).
- 2 Kerl, K., Haüsler, H., Berichte der Bunsengesellschaft fur Physikalische Chemie, 88, 992 (1984).
- 3 Ge, J., Mémoire de maîtrise en physique, Université du Québec à Trois-Rivières, (1992).
- 4 Johnston, D. R., Oudemans, G. J., Cole, R. H., J. Chem, Phys., 33, 1310, (1960).
- 5 Gray, C. G., Gubbins, K. E., Theory of molecular fluids, vol. 1, Clarendon Press, Oxford, (1984).
- 6 Miller, C. K., Orr, B. J., Ward, J. F., J. Chem. Phys., 74, 4858 (1981).
- 7 Amos, R. D., Mol. Phys., 38, 33 (1979).

a.

CONCLUSION

Les objectifs de notre projet de recherche ont été atteints.

Pour le méthane pur à 298,15 et 323,15 K et les divers mélanges étudiés à 298,15 K, l'incertitude relative de nos valeurs du facteur de compressibilité est au plus de 0,095%. L'écart relatif maximum de nos valeurs de Z avec celles calculées à l'aide de l'équation de Goodwin est de l'ordre de 0,08%. Cet écart est de 0,05 % lorsque la référence est l'équation GERG et n'est que de 0,02 % pour l'équation AGA-8.

Nous avons montré, à partir des mesures prises avec le méthane pur que la méthode diélectrique de détermination du facteur de compressibilité est aussi précise que les méthodes d'expansion ou que la méthode optique; de plus, dans la plage des températures ambiantes, le facteur de compressibilité varie peu pour des pressions identiques.

L'effet de la présence de l'eau dans le méthane est négligeable pour des fractions molaires d'eau inférieures à 95·10⁻⁶. La technique diélectrique permet toutefois de déceler la présence de l'eau dans le gaz.

Les valeurs du facteur de compressibilité obtenues uniquement à partir du premier coefficient du viriel de la constante diélectrique ne sont recommandables, à 0,2 % près, qu'entre 0 et 5 MPa. Entre 5 et 8 MPa, l'utilisation des deux premiers coefficients viriel du viriel de la constante diélectrique conduit à un écart relatif de 0,07 % par rapport aux valeurs calculées selon l'équation d'état de Goodwin. Entre 8 et 12 MPa, les trois premiers coefficients sont nécessaires pour maintenir la même précision.

.

.

ANNEXE A

· •

CCCCC

TEXTE ABRÉGÉ DU PROGRAMME DE CALCUL DU FACTEUR DE COMPRESSIBILITÉ À PARTIR DES DONNÉES EXPÉRIMENTALES

PROGRAM FACTEUR FACTEUR DE COMPRESSIBILITE PROGRAMME REALISE POUR LE GROUPE DE RECHERCHE SUR LES DIELECTRIQUES DE L'UNIVERSITE DU QUEBEC A TROIS-RIVIERES (C.P.500,TROIS-RIVIERES QC. G9A 5H7) PAR JEAN HAMELIN FEVRIER 1990 DATE ٠ MODIFICATIONS : SEPTEMBRE 1990 PAR L'AUTEUR : JANVIER 1991 PAR R. OKAMBAWA LANGAGE: FORTRAN 5 STANDARD TABLEAU DES VARIABLES : PREMIER COEFFICIENT VIRIEL : DEUXIEME COEFFICIENT VIRIEL : TROISIEME COEFFICIENT VIRIEL : CAPACITE DES CELLULES A ET B : CAPACITE GEOMETRIQUE DES CELLULES A ET B : CAPACITE GEOMETRIQUE CORRIGE POUR LA PRESSION : CHOIX ENTRE TRAITEMENT DIELECTRIQUE OU NON : RELATION DE CLAUSIUS-MOSSOTTI : COMPOSITION NUMEROUE DE CHACUN DES 13 CAZ AEPS BEPS C(*,2) CO(2) COP CEPS CHOICE CLMS CCMPO(13): COMPOSITION NUMERIQUE DE CHACUN DES 13 GAZ NORMALISE A 1 CPT : COMPTEUR DE 0.0 A 1.0 MAXIMUM D* : DENSITE ESTIMEE D* : DENSITE ESTIMEE DMOYAB : DENSITE MOYENNE DES CELLULES A ET B (D3) DGERG : DENSITE SELON L'ALGORHYTME DU GERG DSUPER : DENSITE SELON L'ALGORHYTME DE SUPERZ DUICPA : DENSITE SELON L'ALGORYTHME DE L'UICPA EPS : PERMITTIVITE EPSMOY : PERMITTIVITE MOYENNE CELLULE A ET B FICHIER: NOM DE FICHIERS EXTERNES FICHI-2: NOM DE FICHIERS EXTERNES GAZ(13): NOM DE 13 DIFFERENTS GAZ KAPPA : FACTEUR DE CORRECTION GEOMETRIQUE MIXTE : DEMANDE LA COMPOSITION DU GAZ (IN:%,OUT:%/100) NOMBRE DE DONNEES VRAI SI DONNEES INITIALES ONT SUBIES UNE MODIFI. PRESSIONS_EN_BARS NPTS : OKDISK : PBAR() : PRESSION EN PSI PSI : STATUS : ANCIEN OU NOUVEAU FICHIER DE DONNEES STATUS : ANCIEN OU NOUVEAU FICHIER DE DONNEES TEMP : TEMPERATURE(KELVIN) TITLE : TITRE DU FICHIER DE DONNEES Z(*) : FACTEUR DE COMPRES. DE LA CELLULE A Z* : FACTEUR DE COMPRESSIBILITE ESTIME Z1/2MOY: MOYENNES DES 1e ET 2e APROXIMATION DE Z ZMOYAB : FACTEUR DE COMPRES. MOYEN CEL. A ET B ZCOODU : FACTEUR DE COMPRES. MOYEN CEL. A ET B ZGOODW FACTEUR DE COMPRES. SELON GOODWIN (METHANE) : : FACTEUR DE COMPRES. SELON GERG ZGERG ZSUPER : FACTEUR DE COMPRES. SELON SUPERZ ZUICPA : FACTEUR DE COMPRES. SELON L'UICPA (METHANE) NO DES FICHIERS DE SORTIES з FICHIER INPUT DE DONNEES EXPERIMENTALES : INPUT KEYBOARD OUTPUT SCREEN 5 : TABLEAU, Z123 ET D123 VERSUS PBAR, CELLULE A Z123 ET D123 VERSUS PBAR, CELLULE B : TABLEAU, Z123 ET D123 VERSUS PBAR, CELLULE B DONNEES POUR GRAPHIQUES ECARTS TABLEAU DE COMPARAISON ENTRE Z3MOYAB ET ZGERG TABLEAU DE COMPARAISON ENTRE Z3MOYAB ET ZGOODW : 9 : 1Õ : 11 ٠ TABLEAU DE COMPARAISON ENTRE Z3MOYAB ET ZSUPER TABLEAU DE COMPARAISON ENTRE Z3MOYAB ET ZUICPA 12 : ī3 : TABLEAU DMOYAB, DGERG ET DSUPER VERSUS PBAR TABLEAU Z1 Z2 Z3 MOYAB 14 : 15 : 16 TABLEAU ECARTS DE Z1 Z2 Z3 % ZGERG

00000000000

: TABLEAU ECARTS DE Z1 Z2 Z3 % ZGOODW : TABLEAU ECARTS DE Z1 Z2 Z3 % ZSUPER : TABLEAU ECARTS DE Z1 Z2 Z3 % ZUICPA 17 18 19 : DONNEES POUR GRAPHIQUE Z3 EPS-1 VERSUS PBAR 20 CHARACTER TITLE*60,FICHIER*16,FICH1*20,FICH2*20,QUEST*1, GAZ(13)*19 INTEGER NPTS,STATUS,CHOICE DOUBLE PRECISION TEMP,DTEMP,CO(2),DCO(2),C(99,2),KAPPA,R, BUF(4),AEPS,DAEPS,BEPS,DBEPS,CEPS,DCEPS,PBAR(99), COP,DCOP,EPS,DEPS,CLMS,DCLMS,Z1,Z2,Z3,DZ1,DZ2,DZ3, D1,D2,D3,DD1,DD2,DD3,PSI,DPSI,Z(99),D(99),DDMOY,BAR, ZGERG,COMPO(13),ZSUPER,DMOYAB,DSUPER,ZMOYAB,DGERG, DD(99),EPS2(99),DEPS2(99),EPSMOY,DEPSMOY,DZ(99),DZMOY, Z1MOY,Z2MOY,DZ1MOY,DZ2MOY,ZUICPA,DUICPA,Z1T(99), Z2T(99),DZ1T(99),DZ2T(99) + + + REAL ZGOODW, TBUF, PBUF LOGICAL OKDISK DATA GAZ/'méthane','azote','dioxyde de carbone','éthane', 'hydrogène','propane','monoxyde de carbone', 'butanes','hélium','pentanes','hexanes', 'heptanes','octanes + reste'/ + DATA COMPO/13*0./ CCC CONSTANTE UNIVERSELLE DE L EQUATION D ETAT DES GAZ R=1206.0 CCC POUR CALCUL DE LA CAPACITE GEOMETRIQUE EN FCT DE P KAPPA=1.6547E-08 SI COMPILATION SUR CYBER INCLURE CES DEUX LIGNES DE CODES: OPEN(5,FILE='INPUT') OPEN(6,FILE='OUTPUT') ET VERIFIER CHAQUE FORMAT POUR LES \'S CCCC 10 WRITE(6,1000) 1000 FORMAT(//,T27,'FACTEUR DE COMPRESSIBILITE',/,T27,26(1H-), + //,T17,'(comprend les routines GERG, GOODWIN, ', +'SUPERZ ET UICPA)',///,' 1. Calcul à partir de mesures ', + 'diélectriques',/,' 2. Calcul à partir de pressi', + 'ons seulement',//,' choix: ',\) READ(5,*) CHOICE IF(CHOICE.NE.1.AND.CHOICE.NE.2) GOTO 10 CCCC LECTURE DES DONNEES À PARTIR D'UN FICHIER DEJA EXISTANT ET QUE L'ON VEUT CREER OU MODIFIER. OKDISK = .FALSE. IF(CHOICE.EQ.1) THEN WRITE(6,1005) FORMAT(/,' Quel est le nom du fichier de données: ',\) READ(5, '(A)')FICHIER WRITE(6,1007) FORMAT(/,' Quel est son statut(0-nouveau ou 1-ancien): ',\) READ(5,*)STATUS IF(STATUS.NE.0.AND.STATUS.NE.1) GOTO 20 OPEN(3,FILE=FICHIER) REWIND(3) IF(STATUS.EQ.1)THEN WRITE(6,1010)FICHIER FORMAT(/,' LECTURE DU FICHIER DE DONNEES ',A,' EN COURS',//) READ(3,'(A)')TITLE READ(3,*)TEMP,DTEMP,C0(1),DC0(1),C0(2),DC0(2) 1005 20 1007 1010

READ(3,*)AEPS,DAEPS,BEPS,DBEPS,CEPS,DCEPS NPTS=0 READ(3,*,END=40)C(NPTS+1,1),C(NPTS+1,2),PBAR(NPTS+1) NPTS=NPTS+1 30 GOTO 30 REWIND(3) 40 REWIND(3)
WRITE(6,1020)TITLE
FORMAT(/,' titre: ',A,/,' modification(o-n): ',\)
READ(5,'(A)')QUEST
IF(QUEST.EQ.'O'.OR.QUEST.EQ.'O')THEN
WRITE(6,1030)
FORMAT(' titre: ',\)
READ(5,'(A)')TITLE
OKDISK = .TRUE.
ENDLE 1020 1030 ENDIF WRITE(6,1040)TEMP,DTEMP FORMAT(/,' présente température: ',F6.2,' ± ',F3.2,' K',/, modification(o-n): ',\) 1040 READ(5, '(A)')QUEST IF(QUEST.EQ.'O')THEN WRITE(6,1050) FORMAT(' nouvelle température(temp,dtemp):',\) READ(5,*)TEMP,DTEMP OKDISK = .TRUE. 1050 ENDIF 1060 1070 ENDIF 1080 1090 ENDIF ENDIF
WRITE(6,1100)AEPS,DAEPS
FORMAT(/,' premier coefficient viriel: ',F7.4,' ± ',F5.4,/,
modification(o-n): ',\)
READ(5,'(A)')QUEST
IF(QUEST.EQ.'O'.OR.QUEST.EQ.'O')THEN
WRITE(6,1110)
FORMAT(' nouveau coefficient(AEPS,dAEPS):',\)
READ(5,*)AEPS,DAEPS
OKDISK = .TRUE.
ENDIF 1100 1110 ENDIF WRITE(6,1120)BEPS,DBEPS FORMAT(/,' deuxième coefficient viriel: ',F5.3,' ± ',F4.3,/, modification(o-n): ',\) READ(5, '(A)')QUEST IF(QUEST.EQ.'O'.OR.QUEST.EQ.'O')THEN WRITE(6,1130) FORMAT(' nouveau coefficient(BEPS,dBEPS): ',\) READ(5,*)BEPS,DBEPS OKDISK = .TRUE. ENDIF 1120 1130 ENDIF WRITE(6,1140)CEPS,DCEPS FORMAT(/,' troisième coefficient viriel: ',F6.1,' ± ',F3.0,/, ' modification(o-n): ',\) 1140 READ(5, '(A)')QUEST IF(QUEST.EQ.'O'.OR.QUEST.EQ.'O')THEN WRITE(6,1150) FORMAT(' nouveau coefficient(CEPS) READ(5,*)CEPS,DCEPS OKDISK = .TRUE. 1150 nouveau coefficient(CEPS,dCEPS): ',\) ENDIF ELSE OKDISK = .TRUE. WRITE(6,2000) FORMAT(/,' titre: READ(5,'(A)')TITLE (,\) 2000

WRITE(6,2010)
FORMAT(/,' température(TEMP,DTEMP en K): ',\)
READ(5,*)TEMP,DTEMP
WRITE(6,2020)
FORMAT(/,' capacité géométrique cellule A(CO,DCO): ',\)
READ(5,*)CO(1),DCO(1)
WRITE(6,2030)
FORMAT(/,' capacité géométrique cellule B(CO,DCO): ',\)
READ(5,*)CO(2),DCO(2)
WRITE(6,2040)
FORMAT(/,' premier coefficient viriel(AEPS,DAEPS): ',\)
READ(5,*)AEPS,DAEPS
WRITE(6,2050)
FORMAT(/,' deuxième coefficient viriel(BEPS,DBEPS): ',\)
READ(5,*)EPS,DBEPS
WRITE(6,2060)
FORMAT(/,' troisième coefficient viriel(CEPS,DCEPS): ',\)
READ(5,*)CEPS,DCEPS
NPTS=0
WRITE(6,2070)
WRITE(6,2070) 2010 2020 2030 2040 2050 2060 NPTS=0 WRITE(6,2070) FORMAT(/,' entrer PBAR,CA,CB et 0,0,0 pour terminer',//) WRITE(6,2080)NPTS+1 FORMAT(' triplet no ',12,': ',\) READ(5,*)PBAR(NPTS+1),C(NPTS+1,1),C(NPTS+1,2) IF(PBAR(NPTS+1).EQ.0..AND.C(NPTS+1,1).EQ.0..AND.C(NPTS+1, 2).EQ.0.) GOTO 44 NPTS=NPTS+1 COTO 42 2070 42 2080 + GOTO 42 44 CONTINUE ENDIF WRITE(6,1160)
1160 FORMAT(/,' nom des fichiers pour Z et D (123), sans ext.: ',\)
READ(5,'(A)')FICHIER
FICH1 = FICHIER//'.A'
OPEN(7,FILE=FICH1)
FICH2 = FICHIER//'.B'
OPEN(8,FILE=FICH2)
REWIND(7)
PFWIND(9) REWIND(8) WRITE(6,1176)
WRITE(6,1176)
1176 FORMAT(/,' nom du fichier pour graphiques, sans ext.: ',\)
READ(5,'(A)')FICHIER
FICH1=FICHIER//'.ECA'
OPEN(9,FILE=FICH1)
FICH1 = FICHIER//'.EPZ'
OPEN(20,FILE=FICH1)
REWIND(9)
REWIND(9)
REWIND(20) WRITE(6,1220)
1220 FORMAT(/,' nom des fichiers de comparaison (Z3), sans ext.: ',\)
READ(5,'(A)')FICHIER
FICH1 = FICHIER//'.GER'
OPEN(10,FILE=FICH1)
FICH1 = FICHIER//'.GOO'
OPEN(11,FILE=FICH1)
FICH1 = FICHIER//'.SUP'
OPEN(12,FILE=FICH1)
FICH1 = FICHIER//'.UIC'
OPEN(13,FILE=FICH1)
REWIND(10)
REWIND(10)
REWIND(12)
REWIND(13) WRITE(6,1178)
1178 FORMAT(/,' nom du fichier pour la densité moyenne: ',\)
READ(5,'(A)')FICHIER
OPEN(14,FILE=FICHIER)
REWIND(14) WRITE(6,1179)
1179 FORMAT(/,' nom du fichier pour les moyennes Z1 Z2 Z3 : ',\)
READ(5,'(A)')FICHIER
OPEN(15,FILE=FICHIER)
REWIND(15) WRITE (6,1226)

.

.

1226 FORMAT(/,' nom des fichiers de comparaison (Z1 Z2 Z3),'
 +' sans ext.: ',\)
 READ(5,'(A)')FICHIER
 FICH1 = FICHIER//'.GER'
 OPEN(16,FILE=FICH1)
 FICH1 = FICHIER//'.GOO'
 OPEN(17,FILE=FICH1)
 FICH1 = FICHIER//'.SUP'
 OPEN(18,FILE=FICH1)
 FICH1 = FICHIER//'.UIC'
 OPEN(19,FILE=FICH1)
 REWIND(16)
 REWIND(16)
 REWIND(18)
 REWIND(19) DEMANDE LA COMPOSITION DU GAZ С CALL MIXTE(GAZ, COMPO) DO 50 J=1,2 IF(J.EQ.1)THEN WRITE(7,1172)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(7,1173) WRITE(8,1174)TITLE, AEPS, DAEPS, TEMP, BEPS, DBEPS, CEPS, DCEPS WRITE(8,1173) WRITE(8,1173) ENDIF IF(J.EQ.2)THEN WRITE(10,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(11,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(12,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(14,1232)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(10,1240)'Z3-ZGERG','ZGERG','ZGERG', WRITE(11,1240)'Z3-ZGOODW','ZGOODW','ZGOODW', WRITE(12,1240)'Z3-ZUICPA','ZUICPA','ZUICPA', WRITE(13,1240)'Z3-ZUICPA','ZUICPA','ZUICPA', WRITE(14,1177) WRITE(15,1232)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(15,1232)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(16,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(16,3004)'Z1-ZGERG','Z2-ZGERG','Z3-ZGERG', ZGERG','ZGERG','ZGERG','Z3-ZGOOD','Z3-ZGOOD', ZGOOD','ZGOOD','ZGOOD','Z2OOD','Z3-ZGOOD', WRITE(16,3004)'Z1-ZGERG','Z2-ZGERG','Z3-ZGERG', ZGERG','ZGERG','ZGERG','Z3-ZGOOD','Z3-ZGOOD','Z3-ZGOOD', ZGOOD','ZGOOD','ZGOOD','Z2-ZSUPER','Z3-ZSUPER', ZGOOD','ZGOOD','ZGOOD','Z2-ZSUPER','Z3-ZSUPER', ZGUPER','ZSUPER','Z2-ZSUPER','Z3-ZSUPER', WRITE(18,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(18,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(19,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(19,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(18,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(18,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(18,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(19,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(19,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(19,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(19,1230)TITLE,AEPS,DAEPS,TEMP,BEPS,DBEPS,CEPS,DCEPS WRITE(19,3004)'Z1-ZUICPA',Z2-ZUICPA',Z3-ZUICPA', WRITE(19,2001)'Z1-ZUICPA',ZUICPA',Z2-ZUICPA',Z3-ZUICPA', WRITE(9,2001) WRITE(20,2002) ENDIF + ' + 1 + ' + 1 ZUICPA ,, Ź WRITE(9,2001) WRITE(20,2002) ENDIF 1172 FORMAT(//,1X,'Cellule A: ',A,//,1X,'Aeps:',F7.3,' ± ',F4.3, +' cm3/mol',27X,'température: ',F6.2,' K',/,1X,'Beps:',F6.3, +' ± ',F4.3,' cm6/mol2',/,1X,'Ceps:',F6.0,' ± ',F3.0, +' cm9/mol3',/) D', +' cm9/mol3',/)
1177 FORMAT(3X, ',8(1H-),'+',22(1H-),'+',39(1H-),'+',',3X,
+'|PRESSION|',5X,'PERMITTIVITE',5X,'|',15X,'DENSITES',
+16X,'|',3X,'|'(bar)|',22X,'|',13X,'(mole/litre)',14X,'|',
+/,3X,'|',8(1H-),'+',22(1H-),'+',18(1H-),'+',9(1H-),'+','

77

CCCC CALCUL DES FACTEURS DE COMPRESSIBILITE A PARTIR DE CLAUSIUS-MOSSOTTI PSI=PBAR(I)*14.5038 DPSI=PSI*0.0001 BUF(1)=1.0-KAPPA*PSI COP=C0(J)*BUF(1) EPS=C(I,J)/COP DCOP=((DPSI)*KAPPA/BUF(1))+DCO(1)/CO(1))*COP DEPS=(DCO(J)/C(I,J)+DCOP/COP)*EPS CLMS=(EPS-1.0)/(EPS+2.0) DCLMS=(DEPS/(EPS-1.0)+DEPS/(EPS+2.0))*CLMS BUF(1)=PSI/(R*TEMP) BUF(2)=(DPSI/PSI+DTEMP/TEMP)*BUF(1) Z1=BUF(1)*(AEPS/CLMS) DZ1=(BUF(2)/BUF(1)+DAEPS/AEPS+DCLMS/CLMS)*Z1 BUF(3)=AEPS/CLMS+BEPS/AEPS BUF(4)=(DAEPS/AEPS+DCLMS/CLMS)*(AEPS/AEPS) Z2=BUF(1)*BUF(3) DZ2=(BUF(2)/BUF(1)+BUF(4)/BUF(3))*Z2 BUF(3)=BUF(3)+((CEPS*CLMS)/(AEPS*2)) BUF(4)=BUF(4)+(DABS(DCEPS/CEPS)+DCLMS/CLMS+2.0*DAEPS/AEPS) *(DABS(CEPS*CLMS)/(AEPS*2)) BUF(4)=BUF(3)-((BEPS*2)*CLMS)/(AEPS*3)) BUF(4)=BUF(4)+(2.*DBEPS/BEPS+DCLMS/CLMS+3.*DAEPS/AEPS) *((BEPS*2)*CLMS)/(AEPS*3)) Z3=BUF(1)*BUF(3) DZ3=(BUF(2)/BUF(1)+BUF(4)/BUF(3))*Z3 + + CCC CALCUL DES DENSITES D1=CLMS/AEPS DD1=(DCLMS/CLMS+DAEPS/AEPS)*D1 D2=D1-(BEPS/AEPS)*(CLMS/AEPS)*2 DD2=DD1+(DBEPS/BEPS+DAEPS/AEPS+2.*(DCLMS/CLMS+ DAEPS/AEPS))*(BEPS*(CLMS**2)/(AEPS**3)) D3=D2+((2.*BEPS**2-AEPS*CEPS)/(AEPS**2))*(CLMS/AEPS)**3 BUF(1)=2.*BEPS**2-AEPS*CEPS) BUF(2)=4.*DBEPS*BEPS+(DAEPS/AEPS+DABS(DCEPS/CEPS))* DABS(AEPS*CEPS) + DABS (AEPS*CEPS)

78

```
DD3=DD2+(BUF(2)/BUF(1)+2.*DAEPS/AEPS+3.*(DCLMS/CLMS+
DAEPS/AEPS))*DABS(D3-D2)
+
          IF(J.EQ.1)THEN

Z1T(I)=Z1

Z2T(I)=Z2

DZ1T(I)=DZ1

DZ2T(I)=DZ2

7(I)=73
                 SE

SE

Z1MOY=(Z1+Z1T(I))/2.0

Z2MOY=(Z2+Z2T(I))/2.0

DZ1MOY=(DZ1+DZ1T(I))/2.0

DZ2MOY=(DZ2+DZ2T(I))/2.0

DZMOY=(DZ3+DZ(I))/2.0

DMOYAB = (D3+D(I))/2.0

DMOYAB = (D3+DD(I))/2.0

DMOYAB = (DB3+DD(I))/2.0

DEPSMOY = (DEPS+DEPS2(I))/2.0

TBUF = SNGL(TEMP)

PBUF = SNGL(TEMP)

PBUF = SNGL(PBAR(I))

CALL GOODWIN(I,TBUF,PBUF,ZGOODW)

IF(PBAR(I).GT.120)THEN

ZGERG=0.

ELSE
          ELSE
                  ELSE
                          CALL MGERG(COMPO, PBAR(I), TEMP-273.15, ZGERG, DGERG)
                  ENDIF
                  CALL SUPERZ(COMPO, PBAR(I), TEMP, ZSUPER, DSUPER)
CALL UICPA(TEMP, PBAR(I), ZUICPA, DUICPA)
          ENDIF
IF(J.EQ.1)THEN
WRITE(7,1180)PBAR(I),EPS-1.0,Z1,Z2,Z3,D1*1000.,
+D2*1000.,D3*1000
          ELSE
ELSE

WRITE(8,1180)PBAR(I),EPS-1.0,Z1,Z2,Z3,D1*1000.,

+D2*1000.,D3*1000.

IF(ZGERG.EQ.0)THEN

WRITE(9,2)PBAR(I),

+ PBAR(I),(ZMOYAB-ZGOODW)*100./ZGOODW,PBAR(I),

+ (ZMOYAB-ZSUPER)*100./ZSUPER,PBAR(I),

+ (ZMOYAB-ZSUPER)*100./ZSUPER,PBAR(I),

+ ELSE
                  ÈLSE
             WRITE(9,3)PBAR(I),
(ZMOYAB-ZGERG)*100/ZGERG,PBAR(I),(ZMOYAB-ZGOODW)*100./ZGOODW,
PBAR(I),(ZMOYAB-ZSUPER)*100./ZSUPER,PBAR(I),
(ZMOYAB-ZUICPA)*100./ZUICPA
ENDIF
+
+
                  IF(ZGERG.EQ.0.)THEN
WRITE(10,1251)PBAR(I),ZMOYAB,DZMOY
                  ELSE
                     WRITE(10,1250)PBAR(I),ZMOYAB,DZMOY,ZGERG,
(ZMOYAB-ZGERG)*100./ZGERG
        ENDIF
                 IF
WRITE(11,1250)PBAR(I),ZMOYAB,DZMOY,ZGOODW,
(SNGL(ZMOYAB)-ZGOODW)*100./ZGOODW
WRITE(12,1250)PBAR(I),ZMOYAB,DZMOY,ZSUPER,
(SNGL(ZMOYAB)-ZSUPER)*100./ZSUPER
WRITE(13,1250)PBAR(I),ZMOYAB,DZMOY,ZUICPA,
(ZMOYAB-ZUICPA)*100./ZUICPA
IF(ZGERG.NE.0.)THEN
WRITE(14,1182)PBAR(I),EPSMOY-1.0.DEPSMOY,DMOYAB)
+
+
+
                  WRITE(14,1182)PBAR(I), EPSMOY-1.0, DEPSMOY, DMOYAB*1000.,
DDMOY*1000., DGERG, DSUPER
+
                  ELSE
                  WRITE(14,1183)PBAR(I),EPSMOY-1.0,DEPSMOY,DMOYAB*1000.,
DDMOY*1000.,DSUPER
                  ENDIF
                  WRITE(15,1600)PBAR(I),Z1MOY,DZ1MOY,Z2MOY,DZ2MOY,
ZMOYAB,DZMOY
                  IF(ZGERG.EO.0.)THEN
WRITE(16,610)PBAR(I)
                  ELSE
                  WRITE(16,1610)PBAR(I),(Z1MOY-ZGERG)*100./ZGERG,
(Z2MOY-ZGERG)*100./ZGERG,(ZMOYAB-ZGERG)*100./ZGERG
+
```

ENDIF DIF WRITE(17,1610)PBAR(I),(Z1MOY-ZGOODW)*100./ZGOODW, (Z2MOY-ZGOODW)*100./ZGOODW,(ZMOYAB-ZGOODW)*100./ZGOODW WRITE(18,1610)PBAR(I),(Z1MOY-ZSUPER)*100./ZSUPER, (Z2MOY-ZSUPER)*100./ZSUPER,(ZMOYAB-ZSUPER)*100./ZSUPER WRITE(19,1610)PBAR(I),(Z1MOY-ZUICPA)*100./ZUICPA, (Z2MOY-ZUICPA)*100./ZUICPA,(ZMOYAB-ZUICPA)*100./ZUICPA, (Z2MOY-ZUICPA)*100./ZUICPA,(ZMOYAB-ZUICPA)*100./ZUICPA WRITE(20,4)PBAR(I),ZMOYAB,PBAR(I),EPSMOY-1.0 DIF + + + ENDIF FORMAT(F9.4,2X,F9.8,2X,3(1X,F6.4,1X),2X,3(F9.5)) FORMAT(3X,F9.4,2X,F9.8,'±',F8.7,2X,F8.4,'±',F6.4,2(2X, F8.4)) FORMAT(3X,F9.4,2X,F9.8,'±',F8.7,2X,F8.4,'±',F6.4,2X, -----',2X,F8.4) FORMAT(15X,F9.4,F8.4,'±',F5.4,2X,F8.4,2X,F10.4) FORMAT(15X,F9.4,F8.4,'±',F5.4,5X,5(1H-),6X,6(1H-)) FORMAT(2X,F9.4,F8.4,'±',F5.4,5X,5(1H-),6X,6(1H-)) FORMAT(2X,F9.4,2X,3(4X,F7.4,'±',F5.4,3X)) FORMAT(12X,F9.4,3X,3(3X,'----',4X)) FORMAT(12X,F9.4,3X,3(3X,F6.4,4X)) FORMAT(12X,F9.4,1X,F6.4,1X,F8.4,1X,F6.4,1X,F8.4, 1X,F6.4,1X,F8.4,1X,F6.4) FORMAT(F9.4,1X,F6.4,1X,F8.4,1X,F6.4,1X,F8.4,1X,F6.4, 1X,F8.4,1X,F6.4) FORMAT(F9.4,1X,F5.4,1X,F8.4,1X,F9.8) CONTINUE ENDIF 1180 1182 1183 1250 1251 1600 610 1610 2 + 3 + 4 50 CONTINUE C C SAUVEGARDE LES DONNEES č IF(OKDISK)THEN
 WRITE(3,'(A)')TITLE
 WRITE(3,1190)TEMP,DTEMP,CO(1),DCO(1),CO(2),DCO(2)
 WRITE(3,1200)AEPS,DAEPS,BEPS,DBEPS,CEPS,DCEPS
 WRITE(3,1210)(C(I,1),C(I,2),PBAR(I),I=1,NPTS) ENDIF FORMAT(E10.5,1X,E10.5,4(1X,E13.8)) FORMAT(E10.5,1X,E10.5,4(1X,E9.3)) FORMAT(E14.9,1X,E14.9,1X,E12.7) 1190 1200 1210 PRINT CLOSE(3) CLOSE(7) CLOSE (8 CLOSE (8) CLOSE (9) CLOSE (10) CLOSE (11) CLOSE (12) CLOSE (12) CLOSE (13) CLOSE (14) CLOSE (15) CLOSE (16) CLOSE (16) CLOSE (17) CLOSE (18) CLOSE (19) CLOSE (20) ELSE 3000 3010 3020 3030 3040 + ENDIF ENDIF STOP

END

.

*

C C		SUBROUTINE MIXTE(GAZ,COMPO) DEMANDE LA COMPOSITION DU GAZ EN POURCENT ET DIVISE LE RESULTAT PAR 100
		CHARACTER GAZ(13)*19 DOUBLE PRECISION CPT,COMPO(13)
	10	
	20	IF(I.LT.13.AND.CPT.LT.1.)THEN
	30	I=I+1 WRITE(6,100)GAZ(I) READ(5,*)COMPO(I) IF(COMPO(I).GT.100.)GOTO 30 COMPO(I)=COMPO(I)/100.0 CPT=CPT+COMPO(I) GOTO 20 ENDIF IF(CPT.GT.1.)THEN WRITE(6,200) GOTO 10 ENDIF
1	LOO 200	<pre>FORMAT(/, ' pourcentage molaire en ',A,': ',\) FORMAT(/, ' somme des constituants > 100%recommencer')</pre>
		RETURN END

.

ANNEXE B

MÉTHODE DE PRÉPARATION DES ÉCHANTILLONS DE MÉTHANE HUMIDE

Les échantillons de méthane humide ont été préparés à partir de mélanges saturés dont les caractéristiques sont fournies par la littérature. Nous avons utilisé du méthane d'une grande pureté (99.99%) tel que fourni par Matheson et de l'eau déminéralisée.

1 Equations de travail

• .

.

1.1 Teneur en eau et pression

La concentration volumique relative ou fraction molaire x du mélange gazeux en eau est donnée par

$$x = \frac{V_i}{V} \tag{B.1}$$

 V_i étant le volume dans les conditions standards (T=298,15 K, P=1,013·10⁵ Pa) de la vapeur d'eau contenue dans le mélange et V le volume du mélange dans les mêmes conditions de température et de pression.

La pression partielle P; de la vapeur d'eau est par définition:

$$P_{i} = \frac{n_{i}}{n} P = \frac{(V_{i}/V_{o})}{(V/V_{o})} P$$
(B.2)

 n_i étant la quantité de matière d'eau et n la quantité de matière totale du mélange, V_o le volume molaire.

De ce qui précède, on déduit la fraction molaire x d'eau dans le mélange

$$x = \frac{P_i}{P} \tag{B.3}$$

quantité sans dimension que l'on peut exprimer en partie par million, en abrégé ppm(v).

2 Equation de dilution du gaz humide.

Il s'agit d'obtenir, à partir du gaz humide de concentration relative x_1 , sous la pression P_1 dans le cylindre de volume V, un gaz humide de concentration x_2 sous la pression P_2 à déterminer. La concentration relative d'eau dans le gaz sec est x. Appelons respectivement C_1 , C_2 et C les concentrations molaires volumiques du mélange initial, du mélange final et du gaz sec, V_1 , V_2 et V les volumes, sous la pression atmosphérique, du mélange initial, du mélange final et du gaz sec à ajouter.

Les concentrations x et C sont telles que:

$$x = \frac{V_{i}}{V} = \frac{n_{i}V_{0}}{V} = CV_{0}, \quad x_{1} = C_{1}V_{0}, \quad x_{2} = C_{2}V_{0}, \quad (B.4)$$

 V_0 étant le volume molaire.

La conservation de la matière se traduit par

$$C_1 V_1 + C V = C_2 V_2 \tag{B.5}$$

84

avec

ς.

$$V_2 = V_1 + V$$
 (B.6)

en supposant que le gaz est parfait :

$$P_1 V = P_0 V_1, P_2 V = P_0 V_2 \rightarrow \frac{V_1}{V_2} = \frac{P_1}{P_2}$$
 (B.7)

la manipulation des relations (B.4), (B.5), (B.6) et (B.7) donne :

$$P_2 = P_1 \left(\frac{x_1 - x}{x_2 - x} \right)$$
(B.8)

3 Mode opératoire.

Après avoir procédé aux vérifications et à l'assèchement de la ligne, on mesure le taux d'humidité du méthane sec. A l'aide du compresseur, on établit progressivement, en utilisant les différents robinets du dispositif, la pression évaluée à l'aide de l'équation établie au paragraphe 1.1. La température ambiante étant maintenue à (293 ± 1) K (pression partielle de vapeur d'eau correspondante égale à 2,3 kPa), on établira par exemple une pression de 18 MPa si l'on désire obtenir du gaz saturé dont la fraction molaire d'eau est $128 \cdot 10^{-6}$.

A l'aide de l'équation B.8, on évalue la pression finale à laquelle on doit porter le mélange, par addition de gaz sec, pour obtenir la concentration désirée.

¥

L'accord entre le résultat de la préparation et la prévision théorique est assez bon. Il est toutefois prudent, lorsqu'on ajoute le gaz sec au mélange saturé, d'établir une pression inférieure à la pression calculée, de manière à se donner la possibilité de poursuivre l'addition du gaz sec si l'objectif n'est pas atteint.

ANNEXE C

Recommandations des revues aux auteurs de publication

1 Recommandations de Fluid Phase Equilibria . . -

/	17 cm		
2 cm	4 x < return >		
:	Guide for preparation of a camera-ready paper, for rapid publication		
	A.B. Fluid [*] , C.D. Phase ^b and E.F.G. Equilibria [*]		
	*Chemical Engineering Department, Elsevier Science Publishers B.V., P.O. Box 330, 1000 AH Amsterdam (The Netherlands)		
	^b Elsevier Editorial Services, Mayfield House, 256 Banbury Road, Oxford OX2 7DH (Gt. Britain)		
	Keywords: theory, equation of state, cubic, perturbed hard sphere, polar, non-polar		
	Section heading		
t page	ABSTRACT 2 x < return >		
4 cm (first	These four pages provide you with an example of the layout and style which we wish you to adopt for the preparation of your paper. Your manuscript will be photographically reproduced, whereby a reduction to 75% of its original size will be applied.		
	FORMAT 3 x < return >		
	Line spacing - Sub-section heading		
	We normally recommend the use of 1.0 (single) line spacing. However, when typing complicated mathematical text it is important to increase the space between text lines in order to prevent sub- and super-script fonts overlapping one another and making your printed matter illegible. If you are using a desktop publishing program, <i>ensure</i> that your 'auto adjust' for interline spacing is suitably set to prevent overlapping but without leaving too much space. When using a daisywheel printer or an electric typewriter, this problem can be overcome by using 1.5 line spacing.		
	Text dimensions		
	Text dimensions (length and width) for the first page of a name of		

.

Text dimensions (length and width) for the first page of a paper: 24 cm x 17 cm (9.5" x 6.7"). For all subsequent pages: 26 cm x 17 cm (10.2" x 6.7").

17 cm

Text pages must be produced to the maximal stipulated length. There are two exceptions to this rule: (i) do not begin a new section directly at the bottom of a page but transfer the heading to the top of the next page; (ii) you may exceed the length of the text area by one line only in order to complete a section of text or a paragraph. Never place the last line of a paragraph on a new page.

TYPEFONTS

Laser/jet printers

Recommended fonts: 'Times Roman', 'Bookman Light', 'Computer Modern Roman' and '(New) Century Schoolbook'. Use 14 point for the main text, 11 or 12 point for tables, table captions, figure captions and the references section and 17 or 18 point for the title of the paper.

Dot matrix printers

Not recommended unless possessing 18- or 24-pin printheads.

Electric typewriter/daisywheel printer

Recommended fonts: 10 pitch 'Courier' or 12 pitch 'Letter Gothic'.

In these instructions, the first page is typed in 14 point 'New Century Schoolbook', the second page with 10 pitch (=12 point) 'Courier', the third page with 14 point 'Times Roman' and the last page with 14 point 'Bookman Light', all with 1.0 line spacing.

PRINTOUT

Paper: print onto A4 (21 cm x 29.7 cm, 8.3" x 11.7") or US Standard Letter paper format (21.6 cm x 27.9 cm, 8.5" x 11"). The paper must be plain white, high quality, and smooth.

Positioning of printout on paper: not critical provided approximately 2 cm (1") of space is left free above the first text line.

Quality of printout: must have uniform contrast over whole text page, be dark and sharp. Printout that is streaked, has lighting variations at the margins, is grey, fuzzy, broken or flecked is not acceptable. Printout must be an original copy. Photocopies are not acceptable.

If you type your paper on an electric typewriter, type corrections on a separate piece of paper and paste it over the error. Do not use correction fluid.

TABLES AND ILLUSTRATIONS

Tables and illustrations should be arranged throughout the text, preferably being included on the page where they are first discussed. They should have a self-contained caption and be positioned in flush-left alignment with the text margin.

26 cm

Tables

Tables should be presented in the form shown in Table 1. Each table should have a number and a caption typed above the table.

If you prepare the table on a daisywheel printer or an electric typewriter, it may be advisable to draw in all horizontal lines with the aid of a ruler and drawing pen, as this will give them a neater appearance than if they were typed.

TABLE 1	— 3 x < return >			
Boiling points ar	— 2 x < return >			
Component	Boiling point (K)		Density (g/cm ³)	
	Present work	Literature	Present work	Literature
Acetophenone	475.3	475.2	1.01944	1.01940
Benzene	353.2	353.3	0.86846	0.86836
Nitrobenzene	483.7	484.0	1.19346	1.19341

Reprinted from Surendranath et al., 1990.

3 x < return >

Line drawings

Line drawings and complex chemical formulae should preferably be mounted in the text in the form of prints or photographs of the original drawings. Please take into account that these prints will also be reduced to 75%. All notations and lettering should be no less than 2.5 mm high. Suggested line thickness 0.35-0.5 mm. The use of heavy black, bold lettering should be avoided, as this will look unpleasantly dark when printed.

Fig. 1. Lettering is large enough to withstand a reduction to 75%.

Fig. 2. Lettering is too small and will be illegible after a reduction to 75%.

Two small illustrations may be placed alongside one another, as shown in Figures 1 and 2. All illustrations should be clearly displayed by leaving 1 cm (0.5") of space above and below them.

Photographs (half-tones)

Photographs should not be pasted on the paper but supplied separately. As their size will not be reduced, they must be submitted in their final size. On their backs write in pencil your name and figure number, and indicate their top edge by an arrow. Do not mention magnification factors in the captions but use bar scales where appropriate. Leave a blank space on the paper where the photograph will ultimately appear. The height of the space should be 4/3 of the height of the photograph, plus an extra 2 cm so that it can be clearly displayed. For example, if the photograph is 3 cm high, a space of $((4/3) \times 3 \text{ cm} + 2 \text{ cm}) = 6 \text{ cm}$ should be left blank.

EQUATIONS

Equations should be placed flush-left with the text margin and should be preceded and followed by one line of white.

$$H_{\alpha\beta}(\omega) = E_{\alpha}^{(0)}(\omega)\delta_{\alpha\beta} + \langle \alpha | W_{\alpha} | \beta \rangle$$
(1)

Make sure that they are numbered consecutively. Place the numbers in parentheses flush with the right-hand margin of your text and level with the last line of the equation.

REFERENCES

References should be collected at the end of your paper. Do not begin them on a new page unless this is absolutely necessary. In the text, refer to the author's name (without initials) and year of publication. Use a, b, c etc for labelling references with the same year. Examples: "Since Frumkin (1929) has shown that This is in agreement with results obtained later (Schulman and Rideal, 1931a, b)". The list of references should be arranged alphabetically on authors' names and chronologically per author.

2 Recommandations de International Journal of Thermophysics

Instructions to Contributors

Submission. The manuscript may be sent to the Editor-in-Chief, whose full address is given below, or to one of the members of the Editorial Board familiar with the subject of the manuscript.

Dr. Ared Cezuirliyan, Editor-in-Chief International Journal of Thermophysics Building 236 National Institute of Standards and Technology Guithersburg, Maryland 20899, USA

Copies Required. One original plus two good quality copies (including copies of the illustrations) are to be submitted.

Acceptance. Acceptance will be based on favorable recommendation by the reviewers of the manuscript.

Language. Manuscripts should be submitted in English.

Typing Format. Manuscripts should be typed double-spaced on one side of good quality paper.

Title, Authors, and Affiliations. The title of the manuscript, the names of the authors, their affiliations, and addresses should be given on the first page. In the case of more than one author, the author responsible for further correspondence should be indicated.

Abstract. A short but informative abstract (100-200 words) should be provided on a separate page.

Key Words. A list of 4-8 key words (in alphabetical order) should be provided intancotatety following the abstract.

Text. Starting with an "Introduction," all sections should be numbered with Arabic numerals. Subsections should be identified with the section and subsection number (such as 2.1, where 2 refers to the section and 1 to the subsection). All symbols should be defined immediately after they are introduced in the text.

Units. The SI (International System) units should be used. In special cases where other units are considered to be still widely used, SI units should be given parenthetically in addition to the units used. The units should be given in exponential form; example: $W \cdot m^{-1} \cdot K^{-1}$.

Mathematical Expressions. Mathematical equations should be typewritten wherever possible and should be clear and legible. The equations should be numbered consecutively with Arabic numerals in parentheses and referred so in the text.

Footnotes. Footnotes should be indicated by superscript numbers in the text and should be typed at the bottom of the page on which they are cited. Footnotes should be avoided where possible.

Tables. Tables should be numbered consecutively (in Roman numerals) as they are referred to in the text. Each table should be typed on a separate page and should have a brief heading.

Illustrations. Original inustrations should accompany the manuscript but should not be inserted in the text. All photographs and drawings should be referred to as "Figures" and should be numbered consecutively (in Arabie number) in the order they are referred to in the text. Illustrations should be identified with the authors's name and the figure number outside the reproduction area or on the back. Photographs should be glossy prints. Line drawings should be either the originals (black india ink on tracing linen) or clear glossy prints. Thickness of lines and size of lettering should be carefully considered in view of the reduction of the illustrations during printing. Captions to figures should be typed double-spaced consecutively on a separate page and should be attached to the manuscript.

References. All references should be listed at the end of the manuscript in the order they appear in the text (they should not be alphabetized). In the text, they should be numbered (in Arabic numerals) consecutively and should be placed in share brackets.

The reference to a journal article should include the name (or names) of the author, name or the journal, volume number (underlined), first page number of the reference, and the year (in parentheses). Example:

R. D. Cowan, J. Appl. Phys. 34:926 (1963).

The journal names should be abbreviated in the style of the "Chemical Abstracts."

The reference to a book should include the name (or names) of the author, title of the book (underlined), volume (if applicable), the publisher, city of publication, the year, and the page (or pages) to which reference is made. Example:

A. R. Ubbelohde, The Molton State of Matter (Wiley, New York, 1978), pp. 317-324.

Proofs. Proofs will be sent to the author for correction. At this stage, only typographical errors should be corrected. Any substantial changes other than these may be charged to the author.

Reprints. An order form for reprints will accompany the proofs.

Publication Policies. Submission is a representation that the manuscript has not been published previously and is not currently under consideration for publication elsewhere. A statement transferring copyright from the authors for their employers, if they hold the copyright to Plenum Publishing Corporation will be required before the manuscript can be accepted for publication. The Editor-in-Chief will supply the necessary forms for this transfer upon receipt of the manuscript. Such a written transfer of copyright, which previously was assumed to be implicit in the act of submitting the manuscript, is necessary under the new U.S. Copyright Law in order for the publisher to carry through the dissemination of research results and reviews as widely and effectively as possible.

The journal makes no page charges.