
UNIVERSITÉ DU QUÉBEC

THÈSE PRÉSENTÉE À
L’UNIVERSITÉ DU QUÉBEC À TROIS-RIVIÈRES

COMME EXIGENCE PARTIELLE
DU DOCTORAT EN GÉNIE ÉLECTRIQUE

PAR
HICHAM CHAOUI

COMMANDE ADAPTATIVE DE SYSTÈMES À DYNAMIQUE
COMPLEXE BASÉE SUR L’INTELLIGENCE ARTIFICIELLE

SEPTEMBRE 2011



 

 

 

 

 

Université du Québec à Trois-Rivières 

Service de la bibliothèque 

 

 

Avertissement 

 

 

L’auteur de ce mémoire ou de cette thèse a autorisé l’Université du Québec 
à Trois-Rivières à diffuser, à des fins non lucratives, une copie de son 
mémoire ou de sa thèse. 

Cette diffusion n’entraîne pas une renonciation de la part de l’auteur à ses 
droits de propriété intellectuelle, incluant le droit d’auteur, sur ce mémoire 
ou cette thèse. Notamment, la reproduction ou la publication de la totalité 
ou d’une partie importante de ce mémoire ou de cette thèse requiert son 
autorisation.  



UNIVERSITY OF QUEBEC

THESIS SUBMITTED TO
UNIVERSITÉ DU QUÉBEC À TROIS-RIVIÈRES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

BY
HICHAM CHAOUI

SOFT-COMPUTING BASED INTELLIGENT ADAPTIVE
CONTROL DESIGN OF COMPLEX DYNAMIC SYSTEMS

SEPTEMBER 2011



UNIVERSITÉ DU QUÉBEC À TROIS-RIVIÈRES

DOCTORAT EN GÉNIE ÉLECTRIQUE (PH.D.)

Programme offert par L’Université du Québec à Trois-Rivières

Soft-Computing Based Intelligent Adaptive
Control Design of Complex Dynamic Systems

PAR

HICHAM CHAOUI

Pierre Sicard, directeur de recherche Université du Québec à Trois-Rivières

Ahmed Chériti, président du jury Université du Québec à Trois-Rivières

Adel-Omar Dahmane, évaluateur Université du Québec à Trois-Rivières

Philippe Lautier, évaluateur externe Vestas Wind Systems

Thèse soutenue le 10 juin 2011



"Ifwe knew what we were doing it wouldn't be research, would it?" 

Albert Einstein. 

Einstein showed in the early years of the 20th century that time is a relative concept, and 

hence, it is subjected to change according to the environment (time is dependent on mass and 

velocity). This fact has been proved with Einstein's theory ofrelativity. 
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In the name of God, Most Gracious, Most Merciful. 

"A day with your Lord is equivalent to a thousand years in the way you count" 

Sourate Sajda (32), Verse s. 
1 

~j\~j\~\r 

, ~ 

~ J-'j yj Ji -' ........... 

In the name of God, Most Gracious, Most Merciful. 

"0 my Lord, advance me in knowledge" 

Sourate Tâ-Hâ (20), Verse 114. 
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Résumé 

En dépit des récentes avancées dans le domaine du contrôle des systèmes non-linéaires, 

les techniques classiques de contrôle dépendent en grande partie sur des modèles mathéma-

tiques précis du système à contrôler pour fournir des performances satisfaisantes. En pratique, 

à cause de non-linéarités élevées, dériver un modèle mathématique décrivant avec précision la 

dynamique du système à contrôler peut s'avérer une tâche très difficile. Bien que des stratégies 

de contrôle comme la commande adaptative et le mode de glissement compensent pour les 

incertitudes paramétriques, ces méthodes sont encore vulnérables en présence d'incertitudes 

de modélisation, aussi appelées incertitudes non structurées. D'autre part, les contrôleurs à 

base d'intelligence artificielle n'ont pas une telle lirnitation puisqu' ils ne dépendent pas d'une 

représentation mathématique du système à contrôler. Malgré les récents résultats, les con-

trôleurs à base de réseaux de neurones demeurent incapables d'intégrer de l'expertise sous 

forme de règles et les contrôleurs à base de la logique floue sont incapables d'incorporer des 

connaissances déjà acquises sur la dynamique du système. 

Basé sur la motivation ci-dessus, cette thèse a pour but de contribuer à l'évolution récente 

et les mérites de ces outils par le développement de nouvelles structures de commande adap-

tative. Les contrôleurs proposés supposent que la dynamique des systèmes est incertaine ou 

inconnue pour obtenir une robustesse à la fois des incertitudes structurées et non structurées de 

grandeurs et natures différentes. Les contrôleurs classiques offrent une faible performance en 

présence de ces sortes d'incertitudes. Contrairement à ces approches, les contrôleurs proposés 

sont basées sur l'intelligence artificielle, qui n'ont pas de telles limitations, grâce à leur capacité 

d'apprentissage et de généralisation. Cependant, ces outils sont souvent basés sur des heuris-

tiques et le réglage peut ne pas être évident. En outre, de nombreux contrôleurs intelligents 

soufrent de manque de preuves de stabilité dans les différentes applications de commande. 

Dans cette thèse, les architectures de contrôle proposées sont conçues en utilisant des tech-

niques d'adaptation à base de Lyapunov au lieu des méthodes conventionnelles d' adaptation 

heuristique. Ainsi, la stabilité est garantie contrairement à beaucoup de systèmes de contrôle 

basés sur l'intelligence artificielle. Un résumé substantiel est disponible en annexe. 
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Abstract 

Nonlinear dynamical systems face numerous challenges that need to be addressed such 

as, severe nonlinearities, varying operating conditions, structured and unstructured dynarnical 

uncertainties, and external disturbances. In spite of the recent advances in the area of nonlin-

ear control systems, conventional control techniques depend heavily on precise mathematical 

system models to provide satisfactory performance. In real life, and due to high nonlinearities, 

deriving a precise model could be a difficult undertaking. Although convention al nonlinear 

control strategies, such as adaptive and sliding mode controllers, compensate for parametric 

uncertainties, they are still vulnerable in the presence of unstructured modeling uncertainties. 

On the other hand, computational intelligence based controllers do not have su ch a limita-

tion, thanks to their mathematical model dependence free characteristic. Despite of the recent 

results, neural network-based controllers remain incapable of incorporating any human-like 

expertise and fuzzy logic-based controllers are unable to incorporate any learning already ac-

quired about the dynamics of the system in hand. 

Driven by the aforementioned motivation, this thesis is meant to contribute to the latest 

developments and merits of such tools by novel adaptive control methodologies developments. 

The proposed controllers assume uncertain/unknown systems dynamics to achieve robustness 

to both structured and unstructured uncertainties of higher and different magnitudes. Conven-

tional control structures offer poor performance in the presence of these kinds of uncertainties. 

Unlike these approaches, the proposed controllers are based on soft-computing tools, which 

do not have such limitations, thanks to their learning and generalization capabilities. However, 

these tools are often based on heuristics and tuning may not be trivial. Furthermore, many soft-

computing based controllers lack stability proofs in various control applications. In this thesis, 

the proposed control architectures are designed using Lyapunov-based adaptation techniques 

instead of conventional heuristic tuning methods. Thus, the stability of the proposed controllers 

is guaranteed unlike many computational intelligence-based control schemes. 
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Chapitre 1 

Introduction 

1.1 Motivation 

In the literature, control law design approaches for nonlinear systems can be divided 

into three categories. The first category consists of a nonlinear systems linearization around an 

operating point of the states [1]. In this case, c1assical linear controllaws are applied for the 

approximated system. In spite of the control laws simplicity, the control system performance 

is not guaranteed for the overall system. The second category deals with nonlinear controllers 

design based on nonlinear systems dynamics. In this category, the characteristics of nonlinear 

systems are preserved. However, the design approach difficulties arise with the complexity of 

the nonlinear systems dynamics [2]. Furthermore, these approaches assume a precise mathe-

matical system model and tend to work quite well in theory. But, their performance degrades 

in the presence of varying operating conditions, structured and unstructured dynamical un-

certainties, and external disturbances. In real life applications, deriving a precise mathematical 

model for complex industrial processes might be a difficult task to undertake. In addition, other 

factors might be unpredictable, such as noise, temperature, and parameters variation. Hence, 

the system's dynamks cannot be efficiently based on presumably accurate mathematical mod-

e1s. The third category implements nonlinear controllers based on computational intelligence 

too1s, such as artificial neural networks (ANNs) and fuzzy logic systems (FLSs) [3-8]. These 
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techniques have been credited in various applications as powerful tools capable of providing 

robust approximation for mathematically ill-defined systems that may be subjected to struc-

tured and unstructured uncertainties [9, 10]. The universal approximation theorem has been the 

main driving force behind the increasing popularity of such methods as it shows that they are 

theoretically capable of uniformly approximating any continuous real function to any degree of 

accuracy. Various artificial neural network and fuzzy logic models have been proposed to solve 

many complex problems, which have led to a satisfactory performance [11- 14], providing an 

alternative to conventional control techniques. To c1early show the power of neural networks, 

next section presents an application of neural networks in a learning identification strategy for 

spacecraft formation flying. This technique is used for thrusters ' dynamics approximation of a 

nanosatellite, also called free-flyer. Its effectiveness is investigated using experimental data of 

a single thruster. 

1.2 Spacecraft Formation Flying 

Spacecraft formation flying is defined as two or more spaceèrafts flying autonomously 

in a coordinated fashion and adapting their relative position and orientation to form a forma-

tion. It has been identified as an enabling technology with several benefits for space missions 

and recently became an important field of research in the space industry. Formation flying 

offers better performance, cost reduction, high failure tolerance, extended mission life, more 

adaptability to changing mission goals as well as larger spatial coverage. It is expected that for-

mation flying satellites will be more reliable than their single satellite counterparts. Rowever, 

this technology faces many challenges in coordination and formation trajectory generation. 

Environmental disturbances such as gravitational perturbation, atmospheric drag, solar radia-

tion pressure and electromagnetic forces make guidance, navigation, and control tasks become 

more complex for lar'ger formations. Rence, an efficient control algorithm easy to implement 

on boar'd is required to fulfill the control requirements of a mission. 

Nanosatellites require a miniature propulsion system with high propulsion capabilities. 
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Many researchers investigated propulsion technologies to identify those that maintain high per-

formance at sma11 scale. However, independently of the size, thrusters emit caustic propellant 

exhaust that contaminates neighboring spacecraft. This contamination problem is amplified as 

the fomlation spacing is reduced. Canadian Space Agency (CSA) initiated, as an international 

collaboration with the Japanese Aerospace Exploration Agency (JAXA), a feasibility study of 

JC2Sat-FF nanosatellite mission. It consists of the use of aerodynamic drag to maintain space-

craft formation of two nanosatellites . The main advantage is that there is no contamination 

from propellant exhaust and the missions' lifetime will not be limited by the amount of fuel 

on board. However, response times to changes in the formation are slow, the relative positions 

cannot be cont:rolled to a very high accuracy and sorne types of formation are not possible. A 

theoretical, algorithmic and experimental study of spacecraft formation f1ying is conducted at 

the CSA, where, a test-bed has been developed to emulate a typical formation f1ying scenario 

for experimental validation using hardware-in-the-Ioop technology. 

Recently, thrusters have received a thorough attention and have been used in many appli-

cations such as, high perfomlance surface vessels and underwater robotics applications. The 

nonlinearities within thrusters make the modeling of their dynamics a difficult task to under-

take. This has led to the use of a simplified thruster mode1. However, control systems based on 

this model as well as conventional control techniques often resuIt in poor performance because 

of the nonlinear and time-varying thruster dynamics. Therefore, an advanced control system 

with learning capabilities is required to adapt to changes in the thruster dynamics. 

1.2.1 Modeling 

The free-f1yer of the formation f1ying testbed [15] is shown in Fig 1.1. The testbed is 

used to emulate a typical formation f1ying scenario with the frictionless nature of space. In 

space, spacecrafts are free to move in 6 degrees of freedom (3 translations, 3 rotations) and 

obey the orbital dynamics. However, on the testbed, the free-f1yer can only move in 3 degrees 

of freedom (2 translations, 1 rotation). 

The dynamic equations of motion in two dimensions of the ith free-f1yer in the formation are 
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FIGURE 1.1 - Free-ftyer testbed at the CSA 

given by : (the coordinate frames are defined in [15]). 

.. FC+ Fd 
mixi = . xi xi 

.. FC+ Fd 
miYi = yi yi 

where, 
mi E ]Rn : mass of the {il satellite 

li E ]Rn : moment of inertia of the i1h satellite about z-axis 

(Xi,Yi) E ]Rn : location of the mass center of the i th satellite in the inertial frame 

ai E ]Rn : rotation angle of the ith satellite about z-axis 

(Fd, rd) E ]Rn : disturbance forces and disturbance torque 

(F C
, rC) E]Rn : control forces and control torque 

Assumption 1 We assume a symmetric l1taSS distribution along z-axis. 

4 

(1.1a) 

(1.lb) 

(1.1c) 
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1.2.2 Neural Network Flow Control Valves Identification 

This section describes thruster dynamics' learning identification strategy using neural 

networks for a free-f1yer. Its effectiveness is investigated using experimental data of a single 

thruster. The free-f1yer has eight f10w control valves fed by an air distributor to produce thrust. 

Thus, air pressure drops when opening multiple valves at the same time such that only four 

valves are allowed to open simultaneously. Moreover, air distributor also provides air to the 

base, to form an air bearing as described in Fig 1.2. 

Manifold Thrust ers 

Air input 

* * * * * Air bearing 

FIGURE 1.2 - Compressed air distribution diagram 

The valves are installed on the base of the free-f1yer to provide thrusts to move on ±x and 

±y directions, as well as torques to rotate around ±z axis. A thrust calibration study of the f10w 

control valves was conducted in [16]. In this study, a relationship between the digital inputs 

of the valves Nj and the produced thrust Fj was found through experiment for different air 

pressures (P = 20,40,60,80 psi), j = 1, ... , 8. 

For a given inlet air pressure P, the experimental measurements of the thrust Fj are taken for 
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different incrementally increasing and decreasing input Nj to capture the hysteresis nature of 

the thrusters. It is worth pointing out that step inputs have similar output thrust as the incre-

mental inputs. The experimental measurements are depicted in Fig 1.3 and thrusters diagram 

in Fig 1.4. 
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FIGURE 1.3 - Thruster experimental measurements for different air pressures 

Thruster 
---;::"'>t dynamic model 

F· t ... 

FIGURE 1.4 - Thrusters diagram of a free-flyer 

Assumption 2 We assume that aIl thrusters are identical. 

A feedforward multilayer perceptron (MLP) was used to learn thrusters' dynamics using a 

variable leaming rate back-propagation algorithm [17]. Experimental data for (P = 20,60,80 

psi) were presented to the network for training and experimental data for P = 40 psi were 
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left for validation. The feedforward multilayer perceptron has two inputs, two hidden layers 

and one output. The first hidden layer has six nodes and the second has eight nodes. The 

activation functions used for the hidden and output layers are the sigmoid and linear functions, 

respectively. 

1.2.3 Simulation and Experimental Validation 

Fig. ].5 shows the training results, the validation results are depicted in Fig. 1.6, and 

Fig 1.7 shows the MLP thrust force for P E [20,80]. 
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FIGURE 1.5 - MLP vs. experimental data in training phase 

The following presents an ANN-based modeling strategy for a spacecraft formation flying. 

The ANN takes advantage of the merits of the soft-computing technique described in chapter 2 

to approximate thrusters' dynarnics using experimental data. The performance of the resultant 

strategy shows high approximation accuracy, which confirms the creditentials of such too1s in 

providing a robust approximation for mathematically ill-defined systems. They are, therefore, 

powerful tools for compensating for even higher degrees of uncertainties. This fact motivates 
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FIGURE 1.6 - MLP vs. experimental data for validation 
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the design inte11igent adaptive control techniques for complex dynamic systems. Since the 

stability of neural networks cannot be guaranteed with conventinallearning algorithms such 

as backpropogation, new Lyapunov-based adaptive learning mechanisms are proposed in this 

thesis. 

1.3 Contributions 

Nonlinear dynamic systems are governed by complex dynamics and hence are in-

evitably subject to the ubiquitous presence of high, particularly unstructured, modeling nonlin-

earities. The presence of such nonlinearities significantly changes the dynamks of nonlinear 

systems [14]. So, modeling a system's dynamics based on presumably accurate mathematical 

models cannot be applied efficiently in this case. This raises the urgency to consider alternative 

approaches for the control of this type of systems to keep up with their increasingly demanding 

design requirements. The major contributions of this thesis are the design of control structures, 

adaptation laws and stability proofs for adaptive soft-computing control strategies to achieve : 

- Learning and approximation of a priori unknown nonlinear systems. 

- Thrusters dynarnics identification for spacecraft formation flying missions. 

- High uncertainties approximation for inverted pendulums control problem. 

- Hysteresis compensation for piezoe1ectric actuators in Microelectromechanical sys-

tems (MEMS). 

- Stability analysis for soft-computing techniques. 

- Lyapunov-based adaptive learning mechanism for neural networks. 

- Stable adaptation technique for fuzzy systems in the sense of Lyapunov. 

- Lyapunov stable adaptive control strategies for electromechanical systems such as robotic 

manipulators. 

- Adaptive friction compensation to cope with its nonlinearities. 

- Disturbance attenuation to achieve robustness to unstructured uncertainties. 

- Elasticity effects' reduction to improve internaI stability for flexible-joint manipula-
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tors. 

- Parameters adaptation to obtain robustness to parametric uncertainties . 

- High performance and robustness in PMSM drives. 

- Friction and load torque estimation for high tracking accuracy. 

- Adaptive control techniques for robustness to parametric uncertainties. 

- Soft-computing based approaches for high tolerance to unstructured uncertainties. 

- Speed estimation strategies. 

- High efficiency for energy production systems. 

- Accurate state of charge estimation for battery management systems. 

- Soft-computing based adaptive control for power converters. 

- Adaptive DC bus voltage control to improve energy transfer efficiency. 

1.4 Thesis Outline 

The thesis is organized as foIlows. Chapters 2 to 4 present the background of artifi-

cial neural networks theory, fuzzy logic systems, neuro-fuzzy systems along with genetic and 

ant colony algorithms as soft-computing techniques, and nonlinear control systems. Chapter 5 

presents Lyapunov-based adaptation strategies for neural networks and fuzzy systems. These 

techniques are applied to the well-known inverted pendulum problem. The ANN Lyapunov-

based adaptation technique is also applied to piezoelectric actuators . In chapter 6, modeling of 

robotic manipulators with friction and joint el asti city is presented as weIl as many advanced 

control strategies with their results. In chapter 7, we present several speed control and estima-

tion strategies for permanent magnet synchronous machines along with their stability proofs 

and results. Advanced adaptive techniques are presented in chapter 8 for energy production 

systems. We conclude in chapter 9 with sorne remarks and suggestions for further studies. 



Chapitre 2 

Artificial Neural Networks (ANNs) 

2.1 Introduction 

An artificial neural network (ANN) is a computational model that processes informa-

tion using interconnected artificial neurons. As such, it mimics the structure and functional 

characteristics of biological neural networks of a brain in the way information is interpreted, 

the ability to learn, generalize and adapt to new situations. The ANN's inherent parallel nature 

increases infonnation processing speed by distributing the calculations among many neurons. 

This chapter focuses on popular ANN models. 

2.2 Learning Paradigms 

An ANN, in its simplest form, has a set of inputs, connection weights, and outputs. 

The inputs are multiplied by the weight and are then summed before applying an activation 

function to the summed value. This activation level becomes the neuron 's output and can be 

either an input for other neurons, or an output for the network. The learning is achieved by 

adjusting the weights to minimize the difference between the ANN and desired (training data) 

outputs. ANN can also be viewed as an adaptive system that changes its structure during the 

learning phase based on a set of training data. It can be used to model complex relationships 

11 
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between inputs and outputs or to find patterns in data. 

There are two approaches to train a neural network, supervised and unsupervised learning. 

Supervised learning involves a mechanism, also called teacher, to provide the network with the 

desired output or the network's performance, such as a co st function . On the other hand, unsu-

pervised learning does not have a function to be learned by the network but rather a continuous 

interaction with the environment. 

2.2.1 Supervised Learning 

In supervised learning, input-output training sets are provided to the network, which 

processes the information and computes the errors based on ilS resulting outputs. These errors 

are then propagated back through the network to adjust its weights. This process continues as 

the connection weights are ever refined until convergence. It is noteworthy that training sets 

with not enough infoTI11ation may not lead to convergence and too many layers and nodes make 

the network memorize the data instead of learning from it. The supervised learning scheme is 

depicted in figure. 2.1. 

Environment "---r-~ Teacher 

Actual 

output 

Error 

signal 

FIGURE 2.1 - Supervised learning scheme 
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2.2.2 Unsupervised Learning 

In unsupervised leaming, the network is provided with only input training sets. In real 

life, exact training sets do not exist for aIl situations. Hence, this type of leaming aims to 

provide the network with the ability to adapt to the environment and learn from it, such as 

self-organizing map and reinforcement learning. The supervised leaming scheme is depicted 

in figure. 2.2. As training data is not available, the network leams through a minimization of a 

co st function also called "critic". 

Input 
En vira nment I----r-----:::'" Crit ic 

Heuristic 

Actual 

output 

FIGURE 2.2 - Unsupervised leaming scheme 

2.3 Perceptron 

The perceptron was first introduced by Rosenblatt in 1958 along with the mechanism 

to adjust its weights [18]. It is a very simple binary neural network with a single neuron. The 

perceptron uses supervised learning process to solve basic logical operations like AND or OR. 

However, it cannot solve more complicated logical operations, like the XOR problem. It is 

often used for pattern classification purposes. Figure. 2.3 shows a typical perceptron structure 

and its supervised training algorithm is described in algorithm 1. 

Example : (OR problem) 
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FIGURE 2.3 - Perceptron structure 

Aigorithm 1: Perceptron (Delta mie) 
begin 

- Initialize the weight vector Wi and the threshold e to small random values. 
repeat 

repeat 

14 

- Present an input vector x(k) = [XI ,X2 , . . . ,xnl and a desired output d(k) at instant k. 
- Compute the perceptron output y(k) = fCEi~ 1 (Xi Wi) - e) . 

{
l, if 0> e 

f( 0 ) = 0 , otherwise 
- Adapt the weight vector by the following : 

e(k) = d(k) - y(k) , and T/ < 1 is the learning rate. 
wi(k+ 1) = wi(k) + T/e(k)xi(k) 

until aIl training instances are finished. 
until convergence or satisfactory peiformance is reached. 

end 

TABLE 2.1 - OR problem 
XI 1 X2 Il y 

0 0 0 
0 1 1 
1 0 1 
1 1 1 
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Consider a two-input perceptron to solve the OR problem in table 2.1. 

InÏtialize the weights and the threshold to small random values: 

WJ = 0.3, W2 = 0.1, and e = 0.2. 

Set the learning rate to : 17 = 0.15. 

Present the network with random patterns: 

- First pattern: (pattern 3 = [1 0, 1]) 

Compute the output y(k) = fCE;=J (Xi Wi) - e) = f(0.3 - 0.2) = f(O.l) = O. 

Compute the error e(k) = d(k) - y(k) = 1 - 0 = 1. 

Since e(k) =J. 0, adapt the weights : 

Wl (k+ 1) = WJ (k) + 17e(k)x\ (k) = 0.3 +0.15 = 0.45 

w2(k+ 1) = w2(k) + 17e(k)X2(k) = 0.1 +0 = 0.1 

- Second pattern : (pattern 2 = [0 l, 1]) 

y(k) = f(O.l - 0.2) = f( -0.1) = O. 

e(k) = 1-0= l. 

W\ (k + 1) = 0.45 + 0 = 0.45 

w2(k+ 1) = 0.1 +0.15 = 0.25 

- Third pattern : (pattern 4 = [1 1, 1]) 

y(k) = f(0.45 +0.25 - 0.2) = f(0.5) = l. 
e(k) = 1 - 1 = O. 

- Fourth pattern: (pattern 1 = [0 0, 0]) 

y(k) = f( -0.2) = f( -0.2) = O. 

e(k) = 0 - 0 = O. 

15 

Recall, y(k) = fCf.?=J (Xi Wi) - e) = (Xl W\ +X2 W2 - e). In this case, the separation be-

tween the two classes is a boundary in 2D space, i.e., a straight line, described by 
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Therefore, 
w) e 

X2=--X)+-
W2 W2 

It is noteworthy that the slope of the line is determined by the weights and the threshold 

determines the offset. Thus, the perceptron represents a linear discriminant function. A geo-

metrical representation before and after training is given in Fig. 2.4. 

X2 \ X2 

1 
\ 

X 
, 

\ \1 X \ \ 
\ \ \ 

\ 
\ 

\~\ \ 
\ \ \ 

\ \ \ 

\ \ 

\ 
\ 1 Xl \ 1 Xl 
\ 

(a) (h) 

FIGURE 2.4 - Classification exarnple : (a) before training; and (b) after training. 

2.4 Multilayer Perceptron (MLP) 

The multi-Iayer-perceptron (MLP) was first introduced by Minsky and Papert in 1969 [18J. 

It is an extended version of the single layer perceptron as it may have one or more hidden lay-

ers. Whilst a perceptron forms a half-plane decision region, a MLP forms arbitrarily complex 

decision regions to separate various input patterns. Due to its extended structure, a MLP is able 

to solve every logical operation, including the XOR problem. Figure. 2.5 shows a typical MLP 

structure. 

2.4.1 Back-propagation 

Consider a single hidden layer neural network with n inputs, p hidden nodes, and m 

outputs as shown in Fig. 2.6. 
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Input 
layer 

Hidden 
layerl 

Hidden 
layer2 

Output 
layer 

FlOURE 2.5 - Multilayer perceptron structure 

Input 
layer 

Hidden 
layer 

Output 
layer 

FlOURE 2.6 - Single hidden layer multilayer perceptron 

17 
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We can describe the input-output relationship by 

with, 

p 

Vk(t) = E Wkj(t) Oj(t) 
j = l 

n 

Uj(t) = E wji(t) Xi(t) 
i= l 

18 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

where, xJt) and Yk(t) are the input and output vectors of the neural network at instant t, 

respectively. 

The back-propagation is a supervised learning algorithm mainly used by MLPs to minimize 

a co st function that can be described as 

(2.5) 

with, 

(2.6) 

where, ek(t) is the neural network's error at instant t and dk(t) is the desired neural net-

work's output at instant t. 

The back-propagation algorithm adapts the weights using a gradient descent technique, 

where the gradient is computed by 

aÇ (t) 
aWkj(t) 
aÇ (t) 

aWji(t) 

aÇ (t) aek(t) aYk(t) aVk(t) 
------
aek(t) aYk(t) aVk(t) aWkj(t) 
aç(t) aoj(t) aUj(t) 
----
aoj(t) au j(t) aWji(t) 

(2.7) 

(2.8) 
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Differentiating (2.5) with respect ta ek(t) yields, 

(2.9) 

Differentiating (2.6) with respect ta Yk(t) yields, 

(2.10) 

Differentiating (2.1) with respect ta Vk(t) yields, 

(2. II ) 

Differentiating (2.2) with respect to Wkj(t) yields, 

(2.12) 

Differentiating (2.5) with respect to 0 j(t) yields, 

(2.13) 

Substitute (2.1) in (2.6) yields, 

Therefore, 

(2.14) 

Differentiating (2.2) with respect to 0 j(t) yields, 

(2.15) 
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Differentiating (2.3) with respect to Uj(t) yields, 

(2.16) 

Differentiating (2.4) with respect to Wji(t) yields, 

(2.17) 

Substitute (2.9), (2.10), (2.11), and (2.12) in (2.7) and (2.13), (2.16), and (2.17) in (2.8) yields, 

where, Oj(t) and ok (t) are the local gradient for the hidden and the output neurons, respectively. 

The weights correction are defined by the delta rule 

where, Tl is the learning rate . Therefore, the neural network weights are computed as follows, 

Wkj(t + 1) = Wkj(t) + ~Wkj(t) 

wji(t + 1) = wji(t) + ~Wji(t) 

2.4.2 Adaptive Learning Rate 

The standard backpropagation algorithm using a constant 1earning rate cannot handle 

aIl the error surfaces. In other words, an optimallearning rate for a given synaptic weight is not 

necessarily optimal for the rest of the network's synaptic weights. Henceforth, every adjustable 
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network parameter of the cost function should have its own individuallearning rate parameter. 

Moreover every learning rate parameter should be allowed to vary at each iteration because the 

error surface typically behaves differently along different regions of a single-weight dimen-

sion [18]. The current operating point in the weight space may lie on a relatively flat portion of 

the error surface along a particular weight dimension. In such a situation where the derivative 

of the co st function with respect to that weight maintains the same algebraic sign, which means 

pointing in the same direction, for several consecutive iterations of the algorithm, the learning 

rate parameter for that particular weight should be increased. When the current operating point 

in the weight space lies on a portion of the error surface along a weight dimension of interest 

that exhibits peaks and valleys (i.e., the surface is highly irregular), then it is possible for the 

derivative of the cost function with respect to that weight to change its algebraic sign from 

one iteration to the next. To prevent the weight adjustment from oscillating, the learning rate 

parameter for that particular weight should be decreased appropriately when the algebraic sign 

of the derivative of the cost function with respect to a particular synaptic weight alternates for 

several consecutive iterations of the algorithm [18]. It is noteworthy that the use of a different 

time-varying learning rate parameter for each synaptic weight in accordance to this approach 

modifies the standard backpropagation algorithm in a fundamental way. 

2.5 Kohonen Self-Organizing Map 

The Kohonen self-organizing map, also called the Kohonen feature map, was tirst in-

troduced by Teuvo Kohonen in 1982 [18]. It is one of the most used neural network models 

for data analysis. It can also be applied to other tasks where neural networks have been tried 

successfully. A self-organizing map (Fig. 2.7) consists of two layers, an input layer and an 

output layer, called a feature map, which represent the output vectors of the output space. The 

weights of the connections of an output neuron j to aIl the n input neurons, form a vector W j in 

an n-dimensional space. The input values may be continuous or discrete, but the output values 

are binary only. 
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The output neurons learn during the training phase to react to inputs that belong to sorne 

clusters to represent typical features. This characteristic is inspired from the fact that the 

brain is organized into regions that correspond to different sensory stimuli. Therefore, a self-

organizing map is able to extract abstract infol111ation from multidimensional array and repre-

sent it as a location, in one, or more dimensional space. 

ln the training phase, the output layer neurons are competitive. A neuron has a strong exci-

tatory connection to itself and the excitatory level decreases within a certain radius when mov-

ing away to its neighboring neurons. Beyond this radius, a neuron either inhibits the activation 

of the other neurons or does not influence them. This scheme is called the "winner-takes-all", 

where a competition between neurons yields only one winner neuron that represents the class 

or the feature to which the input vector belongs. The self-organizing map structure is depicted 

in Fig. 2.7. 

The unsupervised training algorithm for self-organizing map is described in algorithm 2 : 

Algorithm 2: Self-organizing map unsupervised training 
begin 

- Initialize the weight vector W j to small random values. 
repeat 

repeat 
- Present an input vector x at time t. 
- Compute the distance dj(t) = E(x(t) - Wj(t))2. 
- Declare the neuron with the smallest distance as a winner. 
- Change the weight vector within the neighbourhood area R : 

.( l)-{ Wj(t)+7J(x(t)-wAt)), ifjER 
wJ t + - Wj(t), otherwise. 

7J is the learning rate. 
- Decrease 7J and R in time. 

until al! training instances are finished. 
until convergence or satisfactOlY performance is reached. 

end 

Example: (classification problem) 

Consider the following three vectors to be clustered into 2 classes: (0 , 1, 0) (0, 0, 1) (1 , a, 0). 
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Input 
layer 

FIGURE 2.7 - Self-organizing map structure 

Initialize the weights to small random values: 

0.2 0.1 

w = 0.1 0.3 

0.4 0.2 

Set the radius as : R = O. 

Set the 1earning rate as : 17 (0) = 0.4 and 17 (t + 1) = 0.817 (t) 

Present the network with input vectors : 

- First pattern: (0,1,0) 

Compute the distance : 

d J = (0.2 - 0)2 + (0 .1 - 1)2 + (0.4 - 0)2 = 1.01 

d2 = (0.1 - 0)2 + (0.3 - 1)2 + (0 .2 - 0)2 = 0.54 

Adapt the weights of the winner node (2) : 

w2(k+ 1) = w2(k) + 17 (Xi - wi2(k)) = [0.060.58 0.12jT 

- Second pattern: (0,0,1) 

Compute the distance : 

23 
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d] = (0.2 - O? + (0.1 - 0)2 + (0.4 - 1)2 = 0.41 

d2 = (0.06 - O? + (0.58 - 0)2 + (0.12 - Iy = 1.11 

Adapt the weights of the winner node (1) : 

w] (k + 1) = w] (k) + 1] (Xi - Wil (k)) = [0.120.06 0.64jT 

- Third pattern: (1,0,0) 

Compute the distance : 

d] = (0.12 - 1 ? + (0.06 - 0) 2 + (0.64 - 0) 2 = 1. 18 

d2 = (0.06 - 1? + (0.58 - O? + (0.12 - 0)2 = 1.23 

Adapt the weights of the winner node (1) : 

wl(k+ 1) = w] (k) + 1] (Xi - Wi] (k)) = [0.470.03 0.38jT 

- Reduce the learning rate: 1](t + 1) = 0.81](t) = 0.32 

- The new weight matrix : 

0.47 0.06 

W = 0.03 0.58 

0.38 0.12 

- Go for another iteration. 

After many iterations, the weight matrix converges to the following : 

0.5 0 

w= 0 1 

0.5 0 

24 

The first c1uster converges to the average of the two input vectors (0,0,1) (1 ,0,0), while third 

input vector (0 , 1,0) is classified in the second cluster. 
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2.6 Hopfield Networks 

Hopfie1d network was first introduced by John Hopfield in 1982 [18]. It is a fully con-

nected feedback network, where each neuron is connected to aIl other neurons and there is no 

differentiation between input and output neurons. The Hopfie1d network structure is depicted in 

Fig. 2.8. There are variants of realizations of a Hopfield network. Every neuron j, j = 1, 2, ... ,n 

in the network is connected back to every other one, except itself. Input patterns Xj are supplied 

to the external inputs Ij and cause activation of the external outputs. The response of such a 

network, when an input vector is supplied during the recall procedure, is dynamic, that is, after 

supplying the new input pattern, the network ca1culates the outputs and th en feeds them back 

to the neurons ; new output values are then ca1culated, and so on, unti1 equilibrium is reached. 

Equilibrium is considered to be the state of the system when the output signaIs do not change 

for two consecutive cycles, or change within a small constant. The weights in a Hopfield net-

work are symmetrical for reasons of stabi1ity in reaching equilibrium, that is, Wij = Wji. The 

network is of an additive type, that is, 

{

l , 
0'-

1 - 0 or-l , 

where, Bj is a threshold for the fh neuron. 

ifUj > Bj 

otherwise 

A dynamica1 energy function E of a Hopfield network is defined at a moment t as 

1 n n 
E(t) = -2 L L (wij(t) Oi(t) Oj(t)), i =1= j 

i= l j = l 

This function is considered as a Lyapunov function since it ensures the convergence of the 
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network to local minima states when the weights of a Hopfield network are computed by 

111 

wij = E (2x; - 1)(2xj -1) 
p= 1 

where, xi is the i,h binary value of the input pattern p. Thus, a local minima state in the energy 

function is a stable state for the network. 

The weights update might be done according to the following modes: 

- Asynchronous updating : Each neuron changes its state at a random moment with respect 

to other neurons. 

- Synchronous updating : AlI neurons change their state simultaneously at a given time. 

- Sequential updating : AlI neurons change their state sequential1y, i.e., only one neuron 

changes its state at a given time. 

FIGURE 2.8 - Hopfield network structure 

2.7 Boltzmann Machine 

The Boltzmann machine was developed by Hinton and Sejnowski in 1983 to overcome 

the local minima prob1em [18]. It uses a variable called temperature to calculate the activation 
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value of a neuron as a statistical probability 

Oi = 1, with a probability Pi = 1/(1 + e-u;T) 

Oi = 0, with a probability (1- Pi) 
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where Ui is the network's input to the eh neuron, calculated as in the Hopfield network. 

This model is called a Boltzmann machine because of its similarity with the process of anneal-

ing in metallurgy, where temperature T decreases during the recall process. By changing the 

temperature, we shake the neural network to enable a jump from a local minima and a move 

towards a global minimum attractor. 

2.8 Radial Basis Function (RBF) 

Radial basis functions were first introduced by Powell in 1989 [18]. RBF network is 

an excellent approximator used for curve fitting problems and its learning is equivalent to 

finding a multidimensional function that provides a best fit to the training data. Moreover, 

it can be trained easily and quickly. The main advantage of RBF network is that the output 

layer weights are adjusted through linear optimization, whereas the hidden layer weights are 

adjusted through a nonlinear optimization. As depicted in Fig. 2.9, the RBF network output 

can be expressed using the Gaussian function and the weighted sum method, 

1 

Yk=LWk)</», k=I ,2, ... ,m 
) = 1 

( IIXi-C)112) . 
</»=exp - (J? ' l=1,2, ... ,n 

J 

where n, i, and m are the number of input, hidden, and output nodes', respectively, Xi is the 

ith input vector of the training set and wk) is the weight connecting the j'h hidden node to the 

k.th output node, </», ci, and (J) are the /11 Gaussian function, center, and standard deviation, 

respectively. RBF network usually exhibits a slow response due to the large number of neu-
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rons needed in the second layer. Rowever, appropriate RBF eenters and widths selection can 

improve the accuracy and speed of the network. Renee more efficient RBF networks are built 

by the redistribution of centers to locations where input training data are meaningful. 

Input 
layer 

Hidden 
layer 

Output 
layer 

FIGURE 2.9 - RBF network structure 

There are three major approaches to detennine the eenters. In the tirst approach, the loca-

tions of the centers are tixed and chosen randomly from the training data. This method can be 

useful if the training data are distributed in a representative manner for the specitied problem. 

In the second approach, the radial basis functions can move the locations of their centers in a 

self-organized fashion. Renee, the eenters of radial basis functions are plaeed in the regions 

of the input spaee where important data exist. In the third approach, the eenters of the radial 

basis functions are obtained by a supervised leaming proeess. It defines a co st function to be 

rninimized using an elTor-COlTection leaming scheme such as a gradient-descent procedure. 
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2.9 Conclusion 

ANNs have received a thorough interest from man y researchers as they are able to learn 

a system's behavior from its input-output data. These learning and generalization capabilities 

enable ANNs to more effectively address nonlinear time-varying complex problems. Thus far, 

MLP remains one the most popular ANNs used in control applications with backpropagation 

aIgorithm for weights adaptation. However, this aIgorithm is based on gradient or steepest de-

scent methods. These methods have a serious drawback as they are not suitable for aIl types of 

swfaces. Therefore, the convergence and stability of such approaches cannot be guaranteed. In 

this thesis, the MLP is used for its simplicity and its stability issues are addressed by proposing 

new Lyapunov-based adaptation techniques as an alternative to c1assic gradient-based meth-

ods. On the other hand, fuzzy logic systems are also good candidates for nonlinear dynamic 

systems. They have been successfully used in many real-world applications. Therefore, the 

next chapter presents an overview of the fuzzy logic theory. 



Chapitre 3 

Fuzzy Logic Systems (FLSs) 

3.1 Introduction 

Fuzzy logic was first developed by Lotfi Zadeh in the 1960s [19]. It aims to represent 

uncertain and imprecise knowledge and provides an approximate but effective means of de-

scribing the behavior of systems that are too complex or ill-defined. Fuzzy logic uses graded 

statements rather than the strictly true or false logic. Tt attempts to incorporate the human-like 

knowledge and reasoning used for decision making. Thus, fuzzy logic provides an approximate 

but effective way of describing the behavior of complex systems that are not easy to describe 

precisely. This results in controllers that are capable of making intelligent control decisions. 

This chapter presents the convention al fuzzy logic systems, called type-l FLSs, and its type-2 

counterpart as an extension to the conventional fuzzy logic theor·y. 

3.2 Type-l Fuzzy Logic Systems 

In its simplest form, an n-input m-output type-1 fuzzy logic system (FLS) can be re-

garded as a mapping from V = VI X V2 X ... X VII into V = VI x V2 x ... X Vm , where Vi C IR, 

Vj c IR, for i = 1, 2, ... ,n and j = 1,2, ... ,m. The output y = (YI, . .. ,YIIl) T of an n-input m­

output FLS with a center-average defuzzifier, sum-product inference, and singleton output 

30 
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fuzzifier, is given by 

(3.1) 

where x = (XI, ... ,xnf E U is the FLS's input vector, Il (pl are the membership functions 
Ai 

of the fuzzy sets A~P), rr and L denote the fuzzy t-norm and t-conorm operations used, respec-

tively, p is the ru1e index from a total of R ru]es, and y)p) is the point in Vj at which the firing 

strength Il (pl achieves its maximum value, which is assumed to be 1. 
Bj 

The type-l FLS is capable of uniformly approximating any well-defined nonlinear function 

over a compact set U to any degree of accuracy. 

Theorem 1 (universal approximation theorem [10 J) For any given real continuous function 

g(x) on the compact set U C ~1l and arbitrary € > 0, there exists a function f(x) in the form 

of (3.1) such that 

sup Il g(x) - f(x) 11 < € 
xEU 

The above universal approximation theorem [10] shows the power of fuzzy logic systems in 

approximating continuous nonlinear functions. As such, FLSs provide a natural alternative for 

tackling problems usually raised when attempting to model and design controllers for complex 

systems with ill-defined dynamics. 

A block diagram of a typical type-I FLS is depicted in Fig. 3.1. It contains four compo-

nents : fuzzifier, rule base, inference engine, and defuzzifier. 

3.2.1 Fuzzification 

Type-I fuzzy sets can be represented as membership functions IlA that associate with 

each element x of the uni verse of discourse X, a number IlA (x), i.e. membership grade, in the 

interval [0,1]. The fuzzifier maps a clisp input x E X into a fuzzified value A E U (Universe). 
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IRule Basel 
Crisp 

: Fuzzifier 1 1 Defuzzifier 1 
Crisp 

Inputs x Outputs y 

Type-l input 1 1 Type-l output 

fuzzy sets 1 Inference 1 f uzzy sets 

FIGURE 3.1 - Block diagram of a type-l FLS 

1. Singleton fuzzification : fuzzy set A with support Xi, where IlA (Xi) = 1, for X = Xi and 

IlA(Xi) = 0, for X -=1- Xi· 

2. Non-singleton fuzzification : IlA (Xi) = 1, for X = Xi and decreases from 1 to ° when 

moving away from X = Xi. 

3.2.2 Fuzzy Rule Base 

Type-l fuzzy rule base is a collection of multiple IF-THEN rules. The i" rule has the 

following fonn : 

RP : IF XI is Fi and X2 is FI and ... and Xn is F,f 

THEN YI is Gf and Y2 is G~ and ... and Ym is G!:r 

where XI E Xl , ··. ,Xn E Xn, and YI E YI, ... ,Ym E Ym, are the inputs and outputs linguistic 

variables, respectively. FjP and Gj, i = 1) ... ,n, j = 1, ... ,m, are input and output fuzzy labels, 

respectively. RP is a fuzzy relation from fuzzy input sets X to fuzzy output sets Y. 

3.2.3 Fuzzy Inference Engine 

The inference engine is a key component of any FLS. It aggregates the IF-THEN rules 

stored in the knowledge base with the type-l fuzzy sets generated by the fuzzifier to form an 

overall type-l output fuzzy set. It provides a mapping From the input fuzzy sets to the output 

ones. The intersection of multiple rule antecedents is computed using a t-nOnTI operator n 
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while the union of multiple rules is computed through a t-conorm operation U. Each rule p 

in the knowledge base is interpreted as a fuzzy implication, which, wh en aggregated with the 

fuzzified inputs, infers a fuzzy set BP such that : 

3.2.4 Defuzzification 

Type-l defuzzification is the last step to get the final output crisp value. There are 

several methods for the type-l defuzzification of a FLS, such as the centroid defuzzifier, centre-

of-sums defuzzifier, height defuzzifier, and centre-of-sets defuzzifier. The output at instant k 

with a commonly used defuzzification method, such as, the centroid method is expressed as : 

(3.2) 

3.3 Type-2 Fuzzy Logic Systems 

A type-2 fuzzy set is characterized by a fuzzy membership function, where the mem-

bership value or grade for each element of this set is a fuzzy set in the interval [0,1] ; unlike 

a type-l fuzzy set where the membership grade is a crisp value. As such, the membership 

functions of type-2 fuzzy sets are three dimensional functions, with what is known as the set's 

footprint of uncertainty (FOU) representing the third dimension. In fact, it is this FOU that 

provides type-2 FLSs with additional degrees of freedom and makes it possible for them to 

directly model and handle more types of uncertainties with higher magnitudes than their type-

1 counterparts. Moreover, using type-2 fuzzy sets to represent a certain system's inputs and 

outputs can result in a smaller rule base as when a type-l FLS was used. A block diagram of 

a typical type-2 FLS is depicted in Fig. 3.2. It is generally composed of five components : a 

fuzzifier, a rule base, a fuzzy inference engine, a type-reducer and a defuzzifier. In essence, it 

has a very similar structure to a type-l FLS. 
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Output processing 
--- -- ------

1 Defuzzifier 
Il Crisp 

Il Outputs y 
1 

IRule Basel Type-l reduced 1 

fuzzy sets 1 

1 

Crisp 
: Fuzzifier 1 IType-reducerJ: Inputs x 

1 

-- - - - - _ ____ J 

Type-2 input J 1 Type-2 output 

fuzzy sets 1 Inference 1 f uzzy sets 

FIGURE 3.2 - Block diagram of a type-2 FLS 

Type-2 fuzzy sets are generalized forms of those of type 1 (with the FOU as an additional 

degree of freedom). Mathematically, a type-2 fuzzy set, denoted as A, is characterized by a 

type-2 membership function f.lii. (x, u) , where x E X and u E l x ç [0 , 1], i.e., 

A = { ((x, u) ,f.lii.(x, u) 1 "Ix E X , Vu E l x ç [0, Il} 

in which ° ~ f.lii.(x , u) ~ 1. For a continuous universe of discourse, A can be expressed as 

A = r r f.lii.(x,u)j(x, u) l x ç [0 , Il} 
J XEX JU El x 

where l x is referred to as the primary membership of x. 

As in type-l fuzzy logic, discrete fuzzy sets are represented by the symbol [ instead of 

f. The secondary membership function associated to x = x', for a given x' EX, is the type-l 

membership function defined by f.lii. (x = x', Li) , Vu E l x. The uncertainty in the primary mem-

bership of a type-2 fuzzy set A is represented by the FOU and is illustrated in Fig. 3.3. Note 

that the FOU is also the union of all primary memberships. 

FOU(A) = U l x 
xEX 
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~ 
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~ 
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FIGURE 3.3 - Type-2 Fuzzy Logic Membership Function 
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The upper and lower membership functions, denoted by J1À(x) and l!:.A(x), respectively, are 

two type-l membership functions that represent the upper and lower bounds for the footprint 

of uncertainty of an interval type-2 membership function J1À (x, u), respectively [8]. 

3.4 Interval Type-2 Fuzzy Logic Systems 

The operations of type-2 fuzzy systems are typically more computationally involved 

than type-l systems. This has urged researchers to search for ways to alleviate this high com-

putational burden if type-2 FLSs are to find their way to real-world applications. For this pur-

pose, interval fuzzy sets were introduced [8 , 19]. This type of fuzzy sets provides a simplified 

and efficient alternative to easily compute the input and antecedent operations for FLSs and 

offers a balanced trade off between performance and complexity. Before proceeding further, a 

few concepts need to be introduced. 

Definition 1 [ 19 J An interval type-l fuzzy set A on a universe of discourse X is defined by a 

bina/y type-l membership function J1A and a left and right points in X, say 1 and r, such that 

{ 
1, ifx E [/,1"] 

J1A (x) = 
0, otherwise 
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In such a case, the membership function can be denoted by f-LA = [l , r]. 

Definition 2 [ 19 J A type-2 membership juncfion, defined on a universe X, whose secondary 

membership grade at some YI EX is 1, and 0 elsewhere, is called a singleton type-2 membership 

junction. 

An FLS with an interval singleton type-2 fuzzifier and product or minimum t-norm satisfies 

the following properties [19] : 

l. the firing strength of the lth fuzzy rule is an interval type-I fuzzy set defined as 

where 

FP(x') - n~Jf-LFP(xD = [[P(x'),:,r(x')] == [[p, :r J, 
1 

[P (x') = f-L F( (x;) *. , ,* f-L 11' (x~) 

lP (x') = f-L i p (xD *. , . * f-L i.p (x~) 
1 /1 

with the t-norm operator denoted by '*'. 

(3.3) 

(3.4) 

2. the fired output consequent set of the p ruIe is a type-l fuzzy set characterized by a 

membership function 

f-Lai' (y) = r _ 1 / bP 

JbpE[LP*!!..cp (y),J" *JïGi'(Y)] 
\iy E Y 

with f-LGp(Y) and f-LGp(Y) being the lower and upper membership grades of f-LGp(Y). 

3. if N out of a total of R fuzzy rules in the FLS fire, where N ::; R, then the overall ag-

gregated output fuzzy set is defined by a type-l membership function f-Ls(Y) obtained by 

combining the fired output consequent sets into one. In other words, f-Ls(Y) = u~= [f-LBP (y), 
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where 

The following is a brief description of the different stages of the type-2 fuzzy Iogic infer-

ence engine. 

3.4.1 Fuzzification 

Fuzzification is the first stage of the fuzzy inferencing process. At this phase, the crisp 

input vector with n elements x = (XI , . " ,xn)T in the universe of discourse XI x X2 X .. . X XI! 

is mapped into type-2 fuzzy sets [8, 19]. The type-2 fuzzification process is schematically de-

picted in Fig. 3.4. For each point of the universe of discourse, the upper and Iower membership 

functions are computed. It is worth pointing out that the acquisition of the inputs as well as 

their primary membership grades can be pelformed in parallel and regardless of the t-norm 

operator used. For rule p, the result of this operation is an interval type-I set lLP , :r l. 

3.4.2 Fuzzy Rule Base 

The structure of the rules of a type-2 FLS is similar to that of type-l. A type-2 FLS with 

n inputs, X I E XI , .. . , Xn E Xn, and m outputs, YI E YI , ... ,YIII E Y;n, the plh rule is of the form 

RP : IF XI is Ft and X2 is Fi and .. . and Xn is Ft 
-p -p -p THEN YI is G I and Y2 is G2 and ... and Ym is Gill 

where FjP and q, i = 1, ... ,n , j = l, ... ,m, are input and output fuzzy labels, respectively. 

3.4.3 Fuzzy Inference Engine 

The inference engine is a key component of any FLS. It aggregates the if-then rules 

stored in the knowledge base with the fuzzy sets generated by the fuzzifier ta form an overall 
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FIGURE 3.4 - Interval Type-2 Inference Process 
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Resultant 
consequence 

type-2 l\/fF 

~ 

Y 

output fuzzy set. Similarly, a type-2 fuzzy inference engine provides a mapping from the input 

type-2 fuzzy sets to the output ones. The intersection of multiple rule antecedents is computed 

using a t-norm operator while the union of multiple rules is computed through a t-conorm 

operation. 

Each fUIe p in the knowledge base is interpreted as a type-2 fuzzy implication, which, when 

aggregated with the fuzzified inputs, infers a type-2 fuzzy set jjp such that 

The t-norm and t-conorm used for the type-2 FLS herein are the "minimum" and "maxi-

mum" operators, respectively. These operators have been accredited in the literature for their 

computational efficiency and satisfactory performance. 
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3.4.4 Fuzzy Type Reduction 

The type-2 fuzzy inference engine produces an aggregated output type-2 fuzzy set. The 

type reduction block operates on this set to generate a centroid type-l fuzzy set known as 

the "type-reduced set" of the aggI'egate type-2 fuzzy set. Several type-reduction methods have 

been suggested in the literature, such as the center-of-sums, the height, the modified height 

and the center-of-sets, for example. We consider the center-of-sets type reduction technique 

thanks to its computational efficiency [8] . The ca1culation of type-reduced sets is performed 

in two stages. First, the centroids of the type-2 interval consequent sets of the fuzzy rules are 

computed. This is conducted ahead of time and is not part of the control cycle. In the second 

stage, the type-reduced sets are computed at each control cycle before being defuzzified [6]. 

Calculation of the Rule Consequents Centroids The centroid of the [th output fuzzy set Y~ 

is a type-1 interval set detemlined by its left and right most points, Y~k and Y:'k' respectively, 

which are expressed by [19] : 

(3 .6) 

Algorithms 3 and 4 describe the iterative procedures for computing~'k' andYh, respectively [6]. 

Without loss of generality, we assume that Yz' z = l , ... ,Z , are arranged in an ascending order ; 

i.e., YI :S;Y2:S; .. · :S; yz· 

Note that both algorithms are guaranteed to converge in at most Z iterations. 

3.4.5 Fuzzy Type-Reduced Set Calculation 

Instead of aggregating the consequent type-2 fuzzy sets fired by the fuzzy rules before 

reduction , the center-of-sets type reduction uses the centroid method to reduce these resulting 

type-2 fuzzy sets to obtain an interval type-l fuzzy set [yfk'Y~kJ for each rule p. The inferenced 
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Aigorithm 3: Computing i rk 

begin 
Set ez = hz for z = l , ... ,Z 
Compute yi = y(h l , . . . ,hz) using (3.6) 
Set Stop = False 
white Stop = False do 

end 

Find e, where 1 :::; e :::; Z - l, such that Ye :::; yi:::; Ye+l 
Set ez = hz - Ôz for z :::; e 
Set ez = hz + Ôz for z > e + 1 
Compute yI! = y(h l -Ôl, ... ,he - ô e, he+l + Ôe+I, ... ,hz +Ôz) using (3.6) 
if yI! = yi then 

l Stop = True 
Set y~k = yI! (yI! is the maximum value of y( el , ... , ez)) 

cIse 
L Set yi = yI! 

Aigorithm 4: Computing yik 

begin 
Set ez = hz for z = 1, . .. ,Z 
Compute yi = y(h1, ••• ,hz) using (3.6) 
Set Stop = False 
while Stop = False do 

Find e, where 1 :::; e :::; Z - 1, such that Ye :::; yi:::; Ye+l 
Set ez = hz + Ôz for z :::; e 
Set ez = hz - Ôz for z > e + 1 
Compute yI! = y(hl + Ô l , ' " ,he +ôe ,he+1 - Ôe+ l , '" ,hz - Ôz) using (3 .6) 
if yI! = yi th en 

l Stop = True 
Set )1k = yI! (yI! is the maximum value of y( el , .. . , ez)) 

el se 
L Set yi = yI! 

end 

40 
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interval type-l fuzzy set is then defined by [YlbYrk], such as : 

~R +p p 
L..p= 1 J l Ylk 

Ylk = ~R 1'P 
L..p= 1 1 

~R +p p 
L..p= 1 Jr Yrk 

Yrk = ~R +p 
L....p= 1 Jr 
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(3.7) 

(3.8) 

where fi,ff' are the firing strengths corresponding to Yfk and Y~k of rule p, to minimize Yfk 

and maximize Y~k' Algorithms 5 and 6 reveal the iterative procedures to compute Ylk and Yrb 

respectively [19]. Without 10ss of generality, we here assume that the pre-computed Yfk' P = 

1, ... ,R, are arranged in an ascending order; i.e., Ylk ~ YTk ~ . . . ~ yfi. Hence, Ylk and Yrk can 

be mathematically expressed as : 

~Q -fu U + ~R fVyv 
L....u= 1 Ylk L....v= Q+ I_ Ik 

Ylk = Q -u R .v 
Lu= 1 f + LV= Q+ 1 L 

~R fUyu + ~R -fvyV 
L../,/= 1 rk L....v= R+ 1 rk 

Yrk = ~R- fU ~R f V 
L..u= 1 _ + L..v= R+ 1 

It is worth pointing out that both procedures are proven to converge in no more than R 

iterations, where Ris the total number of mIes [19]. 

3.4.6 Defuzzification 

Eventually, the type-reduced set J.1SI (y) determined by its 1eft most and right ma st 

points, Ylk and Yrb respectively, is defuzzified using the interval set average formula to get 

a crisp output value. As such, the defuzzified crisp output for each output k is formulated 

as [8] : 
v ( ) _ Ylk + Yrk 
lk X - --2--
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Aigorithm 5: Computing Ylk 

begin 

end 

Set ft = (LP + yP) / 2, for p = 1, ... ,R, with LP and yP are as defined in (3.3) 
and (3.4) 
Set Y~k = Ylk 
Set Stop = False 
while Stop = Fa/se do 

Find Q (1 ~ Q ~ R - 1) such that Y~ ~ Y~k ~ Y~+ 1 

Compute Ylk as in (3.7), using ft = yP for p ~ Q and ff = LP for p > Q 
Let Y~~ = Ylk 
'f" 1 th 1 Ylk = Ylk en 

l Stop = True 
Set Y~~ = Ylk 

else 
L Set Y~k = Y~~ 

Aigorithm 6: Computing Yrk 

begin 
Set ff = (LP + YP) / 2, for p = 1, ... ,R, with LP and yP are as defined in (3 .3) 
and (3.4) 
SetY~k = Yrk 
Set Stop = False 
while Stop = Fa/se do 

Find R (1 ~ R ~ R - 1) such that ~k ~ Y~k ~ lt 1 

Compute Yrk as in (3.8), using ff = yP for p ~ Rand ff = fP for p > R 
L " -etYrk = Yrk 

end 

'f" 1 th 1 Yrk = Yrk en 

l Stop = True 
SetY~k = Yrk 

e]se 
L S'" et Yrk = Yrk 

42 
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3.5 Soft-Computing Based Optimization 

Neural Networks and Fuzzy Logic have recently received growing attention, thanks to 

their ability in solving real-life nonlinear time variant complex problems. Although these tech-

niques have had successes over the years, they have limitations as weIl. Intelligent combina-

tions of these two technologies can exploit their advantages while eliminating their limitations. 

Such combinations of neural networks and fuzzy logic are called neuro-fuzzy systems. On the 

other hand, scientists studied in the early 1950s evolutionary algorithms (EA) to be used as an 

optimization tool for engineering problems. The idea is to develop a search engine using oper-

ators inspired by nature to find optimal solutions to a given problem. The evolutionary systems 

we are concerned with in this chapter are Genetic Algorithms (GA) and Ant Colony Optimiza-

tion (ACO) algorithms. Recently, researchers attempted the use of evolutionary computing for 

the design of fuzzy logic systems, and for automatic training and generation of neural network 

architectures. This chapter serves as an overview of the most popular approaches. 

3.5.1 Genetic Algorithms (GA) 

Genetic algorithm (GA), invented by John Holland in the 1960s, is a heuristic search 

technique inspired by evolutionary biology [20]. In contrast with evolution strategies, Hol-

land's studied the nature selection phenomenon as an adaptation mechanism to be imported 

into computer systems. This mechanism consists of the use of candidate solutions, called ele-

ments of population, represented in a binary form, called chromosomes. The adaptation is done 

with moving from one population of chromosomes to a new population by using natural selec-

tion genetic inspired operators of crossover, mutation, and inversion. In each generation, the 

fitness of every individual in the population is evaluated and the selection operator chooses the 

chromosomes in the population (based on their fitness) that are allowed to reproduce evolving 

toward better solutions. The new population is then used in the next generation and the process 

usually terminates when a satisfactory fitness level has been reached for the population. 
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GA Operators 

The simplest form of genetic algorithm involves three types of operators : selection, 

crossover (single point), and mutation. 

- Selection: This operator selects elu'omosomes with the best fitness level in the popula-

tion for reproduction. 

- Crossover : This operator mimics a biological recombination between two single chro-

mosome organisms. The subsequences of two chromosomes exchange before and after a 

randomly chosen locus to form two offsprings. For example, the crossover after the third 

locus of chromosomes 01000101 and 11111111 produce the two offspring 01011111 

and 1110010 1. 

- Mutation: This operator randomly toggles a chromosome bit. For example, the chro-

mosome 00000010 mutated in its fourth position yields 00001010. 

A simple genetic algorithm is described in algorithm 7. 

Aigorithm 7: Genetic 
begin 

- Generate randomly a population of n chromosomes. 
repeat 

- Ca1culate the fitness f(x) of each chromosome x in the population. 
repeat 

- Select a pair of parent chromosomes based on their fitness level. 
- Form two offsprings wih a probability crossover of parent chromosomes. 
- Mutate the two offsprings at each locus with a mutation probability. 
- If n is odd, one new population member can be discarded at random. 

until n o.ff::,prings have been created. 
until sa ti5factory fitness Leve! is reached. 

end 

3.5.2 Ant Colony Optimization (ACO) Algorithms 

The Ant Colony Optimization (ACO) algorithm is a probabilistic technique used to 

solve optimization and distributed control problems [21]. It is derived from the behavior of 
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real ants in finding the best path from food to the colony. Ants lay down pheromone when 

they find a good path, which increases the probability that other ants follow the same path 

instead of traveling randomly. Over time, the best path receives more pheromones and is likely 

to be followed by aIl ants. However, pheromone evaporates reducing the attractive strength of 

its path. This phenomenon has the advantage of avoiding the convergence to a local optimal 

solution. 

ACO algorithm is characterized by two phases: fOl·ward and backward, where the fOl·ward 

phase is when ants move from the nest toward the food . In this phase, ants build a solution 

by choosing probabilistically the next node among those in the neighborhood in which they 

are located. This probabilistic choice is biased by pheromone trails previously deposited by 

other ants. It is noteworthy that ants do not deposit any pheromone while moving forward to 

avoid the formation of loops. In the backward phase, ants use an explicit memory to retrace the 

followed path and eliminate loops from it. While moving backward, ants leave pheromone on 

the trails they traverse. Moreover, ants deposit a higher amount of pheromone on short paths or 

rich food sources making pheromone update a function of the generated solution quality that 

helps in directing future ants more strongly toward better solutions. Therefore, path searching 

is more quickly biased toward the best solutions as described in algorithm 8. 

Aigorithm 8: Ant colony optimization algorithm 
begin 

Initialize data 
repeat 

- Forward phase: 
- Construct pheromone biased paths : build solution candidates. 
- Evaluate paths : search for optimal solutions. 

- Backward phase: 
- Eliminate loops from the forward paths. 
- Update pheromone as a function of solution quality. 

until terminate condition is reached. 
end 
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3.5.3 Hybrid Systems 

Input-output data can be used to generate fuzzy logic rules and membership functions, 

significantly reducing the design time and complexity. This provides a more cost effective 

solution as fuzzy implementation is typically a less expensive alternative than neural networks 

for embedded control applications. Moreover, expressing the ANN weights by fuzzy rules 

provides greater insights and leads to a design of better solution. The hybrid intelligent system 

can be classified in three main categories: cooperative, concurrent and integrated neuro-fuzzy 

systems. 

In a cooperative neuro-fuzzy system, the ANN learning mechanism is used to deterrnine 

the membership functions or the fuzzy rules, parameters of fuzzy sets, rule weights, etc. In this 

system, a supervised learning technique uses a gradient descent procedure to tune the fuzzy 

parameters. The learning takes place in an offline mode and once the training is done, the 

ANN is disconnected from the control structure. The same technique can be applied to the 

fuzzy operators, and the defuzzification engine. 

In a concurrent neuro-fuzzy system, ANN assists the fuzzy system continuously (or vice 

versa) to determine the unknown parameters. As such, it improves the performance of the 

overall system. The learning takes place in the ANN that acts as a postprocessor of fuzzy 

outputs or a preprocessor of the input data. 

In an integrated neuro-fuzzy system, the fuzzy inference system takes the form of ANN 

structure and uses human expertise by storing its essential knowledge-based components. The 

nodes of the structure are presented in layers representing linguistic labels, rules, antecedent 

and consequent fuzzy parts. A supervised learning technique (back-propagation) is then used 

to adapt the weights. 

However, gradient-based supervised learning techniques are likely to be trapped in local 

optima wh en the error surface is irregular. This problem can be avoided by using global evolu-

tionary optimization procedures such as genetic and ant colony algorithms. 
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3.6 Conclusion 

Fuzzy logic approximates complex systems using human reasoning. Thus, our knowl-

edge can be used to model effectively the uncertainty and nonlinearity within complex systems. 

Moreover, fuzzy logic is easy to implement and is co st effective for a wide range of applica-

tions. However, it becomes more challenging to determine the correct set of rules and mem-

bership functions as the system complexity increases. Membership functions tuning and rules 

adjustment can be a time consuming process. In addition, the use of fixed geometric-shaped 

membership functions and rules limits fuzzy logic systems knowledge. These weaknesses have 

addressed with the combination of fuzzy logic system and other soft-computing techniques. 

On the other hand, GAs were presented as an algorithmic concept based on Darwin's theory 

of evolution by natural selection, where stronger individuals in the population have a higher 

chance of reproduction. A genetic algorithm implements a search and optimization procedure 

that creates a population of candidate solutions, and then let that population evolve over time 

through competition using the three fundamental genetic operations of selection, crossover 

and mutation. On the other hand, ant colony optimization is another procedure that can also 

be applied to this kind of problem. In spite of the simplicity of ant colony individuals, their 

union presents a highly structured organization able to accomplish complex tasks that far ex-

ceed the single ant capabilities. These evolutionary algorithms span many points in the search 

space simultaneously which reduce chances of converging to local minima and provide a rapid 

convergence to an optimum solution. Despite of the witnessed success of evolutionary algo-

rithms, they suffer from heavy computational complexity when used for complex problems. 

Finally, different ways to learn fuzzy inference systems using ANN learning techniques were 

also presented. The data acquisition and preprocessing training data is also quite important for 

the success of neuro-fuzzy systems. Many neuro-fuzzy models use supervised/unsupervised 

techniques to learn th~ different parameters of the fuzzy inference system. Unlike evolutionary 

algorithms, ANNs and FLSs are used in this thesis for their popularity and low computational 

complexity. Therefore, the resulted power from their combination is exploited to design ad-



FllZZy Logic Systems (FLSs) 48 

vanced intelligent adaptive control techniques for nonlinear dynamic systems with high uncer-

tainties. Moreover, new Lyapunov-based adaptation techniques are proposed for online tuning 

to guarantee the stability of such systems. 



Chapitre 4 

N onlinear Control 

4.1 Introduction 

In reallife, most of physical systems are nonlinear. Thus, a control system is often re-

quired to cope with these nonlinearities. However, if the nonlinear system's operating range 

is small enough to be reasonably approximated by a linearized system, a variety of powerful 

linear control techniques can then apply efficiently. However, nonlinearities can be continu-

ous and discontinuons. Discontinuous nonlinearities, also called hard nonlinearities, cannot 

be approximated by linear systems. Therefore, this chapter presents an overview of advanced 

control design techniques for nonlinear systems. These control techniques will be used latter 

to design sorne Lyapunov-based adaptive control approaches that are suitable for uncertain 

complex systems. 

4.2 Nonlinear Systems 

A nonlinear system is usually represented by 

i = f(x ,u,t) (4.1) 

49 
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where u E ]Rn is the control input vector, f E ]Rn is a nonlinear vector function, x E ]Rn is a 

state vector, and n is number of states, also called the order of the system. 

Definition 3 [22J The nonlinear system (4.1) is autonomous if f does not depend explicitly 

on time index t, i.e., the system can be written as 

i=f(x,u) (4.2) 

Otherwise, the system is called non-autonol1WUS. 

4.3 Lyapunov Stability Theory 

In control design , we need to investigate system's stabi lity since unstable systems are 

useless and undesirable. The study of the behavior of a Lyapunov function candidate of a 

nonlinear c1osed-Ioop system is a general and efficient way to analyze its stability. Along this 

spirit, Lyapunov functions can be used to design stabilizing feedback and adaptive controllaws. 

Lyapunov stability was first introduced in 1892 by the mathematician Lyapunov. However, this 

concept was only brought to the attention of the control engineering community in the early 

1960's. 

Definition 4 [22J Astate x* is an equilibrium state (or equilibrium point) of the system if 

once x(t) is equal ta x*, il remains equal ta x* for ail future time. 

A nonlinear system (4.2) can have several equilibrium points that can be found by solving 

for, 

f(x*,u) = 0 

A specific equilibrium point can also be defined as, 

y=x-x* = 0 
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Therefore, x = x* is an equilibrium point. 

There are two methods for stability analysis, indirect and direct method. The Lyapunov's 

indirect method, also caUed linearization method is used to analyse stability of linear time-

invariant (LTI) systems and local stability of nonlinear systems around an operating point. The 

Lyapunov's direct method is not restricted to local motion. It is used to analyse the stability 

properties of nonlinear systems with a time-varying "energy-like" function. 

4.3.1 Autonomous Systems 

In this section, we present an overview of the Lyapunov stability the ory applied to 

autonomous systems. 

Fondamentals of Lyapunov theory : 

Definition 5 [22} A scalar continuous function V(x) is locally positive definite if V(O) = 0 

and, in a bail B 

V(x»O \fx# O, llxll<B 

IfV(O) = 0 and the above property ho/ds over the whole state space, thenV(x) is globally 

positive definite. 

Example: (positive definite) 

Consider the following scalar continuous function : 

V(XI ,X2) = 4xl+52, = [Xl X,] [: :] [ :: ] =hx 

Pis a positive definite matrix and V(x) is positive definite. 

Definition 6 A square matrix Mis positive definite iffor ail x # 0, xT Mx > O. 

Therefore, 
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This implies that V(XI ,X2) is globally positive definite. 

Example: (positive semi-definite) 

The following scalar continuous function, 

is positive semi-definite. 

The concept of stability : 

Stability can be viewed as if a system starts close to the origin, its trajectory will remain 

close to it. Otherwise, the system is unstable. However, since nonlinear systems are governed 

by complex dynarnics, more refined stability concepts, such as asymptotic, exponential and 

global asymptotic stability, need to be defined. In the following, these concepts are introduced 

for autonomous systems. 

Definition 7 (Stability in the sense of Lyapunov [22]) The equilibrium state x = 0 (the origin) 

is stable if, for any R > 0, there exists r > 0, such that if Ilx(O) Il < r, then Ilx(t) Il < R for ail 

t ~ O. Otherwise, the origin is unstable. 

Example : (stability) 

Consider the pendulum system, 

. g . 
x? = --smxI - 1 

Consider the following energy function as a Lyapunov candidate function : 

V(x) = y(1 - cosxr) + ~x~ 
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It is noteworthy that V(O) = 0 and V(x) is positive definite over the domain -n < XI < n. 

The time-derivative of V (x) is given by : 

V(x) is positive definite and V(x) = 0 implies that the origin is stable. 

The Lyapunov function candidate satisfies the stability conditions. However, it does not 

imply that the system's trajectory converges to the origin. Asymptotic stability states that if a 

system starts close to the origin, its trajectory will converge to it. 

Definition 8 [22J The origin is asymptotically stable if it is stable, and if in addition there 

exists .'lame r > 0 such that Ilx(O) Il < r implies that x(t) -+ 0 as t -+ 00. 

On the other hand, exponential stability shows how fast is the convergence to the origin. 

Definition 9 [22 J The origin is exponentially stable if there exists two strictly positive num­

bers a and Â such that 

V t > 0, Ilx(t)ll::; al lx(O)l le - Àt 

in .lame bail B around the origin. 

Wh en a Lyapunov function candidate fails to satisfy the conditions for stability, asymptotic 

or exponential stability, it does not imply that the equilibrium is not stable, asymptotically 

or exponentially stable. This only means that such properties cannot be established by this 

Lyapunov function candidate. In many applications, it is not easy to find a Lyapunov function 

for a given system. Its existence is defined as follows, 

Definition 10 [22J If, in a bail B, the function V(x) is positive definite and has continuo us 

partial derivatives, and if its rime derivative along any state trajectory of the system (4.2) is 

negative semi-definite, i.e., 

V(x) ::; 0 

then V(x) is a Lyapunovfunction of the system (4.2). 
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The ab ove definitions are stated to describe the system's local behavior, in a ball B. There-

fore, the local stability theorem can be formulated as, 

Tbeorem 2 (local stability) [22} 

If, in a ball B, there exists a scalar function V (x) with continuous first partial derivatives such 

that 

- V(x) is positive definite (locally in B). 

- V(x) is negative semi-definite (locaUy in B). 

then the origin is stable. And if the derivative V(x) is locally negative definite in B, then the 

origin is asymptotically stable. 

Global stability is another importance aspect as the system's behavior when initial states 

are far fram the origin is not covered by local stability concept. 

Definition Il [22}1f the origin is asymptotically or exponentially stable for any initial states, 

then the equilibrium state is globally asymptotically or exponentially stable. 

Therefore, the global stability theorem can be formulated as, 

Tbeorem 3 (global stability) [22} 

If there exists a scalar function V (x) with continuo us first order derivatives such that 

- V (x) is positive definite. 

- V(x) is negative definite. 

- V(x) ~ 00 as Ilxll ~ 00. 

then the origin is globally asymptotically stable. 

Example : (global stability) 

Consider the scalar system, 

Consider the candidate Lyapunov function : 
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It is noteworthy that V(x) --+ 00 as Ilxll--+ 00. The time-derivative of V(x) is given by: 

, V(x) = _x4 ::; 0 

V(x) is negative definite for aIl x E lR. Therefore, the origin is globally asymptotically stable. 

4.3.2 Non-Autonomous Systems 

In this section, we present an overview of the Lyapunov stability theory applied to 

non-autonomous systems. 

Definition 12 [22 J The origin is stable if, for any R > 0, there exists a positive scalar r( R , to) 

such that 

'tIt '2 to , Ilx(to)ll < r => Ilx(t)II < R 

Otherwise, the origin is unstable. 

As in autonomous systems, the state is kept in a ball of arbitrarily small radius R wh en 

the state trajectory starts in a baIl of sufficiently small radius r. However, the radius r of the 

initial baIl may depend on the initial time to in non-autonomous systems. Since the concept of 

stability does not guarantee the convergence of the system's trajectory to the origin, asymptotic 

stability of non-autonomous systems is defined as, 

Definition 13 [22 J The origin is asymptotically stable if 

- it is stable. 

- there exists r(R ,to) > 0 such that Ilx(to)11 < r(R ,to) implies that x(t) --+ 0 as t --+ 00. 

Definition 14 [22J The origin is globally asymptotically stable if 

'tI x(to) , x(t) --+ 0 as t --+ 00 

Figure 4.1 shows the concepts of stability. 
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1- asymptotically stable 
2- stable 
3- unstable 

FIGURE 4.1 - Concepts of stability 
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Although the system is stable, the main concern in sorne applications remains the system 

trajectory convergence speed, i.e, how fast it approaches the origin. This requirement is cap-

tured by the concept of exponential stability. 

Definition 15 [22J The origin is exponentially stable ifthere exists two strictly positive num­

bers a and Â such thatfor sufficiently small x(to) 

'tj t;:: to , Ilx(t)ll:::; al Ix(to) 1 le - Â(t- to) 

So far, the concepts of stability are defined at a time instant to. Uniform stability is a con-

cept which guarantees that the equilibrium point stability is independent of to. It is defined as 

follows 

Definition 16 [221 The origin is locaUy uniformly stable if the sca/ar r in definition 12 can 

be chosen independently ofto, i.e., r = r(R). 

For time-invariant systems, uniform stability and asymptotic stability implies uniform asymp-

totic stability, which is defined as follows 

Definition 17 [221 The origin is locally uniformly asymptotical!y stable ~f 

- it is uniformly stable. 

- there exists a baIl of attraction B, who se radius is independent of to, such that al! system 

trajectories with initial states in B converge to 0 un~formly in to. 
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Before introducing the concept of global uniform asymptotic stability, let us define positive 

definite and decrescent functions. 

Definition 18 [22J A scalar time-varyingfunction V (x ,t) is locally positive definite if V (O,t) = 

° and there exists a tùne-invariant positive definite function Vo(x) such that 

Vt'2to, V(x,t)'2Vo(x) 

Globally positive definitefunctions can be defined similarly [22]. 

Definition 19 [22J A scalar tùne-varyingfunction V(x,t) is sa id to be decrescent ifV(O,t) = ° 
and there exists a time-invariant positive definite function VI (x) such that 

V t '20, V(x ,t)::; VI (x) 

Therefore, the concept of global uniform asymptotic stability is defined as follows 

Theorem 4 [22J If, in a bail B around the origin, there exists a scalar function V(x ,t) with 

continuous partial derivatives such that 

- V (x, t) is positive definite. 

- V(x) is negative semi-definite (V(x ,t) ::; 0). 

then the origin is stable in the sense of Lyapunov. If, fitrthennore, 

- V (x, t) is decrescent. 

then the origin is unifonnly stable. f!'V(x) is negative definite (V(x ,t) < 0), then the origin is 

uniformly asymptotically stable. 

In addition, if the ball B is replaced by thè whole system state 5pace and 

- V (x, t) is radially unbounded. 

then the origin is globally uniformly asymptotically stable. 

For non-autonomous systems, it is difficult to find a Lyapunov function V (x, t) with a neg-

ative definite derivative (V(x,t) < 0) to conclude the asymptotic stability. In the case of au-

tonomous systems, even if V(x) is negative semi-definite, the asymptotic stability can still be 
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determined by using invariant-set theorems. Since these theOl"emS do not apply for time-varying 

systems, Barbalat's lemma is then applied. 

Lemma 1 (Barbalat) 

If the differentiable function f(t) has afinite lùnit as t -+ 00, and if l(t) is uniformly continuo us, 

then l(t) -+ 0 as t -+ 00. 

Lemma 2 (Lyapunov-Like Lemma) [22] 

If a scalar fonction V (x, t) satisfies the following conditions 

- V(x ,t) is lower bounded. 

- V (x , t) is negative semi-definite. 

- V(x ,t) is uniformly continuo us in time. 

then V(X,/) -+ 0 as t -+ 00. 

Example : (Barbalat's Lyapunov-based stability) 

Consider the following nonlinear system: 

where, u is a bounded input signal. 

Con si der the following Lyapunov candidate: 

1 2 1 (2 2) 
V = 21 1xll = 2 XI +x2 

Take the time-derivative of V : 

Substitute for XI and X2 yields, 
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Thus, 
. 2 

V = -2xI ~ 0 

Therefore, the system is stable in the sense of Lyapunov. 

A positive function V, which is decreasing (V ~ 0) must converge to a finite limit. This 

implies that Xl and X2 are bounded. Take the time-derivative of V, 

Thus, V is uniformly continuous since li exists and is bounded. Therefore, Barbalat's 

Lemma shows that V -+ 0, and hence, Xl -+ 0 as t -+ 00. 

4.4 Adaptive Control 

Adaptive control aims to update the controller online in an automatic fashion to adjust 

its performance to dynamic changes. An adaptive controller combines a control law, usually 

designed from the known parameter case, and an online parameter estimator, called an adaptive 

law. There are two different approaches, indirect and direct adaptive control [23]. 

- Indirect Case 

The indirect adaptive control scheme is depicted in Fig. 4.2. In this case, the plant pa-

rameters are explicitly estimated online and used to find the controller parameters. 

- Direct Case 

The direct adaptive control scheme is depicted in Fig. 4.3. In this case, the controller is 

designed based on the plant model. Hence, the controller is parameterized in terms of the 

plant parameters that are estimated implicitly from the controller parameters estimation. 
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FIG URE 4.2 - lndirect adaptive control 
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FIGURE 4.3 - Direct adaptive control 
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4.4.1 Online Parameter Estimation 

Online parameter estimation is a key element of adaptive control systems. In the direct 

adaptive control literature, the online parameter estimator has often been referred to as the 

adaptive law, or update law, which is crucial for the stability of adaptive controllers. In this 

section, we introduce the most popular techniques for online parameter estimation. 

Least Squares (LS) 

Least Squares (LS) was introduced by Gauss at the late l790s [23]. It is a basic param-

eter estimation technique applied when the model has a linear in parameters property 

y(t) = (/JI (t) el + <fJ2(t) e2 + ... + C/Jn(t) en = <I>T (t) 8(t) 

where y(t) is the observed variable, 8(t) is a vector of the unknown parameters of the model, 

and <I>(t) is a vector of known functions, called regression vector or regressor. 

y(t) and <I>(t) are obtained from measurements and we aim to estimate 8(t) by minimizing 

the least-squares loss function 

(4.3) 

Theorem 5 (least-squares estimation) 

Function (4.3) is minimal for parameters ê such that 

!f the matrix <I>T <I> is nonsingular, the minimw1'l is unique and given by 
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Recursive Least Squares (RLS) 

Theorem 6 (recursive least-squares estimation) [23] 

Assume that the nwtrix <I>(t) has full rank, that is, such that <1>1' (t )<I>(t) is nonsingular, for al! 

t 2:: to. Given ê(to) and P(to) = ((<1>1' (to) <1> (to) )- 1, the least-squares estimate ê(t) then satisfies 

the recursive equations 

ê(t) =ê(t-I)+Q(t)(Y(t)-<I>T(t)ê(t-l)) 

P(t - 1 ) <I>(t) 
Q(t) = Â1 + <1>1' (t)P(t -l)<I>(t) 

P(t) = ~ (P(t _ 1) _ P(t - 1 )<I>(t )<I>(t) l' P(t - 1)) 
À À1 + <1>1' (t )P(t - l )<I>(t) 
1 

= À (1 - Q(t )<1>1' (t) )P(t - 1) 

where P is the covariance matl-ix and À is the forgetting factor. 

The forgetting factor À sets the effective length or memory of the estimator. When À = 1, 

the estimator has long memory and the estimates become smoother since Q(t) converges to 

zero. When À < 1, Q(t) does not converge to zero and the estimates always ftuctuate. As a ruIe 

of thumb, the memory of the estimator is 

Least Mean Squares (LMS) 

2 
N=--

l-À 

Least mean squares (LMS) was introduced by Widrow in the 1960s [23]. It is a stochas-

tic gradient descent method that aims to rninirnize the cost function described as 

where e(t) = d(t) - y(t) is the error signal at time t, d(t) and y(t) are the measured and es ti-

mated output, respectively. Using the Iinear in parameters property, this signal can be written 
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as 

e(t) = d(t) - <I>T(t) e(t) 

Differentia6ng e(t) with respect to the parameter vector e(t) yields, 

Hence, 

ae(t) = -<I>(t) 
ae(t) 

aç(e) = aç(e) ae(t) = -<I>(t)e(t) 
ae(t) ae(t) ae(t) 

Therefore, the LMS estimate can be formulated as, 

ê(t + 1) = ê(t) + 1]<I>(t)e(t) 

where 1] is the adaptation rate. 

Kalman Filter 

63 

Kalman filter is a discrete state-space recursive based estimation technique that provides 

solution to the linear optimal filtering problem. Therefore, there is no need for storing the entire 

past observed data since the algorithm is recursive. Therefore, Kalman filter is computation-

ally more efficient. However, Kalman filter addresses only the estimation of astate vector of 

linear dynamical systems. When the model is nonlinear, the method is extended using a lin-

earization of the nonlinear model. The resulting filter, called the extended Kalman filter (EKF), 

assumes that the deviation from linearity is of a first order. This first-order linearization of the 

nonlinear system may introduce large errors in the weight estimates and covariance matrix. 

The unscented Kalman filter (UKF) is then introduced as an alternative to the EKF providing 

a more accurate solution without increasing the computational complexity [18]. 
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The MIT Rule 

The MIT rule is used to design adaptive laws for various adaptive control schemes. 11 is a 

popular method, used with MRAC, to compute the approximate sensitivity functions by using 

online parameter estimates. However, it is difficult to prove global closed-Ioop stability and 

convergence of the tracking error to zero. Nevertheless, this method performs weIl when the 

adaptive gain y and the reference input signal are small. This method is based on minimizing 

the square of the prediction en'or 

The parameter estimates are computed as follows 

Persistent Excitation 

de de 
-=-ye­
dt dt 

ln man y adaptive systems, one important aspect is the tracking error convergence. How-

ever, it gives a false impression that exponential parameter convergence is achieved. Persistent 

excitation conditions can ensure parameter convergence in adaptive algorithms if the following 

condition: 
rto+f3 

u<ln ::; ./lO <I><I>T dt ::; alln 

is met for aIl to, where ao, al and f3 are aIl positive and <1> is the regressor vector. Note that 

the integral of <I><I>T must be positive definite and bounded over aIl intervals of length f3. In 

other word, <1> must vary sufficiently over the interval f3 so that the entire dimensional space is 

spanned. 

4.4.2 Self-Tuning Regulators 

Self-tuning regulators aim automatic tuning of controllers to respect some specifica-

tions. 11 is a slowly time-varying parameters estimation process, which often uses least squares 
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methods. The self-tuning regulator control structure is depicted in Fig. 4.4. 

Specification Plant 

'" '" 
parameters 

Controller 
design 

~ Estimation ~ Controller 
parameters 

Command 
Contro] J 1 output 

Controller signal ~ . t 1 Plant 1 -sIgna 

FIGURE 4.4 - Self-tuning regulator 

4.4.3 Gain Scheduling 

Gain scheduling is used wh en the plant dynamics variation due to different operating 

conditions is known or predictable. Hence, the controller gains vary in a predetermined fashion 

with the operating conditions. The gain scheduler consists of a lookup table where controller 

gains are stored. An appropriate logic detects the operating point and chooses the correspond-

ing controller gains from the lookup table. One of the disadvantages of this technique is that 

the controller gains are computed offline and, therefore, it provides no feedback to compensate 

for incorrect schedules. On the other hand, the main advantage remains the fast change in the 

controller gains in response to quick plant parameter variations. The gain scheduling control 

structure is depicted in Fig. 4.5. 

4.4.4 Model Reference Adaptive Control (MRAC) 

Model reference adaptive control (MRAC) is one of the popular approaches in adap-

tive control and has been exhaustively explored by many researchers. MRAC uses reference 

and parameter adjustable models. Based on predefined desired system dynarnics, the reference 
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model is chosen to generate the desired trajectory Ym' The tracking error e = Ym - Yp is used to 

adjust the model parameters through an adaptation law. Thus, the reference model output YIIl 

follows the one of the plant Yp . The MRAC structure is depicted in Fig. 4.6. 

~ Model 
1 Desired 

1 output , 
Controller Adjustment ~ 
parameters ~ mechanism 

Command 
Control 1 1 output 

Controller signal 
~ . 1 1 Plant 1 sIgna 

FIGURE 4.6 - Model-reference adaptive control 

4.5 Sliding-Mode Control 

Since the early 1960s, sliding mode has attracted the attention of many researchers 

thanks for its design simplicity, robustness to uncertainties and disturbance, and wide variety of 

applications such as, trajectory control, model following, and state observation. Sliding mode 

control is a well known discontinuous control technique that drives a trajectory to a switching 

surface and maintains it on this surface once it has been reached. The local attractivity of the 
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sliding surface can be expressed by the condition 

ss < 0 

where s represents the enor from the trajectory to the sliding line. 

In principle, sliding mode is achieved by discontinuous control and switching at infinÏte 

frequency. However, switching frequency is limited in real life applications. The switching 

imperfections, such as switching time delays and small actuators time constants combined 

with the control discontinuities result in a particular dynamic behavior in the vicinity of the 

surface, which is commonly refened to as chattering. This phenomenon may excite unmodeled 

high frequency modes, whkh degrades the pelformance of the system and may even lead to 

instability. To overcome this problem, the boundary solution replaces the discontinuous control 

with a saturation function that approximates the sign function in a boundary layer of sliding 

mode manifold. This solution preserves partially the invariance property of sliding mode where 

states are confined to a small vicinity of the manifold, and convergence to zero cannot be 

guaranteed. Furthermore, robustness to uncertain parameter variations and disturbance is also 

compromised since it is obtained only when sliding mode truly occurs. 

4.6 Conclusion 

In this chapter, various concepts of stability have been defined for autonomous and non-

autonomous systems. Lyapunov indirect method, also called linearization method, is concerned 

with the stability analysis of nonlinear systems' small motions around equilibrium points. On 

the other hand, Lyapunov direct method is a powerful tool used for global stability analysis of 

nonlinear systems. Different types of adaptive systems have been described. An overview of 

online parameter estimation techniques such as, least-squares method, LMS, RLS, and Kalman 

filter has been proposed. Self-Tuning Regulators use parameter estimation techniques as sys-

tem identification and automatically tune the controller parameters to obtain the desired closed-
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Ioop performance. Gain scheduling is used when measurable variables correlate weil with the 

plant dynamic changes. MRAC defines through a reference model the plant desired dynamics 

and adjusts the controller parameters to minimize the error between tbe plant and the reference 

model. Finally, sliding-mode control technique has been presented showing its simplicity and 

robustness to uncertainties. This chapter serves as a theoretical background for our research. 

As such, the adaptive control theory is combined to the Lyapunov stability theory in the fol-

lowing chapters to design Lyapunov-based adaptive control techniques for complex dynamic 

systems. 



Chapitre 5 

Intelligent Control of Nonlinear Multiple 
Input Multiple Output Systems 

5.1 Introduction 

A nonlinear multiple input multiple output (MIMO) system can be represented by, 

where f E ]Rn is a nonlinear vector function, x E ]Rn is astate vector, Li, is the control input, and 

n is number of states, also called the order of the system. 

General control structures are shown in Fig. 5.1, which are used in this thesis as basic 

schemes to design intelligent-based controllers for nonlinear dynamic systems. As we shall 

see later, a second controller can be added for more complex problems. 

FIGURE 5.1 - General control structures 

The control objective is to design a control law Li, to force the system's position x and 

velocity i to track their pre-defined time-dependent desired values Xd and id. This objective is 

69 
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to be achieved under unknown dynamics and in the presence of external disturbances. Assume 

that the system 's states x, and i are measurable and the nonlinear vector function f(x , u, t) is a 

priori unknown. 

Let e = x - Xd and e = i - id denote the system's position and velocity errors, respectively 

and let us define the following reference error model, 

s=e+qJe 

where qJ is a positive diagonal constant gain matrix . The control objective is to minimize 

the reference model signal s. Although nonlinear control techniques such as adaptive control, 

variable structure control, and model predictive control are able to cope with parametric uncer-

tainties, they are still vulnerable in the presence of unstructured modeling uncertainties. Since 

fis considered to be a priori unknown, soft-computing techniques such as, neural networks 

and fuzzy logic are good candidates for coping with such uncertainties, thanks to their learn-

ing and generalization capabilities. However, these tools are based on heuristic and gradient 

descent adaptation techniques, which do not guarantee their stability. Therefore, a Lyapunov 

stability-based adaptation technique is used as an alternative to the conventional heuristic tun-

ing methods. 

5.2 Neural Learning Algorithm 

We can describe the input-output relationship of a single hidden layer neural network 

with a linear output layer activation function by : 
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where cp) is the jth node's activation function of layer, m is the number of input nodes, xi(k) 

and $)(k) are, respectively, the input of node i and the output of node j of the first layer at time 

index k. v) is the net input of node j. W); ) is the weight linking node i of the first layer to node 

j of the second layer. Then, the neural network output can be expressed as 

y(k) = Ej=l $)(k) we) (k) . 

= Ej=1 we)(k) CP(E;: l w);)(k) xi(k)) 
(5.1 ) 

with n being the number of hidden nodes. The signal y(k) defines the output of the neural 

network at instant k. 

Let e(k) = y(k) -d(k) denotes the neural network's error at instant k, where d(k) represents 

the desired output of the neural network at instant k. The new hidden layer weights matrices 

are computed by the following rule : 

(5.2) 

where 0 < 71 < 2 is the neural network's leaming rate. If, for sorne k, numerical singularity 

occurs, that particular weight is not updated for the instant k. We also stop the online leaming 

when the en'or is very small, preventing limit cycles. The proposed weight adaptation technique 

is an extension of the work presented in [17]. 

Theorem 7 Assume a process resulting into continuous, bounded and sufficiently differen­

tiable trajectories xi(k) and d(k). The learning law (5.2) 01 xi(k) -1=- 0 and \j l.v;~) (k) -1=- 0) with 

a learning rate with 1] sati.rfying 0 < 71 < 2 guarantees convergence of the estimation error to 

a small neighborhood of the origin that decreases with smaller sampling rate or lower time 

derivative of the desired output d(k). 



Nonlinear Multiple Input Multiple Output Systems 72 

Proof 1 Consider the following Lyapunov candidate function : 

t.V(k) = V(k) - V(k-l) 

= *e2(k) - *e2(k-l) 

Substitute fo r e (k), then : 

1 1 
t.V(k) = -(y(k) - d(k))2 - -e2(k - 1) 

11 11 

Substitute y(k)from (5.1): 

Substitute w)!) (k) from (5.2), leads to : 

? 

t.V(k) = l (LI~ w(2)(k)m (L,.n _I_m- I ( Y(k-I)- 11e(k-I) ) X'(k)) -d(k))- _le2(k-l) 
11 j= 1 Ij 'f' 1= 1 mXj(k) 'f' I1w\~\k) 1 11 

t.V(k) = l (",?_ liP)(k)m (",.,~ _I_m- I ( Y(k- I)-11e(k-l) ) x.f..1X) _ d(k)) 2 -le2(k - 1) 
11 i-j_ l Ij 'f' i-1_ 1 II1JA:!;:'J"f' nw\~) (k) :>r\"" 11 

t>V(k) = * ( r1=, wi~) (k)1I' (11'-' (Y(k-,:~i;~('ki-') ) ) - d(k)) 2 - ke2(k-1) 

LlV(k) = k (rj=,~ (Y(k-~~-')) -d(k)) 2 - ke2(k- l) 

t. V (k) = * (y (k - 1) - 11 e( k - 1) - d (k) ) 2 
- * e2 (k - 1) 

Add and substract e(k - 1), 

t.V(k) = * ((1-11)e(k-l) - t.d(k))2 - *e2(k-l) 
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with, 

If Ild(k) = ° then, 

d(k-1) =y(k-1) -e(k-l) 

Ild(k) = d(k) - d(k - 1) 

Il V (k) = (1J - 2) e2 (k - 1) < ° 
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By setting ° < 1J < 2, V(k) is monitically decreasing and e(k) converges to zero. However, if 

Ild(k) i= 0, th en convergence can only be guaranteed to a small neighborhood of the origin. 

Set 1J = 1, 

Il V ( k) = Ild2 ( k) - e2 (k - ] ) 

Therefore, the neural network is stable in the sense of Lyapunov and converges to a small 

neighborhood of e(k) = 0, which is a region defined by Ild(k) and gets smaller for slowly 

tùne-varying systems or forfas! neural network sampling rates. 

5.3 Fuzzy Learning Algorithm 

The fuzzy logic system (FLS) output at instant k with a commonly used defuzzification 

method, such as, the centroid method is expressed as : 

where, p = 1, ... ,R and R is the number of the fuzzy rules. Therefore, the output of a multiple 

input single output FLS can be expressed as, 

y(k) = wT (k) G(k) (5.3) 
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with w(k) = [yt,Y2, ... ,YpV being the fuzzy logic consequent part weight vector at instant k, 

p = l, ... ,R, and G(k) being fuzzy logic antecedent part vector ofknown functions (regressor) 

at instant k defined as : 
G(k) - J1BP(Y) 

- L~= l J1BP(Y) 

Let e(k) = y(k) - d(k) denotes the FLS's error at instant k, where d(k) represents the de-

sired output of the FLS at instant k. The new weight vector is computed by the following rule : 

T (k) = y(k-l) - Àe(k-I) 
w G(k) 

(5.4) 

where À is the FLS's adaptation rate. If, for some k, numerical singularity occurs, that particular 

weight is not updated for the instant k. Equation (5.3) shows that in this case the output y(k) is 

independent of that particular weight. 

Theorem 8 Assume a process resulting into continuous, bounded and sufficiently dijferen­

tiable trajectories xi(k) and d(k). The adaptation Law (5.4) (\f G(k) i=- 0) with À satis.fying 

o < À < 2 guarantees convergence of the estimation error to a small neighborhood of the ori­

gin that decreases with smaller sampling rate or lower time derivative of the desired output 

d(k). 

Proof 2 Consider the following Lyapunov candidate function : 

~V(k) = V(k) - V(k - 1) 

= e2(k) - e2(k - 1) 
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Substitutefor e(k), then : 

~V(k) = (y(k) -d(k))2 -e2(k-l) 

Substitute y(k)from (5.3): 

Setting the weight adaptation law as, 

T(k) = y(k-I) -Âe(k-1) 
w G(k) 

yields, 

~V(k) = (y(k-1) -Âe(k-l) -d(k))2-e2(k-1) 

Substitute y(k-l) = e(k-l) +d(k-l), 

~ V (k) = (( 1 - Â ) e (k - 1 ) - ~d (k) ) 2 - e2 (k - 1) 

with, ~d(k) = d(k) - d(k - 1). Renee, ~V(k) can be written as, 

where, a = (1 - Â)2 - l, b = -2(1 - Â )~d(k), c = ~d2(k) , and C = e(k - 1). The fact that 
, 

a < 0 yields SV (k) < 0 for sorne range of c, which guarantees the stability of the fuzzy logic 

system for 0 < Â < 2. The roots of ~ V (k) are, 

1 
Cl = --, ~d(k) 2-/\' 

1 
c2 = - Â ~d(k) 
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Henceforth, ~V(k) < 0 when c is outside of the span of these fWo roots. Thus, the stability 

and convergence of the fuzzy logic system is guaranteed to a small neighborhood of e( k) = 0 

defined by these roots. This region is minimized when Â = 1, 

~V(k) = ~d2(k) - e2(k - 1) 

Therefore, the region is defined by ~d(k) and gets smaller for slowly time-varying systems or 

for fast fuzzy [ogic sampling rates. 

5.4 A Case of Underactuated Systems: Inverted Pendulums 

Inverted pendulums have received a thorough attention and have been extensively used 

lately to demonstrate the effectiveness of different kinds of controllers. They are considered 

as a weIl established benchmark challenge for many control problems, such as robotic ma-

nipulators and missile control [24]. The severe nonlinearities, varying operating conditions, 

structured and unstructured dynamical uncertainties, such as Coulomb friction and external 

disturbances, are among the numerous challenges that need to be addressed to successfully 

control such highly complex nonlinear unstable non-minimum phase systems. Inverted pendu-

lums have a single input multiple output (SIMO) structure and hence, are under-actuated [24]. 

In other words, the motion of the cart and the angle of the pendulum have to be controlled 

simultaneously by one single input force. 

The destabilizing effect of nonlinear friction has been thoroughly studied in many control 

systems for high quality servomechanisms. Failing to compensate for modeling uncertainties 

in controlling such systems can have negative consequences, such as severe tracking errors, 

limit cycles, chattering, and excessive noise [14,25]. Many control laws have been proposed 

for inverted pendulums [I, 2, 26], including classical, robust and adaptive control laws, but 

they general1y consider (structured) parametric uncertainties only. Linear control law design 

methods [1] are used for their simplicity. However, linearization does not guarantee the stabil-
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ity in al1 operating conditions. Moreover, they suffer from sensitivity to parameters variation 

such as, friction and inertia parameters that are often changing dynamically and unknown . 

In [26], a grey prediction model combined with a proportion al derivative (PD) controller is 

proposed to control a sliding inverted pendulum to swing it up from the downward position to 

the upright position and guide its slider 10 the center of the track. A sliding mode controller 

is proposed in [27]. However, robustness to parameter variations and uncertain disturbances 

is obtained only wh en sliding mode truly occurs. In addition, most of these controllers have 

been proposed with no analytical solution for stability, which has not been given much atten-

tion in the literature. A stability analysis has been provided in [14] that copes with modeling 

and parameters uncertainties . Also, an adaptive robust controller is proposed in [2] for balance 

and motion control, in the presence of parametric and functional uncertainties. Like in [26], a 

fuzzy swing-up technique was developed in [28] with a fuzzy sliding balance control1er for a 

planetary gear-type inverted pendulum. In [4], an adaptive neural fuzzy network controller is 

proposed for solving control problems. In this work, an evolutionary learning method is also 

proposed to optimize the controller parameters. 

The presence ofhigh, particularly unstructured, nonlinearities such as in the form of Coulomb 

friction significantly changes the system's dynamics [14]. So, modeling the system's dynam-

ics based on presumably accurate mathematical models cannot be applied efficiently in this 

case. Studies have shown that the design of robust controllers for mathematically ill-defined 

systems that may be subjected to structured and unstructured uncertainties was made possi-

ble with computational intelligence 1Ools, such as artificial neural networks and fuzzy logic 

controllers [29]. The universal approximation theorem has been the main driving force behind 

the increasing popularity of such methods as it shows that they are theoretically capable of 

uniformly approximating any continuous real function to any degree of accuracy. This has led 

to the recent advances in the area of intelligent control [30]. Satisfactory performance was 

achieved with various neural network models for complex systems control [31]. H. Chaoui 

et al. [17] used a sliding mode control approach to learn system's inverse dynamics through a 

feedforward neural network. A time-delay neurofuzzy network was suggested in [32], where 
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a linear observer is used to estimate the joint velocity signaIs and eliminated the need to mea-

sure them explicitly. Subudhi et al. [33] presented a hybrid architecture composed of a neural 

network to control the slow dynamic subsystem and an Hoc to control the fast subsystem. De-

spite the success witnessed by neural network-based control systems, they remain incapable 

of incorporating any human-like expertise already acquired about the dynamics of the system 

in hand, which is considered one of the main weaknesses of such soft computing methodolo-

gies. On the other hand, fuzzy logic control provides human reasoning capabilities to capture 

uncertainties. However, their learning ability is almost inexistent as opposed to artificial neural 

networks. In the last decade, many researchers have put their efforts into combining between 

the advantages ofthese two methods. Recently, hybrid controllaws gave fuzzy logic controllers 

more powerful abilities, such as adaptive learning, parallelism, and generalization. Better con-

trol performance was achieved by using neural networks to adjust and optimize parameters of 

fuzzy controllers through offtine or online learning. However, stability and robustness analysis 

of such heuristic methods cannot be easily derived. Therefore, the proposed Lyapunov-based 

adaptive learning mechanisms are applied to inverted pendulums to highlight their respective 

performances. 

5.4.1 Modeling 

The inverted pendulum system depicted in Fig. 5.2 consists of a pendulum mounted on 

a cart driven along a track by a dc servomotor [24]. As such, the nonlinear dynamics of the 

pendulum is coupled with the cart dynamics and the friction high nonlinearities of the hinge 

and the wheels. 

Assumption 3 The body of the inverted pendulum is asswned to be symmetric along y axis. 
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FIGURE 5.2 - Inverted Pendulum System. 
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The dynamical mathematical mode] based on Euler-Lagrange formulation can be described 

by the following equations [24] : 

Jë + lnoLicosf} - lnogLsinf} = -7:Fe 

ln/X + lnoLë cos f} - lnoLé2 sinf} = F - F.x 

(5.5a) 

(5.5b) 
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where, 
mc mass of the cart (kg) 

mb mass of the body (kg) 

mp mass of the pole (kg) 

g gravitational constant (m/s2) 

L length of the pole (m) 

Fx friction force of the wheels (N) 

'rF() friction torque of the hinge (N ' sim) 

F force applied to the cart (N) 

x position of the cart (m) 

i velocity of the cart (m/s) 

x acceleration of the cart (m/s2) 

e angular position of the pole (rad) 

é angular velocity of the pole (rad/s) 

ë angular acceleration of the pole (rad/s2) 

5.4.2 Friction 

80 

The system complexity is increased even further by adopting a highly nonlinear a priori 

unknown friction model that is composed of Coulomb, viscous, and statie friction terms [34]. 

The model of such a memoryless friction operating along a displacement (J is described by 

F F ' (') F.' F.' ( ' ) - (&/ 11 ·)2 fric/ion = c slgn (J + v (J + s slgn (J e .\ (5,6) 
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where Fe, F;, and F.ç are the Coulomb, viscous and statie friction parameters, respectively, 71s is 

the rate of decay of the static friction term. The term sign( cr) is defined by 

c o 
~ 0 oc 
LL 

sign(cr) = { 1 
-1 

, if cr 2: 0 

,if cr < 0 

o 
Displacement rate 

FIGURE 5.3 - Stribeck friction model. 

Remark 1 It is important to point out that although such a friction model results in a drastic 

increase in the system, 's nonlinear complexity, it generally provides a more accurate represen-

tation of the system 's dynamics [35]. 

5.4.3 ANN-Based Control of Inverted Pendulums 

The control objective is to design an artificial neural network to control the pendulum's 

motion and balance with unknown dynamics (Fig. 5.4). 

Let ex = x - Xd and éx = x - Xd denote the inverted pendulum motion position and velocity 

errors, respectively, and let ee = e - ed and ée = é - éd denote the inverted pendulum balance 
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FIGURE 5.4 - Lyapunov-based inverted pendulums neural control scheme 
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position and velocity errors, respectively. The control objective is to track the errors ex, ex, ee, 

and ee to zero. For that, we define the following reference model : 

Se = ee + o/e ee 

where O/X and o/e are positive constant gains. 

Since the system in hand is under-actuated, the controller needs to track both error signaIs 

to zero using one signal input force F. It is noteworthy that motion and posture control cannot 

be achieved at the same time. Hence, a trade-off strategy is needed between the errors Sx and 

Se. Therefore, a compounded error is defined as follows : 

S = (1 - À) SX +Àse 

where 0 < À < l defines the trade-off coefficient. 

Given the designed signaIs xd, id, Bd, and éd, a muIti-Iayer perceptron ANN is trained to 

minimize the error s to achieve motion and balance tracking (Fig. 5.4). Due to the iterative 

nature of the neural network's learning mechanism and because of the high complexity or-

der of the system's dynamical model, the neural network may take a relatively long time to 

converge, which may lead to unstable dynamics or unsatisfactory peliormance. Henceforth, a 

robustifying term Fr. corresponding to a PD controller, which injects damping into the system, 
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is introduced : 

with Kd being a positive constant gain. Therefore, the controllaw is : 

The neural network is composed of three layers each : one input layer of two neurons, one 

hidden layer with six neurons and one neuron for the output layer. The sigmoid function is 

used as activation function for an neurons except for the output neuron which uses a linear 

function. The ANN controller uses the Lyapunov-based learning law described in (5.2). 

Setup 

To demonstrate the performance of the proposed adaptive control scheme, a set of com-

puter simulation runs is carried out on an inverted pendulum system. Table 5.1 summarizes the 

system's parameters along with their respective values, where mb = 0.05 kg and g = 9.8 m/s2. 

The controller gains are set to o/x = land V'e = 4, which correspond to a time constant of ls 

for the cart and 0.25s for the pole. The parameter Â is set to 0.4 to give the cart a higher weight, 

and the damping parameter Kd is set to 10. 

TABLE 5.1 - Inverted Pendulum's parameters 
Parameter Cart Pole 

Mass l1Ie = 0.22 kg I1Ip = 0.06 kg 

Length L = 0.25 m 

Coulomb friction f~a = 7 . 10- 2 N f ;;o = 3.10- 3 N·m 

Viscous friction ";'a = 2· 10- 2 N·s/m "',,0 = 1 . 10- 3 N·m·s/rad 

Static friction Ga = 3 . 10- 2 N F"e = 2· 10- 3 N·m 

Decreasing rate 17.><, = 5 . 10- 2 mIs 17s8 = 4· 10. 2 radIs 

The desired motion position and velocity signaIs are taken as the step response of a criti-

cany damped second order system with a natural frequency of 1 rad/s, as shown in Fig. 5.5. 

On the other hand, the .desired balance position and velocity signaIs are taken to be zero, i.e., 

(Bd = éd = 0). 
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FIGURE 5.5 - Motion position and velocity reference signaIs 

ResuIts 

The aforementioned nominal values are used to simulate the syste~'s dynamics without 

the ANN controller. As shown in Fig. 5.6, the damping term Fr is the key to stabilize the 

inverted pendulum system as it is able to attenuate the motion and balance tracking errors. 

However, these errors along with the applied force are fairly osciIIatory in this case. 

In the second simulation, the ANN controller is introduced to evaluate its ability to better 

compensate for the system's nonlinearities. As shown in Fig. 5.7, tracking en"ors converge more 

steadily to zero with less control effort. It is noteworthy the good trade off achieved between 

balance and motion control. Furthermore, the controller copes with friction nonlinearities. The 

next simulation is meant to show the modularity of the proposed controller in compensating 

for external disturbances. For that, a 0.5 (N) external force step introduced at t = 5s. It is 

worth pointing out the fact that the introduced external disturbance is not explicitly modeled in 

the design of the proposed controller. In general, external disturbance may significantly affect 

the precision of the positioning system and causes unacceptabie high frequency oscillations. 

The controller's performance under such conditions is revealed in Fig. 5.8, the controller is 

successful in coping with the unexpected force change. Moreover, the motion and balance 

errors remain smaII, which yielded a smooth control signal. 
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5.4.4 Adaptive Fuzzy Logic Control of Inverted Pendulums 

A different strategy is proposed here ta obtain the required trade-off between posture 

and motion control. Two adaptive fuzzy logic controllers FLCx and FLCe are designed to con-

trol the motion along the x axis and the pendulum posture with unknown dynamics (Fig. 5.9). 

,. 
ex ... ~tion Fx 
éx ... 

controUet. x . Pole x ,' + 
Reference Sx & e 

model s!, ... + Cart ë 
Posture 

., 
., 

çontroller F() ., 

FIGURE 5.9 - Lyapunov-based inverted pendulums fuzzy control scheme 

The control objective is to track the errors ex, éx, ee, and ée to zero. For that, we define the 

following reference model : 

s=é+\l'e 

where s = [sx, seV, e = [ex , eeV, è = [éx, éeV, and \l' = diag(VJà, lfIe) with lfI. being a positive 

constant, that defines the desired bandwidth of the closed loop system. 

The fuzzy control strategy is based on a human operator experience to interpret a situa-

tion and initiate its control action. A block diagram for the fuzzy controller is illustrated in 

Fig. 5.9. Given the desired control signais xd, id, f)d, and éd, the motion and posture position 

and velocity errors ex, éx , ee, ée are computed. Each FLC takes its two inputs and provides a 

control action Fx and Fe. The inputs are quantized into 5 levels represented by a set of linguis-

tic variables: Negative Large (NL), Negative Small (NS), Zero (Z), Positive Small (PS), and 

Positive Large (PL). The two FLCs are based on the same fuzzy rules, which are represented 

by Table 5.2. These rules are chosen is such a way as ta accomplish the following controller's 

behavior: (i) when the input signais are far from their respective nominal zero-valued surfaces, 

then the FLC's output assumes a high value; (ii) when the inputs are approaching the nominal 
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zero-valued surface, the output is adjusted to a smaller value for a smoother approaeh ; (iii) 

once the inputs are close or equal to zero, then the output is set to zero. In this work, we use the 

"min" and "max" operators as the t-norm and t-eonorm, respeetively. Triangular membership 

funetions are also used, mainly due to their high eomputational and performance efficiencies. 

The membership funetions adopted by both eontrollers are shown in Fig 5.10 and Fig 5.11. 

Both FLCs use the Lyapunov-based adaptation law described in (5.4). 

TABLE 5.2 - Fuzzy logic rules for inverted pendulums 

e 
ë NL NS z PS PL 

1 

0.5 

0 
-OA -0.2 0 0.2 OA 0.6 

ex 

1 

0.5 

0 
-6 -4 -2 0 2 4 6 

deidt 

FIGURE 5.10 - Motion eontroller fuzzymembership functions 
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FIG URE 5.11 - Posture controller fuzzy membership functions 

ResuUs 

Two simulation sets are clliTied out to study th~ proposed controller's performance. For 

each set, the system's response is studied taking into account the pendulum's motion posi-

tion and velocity errors, the posture position and velocity en'ors, the reference model outputs 

(sx , se) , and the control forces Fx, Fe, and F. In the first simulation, the nominal values in ta-

ble 5.1 are used to simulate the system's dynamics. As shown in Fig. 5.12, the motion and 

posture tracking errors decay gradually to zero. On the other hand, smooth control signaIs are 

obtained with the proposed adaptive control scheme. Furthermore, the controller copes with 

friction nonlinearities and achieves fast response. The next simulation is meant to show the 

modularity of the proposed controller in compensating for external disturbances. For that, a 

0.5 (N) external force step is applied to the cart at t = 5s. It is worth pointing out the fact 

that disturbance is not explicitly modeled in the control design. In general, disturbance affects 

significantly the precision of positioning systems and causes high frequency oscillations. The 

controller's performance under such conditions is revealed in Fig. 5.13, the controller is suc-
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cessful in coping with the unexpected force change. Moreover, the motion and posture errors 

remain small, which yielded smooth control signaIs. Furthermore, the abi1ity of the proposed 

adaptive fuzzy controller to cope with uncertainties is c1early shown in thi s simulation. 
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FIGURE 5.12 - FLC response with nominal values: (a) motion errors; (b) posture errors; (c) 
compounded error; and (d) control forces Fx, Fe, and F. 
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5.5 Hysteresis Compensation for Piezoelectric Actuators 

Piezoelectric materials are commonly used as actuators and sensors in many high preci-

sion micro and nanopositioning systems, thanks to their ultrafine resolution, light weight, low 

cost, low thermallosses, high output force, high stiffness, and fast response [36]. These advan-

tages make them good candidates for many applications, such as microrobotics, microassem-

bly, microsurgery, optical fiber alignment, and hard disk drives [37]. However, their efficient 

operation is limited by the intrinsic hysteresis behavior (Fig. 5.14) in their response to an ap-

plied electric field due to the fact that piezoelectric material is ferroelectric [38]. In fact, the 

electrical charge of a piezoelectric material increases wh en it is subjected to mechanical stress, 

which is known as direct piezoelectric effect. Controlling piezoelectric actuators by charge or 

current instead of voltage is known to significantly reduce the hysteresis effects. But, building 

charge/current amplifiers capable of driving highly capacitive loads such as piezoelectric ac-

tuators is not an easy task to undertake. Moreover, costly material is needed for the induced 

charge amplification and measurement. Furthermore, the responsiveness and accuracy of the 

actuator are decreased. This raises the urgency to consider alternative approaches for the con-

trol of this type of actuators to keep up with their increasingly demanding design requirements. 

The destabilizing effect of hysteresis nonlinearities has been thoroughly studied in many 

high performance piezoactuated mechanisms [36,37]. The hysteresis characteristics are usually 

unknown and modeling them can be a difficult task to undertake. Thus, failing to compensate 

for modeling uncertainties in controlling such systems can have negative consequences, such 

as severe inaccuracy, limit cycles, chattering, and even instability [38]. Many controllaws have 

been proposed for piezoactuator control problem, including robust and adaptive laws [39,40]. 

In [36], a robust adaptive controller has been proposed for a piezo-ftexural nanopositioning 

system. In this strategy, a Lyapunov-based controller is designed to cope with hysteresis non-

linearity and parametric uncertainties. It has been also shown that a proportional-integral (PI) 

controller lacks accuracy in high-frequency tracking and hence, is not suitable for high perfor-

mance nanopositioning systems. On the other hand, an adaptive sliding mode controller has 
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been introduced for piezoelectric actuators with nonlinear uncertainties [40]. The controller 

compensates for uncertainties in a sliding mode fashion while the adaptive control part pro-

vides the system with more dynamics by coping with residual en·ors. A stability analysis is 

also provided. In [39], a radial basis function (RBF) neural network has been used as func-

tion approximator for piezoelectric actuation systems where an offline learning procedure is 

proposed to improve the motion tracking performance. Therefore, the proposed ANN-based 

learning technique is applied to show its ability to cope with hysteresis effects. 

Ê 
E: ... c 
Cl 
E 0 
Cl 
U 
ni 
Ci 
III 
i5 

o 
Voltage (V) 

FIGURE 5.14 - Hysteresis characteristic with a sinusoidal applied voltage. 

5.5.1 Modeling 

A nanopositioning system driven by piezoactuator [39] is depicted in Fig. 5.15. The 

dynamics of the positioning piezomechanism can be described by the following differential 
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equation coupled with hysteresis in the presence of external disturbance : 

where, 
ln 

b 

k 

d 

Va 

VI! 

Tem 

k. 

mx+hi+kx+d = Tem(Va - Vil) 

VI! = k1 Va - k2X!Va!V,7 - k3 Va!V,,! 

mass of the piezoactuator 

viscous friction coefficient 

stiffness coefficient 

disturbance 

applied voltage 

hysteresis effect 

voltage-to-force coefficient 

piezoelectric coefficients 

c 
Piezoelectric 

b 

Voltage-Charge Charge-Displacement 

FIGURE 5.15 - Piezoelectric actuator mode!. 

5.5.2 ANN-Based Control of Piezoelectric Actuators 

95 

(5.7a) 

(5.7b) 

Let e = x - Xd and é = i - id denote the system's position and velocity errors, respec-

tively. The control objective is to track these errors to zero. For that, we define the following 
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reference model : 

where ljI being a positive constant that defines the desired bandwidth of the c10sed loop system. 

Given the desired signaIs Xd and id, a multi-Iayer perceptron ANN is trained to minimize 

the error s to achieve motion tracking. The neural network is composed of three layers each : 

one input layer of two neurons, one hidden layer with six neurons and one neuron for the 

output layer. The sigmoid function is used as activation function for aIl neurons except for 

the output neuron which uses a linear function. The proposed online ANN-based Lyapunov 

learning strategy (5.2) is used. The control structure is shown in Fig. 5.16. 

Xd, Xd 1\..NN 1 Va) Piezoelectric x, x~ 

contrblier actuator ... 
l 

4 Reference _8 J r model 

FIGURE 5.16 - Lyapunov-based piezoelectric actuators neural control scheme 

Setup 

To demonstrate the performance of the proposed controller, a set of simulation runs is 

carried out on a nanopositioning piezoactuated system. The piezoactuator's parameters along 

with their respective values are set as follows : ln = 0.016 (kg), b = 1 (N·s/m), k = 1.5· 

10- 6 (N/m) , Tem = 1.152 (N/V), k] = 3.5, k2 = 0.6, and k3 = 0.5. The desired position tra-

jectory is taken as the step response of a critically damped second order system with a natural 

frequency W n = 100 rad/s, as shown in Fig. 5.17. 

Results 

Two simulation runs are carried out to study the performance of the proposed control 

scheme. For each simulation, the system's response is studied taking into account the piezoac-
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tuator's position and velocity errors, the reference model signal s, and the applied voltage Va. 

In the tirst simulation, the aforementioned nominal values are used to simulate the piezoac-

tuator's dynamics and its exact inverse model is used without hysteresis compensation to show 

its negative consequence. As shown in Fig. 5.18, the hysteresis effect results in severe position 

and velocity tracking errors in spite of the smooth applied control voltage. On the other hand, 

the hysteresis loop obtained in Fig. 5.18(e) shows the need of hysteresis compensation to cope 

with its effect. 

In the second simulation, the proposed controller is used to show its ability to compensate 

for hysteresis effect and hence achieve better tracking than simulation 1. As shown in Fig. 5.19, 

the position and velocity tracking errors decay gradually before stabilizing within a negligible 

amplitude. Moreover, the proposed controller copes with the hysteresis effect while providing 

smooth control voltage. 

5.6 Conclusion 

This chapter presents modeling and control of inverted pendulums. The control ap-

proach is designed for general nonlinear MIMO systems. In tbis strategy, the control scheme 

takes advantage of learning and generalization capabilities to ensure precise tracking by cop-
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ing with unstructured uncertainties. Adaptive neural and fuzzy based adaptive control strate-

gies have been applied for inverted pendulum motion and balance control problem. Simulation 

results showed good performance in the presence of ftiction nonlinearities and extemal distur-

bance. 

The ANN-based leaming strategy is also applied for high performance nanopositioning 

systems to cope with hysteresis effects. Simulations showed that the piezoactuator's speed and 

position can be tracked to a high precision scale. The proposed controller demonstrates its 

effectiveness in dealing with this burdensome hysteresis effect. Unlike other controllers, no a 

priori offline training or weights initialization knowledge is required. Furthermore, ANN capa-

bilities are a key to achieve high control accuracy needed for high performance nanopositioning 

systems. 

The problem of hysteresis within piezoelectric actuators is similar to the effect of joints 

elasticity in robotics. Thus, similar adaptive control techniques can also be applied. Therefore, 

next chapter presents few intelligent adaptive control strategies for flexible-joint manipulators. 

Thus far, the proposed Lyapunov-based neural and fuzzy learning techniques have been pro-

posed for nonlinear systems without taking into account their dynamics. The stability of these 

universal adaptation laws is studied using Lyapunov stability theory. However, sorne nonlinear 

systems introduce additional constraints on the control stability and therefore, it is important 

to consider a system's dynamics when studying its stability. 



Chapitre 6 

Control of Robotic Manipulators with 
Elasticity, Friction, and Disturbance 

6.1 Introduction 

Flexible-joint and flexible-link manipulators offer several advantages with respect to 

their rigid counterpart such as, light weight, lower cost, smaller actuators, larger work vol-

ume, better maneuverability and transportability, higher operational speed, power efficiency, 

and larger number of applications. Thus, they are often required to operate at high speed to 

yield high productivity. The conflicting requirements between high speed and high accuracy 

make the robotic control task a challenging research problem. Reducing the weight of the 

arms and/or increasing the operation speed make many industrial flexible-joint manipulators 

face arm vibration problems, particularly in high speed motion, because of the low stiffness. 

This can be resolved by increasing the stiffness. However, it increases the mass, depleting 

the advantages listed above. The friction severe nonlinearities, coupling stemming from the 

manipulator's flexibility, varying operating conditions, structured and unstructured dynamical 

uncertainties, and external disturbances, are among the typical challenges to be faced. 

Flexibility and nonlinear friction may have sorne destabilizing effects when failing to com-

pensate for modeling uncertainties in controlling flexible structures. These phenomena have 

been thoroughly studied in many control systems for high quality servomechanisms. Sev-

eral studies show these negative consequences, such as severe tracking elTors, limit cycles, 

101 
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chattering, and excessive noise [35,41]. Many control laws have been proposed for flexible 

joints [34,35,42], including classical, robust and adaptive control laws, using techniques such 

as singular perturbations and energy methods [43], but they general1y consider (structured) 

parametric uncertainties only. Several models and compensation schemes have been proposed. 

Adaptive control techniques have been regarded among the most rewarding research avenues 

for such type of problems. However, not much has been achieved yet for systems that exhibit 

both flexibility and severe nonlinearities. 

Flexible-joint manipulators are governed by complex dynamics and hence controlling them 

depends on their dynamic models. There are many modeling techniques for mechanical sys-

tems, such as, Lagrangian approach, Hamilton's principle, and Kane method. Yet, the system 

is inevitably subjected to the ubiquitous presence of high, particularly unstructured, modeling 

nonlinearities, such as Coulomb friction and external disturbances, fàr instance. The presence 

of such uncertainties on a manipulator driven through a flexible joint significantly changes 

the system's dynamics as opposed to when the load is driven with a rigid joint [41,44]. In 

this case, solving the inverse dynarnics of the system is not realizable since the motor posi-

tion is not uniquely defined at standstill. This last condition also illustrates that the actuator's 

state cannot be observed continuously from the 10ad output. Henceforth, only an approximate 

inverse model can be realized. So, modeling the system's dynamics based on presumably ac-

curate mathematical models cannot be applied efficiently in this case. This raises the urgency 

to consider alternative approaches for the control of this type of manipulator systems to keep 

up with their increasingly demanding design requirements. 

Various control techniques were proposed over the years to control flexible-joint manip-

ulators [45,46]. De Luca et al. [47] and Khorasani [48] proposed feedback linearization-

based controllers. However, it depends on excessively noisy joint acceleration and jerk sig-

nal measurements and hence unreliable in most real-life robotic systems. On the other hand, 

C. de Wit [49] proposed a robust control scheme for friction compensation due to uncer-

tainties in friction models. Even as such, the suggested controllers require the full a priori 

knowledge of the system's dynarnics. This problem has been partially overcome by several 
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adaptive control schemes [50-52]. Most of these control techniques capitalize on the singular 

perturbation theOl-y to extend the adaptive control theory developed for rigid bodies to flexible 

on es [5,46,53,54]. M. Spong [46] reduced flexible-joint manipulators model to standard rigid 

manipulators model as the joint stiffness tends to infinity. This model has been widely used by 

many researchers to achieve better tracking performance. For example, F. Ghorbel et al. [43] 

used a rigid manipulator's conventional method as slow controller and a fast feedback control 

law is used to damp out the oscillations of the joint flexibilitymodes. In a similar way, K. Kho-

rasani et al. [55] illustrated how standard adaptive control schemes for rigid robots may be 

generalized for flexible-joint manipulators under a certain set of assumptions. Although many 

of these controllers are shown to be quite performant in theory, they failed to address important 

issues that might stand against their practical implementation, like basing the controllaws on 

joint torques and their derivative [56,57], for instance, which are well known to be extremely 

noisy in real-life applications. 

Moreover, such type of control algorithms uses online continuous estimation through well-

defined adaptation laws of a set of the plant's physical parameters to approximate the system's 

dynamics. For it to provide a satisfactory performance, a typical adaptive control algorithm 

assumes that the dynamic model is perfectly known and free of significant external (unmod-

eled) disturbances. In other words, the controller is only robust to parametric, or structured 

(also called modeled) uncertainties and possibly to minor unstructured uncertainties. More-

over, the unknown physical parameters must have constant or slowly varying nominal values. 

An explicit linear parametrization of the uncertain dynamics parameters must also exist, and 

ev en if it does, it might not be trivial to derive, especially with complex dynamic systems. AI-

though the latter condition is guaranteed for robotic systems, it might not be the case for many 

other dynamic models. Although some convention al adaptive control techniques, proposed in 

the literature, did indeed tack1e external disturbance attenuation, in addition to the compensa-

tion for parametric uncertainties, they did not take into consideration the effects of modeling 

uncertainties [50]. 

On the other hand, computational intelligence tools, such as artificial neural networks and 
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fuzzy logic controllers, have been credited in various applications as powerful tools capable 

of providing robust controllers for mathematically ill-defined systems that may be subjected 

to structured and unstructured uncertainties [29,58]. The universal approximation theorem has 

been the main driving force behind the increasing popularity of such methods as it shows that 

they are theoretically capable of uniformly approximating any continuous real function to any 

degree of accuracy. This has led to recent advances in the area of intelligent control [30,59]. 

Various neural network and fuzzy logic models have been applied in the control of flexible joint 

manipulators, which have led to a satisfactory pelformance []7,60]. H. Chaoui et al. [3],61] 

used a neural network based adaptive control approach inspired by sliding mode control to 

learn the system's dynamics. A time-delay neurofuzzy network was suggested in [32], where 

a linear observer was used to estimate the joint velocity signaIs and eliminate the need to 

measure them explicitly. Subudhi et al. [33] presented a hybrid architecture composed of a 

neural network to control the slow dynamic subsystem and an He", to control the fast subsystem. 

A feedback linearization technique using a Takagi-Sugeno neuro-fuzzy engine was adopted 

in [12]. Despite the success witnessed by neural network-based control systems, they remain 

incapable of incorporating any human-like expertise already acquired about the dynamics of 

the system in hand, which is considered one of the main weaknesses of such soft-computing 

methodologies. 

Motivated by the aforementioned challenges, this chapter presents an overview of classical 

adaptive control thenry for rigid manipulators. Then, several advanced intelligent controllers 

are developed for flexible-joint manipula tors to cope with different types of uncertainties. 

6.2 Modeling 

6.2.1 Rigid Manipulators 

A rigid robotic manipulator can be modeled by an actuator coupled directly to the load. 

Consider a robot manipulator with n revolute joints. Using Euler-Lagrange formulation, the 
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dynamic equations of the manipulator can be written as 

M(q)q+C(q,q)q+G(q) = 1" 

where, 
M(q) E ]Rn x n : manipulator's positive definite inertial matrix 

C(q,q) E ]Rn x n : Coriolis and centripetal matrix 

G( q) E ]Rn : vector of gravitational torques 

q E ]Rn : vector of links ' positions 

q E ]Rn : vector of links ' velocities 

1" E ]Rn : actuators' generalized torque vector (control input) 

The dynamics of a robotic manipulator is characterized by the following properties : 

Property 1 The inertia matrix M(q) is, 
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(6.1 ) 

1) Positive Definite Symmetric (PDS), i.e., MT (q) = M(q) and xT M(q) x > Ofor any non-nul! 

vector x. 

2) Upper and Lower bounded, i.e., there exists two scaLars al (q) and a2(q) such that al (q)1 ::; 

M (q) ::; a2 (q )/, where 1 is the identity matrix. 

Property 2 Assuming that the Coriolis and centripetal matrix C(q,q) is defined in terrns of 

Christoffel symboLs, the matrix C( q, q) has the following properties. 

1) Matrix M(q) - 2C(q,q) is skew symmetric, i.e., 

xT (M(q) - 2C(q,q)) x = 0 \f x E ]Rn 

2) C(q,q)q is quadratic in q and bounded, i.e., there exists a scalar vector a3(q) such that 

IIC(q,q)ll::; a3(q)llqll orequivalentLy IIC(q,q)qll ::; a3(q)llqI12. 

Property 3 The gravity vector G(q) is bounded, i.e., IIG(q) Il ::; a4(q), for a scalar vector 

(4(q). 
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6.2.2 Flexible-Joint Manipulators 

The schematic representation for the ith flexible-joint in a multi-joint manipulator is 

shown in Fig. 6.1. The actuator is coupled to a flexible transmission through an r : 1 reduction 

gear. The transmission is dynamically simplified as a linear torsional spring linked directly ta 

the load (e.g., manipulator link.) 

motor 

(r : 1) 

'-----.....------
flexible 

transmission 

FlOURE 6.1 - Flexible-joint model. 

Consider a robot manipulator with n revolute flexible joints. Using Euler-Lagrange formu-

lation, the dynamic equations of the manipulator can be written as : 

where, 

M(q)ij+C(q ,q)q+ G(q) = 7:t -7:fl-7:dl 

.. 1 
1mB = 7:m - -7:, - 7:fl/1 - 7:dm 

r 
B 

7:r = K( - - q) 
r 

q E ]Rn : vector of links' positions 

(6.2a) 

(6.2b) 

(6.2c) 
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e E IR/l : vector of motors' positions 

M(q) E IRnx/l : manipulator's positive definite inertial matrix 

C(q,q) E IR/l X/l : matrix of Coriolis and centrifugaI terms 

G(q) E IR/l : vector of gravitational torques 

Jm E IRnx/l : motors' diagonal inertial matrix 

-rt E IR/I : vector of transmission torques 

-rm E IR/l : motors' generalized torque vector (control input) 

-rfl E IR/I : load friction torque vector 

-rfm E IR/l : motors' friction torque vector 

-rdl E IR/I : load's unmodeled dynamics and external disturbance torque vector 

-rdm E IRI1 
: motors' unmodeled dynarnics and external disturbance torque vector 

K E IRn x lI : diagonal matrix of joints' stiffness coefficients 

r E IR : gear rati 0 

Before we proceed further, we introduce the following practical assumption. 
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Assumption 4 The nonn of the unknown disturbance -rd is upper bounded by a scalar bd, i.e., 

6.3 Adaptive Control for Rigid Manipulators 

Over the years, many adaptive control strategies have been proposed for rigid manipu-

lators. These developments represent an important step towards high precision robotic applica-

tions. This section presents one of the most popular adaptive techniques [22], which is used in 

this thesis as a starting point for the design of robust adaptive control techniques able to cope 

with different types of uncertainties. 

Let eq = q - qd and ëq = q - qd denote the manipulator position and velocÎty errors, respec-

tively, with qd and qd being the desired time-dependent position and velocity vectors. Define 
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the following error signal: 

s = ëq + 'l'eq = q - qr (6.3) 

where'l' = diag( 0/1 , 0/2 , ... , o/n), with o/i a positive constant, i = 1, ... ,n. Recall Euler-Lagrange 

formulation: 

M(q)q + C(q,q)q + G(q) = 'r 

This equation satisfies the following linear regression : 

(6.4) 

where, <1> E ]Rnx m is a matrix of known functions (regressor), and W is a m-dimensional vector 

of parameters. The controllaw is : 

T ~ 
'r = <1> W -Kos (6.5) 

where, Ko is a positive diagonal matrix gain and the symbol • denotes the parameter estimate 

vector. 

Theorem 9 Consider the nonlinear system in (6.1) under the assumption of high stiffness so 

that singular perturbation applies with reference signal (6.3) and controllaw (6.5). The adap­

tive control Law is asymptotically stable and the tracking error converges to zero with the 

following adaptation Law : 

W=-1<1>5 

where 1 = diag( YI , 'Y2 , ... , Yn) and Yi is a positive constant, i = 1, ... ,n. Therefore, the manip­

u!ator's position q and velocity q converge to their pre-defined time-dependent desired values 

qd and qd, respective/y. 
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Proof 3 Take the derivative of(6.3),' 

s=q-q, 

M(q) .5 = M(q)q - M(q)q, 

Substituting M(q)qfrom (6.1), 

M(q) .5 = 'r - M(q)q,. - C(q , q)q,. - G(q) - C(q,q)s 

The linear in parameters property yieLds, 

M(q)s = 'r - <I>TW - C(q,q)s (6.6) 

Set 
T ~ 

'r = <I> W - KDS (6.7) 

Equation (6.6) becomes, 

M(q)s = <I>TW -C(q,q)S-KDS (6.8) 

where, W=W-W. 

C/wose the following Lyapunov candidate function " 

Taking the time-derivative of V,' 

Since the unknown parameters W are assumed to be constant, W = W. 
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Substituting M(q)sfrom (6.8), 

ST {(M(q) - 2C(q,q))}S = 0 due to the skew-symmetry property. Renee, 

Setting the adaptation Law as 

leads to 
. T 

V = -s KD s:::; 0 

Therefore V; and so s, W, and W, are bounded and converge to finite values. It ùnplies 

from (6.3) that eq, èq, and the lnanipu/ator 's states q, and q are bounded. Renee, q,. and éj,. are 

also bounded. Using (6.4) and the manipulator's properties, we state that the regressor matrix 

<P is bounded. Front (6.5), '! is bounded, which implies from (6.6) that .~ is bounded. Thus, 

V = -2sTKDS is also bounded. Renee,from Barbalat's Lemma, il ùnplies that limt-+oo V = O. 

Therefore, limt-+oos = O. Sinee s is bounded, ëq is also bounded. Thus, Barbalat's Lemma a/so 

shows that limt-+ooèq = 0 and so limt-+ooeq = O. Therefore, the manipulator's position q and 

velocity q converge to their pre-defined tùne-dependent desired values qd and qd, respective/y, 

i.e., limt-+oo q = qd and limt-+oo q = qd· 

6.3.1 Setup 

To demonstrate the performance of the proposed controller, a set of computer simulation 

runs is carried out on a planar manipulator (Fig. 6.2). Both links have the same length, i.e., 

l = l1 = 12 = 1 m and their weight is m] = 1 kg, m2 = 2 kg, respectively and the matrix G(q) is 
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taken to be equal to zero. The manipulator's dynamics is defined by (6.9), where g = 9.8 m/s2 is 

the gravitationaI constant. The controller is set to obtain a bandwidth of 100 Hz. The regression 

matrix <I> is given by (6.10) while the parameter vector W = [ml /2 m2/2]. Its estimate vector is 

initialized to W = [1.53] . 

FIGURE 6.2 - Planar robotic manipulator 

(6.9a) 

(6.9b) 

<I> = [Ch (1 +cos(q2))2q] + (1 +COS(q2))q2 - (2q]q2 +q2) Sin(Q2)] 
a (1 +COS(Q2))qj +q2 +QTsin(Q2) . 

(6.10) 

The load's desired angular positions in both joints are taken as the step response of a criti-

cally damped second order system with a natural frequency W n = 2 rad/s, as shown in Fig. 6.3. 
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FIGURE 6.3 - Joints position and velocity reference signaIs 

6.3.2 Results 

The manipulator's position and velocity errars for both links decay gradually before 

stabilizing within negligible amplitude while its parameters converge to their respective val-

ues (Fig. 6.4). Although the satisfactory tracking performance obtained by the controller, it 

neglects important aspects such as friction and disturbance. This has negative effects on the 

performance and the stability of such systems, which is considered the major issue of c1as-

sic adaptive controllers (Fig. 6.5). Next, we will address these drawbacks with the design of 

friction and disturbance compensators for flexible-joint manipulators. 

6.4 Adaptive Friction Compensation for Flexible-Joint Ma-
nipulators 

In here, we present two formulations for compensating friction. The model (5.6) can be 

formulated in a linear regression form as F( cr) = (F1 , '" ,Fn), where 

F = <l>T (cr , T}s) W (6.11a) 

<l>T (cr , T}s) = [Sign( cr) cr sign( cr )e-( 6" / 11s)2] (6.llb) 

W= [Fe F;, Fs] (6.1Ic) 
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In the following, we will refer to model (6.11) as the full friction model. 

In a single stage speed reduction system, a lumped ftexibility model can be used if the 

dominant ftexion appears in the gear teeth. In the following, the input gears inertia are com-

bined with the actuators inertia lm whi]e the output gears inertia is lumped with the load inertia 

M(q). As shown in [58] and references therein, this mode] reduction method has been used in 

multi-stage reduction systems, such as p]anetary gears, and in mu]ti-mass ftexibility models, 

like harmonic drives, for instance. 

Adopting the full friction model (6.11), 'Cf l and 'Cfm in (6.2) can be expressed with 

T . . 
'Cfm = <p (e , 1]sm) Wfm 

'Cfl = <pT (q , 1].1'1) Wfl 

for sorne unknownlunceltain or slowly time-varying positive parameters Wfm , Wfl E IRI! and 

1]sm , 1]sl E IR, i = 1, ... ,n, which would be tracked by the adaptive controller to be designed 

later. 

The manipulator's overall friction 'CFr E IRI! can be regarded as the sum of the actuators and 

loads friction terms, which leads to 

As such, the friction term 'CFr can be written as 

(6.12) 

Despite its precision in reftecting the real friction dynamics, friction model (6.12) is non-

linear in the rate of decay parameters 1]sm , 1].1'1. Therefore, a nonlinear approximation method, 

such as a gradient descent technique, would have to be used by the controller to track down 

these parameters. 

Nevertheless, the regression vector <pT (i, 1]s) in (6.11) can be approximated by a simpler 
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linear form as [49] : 

(6.13) 

This yields the formulation of the manipulator's friction in a pure linear regression, 

(6.14) 

Hence, the simplified linear friction model (6.14) can be regarded as an alternative for the 

nonlinear full friction model represented by (6.12). It is clear that the former has an obvious 

computational complexity advantage over that of the latter. Next, we will verify if adopting the 

linear friction compensation model for controlling a flexible-joint manipulator would have any 

negative effect on the controller's performance as opposed to opting for the full friction model. 

Let eq = q - qd and ee = e - ed denote the links' and motors' position errors, respectively, 

with ed being the unknown desired time-dependent motor position vector. The control strategy 

is based on the design of an adaptive controller that not only leads to a precise tracking of 

the system's nominal desired signaIs, but also improves the motors' internaI stability. Should 

the motors' desired position ed have been available, the control strategy wou Id be based on 

tracking eq and ee to zero. As that is not the case, we define the following compounded velocity 

error signal [59] : 

éq = (Aq+ (I-A)~é) -qd (6.15) 

for a diagonal matrix A = diag(Â] , Â2 , . .. , Â,l) with Âi E [0 , 1], i = l , . . . , n. The feedback matrix 

gain A is introduced to provide a trade off between the link tracking performance and internaI 

stability, due to the high nonlinear coupling between the two. 

An adaptive Lyapunov stability-based feedforward (FF) is designed to learn online the 

manipulator's inverse dynamics (6.2) . Due to the iterative nature of the lem·ning mechanism 

and because of the high complexity order of the system's dynarnical model, the feedforward 

controller may take a relatively long time to converge which may lead to an unstable or unsat-

isfactory performance. To alleviate this problem, a linear in parameters friction compensation 
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F IGURE 6.6 - Friction compensation control scheme. 
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technique is used to reduce the complexity of the flexible manipulator. A first order reference 

model is introduced to define the desired dynarnics of the error between the desired and actual 

load positions and between the motor's and load's velocities to assure the controller's internaI 

stability. A block diagram of the control structure is illustrated in Fig. 6.6. 

Defi ne a filtered error s and joint reference signal CÏr such that 

(6.16) 

where qJ = diag( 0/1 , 0/2 , ... , o/n) with o/i being a positive constant, i = 1, .. . ,n. Using singular 

perturbation method, we can let K -+ 00, i.e., displacement (~- q) -+ O. Equation 6.16 can be 

written as, 

The Euler-Lagrange form ulation (6.2) can be reformulated as 

M(q)q +C(q,q)q + G(q) + 'Cfl + 'Cdl -'Ct = 0 
.. 1 

fm e + 'Cfm + 'Cdm - 'Cm = --'C, 
r 

(6.17) 
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where q, q, ij, ë E IRn . Substituting for 'rt and letting the stiffness constant tend to infinity 

(K ---7 00), i.e., displacement (~ - q) ---7 O. We obtain for following rigid model [52] : 

M, (q)ij + C(q, q)q + G(q) + 'rFr = r'rm (6.18) 

where, 

'rFr = r'rfm + 'rJl 

In this design, we aim friction compensation and therefore, disturbance attenuation is beyond 

our scope. Renee, the terms 'rdl, 'rdm are ignored. Therefore, by using the linear in parameter 

property of the manipulator dynamics, we can write the model as a linear regression : 

where <Pf. = <pT (x, 1]s.) or <pT (x) as described earlier. <pp/anl E IRnx m is a matrix of known 

functions (regressor), and Wp/an1 is a m-dimensional vector of parameters. 

The controllaw is : 

where Kd = diag( kd
J 
, kd2, .. . , kdn ) with kd; is a positive constant gain, i = 1, .. . ,n, and, 

<p = [<Pfm <pJ/ <pp/mu] 

W = [WfmWJl Wplanl ] 

(6.19) 

• denotes the parameter estimate vector and i • - • den otes the parameter estimate error 

vector. 
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Theorem 10 ConsMer a nonlinear system in the form (6.2) under the assumption of high 

stiffness so that singular perturbation applies with the reference model (6.16) and the control 

Law (6.19). The adaptive controllaw is asymptotically stable and the tracking error converges 

to zero with the following adaptation Law : 

w=-r<t>s 

Proof 4 Let's take the derivative of the error signal sin (6.17) : 

Substituting Mt ( q) q from (6.18) : 

Mt(q)s = rTlI1 - Mf, (q)qr - C(q,q)qr - G,(q) - 'rFr - C(q,q)s 

The linear in parameters property yields 

(6.20) 

Set 
TA 

r'rm = <t> W - KDS 

Equation (6.20) becomes 

T -M,(q)s = <t> W - C(q,q)s - KDS 

Choose the Lyapunov candidate function : 
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Take the time-derivative of V : 

Sin ce the unknown parameters W are constants, W = W. 

Substitutingfor M,(q).S' and set sT {(M1(q) - 2C(q,q))}s = 0 due ta skew-symm,etry property: 

Set the adaptation Law as : 

Then, 

Therefore V; and sa s, W and W, are bounded and converge ta finite values. It implies 

from (6.17) that eq and ëq, and sa, q and q are bounded. It follows from (6.19) that 'r1l1 

is bounded, which implies from (6.20) that s is bounded. Therefore, li = - 2.'/ KDS is also 

bounded. Renee, from Barbalat's Lemma, it implies that limHoo li = O. Thus, limHoos = O. 

Since S is bounded, ëq is also bounded. Barbalat 's Lemma also shows that limt -too ëq = O. 

Thus, limHooeq = O. 

Therefore, limHoo q = qd and limHoo q = qd· 

6.4.1 Setup 

To demonstrate the perfOlmance of the proposed controller, a set of computer simulation 

mns is carried out on a pl anar flexible-joint manipulator (Fig. 6.2). Table 6.1 summarizes the 

manipulator's physical parameters a]ong with their respective values. Both links are chosen to 

be identical. The joints stiffness coefficient and gear ratio are assumed to be K = 9 N·m/rad 

and r = 1. 
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TABLE 6.1 - Manipulator's physical parameters (i = 1,2) 
Parameter 1 Link 1 Motor 

rotational inertia (kg·m2) lm; = 4.10- 3 

viscous friction coefficient (N·m·s/rad) FVI; = 2· 10- 2 Fvln; = 1 .10- 2 

Coulomb friction coefficient (N·m) Fel; = 5.10- 2 Fcl11; = 2.10- 2 

static friction coefficient (N·m) f.,'li = 3 . 10- 2 FSl11i = 7. 10- 2 

static friction decreasing rate (radis) l1sl; = 5.10- 2 l1sln; = 4.10- 2 

link's mass (kg) mi=0.5 

link's length (m) li = 0.4 

The manipulator's dynamics is defined by (6.21), where g = 9.8 m/s2 is the gravitational 

constant. The controller is set to obtain a bandwidth of 100 Hz and the load's desired angular 

positions and velocities in both joints are set as in Fig. 6.3. 

The regression matrix CPplam is given by (6.22) while the parameter vector is, 

WPlant = [mizr mJi lm;r], with i = 1,2. 

(6.21a) 

(6.21b) 

(6.21c) 

(6.21d) 

(6.21e) 

(6.21f) 
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6.4.2 ResuUs 

The system's response is studied taking into account the manipulator's position and 

velocity errors, the system's stability, the controller's output torques 'Lm for both links, and the 

end-effector's trajectory. The aforementioned nominal values are used to simulate the manip-

ulator's dynamics with the two different friction compensation estimates for (6.12) and (6.14). 

In this case, the two friction models led to comparable performances due to the relatively low 

severity degree of the friction magnitude. As such, only the results of the full friction compen-

sation method (6.12) are shown (Fig. 6.7). The manipulator's position and velocity errors for 

both links decay gradually before stabilizing within negligible amplitude while maintaining 

the system's internaI stability by making the motor's speed converges to zero. On the other 

hand, it is noticeable how the controller generates a torque impulse whenever the actuator's 

velocity crosses zero to compensate for the highly nonlinear friction around the zero velocity 

neighborhood, which contributes the most to the error observed on the load's trajectory. A sat-

isfactory end-effector's trajectory tracking is obtained. Figs. 6.8 and 6.9 reveal the parameter 

estimation performance. The convergence of the estimation parameters is inversely propor-

tional to the value of C. Increasing C leads to a better global convergence at the expense of 

more noise in the estimates. Tracking the friction at each joint is a challenging task due to the 

severe nonlinearities associated to it. This is observed from the friction tracking performance 

of the two proposed friction compensation methods illustrated in Fig. 6.9. The superiority of 

the full friction compensation model over its simplified linear counterpart is evident. 

Then, the friction is magnified 25 times to articulate the difference between the proposed 

friction compensation methods. As shown in Fig. 6.10, the full friction approximation method 

outperfonned the simplified linear friction compensation technique. The latter overcompen-

sated for the nonlinear friction tenns that are not explicitly modeled, which resulted in severe 
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FIGURE 6.7 - Friction compensation response with nominal values: (a) manipulator's position 
error; (b) manipulator's velocity error; (c) manipulator's internaI stability; (d) controller's 
output torque 'rm ; and (e) end-effector's trajectory. 
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oscillations in the actuator (Figs. 6.1 O(a) and 6.1 O(b )). On the other hand, no limit cycles were 

observed with the full friction compensation mode] (Figs. 6.1O(c) and 6.1O(d)), which yielded 

a smooth friction compensation control signal. 
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FIGURE 6.10 - Friction estimate with magnified friction: (a) and (b) partial friction compen-
sation iF,.; and (c) and (d) fu]] friction compensation i Fr . 

The full friction compensation model is a key to achieve this control accuracy since the 

feedforward control signal alone, 'CFF, cannot compensate for these effects because the zero 

crossings of the motor velocity cannot be predicted from the load's desired trajectory. Hence, 

the full friction compensation model will be used in the rest of the simulations. 
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To study the effect of initial conditions on the proposed controUer, an initial condition of 

(q = 0.5, e = 0.25) rad is introduced. Note that these initial conditions implicitly imply a non-

zero initial torque Tt at the flexible transmission (see formulation (6 .2)). The controller provides 

a satisfactory transient response. The manipulator's position and velocity errors as well as the 

motor's speed converge to zero soon after sorne time. As it can be observed in Fig. 6.11 (d), 

The control signal is quite significant at the beginning of the simulation to compensate for 

the system's initial error. The controller's characteristics beyond the first unit step are similar 

to those of the nominal case (Fig. 6.7). The controller is also compensating for the highly 

nonlinear friction terms by providing a smooth control torque signal. 

The link's nominal inertia is doubled to show the modularity of the proposed controller. 

The results are shown in Fig. 6.] 2. As it can be seen, the change in the manipulator's dynarnics 

has little effect on the controller's performance. It maintains a similar behavior as in Fig. 6.7 

but with slightly larger oscillations at the startup, which is expected due to the longer time 

needed for the adaptive parameters to seule down. 

Although the better performance obtained by the proposed controller. It assumes a high 

stiffness so that singular perturbation applies and th erefore , it remains incapable of dealing 

with high elasticity and disturbance, which are ignored in the control design. Thus, next section 

addresses these issues. 

6.5 Adaptive Disturbance Compensation for Flexible-Joint 
Manipulators 

The feedforward controUer designed in the previous section is used to mimic the ma-

nipulator's inverse dynamics (6 .2). Due to the high complexity order of the system's dynamical 

model, an adaptive neural network controller is used to alleviate the feedforward controller task 

by compensating for residual errors due to modeling and parametric uncertainties. A block di-

agram of the control structure is illustrated in Fig. 6.13 . Therefore, we obtain the following 
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FIGURE 6.11 - Friction compensation response with initial conditions (q = 0.5 , e = 0.25) rad: 
(a) manipulator's position error; (b) manipulator's velocity error; (c) manipu1ator's internaI 
stability; (d) controller's output torque 'Cm ; and (e) end-effector's trajectory. 
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FIGURE 6.12 - Friction compensation response with twofold motor inertia : (a) manipula-
tor's position error; (b) manipulator's velocity error; (c) manipulator's internaI stability; (d) 
controller's output torque 'rm ; and (e) end-effector's trajectory. 
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rigid model by using the singular perturbation method, 

where, 

129 

(6.23) 

U sing the !inear in parameter property of the manipulator dynamics, we can write the mode! 

as a linear regression : 

where <P E ]Rl1 x m is a matlix of known functions (regressor), and W is a m-dimensional vec-

tor of parameters. This representation is the same as the one used in the previous section for 

<Pplal1t and Wpla nt • Therefore, the same control and adaptation laws are used and the term 'rFrd 

is approximated by the adaptive neural network feedback controller. 
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Let iFF be the feedforward torque en'or mainly due to 'CFrd be defined as follows : 

This equation can be written as : 

It is worth pointing out that the feedforward torque error iFF is expressed in terms of the error 

signal sand its derivative s that hold information about modeling and parametric uncertainties. 

Henceforth, a feedback controller is designed to provide 'CF BK by minimizing the feedforward 

torque error iF F. 

In this strategy, the feedforward controller is used as a robotic manipulaor's inverse model 

approximator. By using this model with the feedback signaIs, we obtain the estimated resul-

tant torque iFF. The difference between this signal and the feedforward signal 'CFF is due to 

structured and unstructured uncertainties. In other words, should the exact inverse model have 

been available, a perfect tracking would be achieved and the feedforward control signal would 

be equal to the estimated torque iF F. As exact inverse model is not availab1e for such system, 

a neural network based controller takes the difference between the two torque signaIs and es-

timates the feedback signal 'CFBK to compensate for residual errors mainly due to elasticity, 

friction and disturbance. In the proposed approach, the multilayered neural network controller 

is composed of three layers each : one input layer of two neurons, one hidden layer with six 

neurons and one neuron for the output layer. The sigmoid function is used as activation func-

tion for aIl neurons except for the output neuron which uses a linear function. 

6.5.1 Results 

The system's response is studied taking into account the manipulator's position and 

velocity en'ors, the system's stability, the controller's output torques 'Cm for both links, and the 
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force torque 'rFrd with the controller's feedback torque 'rFBK for bath links. The aforementioned 

nominal values are used ta simulate the manipulator's dynamics. As il is shawn in Fig. 6.14, 

the manipulator's position and velocity en'ors for both links decay gradually before stabilizing 

within a negligible amplitude while maintaining the system's internaI stabi1ity by making the 

motor's speed converge to zero. On the other hand, the neural network controller shows good 

performance in transient stage by dealing with parametric uncertainties and once the parame-

ters converge to their respective values, it generates a torque impulse whenever the actuator's 

velocity crosses zero to compensate for the highly nonlinear friction around the zero velocity 

neighborhood, which contributes the most ta the error observed on the load's trajectory. The 

feedforward control signal cannot compensate alone for these effects since the zero crossings 

of the motor velocity cannot be predicted from the load's desired trajectory. It is notewor-

thy that the adaptive neural network feedback controller also compensates for joints elasticity 

not explicitly modeled in the feedforward controller. Tracking the friction at each joint is a 

challenging task due to the severe nonlinearities associated to it. This is observed from the 

friction tracking performance of the adaptive neural network feedback controller illustrated in 

Fig. 6.14( e) and Fig. 6.14(f). The convergence of the parameters estimate is shown in Fig. 6.15. 

In here, more joints elasticity is introduced by reducing the two links torsion constants K 

to the third of their nominal values by setting K = 3. The results are shown in Fig. 6.16. As it 

can be seen, the controller maintains a similar behavior as in Fig. 6.14 but with slightly larger 

torque pulses from the feedback, which is expected due to the larger control effort needed to 

compensate for the additional flexion. It is important to note that although the joints elasticity 

is added, the manipulator's position error remains in the same range as in Fig. 6.14. The joints 

elasticity compensation can be clearly seen in the feedback torque signal 'rF8K for both links. 

An initial condition of (q\ , q2)=( -0.5 , 1) rad is introduced for both links to study its effect 

on the proposed controller. Note that these initial conditions implicitly imply a non-zero initial 

torque 'rt at the flexible transmission (see formulation (6.2)). The controller provides a satisfac-

tory transient response. The manipulator's position and velocity errors as weIl as the motor's 



Robotic Manipulators 

0.2 

'ê 
~ 0.15 
~ g 
QI 0.1 

" ~ 
iii 0.05 
o a. 

o 

" " 

:-Link1 
:- .... Unk2 

.............•....... _ ... 1._ ..... . 

Ê 
t 
C; 

" Cl 
'iii 
QI 

'" ~ 
B ..-
"" " :::i 

, 
0.5 

, , 
\ , 

0 

10 15 
Time{s) 

(a) 

I
-Link1 ' 
- - -Link2 : 

(c) 

15 

-0.5 ...... _ ..... _ .. _ .... _ .......................... _ .. _ .................. .. 
o 5 10 15 

TIme{s) 

(e) 

20 

....... 

20 

.-TFrd 
:---T

FBK 

20 

~ 
"C 

~ 
!!? g 
QI 

~ 
<) 
0 
Qi 
> ... 
CG 
:; 
Cl 

, 

0.81 

0.6 

0.4 

0.2 

.i -0.2 ' 

10 

8 

Ê 
t 6 
"-
"-... 

C; 4 
" Cl 
ïii 
QI 

'" ~ , 
0 0 

, 
1-

-2 

0 

I ~ 
Ê 

08

1
, 
" t " " 

C; o.s,, ; 
" 1" Cl " 'iii " O.4~ t 
QI ~ :, '" ~ 0.2 

, 
B 
'" "" 0 " :::i 

-0.2 

0 

, 

5 

" " . 

. ••••.••••.• 1. 

10 
Time{s) 

(b) 

,\ , , , , , 
\. l , 
"- ---i 

10 
Time{s) 

(d) 

. ......... !.. __ ._ ..... _-... _-.--

5 10 
Time{s) 

(f) 

15 20 

-Link1 
- - -Unk2 

, , 

15 20 

15 20 

132 

FIGURE 6.14 - Disturbance compensation response with nominal values: (a) manipulator's 
position en"or; (b) manipulator's velocity error; (c) manipulator's internaI stability; (d) con-
troller's output torque 'rm ; (e) controller's torque 'rFBK for linki ; and (f) controller's torque 
'rF BK for link2. 
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FIGURE 6.16 - Disturbance compensation response with higher elasticity : (a) manipulator's 
position error; (b) manipulator's velocity error; (c) manipuiator'S internaI stability; (d) con-
troller's output torque 'r11l ; (e) controller's torque 'rFBK for linkl ; and (f) controller's torque 
'rFBK for link2. 
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speed converge to zero. As it can be observed in Fig. 6.17(a), The controller compensates for 

the system's initial errors. The controller's characteristics beyond the tirst unit step are similar 

to those of Fig. 6.14. The controller is also compensating for the highly nonlinear friction terms , 

by providing a smooth control torque signal. 

In the fol1owing, an external disturbance is introduced. For that, the two links are being 

subjected to an external large magnitude disturbance 'rdl = 3 sin(0.2nt) + 1, where t is the 

time index. It is worth pointing out the fact that the introduced external disturbance is not 

dependent on the system's measurable states (q,q ) é), and hence it is not explicitly modeled 

in the design of the proposed controller. The controller's performance under such conditions is 

revealed in Fig. 6.18. Again, the end-effector and the links' position errors remain limited to 

the same range as in Fig. 6.14. The role of the feedback in annihilating the effect of the external 

disturbance is clearly shown in Fig. 6.18( e) and Fig. 6.18(f). 

The end-effector trajectory in the wor1d coordinate system for all cases is depicted in 

Fig. 6.19. A satisfactory end-effector's trajectory tracking is obtained for aIl cases. 

6.6 Fuzzy Logic Control of Flexible-Joint Manipulators 
The fuzzy control strategy is based on a human operator experience to interpret a sit-

uation and initiate its control action. A block diagram for the fuzzy controller is illustrated 

in Fig. 6.20. Given the desired control signaIs qd and {id, the link's position error eq and the 

compounded velocity error ëq are computed as in (6.15). The FLC takes these two inputs and 

provides a control action 'rm that is proportional to the input values. As shown in Fig. 6.21, 

these signaIs are quantized into 5 levels represented by a set of linguistic variables: Negative 

Large (NL), Negative Small (NS), Zero (Z), Positive Small (PS), and Positive Large (PL). In 

this study, triangular membership functions are used, mainly due to their high computational 

and performance efticiencies [62]. The fuzzy mIes used by the controller are shown in Ta-

ble 5.2 and can be retined by an expert to improve the control performance. Therefore, an 

empirical analysis for the fuzzy mIes and the parameters of the input membership functions is 

performed to allow aIl mIes of the fuzzy inference engine to tire. However, these procedures 



Robotic ManipuJators 136 

0.5 .-..... --.. ~ --,------.-------------
-Link1 
---Lin~ 

-Link1 
- - -Link2j 

-1 
0 5 10 15 20 0 5 10 15 20 

TIme(s) Time (5) 

(a) (h) 

40 10 
~ 

J 
-Link] 

"0 30 - - - Link2 
~ I ~Link1 B 

~ - - -Link2 Ê 20 g ~ 6 .. 10 E 
~ .. 
ë3 ;;; 4 
0 0 c: 
ëii C) 

> 
.0; 

"0 -10 .. .. 
1 " "0 !: 

§ - 20t 0 , , , 
1- , , , 

j -30
1 

, 
~ 

• _____ • ______ ..L. •• _______ ____ .1. _________ .... _. ... J -40
0 5 10 15 20 5 10 15 20 

Time(s) Time(s) 

(c) (d) 

2.5 
°l-~ 1 

-'Frd . F:J: , 
---'FBK ; " " 

Ê 2,: ---tFBK! Ê 0.6 : 
" 

," 
~ " ~ '0 

1.5;: " ;;; ;;; 0.4
11 

c: 0' c: 
C) 

" 
C) 

ën , : '0; .. 1 , .. 0.2 " " !: !: " 
B 0.5/ 0 " B .... , 

" N / "-----j: \ (\ -" -" c: l ' ...... , ___ • __ 1 c: 
:J 0 1 - .... -:1 ,"\ :J 

V 
, 

~: -0.2 " " u 

-0.5
0 5 10 15 20 0 5 10 15 20 

Time(s) Time(s) 

(e) (f) 

FIGURE 6,17 - Disturbance compensation response with initial conditions (ql ,q2)=( -0,5, 1) : 
(a) manipulator's position error; (b) manipulator's velocity error; (c) manipulator's internaI 
stability; (d) controller's output torque 'r11l ; (e) controller's torque 'rFBK for link1 ; and (f) con-
troller's torque 'rFBK for link2. 



Robotic Manipulators 

0.2 

'ê 0.15 

~ 
~ 0.1 ~ 
g \ 
Q) 

g 0.05 , ., , 
~ 
0.. 0 

-0.05 

o 5 10 
Time(s) 

Ca) 

-Link1 
- - -Link2 

15 20 

~ 
40,---~---~---~---"--

'C 30 
~ 
~ 20 e 
Qi 10 
~ 

! Link1-1 
i _--Link2 1 

g O~----~~----~----~~--~ Qi 
> 
'C -10 
(II 
'C 
§ -20 
o 
c. 
E -30 o 
U_40L-__ ~ ___ ~ __ ~ __ ~i 

o 5 10 15 20 
Time(s) 

Cc) 

6i'---~--------r~i. =t=;~-=d !. 

i t 1 

L...::..::....F BK J 

'" .!: 
...J -1 , 

- 2r 
~--~------~--~ o 5 10 

Time (s) 

Ce) 

15 20 

~ 
~ 0.8 
~ e 0.6 
aï 

.~ 0.4 
<.> 
~ 0.2 
> 

! 0
1 

~ - 021 

-041~ __ ~ __ ~~--~--~ 
. 0 5 10 15 20 

Ê 8 
~ 
J 6 
;;; 
c: 
C) 

'iii 

~ 2 
!: o 
1- 0 

-2 

o 5 

Time(s) 

Cb) 

10 
Time(s) 

(d) 

15 20 

5r---~----~----~=~=-=t;~:1 

;;; 
c: 
C) 

'iii 

~ 1 
!: 
S 0 
N 

'" :§ -1 

-2 

o 5 10 
Time(s) 

(f) 

15 

L tFBK 

20 

137 

FIGURE 6.18 - Disturbance compensation response with higher disturbance magnitude: (a) 
manipulator's position error ; (b) manipulator's velocity error ; (c) manipulator's internaI stabiI-
ity; (d) controller's output torque "Cm; (e) controller's torque "CFBK for Iinkl ; and (f) controller's 
torque "CFBK for link2. 
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6.6.1 Results 
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To demonstrate the performance of the proposed controller, the controller is validated 

through simulation and by comparing type-2 against its type-1 counterpart. For that, five sim-

ulation sets are carried out on a single link flexible-joint manipulator. In aIl these simulations, 

the system's dynamics is assumed to be a priori unknown. The stiffness coefficient and gear 

ratio are set to be K = 7 N·m/rad and r = 1, respectively. The link's mass and length are taken 

as m = 0.21 kg and l = 0.3 m, respectively. The manipulator's dynamics in terms of its physi-

cal parameters is defined by : M(q) = 5.05.10-2 kg·m2, C(q,q) = 0, and G(q) = mgl sin (q), 

where g = 9.8 m/s2 is the gravitational constant. 

The manipulator's desired position and velocity trajectories are shown in Fig. 6.22. The 

control structure scheme and the system's model are implemented in Simulink ™ while the 

fuzzy control engines are programmed in C. 

In the first simulation, the aforementioned nominal values are used to simulate the manip-

ulator's dynamks. The results are shown in Fig 6.23. As expected, both controllers lead to a 

satisfactory performance in this case as they both attenuate the position and velocity enors to 

zero within comparable time delays. However, this comparable performance is achieved by 

type-2 FLC with a much smoother control effort as compared to type-l FLC. 

Initial conditions are introduced in the second simulation to study their effect on the con-

trollers' performances. The results are depicted in Fig 6.24. The performance of the type-] 
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FIGURE 6.22 - Manipulator's position and velocity reference signaIs 

FLC is not affected much by the different initial condition, in the sense that it could still decay 

the manipulator's position and velocity elTors to zero in less than 1 sec. Nevertheless, the supe-

riority of the type-2 FLC is revealed more clearly in this simulation. AIl elTor signaIs converge 

more steadily to zero under the type-2 fuzzy control scheme with almost half the control effort. 

To study the ability of controllers to sustain various types and intensities of uncertainties, 

the following simulations are calTied out. For this purpose, the load's inertia is doubled. The 

results are shown in Fig 6.25. The manipulator's position and velocity elTors remain within 

an amplitude range similar to that of simulation 1 (see Fig 6.23). However, the elTor signaIs 

and the controller's output under type-l FLC are fairly tluctuating as opposed to a smooth 

and steady convergence behavior with the type-2 FLC. It is quite important to notice here 

the degradation in the actuator's internaI stability (Fig. 6.25(e)) under type-l FLC despite the 

settling of the load's velocity. The superiority of the type-2 FLC in compensating for such a 

type of uncertainty is manifested with lower load position and speed en'ors, over its type-l 

counterpart. 

In the fourth simulation, aIl load friction terms are amplified 5 times with respect to their 

nominal values (Table 6.1). The results are illustrated in Fig 6.26. As can be seen, type-l FLC 

is able to compensate for the system's uncertainty but at a lower performance measure than 
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FIGURE 6.23 - FLC response with nominal values (a)-(b) position error; (c)-(d) velocity 
error; (e)-(f) motor's velocity vs. manipulator's velocity; and (g)-(h) controller's torque ('rll1 ). 
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FIGURE 6.24 - FLC response with initial conditions: (a)-(b) position error; (c)-(d) velocity 
error; (e)-(f) motor's velocity vs. manipulator's velocity; and (g)-(h) controller's torque ('!m). 
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FIGURE 6.25 - FLC response with twofold inertia (a)-(b) position enor; (c)-(d) velocity 
error; (e)-(f) motor's velocity vs, manipulator's velocity; and (g)-(h) controller's torque ('rm), 
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that produced by type-2 FLC. 

In the last simulation, an external time-varying disturbance '!dl = 0.25 sin(30nt) + DA is 

introduced on the link, where t is the time index. It is worth pointing out the fact that the in-

troduced external disturbance is not dependent on the system's measurable states (q,q , é), and 

hence it is not explicitly modeled in the design of the proposed controller. The controller's per-

formance under such conditions is revealed in Fig 6.27. As in simulation 3, type-l FLC is able 

to maintain bounded enor signaIs but fail to make them converge to a practically insignificant 

margin. This is especially clear with the load's velocity enor (Fig. 6.27(c» and the motor's in-

ternaI stability (Fig. 6.27(e». On the other hand, we can see that type-2 FLC does indeed deem 

down these signaIs to practically zero. In addition, this is accompli shed with a much smoother 

control signal '!11I and control effort than those generated by type-l FLC. 

6.7 Adaptive Type-2 Fuzzy Logic Control for Flexible-Joint 
Manipulators 
The adaptive fuzzy control scheme is illustrated in Fig. 6.28 and the adaptive type-

2 FLC structure is depicted in Fig. 6.29. It consists of four layers. Input nodes and type-2 

fuzzification nodes are shown in layer 1 and layer 2, respectively, fom1ing the antecedent part 

of the fuzzy rules. Consequent parts are represented by layer 3 and 4, which are constructed 

with fuzzy rule nodes and output nodes. They are linked by interval weighting factors [wL w~jl, 
i = 1 .. . m and j = 1 ... z. 

The adaptive type-2 FLC's output can be written as, 

where W E IRz xm is a weight matrix, <Î> is a m-dimensional vector of known functions (regres-

sor), and ê = <Î>TW - <I>TW is the adaptive type-2 FLC error. 



RoboticManipulators 

Type-l 
................ _~ ..... _._._ .. -

0.1 

'ô 
~ 0 .05 
g 
CI.> 

<= 
:8 0 ,;; 
0 a.. 

-0.05 

FLC 
0 .1 

'ô 
g. O . 05 ~ 
g 
CI.> 

<= 
~ 0 ,;; 
~ 

-0.05f 

Type-2 FLC 

~. -- ._._--~-_. 

0 0.5 1 1 .5 2 o 0 .5 1 1.5 2 
Time(s) Time(s) 

(a) (b) 

4--------------------------~ 4 r---------------------------, 

-40 
o 0 .5 1 

Time (s) 

(c) 

1 .5 2 

~ 2 
~ 
g 0 
CI.> 

.z:-
'C:; 
oS! -2 

CI.> 
> 

-4 
o 

~ 80 f· J ~ 80 ~ f. __ _ ~Oo~~r ! ~ 60i~, 
._!!!_ 60 :::, - -- ... , 1.-. _ 1 ~ 1:: 
1 40:: 1 401

1

11 
'- 20 ': !~ ... 20; : 

0.5 
..• --. --.. -••• -••• -.-.-... -••••• -...... _-.-1 

1 1 .5 
Time (s) 

(d) 

':==Load 
l -uMotor 

2 

E 0: \,. ,....... E 0, :.: \.-;;'~"'-;=--~-,,--;,----------1 ~ Ir' : !: :, ~ , : 
-g :: \i 01 -0 l ', 
cu -20 :: ~ -20r " 
~ ~ ~ i 
~-400~--~0~5~--1~--~1 .~5--~2 ~-4%~--~0~. 5~--1~--~1 .~5--~2 

Time (s) Time (s) 

(e) (f) 

25 25 " 

20 20 

15 15 
.!' .!' 

10 10 

5 5 

00 0 .5 1 1 .5 2 00 0 .5 1 1 .5 2 
Time(s) Time(s) 

(g) (h) 

146 

FIGURE 6.26 - FLC response with magnified friction: (a)-(b) position error; (c)-(d) velocity 
error; (e)-(f) motor's velocity vs. manipulator's velocity; and (g)-(h) controller's torque (1"111)' 
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FIGURE 6.27 - FLC response with load disturbance : (a)-(b) position error; (c)-(d) velocity 
error; (e)-(f) motor's velocity vs. manipulator's velocity; and (g)-(h) controller's torque ('t'Ill)' 
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Recan the following model (6.23), 

Mt (q)ij +C(q,q)q + G(q) + TF rd = l'Tm 

where, 

The mode1 can be represented by a linear regression using the linear in parameters property of 

the manipu1ator dynamics, 

The controllaw is : 
'" TA 

l'Tm = <l> W - KDS (6.24) 

where, KD is a positive diagonal matrix gain and the sign • denotes the parameter estimate 

vector. It is noteworthy that the ability of type-2 FLCs to cope with uncertainties of larger 

magnitudes makes that no additional controller is required to damp the oscillations of the joint 

elasticity as in [52]. 

Theorem 11 Consider the nonlinear system in (6.2) Linder the assumption of high stiffness 

050 that singular perturbation applies with reference signal (6.15) and contra/law (6.24). The 

adaptive contrai Law is stabLe in the sense of Lyapunov with the following adaptation law, 

where [' = diag( Y1 , 'Y2 , ... , '}';1) and ')1 is a positive constant, i = 1, ... ,n. Therefore, the manip­

ulator's position q and velocity q converge to their pre-defined time-dependent desired values 

qd and qd, respectively. 
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Proof 5 Take the derivative of (6.17), 

s = q - qr 

Substituting Mt (q)qfrom (6.23), 

Mt(q)s = r'Lm - Mt(q)qr - C(q,q)qr - G(q) -'LFrd - C(q , q)s 

The linear in parameters property yields 

(6.25) 

Set, 
A TA 

r'Lm = <I> W - KDS 

Equation (6.25) becomes 

Mr(q)s = ê -'LFrd - C(q ,q)s - KDS 

where, ê = <Î>TW - <I>TW. Add and substract <Î>TW, 

Therefore, 

(6.26) 

where, <Î> = <Î> - <I> and W = W - W . 
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Chaase the fallawing Lyapunav candidate, 

Taking the time-derivative af V: 

Since the unknawn weights W are canstants, W = W. 

Substituting far Mt (q)5 and using the skew-symmetry property, 

. T T - T -j;" T 
V = s E - S 'rFrd + W r W - s KDS 

Substitute E fram (6.26), 

Setting the adapta tian law as, 

w=-r<Î>s 

leads ta, 

151 

where Y = <i>Tw - 'rFrd is assumed ta be upper baunded by a pasitive canstant 8, i.e., IYI ~ 8. 

Thus, 

Therefare, it is passible ta chaase KD sa that V ~ 0, except passibly in a neighbarhaad af 

s = O. Then, the system is stable in the sense af Lyapunav. The neighbarhaad af s = 0 is a 

regian defined by 8 and gets smaller as 8 -+ O. 
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6.7.1 Results 

Two simulation sets are carried out on a single link flexible-joint manipulator to high-

light the proposed type-2 FLC as opposed to type-l in tolerating a higher degree ofparametric 

and modeling uncertainties. In both simulations, the system's dynamics is assumed to be a 

priori unknown. For each simulation, the system's response is studied taking into account the 

manipulator's position and velocity enors, the joint's internaI stability, and the controller's 

output torque, 't1l1 • The manipulator's desired positiontrajectory is taken as the step response 

of a critically damped second order system with a natural frequency of 3 rad/s, as shown in 

Fig. 6.30. 
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The first simulation is meant to study the ability of controllers to sustain various types 

and magnitudes of load uncertainties. For this purpose, the load's inertia and the link's mass 

are both doubled abruptly at time 5 sec. and returned back to their original values at time 

15 sec. of the simulation. The results are shown in Fig 6.31. A slight increase is noticed in 

the manipulator's position and velocity enors due to a heavier load. However, the en"or signaIs 

and the controller's output under type-1 FLC are fairly fluctuating as opposed to a smooth 

and steady convergence behavior with the type-2 FLC. It is quite important to notice here 

the degradation in the actuator's internaI stability (Fig. 6.31(e» under type-l FLC despite the 

settling of the load's velocity. The superiority of the adaptive type-2 FLC in compensating for 
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such a type of uncertainty is manifested with a better load position, speed accuracy and control 

effort performance, over its type-l counterpart. 

In the second simulation, the elastic joint's stiffness coefficient is changed abruptly to K = 

5 N·m/rad at time 5 sec. and returned back to its original value (K = 7 N·m/rad) at time 15 sec. 

of the simulation. The controller's performance under such conditions is revealed in Fig 6.32. 

As in simulation l, adaptive type- l FLC is able to maintain bounded error signaIs but fails to 

make them converge smoothly. This is especially c1ear with the load 's position and velocity 

errors (Fig. 6.32(c) and 6.32(a» and the motor's internaI stability (Fig. 6.32(e». On the other 

han d, it is clear that adaptive type-2 FLC does indeed deem down these signaIs smoother and 

with Jess control effort than its type-l counterpart. 

6.8 Conclusion 

Adaptive control for rigid robotic manipulators is considered as a starting point for 

the design of robust adaptive control techniques for flexible-joint manipulators. This has been 

made possible with the singular perturbation theory. However, it assumes high stiffness. More-

over, the presence of friction and disturbance affects significantly the performance and the 

stability. Un der the assumption of high stiffness, a rigid-based feedforward controller approx-

imates the inverse model of the flexible-joint manipulator. On the other hand, adaptive friction 

and disturbance compensators are used as a feedback to reduce the effect of residual enors left 

from the forward stage. As such, the proposed feedback controllers can be used with many 

conventional rigid manipulators approaches in the literature. Furthermore, a trade-off crite-

rion strategy is also used to improve the manipulator's internaI stability. Simulation results 

highlight the quality of compensation of f1exibility, friction nonlinearities, and disturbance. 

Accurate tracking of the desired load trajectory is obtained and internaI stability, a potential 

problem with such a system, is also achieved. Furthermore, the stability is proven by Lyapunov 

direct method. 

On the other hand, a type-2 FLC and an adaptive type-2 FLC are developed for the control 



RoboticManipulators 154 

of flexible-joint manipulators in the presence of dynamical modeling and parametric uncertain-

ties of various magnitudes. To alleviate the naturally inherited high computational complexity 

of type-2 FLCs, int,erval membership functions are adopted. Unlike other control methodolo-

gies suggested in the literature, the proposed controllers are independent of the noisy accel-

eration and torque signaIs. Both controllers are also compared to their type-l counterpart in 

similar operating conditions. Simulation results show the superiority of type-2 FLC in damp-

ing the oscillations of the joint elasticity and compensating for high-magnitude uncertainties. 

This finding confirms the theoretical credentials associated to type-2 FLSs in their higher toler-

ance to the imprecise modeling of fuzzy controllers ; namely the fuzzy membership functions 

and knowledge base. Thus far, this work is one of the scarce attempts in designing and imple-

menting type-2 fuzzy logic control architecture for flexible-joint manipulators. 

Robotic manipulators are not only driven by DC motors, AC machines can also be used 

for such systems. However, their performance is also limited by friction nonlinearities as weIl 

as by load uncertainties. Therefore, several soft-computing based adaptive control techniques 

are presented in the next chapter for speed control and estimation of permanent magnet syn-

chronous machines (PMSMs). 
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FIGURE 6.31 - Adaptive type-l and type-2 FLC responses to varying load's mass and iner-
tia : (a)-(b) position error; (c)-(d) velocity error; (e)-(f) motor's veJocity vs . manipuJator's 
velocity; and (g)-(h) controller's torque ('rl11 ). 
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FIGURE 6.32 - Adaptive type-l and type-2 FLC responses to varying stiffness : (a)-(b) position 
error; (c)-(d) velocity error; (e)-(f) motor's velocity vs. manipulator's velocity; and (g)-(h) 
controller's torque ('!m). 



Chapitre 7 

Lyapunov-Based Control of Permanent 
Magnet Synchronous Machines 

7.1 Introduction 

Permanent magnet synchronous machines (PMSMs) are widely used in many industrial 

applications, thanks to their compact size, high efficiency, high power density, large torque to 

inertia ratio and low rotor los ses [63,64]. These advantages make them good candidates for 

high-performance applications, su ch as electric vehic1es, wind turbines and robotics. How-

ever, in order to operate efficiently, high resolution rotor angle encoder is required to generate 

smooth torque. These high resolution position sensors attached to the shaft of the rotor add 

length to the machine, raise cost, increase rotor inertia and require additional cabling. Re-

cently, sensorless PMSM drives have received increasing interest for indus trial applications 

where there are limitations on the use of a position sensor. Furthermore, sensorless control for 

motor drives reduces susceptibility to noise and vibration, cost, size and maintenance while 

increasing the overall system's reliability and robustness. However, controlling such systems 

still faces numerous challenges that need to be addressed such as, varying operating conditions, 

structured and unstructured dynamical uncertainties, and external disturbances. 

Over the years, researchers attempted various estimation techniques. The rotor flux link-

age estimation method [65] is used for its simplicity. This estimation method integrates the 

machine tenninal voltages and the stator resistance drop to derive the rotor position from 

157 
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these quantities. However, integration introduces a drift problem and poor precision at low 

speed. Furthermore, stator resistance is known to vary with temperature. Extended Kalman 

filters (EKF) [66,67] have been successfully and intensively used for rotor speed and position 

estimation in sensorless drives. Although EKF is a well-known approach, they are computa-

tionally intensive with the ca1culation of Jacobian matrices and require proper initialization to 

avoid instability which can occur due to linearization. This approach, as many methods based 

on state observers, uses a linearization of the system model around operating points. How-

ever, linearization of the nonlinear equations describing the drive's behavior along the nominal 

state trajectory does not guarantee the overall stability. Model-based observers [68,69] have 

been widely used, however, they suffer from sensitivity to mechanical parameters such as load 

torque, friction and inertia parameters that are often changing dynamically or are unknown. 

Moreover, the technique requires a preliminary rotor alignment. The model reference adaptive 

system (MRAS) is used widely [69] for position and speed estimation. MRAS uses reference 

and parameter adjustable models. The two models have the same output and the error of two 

outputs is used to adjust, by the adaptation law, the model parameters. Thus, the actual out-

put of the reference model follows the one of the plant. A sliding mode speed observer is 

proposed in [70]. This method suffers from poor low-speed performance, and robustness to 

parameter variations and uncertain load disturbances is obtained only when sliding mode truly 

occurs. In principle, sliding mode is achieved by discontinuous control and switching at infi-

nite frequency. However, switching frequency is limited in reallife applications and results in 

discretization chattering problem. To overcome this problem, the boundary solution replaces 

the discontinuous control with a saturation function that approximates the sign function in 

a boundary layer of sliding mode manifold. This solution preserves partially the invariance 

property of sliding mode where states are confined to a small vicinity of the manifold, and 

convergence to zero cannot be guaranteed. 

In recent years, several solutions have been proposed for PMSM speed control, inc1uding 

c1assical, robust and adaptive controllaws, such as vector and sliding mode control but they are 

generally consider (structured) parametric uncertainties only. The field-oriented vector control 
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technique [71] emulates a separately excited compensated dc motor and its principle consists of 

controlling the angle and amplitude of the stator field. This conventional control strategy cap-

italizes on the fact that PMSM torque is proportional to the q-axis CUITent in the synchronous 

reference frame. Hence, vector control is achieved by decoupling the d-q axes. This transforma-

tion al10ws d-q axes CUITents to be controlled independently, usually with proportional integral 

control1ers. However, faster torque dynamic response is achieved with Direct Torque Control 

(DTC) [72] for permanent magnet drives at the expense of current distortion, and torque ripple. 

These negative effects have been addressed in [73-75], and recently, a compromise between 

ripple and switching frequency has been studied in [76]. The method consists of either current 

or flux prediction and selects, consequently, the inverter voltage vector that produces the fastest 

possible transient. On the other hand, a Model Predictive Control (MPC) has been developed 

for a permanent-magnet synchronous motor drive in [77] where speed and CUITent controllers 

are combined together. This technique offers an alternative to the conventional cascade control 

structure. 

Although these controllers work quite weIl in theory, their performance degrades in the 

presence of varying operating conditions, structured and unstructured dynamkal uncertain-

ties, and external disturbances . These control methods assume a precise mathematical system 

mode1. In the reallife applications, deriving such model for complex industrial processes might 

be a difficult task to undertake. In addition, other factors might be unpredictable, such as load 

dynamics, noise, temperature, and parameter variations. Hence, the system's dynamics cannot 

be efficiently based on presumably accurate mathematical models. 

Moreover, these controllers have been proposed with no analytical solution for stability, 

which has not been given much attention in the literature. Furthermore, stability based on lin-

earization around an operating point of the states cannot apply for the overall system. A stabil-

ity analysis has been provided in [78] for a model reference adaptive controller that copes with 

parameter uncertainties for PMSM CUITents regulation. However, this analysis is limited to the 

inner CUlTents loop and does not include the anti-wind up PI used as speed controller. Finally, 

considering unknown system's dynamics, an interval type-2 fuzzy neural network controller is 
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developed in [9] to approximate the nonlinear PMSM dynamics. Unlike other controllers, the 

adaptive algorithms are derived using the Lyapunov stability theorem. Several artificial neural 

network and fuzzy logic models have been proposed for speed and position estimation and 

control of PMSMs [3, Il], providing an alternative to conventional control techniques. 

This chapter presents different advanced intelligent control strategies for Permanent Mag-

net Synchronous Machine (PMSMs). Adaptive control theOl'y is used to design an adaptive 

vector control technique with a guaranteed stability. This control scheme uses many controllers 

and tuning is not trivial. Therefore, this structure is simplified by combining two adaptive con-

trollers . The adaptive control strategies use a speed and disturbance observer. Then, under the 

uncertain dynamics constraint, an adaptive controller is proposed by assuming less knowledge 

about the machine's dynamics, which yields simpler control scheme. Therefore, stability can 

also be guaranteed even with uncertain dynamics. Henceforth, this result is extended to the un-

known dynamics case and stability is also achieved for intelligent adaptive controllers, which 

yields better robustness to unstructured uncertainties. Next, the ANN's approximation property 

is exploited to design a reduced complexity control scheme able to cope with parametric un-

certainties. An ANN-based speed observer is also proposed. However, the estimation accuracy 

is sensitive to flux variations. This problem is addressed by proposing an ANN-based nonlin-

ear speed observer assuming a no a priori dynamics knowledge. Thus, robustness to higher 

degrees of nonlinearities is achieved. Finally, a single adaptive fuzzy logic controller is pro-

posed to achieve robustness to both structured and unstructured uncertainties, which reduces 

the system's complexity compared to classical cascaded-based control structures. Moreover, 

a Lyapunov stability-based adaptation technique is used as an alternative to the conventional 

heuristic tuning methods. 
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7.2 Modeling 

The PMSM dynamic mathematical model in the d-q axes rotation al reference frame can 

be described by the following equations : 

The mechanical equations of motion can be expressed by : 

where, 

P 

Â 

J 

o 
w 

voltage in d-q axes 

d 1 ( ) - w = - 'r - 'rF - 'rL 
dt J 

d 
-O=pw 
dt 

CUITent in d-q axes 

inductance in d-q axes 

armature winding resistance 

number of pole pairs 

flux linkage 

motor, load and friction torques 

rotor and load inertia 

rotor electrical position 

rotor electrical speed 

(7.1 a) 

(7.1 b) 

(7.lc) 

(7.2a) 

(7.2b) 
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7.3 Observer-based Adaptive Vector Control 

Let eOJ = 6J - 00* den ote the machine speed error, with 6J and 00* being the speed 

estimate and its desired time-dependent signal, respectively. Then, let ed = id - i~ and eq = 

iq - i~ denote the d-q axes current errors, with id and i; being the desired time-dependent 

d-q axes current signaIs. The adaptive control strategy uses quadrature voltage vq to achieve 

speed tracking and keeps the exciting current id constant to zero. The resultant control scheme 

is illustrated in Fig. 7.1. When id -+ 0, a maximum torque-current ratio is reached, which 

is called, the Maximum Torque Per Ampere (MTPA) method for smface-mount PMSMs. As 

such, an adaptive controller keeps id constant to zero with a second adaptive contro11er tracking 

the q-axis current error eq to zero. On the other hand, a third adaptive controller achieves 

precise speed tracking by machine's inverse dynamics approximation. As depicted in Fig. 7.1, 

the contro11ers deliver desired voltages v~, and v;, which are then fed to a Space Vector Pulse 

Width Modulation (SVPWM) algorithm to produce the proper dut y cycles for the inverter. 

() 

L ___ ~+_-=======t=======---:!cfD~ Observer 
W 

FIGURE 7.] - Adaptive vector control scheme 

Recall the PMSM formulation (7.1) and (7.2), 
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Substitute "C into the mechanical equation and since the permanent magnet machine torque 

depends mainly on the quadrature CUITent iq , it is more convenient to set the direct reference 

CUITent id to zero, which will minimize the torque vs. CUITent ratio and increase the motor 

efficiency. Therefore, we obtain for following model : 

(7.3) 

with, J.l = JŒ, and Œ = 3;À. "CD = "CF + "CL is the disturbance (friction+load) torque, which is 

estimated using the above observer and t1ed is the uncertainty due to the direct CUITent error ed 

described by, 

It is noteworthy that for surface-mount PMSMs, t1ed = 0 since Ld = Lq. In this work, the 

control design is done regardless of the PMSM type and hence, t1ed is not taken to be equal to 

zero. The desired dynamics for (7.3) can be represented by the following linear regression, 

. * A rfo.Tw. J.lW + Œ"CD = ~w w (7.4) 

Recall the PMSM formulation (7 .1), 

(7.5a) 

(7.5b) 

Therefore, we can also represent the desired dynamics for (7.5) by the following linear regres-

sion, 

(7.6a) 

(7 .6b) 
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Take the time-derivative of ew, 

. ;.. . * ew = co-co 

Add and substract w, 
ew = w - w* +L1W 

with, L1CO = w - co. Multiply both sides by J.l and substitute J.lW from (7.3) and use the linear 

regression (7.4), 

with, eD = iD - 'rD· 

Using (7.3) and the observer estimates W and iD we get, 

Subtract (7.8) from (7.3), 

with, L1eq = tq - iq . Substitute L1eq in (7.7), 

Take the time-derivative of the error signaIs ed, and eq , 

. d . d .* 
ed = -Id - -Id 

dt dt 
. d . d .* e = -I --I 
q dt q dt q 

(7.7) 

(7.8) 

(7.9) 
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Multiply the equations by Ld, and Lq, respectively, 

Substitute Ld ~ id, and Lq-ft iq from (7.5) and use the linear regression (7.6), 

Lded = Vd - <P~Wd 

Lqeq = vq - <P~Wq 

165 

(7.lOa) 

(7. lOb) 

Since the inverter operates at a smaller period than the motor electrical time constant, a sensible 

practical assumption is that the inverter reproduces accurately the reference voltages vd' and 

v~, which reduces the number of sensors and makes vd = Vd, and v~ = vq. 

Therefore, the control law can be defined as, 

where Kw, Kd, and Kq are positive gains. 

(7.] la) 

(7.11 b) 

(7.11c) 

Theorem 12 Consider the nonlinear system in (7.1)-(7.2) with the control law (7.11). The 

control law is asymptotically stable and the convergence of the errors to zero is guaranteed 

with the foliowing adaptation law : 

Wd = -rd <Pd ed 

Wq = -rq <Pq eq 

(7. 1 2a) 

(7.12b) 

(7.12c) 
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where r x = diag( YI , Y2 , ... , Yn) and Î'Î is a positive constant. 

Proof 6 Consider the Lyapunov candidate function, 

Take the time-derivative of V: 

The parameters vectors WQ), Wd, and Wq are assumed to be constant, i.e., W = W. Substitute 

v = {iq - <I>~WQ) + ~ed + ~eq}eQ) + {Vd - <I>~Wd }ed + {vq - <I>~Wq}eq 
-T - l~ -T - IA '"T - IA 

+wQ)r Q) WQ) + Wd rd Wd + Wq rq Wq 

Setting, 

. .* 
lq = lq + eq 

Vd=vd+~Vd 

with ~Vd = Vd - v:I = 0 and ~Vq = vq - v; = 0, yields, 

v = {i~ - <I>~WQ) + ~ed + ~eq + eq}eQ) + {Vd - <I>~Wd}ed + {vq - <I>~Wq}eq 
-T l A -T lA -T lA 

+ wQ)r~ WQ) + Wd rd Wd + wq r~ wq 
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Setting the controllaw as in (7.11) yields, 

. T - T - T - - T - 1" 
V = <pwWweW+<PdWded+<pq Wqeq + wwr w Ww 

-T- l " -1' - 1" 2 2 2 +Wd rd Wc/ + Wq rq Wq - Kwew - Kded - Kqeq 

Setting the adaptation law as in (7.12) implies that, 

Hence, the adaptive control system is asymptoticaUy stable in the sense of Lyapunov. 

The above adaptive control strategy requires the speed measurement and the disturbance 

estirnate -rD, which are estimated by a state observer. Recall the PMSM formulation (7.1) 

and (7.2), 

Substitute T, 

This can be written in astate space form, 

x=Ax+Bu 

y=Cx 
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where XE ]R3 = [B , 0) , '!'DV is the state vector, and u E ]R3 = [id , iq, idiqV is the input vector. 

A E ]R3x3, B E ]R3x3, and C E ]R3 are given by, 

o al 0 

A = 0 0 a2 

o 0 0 

o 0 0 

B = 0 hl h2 

o 0 0 

C=[lOO] 

with, al = p, a2 = -J, hl = 3i:, and h2 = ~ (Ld - Lq). Therefore, the observer is defined as, 

i = Ai+Bu+ G(C.i-y) 

y=Ci 

with, G being the observer gain matrix. Since the pair (C, A) is completely observable, it is 

possible to choose G such as (A + Ge) is a Hurwitz matrix. The observer gain matrix G can 

be found by solving the algebraic Riccati equation or by using a pole placement technique. 

Therefore, the stability of the observer is guaranteed. 

7.3.1 Setup 

To demonstrate the performance of the proposed observer, a set of computer simulation 

runs is carried out on an Interior Permanent Magnet Synchronous Motor (IPMSM) mode!, 

which has been validated experimentally [79] and has been used ta design industrial controllers 

for PMSM -based products, such as, hydroelectric and wind turbines. Table 7.1 sununarizes the 

motor's parameters along with their respective values. The nominal dc-link voltage is 800 V, 
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and the switching and sampling frequencies are both set to 5 kHz. The dc-link voltage drops 

are ignored, and the inverter is taken as being ideal, i.e., no dead-time compensation is used. 

TABLE 7.1 - PMSM's parameters 
Parameter Value 

Nominal power (kW) Pn =26 

Nominal torque (N·m) '[:11=416 

Nominal speed (RPM) Wn = 600 
Inductance in d-axis (H) Ld = 15.9.10- 3 

Inductance in q-axis (H) Lq = 24.88 . 10- 3 

Armature winding resistance (n.) R = 361.45.10- 3 

Flux linkage (Wb) Â = 1.6504 

Coulomb friction coefficient (N·m) Fe = 1 
Viscous friction coefficient (N ·m·s/rad) Fv=2 

Static friction coefficient (N·m) F's=7·10- 1 

Statie friction decreasing rate (radis) 71s = 5.10- 2 

Rotor and load inertia (kg·m2) J=5 

Number of pole pairs p=5 

7.3.2 Results 

Four simulation runs are carried out to study the controller's performance. For each 

simulation, the controller's initial parameter estimate vectors WO), Wd, and Wq are set to zero 

and the system's response is studied taking into account the machine's tracking and estimation 

speed errors, the d-q axes current errors (ed, eq) and voltages (Vd, vq), the disturbance estimate 

iD, and the adaptive parameter estimate vectors WO), Wd, and Wq. The desired rotor speed is 

shown in Fig. 7.2. 

In this simulation, the nominal values (Table 7.1) are used to simulate the machine's dy-

namics. As shown in Fig. 7.3, the tracking speed en"or decays gradually before stabilizing 

within negligible amplitude while accurate speed and disturbance estimation is obtained with 
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the proposed observer. On the other hand, both controllers provide smooth d-q axes currents 

and voltages. Moreover, the adaptive control scheme achieves high tracking precision and 

the observer delivers good performance during fast changes in electromagnetic torque. It is 

noteworthy the ability of the observer to estimate accurately the friction torque as shown in 

Fig.7.3(e). 

In the second simulation, a 100 (N·m) load torque is applied at time t= 1 Os to evaluate the 

adaptive controller's performance to a disturbance torque. As shown in Fig. 7.4, when the drive 

is subjected to a disturbance torque, it compensates for this unexpected change by adjusting its 

parameters. Consequently, the control structure was successful in coping with the load torque 

variation (Fig. 7.4(e». Moreover, the speed tracking error remains small, which yielded smooth 

currents and control signal. However, a speed estimation error increase is noticed and higher 

torque is required for the heavier 10ad. 

This simulation is meant to show the ability of the proposed controller in compensating for 

friction nonlinearities of different magnitudes. For that, the nonlinear Coulomb friction term 

Fe is magnified 10 times and the machine operates in motoring and regenerating modes to 

enable zero velocity crossing (i.e., Coulomb friction effect) as shown in Fig. 5.3. The results 

are shown in Fig. 7.5. As it can be seen, the change in the speed reference signal has no 

effect on the overall control performance. The speed estimation error starts increasing during 
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FIGURE 7.3 - Adaptive vector control response with nominal values : (a) speed tracklng error ; 
(b) speed estimation error ; (c) d-q axes current errors; (d) d-q axes voltages ; (e) disturbance; 
and (f) Adaptive parameters W. 
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fast accelerations but stays in an acceptable range. Conventional control techniques tend to 

overcompensate for these effects and lead to severe tracking errors, limit cycles, chattering, 

excessive noise, and even instability [17]. As shown in Fig. 7.5, the nonlinearities around zero 

speed cause a tracking error. However, the controller is able to compensate for the nonlinear 

friction and no oscillation is observed (Fig. 7.5(e)), which yielded accurate speed tracking in 

both motoring and regenerating modes. 

Since the machine's parameters are time-varying, a simulation is carried out to study the 

proposed observer's ability to sustain various parametric uncertainties. The controller's perfor-

mance is similar to the nominal case, which is expected since the controller is adaptive and 

hence is independent of the machine's mechanical and electrical pararneters. However, the ob-

server is based on parameters J , Ld, Lq, Â, and p. The parameter p is the number of pairs of 

poles and is constant. Therefore, the machine's parameters, J, Ld, Lq, and Â are increased one 

at a time by 50% their nominal values. The observer's performance is depicted in Fig. 7.6. It is 

noteworthy that from the observer dynamics, ~ P[(Ld - Lq)id + Â] is the most significant term. 

Thus, the variation of Ld, and Lq does not have much effect on the observer's performance as 

it is shown in Fig. 7.6(b), and Fig. 7.6(c) since setting id to zero makes the observer less sensi-

tive to inductance variations. On theother hand, the inertia J and the flux Â variations cause a 

slight increase in the estimation error as it is observed in Fig. 7.6(a) and Fig. 7.6(d). It remains 

however in an acceptable range unlike other estimation techniques. 

7.4 Observer-based Adaptive Control 

The ab ove adaptive vector control strategy uses three adaptive controllers to drive the 

errors eQ), ed, and eq to zero. Since the goal is to achieve trajectory tracking, i.e., eQ) ~ 0, the 

speed controller can be combined with the q-axis CUITent controIler, which yields less complex 

control scheme. As such, an adaptive controller keeps id constant to zero while a second adap-

tive controller achieves precise speed tracking by machine's inverse dynamics approximation. 

The resultant control scheme is illustrated in Fig. 7.7. Let eq = iq - iq denote the observer error, 
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with iq being the q-axis CUITent estimate signal. As depicted in Fig. 7.7, the observer presented 

earlier is used for accurate speed and disturbance estimation. 

FIGURE 7.7 - Adaptive control scheme 

Recall the PMSM formulation (7.1) and (7.2), 

Substitute for 'r : 
l 3 

6J = J (2 P [(Ld -Lq) id iq+Â iq]- 'rF - 'rd 

Multiply bath sides by J1 = ~:i, 

Recan the PM SM formulation (7.1 b) : 

d 
v q = R iq + Lq - iq + Ld P CO id + P Â CO 

dt 

(7.13) 
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Substitute R iq in (7.] 3) : 

Therefore, we obtain for following model : 

. R (L L)·· L d. L . 1 J1 J1 Vq = J1 (j) - 1 d - q ld lq + q -lq + d P (j) ld + P /\, (j) + - "CF + - "CL 
/\, ~ J J 

(7.14) 

Setting Œ = p(Ldid + Â) and "CD = "CF + "CL as disturbance (friction+load) torque, which is 

estimated using an observer, yields, 

. R (L L)·· L d. J1 Vq =J1(j)-1 d- q ldlq+ q-lq+Œ(j)+- "CD 
/\, dt J 

(7.15) 

Recall the PMSM formulation (7.1), 

(7.16) 

The desired dynamics for (7.15), and (7.16) can be represented by the following linear regres-

sion, 

. * R (L L)·· L d. A J1 A if-..Tw. 
J1 (j) - Â d - q ld lq + q dt lq + Œ (j) + J "CD = 'PU) U) (7.17a) 

R . L d "* L . if-..Tw. 
Id + d dt ld - q P (j) lq = 'Pd d (7.17b) 

Take the time-derivative of eU), 

. ;.. . * eU) = (j) - (j) 

Add and substract ci>, 

with, t1(j) = W - (j). Multiply both sides by J1 and substitute J1 ci> from (7.15) and use the linear 
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regression (7. 17a), 

with, eD = iD - "CD· 

Using (7.15) and the observer estimates 6) and iD we get, 

L d" ;., R (L L)'" A f.1 A -1 = V - f.1 co + - d - 1d l - cr co - - "CD q dt q q Â q q J 

Subtract (7.19) from (7.15), 

Substitute 8eq - Lqèq in (7.18), 

Define the observer reference model signal as, 

where Kql' and Kq2 are positive gains. 

Take the time-derivative of the elTor signal ed, 

Multiply both sides by Ld, 

. d . d .* 
ed = -ld - - zd 

dt dt 

178 

(7.18) 

(7.19) 

(7.20) 

(7.21) 
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Substitute Ld1tid from (7.16) and use the linear regression (7.17b), 

(7.22) 

Since the inverter operates at a smaller period than the motor electrical time constant, a sensible 

practical assumption is that the inverter reproduces accurate1y the reference voltages v;[ , and 

v~ , which reduces the number of sensors and makes v;[ = Vd, and v; = vq . 

Therefore, the control law can be defined as, 

v; = <P~Ww - Kwew - Sq 

* ;r...TWA K v d = '*' d d - ded 

where Kw, and Kd are positive gains. 

(7.23a) 

(7.23b) 

Theorem 13 Consider the nonlinear system in (7.1)-(7.2) with the control law (7.23). The 

control Law is asymptotically stable and the convergence of the errors to zero is guaranteed 

with the following adaptation Law.' 

where rx = diag( YI , Y2 ,·· ·, Yn) and}'i is a positive constant. 

Proof 7 Consider the Lyapunov candidate function, 

Take the time-derivative of V.' 

(7.24a) 

(7.24b) 
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The parameters vectors Wco, and Wd are assumed to be constant, i.e., W = W. Substitute f.1ë co 

Jrom (7.20), and Lded Jrom (7.22), 

Setting the controllaw as in (7.23) yields, 

Substitute sqJrom (7.21). Set Kql = 8, and Kq2 = Lq, 

Setting the adaptation law as in (7.24) implies that, 

Hence, the adaptive control system is asymptotically stable in the sense ofLyapunov. 

7.4.1 Results 

Four simulation runs are carried out ta study the controller's performance. For each 

simulation, the controller's initial parameter estimate vectors Wco and Wd are set to zero and 

the system's response is studied taking into account the machine's tracking and estimation 

speed errors, the d-q axes currents and voltages, the disturbance estimate, and the adaptive 

parameter estimate vectors W co andWd. The desired rotor speed is shown in Fig. 7.2. 

In this simulation, the nominal values (Table 7.1) are used to simulate the machine's dy-

namics. As shown in Fig. 7.8, the tracking speed error decays gradually before stabilizing 

within negligible amplitude while accurate speed and disturbance estimation is obtained with 

the proposed observer. On the other hand, both controllers provide smooth d-q axes currents 
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and voltages. Moreover, the adaptive control scheme achieves high tracking precision and 

the observer delivers good performance during fast changes in electromagnetic torque. It is 

noteworthy the ability of the observer to estimate accurate1y the friction torque as shown in 

Fig.7.8(e). 

In the second simulation, a 100 (N·m) 10ad torque is applied at time t=lOs to evaluate the 

adaptive controller's performance to a disturbance torque. As shown in Fig. 7.9, when the drive 

is subjected to a disturbance torque, it compensates for this unexpected change by adjusting its 

parameters. Consequently, the control structure was successful in coping with the load torque 

variation (Fig. 7.9(e)). Moreover, the speed tracking error remains small, which yielded smooth 

currents and control signal. However, a speed estimation error increase is noticed and higher 

torque is required for the heavier load. 

The next simulation is meant to show the ability of the proposed controller in compensating 

for friction nonlinearities of different magnitudes. For that, the nonlinear Coulomb friction 

term Fe is magnified 10 times and the machine operates in motoring and regenerating modes 

to enable zero velocity crossing (i.e., Coulomb friction effect) as shown in Fig. 5.3. The results 

are shown in Fig. 7.10. As it can be seen, the change in the speed reference signal has no 

effect on the overall control performance. The speed estimation error starts increasing during 

fast accelerations but stays in an acceptable range. Conventional control techniques tend to 

overcompensate for these effects and lead to severe tracking en·ors, limit cycles, chattering, 

excessive noise, and even instability [17]. As shown in Fig. 7.10, the nonlinearities around zero 

speed cause a tracking error. However, the controller is able to compensa te for the non1inear 

friction and no oscillation is observed (Fig. 7.1O(e)), which yielded accurate speed tracking in 

both motoring and regenerating modes. 

Since the observer is taken from the adaptive vector control strategy, the observer's per-

formance is expected to be similar to the one depicted in Fig. 7.6. Therefore, the machine's 

parameters, J, Ld, Lq, and À are increased one at a time by 50% their nominal values. The ob-

server's performance is depicted in Fig. 7.11. It is noteworthy that the observer's performance 

remains less sensitive to parameter variations. 
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7.5 Adaptive Control with Uncertain Dynamics 

The adaptive controllers presented thus far use the machine's dynamics to achieve speed 

tracking. Under the uncertain dynamics constraint, the proposed adaptive controller assumes 

less knowledge about the machine's dynamics, which yie1ds simpler control scheme. As such, 

a PI controller keeps id constant to zero while the adaptive controller achieves precise speed 

tracking by machine's inverse dynamics approximation as shown in Fig. 7.12. On the other 

hand, a state observer is used as feedback for disturbance estimation. 

id = 0 

Adap.lrvé 
r-:-:::----~ cpnfroller 

w 

Inverter 1---:-"--+-.--1 

abc/dg 
transform 

FIGURE 7.12 - Disturbance estimation scheme 

Recall the formulation (7.] 5), 

. R (L L)·· L d. Ji 
v q = Ji (J) - ~ d - q ld lq + q -lq + cr (J) + - 'rD /\, dt J 

(7.25) 

where cr = P(Ldid + Â) and 'rD = 'rF + 'rL is the disturbance (friction+load) torgue, which is 

estimated using a disturbance estimator. Tt is noteworthy from (7.25) that cr(J) + j'rD is the 

most significant term in steady state since all derivatives vanish and setting id to zero makes 

the contribution of ~(Ld - Lq)idiq negligible in the controllaw. During transients, Lqfriq is 

negligible compared to Ji6J. Therefore, (7.25) can be approximated by, 

Vq ~ Ji 6J + cr (J) + j 'rD (7.26) 
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It can also be represented in a linear form <P~Ww. Therefore, the desired dynamics of (7.26) · 

satisfy to the following linear regression, 

(7.27) 

where <Pw is the approximation of <Pw. This approximation introduces an uncertainty that can 

be represented as, 

where Ww is the parameter estimate vector. Take the time-derivative of ew, 

. . . * 
ew = w-w 

Multiply both sides by J1 and substitute J1W from (7.26) and use the linear regression (7.27), 

(7.28) 

Since the inverter operates at a smaller period than the motor electrical time constant, a sensible 

practical assumption is that the inverter reproduces accurately the reference voltages v'd, and 

v~, which reduces the number of sensors and makes v~ = vq . Therefore, the controllaw can be 

defined as, 

(7.29) 

where Kw is a positive robustness gain introduced to cope with the uncertainty E. 

Theorem 14 Consider the nonlinear system in (7.1)-(7.2) with the control Law (7.29). The 

closed-Ioop system's stability is achieved with the following adaptation law : 

(7.30) 

where r w = [YI, Y2, . . . ,1',1] and Yi is a positive constant. 
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Proof 8 Consider the Lyapunov candidate function, 

Take the time-derivative of V : 

The parameters vector Ww is assU1ned to be constant, i.e., (Ww = Ww). Substitute J1éwfrom (7.28), 

Setting the controL Law as in (7.29) yields, 

Substitute êwfrom (6.26), 

Setting the adaptation Law as in (7.30) impLies that, 

Recall Young's inequaLity [80), 

1 
2ab < _a2 + ab2 

-a Va , b E IR and Va > 0 
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Therefore, 

Setting, 

where f3 is positive gain yields, 
. 1 2 
V < -tp -f3e - 2a ID 

with, 

So, it is possible to choose a > 0 and f3 > 0 so that V ~ O. Therefore, the system is stable in 

the sense of Lyapunov and converges to a small neighborhood of the origin, which is a region 

defined by the approximation error <1>. This region gets smaller as <1> -+ O. Theoretically, it can 

be made arbitrarily small by increasing the gains a and f3. 

The ab ove adaptive control strategy requires the know1edge of the disturbance 'rD, which is 

estimated by a state observer. Recall the system's dynamics (7.1) and (7.2), 

Substitute 'r, 

This can be written in astate space form, 

x=Ax+Bu 

y=Cx 
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where x E]R2 = [co , 't'DV is the state vector, and u E]R3 = [id, iq, idiqV is the input vector. 

A E ]R2 x 2, B E ]R3 X2, and C E ]R2 are given by, 

B = [0 hl h2] 
o 0 0 

with, a = -J, hl = 3ff, and h2 = i7(Ld -Lq). Therefore, the observer is defined as, 

i = Ai + Bu + G( Ci - y) 

y=Ci 

with, G being the observer gain matrix. Since the pair (C, A) is completely observable, it is 

possible to choose G such as (A + GC) is a Hurwitz matrix. The observer gain matrix G can 

be found by solving the algebraic Riccati equation or by using a pole placement technique. 

Therefore, the stability of the observer is guaranteed. 

7.5.1 ResuUs 

Three simulation runs are carried out to study the controller's performance. For each 

simulation, the controller's initial parameter estimate vector Ww is set to zero and the system's 

response is studied taking into account the machine's tracking speed error ew, the d-q axes cur-

rents and voltages, the output torque 't', the disturbance estimate iD, and the adaptive parame ter 

estimate vector Ww. The desired rotor speed is shown in Fig. 7.2. 

The nominal values (Table 7.1) are used to simulate the machine's dynamics. As shown in 

Fig. 7.13, the tracking speed error decays gradually before stabilizing within negligible ampli-
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tude while accurate disturbance estimation is obtained with the proposed estimation technique. 

On the other hand, the adaptive control scheme achieves high tracking precision while pra-

viding smooth d-q axes currents and voltages. Moreover, the estimation strategy delivers good 

performance during fast changes in electromagnetic torque by estimating accurately the fric-

tion torque as shown in Fig. 7.13(e). 

Next, a 100 (N·m) load torque is applied at time t=10s to evaluate the adaptive controller's 

performance to a disturbance torque. As shown in Fig. 7.14, when the drive is subjected to 

a disturbance torque, it compensates for this unexpected change by adjusting its parameters. 

Consequently, the control structure was successful in coping with the load torque variation 

(Fig. 7.14(e)). Moreover, the speed tracking error remains small, which yielded smooth CUf­

rents and control signaIs. 

In order to show the ability of the proposed controller in compensating for friction non-

linearities of different magnitudes, the nonlinear Coulomb friction term Fe is magnified 20 

times and the machine operates in motoring and regenerating modes to enable zero velocity 

crossing (i.e., Coulomb friction effect). The results are shown in Fig. 7.15. As it can be seen, 

the change in the speed reference signal has no effect on the overall control performance. The 

speed tracking error starts increasing during fast accelerations but stays in an acceptable range. 

Conventional control techniques tend to overcompensate for these effects and lead to severe 

tracking errors, limit cycles, chattering, excessive noise, and even instability [17] . As shown in 

Fig. 7.15, the nonlinearities around zero speed cause a tracking errar. However, the controller 

is able to compensate for the nonlinear friction and no oscillation is observed (Fig. 7.l5(e)), 

which yielded accurate speed tracking in both motoring and regenerating modes. 

7.6 Sensorless ANN -Based Adaptive Control 

The above adaptive controller shows that stability can be guaranteed ev en with uncertain 

dynarnics. Therefore, it is possible to ex tend this result to the unknown dynamics case. Thus, 

s"tabi1ity can also be achieved for intelligent adaptive controllers, which yields better rabustness 
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FIGURE 7.13 - Disturbance estimation response with nominal values: (a) speed tracking er-
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Adaptive parameters W. 
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FIGURE 7.14 - Disturbance estimation response with load variations: (a) speed tracking er-
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Adaptive parameters W. 
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to unstructured uncertainties. The adaptive vector control strategy is used and since electrical 

parameters are known to vary, two neural networks ANNd and ANNq are used to cope with pa-

rameter variations for d-q axes CUITents controlloop. The resultant control scheme is illustrated 

in Fig. 7.16. Since conventional speed or position sensors decrease the system's reliability, an 

ANN-based observer (ANN v) is used to estimate the rotor speed (Fig. 7.16) by only two-phase 

CUITent measurements ia and lb, 

ia 

SVPWM Inverter ib 

ic 

id 

+ W iq 
abc/dg 

transforrn 

FIGURE 7.16 - Sensorless ANN-based adaptive control scheme 

The neural networks ANNd, ANNq, and ANNv are composed of three layers each : one 

input layer of two neurons, one hidden layer with six neurons and one neuron for the output 

layer. The sigmoid function is used as activation function for al! neurons except for the output 

neuron which uses a linear function . 

Let ew = (j) - w* denote the machine speed error, and ed = id - id and eq = iq - i; the d-q 

axes CUITent errors, with (j) being the ve10city estimate and w*, i'd, and i; being the desired 

time-dependent speed and currents signaIs, respectively. AIso, let ev = J(vq - v;)dt denote the 

observer error, with v; being the desired time-dependent quadrature voltage and lJq being the 

quadrature voltage estimate defined as follows, 

(7.31) 
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We define the open loop speed estimate as, 

The output of ANNd, ANNq, and ANNv can be written as, 
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(7.32) 

(7.33a) 

(7 .33b) 

(7 .33c) 

where <Î>d, <Î>q, and <Î>v are the hidden layer's vector of known functions (regressor), with Wd, 

Wq, and Wv being the weight matrices. The symbol ê is the output error of ANNd, ANNq, and 

ANNv described by, ê = <Î>TW - <t>TW. 

Recall the PMSM formulation (7.1) and (7.2), 

Substitute 'r into the mechanical equation and since the permanent magnet machine torque 

depends mainly on the quadrature current iq , it is more convenient to set the direct reference 

current id to zero, which will minimize the torque vs . current ratio and increase the motor 

efficiency. In this design, friction nonlinearities compensation is beyond the scope. Hence, 

only viscous friction term is considered making 'rF = F w. Therefore, we obtain for following 

model, 
2J 2F 2 

i = -- W+-- w+--'rL-l1ed 
q 3pÀ 3pÀ 3pÀ 

(7.34) 

where l1ed is the uncertainty due to the direct current error ed described by, 
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It is noteworthy that for surface-mount PMSMs, f:.ed = 0 since Ld = Lq. In this work, the 

control design is done regardless of the PMSM type and hence, f:.ed is not taken to be equal to 

zero. The desired dynamics for (7.34) can be represented by the following linear regression, 

(7 .35) 

Take the time-derivative of the error signal ew, 

• Â. • * ew = ID - ID 

Multiply both sides by 3~À : 

2J. 2J;., 2J.* 
--ew = --ID - --ID 
3pA 3pA 3PA 

Add and substract -itfxoo, substitute -itfxoo from (7.34) and use the linearregression (7.35) : 

where, Pl = 3~À' P2 = 3
2
;;', f:.ID = 6) - ID, and f:.oo = ci> - 00. 

Recall the PMSM formulation (7.1), 

d 
Vd = R id + Ld d/d - Lq P ID iq 

d 
vq = R iq + Lq d/q + Ld P ID id + P A ID 

(7.36) 

(7.37a) 

(7.37b) 

Th erefore , we can also represent the desired dynamics for (7.32) and (7.37) by the following 
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linear regression, 

Recall, 

~(O = 6) - (0 

Substitute 6) from (7.37) and (0 from (7.38c), 

Substitute èv = vq - v~, 

Define the observer reference model signal as, 

where Kv l, and Kv2 are posi tive gains. 

Take the time-derivative of the error signaIs ed, eq , and ev, 

. d . d .* 
ed=-Id--zd 

dt dt 
. d . d.* 
eq = -d 1 q - -d lq 

t t 
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(7 .38a) 

(7.38b) 

(7 .38c) 

(7.39) 

(7.40) 
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Multiply the equations by Ld, Lq, and p~, respectively, 

Substitute Ld1hid' and Lq~iq from (7.37), and p~ vq from (7.32) and use the linear regres-

sion (7.38) : 

Ldèd = Vd - <P~Wd 

Lqèq = vq - <P~Wq 

1. A T 
pÂ ev = w- <Pv Wv 

The control and estimation law cao be defined as : 

i; = <P~Ww - Kwew - !1ed - Sv 

* A T A 

V d = <Pd Wd - Kded 

A T A v; = <Pq Wq - Kqeq - ew 

where Kw, Kd, Kq, and Kv are positive gains. 

(7.41 a) 

(7.41 b) 

(7.41c) 

(7.42a) 

(7.42b) 

(7.42c) 

(7.42d) 

Theorem 15 Consider a nonlinear system in theform (7.1)-(7.2) with the control and estima­

tion law (7.42). The closed-loop system 's stabiliry is achieved with the following adaptation 
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law: 

Wd = -rd <Pd ed 

Wq = -rq <Pq eq 

where rx = diag( YI, Y2,··· , ~1) and ')1 is a positive constant. 

Proof 9 Choose the following Lyapunov candidate function : 

Take the time-derivative of V : 
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(7.43a) 

(7 .43b) 

(7.43c) 

(7.43d) 

The parameters vectors Ww, Wd, Wq, andWv are assumed fO be constant, i.e., W = W. Substitufe 

3~À éwfrom (7.36), Ldéd, Lqéq, and p~ évfrom (7.41), 

v = {iq - <I>~Ww +!1ed + PI!1(Ï) + P2!1w}eW + {Vd - <I>~Wd}ed + {vq - <I>~Wq}eq 

+ {w- <I>;'Wv}ev +wJr~lww + WJrdlwd + w[r;I Wq + wvTr~ lwv 
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Setting, 

. .* 
lq = lq +eq 

Vd = v;j +!1vd 

Vq = v; +!1vq 

with !1vd = Vd - v;j and !1vq = vq - v~, yields, 

v = {i; + eq - <I>~Ww +!1ed + P1!1W + P2!1CO }ew + {vd + !1vd - <I>~Wd }ed 

+ {v; +!1vq - <I>~Wq}eq + {w - <I>~Wv}ev + w~r~)ww + wlrd1wd 

-T 1'" -T 1'" + Wq rq Wq + Wv r~ Wv 
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Sin ce the inverter operates at a smaller period tJUin the motor eLectricaL time constant, the 

inverter is assumed ta reproduce accurateLy the reference voltages vj and v~, which reduces 

the number of sensors and makes !1vd = !1vq = o. Setting the control and estimation Law as 

in (7.42) yields, 

. T - . - T -1 '" 
V = <l>wWwew - svew + P1!1coew + P2!1coew + tded + tqeq + €vev + wwr w Ww 

- T - ) '" - T -1'" - T - 1 '" 2 2 2 2 + Wd rd Wd + Wq rq Wq + Wv rv Wv - Kwew - Kded - Kqeq - Kvev 

Substitute Sv from (7.40). Set KI') = ~l, and Kv2 = ~~ and substitute !1co, and !1w from (7.39), 

. T- -T - 1'" -T - )'" -T -1'" 
V = <l>wWwew + tded + tqeq + tvev + wwr w Ww + Wd rd Wd + Wq rq Wq 

-T - ) '" 2 2 2 2 + Wv rv Wv - Kwew - Kded - Kqeq - Kvev 
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Substitute êd, êq, and êv fr01n (6.26), 

. T- AT- -T AT- -T AT- -T 
V = <PcoWcoeco + <Pd Wded + <Pd Wded + <Pq Wqeq + <Pq Wqeq + <Pv Wvev + <Pv Wvev 

-T 1" -T lÀ -1' l À -1' lÀ + wcor~ Wco + Wd rd Wd + wq r; wq + W\. r ;;- W;, 

2 K 2 K 2 2 - Kcoeco - ded - qeq - Kvev 

Setting the adaptation Law as in (7.43) implies that, 

Recal! Young 's inequality [80}, 

Therefore, 

Bence, 

with, 

1 
2ab < _a2 + ab2 

-a Va,b E IR and Va> 0 

. 1 2 ( a) 2 ( a) 2 ( a) 2 V < -\{1 - Kcoe - Kd - - el - K - - e - K - - e - 2a co 2 c q 2 q Il 2 Il 
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Setting, 

where f3 is positive gain yields, 

a 
Kd = Kq = Kv = - + f3 2 

Kw = f3 
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So, il is possible to choose a and f3 so that V ~ O. Therefore, the system is stable in the sense 

of Lyapunov and converges to a small neighborhood of the origin, which is a region defined by 

the neural network approximation errors <Ï>. This region gets smaller as <Ï> ~ O. Theoretically, 

it can be made arbitrarily small by increasing the gains. 

7.6.1 Results 

Three simulation mns are carried out to study the proposed controller's pelformance. 

For each simulation, the system's response is studied taking into account the machine's speed 

estimation and tracking errors, the d-q axes currents error and voltages Vd and vq, the output 

torque -r, and the parameters estimate W w. The desired rotor speed is shown in Fig. 7.17. 

In the tirst simulation, the aforementioned nominal values are used to simulate the ma-

chine's dynamics. As shown in Fig. 7 .18(b), the speed tracking error decays gradually before 

stabilizing within a negligible amplitude. On the other hand, satisfactory speed estimation is 

obtained with the proposed observer (less than 0.1 %) while the controller provides smooth d-q 

axes currents and torque signal. Moreover, the estimated rotor speed fol1ows the actual speed 

closely during fast changes in the electromagnetic torque. It is noteworthy that at low speed, a 

very low speed estimation error is obtained with the proposed speed observer. Furthermore, the 

adaptive controller copes with parameter uncertainties and achieves fast and precise parameters 

estimate convergence and tracking. 
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In the next simulation, a 100 (N·m) load torque is applied at time t=Os to evaluate the adap-

tive controller's performance to a torque disturbance. As shown in Fig. 7.19, when the drive is 

subjected to a torque disturbance, it compensates for this unexpected change by adjusting its 

parameters. Consequently, the controller was successful in coping with the load torque vari-

ation. Moreover, the speed tracking error remains small, which yielded smooth currents and 

control signal. However, a speed estimation error increase is noticed and higher torque is re-

quired for the heavier load. The low-speed performance of the rotor speed observer is c1early 

shown in this simulation. 

The following simulation is meant to show the modularity of the proposed controller in mo-

toring and regenerating modes. For that, the speed reference signal is subjected to a direction 

change, the results are shown in Fig. 7.20. As it can be seen, the change in the speed reference 

signal has little effect on the overall control performance. The speed tracking and estimation 

errors start increasing during fast accelerations but stay in an acceptable range. It maintains a 

similar behavior as in in Fig. 7.18, the estimated rotor speed follows the actual speed smoothly 

in the whole speed range in both motoring and regenerating modes. Furthermore, the abi1ity of 

the proposed adaptive controller to cope with speed direction change is shown in this case. 

Next, a simulation is canied out to study the proposed observer's ability to sustain various 

parametric uncertainties. The controller's performance is similar to the nominal case, which is 



Permanent Magnet Synchronous Machines (PMSMs) 205 

15X 10-' 

0.25 

i" 0.2 i" 
0. 0. es ~ 10 

~ 
0.15 g 

" c 0.1 co 
.51 c 

~ 
:x 

0.05 " 
~ 

g .. " " " ! -0.05 ' 
8. 
Vl 

-0.1 
0 _~ ____ :. ____ ._ ....... ____ --l. ____ ._~J.._ 

10 20 30 40 50 60 10 20 30 40 50 60 
Time(s) Time(s) 

(a) (b) 

3X 10-' 

I·- d-ax;s 
200 r 

/ ,.-------- \ ..... _# ••• \ 

1 .• .• q-axis , 1 
2 1 ; 

~ 1 
1 f 

! 
~ 1 :> ~ 
" 1 
~ 1 1 i 150 r ! .,. 

~ r~ 
~ , 

1 ~ ; 
." 

Il... r ! c l 0 0 ~ 100 >- i ~ j " i"'" , 
0 
t: 1 0 

If i .. 1 ~ ; 1 " ~ -1 1 1 co sou. ; 
J! 

~ 1 1 0 
1 1 > 

f 
~ 1 \\ U 

1 

, 
-2 1 , 

1 Ob- , 
\-

, 
1 1 

-3 
0 10 20 30 40 50 60 0 10 20 30 40 50 60 

Time (s) Time(s) 

(c) (ct) 

70r 0.4 

l 1 
60 , 

~ 
, .... w: 0.35 , 

" 50 , 
Ê .l! 1 

~ 
, 

1E. 40 , E 0.3 ! ~ ;; 30 
.. 

c ~ co 
.~ .l! 0.25 

" 20 " ~ E e- 10 ~ 0 0.2 1- 0. 

0.11 // 
..... - ... 

-10-

-20 ' 
0 10 20 30 40 50 60 

0.1
0 10 20 30 40 50 60 

Time{s) Time (s) 

(e) (t) 

FIGURE 7.18 - ANN-based adaptive control response with nominal values : (a) speed esti-
mation error; (b) speed tracking error; (c) d-q axes currents en'or ; (d) d-q axes voltages; (e) 
controller's torque -r; and (t) parameters estimate 'IV (j)_ 



Pemlanent Magnet Synchronous Machines (PMSMs) 

0.6 · 
i' 

. ~ 0.5 
~ e 
~ 0.4 
c o 
~ 03 
~ 
.. 0.2 

l 
(J) 0.1 

o 
10 

(a) 

X 10-3 
31·----··-------,----·-----------------,·--···-------------

5: 
'" .. 
~ 1 1 
1 

" 
g .. 
!1 -1 , 
c 
~ 
:J 
u -2 . 

1 
1 
1 

~~ 
1° 
1 
1 
1 
1 
1 
1 
1 
! 

20 30 40 50 
-3L--~--~-~----~--~ o 10 60 

170r 

160 

_150. 
E . 
~ 140. 
~ 

~ 130 
CI ,. 
cP 120 
:J 
CT 

~ 110 

100 

90 

Time(5) 

(c) 

._~~---. 

BOO!-- -:1"-::0 - ---:2"-::0----:3::c0--4"-::0----:S=0- ---=60 
Time (5) 

(e) 

0.09~-~--~-~--~-~-~ 

j O.OB 

i' 0.07 
a. 
~0.06 

~ 0.05 
CI 

~ 0.04 

~ 0.03 
" .. 
~O.02 . 
<Il 

0.01 

~ 150 ! 
'" ' 

ri f i CT ; 

~ 100 ; 
o ' 
~ so[.! 
Jl [; 
o ~ 
> r 

o 

10 20 30 40 

. . . 

Time (5) 

(b) 

50 60 

J~=!~-------==:-:::::==I~---~ o 10 20 30 
Time(5) 

50 60 40 

.. 6 

L 
'" .. 
54 
1P 
E 
i! 3 .. a. 

2 i 

(d) 

._ ._ W ---~' 
' ....... w

2 

i 3 

11 
%~~=1=O~~2;O~~=30~~;40~~=5=0~~60 

Time(s) 

(f) 

206 

FIGURE 7.19 - ANN-based adaptive control response with load torque disturbance : (a) speed 
estimation error; (b) speed tracking elTor; (c) d-q axes CUlTents error; (d) d-q axes voltages; 
(e) controller's torque 'r; and (f) parameters estimate W(J). 
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FIGURE 7.20 - ANN-based adaptive control response in motor and generator mode: (a) speed 
estimation elTor; (b) speed tracking elTor ; (c) d-q axes CUlTents error; (d) d-q axes voltages; 
(e) controller's torque 'r; and (f) parameters estimate Ww. 
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expected since the control design is independent of the machine's mechanical and electrical pa-

rameters. However, the observer is based on equation (7.1 b) , which inc1udes parameters R, Ld, 

Lq, Â, and p. Therefore, the machine's electrical parameters, R, Ld, Lq, and Â are increased one 

at a time by 25% their nominal values. The observer's performance is depicted in Fig. 7.21. It is 

noteworthy that from equation (7.1 b), (Ld P id + P Â) (0 is the most significant term at (Onominal . 

Thus, the variation of R, and Lq does not have much effect on the observer's performance as 

it is shown in Fig. 7.21(a), and Fig. 7.21(c). AIso, Fig. 7.21(b) shows good performance since 

setting id to zero makes the observer less sensitive ta Ld. However, the flux Â remains the key 

parameter in achieving high estimation accuracy as it is observed in Fig. 7.21(d). This param-

eter can be estimated online using one of the so many techniques available in the litterature. 

7.7 Sensorless ANN -Based Vector Control 

The adaptive control1er is removed from the previous adaptive ANN-based control tech-

nique and the ANN's approximation property is exploited to design a reduced complexity 

control scheme able to cope with parametric uncertainties. The resultant control scheme is il-

lustrated in Fig. 7.22. As such, a neural network controller ANNd keeps id at zero constant 

while a second neural network controller ANNq achieves precise speed tracking by machine's 

inverse dynamics approximation. On the other hand, the neural network observer ANNv is used 

for speed estimation. 

Define the quadrature voltage estimate as, 

(7.44) 

where, () = p(Ldid + Â). We define the open loop speed estimation model, which is to be 
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FIGURE 7.21 - ANN-based adaptive control response with variation of: (a) resistance R; (b) 
inductance Ld ; (c) inductance Lq ; and (d) flux Â. 
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FIGURE 7.22 - Sensorless ANN-based vector control scheme 

reproduced by the neural network ANNv through its adaptation law, 

A 1 A R. Lq d . co = - v - - 1 - - -{ cr q cr q cr dt q 

Define the reference model signal s, 

s = ew + VI ëw = CO - COI 

with VI being a positive constant. 

The output of ANNd , ANNq, and ANNv can be written as, 

A T A T 
Yd = <Pd Wd = <Pd Wd + lOd 

A TA T 
Yq = <P q Wq = <P q Wq + lOq 

A T A T 
Yv = <Pv Wv = <Pv y\!;, + lOv 

210 

(7.45) 

(7.46) 

(7.47a) 

(7.47b) 

(7.47c) 
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where <Pd, <Pq, and <Pv are the hidden layer's veetor of known funetions (regressor), with Wd, 

Wq , and Wv being the weight matrices. The symbol c is the output error of ANNd , ANNq , and 

ANNv deseribed in (6.26). 

Reeall the fommlation (7.14), 

(7.48) 

Reeall the PMSM formulation (7 .1), 

(7.49) 

The desired dynamies for (7.45), (7.48) and (7.49) can be represented by the following linear 

regression, 

The controllaw can be defined as : 

where Kw, Ka, Kd, and Kv are positive gains. 

(7 .5Ia) 

(7.51b) 

(7.51c) 

Theorem 16 Consider a nonLinear system in thefonn (7.1)-(7.2) with the contraLLaw (7.51). 
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The closed-loop system's stability is achieved with thefollowing adaptation law: 

Wq = -lq <Î>q s 

Wd = -Id <Î>d ed 

where lx = diag( YI, Y2 , ···) ')';1) and ')'i is a positive constant. 

Proof 10 Take the time-derivative ofs, 

Add and substract w. 

where ~w = 6J - w. 

Multiply both sides by f.1 : 

Substitute f.1wfrom (7.48) and use the linear regression (7.50) : 

f.1S = vq - <I>~Wq + f.1~w 

Take the time-derivative of the error signal ed, 

Multiply both sides by Ld, 

. d . d .* 
ed = -Id - -Id 

dt dt 
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(7.52a) 

(7 .52b) 

(7.52c) 

(7.53) 
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Substitute Ld~idfram (7.49) and use the linear regression (7.50b), 

Recal!, 

~w= oo-w 

Substitute 00 from (7.45) and w from (7.50c), 

Substitute ev = vq - v;, 

Substract (7.50c) fram (7.45), 

~w = ~ (0 - v*) cr q q 

1 
~w= - ev 

cr 

l (A *) A n-..T - Vq-Vq = w-~v Wv 
cr 
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(7.54) 

(7.55) 

Sin ce the inverter operates at a smaller period than the motor electrical tùne constant, a sen­

sible practical assumption is that the inverter reproduces accurately the reference voltages v~ , 

and v;, which reduces the number of sensors and makes v~ = Vd, and v; = vq. Considering the 

definition of ev, we obtain, 

(7.56) 

Choose the following Lyapunov candidate function : 

Take the time-derivative of V: 
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The parameters vectors Wq, Wd, and Wv are asswned to be constant, i.e., W = W. Substitute J.15 

Jrom (7.53), LdedJrom (7.54) and ~ev Jrom (7.56), 

. T . T ~ T 
V = {vq - <P q Wq + J.1dW}S + {Vd - <Pd Wd }ed + {W - <Pv Wv}ev 

-T ]" - T ]" -T 1" 
+Wq r; Wq+ Wd rd Wd+Wv r~ ~, 

Setting the controllaw as in (7.51) yields, 

v = êqS+ (J.1dW -Koëv)s+ êded + êvev + w:r;lwq + WJrd1wd + w!'r~ Iw;! 

Set Ko = * and substitute dW Jrom (7.55), 

Substitute êq, êd, and êvJrom (6.26), 

K 2 K 2 K 2 - wS - ded - vey 

. ~ T- -T ~ T- -T ~ T- -T 
V = <Pq Wqs+ <Pq Wqs+<Pd Wded + <Pd Wded +<Pv Wvev + <Pv Wvev 

- T - 1" - T -1" - T - ]" 2 2 2 +Wq rq Wq + Wd rd Wd + Wv rv ~, - Kws - Kded - Kvev 

Setting the adaptation Law as in (7.52) implies that, 

Recall Young's inequality [80}, 

1 
2ab < _a2 + ab2 

-a Va,b E lR and Va > 0 
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Therefore, 

Setting, 

where f3 is positive gain yields, 

with, 

lX 
Kw = Kd = Kv = - + f3 2 
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So, il is possible to choose lX and f3 so that V ::; o. Therefore, the system is stable in the sense 

of Lyapunov and converges to a small neighborhood of the origin, which is a region defined by 

the neural network approximation errors <Î>. This region gets smaller as <Î> -7 O. Theoretically, 

it can be made arbitrarily small by increasing the gains. 

id = 0 

FIGURE 7.23 - Sensorless vector control scheme 
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7.7.1 Results 

The controller is compared in similar operating conditions to the well-known sensor-

less vector control technique shown in Fig. 7.23, which is widely used in the industry. It is 

noteworthy that for the sake of a fair comparison, there is no decoupling terms between d-q 

axes as in few vector control strategies since the proposed ANN control structure is not based 

on any decoupling term. On the other hand, the observer from Fig. 7.22 is being used. The 

desired rotor speed is taken as the step response of a critically damped second order system 

with a natural frequency of 2 rad/s, as shown in Fig. 7.24. 

250r--,-------.::::::====\-,----..,..------, 

~ 
Cl. ex: 

200 

:; 150 
~ 
Co 
(J) 

E 100 
'iii 
~ 

2 4 6 8 10 
Time(s) 

FIGURE 7.24 - Nonlinear observer speed reference signal 

Five simulation runs are carried out to study the controIIer's performance. For each sim-

ulation, the ANN's initial weights are set to zero and the system's response is studied taking 

into account the machine's tracking and estimation speed errors, and the d-q axes currents and 

voltages. 

In the first simulation, the nominal values (Table 7.1) are used to simulate the machine's 

dynamics. As shown in Fig. 7.25, the ANN control scheme outperforms the vector controIIer by 

its high tracking precision, i.e., the speed error amplitude is kept in within sensors resolution. 

It is noteworthy that this perfomlance is achieved by a control effort similar to the one of 

the vector control strategy (Fig. 7.25(e) and Fig. 7.25(f)). On the other hand, a satisfactory 
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trajectory tracking is obtained with the vector controller while both controllers provide smooth 

d-q axes CUlTents and voltages. Moreover, the observer delivers good performance dUling fast 

changes in the electromagnetic torque in both cases. Although the ANN-based vector control 

did not use decoupling terms, it can be observed on Fig. 7.25 that it resulted into reduced 

coupling among the speed controlloop and the flux controlloop (Id response) as compared to 

the vector control. 

Since the machine's parameters are time-varying, three simulation sets are caITied out to 

study the proposed adaptive cont:roller's ability to sustain various intensities of parametric un-

certainties. First, the machine's mechanical inertia parameter J is decreased by 50%, the results 

are depicted in Fig. 7.26. Next, the machine's electrical pararneter Ld is decreased by 50%. The 

performance of both controllers is shown in Fig. 7.27. Finally, the machine's electrical pararn-

eter Lq is decreased by 75% with respect to its nominal value (table 7.1) . The performance 

under low inductance is shown in Fig. 7.28. The ANN controller deals successfully with the 

changes by keeping similar performance as with nominal parameters. However, oscillations are 

observed with the vector controller. On the other hand, although q axes CUITent is not explicitly 

controlled by a current loop regulator as in the vector control technique, the proposed controller 

was able to provide smooth control signal, which yields smooth q-axis CUITent. Moreover, the 

rotor speed follows the desired speed c1osely. The superiority of the ANN controller over con-

ventional control techniques is c1early shown in these simulation runs. 

The next simulation is meant to show the modularity of the proposed control approach in 

motoring and regenerating modes. For that, the tirst simulation is repeated with a direction 

change in the speed reference signal, the results are shown in Fig. 7.29. As it can be seen, the 

change in the speed reference signal has little effect on the control performance. lt maintains 

a similar behavior as in thefirst simulation (Fig. 7.25), the estimated rotor speed follows the 

actual speed smoothly in the whole speed range in both motoring and regenerating modes. 
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FIGURE 7.25 - ANN-based vector control response with nominal values: (a) speed errors ; (b) 
speed estimation errors; (c) d-axis currents; (d) q-axis currents; (e) d-axis voltages; and (f) 
q-axis voltages. 
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FIGURE 7.26 - ANN-based vector control response with low inertia J : (a) speed errors; (b) 
speed estimation errors; (c) d-axis currents; (d) q-axis currents; (e) d-axis voltages; and (f) 
q-axis voltages. 



PemJanent Magnet Synchronous Machines (PMSMs) 

0 . 02'--~----~-~-----;==A=N=N =i" 

0.015 " 

~ O.O l l 
~ 

~ O. 005 ~ 
:; 1 

go 0 
t , 
: -O. 005~ 
~, 

l -O.01!: 
:' - 0.015 '· 

-O.02~ 5 ············_······1~O··· 

- - - Vectar 

•••.• .1.. ...• ____ •• _ .••. _ .. 1 

15 20 25 30 
Time(s) 

Ca) 

ANN speed estimation error (RPM) 

Vector speed estimation error (RPM) 

J\ : ( 
o 5 10 15 20 25 30 

Time(s) 

Cb) 

-3 ANN currents on d-axis (A) ANN currents on q-axis (A) 

:~ "---------"----r ~v '---'--------', L~r C ; 1 
o 5 10 15 20 25 30 0 5 10 15 20 25 30 

Vector currents on d-axis (A) Vector currents on q-axis (A) 

o 5 10 15 20 25 30 

_~C'------'---: · ~L·~; 1 
20 5 10 15 20 25 30 

Time (s) Time(s) 

Cc) Cd) 

ANN voltages on d-axis (V) 

Vector voltages on d-axis (V) 

o 5 10 15 20 25 30 10 15 20 25 30 
Time(s) Time(s) 

Ce) Cf) 

220 

FIGURE 7.27 - ANN-based vector control response with low inductance Ld : (a) speed errors; 
(b) speed estimation errors; (c) d-axis currents ; (d) q-axis currents; (e) d-axis voltages; and 
(f) q-axis voltages. 
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FIGURE 7.29 - ANN-based vector control response in motor and generator mode: (a) speed 
errors; (b) speed estimation errors; (c) d-axis cUlTents; (d) q-axis currents; (e) d-axis voltages; 
and (f) q-axis voltages. 
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7.8 Robust ANN-Based Nonlinear Speed Observer 

A robust ANN-based nonlinear speed observer is proposed without any a priori dynam-

ics knowledge. Thus, the proposed observer is able to cope with higher degrees of nonlinearity 

since it is not based on a linear-in-parameters model, unlike many neural network observers. 

Moreover, parameters knowledge is not required, which solves the parameter sensitivity prob-

lem. Furthermore, the measurement of the noisy motof voltage is also not required, which 

favors better convergence and tracking and reduces the number of sensors with respect to other 

methods. 

The field-oriented vector control approach [71] is used in this work to highlight the per-

formance of the proposed observer as shown in Fig. 7.30. The speed controller is based on 

a proportional integral (PI) controller that achieves tracking by taking the error between the 

reference and estimated velocities to deliver a desired quadrature current signal i~. Two other 

PI controllers are used for d-q axes currents regulation. The proposed method uses iQ , ib, and f) 

as system's measurable states and the system parameters are assumed to be a priori unknown. 

id = 0 

'la 

Inverter ib 
ic 

w f) 
f) 

abc/dq 
w transform 

FIGURE 7.30 - Robust ANN-based nonlinear speed observer scheme 

The system dynamics (7.1) and (7.2) can be expressed as a general nonlinear multiple input 
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multiple output (MIMO) system model, 

i(t) = f(x,u) 

y(t) = Cx(t) 

224 

where, u = [id , iqjT E IRmli is the input, y E IRmy is the output, x = le , wjT E IRn is the state 

vector, and f is an unknown nonlinear function. 

Add and subtractAx(t), 

i(t) =Ax(t)+g(x,u) 

y(t) = Cx(t) 

where, g(x , u) = f(x, u) - Ax(t) is the unknown nonlinear function to be approximated by the 

neural network. The matrix A is selected such as the pair (C, A) is observable. Therefore, the 

observer can be designed as, 

i(t) = Ai(t) + g(i, u) + G(y - Ci(t)) 

y(t) = Ci(t) 

where, ee = y - Ci(t) is the observer error, i is the observer state vector and G E IRnx my is the 

observer gain matrix. Therefore, G can be chosen to make the matrix (A - GC) Hurwitz. Since 

the observer model is based on a linear technique, a neural network is designed to approximate 

the nonlinearities of the function g(x, u) by minimizing the error ee. Therefore, the neural 

network output is expressed as, 

g(i,u) =g(x,u)+8 

with, 8 being the neural network approximation error. The neural network is composed of 

three layers each : one input layer of three neurons, one hidden layer with eight neurons and 

one neuron for the output layer. The sigmoid function is used as activation function for a11 
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neurons except for the output neurons, which use a linear function. 

7.8.1 Results 

Three numerical simulations are carried out to study the proposed observer's performance. 

For each simulation, the system's response is studied taking into account the machine's speed 

tracking and estimation errors, the currents error on d-q axes, and the control output voltages 

Vd and vq. The desired rotor speed is shown in Fig. 7.24. 

0.1 

o.os 

:s- 0.06 
Il. 

0.04 ~ 
~ g 0.02 ., 
g> 0 
:.: 
u g -0.02 

" ~ -0.04 
c. 

C/) -0.06 

-o.os 

-o.1
o
'-------'--2 -----'-4--~6c----S.L------:'1 0 

Time(s) 

(a) 

0 .02,-----~--,-----.---_;====ïl 

l
-d-aXis 
- - - q-axis 

0.015 (\ 
- 1 \ 

:5. 0.01 \ 
f! \ 
g 0.005 ' ., " 
~ o~~-"---~-~-----, 
::J 
U 

~ -0.005 
)( .. 
cr .1, -0.01 

-0.015 

/ 
'" / 
,--

-0.020'-------'--2 ----':-4-----':6------,S'-----:'1 0 
Tlme(s) 

(c) 

:s-
~ 0.01 

g 0.005 ., 
c: 
.2 0 
10 
E 
~ -0.005 ., 
" ~ -0.01 
C/) 

-0.015 

-0 .020'----2.L---~4-----'---~S------'10 

Time(s) 

200 

150 

~ 
1/) 

~ 100 
.lS o 
> 

50 

1 
1 

1 
1 
1 
1 
1 
1 

l ' 

O~ 
o 

1 
1 

(b) 

.......... ----------'\ 
/ \ 

// \ 

2 4 
Time(s) 

(d) 

, , 
\ 
\ 
\ 
\ 

6 

\ 
\ 
\ 
\ , 

l
-d-aXisl 
- - -q-axisf 

' ...... ----
S 10 

FIGURE 7.31 - System response with nominal values (a) speed tracking error; (b) speed 
estimation error; (c) d-q axes CUITent eITors; and (d) controller's output voltages Vd and vq . 
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In the tirst simulation, the aforementioned nominal values are used to simulate the ma-

chine's dynamics. As shown in Fig. 7.31, the estimation position and speed errors decay grad-

ually before stabilizing within a negligible amplitude. On the other hand, a satisfactory trajec-

tory tracking is obtained with the proposed observer while the controller provides smooth d-q 

axes CUlTents and torque signal. Moreover, the estimated rotor speed follows the actual speed 

c10sely during fast changes in the electromagnetic torque. 
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FIGURE 7.32 - System response with inductance variations (Lq = L~om x 2) : (a) speed track-
ing error; (b) speed estimation error; (c) d-q axes current errors; and (d) controller's output 
voltages Vd and vq. 

Since the machine's electrical parameters are known to be time-varying, a simulation is car-
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ried out to study the proposed observer's ability to sustain varions parametric uncertainties. The 

formulation (7.1 b) shows that the performance of observers based on a linear-in-parameters 

model is dependent on parameters R, Ld, Lq, À, and p. The parameter pis the number of pairs 

of poles and is constant. Moreover, setting id to zero makes the observer less sensitive to Ld' It 

is noteworthy that from equation (7.1 b), p À ()) is the most significant term at Wnominal. Thus, 

linear-in-parameters model based observers offer poor estimation performance wh en parameter 

À varies. This parameter used to be estimated online, which adds more complexity to existing 

estimation schemes. Therefore, the machine's electrical parameters, Lq, and À are increased 

one at a time by 200% their nominal values. As it is shown in Fig. 7.32 and Fig. 7.33, param-

eters variation have no significant effect on the observer's performance. Unlike conventional 

estimation techniques, the proposed observer assumes a priori unknown dynamics and is able 

to cope with higher degrees of uncertainties. The proposed observer achieves high estimation 

accuracy in the presence of high parametric uncertainties, which yielded smooth currents and 

control signaIs. This shows the modularity of the proposed observer as it maintains a similar 

behavior as in nominal parameters case. 

7.9 Adaptive Fuzzy Logic Control 

The aim of the proposed control strategy is to achieve robustness to both structured 

and unstructured uncertainties with a single controller, which reduces the system's complexity 

compared to classical cascaded-based control structures. A Lyapunov stability-based adapta-

tion technique is used as an alternative to the conventional heuristic tuning methods. Thus, the 

stability of the proposed approach is guaranteed unlike many computational intelligence-based 

controllers. Moreover, the proposed adaptive fuzzy logic contToller (FLC) uses a computational 

efficient membership functions and operators to alleviate the computational burden associated 

with soft-computing tools, which makes it practically realizable. Furthermore, the measure-

ment of the noisy machine voltages and currents is not reqnired as in most of the PMSM-based 

controllers, which favors better convergence and tracking and reduces the number of sensors, 
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with respect to other methods. To the authors' best knowledge, this work is one of the first at-

tempts, if any, to achieve high tracking control pelformance in the presence of both structured 

and unstructured uncertainties by adaptive fuzzy logic control architecture without the use of 

currents sensing or loop regulation for PMSMs. 

The control strategy uses quadrature voltage vq to achieve speed tracking and keeps the 

direct voltage Vd constant to zero. The resultant control scheme is illustrated in Fig. 7.34. As 

such, the adaptive fuzzy controller achieves a precise speed tracking by machine's inverse 

dynamics approximation. 

... 
Vd = 0 r--------, 

... , s 
Reference 

model 

Inverter 

FIGURE 7.34 - Adaptive FLC control scheme 

The fuzzy control strategy is based on a human operator experience to interpret a situation 

and initiate its control action. Given the speed signaIs w* and w, the speed error ew is then 

computed. The FLC takes ew and its derivative ew and provides a control action vq• These sig-

naIs are quantized into 7 levels represented by a set of linguistic variables: Negative Large 

(NL), Negative Medium (NM), Negative Small (NS), Zero (Z), Positive Small (PS), Positive 

Medium (PM), and Positive Large (PL). In this study, triangular membership functions are 

used, mainly due to their high computational and performance efficiencies. The input member-

ship functions and the fuzzy rules adopted by the fuzzy control system are shown in Fig. 7.35 

and Table 7.2, respectively. They have been accredited for their computational efficiency and 

satisfactory performance and can be refined by an expert to get better control performance. 

However, these procedures are conducted ahead of time and are not part of the control cycle. 

The adopted rules are inspired from the rules described in Table 5.2. This way, the FLC forces 
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the machine's speed error ew and its derivative èw to approach zero. It is worth mentioning that 

an empirical study was conducted beforehand to tune the input membership functions. The 

center of area method is used for defuzzification. 

TABLE 7.2 - Fuzzy logic rules for PMSMs 

NL NM 1 NS PL 

NS 
NM 
NL NL NL NL 

NL NM · NS z PS PM PL 

0.5 

o~--~~----~----~----~----~~--~ 

-0.6 -0.4 -0.2 0.2 0.4 0.6 

INL NM 
1 

NS Z PS PM PL 

0.5 

0 
-6 -4 4 6 

FIGURE 7.35 - Fuzzy logic membership functions 

The adaptive FLC structure is depicted in Fig. 7.36. It consists of four layers. Input nodes 

and fuzzification nodes are shown in layer 1 and layer 2, respectively, forming the antecedent 

part of the fuzzy rules. Consequent parts are represented by layer 3 and 4 which are constructed 
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with fuzzy rule nodes and output nodes. They are linked by the weight matrix W, which is tuned 

online using a Lyapunov-based adaptation technique. 

-l:ayer 1 Layer .3.- -l::,ayer 3 Layer .!-
-V-

Antecedents 
-....,.-

Consequents 

FI.GURE 7.36 - Adaptive fuzzy logic control structure 

The FLC's output can be written as : 

(7.57) 

where, ê = ci>Tw - <I>TW is the fuzzy logic output error, W E ffi.r x m is the fuzzy logic conse-

quent part weight matrix and ci> E IR/" is the r-dimensional fuzzy logic antecedent part vector of 

known functions (regressor) defined as : 

Since in this work the FLC is a single output fuzzy logic system, i.e., (m = 1), the matrix 



Permanent Magnet Synchronous Machines (PMSMs) 232 

W E ]Rrxm is reduced to a vector W E ]Rrx 1 = [YI ,Y2 , .. . ,Yr], where Yp is the fuzzy logic con-

sequent part of the p/h rule, p = l, ... , r. The sign • denotes the parameter estimate. Define the 

reference model signal s as in (7.46). 

Recall the formulation (7.14), 

The desired dynamics of this model can be represented by the following linear regression, 

which is a weIl established representation in adaptive control theory and commonly used in 

adaptive control strategies [43,52] : 

(7.58) 

In this work, we set r = 7, making the dimension of vectors <Î> and W equal to dimension of 

vectors <I> and W in (7.58). Therefore, the controllaw can be defined as : 

A T A 

V q = <I> W - KDS (7.59) 

with KD = ~ + f3, where a and f3 are positive gains . 

Theorem 17 Consider a nonlinear system in theform (7.1)-(7.2) with the controllaw (7.59). 

The closed-Ioop system 's stability is achieved with the following adaptation law : 

where [' = diag( YI , Y2 , ... , Yr) and YI is a positive constant, l = 1, ... , r. 

Proof 11 Take the derivative of the signal s in (7.46) : 
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Multiply both sides by )1 : 

Substitute )16.>from (7.14) and use the linear regression (7.58): 

(7.60) 

Choose the following Lyapunov candidate: 

Taking the derivative of V: 

Substitute )15from (7.60) : 

Setting the control Law as 
A T A 

V q = <l> W - KDS 

leads ta 

where, t: = <l>TW - <pTW from (7.57). Substitute t:from (6.26) : 

Setting the adaptation Law as 
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implies that 

v = 4>T Ws - KDi 

RecalZ Young's inequality [80}, 

Therefore, 

Set KD = ~ + f3 yields, 

1 2 ? 
2ab < -a + ab­-a Va, b E IR and Va > 0 
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It is possible to choose a and f3 so that V ~ 0, except possibly in a neighborhood of s= O. 

Then, the system is stable in the sense of Lyapunov. The neighborhood of s = 0 is a region 

defined by the fuzzy logie approximation error 4> and gels smaller as 4> -+ O. 

7.9.1 Results 

Five simulation runs are carried out ta study the proposed controller's pelformance. For 

each simulation set, the system's response is studied taking into account the machine's speed 

tracking error, the currents on d-q axes, the reference model output s, and the control signal, 

i.e., applied voltage v;. The desired rotor speed is shown in Fig. 7.24. 

The aforementioned nominal values are used to simulate the machine's dynamics. The 

advantage behind the use of the adaptive fuzzy controller is clearly shown in (Fig. 7.37) by 

very good tracking performance and negligible amplitude where the speed error is kept in , i.e, 

0.01 %. At t = 5 s, the system is subjected to a trajectory change, which introduces a sudden 

brief fluctuation on the voltage vq . This causes a dip on the speed tracking error, which is of 

a negligible magnitude. A compromise between trajectory tracking and disturbance rejection 

is achieved by adjusting lfI in (7.46). On the other hand, although d-q axes currents are not 

explicitly controlled by current loop regulators as in many conventional control techniques, 
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the proposed contro]]er was able to provide smooth control signal, which yields smooth d-q 

axes CUITents. Moreover, the rotor speed fo]]ows the desired speed c10sely during fast changes 

in the electromagnetic torque. It is noteworthy that the adaptive controller copes easily with 

nonlinear friction uncertainties and achieves fast and precise convergence and tracking. 
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FIGURE 7.37 - Adaptive FLC response with nominal values: (a) velocity elTor; (b) reference 
model output; (c) d-q axes cUlTents; and (d) applied voltage v~. 

Since the machine's electrical parameters are time-varying, i.e., stator resistance is known 

to vary with temperature and inductance varies with cUITent, two simulation sets are carried 

out to study the proposed adaptive contro]]er's ability to sustain various intensities of paramet-
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ric uncertainties. First, the machine's electrical parameters, R, Ld , Lq , and Â are decreased by 

50%. The adaptive fuzzy controller's performance is shown in Fig. 7.38 under case 1 label. The 

controller provides less control effort than nominal case due to parameters decrease. Moreover, 

it dealt successfully with the change with a slight increase in speed error, which yields smooth 

currents and control signal. In the next simulation, the machine's electrical parameters are am-

plified to 150% with respect to their nominal values (table 7.1). The adaptive fuzzy controller's 

performance to parameters increase is shown in Fig. 7.38 under case2 label. When the drive 

is subjected to parameters increase, it provides nearly twice control effort than nominal case. 

Consequently, the controller was successful in coping with parametric uncertainties by keep-

ing the speed tracking error within negligible amplitude, which yielded smooth currents and 

control signal. 

In the next simulation, a 10 (N·m) load torque step is introduced at time t = 3 s to evalu-

ate the adaptive controller's pelformance to external disturbance. As shown in Fig. 7.39, the 

controller copes easily with the sudden change on the load torque and provides a fast velocity 

tracking response. Moreover, the velocity error remains small and without overshoot, which 

yielded smooth currents and control signaIs. The ability of the adaptive fuzzy controller in 

compensating for disturbance is clearly shown in this simulation. 

The next simulation is meant ta show the modularity of the proposed controller in compen-

sating for friction nonlinearities . For that, the nonlinear Coulomb friction term is magnified 5 

times and the machine operates in motoring and regenerating modes to enable zero velocity 

crossing (i.e., Coulomb friction effect) as shown in Fig. 5.3. The results are shown in Fig. 7.40. 

As it can be seen, the change in the speed reference signal has no effect on the overall control 

perfonnance. The speed tracking elTor starts increasing during fast accelerations but stays in 

an acceptable range. Conventional control techniques tend to overcompensate for these effects 

and lead to severe tracking errors, lirnit cycles, chattering, excessive noise, and even instabil-

ity [17]. As shown in Fig. 7.40, the nonlinearities around zero speed cause a tracking error. 

However, the controller is able to compensate for the nonlinear friction and no oscillation is 

observed, which yielded accurate speed tracking in both motoring and regenerating modes . 
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FIGURE 7.39 - Adaptive FLC response with load torque disturbance : (a) velocity error; (b) 
reference model output; (c) d-q axes currents; and (d) applied voltage v~ . 
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The FLC controller is compared in similar operating conditions to the well-known vector 

control technique, which is widely used in the industry. Both controllers are tuned to reach sim-

ilar transient response and overall perf0l111ance in nominal case for a fair comparison. Next, 

different situations corresponding to varying operating conditions are presented to both con-

trollers to highlight their respective performance. The superiority of the FLC over conventional 

control techniques is cJearly shown in these results. Fig. 7.41 (a) shows the speed tracking error 

of both controllers in the nominal case. The FLC outperforms the vector controller by its high 

tracking precision, i.e. , the speed errar amplitude is kept a very sma11 magnitude. Next, elec-

trical parameters are decreased by 50% and then increased to 150% their nominal values. The 

performance ofboth controllers is depicted in Fig. 7.41(b) and Fig. 7.4l(c). As it can be seen, 

the FLC copes successfu11y with the changes by keeping similar performance as in nominal pa-

rameters case. However, oscillations are observed with the vector controller in the presence of 

parameters variation. Fina11y, when the nonlinear Coulomb friction term is magnified 5 times, 

the speed error ftuctuates with the vector controller at zero velo city crossing (Fig. 7.41(d)). On 

the other hand, the FLC controller attenuates the friction effects with no oscillations as it is 

shown in the previous simulation. 

7.10 Conclusion 

This chapter presents several soft-computing based adaptive techniques for high perfor-

mance PMSM drives. Simplified adaptive control structures have been proposed with a speed 

and disturbance observer. To achieve better robustness to uncertainties, a sensorless ANN-

based adaptive control strategy is proposed. However, tuning is not trivial in this kind of cas-

caded control structures. This structure is further simplified and compared to the well-known 

PI-based vector controller. Comparison shows better performance in transient, steady-state, 

and standstill conditions in the presence of parametric uncertainties. This comparison can be 

extended further by adding d-q axes decoupling terms to the vector control. On the other hand, 

an ANN-based speed observer is proposed. However, the speed estimation shows sensitivity 
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to flux variations. This problem is solved with an ANN-based nonlinear observer. This strat-

egy achieves good results with a higher tolerance to parameters variation. Finally, an adaptive 

fuzzy control strategy shows its ability to achieve similar performance with a single controller. 

In addition, this structure uses no voltage or CUITent transducers reducing the number of sen-

sors with respect to other techniques. However, this controller achieves high performance at 

the expense of reduced efficiency since no current controlloop is used. Moreover, a Lyapunov 

stability-based adaptation technique is used as an alternative to the conventional heuristic tun-

ing methods. 

PMSMs are widely used in many energy conversion systems such as wind turbines and 

electric vehicles. These systems make also use of batteries and converters for efficient energy 

transfer. Therefore, next chapter presents sorne intelligent adaptive approaches for control of 

converters and state of charge estimation for batteries. 



Chapitre 8 

Management and Control of Intelligent 
Energy Production Systems 

8.1 Introduction 

Renewable energy systems have received a thorough attention and have been considered 

lately as a way of fighting c1imate change. They also have been used as energy complement to 

standalone production systems. These systems are composed of a main energy source such as 

diesel generators, storage devices such as batteries, and a grid. The aim of using diesel gener-

ators as a main power source is to provide the grid with uninterrupted power. Usually, a main 

AC bus is used to connect the renewable energy based inverter and the diesel generator to the 

grid as shown in Fig. 8.1. Reliability and cost reduction are among the main advantages of 

such systems. However, diesel generators require frequent costly maintenance and they remain 

a source of pollution. Recently, the idea of reducing their operation time has received increas-

ing interest from the scientific and industrial community. On the other han d, storage devices 

have a limited amount of energy. Therefore, optimal energy utilization is among the various 

challenges to be faced. But, optimal operation depends on the control accuracy of converters. 

A poor control performance ultimately results in reduced converters efficiency. This raises the 

urgency to consider alternative control approaches for efficient energy transfer to keep up with 

the increasingly stringent energy demand requirements. 

DC-DC converters have been extensively used in many electric power supply systems, 
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thanks to their high efficiency, compact size, cheap price, and low weight [81,82] . These ad-

vantages make them good candidates for many portable e1ectronic devices such as, cellular 

phones, and mp3 players. However, in order to operate efficiently, high inductance is required 

to generate smooth CUITent. These inductors raise the converter's co st and size, dep1eting the 

advantages listed above. In many industrial applications, high inductance is often used to re-

duce the CUITent ripple and achieve acceptable tracking performance at the expense of the 

converter efficiency. The design of robust controllers reduces the size and the cost of inductors, 

which yields smaller, lighter, and cheaper power supply. However, controlling such systems 

faces numerous challenges that need to be addressed, such as parametric and load uncertain-

ties. This raises the urgency of considering other control alternatives capable of dealing with 

uncertainties of higher magnitudes. 

On the other hand, battery management systems have received a thorough attention and 

have been extensively used as power management tools in many applications such as, laptops, 

mobile phones and electric vehic1es. Optimal battery energy utilization, battery life extension, 

and minirnization of degradation effects are among the various challenges to be faced. How-

ever, optimal battery operation depends on the accuracy of the state of charge (SOC) algorithm. 
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A bad SOC estimation might significantly damage the battery and ultimately result in reduced 

battery life. 

In vehicular technology, electrical and power electronic systems are taking over mechan-

ical, hydraulic, or pneumatic systems. These systems use multiple energy sources as shown 

in Fig. 8.2 such as batteries, fuel cells, and supercapacitors, which offer great f1exibility to 

achieve higher perfom1ance. However, their maintenance and management are becoming more 

and more difficult and costly. Moreover, energy storage devices su ch as batteries have a lim-

ited arnount of energy, which should be used efficiently. Optimal energy utilization of storage 

devices is among the various challenges to be faced. 

This chapter presents advanced adaptive strategies for energy production systems. These 

control techniques are applied to the control of classical DC-DC boost converters, state of 

charge (SOC) estimation as well as to DC bus voltage control. 



Intelligent Energy Production Systems 246 

8.2 Modeling 

8.2.1 Bidirectional DC-DC Converters 

In this section, we represent DC-AC power system using a DC-DC bidirectional con-

verter (Fig. 8.3). The IGBTs are controIled by the pulse width modulator (PWM). When the 

IGBT QI is turned off and Q2 is turned on, the circuit is divided into two independent parts 

allowing the CUITent of the inductor and its energy to increase as shown in Fig. 8.4. When Ql 

is turned on and Q2 is turned off, the energy stored in the inductor decreases and its voltage 

is added to the input voltage charging the output capacitor. Therefore, this repetitive operation 

makes the output voltage higher than the input voltage source. The same principle applies for 

the backward stage. For simplicity, the inverter is replaced by a resistance (load) in Fig. 8.5. 

DC- DC converter ....., DCbus 
1 

1 

L __ _ 

1 

1 

le 
1 ---r--

Inverter 

FIGURE 8.3 - DC-AC power system with a DC-DC bidirectional converter 

The equivalent circuit of a DC-DC converter is ilIustrated in Fig. 8.5.Without loss of 

generality, the equivalent series resistance of the inductor, the capacitor, and the IGBTs, as 

weIl as the voltage drop across the diode are neglected. 

Let us define the variable q such that q = 1 when Ql = OFF and Q2 = ON, and q = 0 when 

QI = ON and Q2 = OFF. 
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FIGURE 8.5 - De-De converter 
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The dynamic equation of the De-De converter can be described by the average mathemat-

ical model : 

where L is the inductance, C the capacitance, is(t) the inductor current, io(t) the inverter cur-

rent, VDc(t) the De bus voltage, and Vs(t) the supply voltage. 

Now, define the control action as p = 1 - q, 

d 1 
-is(t) = - (Vs(t) - p VDc(t)) 
dt L 

d 1 
-VDc(t) = - (p is(t) - io(t)) 
dt C 

(8.1 ) 

It is noteworthy the nonlinearities within the system (8.1) in form of state dependencies. 

It is also clear that the converter's output voltage VDC and its inductor CUITent is are highly 

dependent on the parameters R, L, and C. Therefore, the control objective is to design a control 

law which ensures that the De bus voltage VDC tracks its desired reference voltage VDC' in the 

presence of uncertainties. The proposed controller uses VDC, is, and io as system's measurable 

states and the parameters, R, C, and L are assumed to be a priori unknown. 

8.2.2 Batteries 

The battery circuit model for an electrochemical battery is shown in Fig. 8.6. Its dy-

namic mathematical model can be described by the following equations [83] : 

. Vp Voc lb 
Vp = - RdC + RdC - C' Vp ::; Voc (8.2a) 

. Vp Voc lb 
Vp = - R cC + R cC - C ' Vp > Voc (8.2b) 

Vb = Vp-Rbh (8 .2c) 
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where, 
Vae open circuit voltage 

Vp voltage across the capacitor 

Vb voltage at the battery terminaIs 

h CUiTent at the battery terminaIs 

Rb internaI resistance 

Re charging resistance 

Rd discharging resistance 

C capacitor 

--
FIGURE 8.6 - Equivalent circuit of a battery 

8.3 Adaptive FLC of a DC-DC Boost Converter 

The DC-DC converters control problem has been a subject of great interest for many 

years and various control techniques have been proposed, such as, linear control [81], cur-

rent mode control [82], predictive control [84] , and sliding mode control [85]. Among various 

switching control methods, these control techniques use pulse width modulation (PWM). In 

the last decade, PWM switching control [86J was widely used in the proportional integral (PI) 

control structure. This technique is limited with the tradeoff between robustness and transient 
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response. The current mode control technique is used for its fast transient response induced by 

the CUITent loop, faster overload protection, and its ability to deal with parameter variations. 

This strategy consists of an external voltage loop with an inner CUITent loop, which is known as 

multiloop control. On the other hand, boost converters have received a thorough attention late1y 

due to their nonminimum phase nature, which can result in severe tracking errors, limit cycles, 

chattering, and excessive noise. In fact, boost converters are modeled as bilinear second order 

nonminimum phase systems with a highly uncertain load resistance. In [87], experimental re-

sults of a buck converter using a fuzzy controller and a proportional Integral derivative (PlO) 

showed a comparable performance. But, the fuzzy controller showed faster transient response 

and better tracking pelformance when applied to a boost converter. 

The averaged model technique [88] is usually used in nonlinear OC-OC converters analy-

sis. However, sman signal analysis neglects the system's dynamic at high frequency, the effect 

of saturation, and initial conditions. On the other hand, the presence of high uncertainties and 

varying operating conditions changes significantly the system's dynamics. In trus case, the 

controller design cannot be based efficiently on presumably accurate mathematical models. 

When bounded uncertainty exists, a robust control technique such as sliding-mode control can 

be applied. But, robustness to uncertainties is obtained only when sliding mode truly occurs. 

For the boost converter to produce a desired output voltage, let us denote the output voltage 

error as e = Va - Y,. and its discrete derivative as ~e = e(t) - e(t - 1). Before proceeding 

further, let us define the following reference model as s = e + lfI ~e, with lfI being a positive 

constant. In this work, we use a 2-input l-output fuzzy logic controller in which e and ~e are 

fed as inputs. The control action provided by the FLC is the increment ~p to compute the dut y 

cycle that is then fed to the converter. The inputs, e and ~e, and the output ~p can easily be 

modeled through human-like reasoning mechanism. Note that the output ~p is proportional 

to the inputs. As such, the FLC controller forces the error e and its discrete derivative ~e to 

approach the hyperplanes e = 0 and ~e = 0 for a fast convergence requirement in s = O. The 

resultant control scheme is illustrated in Fig. 8.7. 

The membership functions for the input variables, e and ~e are shown in Fig. 8.8(a) and 
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FIGURE 8.7 - Adaptive fuzzy control scheme for DC-DC boost converters 

8.8(b), respectively. The linguistic tenus used for the input-output membership functions are 

labeled as "NL (Negative Large)", "NS (Negative Small)", "Z (Zero)", "PS (Positive Small)", 

and "PL (Positive Large)". An empirical analysis for the parameters of membership functions 

is performed to improve the FLC's performance. The if-then rules for fuzzy inference are re-

ported in Table 5.2. The defuzzification method for the output, ~p, is chosen to be the centroid 

of area, which can also be written as 

y(k) = GT (k)W(k) 

where W(k) is the fuzzy logic consequent part vector at instant k and G(k) is its antecedent 

part vector of known functions (regressor) at instant k defined as 

Then, the fuzzy logic consequent parts can be tuned online using a gradient descent technique: 

W(k) = W(k-l) +~W(k) = W(k-l) +rG(k)s 

where r = [YI, Y2 ,·· ·, YRV and î1 is a positive constant. 
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FIGURE 8.8 - Fuzzy membership functions for: (a) voltage error; and (b) voltage error deriva-
tive. 

8.3.1 Setup 

The DC-DC converter (Fig. 8.5) presented by its average model dynamics (8.1) is used 

in boost mode. Therefore, the IGBT QI is blocked and the dut y cycle produced by the proposed 

controller is fed to Q2. The converter's nominal parameters are defined by : Vs = 12 V, R = 2 Q, 

e = 0.5 mF, and L = 30 flH. The simulations are conducted for time period of t = 0.25 sec, 

where the desired output voltages Vr = 20 V, for 0 :::; t :::; 0.125 sec, and Vr = 15 V, for 0.125 < 

t :::; 0.25 sec. The system's model is implemented using SimPowerSystems Simulirik toolbox 

in Matlab and the adaptive fuzzy logic controller algorithm is coded in C. The switching and 

sampling frequencies of both controllers are set to 1 KHz. 

8.3.2 Results 

Three different simulation sets are conducted to evaluate the pelformance of the pro-

posed adaptive FLC under various parametric configurations of a DC-DC boost converter. The 

performance metrics of the boost converter are the output voltage Va, the voltage tracking er-
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ror e, the inductor current iL(t), and the dut y cycle p . In order to justify the use of the proposed 

controller, the same simulation sets are carried out to test the converter's performance using a 

conventional PI controller with Kp = 10- 3, and Ki = l.5. 
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FIGURE 8.9 - Adaptive FLC and PI responses with nominal parameters : (a) output voltage; 
(b) voltage error; (c) inductor current; and (d) controller's dut Y cycle p. 

In this simulation, the aforementioned nominal values are used to simulate the converter's 

dynamics. As shown in Fig. 8.9, both controllers lead to a satisfactory performance in this 

case as they both attenuate the voltage tracking elTor to zero within comparable time delays. 

Both controllers were tuned to reach similar transient response and overall performance in 
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nominal case for a fair comparison of both controllers in the next simulation sets where only 

one parameter is allowed to vary at a time. 

The purpose of this simulation is to study the controller's ability to sustain vmious inten-

sities of load uncertainties. For that, the converter's load is increased to R = 0.5 Q. As shown 

in Fig. 8.1 0, the adaptive FLC performance is not affected by the load change in the sense that 

it could still decay the voltage error to zero in less than 0.05 s. On the other hand, a slower 

response is obtained with the PI controller. 
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FIGURE 8.10 - Adaptive FLC and PI responses with a higher load : (a) output voltage; (b) 
voltage error; (c) inductor cUITent; and (d) controller's dut Y cycle p. 
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Then, the converter's load is decreased to R = 10 Q. The results are shown in Fig. 8.11. 

The proposed controller keeps similar performance to that in the nominal case as opposed to 

the overshoot obtained with PI controUer. The ability of the FLC controller to cope with large 

load uncertainties is clearly shown. 
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FIGURE 8.11 - Adaptive FLC response with a lower load : (a) output voltage; (b) voltage 
error; (c) inductor current ; and (d) controller's dut Y cycle p. 

In the next simulation, we observe the converter's behavior by varying the values of the 

inductor and the capacitor. First, the converter's inductor is reduced by 30 times with respect 

to its nominal value (1 J.lH). The results are depicted in Fig. 8.12, the performance of the FLC 
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is not affected much by the change and acceptable performance is reached. However, more 

overshoot is observed with the PI controller and its response is fairly fluctuating as opposed 

to a smooth and steady convergence behavior with the FLC co ntroll er. The superiority of the 

adaptive FLC is revealed more clearly in this simulation. Henceforth, the use of the adaptive 

FLC reduces the size of the inductor, which yields smaller, lighter, and cheaper power supply. 
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FIGURE 8.12 - Adaptive FLC and PI responses with inductor variation: (a) output voltage; 
(b) voltage error; (c) inductor current ; and (d) controller's dut Y cycle p. 

Secondly, the converter's capacitor is given a value of 0.1 mF. The results are depicted 

in Fig. 8.13. As can be seen, the response of the PI controller slows down as opposed to the 
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adaptive FLC that copes easily with such uncertainty. 
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8.4 Adaptive DC Bus Control 

Over the years, researchers attempted various control techniques and several solutions 

have been proposed including conventional and advanced controllaws. Classicallinear control 

laws [89] are widely used in the industry because of their simplicity. However, their perfor-
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mance degrades significantly in the presence of varying operating conditions. This problem has 

been addressed in [90], where an adaptive control strategy uses a PI controller for DC bus reg-

ulation with an adaline-based currents control tuned online using least-mean squares (LMS) al-

gorithm. A cascaded linearization based control structure is proposed in [91] for AC/DC boost 

converters. In [92], the DC bus voltage regulation problem is investigated using passivity-based 

control theory. Advanced control1ers preserve systems nonlinearity characteristics in their de-

sign. Therefore, they offer good performance under uncertainties such as temperature, and 

parameter variations. Several advanced control techniques have been applied to control dif-

ferent types of converters such as sliding mode control. But, their good performance is often 

achieved at the expense of added complexity and difficuIty on the design approach. In [93], a 

sliding mode controller is proposed for a multisource/muItiload electrical hybrid system using 

fuel cells and supercapacitors. However, robustness to parameter variations is obtained only 

when sliding mode truly occurs. In [94], a fuzzy-neural sliding-mode (FNSM) control system 

has been proposed to cope with uncertainties, such as parameter variations. 

Let ev = VDC - Vvc denotes the DC bus voltage tracking error and es = is - i; the source 

current tracking error, where Vvc and i; are the DC bus voltage and source current reference 

signaIs, respectively. Adaptive control theory is used in this work to highlight its advantage 

over classical control techniques. As depicted in Fig. 8.14, the adaptive controller achieves DC 

bus voltage tracking by rninimizing the error ev between the reference and actual voltages to 

deliver a desired source cunent signal i;. A PI control1er is used to minimize the error es, (i.e., 

CUITent regulation). The dut y cycle is then fed to a Pulse Width Modulation (PWM) algorithm. 

FIGURE 8.14 - Adaptive DC bus control scheme 

The aim of the adaptive controller is an efficient power flow by maintaining ev at zero (i.e. , 
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P.5 ~ Po)· This is achieved with a priori unknown dynamics. Ps and Po are the source and output 

power variables, respectively. 

Therefore, we can express the relationship between the source CUITent is and the output 

(inverter) CUITent ia by, 
. VDC. k' 
I s = - la = la 

~. 

where, k is assumed to be unknown and tracked by the adaptive controller. Therefore, the 

controllaw is defined as, 
.* kA. k 
ls = T la - d ev 

where, kd is a positive gain that ensures stability and robustness of the adaptive controller. 

Therefore, we can define the adaptation law as, 

where, ris a positive gain that defines the convergence rate. 

8.4.1 Setup 

To de mon strate the performance of the proposed adaptive controller, a set of computer 

simulation runs is caITied out on a De-De converter depicted in Fig. 8.5. The system's pa-

rameters are summarizes as follows, the De bus reference voltage VDC = 400V, the inductance 

L = 250I1H, and the capacitance C = lmF. The converter's model is implemented using PSIM 

Software and the adaptive control algorithm is coded in C. The control stTucture is imple-

mented using Matlab/Simulink. The switching and sampling frequencies are both set to 5 kHz. 

The system's pelformance metrics are the inverter cun'ent ia , De bus voltage VDC, source cur-

rents i; and is , dut Y cycle p, and the adaptive parameter estimate k. The proposed controller 

is also compared to its conventional PI counterpart under the same conditions as depicted in 

Fig. 8.15 with kp = 50, and ki = 103. The adaptive controller parameter kd is set to 50, 
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FIGURE 8.15 - Classical PI-based cascaded DC bus control scheme 

8.4.2 Results 

Two numerical simulations are carried out to study the proposed controller's perfor-

mance. In the first simulation, the aforementioned nominal values are used to simulate the 

system's dynamics and the inverter CUITent is taken as the step response of a critically damped 

second order system with a natural frequency of 100 rad/s, as shown in Fig. 8.] 6(a). In this 

case, the voltage variation of the power source is ignored and the source voltage Vs is set 

to 250V. As shown in Fig. 8.16, the DC bus voltage tracking error decay gradually with the 

adaptive controller before stabilizing within a negligible amplitude. On the other hand, a sat-

isfactory trajectory tracking is obtained with the PI controller. Although both controllers were 

tuned to achieve similar performance in nominal case, the adaptive controller outperforms its 

PI counterpart with high tracking accuracy. Moreover, the proposed controller achieves better 

performance with less control effort as it is shown in Fig. 8.16( d) , which yields a more efficient 

energy transfer. 

Next, the power source voltage variation is taken into account to evaluate the controller's 

performance to uncertainties. The source voltage ~. is set as 250 + 10sin(m)V, where t is 

the time index. As it can be seen in the results depicted in Fig. 8.17, the adaptive controller 

compensates for the variation of the input voltage while the DC bus voltage tracking error 

keeps oscillating around its reference signal with the PI controller. Thus, the power source 

uncertainties have little effect on the proposed controller's perfom1ance as opposed to the PI 

controller, which yields a more efficient system's operation. 
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8.5 Observer-based State-of-Charge (SOC) Estimation 

Several conventional approaches exist for determining the SOc. The open circuit volt-

age (OCV) method is a reasonable way to estimate a battery SOc. The battery voltage is 

correlated with the concentration of electrolyte, which increases and decreases with the battery 

charge status. However, this holds only when the internaI battery dynamics are in an equi-

librium state (i.e., no current ftows through the battery for several minutes or hours) . This 

correlation is also affected during the life-time of batteries by temperature variations and ag-

ing, i.e., capacity is known to be gradually decreasing with the number of charge/discharge 

cycles and depth of discharge. On the other hand, the Coulomb counting method is a more 

straightforward method to estimate the SOC of a battery. In this method [95], also called Amp-

hour (Ah) balancing method [96] , the battery entering and leaving current is measured and the 

SOC is updated accordingly through integration. However, the start-up eITor and the current 

sensor errors are cumulative, which introduces a drift and poor precision problem since the 

estimator is open-Ioop based. Moreover, the battery's capacity changes as the batteries age are 

not taken into account. Although this method has sorne serious drawbacks and the estimates 

carry an average of 15% error [95], it remains the simplest approach for real-time industrial 

applications. Another method called hybrid estimation technique combines basically the two 

tirst methods. The battery SOC is estimated with the Coulomb counting method when the bat-

tery is under use and whenever the battel)' reaches an equilibrium state, the SOC is updated 

with the OCV method to reset the accumulated errors. However, sorne applications require a 

continuo us operation of batteries, and hence, do not allow them to reach an equilibrium state 

for an accumulated error reset. This raises the urgency of considering other SOC estimation 

alternatives. 

Since the open-circuit voltage (OCV) is directly correlated with the state of charge of the 

battery, Voc is therefore used to estimate the state of charge. Henceforth, a precise OCV estimate 

leads to accurate SOC estimation. In this work, the relationship between OCV and SOC is 

considered to be constant, and hence, compensation for battery aging and temperature effects 
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is out of the seope of this work. Let us eonsider the discharge mode so that we can set R = Rd, 

the dynamics formulation (8.2a) can be written as, 

Substituting Vp from (8 .2e) : 

. Vp Voc lb 
V =--+---

p RC RC C 

. . 1 (Rb 1) 1 V,b=-Rb1b- - V,b- -+- lb+ - v' RC RC C RC oc 

The system's dynamics (8 .3) can also be written in a form, 

x=Ax+Bu 

y=Cx 

(8.3) 

wherex E]R2 = [Yb, VocV is the state veetor, u E]R2 = rh, ibV is the input vector and A E ]R2x 2, 

BE ]R2 x 2, and C E}R2 are given by, 

B= [ -(~+t) -:b 1 

C=[10] 

Therefore, the observer is defined as, 

i = Ai + Bu + G( Ci - y) 

y=Ci 

with, G being the observer gain matrix. 
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Let us define the observer eITor as, 

e=x-x 

Take the derivative of e and substitute for X, and i, 

é =Ax+Bu+G(Cx- y) -Ax-Bu 

Therefore, the observer dynarnics is governed by, 

where, Ac = (A + GC) is a Hurwitz matrix. Therefore, G can be chosen to make the eigenvalues 

of the matrix (A + GC) aIl have negative real parts such that, 

as t --t 00. The observer gain matrix G can be found by solving the algebraic Riccati equation 

or by using a pole placement technique. 

8.5.1 Results 

The estimation strategy is implemented using Matlab/Simulink and the battery 's model 

is implemented using PSIM software. Table 8.1 summarizes the battery's parameters along 

with their respective values. A lead-acid battery is chosen for the test because of its linear 

relationship between OCV and soc. As such, the SOC is given by the fol1owing expression, 

Vac - V~ 
SOC = 100 

~) 
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where V~ and VlOO are the battery terminal voltages at SOC 0%, and SOC 100%, 

respectively. 

In the case of the lead-acid battery in hand, Vb
O = 12V and VloO = l3V. The initial SOC is 

set to 100% and the initial open circuit voltage estimate Vae is set to l2.SV, which corresponds 

to 50% SOc. 

TABLE 8.1 -Battery's parameters 
Parameter Value Unit 

Charging resistance Re = 3.10-2 (Q) 
Discharging resistance Rd = 1.10- 2 (Q) 
InternaI resistance Rb = 1· 10- 3 (Q) 
Capacitor C = 1· 10- 2 (F) 

A set of computer simulations is carried out to study the proposed estimator's performance. 

The system's response is studied taking into account the battery voltage Vb and current lb, the 

battery voltage estimation error e, and the SOC estimate error in (%). The aforementioned 

nominal values are used to simulate the system's dynamics. The simulation is conducted for 

time period of t = 1 sec, where the system is left at equilibrium state for 0 ~ t < 0.1 sec, and 

the converter operates for 0.1 ~ t < 1 sec. As shown in Fig. 8.18, a fast tracking is achieved 

at equilibrium state (Vae = Yb)' These errors are kept in a very negligible magnitude and decay 

gradually to zero in steady state, which yields high accurate SOC estimation. 

Next, the system's capacitance is magnified 10 times its nominal value. As shown in 

Fig. 8.19, this change results in a system's time constant variation, which decreases the esti-

mator's accuracy during transitions. However, the estimation error is kept in a small magnitude 

and still converges to zero in steady state. 

Finally, the battery aging effect on the estimator's performance is considered. For that, the 

battery's impedance Rb is magnified 2 times its nominal value. This change causes a state of 

charge estimation error increase and a non-zero error in steady state, which is expected since 

as stated earlier, the battery aging effect compensation is out of the scope of this work. How-

ever, as shown in Fig. 8.20, the estimation error remains in an acceptable magnitude (around 
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2.5% SOC error). But, this error is likely to become more significant over time as the battery 

ages. Therefore, an online estimation of the battery's impedance can be considered to cope 

with aging effects and keep high accurate SOC estimation. Next section presents an adaptive 

estimation strategy to overcome this problem. 

8.6 Adaptive State-of-Charge (SOC) Estimation 

Many robust and accurate estimation techniques are available at the cost of high com-

putational complexity. A sliding mode observer has been proposed in [97] to compensate for 

modeling uncertainties introduced by the use of a simple battery model. On the other hand, an 

NiMH battery discharge and charge characteristics under different constant currents have been 

established experimentally in [98]. This model takes into account the influence of temperature 

on the battery performance. The SOC algorithm is then derived from the experimental data. 

In [99], the parameters of the battery model are estimated online by an optimization procedure 

using measured current/voltage profiles. This way, the model is able to capture the relevant 

battery dynamics and to predict the SOC based on voltage estimation. Various neural net-

work models have been applied for the SOC estimation problem, which have led a satisfactory 

performance [7]. However, despite the success witnessed by neural network-based control sys-

tems, they remain incapable of incorporating any human-like expertise already acquired about 

the dynarnics of the system in hand, which is considered one of the main weaknesses of such 

soft computing methodologies. In [100], a fuzzy neural network (FNN) has been proposed to 

overcome this weakness. These techniques are among the intelligent management systems that 

can monitor the SOC and reduce gradually the load to prevent continuous operation at a low 

state of charge. 

The goal is to estimate Vac , which leads to SOC estimation, with aIl parameters Re. Rd, 

Rb, and C assumed not to be known a priori and Vp not measurable. The system's measurable 

states are the battery voltage Vb and current lb, The current lb is taken as positive in discharge 

mode and negative otherwise. 
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Assumption 5 The batfery voltage Vb and current h along with their derivatives Yb and ib are 

continuous and bounded. 

Assumption 6 The open circuit voltage Voc is a slowly tinte varying signal such that, Yoc ~ o. 

Assumption 7 Vb and ib are persistently excited. 

Let e = Vi} - Vb denotes the battery voltage estimation error and define the following refer-

ence model as : 

s = e + ljI J e = Vr - VI} 

where ljI being a positive constant and Vr = \lb + ljI Je. 
Reeall the formulation (8.3), 

. . 1 Rb 1 1 
V:b + Rb1b = --V:b - -lb + -v: - -lb 

RC RC RC oc C 

Multiplying by RC yields, 

Based on this model, eonsider the following linear regression : 

(8.4) 

(8.5) 

(8.6) 

where <P = [\Ir, ib l h, 1] E JR4 is a veetor of known funetions (regressor), and W E JR4 is a veetor 

of parameters : 

W] = -RC 

W2 = -RCRb 
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Since the open-circuit voltage (OeV) is directly correlated with the state of charge of the 

battery, <1>4 is therefore used to estimate the state of charge. The estimated battery voltage is 

computed as follows : 

(8.7) 

Theorem 18 Consider a nonlinear system in theforln (8.2) with the estimation law (8.7), the 

following adaptation law guarantees the estimation error asymptotic stability and convergence 

to zero: 

w= -r<l>s 

where r = [YI, Y2 ,··· , Y4l and 11 is a positive constant. 

Proof 12 Choose the following Lyapunov candidate: 

Taking the derivative of V yields : 

(8.8) 

w = W since parameters W are constant, considering Assumption 6. 

Take the time derivative of(8.4): 

Multiplying both sides by RC yields : 

RCs = RC~. - RCVb 

Substitute RCVbfrom (8.5) : 
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Using (8.6) yields : 

RCs = Vb - <1>TW 

Substitute Vbfrom (8.7) : 

(8.9) 

where, W = W - W. 

Substitute RCsfrom (8.9) into (8.8) : 

Setting the adaptation law as 

W=-[,<1>s 

leads to 

This shows that a positive Lyapunov function V, which is decreasing (li :::; 0), must converge 

to a finite limit. H ence, from the Lyapunov function definition, the signais s, W, and W are also 

bounded and converge to finite values. It implies from (8.4) that e and J e, and so, Yb, Vr, and 

V;. are bounded. It followsfrom (8.7) that Vb is bounded, which impliesfrom (8.9) that ~~ is also 

bounded. 

Take the derivative of V : 
.. T 
V = -2s KDS 

Therefore, V is also bounded. 

From Lemma I (Barbalat), V has a finite limit as t ---7 00 and li is unifonnly continuo us 

shows that limH oo V = 0, and hence, limr-+oo s = O. On the other hand, é is also bounded 

since .s is bounded. From Lemma I (Barba lat), Je has a finite limit as t ---7 00 and e is uni­

formly continuous shows that 1imr-+oo e = O. Therefore, 1irnr-+oo Yb = Yb' Therefore, the system 

is asymptotically stable in the sense of Lyapunov. 
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8.6.1 Setup 

To demonstrate the performance of the proposed adaptive estimator, a buck converter, 

shown in Fig. 8.2 [, is designed to provide the proposed adaptive estimation scheme with a 

continuous and a persistently excited regressor vector. The converter is controlled using a 

conventional PI controller as shown in Fig. 8.22. The system's model is implemented using 

SimPowerSystems Simulink toolbox in Matlab and the switching frequency is set to 1 KHz. 

Table 8.2 summarizes the converter's parameters along with its respective values. Parameters 

Re, Rd, Rb, R, C, Cv, L, and Voe are assumed not to be known a priori and constant with respect 

to time. The parameters estimate vector is ini tialized to (0,0,0,12.5). Setting the initial open 

circuit voltage Voe to I2.5V, which corresponds to 50% SOC, enables the system to start at 

most at half way from the desired unknown value of Voe. 

L 

Pl 
D 

FIGURE 8.21 - Equivalent circuit of a buck converter 

PI p Buck Va 

Controller Converter 

FIGURE 8.22 - Converter's control scheme 
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TABLE 8.2 - Buck converter's parameters 
Parameter Value Unit 

Inductance L = 2· 10- 3 (H) 

Capacitor Cv = 4.10- 2 (F) 

Load resistance R = 5.10- 1 (Q) 

8.6.2 Results 

A computer simulation is carried out to study the proposed estimator's performance. The 

system's response is studied taking into account the converter output voltage Va, dut Y cycle p, 

battery voltage Vb and CUITent lb, the battery voltage estimation error e, and the open circuit 

voltage estimate W4 ~ Vac' The aforementioned nominal values are used to simulate the sys-

tem's dynamics. The simulation is conducted for time period of t = 5 sec, where the system is 

left at equilibrium state for 0 :::; t < 1 sec, and the converter operates for 1 :::; t < 5 sec. As shown 

in Fig. 8.23, a fast tracking is achieved at equilibrium state (W4 ~ Vac = Vb) . When the con-

verter starts operating, the estimation and tracking error reach their maximum values (around 

2% SOC error) since the parameters estimate initial values are still at zero, which causes a 

deviation of W4 from its target. These errors decay gradually to a very negligible magnitude 

for the rest of the simulation, which yields high accurate SOC estimation. 

8.7 Fuzzy Supervisory Energy Management for Multisource 
Electric Vehicles 

Brand new battery units from the same batch are known to exhibit capacity variations. 

These discrepancies are mainly due to the manufacturing process and used materials. More-

over, these battery units cannot be installed physically at the same distance from the load. 

Therefore, the impedance of physical links between them and the load cannot be ignored. In 

other words, an optimal operation for a given battery unit is not necessarily optimal for the rest 

of the battery network. Henceforth, every unit should have its own operation rate parame ter. 

Moreover every parameter should be allowed to vary at each iteration since the error typically 
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behaves differently along different operating regions of an energy source network. It is note-

worthy that the use of a different time-varying operation rate parameter for each energy source 

unit in accordance to this approach modifies the standard energy management systems in a 

fundamental way. 

Various energy management strategies have been presented over the years. These approaches 

can be either optimization-based techniques such as optimal control [10 1] and dynamic pro-

gramming, or rules-based management techniques such as fuzzy 10gic and neural networks [l 02, 

103]. This category outperforms the first one since no a priori knowledge of the power pro-

file is required. The application of particle swarm optimization, which is a biologicaIly in-

spired direct search method, is also applied in [104] for real-time optimal energy management. 

Multiagent-system technology is used in [105] for hybrid distributed energy management sys-

tems. Moreover, the integration of multiple energy sources in power systems has been studied 

in [106, 107]. The fast dynamics of supercapacitors is then combined with the higher batteries 

energy density to meet the dynamic performance of hybrid electric vehicles. This pelformance 

is further improved with a power-f1ow management algorithm for appropriate control of each 

of the energy sources. On the other hand, a fuzzy-Iogic approach is presented in [102] to 

the energy management of an embedded fuel-ceIl system while neural networks are proposed 

in [l 03] as an efficient energy management system for hybrid electric vehicles . The system 

minimizes the energy requirement of vehicles working with different power sources like fuel 

ceIls, microturbines, or batteries. 

The aim of the proposed supervisory approach is efficient energy utilization. In other words, 

aIl battery units should keep the same state of charge in aIl operation ranges . For that, not aIl 

units should share the load and the regenerative brake energy equaIly. Rence, each unit should 

be charged and discharged with its own rate. Therefore, maintaining an optimal battery units 

operation throughout their life cycle results in a reduction of their frequent maintenance and 

an extension of their life span. Let e = VDC - VDC denotes the DC bus voltage tracking eITor, 

where VDC is the DC bus voltage reference signal. This eITor signal is then distributed through 

the n energy source units such that each unit has its own eITor signal ei, which can be expressed 
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in a weighted fashion as, 

(8 .10) 

where k; ;::: 0 is the operation rate parameter of the {It energy source (i = 1 ... n) with the 

constraint of Ei=] ki = l. As such, each energy source contributes to the rninimization of the 

tracking error e according to its characteristics by its operation rate k;, which is computed 

based on a SOC equilibrium criterion using a fuzzy logic supervisor. Therefore, the operation 

rate parameter k; is used in discharge mode. However, since an opposite behavior is expected 

from the supervisor in charge mode, a different operation rate parameter ki for this mode is 

computed as, 
- ] -ki 
ki = -- 'ï/ n > 1 

n-1 

where ki ;::: 0 takes only positive values and is set to zero for negative values . 

The fuzzy control strategy is based on a human operator experience to interpret a situation 

and initiate an appropriate action. A block diagram for the fuzzy logic supervisor is illustrated 

in Fig. 8.24. The linguistic tenns used for the input membership functions are labeled as "S 

(Small)", HM (Medium)", HL (Large)" . To show the main idea behind the supervisor, let us 

take the case of two identical units (i.e., n = 2). Therefore, the supervisor takes two inputs SOC] 

and SOC2 and provides operation rate parameters k] and k2 according to the fuzzy logic mIes 

depicted in Table 8.3. The output membership functions are chosen to satisfy the following 

condition, E~] ki = 1. This way, the supervisor forces overtime energy source units to operate 

on the nominal surface kl = 0.5 and k2 = 0.5 (i.e. , diagonalline in Table 8.3). It is noteworthy 

that the operation rate parameter ki for n = 2 reaches the same equilibrium, i.e., nominal surface 

ki = ki = 0.5. The main idea is : (i) when the SOCs are far from their respective nominal surface, 

then the supervisor's distribution parameter vector ki assumes a high value for high SOC units 

and a low value for low SOC units ; (ii) when the SOCs are approaching the nominal surface, 

the difference of distribution parameters is adjusted to a smaller value for a smoother approach ; 

(iii) once the SOCs are on the nominal surface, then the difference of distribution parameters is 

set to zero. In this work, without loss of generality, we assume that n = 3. The same principle 
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applies for n energy source units . Therefore, given the designed input signaIs SOC}, SOC2, 

and SOC3, the fuzzy logic supervisor provides operation rate parameters kl, k2, and k3. The 

output membership functions are labeled as "Z (Zero)", "VS (Very Small)", "MS (Medium 

Small)", "S (Small)", "LS (Large Small)", "M (Medium)", HL (Large)", "VL (Vely Large)". 

An empirical analysis for the parameters of membership functions is performed to improve 

the supervisor's performance and satisfy the condition, L~ } ki = J. In this case, both modes 

also have the same equilibrium, i.e., nominal surface ki = ki = 1. The fuzzy rules for n = 3 

are depicted in Table 8.4, 8.5, and 8.6. The input membership functions used in this case are 

shown in Fig. 8.25. 

FIGURE 8.24 - Block diagram of the fuzzy supervisory energy management scheme. 

8.7.1 Setup 

TABLE 8.3 - Fuzzy Logic Rules for n = 2 

s 
Û r-----t o M 
VJ 

L 

SOCl 

To demonstrate the performance of the proposed energy management system, a set 

of computer simulation runs is carried out on a three identical bidirectional DC-DC convert-

ers like the one depicted in Fig. 8.5. The inductance and capacitance are set, respectively, to 
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TABLE 8.4 - Fuzzy Logic Rules for n = 3 and SOC3 = "S" 

SOCI 

SOC2 M L 

S 0.5/0.25/0.25 0.6/0.2/0.2 
M 0.25/0.5/0.25 0.5/0.3/0.2 
L 0.2/0.6/0.2 0.3/0.5/0.2 0.4/0.4/0.2 

TABLE 8.5 - Fuzzy Logic Rules for n = 3 and SOC3 = "M" 

S 0.25/0.25/0.5 
M 

L 

M 

0.4/0.2/0.4 
L 

0.5/0.2/0.3 
0.5/0.25/0.25 
0.4/0.4/0.2 

TABLE 8.6 - Fuzzy Logic Rules for n = 3 and SOC3 = "L" 

SOC1 

SOC2 S M 

S 0.2/0.2/0.6 0.3/0.2/0.5 
M 0.2/0.3/0.5 0.25/0.25/0.5 
L 0.2/0.4/0.4 0.2/0.4/0.4 
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FIGURE 8.25 - Input fuzzy membership functions for n = 3. 

L = 250,uH and C = ImF. The DC bus reference voltage is set ta VDC = 400V and the switch-

ing and sampling frequencies are bath set to 5 kHz. The system is subjected ta a ±15kW 

periodic square power demand with a period of 1 minute to enable the energy units ta operate 

in both charge and discharge modes. The Coulomb counting method (Amphour (Ah) balancing 

method) is used to estimate the batteries SOC and since it is a slowly time-varying process, the 

system is simulated for 15 minutes. The system's performance metrics are the DC bus voltage 

VDC, the source currents is of the three converters, their dut y cycles p, state of charge SOC, and 

the operation rate parameters. 

8.7.2 Results 

A numerical simulation is carried out to study the proposed energy management sys-

tem's performance. In this simulation, the aforementioned nominal values are used to simulate 

the system's dynamics and the inverter current is taken as the step response of a critica11y 

damped second order system with a natural frequency of 100 rad/s. The initial battery units 

state of charge is set, respectively, to 20%, 40%, and 80%. In order to study the system's per-

formance in equilibrium, no power demand is requested from the system for the first minute. 

The results are depicted in Fig. 8.26. As expected, no current is flowing from or to any battery 

unit and the SOC of a11 battery units remain at their initial values. This observation is impor-
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tant since transferring energy from a given battery unit to another will result in a loss of energy 

and hence an inefficient operation of the overall system. When the system is subjected to the 

±15kW square power demand, which corresponds to ±20A current from each battery unit, 

the OC bus voltage tracking error is kept in an acceptable range. Moreover, the fuzzy logic su-

pervisor assigns different operation rate parameter to each battery unit depending on its SOC, 

which yields different battery unit currents as it is shown in Fig. 8.26(b). On the other hand, the 

difference between the SOC of aIl battery units (Fig. 8.26(d» decreases over time and finally 

converges to zero. Hence, the fuzzy logic supervisor assigns a operation rate parameter of a 1 
letting the three battery units operate at the rate, which yields three square wave currents of 

±20A. 

8.8 Conclusion 

In this chapter, an adaptive fuzzy logic controller is proposed for a OC-OC boost con-

verter under large parametric and load uncertainties. The control strategy aims to achieve ac-

curate voltage tracking with unknown dynamics, high parameter and load variations, and no 

current sensing. Therefore, robustness to uncertainties with large magnitudes is achieved with-

out the inner current controlloop, which reduces the number of sensors. The controller is also 

compared to a PI controller in similar operating conditions. Simulation results showed the 

superiority of the adaptive FLC in compensating for higher magnitude of uncertainties. 

On the other hand, an adaptive OC bus voltage control strategy is proposed for renewable 

energy systems. The proposed adaptive technique achieves robust bidirectional OC-OC con-

verters control with no source voltage sensing, which yields less OC bus voltage variations. 

Thus, accurate OC bus voltage tracking enables high efficient power transfer to the grid. The 

controller's performance is compared to a c1assical PI controller. Simulation results show better 

tracking using less control effort with the adaptive controller. Results also show its high toler-

ance to uncertainties unlike with PI controllers. Furthermore, the performance of the proposed 

strategy is a key to achieve the high efficiency needed for high performance power energy 
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systems. 

Next, an observer-based state of charge (SOC) estimator was introduced for batteries. The 

estimation technique showed that the SOC can be determined with high accuracy based on 

only the measurements of the battery voltage and CUITent. A stability analysis guarantees the 

convergence and stability of the proposed strategy. Simulation results a]so high SOC estimation 

accuracy in the presence of parameter variations . The battery aging effect is a]so verified. 

Furthermore, the proposed estimator is easier to imp]ement as opposed to other estimation 

techniques with simi]ar performance, such as inte1ligent-based battery management systems. 

Then, an adaptive state of charge (SOC) estimator is introduced for batteries. The online 

parameters estimation technique showed that the SOC can be determined with high accuracy 

based on on]y the measurements of the battery voltage and CUITent. A Lyapunov-based sta-

bility ana]ysis guarantees the convergence and stability of the proposed strategy. It is easier 

to be implemented as opposed to other estimation approaches with simi]ar performance, such 

as inte1ligent-based battery management systems. A computer simulation high]ights the per-

formance of the proposed estimator in determining the SOC with a very high accuracy. It is 

noteworthy that although parameters estimation needs persistent excitation in man y adaptive 

systems, the fact the SOC can be estimated in a battery's equilibrium state makes the SOC 

estimator independent of this requirement. 

FinaIly, a fuzzy supervisory energy management strategy is introduced for multisource 

electric vehicles. The proposed technique achieves energy utilization equilibrium for different 

battery units operating through multiple bidirectiona] DC-DC converters . This extends the life 

span of energy storage devices and reduces their frequent maintenance. Furthennore, the per-

formance of the proposed energy management strategy is a key to achieve the high efficiency 

needed for high performance power energy systems such as electric vehicles. GeneraIly, when 

a single battery unit's performance degrades, aIl units are replaced at the same time to preserve 

the overall system's integrity. The proposed energy management method enables the use of 

multiple units with different capacity and state of charge. Moreover, it also allows merging 

batteries from different manufacturers. 



Chapitre 9 

Conclusion 

In this thesis, new soft-computing based adaptive control schemes have been proposed 

for complex nonlinear systems. The proposed controllers are designed to achieve stability and 

robustness in the presence ofboth structured and unstructured uncertainties. As a starting point, 

we showed the learning and approximation capabilities of artificial neural networks in an iden-

tification strategy design for spacecraft formation ftying. ANNs ability to learn from a priori 

unknown nonlinear systems has been used to approximate the nonlinear behavior in tlu'usters 

dynamics. This has been used as a main motivation behind the use of su ch technique for control 

design of complex nonlinear systems. 

Chapter 5 presents Lyapunov-based adaptation strategies for neural networks and fuzzy 

systems. These learning mechanisms are designed for general MIMO systems and contribute 

to the stability analysis of soft-computing techniques. An application to the well-known in-

verted pendulum problem has been proposed in [108, 109]. Moreover, the ANN Lyapunov-

based adaptation technique has also been applied to piezoelectric actuators. The proposed ap-

proach achieves good performance with hysteresis compensation, which is a common issue in 

many microelectromechanical systems (MEMS). The results were published in [110]. 

In chapter 6, the difficulty of adaptive control theory to cope with unstructured uncertainties 

was shown. This weakness has been addressed by proposing a Lyapunov-based adaptive fric-

tion compensator. Comparison against a popular friction compensation technique shows better 
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results wh en friction is magnified. Since disturbance is also an important issue, an ANN-based 

disturbance compensation strategy has been developed to cope with friction, disturbance and 

f1exibility. Results show robustness to aIl these kinds ofunstructured uncertainties. On the other 

hand, type-l fuzzy logic is compared to its type-2 counterpart for flexible-joint manipulators 

subjected to uncertainties of various magnitudes. Simulation results show the superiority of 

type-2 FLC in compensating for uncertainties of higher magnitude. This work is one of the 

scarce attempts in type-2 fuzzy logic control of flexible-joint manipulators. 

In chapter 7, several speed control and estimation strategies have been proposed for high 

performance PMSM drives. The ability of adaptive controllers to cope with parametric un-

certainties has been shown by proposing few adaptive control structures with a speed and 

disturbance observer. These strategies have been simplified and an adaptive contro]]er is pro-

posed with uncertain dynamics. The stability of aU these approaches is proven by Lyapunov 

stability theory. Therefore, this result is extended to prove the stability of many soft-computing 

based adaptive control strategies. Moreover, an ANN-based speed observer has been proposed 

in [1 Il]. The stability of the closed-loop control system (controllers + observer) is guaranteed 

by Lyapunov. Results published in [112] show high tracking accuracy and tolerance to unstruc-

tured uncertainties of different magnitudes. However, the speed estimation shows sensitivity to 

flux variations. Therefore, a nonlinear ANN-based speed observer has been proposed to solve 

the sensitivity problem to parameter variations. The results were published in [113]. Finally, 

robustness to both structured and unstructured uncertainties has been achieved with a single 

adaptive fuzzy controller. Unlike other control techniques, no a priori offline training, weights 

initialization, mechanical/electrical parameters knowledge, voltage or current transducer is re-

quired. However, the efticiency is expected to be lower than in Maximum Torque Per Ampere 

(MTPA) technique since no CUITent loop regulation is used. Neveltheless, this work is of one of 

the tirst attempts, if any, to achieve high tracking control performance in the presence of both 

structured and unstructured uncertainties without the use of currents sensing or Ioop regulation 

for PMSMs. The proposed approach has been published in [114] . In this chapter, the proposed 

controllers achieve a tracking precision within sensors resolution. Therefore, future work might 
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consider the effect of low precision sensing and noise filtering on the control performance. This 

is an important step towards experimental validation of these control1ers. 

In chapter 8, advanced adaptive techniques have been presented in chapter 8 for energy 

production systems. An adaptive fuzzy control of DC-DC boost converters copes with large 

parametric and load uncertainties. The control strategy achieves robustness to uncertainties 

without the inner CUITent control loop. Comparison results against a PI controller were pub-

lished in [lIS] and show better performance in the presence of uncertainties. Similar per-

formance is achieved with less complexity in [116]. This proposed adaptive DC bus voltage 

control1er uses a single adaptive parameter to achieve high efficient power ftow to the grid. 

Moreover, no source voltage sensing is required, which reduces the number of sensors. Com-

parison against a PI-based control structure is carried out. Results show higher accuracy and 

robustness of the proposed adaptive control technique. On the other hand, the state of charge 

estimation of batteries is proposed in [117] using observer-based them'y. This technique uses 

only the measurements of the battery voltage and CUITent. Moreover, a stability analysis guar-

antees its convergence and stability. Furthermore, it is easier to implement as opposed to other 

estimation techniques with similar performance. However, the battery aging effect results in 

an estimation error, which is likely to become significant over time as the battery ages. There-

fore, an adaptive estimation strategy is introduced in [118] to overcome this problem, Results 

show high estimation accuracy. Furthermore, the stability of the proposed estimation technique 

is guaranteed by Lyapunov stability theory. Finally, a fuzzy supervisory energy management 

strategy is introduced in [119] for multisource electric vehicles. This technique extends the 

life span of energy storage devices and reduces their frequent maintenance, which yields better 

energy utilization. Results show accurate equilibrium for battery units with different capacity 

and state of charge. 

This thesis contributes to the design of stable adaptive control strategies using soft-computing 

techniques. In continuation to this work, new control structures can be considered to reduce fur-

ther the complexity of soft-computing tools. As far as neural networks are concerned, this the-

sis presents Lyapunov-based learning strategies for the most popular ANN, which is the MLP. 
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Henceforth, new stable adaptive control strategies can be considered for the so many ANN 

architectures. Moreover, new stable adaptation laws can also be developed for soft-computing 

optimization based techniques, such as genetic algorithms and ant colony. 
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Annexe A 

Résumé 

A.1 Introduction 

Dans la littérature, les approches de commande des systèmes non-linéaires peuvent être 

divisées en trois catégories. La première catégorie consiste en une linéarisation des systèmes 

non-linéaires autour d'un point de fonctionnement [1]. Dans ce cas, les lois de commande 

linéaires classiques sont appliquées pour le système approximé. En dépit de la simplicité des 

lois de commande, la performance du système de commande n'est pas garantie pour l'ensemble 

du système. La deuxième catégorie porte sur la conception des contrôleurs non-linéaires basés 

sur la dynamique des systèmes non-linéaires . Dans cette catégorie, les caractéristiques des sys-

tèmes non-linéaires sont conservées. Toutefois, les difficultés de conception augmentent avec la 

complexité de la dynamique des systèmes non-linéaires [2]. En outre, ces approches se basent 

sur un modèle mathématique précis du système et ont tendance à bien fonctionner en théorie. 

Mais, leurs performances se dégradent en présence de conditions de fonctionnement variables, 

d'incertitudes dynamiques et des perturbations externes. En pratique, déliver un modèle mathé-

matique précis des processus industriels complexes pourrait être une tâche difficile à entrepren-

dre. En outre, d'autres facteurs pourraient être imprévisibles, tels que le bruit, la température 

et la variation des paramètres. Par conséquent, la dynamique du système ne peut pas être basée 

avec efficacité sur des modèles mathématiques précis. La troisième catégorie met en oeuvre 
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des contrôleurs non-linéaires basés sur l'intelligence artificielle, tels que les réseaux de neu-

rones artificiels (RNA) et la logique floue [3-8]. Ces techniques ont été crédités dans diverses 

applications comme des outils puissants capables de fournir une robuste approximation pour 

les systèmes mathématiquement mal définis qui peuvent être soumis à des incertitudes struc-

turées et non structurées [9, 10]. Le théorème d'approximation universelle a été la principale 

force motrice delTière la popularité croissante de ces méthodes puisqu ' ils sont théoriquement 

capables d'approximer uniformément toute fonction continue réelle à n'importe quel degré de 

précision. Divers réseaux de neurones artificiels et modèles de logique floue ont été proposées 

pour résoudre de nombreux problèmes complexes, qui ont permit d'obtenir une performance 

satisfaisante [11-14], offrant une alternative aux techniques de commande classiques. 

Les principales contributions de cette thèse sont la conception des structures de commande, 

des lois d'adaptation et des preuves de stabilité pour les stratégies de commande adaptative 

intelligente pour obtenir: : 

- Apprentissage et approximation des systèmes non-linéaires a priori inconnu. 

- L' identification de la dynamique des propulseurs pour satellites. 

- Approximation des incertitudes pour la commande de la pendule inversée. 

- Compensation d'hystérésis pour actionneurs piézoélectriques dans les systèmes mi-

croélectromécaniques (MEMS). 

- Analyse de la stabilité pour les techniques basées sur l'intelligence artificielle. 

- Mécanisme d'apprentissage adaptatif basé sur Lyapunov pour les réseaux de neurones. 

- Technique d'adaptation stable selon Lyapunov pour les systèmes de logique flou. 

- Stratégies de commande adaptative basées sur Lyapunov pour les systèmes électromé-

caniques tels que des manipulateurs robotiques . 

- Compensation adaptive du frottement et de ses non-linéarités. 

- Atténuation de perturbation pour assurer une robustesse aux incertitudes non-structurées. 

- Réduction des effets d'élasticité pour améliorer la stabilité interne de manipulateurs 

avec articulations flexibles. 

- Adaptation des paramètres pour obtenir une robustesse aux incertitudes paramétriques. 
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- Haute performance et robustesse des machines synchrones à aimants permanents. 

- Estimation du couple de friction et de charge pour une haute précision de suivi de 

trajectoire. 

- Techniques de commande adaptative pour une robustesse aux incertitudes paramétriques. 

- Approches basées sur l'intelligence artificielle pour une tolérance élevée à des incer-

titudes non-structurées. 

- Stratégies d'estimation de vitesse. 

- Haute efficacité pour les systèmes de production d'énergie. 

- Estimation précise de l'état de charge des batteries. 

- Commande adaptative à base d' intelligence artificielle pour les convertisseurs de puis-

sance. 

- Commande adaptative de la tension de bus CC pour améliorer l'efficacité de transfert 

d'énergie. 

A.2 L'identification à base de réseaux de neurones 

Les réseaux de neurones artificiels (RNA) sont constitués d'un ensemble d'éléments de 

base appelés neurones. La philosophie derrière ces systèmes est d' imiter le cerveau humain, 

mais j'écart entre les réseaux de neurones et le cerveau est toujours grand, dû à la complexité 

de ce dernier. Grâce aux développements des recherches sur le cerveau et la disponibilité des 

outils de simulation, les chercheurs étudièrent des ensembles de neurones formels intercon-

nectés. Ces réseaux, déjà développés à l'époque, permettaient d'effectuer quelques opérations 

logiques simples. Jusqu'aux années 1980, la recherche était freinée par la limitation théorique 

du perceptron. Peu après cette époque, Hopfield lança de nouveau en 1982 la recherche dans 

ce domaine après avoir montré l'analogie entre les RNA et les systèmes physiques. Après les 

années 1990, quelques travaux scientifiques ont vu le jour dans le domaine de la commande 

des systèmes d'entraînement et des systèmes de positionnement de haute performance. 

Les approches de conunande utilisant les réseaux de neurones artificiels tentent d'imiter la 
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structure connexionniste du système nerveux. Leur caractéristique fondamentale réside dans 

le fait que les fonctions de mémoire et de traitement y sont intimement liées, cela est à l'in-

star du cerveau qui autorise un certain flou et des imprécisions qui n'affectent pas la fiabilité 

de l'ensemble d' où une sûreté de fonctionnement ainsi qu'une grande capacité d' adaptation, 

d'apprentissage et de tolérance aux pannes. Il n'est donc pas surprenant que les recherches 

dans le domaine de la commande utilisent les réseaux de neurones artificiels avec des résultats 

satisfaisants. Cependant, ces tentatives ont été fortement critiquées. Une critique ayant forte-

ment influencé les recherches dans ce domaine soutient que les réseaux sont incapables par 

leur nature de représenter les structures essentielles à la cognition. Ils auraient le double ef-

fet de synthétiser les difficultés auxquelles les réseaux font face et de tirer des enseignements 

sur les différentes tendances actuelles. Les RNA sont une formulation mathématique simpli-

fiée des neurones biologiques. Ils ont la capacité de mémorisation, de généralisation et surtout 

d'apprentissage qui est le phénomène le plus important. 

- Avantages: Les réseaux de neurones ont une capacité d'adaptabilité et d'auto organisa-

tion ainsi que de résoudre des problèmes non-linéaires avec une bonne approximation. 

Ils offrent une bonne robustesse aux bruits et se prêtent bien à une implantation parallèle. 

La rapidité d'exécution est une qualité importante et elle justifie souvent à elle seule le 

choix d'implanter un réseau de neurones. 

- Inconvénients: La difficulté d'interpréter le comportement d'un réseau de neurones est 

un inconvélùent pour la mise au point d'une application. Il est souvent impossible d' u-

tiliser les résultats obtenus pour améliorer ce comportement. Il est également hasardeux 

de généraliser à partir d' expériences antérieures et de conclure ou de créer des règles sur 

le fonctionnement et le comportement des réseaux de neurones. Ces outils sont basés sur 

des d'heuristiques et plusieurs paramètres doivent être ajustés. De plus, aucune méthode 

ne permet de choisir des valeurs optimales et la stabilité de la plupart des algorithmes 

d'apprentissage n'est pas garantie. 

Malgré la diversité des algorithmes d'apprentissage il n'y a pas de méthode systématique 

pour la détermination d'un réseau de neurones, en particulier le choix de l'architecture du 
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réseau, le nombre de neurones, le nombre de couches ou le choix des paramètres internes 

de l'algorithme comme l'erreur quadratique qu'on veut atteindre et le nombre d'itérations. 

Théoriquement, un réseau qui possède deux couches cachées avec suffisamment de nIJuds 

cachés peut être utilisé pour résoudre n'importe quel problème. En ce qui concerne le nom-

bre de neurones cachés (de l'ensemble des couches cachées), il faut qu'il soit supérieur au 

plus grand nombre de neurones constituant soit la couche d'entrée soit la couche de sortie. 

Finalement, les réseaux de neurones sont des programmes informatiques qui en simulant le 

fonctionnement des neurones du cerveau humain, permettent aux ordinateurs d'apprendre à 

effectuer certaines tâches simples. Par contre, ils sont très gourmands en capacité de calcul et 

nécessitent des ordinateurs très puissants pour apprendre à exécuter des tâches complexes. 

Un problème est rencontré lorsque l'apprentissage converge vers une solution sous opti-

male. Ce type de problème est difficile à résoudre car généralement la surface d'erreur est 

inconnue. Le nombre de neurones cachés est particulièrement important parce qu'il détermine 

la capacité de calcul du réseau. Un nombre insuffisant de neurones cachés peut compromet-

tre la capacité du réseau à résoudre le problème. Inversement, trop de neurones permettent 

au réseau d'apprendre par cIJur au détriment des performances de la généralisation. Lorsque 

l'apprentissage d'un réseau reflète trop les particularités du problème au détriment de la tâche 

réelle, la matrice d'apprentissage ne reflète pas toujours adéquatement la tâche. Il en résulte 

que le réseau généralise mal. Même les paramètres propres à l'algorithme d'apprentissage 

sont difficiles à choisir comme par exemple le pas d'apprentissage. Cette thèse contribue aux 

développements d'algorithmes d'apprentissage assurant la stabilité du système de commande 

en boucle fermée. 

A.2.1 Application aux nanosatellites 

Les nanosatellites utilisent un petit système de propulsion avec des capacités de propul-

sion élevée. De nombreux chercheurs ont étudié les technologies de propulsion pour identifier 

ceux qui maintiennent des performances élevées à petite échelle. Toutefois, indépendamment 

de la taille des propulseurs, ces derniers émettent en échappement un contaminent néfaste pour 
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les engins spatiaux voisins . L'agence spatiale canadienne (ASC) a lancé, comme une collabora-

tion internationale avec l'agence japonaise d'exploration aérospatiale, une étude de faisabilité 

de la mission du nanosatellite JC2Sat-FF. L'objectif est de maintenir la formation d'engins spa-

tiaux (nanosateUites) avec la traînée aérodynamique. Le principal avantage est l'élimination du 

risque de contamination des propulseurs. De plus, la durée de vie des missions ne sera pas lim-

itée par la quantité de carburant à bord. Cependant, les temps de réponse aux changements dans 

la formation sont lents, les positions relatives ne peuvent être contrôlées avec une précision très 

élevée et certains types de formation ne sont pas possibles. Une étude théorique, algorithmique 

et expérimentale de la formation de satellites est menée à l'ASC, où, un banc d'essai a été 

développé pour émuler un scénario de formation typique pour la validation expérimentale. 

Les propulseurs ont reçu récemment une attention particulière et ont été utilisés dans de 

nombreuses applications telles que, les vaisseaux de haute performance et de la robotique 

sous-marine. Les non-linéarités des propulseurs rendent la modélisation de leur dynanlique une 

tâche complexe. L'utilisation de modèles simplifiés des propulseurs résultent en de mauvaises 

performances en raison de non-linéarités et de la dynamique variable dans le temps. Donc, un 

système de contrôle avancé avec des capacités d'apprentissage est requis pour s'adapter aux 

changements dans la dynamique des propulseurs . 

Cette application démontre la puissance des réseaux de neurones en identification et en ap-

prentissage pour des nanosatellites (section 1.2). Cette technique est utilisée pour l' approxima-

tion de la dynamique des propulseurs de satellites. Sa performance est étudiée en utilisant des 

données expérimentales d'un propulseur. Les résultats montrent une précision d'approxima-

tion très élevée, ce qui confirme la capacité des réseaux de neurones à modéliser des systèmes 

mal définis mathématiquement. Cette observation sera utilisée dans cette thèse pour la con-

ception des techniques de commande adaptative intelligente. Ces stratégies devront garantir la 

stabilité des algorithmes d'adaptation et seront appliquées à des divers systèmes dynamiques 

complexes. 
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A.3 Commande adaptative à base d'intelligence artificielle 

Parmi les techniques de commande connues, on trouve la commande adaptative. Elle 

permet à la fois d'assurer la stabilité et une bonne performance en présence d'incertitudes 

paramétriques. Cette approche adapte les coefficients du contrôleur en ligne pour compenser 

les variations dans l'environnement ou dans le système lui-même. Un grand nombre de travaux 

de recherche s'orientent vers la commande adaptative, car les paramètres des modèles util-

isés dans la commande des systèmes d'entraînement peuvent être inconnus ou variables dans 

le temps. Par contre, ces techniques ne sont pas très utilisées à cause de la difficulté pour 

compenser des grandes perturbations. De plus, la plupart des lois de commande qui ont été 

proposées requièrent la connaissance de l'état complet du système et même quelques fois la 

mesure de l'accélération. 

En 1965, le professeur Lofti Zadeh de l'université de Berkley en Californie introduit le con-

cept de la logique floue, il déclara qu'un contrôleur électromécanique doté d'un raisonnement 

humain serait plus performant qu'un contrôleur classique. Ceci est dû au fait que l'être humain 

possède une caractéristique de raisonnement basée sur des données imprécises ou incomplètes 

alors que l'ordinateur est basé sur des données exactes. Un contrôleur standard demande le 

plus précis modèle possible du système à contrôler. Ainsi, pour mieux représenter la réalité 

physique, le développement d'un modèle analytique précis est requis. Par contre, un contrôleur 

flou ne demande pas de modèle du système à régler. Les décisions sont prises sans avoir re-

cours au modèle analytique. Les algorithmes de réglage se basent sur des règles linguistiques 

de la forme Si ... Alors ... 

La logique floue est utilisée dans plusieurs domaines de recherche et d'application tels 

que l'automatisation, l'instrumentation et le traitement d'information. La plupart des lois de 

commande qui ont été proposées requièrent la connaissance de l'état complet du système, 

donc il est important de concevoir une loi de commande robuste qui demande une connaissance 

minimale sur le système. Idéalement, la loi de commande donne une grande région d'attraction 

applicable et robuste dans le cas de l'incertitude des paramètres autonomes non-linéaires du 
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système, d'une eneur du modèle, de la variation de la charge et d'une caractéristique inconnue. 

La structure de commande présentée dans la Fig. Al est utilisée dans cette thèse comme 

une structure de base pour concevoir des contrôleurs intelligents pour des systèmes dynamiques 

non-linéaires. Il est à noter qu'un contrôleur de rétroaction pourrait être inclus pour des prob-

lèmes plus complexes. 

FIGURE Al - Structures de commande générales 

A.3.1 Application à la pendule inversée 

Le problème de la pendule inversée a été largement utilisé pour démontrer l'efficacité 

de différents types de contrôleurs. Il est considéré corrune un défi de référence bien établi pour 

de nombreux problèmes de commande, tels que les manipulateurs robotiques et les missiles. 

L'approche de commande est conçue pour les systèmes non-linéaires en général à plusieurs 

entrées-sorties (MIMO). Dans cette stratégie, le système de commande capitalise sur les ca-

pacités d'apprentissage et de généralisation des réseaux neurones et de la logique floue pour 

assurer un suivi précis de trajectoire en présence des incertitudes non-structurées. Une adap-

tation neurale et floue basée sur des stratégies de commande adaptative a été appliquée au 

problème de la pendule inversée (section 5.4). Les structures de commande sont présentées 

dans la Fig. A2 et Fig. A3. Les résultats montrent de bonnes performances en présence de 

non-linéarités de friction et les perturbations externes. 

A.3.2 Application aux actionneurs piézoélectriques 

Les matériaux piézoélectriques sont habituellement utilisés dans la conception d'action-

neurs et de capteurs de haute précision pour des micro et nanosystèmes. Cependant, leur perfor-
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FIGURE A2 - Structure de commande neuronale pour la pendule inversée 
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FIGURE A3 - Structure de commande floue pour la pendule inversée 
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mance est limitée par la présence d'hystérésis . En effet, les caractéristiques de ce phénomène 

sont généralement inconnues et peuvent mener à des cycles limites et même l' instabilité à dé-

faut de compenser cette incertitude. Il est donc urgent d'envisager des approches de commande 

pour ce type de systèmes. 

La stratégie d'apprentissage à base de RNA est alors appliquée comme le montre la Fig. A4 

(section 5.5). Les résultats montrent que la position et la vitesse de l' actionneur piézoélectrique 

peuvent être contrôlées avec une haute précision. Le contrôleur proposé démontre son efficacité 

dans la compensation d'hystérésis. Contrairement à d' autres contrôleurs, la stabilité est assurée 

avec la théorie de Lyapunov. 

Jusqu'à présent, les techniques d'apprentissage neuronales et floues à base de Lyapunov ont 

été proposées pour des systèmes non-linéaires sans tenir compte de leur dynamique. La stabilité 

de ces lois d' adaptation universelle est étudiée en utilisant la théorie de stabilité de Lyapunov. 

Toutefois, certains systèmes non-linéaires peuvent introduire des contraintes supplémentaires 

sur la stabilité de la commande et, par conséquent, il est important de considérer la dynamique 
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FIGURE A.4 - Structure de commande neuronale pour les actionneurs piézoélectriques 

d'un système lors de l'étude de sa stabilité. 

A.4 Commande adaptative des manipulateurs robotiques 

Au fil des années, de nombreuses stratégies de commande adaptative ont été proposées 

pour les manipulateurs rigides. Ces développements représentent un pas important vers les 

applications robotiques de haute précision. Cette thèse utilise, comme point de départ, l'une 

des techniques les plus populaires d'adaptation [22] pour la conception de techniques de com-

mande adaptative robuste capable de faire face à différents types d'incertitudes (section 6.3). 

Bien que cette technique offre un rendement satisfaisant, elle néglige des aspects impor-

tants tels que le frottement et la perturbation. Cela a des effets négatifs sur les performances 

et la stabilité de ces systèmes, qui est considéré comme le problème majeur de la commande 

adaptative classique. Par la suite, nous allons résoudre ces inconvénients avec la conception de 

compensateurs de friction et de perturbation pour les manipulateurs à articulations flexibles. 

La commande adaptative des robots manipulateurs rigides peut aussi être utilisée pour les 

articulations flexibles. Cela a été rendu possible grâce à la théorie des perturbations singulières. 

Cependant, il suppose une grande rigidité. En outre, la présence de la friction et de la pertur-

bation affecte de manière significative les performances et la stabilité. Avec l'hypothèse d'une 

grande rigidité, un contrôleur rigide utilisé en anticipation approxime le modèle inverse de l' ar-

ticulation flexible . D'autre part, un compensateur de friction et de perturbation est utilisé en 

rétroaction pour éliminer les erreurs résiduelles. Les structures de commande sont présentées 

dans la Fig. A.S et Fig. A.6. 
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Les résultats mettent en évidence la qualité de la compensation de la flexibilité, les non-

linéarités de friction et la perturbation. Un suivi précis de la trajectoire de la charge est obtenu 

et la stabilité interne, un problème potentiel avec un tel système, est également atteinte. En 

outre, la stabilité est prouvée par la méthode directe de Lyapunov (section 6.4 and 6.5). 
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FIGURE A.5 - Structure de commande adaptative de compensation de friction 
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FIGURE A.6 - Structure de commande adaptative neuronale de compensation de perturbation 

D'autre part, une comparaison entre un contrôleur flou de type-l et de type-2 a été menée 

sur une articulation flexible en présence d'incertitudes de diverses grandeurs. Pour ce faire, un 

contrôleur flou a été proposé comme le montre la Fig. A.7. De plus, une adaptation basée sur 

Lyapunov a été introduite sur la Fig. A.8 comme une alternative aux méthodes traditionnelles 

d'adaptation heuristiques. Dans les deux approches de commande, les résultats montrent la 

supériorité du type-2 avec un meilleur amortissement des oscillations due à l'élasticité. Cette 

constatation confirme une plus grande tolérance des régulateurs flous à une modélisation im-

précise. Jusqu'à présent, ce travail est l'un des rares tentatives dans la conception et la mise en 
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oeuvre d'une architecture de commande floue de type-2 pour les manipulateurs avec articula-

tions flexibles (section 6.6 and 6.7). 
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FIGURE A.7 - Structure de commande floue pour les manipulateurs robotiques 
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FIGURE A.8 - Structure de commande adaptative floue pour les manipulateurs robotiques 

A.5 Les machines synchrones à aimants permanents 

Les machines synchrones à aimants permanents sont largement utilisées dans de nom-

breuses applications industrielles comme les véhicules électriques, les éoliennes et la robo-

tique. Toutefois, afin de fonctionner efficacement, des encodeurs à haute résolution sont requis. 

Ces capteurs attachés à l'arbre du rotor augmentent la longueur de la machine, les coûts, l'iner-

tie du rotor et nécessitent un câblage additionnel. Récemment, les techniques sans capteurs ont 

reçu un intérêt croissant pour des applications industrielles où il ya des limites à l'utilisation de 

capteurs. En outre, la commande sans capteurs réduit la sensibilité aux bruits et aux vibrations, 

le coût, la taille et l'entretien tout en augmentant la fiabilité du système dans son ensemble 
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et la robustesse. Toutefois, le contrôle de tels systèmes se heurte encore à de nombreux défis 

qui doivent être abordées tels que les conditions de fonctionnement variables, les perturbations 

externes et les incertitudes dynamiques structurées et non-structurées. 

A.S.I Commande adaptative 

Tel que mentionné auparavant, la commande adaptative se base sur la connaissance 

du modèle du système à contrôler. Ce qui permet d'écrire ce modèle sous forme d'une ré-

gression (<I>TW) et de définir des lois de commande et d'adaptation pour obtenir une stabilité 

asymptotique. Cette technique a été combinée avec la commande vectorielle pour concevoir 

un contrôleur adaptatif tel que montTé sur la Fig. A9. Cette stratégie offre des bonnes per-

formances face aux variations de paramètres (section 7.3). De plus, un observateur de vitesse 

et de couple de charge augmente sa robustesse lorsque la charge varie. Par contre, l'adapta-

tion des paramètres des trois contrôleurs ajoutent à sa complexité. Une version simplifiée est 

alors proposée dans la Fig. AlO où deux contrôleurs adaptatifs sont combinés. Les résultats 

démontrent une perfOlmance similaire avec une réduction de complexité (section 7.4). 

(J 

L ___ ~4_-=======t=======~f~D Observateur 
W 

FlGURE A9 - Structure de commande adaptative vectorielle pour les machines synchrones 

Par ailleurs, une connaissance partielle du système nous permet d'approximer le vecteur 

de régression <1> par 4>. Cette approximation introduit une incertitude qui se traduit en une 

(J 
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FIGURE A. 10 - Structure de commande adaptative pour les machines synchrones 

contrainte pour la stabilité. Donc, la stabilité asympt06que ne peut plus être garantie mais 

plutôt une stabilité en région. Il a aussi été démontré que cette région est définie par]' erreur 

d'approximation qu'au fur et au mesure qu'elle tend vers zéro, la région devient de plus en 

plus petite. Basé sur une connaissance partielle de la machine, un seul contrôleur adaptatif 

a été développé (section 7.5). La structure de commande est présentée dans la Fig. A.II. La 

simplicité de cette méthode rend l' adaptation des paramètres plus facile, ce qui se traduit en 

de meilleures performances au niveau de la commande. De plus, la stabilité du contrôleur 

proposée est garantie par la théorie de stabilité de Lyapunov. 

A.S.2 Commande intelligente 

Plusieurs contrôleurs ont été développés à base d' intelligence artificielle. Puisque ces 

derniers ne nécessitent pas une connaissance du modèle du système à contrôler, il était difficile 

de prouver leur stabilité. Par contre, nous avons déjà prouvé une stabilité en région lors d' une 

connaissance partielle du système. Donc, l'objectif est d'utiliser des contrôleurs neuronaux et 

flous pour approximer la dynamique du système, en d'autres mots, le vecteur de régression 

<P. Cette approximation (<Î» nous permet alors de concevoir des contrôleurs stables basés sur 
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FIGURE A.II - Structure de commande adaptative avec incertitudes pour les machines syn-
chrones 

la théorie des réseaux de neurones et de la logique floue . Ainsi, plusieurs contrôleurs basés 

sur différentes structures de commande ont été développés et une meilleure robustesse a été 

obtenue. De plus, des comparaisons avec des techniques de commande classiques confirment 

la valeur ajoutée des contrôleurs proposés. 

SVPWM Onduleur j....:i:!!..b H--I 
ic 

+ W abc/dq 

FI G UR E A.I2 - Structure de commande neuronale sans capteur pour les machines synchrones 

Deux réseaux de neurones sont utilisés pour le contrôle du courant sur les axes d-q puisque 

les paramètres électriques de la machines sont variables dans le temps (section 7.6). Comme 

le montre la structure de commande de la Fig. A.I2, un observateur neuronale de vitesse est 

aussi proposé. De plus, la stabilité du système de contrôle en boucle fermée (contrôleurs + ob-
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FlGURE A.13 - Structure de commande adaptative neuronale pour les machines synchrones 

servateur) est garantie par Lyapunov. Les résultats montrent une grande précision et tolérance 

à des incertitudes non-structurées de différentes grandeurs. Une version améliorée démontre 

qu'une performance similaire peut être atteinte avec un contrôleur en moins comme Je mon-

tre la Fig. A.l3 (section 7.7). Toutefois, l'estimation de la vitesse montre une sensibilité aux 

variations de flux. Par conséquent, un observateur non-linéaire de vitesse à base de réseaux de 

neurones a été proposé pour résoudre le problème de sensibilité aux variations des paramètres 

(section 7.8). La structure de l'observateur est présentée dans la Fig. A.14. 

Enfin, la robustesse à la fois des incertitudes structurées et non-structurées a été obtenue 

avec un seul contrôleur adaptatif flou (Fig. A.IS). Contrairement aux autres techniques de 

commande, pas de capteur de tension ou de courant n'est nécessaire. Cependant, une perte en 

efficacité est prévue puisqu'aucune boucle de courant n'est utilisée. Néanmoins, ce travail est 

l'une des premières tentatives, s'il en a, pour atteindre de hautes performances en présence des 

deux incertitudes structurées et non-structurées sans boucle de régulation des courants pour les 

machines synchrones (section 7.9). 
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FIGURE A.14 - Structure de l'observateur neuronale de vitesse pour les machines synchrones 

Vd = 0 ....------, 

Onduleur 

w 

FIGURE A.IS - Structure de commande adaptative floue pour les machines synchrones 
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A.6 Les systèmes intelligents à base d'énergies renouvelables 

Les systèmes d'énergie renouvelable sont de plus en plus populaires et considérés 

comme un moyen de lutte contre le changement climatique. Ils sont habituellement utilisés 

comme complément d'énergie pour les systèmes de production autonome. Ces systèmes sont 

composés de sources de stockage d'énergie telles que des batteries qui ont une quantité lim-

itée d'énergie. Par conséquent, l'utilisation optimale de l'énergie est l'un des différents défis à 

relever. Cependant, un fonctionnement optimal dépend de la précision de 1'estimation de l'état 

de charge des batteries et de la performance du contrôle des convertisseurs. Une mauvaise per-

formance au niveau de l'estimation et du contrôle des convertisseurs résultent inévitablement 

en une réduction d'efficacité des systèmes d'énergie renouvelable. Il est donc urgent d'envis-

ager de nouvelles approches de d'estimation, de commande et de gestion d'énergie pour un 

meilleur transfert énergétique. 

Ainsi, un contrôleur adaptatif flou est proposé pour un cqntrôle en haute performance d'un 

convertisseur élévateur CC-CC comme le montre la Fig. A.16 (section 8.3). L'objectif de la 

commande est obtenu avec des importantes variations de paramètres et sous la contrainte de la 

dynamique inconnue. De plus, aucune boucle interne de régulation du courant n'est requise, 

ce qui réduit le nombre de capteurs. D'autre part, un contrôleur adaptatif est proposé dans la 

Fig. A.17 pour le contrôle du bus CC (section 8.4). La technique adaptative proposée assure un 

contrôle bidirectionnel du convertisseur CC-CC sans mesure de la tension de la source, ce qui 

résulte en moins de variations de la tension du bus Cc. Les deux contrôleurs sont comparés à 

une structure de commande classique à base de régulateurs PI dans des conditions d'opérations 

similaires. Les résultats montrent la supériorité des contrôleurs proposés pour compenser des 

incertitudes de plus grande amplitude. La performance des stratégies proposées est un élément 

clé pour une haute efficacité nécessaire pour les systèmes à haute performance énergétique. 

Par la sui te, un estimateur d'état de charge basé de la théorie des observateurs d'états est 

proposé pour des batteries (section 8.5). La technique se caractérise par sa simplicité, sa preuve 

de stabilité et sa facilité de mise en oeuvre. Par contre, sa performance est affectée par le 
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FIGURE A.16 - Structure de commande flou du convertisseur élévateur 

FI GU RE A.17 - Structure de commande adaptative du bus CC 
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vieillissement des batteries d' où. la nécessité d'utiliser une stratégie d'estimation en ligne des 

paramètres pour s'ajuster aux changements de dynamique. Donc, une technique d'estimation 

adaptative a été proposée et a montrée que l'état de charge peut être déterminé avec une grande 

précision en présence d'incertitudes (section 8.6). De plus, la convergence et la stabilité de la 

stratégie proposée est garantie par la théorie de Lyapunov. 

Enfin, une stratégie de gestion d'énergie à base de logique floue est proposée pour les sys-

tèmes multisources (section 8.7). La technique proposée vise une utilisation optimale d'énergie 

ce qui se traduira en une prolongation de la durée de vie des dispositifs de stockage d'énergie et 

en une réduction de leur entretien fréquent. Les résultats montrent un bon équilibrage de l'état 

de charge des sources d'énergie. En général, lorsque les performances d'une seule source se 

dégradent, toutes les sources sont remplacées en même temps de préserver l'intégrité du sys-

tème globale. La méthode proposée permet l'utilisation de plusieurs unités avec des capacités 

différentes. En outre, ça permet également de fusionner des unités de différents manufacturiers. 
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A.7 Conclusion 

Dans cette thèse, des nouvelles structures de commande adaptative à base d'intelli-

gence artificielle ont été proposées pour des systèmes non-linéaires à haute complexité. Les 

contrôleurs proposés sont conçus pour assurer la stabilité et la robustesse en présence des 

deux types d'incertitudes structurées et non-structurées. Premièrement, nous avons montré 

les capacités d'apprentissage et d'approximation des réseaux de neurones artificiels avec une 

stratégie d'identification de la dynamique des propulseurs de satellites. Cette capacité à ap-

proximer des systèmes non-linéaires a priori inconnus a été utilisée comme motivation dans le 

reste de la thèse avec la conception de contrôleurs intelligents. 

Le chapitre 5 présente des stratégies d'adaptation neuronales et floues à base de Lyapunov. 

Ces mécanismes d'apprentissage sont conçus pour les systèmes MIMO en général. Une appli-

cation au problème de la pendule inversée a été proposée. La technique d'adaptation neuronale 

a également été appliquée aux actionneurs piézoélectriques. L'approche proposée offre une 

bonne performance en compensation d' hystérésis, un problème connu des systèmes micro-

électromécaniques (MEMS). 

Dans le chapitre 6, des stratégies de commande adaptative stable selon Lyapunov ont été 

présentées pour les manipulateurs robotiques. Dans ces techniques, la compensation de la fric-

tion et de la perturbation a permit une robustesse à des incertitudes non-structurées. La présence 

d'élasticité et de la variation des paramètres ont également été abordées. 

Dans le chapitre 7, plusieurs méthodes d' estimation et de contrôle de vitesse ont été pro-

posées pour les machines synchrones à aimants permanents. Ces stratégies combinent la force 

de la commande adaptative avec celle de l'intelligence artificielle pour atteindre une grande 

précision dans le suivi de trajectoire et une grande tolérance à des incertitudes non-structurées 

de différentes grandeurs. L'estimation de la vitesse, de la friction, de la perturbation et du 

couple de charge a également été obtenue à l'aide de nombreux observateurs. 

Enfin, des techniques avancées d'estimation, de commande et de gestion d'énergie ont été 

présentées dans le chapitre 8 pour les systèmes de production d'énergie renouvelable. L'estima-
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tion précise de l'état de charge des batteries est obtenue en utilisant les théories d'observateurs 

d'états et de commande adaptative. Par ailleurs, une commande adaptative floue des conver-

tisseurs CC-CC a démontrée une robustesse face à de grandes incertitudes paramétriques et 

de charge. D'autre part, la commande adaptative de la tension du bus CC est présentée pour 

améliorer l'efficacité de transfert d'énergie. De plus, une stratégie de gestion d'énergie à base 

de logique floue des systèmes multisources est proposée. Cette technique s'ajoute aux dif-

férentes stratégies développées dans ce chapitre pour une utilisation plus optimale d'énergie 

renouvelable. 




