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A FORMAL ONTOLOGY FOR DATA MINING:
PRINCIPLES, DESIGN, AND EVOLUTION

Yanfen Shen
ABSTRACT

Data mining (DM) and decision support system (DS) are two relatively independent
domains broadly applied to scientific research and business practice. Successful
integration of technologies associated with both domains could an intelligent data
mining assistant system, which is able to provide intelligent assistance beyond the
numbers of DM methods and tools, is an essential step toward a better integration of DM
and DS. However, the development of such a system is currently facing two major
challenges: the support of non-expert data miner and the definition of DM knowledge.
Formalized and computerized ontologies, as a new research area for knowledge
conceptualization, possess a great potential to help resolve the above problems. Due to
its powerful knowledge representation formalism and associated maintenance
mechanism, integrating an ontology into a data mining assistant system will be an

effective way of making the system more intelligent and helpful for decision makers.

The objective of the research is to develop an ontology-based approach for data mining.
It includes a data mining ontology, which creates a complete data mining domain
knowledge base, and an ontology evolution tool, which provides a mechanism to support
the ontology development and updating. This research provides a fundamental part of a

larger project which aims to develop an intelligent data mining assistant system.

Based on protégé (Stanford University) and the OWL language, a finely designed DM
ontology is successfully established. The role of the DM ontology is to represent the data
mining knowledge required in the system. Two types of knowledge are represented: data

mining domain knowledge that consists of both the methodology and the detailed



applicable knowledge of the entire data mining process, and system generated
knowledge that consists of data annotation and CBR case representation. To provide
more intelligent support for data mining activities, our DM ontology is further integrated
with the other two system components: a data warehouse and a case-based reasoning

system.

Furthermore, a new ontology evolution methodology is proposed and implemented as a
Protégé plug-in. This methodology is based on the evolution tasks and the consequence
of the change operations. The different change operations and evolution tasks are finely
defined in the methodology. The plug-in groups and arranges the necessary steps of
most commonly used evolution tasks. It can be used as a step-by-step wizard to guide

decision makers to execute ontology-updating tasks.

The results of this research have led to the construction of a fundamental framework for
our data mining assistant system and pave the way for a better integration of data mining
and decision support system. Furthermore our versatile DM ontology evolution
methodology will greatly improve the accuracy, consistency, and efficiency of the
evolution tasks. More importantly, this evolution methodology possesses a great

potential for further development.
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UNE ONTOLOGIE FORMELLE POUR LE FORAGE DE
DONNEES : PRINCIPES, CONCEPTION ET EVOLUTION

Yanfen Shen
SOMMAIRE

Le forage de données (DM) et les systémes d'aide a la décision (DS) sont deux domaines
relativement indépendants qui sont largement appliquées dans la recherche scientifique
et la gestion. L'intégration réussie des technologies associées & ces deux domaines
pourra mener a la réalisation d’un systéme intelligent puissant pour soutenir la prise de
décision. L'application d’un systéme intelligent d’aide au forage de données, qui peut
fournir une aide intelligente au dela de nombre de méthodes et d'outils de DM, est une
étape essentielle vers une meilleure intégration de DM et de DS. Cependant, le
développement du systeéme doit relever actuellement deux défis principaux : le support
de foreur de données non expert et la définition de la connaissance de DM. Les
ontologies formelles et informatisées, en tant que nouveau secteur de recherche pour la
conceptualisation de la connaissance, possedent un grand potentiel pour aider a résoudre
les problemes ci-dessus. En raison de son puissant formalisme de représentation de la
connaissance et du mécanisme d'entretien associé, intégrer une ontologie dans le
systeme d’aide au forage de données sera une manicre efficace de rendre le systeme plus

intelligent et utile pour des décideurs.

L'objectif de cette recherche est de développer une approche basée sur I’utilisation d’une
ontologie dans le domaine du forage de données. Cette demnicre constitue une base de
connaissance du domaine de forage de données ; ainsi qu’une méthode d'évolution
d'ontologie, laquelle fournit un mécanisme et un outil pour soutenir le développement et
la mise a jour de l'ontologie. Cette recherche est une partie fondamentale d’un plus grand

projet de développement d’un systeme intelligent d’aide au forage de données.

il



Basé sur Protégé (Université de Stanford) et le langage OWL, nous avons établi avec
succes une fine ontologie de DM. Le rdle de l'ontologie de DM est de représenter la
connaissance de forage de données nécessaire au systéme. Deux types de connaissance
sont représentés : la connaissance du domaine de forage de données et la connaissance
produite par le systeme. La connaissance du domaine de forage de données se compose
de la méthodologie et de la connaissance détaillée applicable au processus de forage de
données, alors que la connaissance produite par le systtme se compose de la
représentation d'annotations de données et des cas du systéme a base de cas. Pour fournir
un support plus intelligent pour des activités de forage de données, notre ontologie de
DM reste intégrée avec les deux autres composants du systéme : I’entrep6t de données et

le systéme de raisonnement basé sur les cas.

Nous avons aussi proposé une nouvelle méthodologie d'évolution d'ontologie, cette
méthodologie est mise en application comme un plug-in de Protégé. Cette approche est
basée sur les tiches de I'évolution de 1’ontologie et la conséquence des opérations de
changement. Cette approche définie avec grande précision les différentes opérations de
changement et les tidches de I'évolution. Le plug-in groupe et arrange les étapes
nécessaires des tiches de 1'évolution les plus généralement utilisées. 1l peut étre employé
comme un wizard, étape par étape, pour guider des décideurs pour exécuter les tiches de

mise a jour de l'ontologie.

Les travaux accomplis dans cette recherche ont permis de construire la structure
fondamentale pour notre systéme d’aide au forage de données et ont préparé le terrain
pour une meilleure intégration du forage de données et des systémes d'aide a la décision.
En outre notre méthodologie d'évolution d'ontologie améliorera considérablement
l'exactitude, I’uniformité et l'efficacité des tiches de I'évolution. A notre avis, cette

approche évolutive posséde un grand potentiel pour un développement ultérieur.
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Chapter 1 : INTRODUCTION

1.1 Background

Data mining (DM), the extraction of hidden predictive information from large databases,
is a powerful new technology with great potential for applications in almost every area
to support deciston-making. Nowadays, with the tremendous growing competition,
many organizations are facing serious challenges in data and information analysis when
making decisions. One of the challenges is the increasing availability of large volumes
of high-dimensional data occupying databases. Another is the competitive demand for
the rapid construction and deployment of data-driven analysis. The third is the need to
give end users analysis results in a form readily understandable, helping them gain the
insights they need to make critical decisions. This trend requires intelligent support to
deal with a very large volume of data and find new, interesting and useful patterns from
data for effective decision-making. Data mining, as proposed by many researchers, is
regarded as the best choice to assist decision makers to solve the “data rich but

knowledge poor” problems.

Decision makers can make decisions based on the information and knowledge obtained
through data mining processes, or in other cases, through decision support systems
(DSS) for certain types of decisions. The decision support system is “an interactive,
flexible and adaptable computer-based information system especially developed for
supporting the solution of a non-structured management problem for improved decision
making” [1]. It aims to increase the productivity of decision makers through
implementing their abilities to manipulate knowledge, by facilitating problem solving,
and by providing the assistance for non-structured problems. This requires a complex
processing of data and information. The results depend largely on the quality of the
applied data processes. Thus data mining and decision support systems are not two

independent components to support decision-making. They interact with each other to



combine useful data and information for decision-making process, improve the
understanding of decision-making process, and generate new knowledge from decision-
making process. Actually, they are interdependent; they can benefit from each other if

they can be successfully integrated.

Proper integration of DM and DS will not only support required interaction between
them but also present new opportunities for enhancing the quality of support provided by
each system[2, 3, 4]. Mladenic et al. [2] proposed an equation, “data mining + decision
tool = better business”, which illustrates that integration can lead to more success in
business. While integrated in DS, data mining will provide a strategic advantage in
defining, developing, and deploying competitive business strategies. Data mining tools
will predict future trends and behaviors, allowing business to make proactive,
knowledge-driven decisions. They will also answer quickly and accurately business

questions that were traditionally time consuming to resolve.

However, data mining and Decision Support System are currently not well integrated
[5]. The problem of the poor integration has recently been clearly acknowledged in the
scientific literature and so far little work has been done. The DSS mainly focuses on
improving decision makers’ ability in dealing with data, information and knowledge;
while data mining methods and tools are supposed to be able to facilitate decision
makers by finding interesting information from a sea of data and compacting it into a
form easily amenable to decision making. However, currently tools provided by data
mining cannot completely fulfill its task due to its lack of cooperation with DSS. As
shown in Figure 1.1 [3],“DM and DSS are two distinct components that do not usually
interact through a computerized tool. Thus, DM and DSS are not integrated at all”. [5]
Therefore, the integration of DM and DSS remains one of the biggest challenges in the

artificial intelligence field.
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Figure 1.1 Decision support and knowledge management activities

1.2 Challenges of intelligent data mining assistance

Data mining is not an easy, simple process; it is a discipline which brings together
database systems, data warehouse, statistics, artificial intelligence, machine learning,
parallel and distributed processing, and visualization. An intelligent data-mining
assistant can make DM more accessible and effective for decision makers to support the
application-oriented decision-support tasks. The application of the intelligent assistant
systems is an essential step toward a better integration of DM and DSS, but it is

currently facing the following challenges [6, 7, 8].
How to support the non-expert data miner

Data mining is a complicated process that ranges from specifying DM objects, data
preprocessing, selecting algorithms, and models to evaluating DM results. For each step,
some important decisions must be made. For example, how to convert business

objectives into DM objectives; how to perform the data preparation phase; how to



choose the most appropriate DM algorithm and its parameters; how to evaluate and
interpret DM results, and so on. These decisions require a deep understanding of data
mining concepts, and only expert data miners can handle this detailed knowledge.
Unfortunately, most commercial products either do not offer any intelligent assistance or
tend to offer only “wizard-like” interfaces that tend to assume a high level of
background knowledge to use the system. In order to make DM tools more applicable
and practical for the potential users of all levels, including ordinary decision makers,
special consideration must be taken in how to effectively support the non-expert users

when designing a data mining assistant.
How to define the DM knowledge

Over the past several decades, the field of statistics and machine learning has evolved at
a tremendous pace. This results in a myriad of algorithms and associated knowledge
available to data miners. The effective use of some algorithms requires a data miner to
possess a great deal of basic knowledge to carry out a given step. This basic knowledge
consists of domain knowledge describing DM concepts and tacit knowledge explaining

the experience from the well-accomplished DM tasks.

Data mining domain knowledge is a basic requirement of DM intelligent systems. Often
the amount of encapsulated knowledge determines the “level” of intelligence the system
can provide. With the increasing growth of DM technologies, the corresponding DM
knowledge becomes multidisciplinary covering more and more relative fields. The
contents of the domain knowledge also become increasingly richer and deeper, and the
accuracy and the versatility of knowledge interpretation become more and more
important and difficult. Nevertheless, many DM methodologies are not capable of
providing enough necessary, detailed knowledge for the novice miners. In most cases,
they only specify the phases, tasks and activities that need to be carried out during a DM
project. Thus, how to formalize the domain knowledge that can be further shared and

reused by different applications is still a challenge.



Another source of knowledge is the tacit knowledge from the data miners. Tacit
knowledge often deals with the practice experience and the personal knowledge of
various DM tasks; it could be used to assist in answering important questions during the
DM process. Most enterprises do not directly manage tacit knowledge in a form that can
be stored, refined and reused. Therefore, how to externalize tacit knowledge to make it

explicit remains another challenge.

1.3 Ontology

Ontology is currently a hot research area under development that is catching increasing
interest in many industrial and academic fields, especially in artificial intelligence.
Ontology is a knowledge representation mechanism for better structuring domain
knowledge. Existing knowledge sources are mapped into the domain ontology and
semantically enriched. This semantically enriched information enables better knowledge
sharing and automatic processing and, implicitly, a better management of knowledge.
Based on this characteristic, ontology-based systems seem to be the best choice for

knowledge management systems.

In computer science, ontology is defined as a formal specification of a particular view on
the important concepts within a respective domain. Typically, an ontology consists of a
hierarchy of concepts with a specification of their characteristics and relationships. The
idea of applying ontologies to knowledge management is due to the fact that computers
can exploit the knowledge contained in an ontology to handle information in a way
similar to humans (who share the same knowledge). The usage of ontology has several
advantages [9]. Ontologies can facilitate interoperability between applications by
capturing a shared understanding of a specific domain, they can provide a formalization
of the shared understanding that makes them machine-processable, the explicit
representation of the semantics of data through ontologies enables applications to

provide a new level of services such as verification, justification etc.



Due to the powerful knowledge representation formalism and associated inference
mechanism, adopting an ontology into the data mining intelligent assistant system will
be an effecting way of making the system more powerful and helpful for decision
makers. An ontology can be used to solve the knowledge definition problems as
discussed in section 1.2 in the assistant system. As the data mining knowledge is a
necessary background to data mining activities, the ontology can play an essential role
as the backbone of the data mining assistant system. The ontology can structure and
model DM domain knowledge and the relationships between different concepts. The
knowledge represented in an ontology will not only give the intelligent system more
accessible information, but also provide a common semantic agreement between
different components to share and reuse. Therefore, the assistant system will be ontology
based. On the other hand, from the point of view of users, the ontology can contribute
more intelligence to the system. The contextual knowledge defined in the ontology may
help data miners select the appropriate information, features or techniques, prune the
space of hypothesis, represent the output in a most comprehensible way and improve the
process. Ontology can also allow semantic search and combination of DM knowledge;
this will enable users to incorporate necessary knowledge into the DM process. In a few
words, formal and computerized ontologies offer a promising technology that has great
potential for the data mining field, and an ontology-based data mining system could

become a truly intelligent data mining assistant system

1.4 Research objectives

In order to provide better support for decision makers who will conduct data mining
activities, our project aims to create an intelligent data mining assistant system. The
whole project will be accomplished by our data mining research team at UQTR. The
assistant system can empower data miners with the understanding of basic concepts and
assist them to make right choices throughout various phases of the DM process for a

particular data-mining task, and eventually, help them make better decisions. The



architecture of our system will mainly consist of a DM ontology, a case-based reasoning

system and a data warehouse.

The main objective of this work is to develop an ontological approach to data mining for

decision makers. Our research work mainly includes the following three parts:

Part 1: To design and build a data mining ontology. This DM ontology will model and

represent the various concepts of data mining process and data mining domain
knowledge. It will also specify the relationships among the concepts. This ontology will
facilitate the knowledge sharing and reuse among decision makers. Our DM ontology
will be developed using the OWL language and based on the Protégé ontology editor
[10] (Stanford University).

Part 2: To integrate a DM ontology into the intellicent data mining assistant system.

Particularly, the ontology will interact with a case-based reasoning system and the
metadata of a data warehouse. This integration will assist decision makers in specifying
the data, the cases, and the necessary data mining technique more efficiently for a given

DM task.

Part 3: To develop an ontology evolution tool. This new tool will support the users in

dealing with the activities of ontology updating and maintenance. It will provide a step-
by-step guide to help users, especially non-expert users, capture all the necessary works
for the most commonly used evolution tasks. This tool will be integrated into Protégé as

a new plug-in that can be used for any Protégé OWL ontologies.

Structurally, the thesis consists of seven chapters. Chapter 2 reviews briefly the concepts
of data mining. Chapter 3 reviews the current state of ontology research relevant to this
work, including the fundamental concepts, the OWL language, the ontology evolution
strategies, and the ontology based application in data mining domain. Chapter 4
describes the procedures of the development of the new data mining ontology. This

includes the definition of the functions, the design and the implementation of the DM



ontology in the intelligent assistant system. Chapter 5 presents the conceptual solutions
of Protégé Owl ontology evolution, and the details on development of the ontology
evolution plug-in. The possible future works and general conclusions are given in

chapter 6 and chapter 7 respectively.



Chapter 2 : DATA MINING FUNDAMENTALS

21 Basic concepts
2.1.1 Data mining definition

Data mining is the nontrivial extraction of implicit, previously unknown, interesting, and
potentially useful information from data. The extracted knowledge is used to describe
the hidden regularity of data, to make prediction, or to aid human users in other ways. It
is usually in a form of knowledge patterns or models. From a business perspective, data
mining is defined as a decision support process in which we search for patterns of

information in data.

Data mining is usually classified into two categories: prediction and description.
Prediction focuses on using some variables or fields in the database to predict unknown
or future values of other variables of interest, while description or discovery focuses on
finding hidden knowledge patterns or regularities without a predetermined idea or

hypothesis about what the pattern may be.

Data mining is primarily used today in companies with a strong customer focus — retail,
financial, communication, and marketing organizations. It enables these companies to
determine relationships among internal factors such as price, product positioning, or
staff skills, and external factors such as economic indicators, competition, and customer
demographics. It also enables them to determine the impact on sales, customer
satisfaction, and corporate profits. Finally, it enables them to “drill down” into summary

information to view detail transactional data.
2.1.2 Data mining and KDD process

Knowledge Discovery in Databases (KDD) [11] is the overall process of discovering

useful knowledge from data, which is widely adopted in the field of knowledge



management and data mining. Fayyad et al [12] define the KDD as “the nontrivial
process of identifying valid, novel, potentially useful, and ultimately understandable

patterns in data. Figure 2.1. It includes numerous steps, summarized as:

Raw Target Preprocessed Transformed Patterns Knowledge
Data Data Data Data
‘\‘\.hh/, »
A 4 ’ 4 : )
! 1 ' 1 h £
g 1 1 1 1
: 1 i 1 .
. P ¥y o >
«+ Data Preprocessing —» Pattern Recognition  Interpreting Results
Data Fusion De-noising Dimension- Classification Visualization
Sampling Object- reduction Clustering Validation
Multi-resolution identification Regression
analysis Feature-
extraction
Normalization

Figure 2.1 The KDD process

1. Learning the application domain: includes relevant prior knowledge and the
goals of the application.

2. Creating a target dataset: includes selecting a dataset or focusing on a subset or
data samples on which discovery is to be performed.

3. Data cleaning and preprocessing: includes basic operations such as removing
noise or outliers, handling missing values, etc.

4. Data reduction and projection: includes finding useful features to represent the
data, reduce the number of variables or find invariant representations for the data.

5. Choosing the function of data mining: includes deciding the purpose of the

model derived by the data mining algorithm
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6. Choosing the data mining algorithms: includes selecting methods to be used for
searching for patterns in the data and matching a particular data mining method
with the overall criteria of the KDD process.

7. Data mining: includes searching for patterns of interest in a particular
representational form or a set of representations, such as classification,
regression, clustering etc.

8. Interpretation: includes interpreting and visualizing the discovered patterns and
translating the useful ones into terms understandable by users.

9. Using discovered knowledge: includes documenting and reporting the discovered
knowledge, incorporating the knowledge into the performance system, and

taking actions based on the knowledge.

Sometimes the two terms KDD and data mining are used interchangeably. However,
from a research-oriented perspective in computer science, knowledge discovery in
databases, or KDD, is aimed to set up an infrastructure for data mining at the
organizational level. KDD is used to refer to the broad process of finding knowledge in
data, while data mining refers to the actual algorithms used in the discovery process.
Nevertheless, in business community the term data mining is used in a broader sense,
because it refers to both the infrastructure and the algorithms. In addition, KDD implies
the data reside in databases, while data mining could be conducted at data sets stored in
any format. Since this work intends to concentrate on data mining aspects from a broad
perspective and model data mining techniques for all the phases from data understanding
to model evaluation, we will use the term data mining to refer to both infrastructure and

algorithms.
2.1.3 Data mining and data warehouse

Data mining may involve data from multiple data sources, which may be located in a

distributed database system. The complexity of distributed database systems makes data
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mining more difficult when dealing with data preparation. Data warehouses provide an

excellent environment for database-centric data mining.

Data warehouse is an integrated environment, containing integrated data, detailed and
summarized data, historical data, and metadata. An important advantage of performing
data mining in such an environment is that the data miner can concentrate on mining
data, rather than cleaning the integrating data. Data warehousing provides an effective
approach to deal with complex decision support queries over data from multiple sites. A
key advantage of the data warechousing approach is to create a copy of all the data at one
location, and to use the copy rather than going to the individual sources. Data
warehouses contain consolidated data from many sources, spanning long time periods,
and augmented with summary information. Data warehouses are much larger than other
kinds of databases, sizes are larger, typical workloads involve ad hoc, fairly complex
queries, and fast response times are important. Data warehouses are usually integrated
with OLAP (OnLine Analytical Processing) to benefit the data preparation phase of data

mining.

2.2 CRISP-DM

CRISP-DM [13] is a comprehensive data mining methodology and process model. It
provides not only guidance to all data miners from beginners to experts but also a
generic process model that can be specialized according to the needs of any particular
industry or company. CRISP-DM organizes the data mining process into six phases:
business understanding, data understanding, data preparation, modeling, evaluation, and
deployment. These phases help organizations understand the data mining process and

provide a road map to follow while planning and carrying out a data mining project.

The whole data mining process is shown in Figure 2.2 [13]. The arrows indicate the
most important and frequent dependencies between the phases, while the outer circle

symbolizes the cyclical nature of data mining itself and illustrates that data mining
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process is an iterative process. Figure 2.3 [13]outlines each phase of the data mining

process.

| Busmess (
Uaderstianding |

—

Data
iundnmndlr':

Figure 2.2 The CRISP-DM process
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Figure 2.3 The phases, tasks and outputs of the CRISP-DM process
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Phase one: Business understanding. The initial business understanding phase focuses
on understanding the project objectives from a business perspective, converting the
project objectives into a data mining problem definition, and then developing a
preliminary plan to achieve the objectives. This phase involves several steps, including
determining business objectives, assessing the situation, determining the data mining

goals, and producing the project plan.

Phase two: Data understanding. This phase starts with an initial data collection. The
analyst then proceeds to increase familiarity with the data, to identify data quality
problems, to discover initial insights into the data, or to delete interesting subsets to form
hypotheses about hidden information. This phase involves four steps: the collection of
initial data, the description of data, the exploration of data, and the verification of data

quality.

Phase three: Data preparation. This phase covers all the activities to construct the
final data set or the data that will be fed into the modeling tools from the initial raw data.
The five steps in this phase are the selection of data, the cleaning of data, the

construction of data, the integration of data, and the formatting of data.

Phase four: Modeling. In this phase, various modeling techniques are selected and
applied and their parameters are calibrated to optimal values. Typically, several
techniques exist for one data mining problem type, and some techniques have specific
requirements on the form of data. Therefore, stepping back to the data preparation phase
may be necessary. The modeling phase includes the selection of the modeling technique,

the generation of test design, the creation of models, and the assessment of models.

Phase five: Evaluation. Before proceeding to final deployment of the model, it is
important to thoroughly evaluate the model and review the model’s construction to be
certain it properly achieves the business objectives. Here it is critical to determine if

some important business issue has not been sufficiently considered. The key steps for

14



the evaluation phase are the evaluation of the results, the process review, and the

determination of next steps.

Phase six: Deployment. Model creation is generally not the end of the project. The data
mining results and the knowledge gained must be organized and presented in a way such
that the decision makers can use it, which often involves applying “live” models within

an organization’s decision-making processes.
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Chapter 3 : A BRIEF STATE OF THE ART IN

ONTOLOGY RESEARCH
3.1 Fundamentals of ontology
311 Some definitions

Ontology is a term that comes from Philosophy, where it means a systematic explanation
of being. In the last decade, this word has become relevant for the knowledge
engineering community. Ontology is used to facilitate knowledge representation, sharing
and reuse. Ontology can take different meanings in different domains. One of the first
definitions was given by Neches and colleagues [14], who defined an ontology as

follows:

An ontology defines the basic terms and relations comprising the vocabulary of a topic
area as well as the rules for combining terms and relations to define extensions to the

vocabulary.

This definition describes how to build an ontology, identifies the basic terms and

relations between terms, and also the rules to combine the terms.
The most widely quoted ontology definition is given by Gruber [15]:
An ontology is an explicit specification of a conceptualization.

Ontologies are used as a specification mechanism to represent knowledge based on a
conceptualization. A conceptualization of the domain starts with the identification of the
abstract or concrete objects and the relationships between them. A domain can be
conceptualized differently from different viewpoints. In general there is no unique
conceptualization of a domain. An ontology expresses a viewpoint on the knowledge of

a domain. A specification of a conceptualization provides the foundations for building
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conceptual vocabularies for knowledge sharing. These shared vocabularies can become

computable models if they are implemented in an ontology specification language.

Based on Gruber’s definition, many definitions of what an ontology is were proposed.

Borst modified slightly Gruber’s definition as follows [14]:
Ontologies are defined as a formal specification of a shared conceptualization.

Gruber’s and Borst’s definitions have been merged and explained by Studer and

colleagues as follows [14]

Ontology is a formal, explicit specification of a shared conceptualization.
Conceptualization refers to an abstract model of some phenomenon in the world by
having identified the relevant concepts of that phenomenon. Explicit means that the type
of concepts used, and the constraints on their use are explicitly defined. Formal refers to
the fact that the ontology should be machine-readable. Shared reflects the notion that an
ontology captures consensual knowledge, that is, it is not private of some individual, but

accepted by a group.

In 1995, Guarino and Giaretta [14] collected and defined an ontology as (1) a
philosophical discipline, (2) an informal conceptual system, (3) a formal semantic
account, (4) a specification of a conceptualization, (5) a representation of a conceptual
system via a logical theory, (6) the vocabulary used by logical theory, and (7) a (meta-
level) specification of a logical theory.

Although the different definitions of ontology discussed above provide different and
complementary points of view, they share some common features: ontologies aim to
capture and model knowledge in a generic way, and they may be reused and shared

across software applications and by groups of people.
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3.1.2 Ontology components and types

Ontology components vary in different ontology languages, but they also share some
common elements. According to the logic formalism of modeling techniques, ontology
components can be classified into two groups. One is based on frames and first order
logic. This group identifies five kinds of components: classes, relations, functions,
formal axioms and instances. Another group is based on Description Logic (DL). DL
systems allow the representation of ontologies with three kinds of components:
concepts, roles, and individuals. Concepts represent classes of objects, roles describe
binary relations between concepts that allow the description of properties of concepts,
and individuals represent instances of classes. An example language in this group is

OWL, which will be discussed further.

It is important to know that there are some connections and implications among the
knowledge modeling components, the knowledge representation paradigms and the
languages used to implement the ontologies under a given knowledge representation
paradigm. That is, an ontology built with frames or description logics can be

implemented in several frames or description logics languages.

There are various categories of ontologies. Ontologies can be classified with different
criteria. The categorization can be made based on the subject of the conceptualization,
the information that the ontology needs to express and the richness of their internal

structure, and the level of dependence on a particular task or point of view.

Table 3.1 gives a detailed classification and description of ontologies based on the

conceptualization subject.
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Table 3.1 Types of ontology

Ontology type

Knowledge
Representation (KR)
ontologies

Description Examples J
Capture the representation - Frame Ontology (Gruber, -
primitives used to formalize 1993)
know!edge under a given KR _ OKBC Ontology
paradigm
- OWL KR Ontology

General or common
ontologies

Used to represent common sense
knowledge reusable across
domains.

Mereology Ontology (Bors;,
1997)

Standard-Units Ontology

Top-level or Upper-level
ontologies

Domain ontologies

Describe very general concepts
and provide general notions under
which all root terms in existing

ontologies should be linked.

IEEE Standard Upper
Ontology (SUO)

Cyc’s Upper Ontology

Are reusable in a given specific
domain. Provide vocabularies
about concepts within a domain
and the relationships, about the
activities taking place in that
domain, and about the theories and
elementary principles governing
that domain.

UNSPSC (the United Nations
Standard Products and
Services Codes) (for computer
equipment)

NAICS (North American
Industry Classification
System)

Task ontologies

Describe the vocabulary related to
a generic task or activity by
specializing the terms in the top-
level ontologies.

Domain-task ontologies

Are task ontologies reusable in a
given domain, but not across
domains. Are application-
independent.

Scheduling Task Ontology

Plan-surgery ontology

Method ontologies

Give definitions of the relevant
concepts and relations applied to
specify a reasoning process so as
to achieve a particular task.

Scheduling by means of task
decomposition

Application ontologies

Contain all the definitions needed
to model the knowledge required
for a particular application

Application ontology for
travel agencies

The reusability-usability trade-off problem applied to the ontology filed states that the

more reusable an ontology is, the less usable it becomes, and vice versa. Figure 3.1 [14]

presents the reusability-usability trade-off of ontologies. Upper-level, general, and
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domain ontologies capture knowledge in a problem-solving independent way, whereas

method, task, and domain-task ontologies are concerned with problem solving

knowledge.
R':f'sab“ity Usability
b
A/
) +
Figure 3.1 The reusability-usability trade-off
3.13 Ontology and semantic web

The Semantic Web [16, 17, 18] based on a vision of Tim Berners-Lee, is the next
generation of the WWW. “It is an extension of the current web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation.” [16]. The great success of the current WWW leads to a new challenge: a
huge amount of data is so unstructured that they can only be understood by humans, but
the amount of data is so huge that they can only be processed efficiently by machines.
The Semantic Web aims to build a WWW architecture that enhances the web contents
with formal semantics, thus making data, information and knowledge machine-

processable.
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Ontologies are the backbone of the Semantic Web. They enable machine understandable
information representation and information exchange. This means ontologies can
establish common vocabularies; define shared and common domain concepts, their
relationships and their semantics. They can help both human and machines to
communicate concisely by supporting the exchange of semantics of data, information
and knowledge rather than only the syntax. “The success of the deployment of the
Semantic Web will largely depend on whether useful ontologies will emerge, allowing
shared agreements about vocabularies for knowledge representation.” [19]. It is
therefore important that any semantics of the web resources should be explicitly
specified on ontologies. Only in this way can all the users reach a shared understanding

by exploiting the contents of ontologies.

Berner-Lee believes that the application of ontologies on the web scale will greatly
accelerate the development of the Semantic Web. In his vision, the Semantic Web will

have several layers in its structure, as presented in Figure 3.2 [17].

The first two layers provide a common syntax. Uniform resource identifiers (URISs)
provide a standard way to refer to entities, while Unicode is a standard for exchanging
symbols. The XML layer formalizes the structure of the documents and XML Schema
defines the grammars for valid XML documents. The RDF can be seen as the first layer
where information becomes machine understandable. It is the foundation for processing

metadata. RDF Schema defines a modeling language on top of RDF.
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Figure 3.2 The architecture of the Semantic Web

The next layer is the ontology vocabulary, which is the main research area of the
Semantic Web. Technologies such as XML, RDF and RDFS represent the basis of the
ontology language, while the ontology vocabulary layer adds the semantic annotations to
the web documents and represents the formal common agreement about the meaning of
the data. The Semantic Web needs ontologies with a significant degree of structures.
Most ontologies consist of a set of concepts, a hierarchy on them, and relations between
concepts. Ontologies are also integrated with the logic layer because most ontologies
allow for logic axioms. By applying logical deduction, one can infer new knowledge

from the information that is stated implicitly in ontologies.

Proof and trust are the remaining layers. They check the validity of the statements made

in the Semantic Web.

As the research on the Semantic Web keeps on growing, ontological engineering has
become an essential part of ontology studies. Ontologies are facing some real challenges

[20]: they must be developed, managed and endorsed by committed practice
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communities, and they must carefully define the data and allow interactions held in

different formats.

3.2 OWL web ontology language
3.2.1 OWL language overview

The OWL Web Ontology Language [21, 22, 23] is a language for defining and
instantiating web ontologies. It is the recommended standard language of W3C for
describing the semantic web. An OWL ontology may include descriptions of classes,

properties, instances and their relationships.

OWL is outstanding from other ontology languages in several aspects. OWL is designed
for the Semantic Web, in which information is given explicit meaning, making it easier
for machines to automatically process and integrate. OWL can formally describe the
meaning of the terminology used in a Web application and the relationships between
those terms; it has more facilities for expressing semantics than XML, RDF, and RDF-S.
Thus OWL goes beyond these languages in its ability to represent machine interpretable
content on the Web. OWL also supports more powerful reasoning techniques. There are
a lot of available tools that can not only do some general works but also perform

reasoning tasks about OWL ontologies.

The OWL language provides three increasingly expressive sub languages: OWL Lite,
OWL DL and OWL Full. OWL Lite supports those users primarily needing a
classification hierarchy and simple constraint features. OWL DL supports those users
who want the maximum expressiveness without losing computational completeness and
decidability of reasoning systems. OWL DL is so named due to its correspondence with
description logic; it includes all OWL language constructs with restrictions. OWL Full is
meant for users who want maximum expressiveness and the syntactic freedom of RDF

with no computational guarantees. It is not actually a sub language since it contains all

23



the OWL language constructs and provides free, unconstrained use of RDF constructs.

Table 3.2 gives a brief comparison of these three sub languages.

Table 3.2 Comparison of three OWL sub languages

OWL Lite OWL DL OWL Full

Usage - Classification - Maximum expressiveness | - Maximum expressiveness

hierarchy, simple - High reasoning ability - Free syntax

constraints

- Unwarranted reasoning
Representation | - Fundamental part -All, but used under certain | -All, used freely without
language - Subset of OWL DL constraints constraints
-Based on description logic | -Extension of RDF

Reasoning High efficiency High efficiency No warrantee

OWL is a powerful language with many language features.

Figure 3.3 presents some

main synopsis of its sub languages. This figure indicates that OWL Lite is the

fundamental part of the OWL language, it also has more limitations on the use of the
features than OWL DL or OWL Full. OWL DL and OWL Full expand OWL Lite in

many important aspects.

The most important concepts in OWL ontology are classes, properties, instances of

classes, and relationships between these instances. These concepts are discussed

respectively in the next three sections.
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OWL DL and OWL Full

OWL Lite

RDF Schema features Property Characteristics
* Class (Thing, Nothing) * ObjectProperty
* rdfs: subClassOf « DatatypeProperty 7
« rdf: Property * inverseOf Class Axioms
« rdfs: subPropertyOf * TransitiveProperty * oneOf
« rdfs: domain + SymmetricProperty * disjointWith
« rdfs: range » FunctionalProperty * dataRange
« Individual » InverseFunctionalProperty i
Equality and Inequality | | Property Restrictions 31? &fsasnei%r:]cgls?;‘;ﬁg I3
» equivalentClass « allValuesFrom « unionOf
= equivalentProperty + some ValuesFrom + complementOf
= sameAs
« differentFrom - —
- AllDifferent Restricted Cardinality

» minCardinality
Class Intersection + maxCardinality
» intersectionOf « cardinality

Figure 3.3 language synopsis of OWL sub languages

3.2.2 OWL classes

OWL classes provide an abstraction mechanism for grouping resources with similar
characteristics. They can be used to represent the different concepts and their hierarchies
in ontology. Every OWL class is associated with a set of individuals, called the class
extension or instances. OWL classes are described through class descriptions and class

axioms.
1. Class description

A class description describes an OWL class either by a class name or by specifying the

class extension of an unnamed anonymous class.

OWL distinguish six types of class descriptions:

(1) A class identifier
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(2) An exhaustive enumeration of individuals that together form the instances of a

class
(3) A property restriction
(4) The intersection of two or more class description
(5) The union of two or more class description
(6) The complement of a class description.

Table 3.3 categorizes the language constructs with different class descriptions. Some

language constructs are further described in detail right after the table.

Table 3.3 OWL class description type and its language constructs

Description type Language constructs |

Class identifier - owl: Class

- rdfs: subClassOf

Enumeration - owl: oneOf

Property Value constraints | - owl: allValuesFrom,
restrictions

- owl: someValuesFrom

- owl: hasValue

Cardinality - owl: maxCardinality

constraints - owl: minCardinality

- owl: cardinality

Intersection, union, complement | - owl: intersectionOf
- owl: unionOf

- owl: complementOf
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rdfs:subClassOf: Class hierarchies may be created by making one or more statements

that a class is a subclass of another class.

owl:allValueFrom: It requires that for every instance of the class that has instances of
the specified property, the value of the property are all members of the class indicated by

the owl:allValuesFrom clause.

SomeValuesFrom: It is stated on a property with respect to a class. A particular class
may have a restriction on a property such that at least one value for that property is the

member of the class indicated by owl:someValuesFrom clause.

Owl:hasValue: It links a restriction class to a particular property value. A restriction
containing a owl:hasValue constraint describes a class of all individuals for which the
property concerned has at least one value semantically equal to the particular property

value.

MinCardinality: If a minCardinality of 1 is stated on a property with respect to a class,
then any instance of that class will be related to at least one individual by that property.
This restriction is another way of saying that the property is required to have value for

all instances of the class.

MaxCardinality: If a maxCardinality of 1 is stated on a property with respect to a class,
then any instance of that class will be related to at most one individual by that property.

A maxCardinality 1 restriction is sometimes called a functional property.

Cardinality: Cardinality is provided as a convenience when it is useful to state that a
property on a class has both minCardinality 0 and maxCardinality 0 or both

minCardinality 1 and maxCardinality 1.
2. Class axioms

Class descriptions form the building blocks for defining classes through class axioms.

Class axioms typically contain additional components that state necessary and/or
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sufficient characteristics of a class. OWL contains three language constructs for

combining class description into class axioms:

(1) rdfs: subClassOf: allows one to say that the class extension of a class

description is a subset of the class description of another class description

(2)  owl: equivalentClass: allows one to say that a class description has exactly

the same class extension as another class description

(3) owl: disjointWith: allows one to say that the class extension of a class
description has no members in common with the class extension of another

class description
3.2.3 OWL properties

A property is a binary relation. OWL distinguishes two categories of properties: object
properties that define the relations between instances of two classes and datatype
properties that define the relations between instances of classes and data types. In other
words, object properties link individuals to individuals while datatype properties link

individuals to data values.

A property axiom defines the characteristics of a property. OWL supports the following

constructs for property axioms:
(I) RDF Schema constructs: rdfs: subPropertyOf, rdfs:domain and rdfs:range
(2) Relations to other properties: owl:equivalentProperty and owl:inverseOf

(3) Global cardinality constraints: owl:FunctionalProperty and

owl:InverseFunctionalProperty

(4) Logical property characteristics: owl:SymmetricProperty and owl:

TransitiveProperty
rdfs:subpropertyOf: States that the property is a subproperty of some other property.
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rdfs:domain: A domain of a property limits the individuals to which the property can be
applied. If a property relates an individual to another individual, and the property has a
class as one of its domains, then the individual must belong to the class. For example,
the property hasChild may be stated to have the domain of Mammal. From this a

reasoner can deduce that if Frank hasChild Anna, then Frank must be a Mammal.

rdfs:range: The range of a property limits the individuals that the property may have as
its value. If a property relates an individual to another individual, and the property has a
class as its range, then the other individual must belong to the range class. For example,
the property hasChild may be stated to have the range of Mammal. From this a reasoner
can deduce that if Louise is related to Deborah by the hasChild property, (i.e., Deborah

is the child of Louise), then Deborah is a Mammal.

owl:inverseOf: One property may be stated to be the inverse of another property. If the
property P1 is stated to be the inverse of the property P2, then if X is related to Y by the
P2 property, then Y is related to X by the P1 property.

owl:FunctionalProperty: Properties may be stated to have a unique value. If a property
is a FunctionalProperty, then it has no more than one value for each individual (it may

have no values for an individual).

owl:InverseFunctionalProperty: If a property is inverse functional then the inverse of

the property is functional.
3.2.4 OWL individuals

Individuals are instances of classes, and properties may be used to relate one individual
to another. Individuals are defined with individual axioms. There are two types of

individual axioms:
(1) Axioms about class membership and property values of individuals

(2) Axioms about individual identity.
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3.3 Existing ontology evolution methodologies

Due to the increasing number of ontologies in use and the increasing requirements
associated with ontology updating and maintenance, ontology evolution becomes an
oncoming hot topic nowadays. Stojavonic et al. [24] defines ontology evolution as
“Ontology evolution is the timely adaptation of an ontology to the arisen changes and
the consistent propagation of these changes to dependent artifacts.” Ontology evolution
is a quiet new question in the ontology research field; its importance has just been
realized recently due to the tremendous growing speed of ontology applications. Even
though many institutes and research groups are interested in how to maintain and evolve
ontologies, there are not many fruitful results available now. Many areas of ontology

updating remain to be explored and much more research is needed

This section reviews some existing ontology evolution methodologies. Two well-
developed evolution strategies are discussed in detail and concluded with their

advantages and drawbacks. Some other strategies are also presented.
3.3.1 An ontology evolution process

Ontology consistency is an essential issue to be considered in the ontology evolution
domain. As ontologies grow in size, the complexity of change management increases the
difficulty of keeping ontologies consistent. Focusing on this problem, Stojanovic ef al.
[24, 25, 26] propose an ontology evolution process that enables resolving the given
ontology changes and ensures the consistency of the underlying ontology and all its

dependent applications.

The ontology evolution process contains six phases, occurring in a cyclic loop. Figure
3.4 [25] presents the entire evolution process. The process of ontology evolution starts
with capturing changes either from explicit requirements or from the result of change
discovery methods, which induce changes from existing data. In the change

representation phase, a set of ontology changes is derived. Three levels of fine-grained
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changes are specified in this set: elementary changes, composite changes and complex
changes. The semantics of change is the most important phase to deal with the effects of
the change on the ontology consistency. It distinguishes syntax and semantic
inconsistency. The possible problems that might be caused in the ontology by the
identified changes are determined and resolved in this phase. For example, if a concept
is removed, we should decide what to do with its instances. It enables the resolution of
ontology changes in a systematic manner by ensuring the consistency of the ontology.
The role of the implementation phase is to implement the changes identified in the
previous two phases, to present the changes to the ontology engineer for final
verification and to keep a log of the implementation changes. The change propagation
phase ensures that all changes will be propagated to the interested parties and the
consistency of dependent artifacts after an ontology update has been performed. Finally,
the change validation phase allows the ontology engineer to review the changes and

possibly undo them if desired.

6. Validation Business requirements

Discovering

5. Propagation £ A1 . Capturing

4. Implementation \ 2 . Representation

3 . Semantics
of change

Figure 3.4 The ontology evolution process
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To figure out the possible changes to be performed to one change request, one must
consider the consistency of the ontology and its depending applications. There are many
ways to achieve consistency after a change request. Thus, the concepts of the “evolution
strategy” are introduced to customize this evolution process [24, 25]. To resolve a
change, the evolution process needs to determine answers at many resolution points. The
resolution points are the branches during change resolution where taking a different path
will produce different results. Each possible answer at each resolution point is an
elementary evolution strategy; a set of elementary evolution strategies is called an
evolution strategy that defines how elementary changes will be resolved. For example,
there are three strategies (or resolution points) to determine how to handle orphaned
concepts: orphaned concepts are deleted, reconnected to their parents, or reconnected to
the root concepts. Typically, a particular evolution strategy is chosen by the user at the

start of the evolution process.

This methodology is implemented in the KAON framework [27]. KAON is an ontology
management infrastructure allowing ontology management and application. Ontology
evolution is realized through both KAON API and an UI application OI-modeller. OI-
modeller supports ontology editing and evolution. In fact, the ontology is edited through

an evolution process in this application.

The contribution of this methodology is that it defines a general, user-driven ontology
evolution process that can be applied to different tools with different ontology
languages. The process takes into account the consistency of ontology and its dependent
applications; it can also make some suggestions to users. Another contribution is the
concept of resolution strategy, which makes several paths to resolve one evolution
problem possible, while other approaches only deal with one simplest solution. The third
contribution is its excellent performance of reversibility, which is realized with a change
ontology defined in KAON language and change log. However, our experience in using
the software Ol-modeller reveals that this approach has some drawbacks. First, it does

not consider the interdependence of ontology change types. At least some evolution

32



operations cause isolate results, an example is if we try to add a property into an existing
class, this property could not be “transferred” to the instances of this class. Second, some
actions of ontology evolution are not very well defined. For example, if we add an
instance into a class, we do not know how to deal with its membership values and its
property values, all we did is just adding an instance name. We believe these are serious

drawbacks.
3.3.2 OWL ontology change management

When ontologies are built by several experts and used in a distributed and dynamic
environment, the support for ontology evolution becomes extremely important,
especially when there are at least two versions of the ontology available at the same
time. Some essential issues must to be considered when dealing with the change of an
ontology: the different change representations, the incomplete change information, the

data transformation, the consistent reasoning between the two versions, etc.

Based on these considerations, a component-based framework for ontology evolution is
proposed in [28, 29]. This methodology manages ontology evolution between two
versions. It focuses on the change management of the ontology, assuming that two
versions are already existing, but the changes information may be represented in
different format and might be incomplete. The framework relates the available change
information and provides mechanisms to derive new pieces of information from existing

information.

The components of the framework are showed in Figure 3.5 [28]. Between the versions
is the minimal transformation set, which provides a set of change operations that specify
how ¥V, can be transformed into V,.,. This is the kernel of the framework. The
minimum transformation set is specified with the operations from the ontology of
change operations, which defines a large number of standard changes to an ontology.
Together with the minimal set, the complex change operations can be used to create data

transformation scripts. The structural diff is designed for visualizing differences between
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ontologies, while the conceptual relations can facilitate data access by improving data

interpretation and data source query.

Connectional Structure
relation diff

Minimal transformation set

Change
complex

Change log

Figure 3.5 A schematic representation of the framework

The ontology of change operation is an essential element of the framework. It provides a
vocabulary and syntax to express an accurate specification of change for an OWL
ontology. The ontology of change distinguishes basic changes and complex changes.
Each of the basic operations deals with only one specific feature of the ontology such as
adding, removing, or value modifying the features. Complex operations provide a
mechanism for grouping a number of basic operations that together constitute a logical
entity. The change operations are modeled as a hierarchy of classes, where each class
represents a specific type of change operation. The complex changes are defined as an
extension of the basic changes. The complex operation can be distilled from a set of

basic operations through a number of rules and heuristics.

The available tools for this approach are OntoView [30] and PrompDiff [31]. OntoView

implements a change detection procedure for RDF-based ontologies. The role of this
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tool is to produce a transformation set. PrompDiff is a plug-in of Protégé, the change

management strategy is implemented in two extensions of PrompDiff.

In conclusion, this methodology provides a framework for managing changes of a
distributed ontology. It can complete the change information between two versions of
the ontology by deriving the new change information from the existing incomplete
information. Thus, it is possible to find the inconsistency of two versions, to ease the
ontology updating and data access. The ontology of change operation is another
contribution. It classifies two levels of change operation and proposes a hierarchy of the
whole change operations to form an operation system. This ontology can be regarded as
the representation format for OWL ontology changes. However, this methodology is
based on the assumption that the ontology has already evolved. Although the change
specifications are very useful for the distributed ontology-based applications, this
methodology is not for ontology evolution, instead, it is rather a post-evolution

methodology.
3.3.3 Other methodologies

A method of ontology evolution using document clustering is proposed for domain
ontologies of the semantic web [32]. This method firstly search web documents based
on a set of initial URLs, and characterizes the documents with these representative
keywords. It then maps both the key words and web documents to the domain ontology
concepts so that the web documents can be characterized again with the ontology
concepts. A clustering algorithm is then applied to the web documents. The results of the

clustering are used to derive proposed ontology changes

Another methodology of ontology evolution is to capture the change requirements and
recommend change operations to a personalized ontology based on the usage
information of the individual ontologies in a user community [33]. The relevance of
ontology change operations are determined by a collaborative filtering algorithm taking

into account the similarity of the user’s ontologies.
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All methods discussed above are all semi-automatic methodologyes; the ontology
engineers or the users are involved in the evolution process. Due to some inconvenience
of the interaction between human and tools, an idea of automatic evolution methodology
is proposed in [34]. This idea aims to automatically perform ontology evolution process
without human supervision. This research direction is based on the concepts of belief
change and tries to exploit it into the ontology evolution field. However, this study does
not provide any concrete solutions to the problem. This theoretical proposal needs more

development and applications.

3.4 Ontology-based applications for data mining

Ontologies are applied in various fields such as artificial intelligence, the Semantic Web,
software engineering, and information architecture. Recently, data mining research has
paid more interest on using ontologies to improve the efficiency of data mining. The two
main purposes of using ontologies in data mining are to represent domain knowledge
and assist data miners to select appropriate DM process, algorithm or software. These
two main reasons are interdependent; they interact with each other to facilitate a better
understanding of data mining knowledge. Usually, the ontologies are used as the
fundamental background support of the data mining project, they provide the knowledge
background, the reasoning mechanism, and the advice based on the domain knowledge

represented in them.

Integrating ontologies into data mining is a new research direction with great potential.
Some data mining projects are leaders in this direction: they have already implemented
some data mining related ontologies in their projects, and the results seem very
encouraging. However, as a new research domain, how to properly integrate ontologies
and data mining still remains a challenge; it needs more research. The rest of this section
discusses some existing ontology-based applications in the data mining domain. The
discussion is organized into two sub-sections: knowledge representation and assistance

of a better selection.
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3.4.1 Ontologies for knowledge representation

Knowledge representation is the most essential and important reason to introduce
ontologies into data mining. Usually, a data-mining project, especially a data mining
assistance project, requires well-defined and organized domain knowledge as its
background engine to support the different functions of the project. According to their

natural characteristics, ontologies can fulfill this kind of requirement.

One of the data mining ontologies is the DAMON ontology [35, 36], which is
apparently the most complete DM ontology so far. This ontology distinguishes some
basic terms as task, method, algorithm, software, suite, data source, and human
interaction. These terms are implemented in ontology as the main concepts in first level
of concept hierarchy, each concept are further divided into sub concepts to complete the
concept hierarchy. For example, the concept “method” is divided into classification
method, clustering method, deviation detection method, link analysis method, regression
method, summarization method, and visualization method. The internal structure and the
relationship of all the concepts in the concept hierarchy are defined by means of
properties. Some axioms are also applied in the ontology; these axioms can provide the
constraints on the properties and the facts about the relations among objects. By
navigating the entire ontology, users can find the specified methods, algorithms, and

software for a given task such as classification, association, etc.

Another DM ontology worth mentioning is the ontology in the Intelligent Discovery
Assistants (IDAs) project [37]. This ontology groups the DM operators into three major
groups: preprocessing, induction, and post-processing. Each of these groups is further
sub-divided. The preprocessing group is subdivided into categorical attribute
transformations, continuous attribute transformations, record sampling, and selecting
features. The induction algorithm group is subdivided into classifiers, class probability

estimators, and regressors. The post-processing group is subdivided into pruning,
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thresholding, and logical model transformations. The leaves of the concept hierarchy are

the actual operators.
3.4.2 Ontologies for a better selection

The Knowledge Discovery process is one of the central notions of the field of
Knowledge Discovery and Data Mining (KDD). Ontologies can be applied in different
phases of the KDD process. With the domain knowledge modeled in them, ontologies
can cooperate with other components to produce and provide useful advice to

furthermore facilitate selecting the appropriate sources.

The IDAs project [37] focuses on helping users to choose a valid and appropriate data
mining process. It defines the data mining process as a subset of the KDD process,
which includes three stages: data preprocessing, algorithm induction, and model post-
processing. It assumes that there are many possible choices for each stage, and only
some combinations are valid and useful for a given data mining task. Taking into
account this consideration, this project aims at providing users with (1) enumerations of
valid DM processes, and (2) rankings of these valid processes by different criteria, to
ease the choice of DM processes to execute. Its ontology is used to compose possible
and valid processes in both the DM-Process planning stage and the heuristic ranking

stage.

Ontologies can be also integrated in the KDD preprocessing. MiningMart [38] is an
ontology-supported KDD preprocessing tool that models the data in two levels allowing
data abstraction to ease the KDD process. In this project, data are represented on two
levels: the logic level and the conceptual level. The logic level describes the database
schema of tables, attributes and links, allowing a consistent access to the information.
The conceptual level, also called the ontology level, is on the top of the logic level.
Depending on a domain ontology, this level uses concepts with features and
relationships to model data. Some mapping mechanisms are also provided to switch

between these two levels. The ontology is used to describe conceptual domain
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knowledge and the data abstraction. The advantage is that all the data processing can be
captured in an ontology, which gives a better understanding and reuse of the data.
Another ontology-based project proposed by Phillips et al. [39] works on the feature
construction of the KDD preprocessing. They believe that the composition of the useful
constructed attributes depends on the semantic relationships among the attributes that
usually do not exist in databases. The ontology is designed to hold this meta-knowledge.
The ontology is used with a program (attribute annotations) to suggest and generate new

attributes based on the predefined rules.

Modeling is the most important part of the KDD process that gains more attention in
data mining assistance projects. How to help users to choose a right algorithm, model, or
software is the main problem to be solved. Keith Rennolls [40] suggests using an
ontology as part of the framework to classify DM models and their relations to make a
better choice of a model. The concepts represented in the ontology are grouped firstly
into supervised learning models and unsupervised learning models, and can be divided

even further.,

The DAMON ontology is designed for the knowledge grid [41]. It is used to suggest to
the users the appropriate software on the basis of the user’s requirements or needs. The
structure of this ontology makes it clear to represent the features of the available data
mining software, and to classify their main components. It thus offers to a data miner a
reference model for the different kinds of DM tasks, methodologies and software
available and the useful suggestions of software selection. Besides, this ontology can
also simplify the development of distributed knowledge discovery applications on the
Grid.
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Chapter 4 : DEVELOPMENT OF A NEW DATA MINING
ONTOLOGY

As ontology will play an important role in our data mining assistant system, the
development of the DM ontology becomes an essential piece of work that influences the
success of our system. The creation of an ontology is a complicated endeavor that
involves several steps, from specifying the knowledge scope to implementation. This
chapter presents the strategy, design and implementation of the DM ontology. It is
organized as follows: Section 4.1 gives an overview of the architecture of our intelligent
data mining assistant system, the roles of the DM ontology and the relationships
between the DM ontology and other system components. The design procedure of
knowledge representation is discussed in section 4.2, and section 4.3 explains how to
implement the knowledge into the DM ontology. Section 4.4 compares the DM ontology

with two other data mining related ontologies and gives some concluding remarks.

4.1 DM ontology in an intelligent data mining assistant system
4.1.1 Overview of the new system

In order to empower (novice) data miners throughout various data mining activities, our
data mining team has built a new intelligent data mining assistant system. This hybrid
system is mainly based on a DM ontology, a case-based reasoning system and a data
warehouse. The new system is capable of providing support for the entire data mining
process, from data preparation to result interpretation. More specifically, it can provide
not only the general data mining knowledge and explanation but also the practical
experience and recommendations for executing particular data mining tasks. Moreover,
the new system also presents a synergistic methodology for leveraging the acquisition

and representations of data mining knowledge. This system will eventually facilitate the

40



integration of data mining activities into the decision-making process, thus help decision

makers to make better choices—this is the long-term goal.
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Figure 4.1 Intelligent DM assistant system architecture

As illustrated in Figure 4.1 above [8], our hybrid DM assistant system consists of seven
components; a DM Case Base, a DM Ontology and rule base, a Case Reasoner, Rule
Reasoner, a DL (Description Logic) Reasoner, a DM Assistant Interface, and a data
warehouse. The DM ontology and CBR subsystems have well defined knowledge
representation roles. The DM Ontology and Rule Base defines high-level concepts (i.e.
tasks, activity types, algorithms, etc.) and case adaptation knowledge, while the DM
Case Base holds detailed case information (i.e. data quality verification, data preparation
steps, model parameters, etc.). Operation of the intelligent DM assistant is initiated by
the user’s query specifying a DM problem (i.e. problem characteristics). Subsequently,

the Case Reasoner provides a subset of similar previously resolved DM cases to the

41



user. Once a user has chosen a basic case, the adaptation cycle is carried forward
(assisted) by the inference capabilities provided by the Rule Reasoner and the detailed
domain knowledge within our DM ontology. The DM ontology (by formally capturing
concepts, relationships, constraints and rules) is capable of complementing the CBR
system and addressing this need for more detailed domain knowledge. For the moment,
the DL Reasoner is strictly used for the purposes of ensuring the consistent evolution of

the DM ontology.
4.1.2 Roles of the DM ontology

The DM ontology is an important component in our assistant system. It acts as the
complementary knowledge source in the system, and determines the intelligence level of

the system.
DM knowledge representation

The essential usage of the DM ontology is to represent data mining domain knowledge.
In our assistant system, all the required conceptual data mining knowledge is defined in
the DM ontology. The DM ontology captures and classifies the knowledge into four
sections; each section presents a different type of knowledge. The concepts represented
in the DM ontology are organized as a knowledge hierarchy, with which we can easily
identify the different level of concepts, the class constraints and the relationships
between them. With the ability of defining the semantics of the concepts, the DM
ontology also provides a data mining vocabulary as well as a computerized specification

of the meaning of terms used in the vocabulary.
Integration of DM ontology into the DM assistant system

The DM ontology will be integrated in to the assistant system, especially with the CBR

system and data warehouse.
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Both the CBR and the DM ontology subsystems have well defined knowledge
representation roles, they can be related to each other. More specifically, the DM
ontology holds high-level concepts (i.e., activity types, algorithms, etc.) while the CBR
holds detailed case information (i.e., data preparation steps, model parameters, etc.). On
the other hand, the CBR maps problems to solutions, while the DM ontology can semi-
automatically learn concept dependencies and properties strictly within either the
problem or solution spaces. When integrating DM ontology with CBR cases, the DM
ontology can not only cooperate with CBR cases but also provide some fundamental
supports to them. On one hand, as the DM ontology defines the conceptual DM
knowledge; it can offer a solid background knowledge source to CBR cases. The DM
ontology is also capable of providing recommendations and heuristic at various DM
phases through CBR cases. On the other hand, the DM ontology represents the important
features and semantics of cases; this will give users another way to understand, classify,
navigate, and choose cases for a given DM task, especially for the task with a set of
constraints about the attribute type, algorithm selection, model selection, result
evaluation and so on. The newly returned cases from CBR paradigm can be added to the

DM ontology to keep the case representation complete and updated.

The integration of the DM ontology and data warehouse is realized through the
representation of the schema and its semantic. This data annotation can largely help
users identify the structure of the data mart and its tables, the relationships between data
marts, data marts and tables, and fact tables and dimension tables, thus helps users
understand the whole structure of the data warehouse. The existing schema in the

ontology can also guide users to construct new data in the data warehouse.

4.2 The design of the data mining knowledge representation

The first step of developing an ontology is to identify the domain and scope of the
ontology. As a knowledge source of the DM assistant system, the conceptual data

mining domain knowledge is the most significant part of knowledge that must be
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modeled in the DM ontology. This part is the most valuable and useful knowledge
representation that can be reused and shared with other applications. However, the DM
ontology needs to be integrated with other components. This requires other types of
knowledge representation: the data annotation, the CBR cases and the data mining
process. This section describes how these two types of knowledge are analyzed and how
the knowledge representation structures are designed. Four sections, CRISP-DM, data

sources, CRB cases, and data mining techniques are discussed respectively.
4.2.1 CRISP-DM

CRISP-DM is a general data mining methodology and process model which covers all
the data mining phases that can be applied in various kinds of data mining activities.
Considering this advantage, CRISP-DM was adopted in our assistant system as a basic

infrastructure to guide the construction of CBR cases and DM ontology.

The CRISP-DM methodology is described in terms of a hierarchical process model,
which consists a series of tasks described at four different levels, as shown in Figure 4.2.
At the top level, the data mining process is organized into a number of phases; each
phase consists of several second-level tasks. Each task contains some more detailed

activities and each activity may have some outputs.

CRISP-DM [
Phase

CRISP-DM
Task

CRISP-DM §
Output

CRISP-DM
Activity

Figure 4.2 The hierarchy of CRISP-DM
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The DM ontology represents the CRISP-DM as a section of knowledge source. This
section of ontology will focus on the CRISP-DM knowledge itself, namely, the
methodology and the process. It will provide a guide to the whole process and an
explanation of the concepts involved in the methodology. Trying to keep it in agreement
with the characteristics of ontology knowledge modeling, we follow the hierarchical
representation of CRISP-DM in general but rearrange the important concepts. As shown
in Figure 4.3, four main concepts are distinguished: phase, task, activity, and output.
Phase is the high-level term for part of the process model, (e.g. business understanding,
data understanding, data preparation, modeling, etc.); each phase consists of several
related tasks. Task is the part of a phase which includes a series of activities to produce
one or more outputs. Activity is the part of a task describing actions to perform a task,
and the Qutput is the tangible result of performing a task. The relationships between the
concepts are also presented in Figure 4.3; all the relationships are two ways. For
example, a phase (P1) may include several tasks (T1, T2, T3,...), so these tasks are only
included in this particular phase P1 (not in P2 or P3, or any other phase). Therefore, in
the DM ontology, whenever a Phase is defined, its related task must be included. In the
same manner, whenever a task is defined, its belonging phase must also be specified. In

this way, the relationships between Phase and Task can be described properly in the DM

ontology.
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Figure 4.3 The knowledge representation of CRISP-DM
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4.2.2 Data source

The data warehouse integrated in our data mining assistant system mainly represents the
data of UQTR and ICOPE (a source of data investigating the information of
undergraduate student in University of Quebec, including academic and socio-
demographic characteristics, living conditions, preparation of studies, intentions,
motivations, interest and knowledge of the program), mainly about student-related
information. The data warehouse contains several data marts; each data mart represents
the information of one sector of the university, such as student, application, registration,
and so on. The data mart may consist of several tables, including one fact table and some
dimension tables. There may be some overlap of data marts; one table may belong to

two or more data marts.

One section of the DM ontology will represent the data source stored in the data
warehouse. This data annotation will capture and model the metadata (data dictionary)
of the data warehouse. More significantly, the data source section of the DM ontology
provides the meaningful semantics of the concepts defined in the data warehouse
system, table, attribute, etc. This includes two aspects. One is how the concepts map to
the real world. For example, the attribute CD_PGM may refer to the program code of the
university’s programs of studies. The other is about the schema itself: what are its
structure and its meaning. Furthermore, the data source section of the DM ontology is
capable of linking tables to the CBR cases in which the tables are involved. This

capability gives a better integration of data source and CBR cases.

The data source section of the DM ontology takes a hierarchical structure to represent
the different concepts of the data warehouse. Figure 4.4 gives an overview of the
structure. The first level concept System defines the entities such as student, application,
registration and so on, corresponding to the different data marts. A system may contain
several tables, which is the second level concept. The concept Table describes the

characteristics (schema) of each table; all the tables will be classified according to the
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system to which it belongs. Table is further divided into fact table and dimension table.
The concept Attribute describes the characteristics of each attribute such as the attribute

name, type and constraint, etc.

' mm hasTable - T
Table | Attribute |
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1 CBR cases

Figure 4.4 The knowledge representation of Data Source

4.2.3 CBR cases

CBR cases are created to capture and present the useful practical experience of
executing various data mining activities, thus helping data miners better understand the
data mining process. The design is based on meta-learning and CRISP-DM, and
implemented in the case-based reasoning paradigm. The CBR system maps DM
problems to solution space through CBR cases. Each CBR case has 53 features, while 15
of them are indexes. The features arc divided into three parts: problem description,
solution space, and activity output. As the knowledge represented in CBR cases is in a
very detailed level, the DM ontology will capture only some main characteristics of

cases that are important to represent the case structure and usage.

The CBR cases section of the DM ontology will define the semantics of each selected
feature to represent the cases. This representation can give users a global outlook of
CBR cases and their functions. The DM ontology will also link the cases to other
relevant concepts that are also represented in the ontology. More specifically, a case can

have relations with one or several particular tables and attributes, which connect the
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CBR cases and Data source together. Moreover, a case may choose a special program as
its solution; this illustrates how cases can be linked with DM techniques. The integration
of CBR cases and the DM ontology will largely facilitate the representation, sharing and
reuse of DM knowledge.

4.2.4 DM techniques

4.2.4.1 Some differences in definition of data mining knowledge

With the increasing growth of machine learning techniques and statistical analysis, data
mining knowledge has tremendously evolved these recent years. Data mining knowledge
is not a simple set of algorithms; it has become sophisticated, it covers much more
different domains than ever, and the developed algorithms become even more
complicated. The resources of data mining knowledge presentation are also very
abundant. A sea of data mining books, web sites, lectures, and courses are available
nowadays. Usually, they all describe the general, common data mining knowledge, some
resources dig the mathematical and statistical methods a little deeper, and others extend
the data mining knowledge with other domains. There are lots of well organized and
finely presented data mining books and lectures [42, 43, 44, 45], from any of these
resources we can get a general idea and a good understanding of data mining. However,
since every resource has its own focus and ideas, there exist some differences in
knowledge definition and categories among them. These differences in terms and

categories make things complicated and sometimes are genuinely confusing.
a. Different categorizations

Generally, data mining concepts can be classified as classification, association,
clustering and so on. These main categories are adopted by almost all the data mining
books and relevant literature. But how about the sub-categories and others concepts
besides the main categories? Some books put the regression separate from classification,

while others make regression a subsection of classification. When implementing the
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knowledge into the ontology, the different categorizations pose a major problem of
concept classification. Since the DM ontology strictly demands an accurate concept
hierarchy, such differences must be resolved and a reasonable, unified categorization of

data mining knowledge must be specified.
b. Mix-up of terms

Many terms are involved in data mining knowledge representation. The mixed use of
data mining terms within different books really confuses some readers, especially non-

expert data miners. This problem can be divided into the following two types:

(1) Several terms refer to the same concept. For example, the term data object is
a collection of data set; other terms of data object are record, point, vector,
pattern, event, sample, observation, or entity. Another example is the term
attribute; the synonyms of attribute are variable, characteristic, field, feature,
or dimension. Different terms are used in different books, or in different

categories of data mining concepts.

2) Disagreement of terms. Model, algorithm, and method are the most common
terms, but their definitions are unclear when checking their meanings in
different books. Model may refer to the output in one book, which is exactly
the meaning of algorithm in another material! Method can be used in both
generalization and specification. This misuse of terms decreases the clarity
of data mining concepts and becomes more serious when trying to classify

data mining knowledge and unify data mining vocabularies.

4.2.4.2 Data mining knowledge representation

The DM techniques section of the DM ontology aims to model systematically the data
mining domain knowledge. In order to represent DM knowledge, we must firstly resolve

the problems discussed above: the involved terms must be well selected, their meanings
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must be clarified, and the categorization must be properly structured. This section of the

DM ontology will be used as a reference of data mining knowledge.

The structure of knowledge representation of DM techniques is designed based on
CRISP-DM. The CRISP-DM section represents the methodology and process of data
mining while the DM Techniques section represents the actual applicable knowledge for
each phase of the process. More specifically, the CRISP-DM section models the high
level directions of “what to do” for a data mining task while the DM Techniques section
models the required domain knowledge of “how to do” for the task. It can include
various data sampling techniques, different data mining algorithms, available programs,

and so on.

Trying to parallel the different phases of the data mining process, the knowledge
representation of the DM Technique section is divided into three sub-sections: data
understanding, data preparation and modeling, corresponding to the same phases
described in CRISP-DM. The other three phases: business understanding, evaluation and
deployment are not presented since these sections are really business dependent and
cannot be covered by data mining domain knowledge. The data understanding
subsection of the DM technique section describes the characteristics of the data. For
example, the various attribute types, the general errors found in data, how the data is
collected and exploited, etc. The data preparation subsection presents the techniques
dealing with how the data is prepared for a data-mining task, such as data cleaning,
sampling, data construction, data integration, and so on. The modeling subsection is the
most complicated part of the DM techniques section, which represents the kernel of data
mining knowledge. This subsection classifies the most important and useful concepts in
a concept hierarchy linked with their relationships. It also identifies the most detailed
knowledge (instances) for each concept. Figure 4.5 shows the top-level concepts in the

modeling subsection.
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Figure 4.5 The knowledge representation of the DM Techniques

As illustrated in the figure above, the modeling subsection defines five main concepts:

task, algorithm, program, model, and suite, which are explained below.

Data mining task: It is a general problem for which data mining is called in to generate
a model. The data mining task consists of classification, regression, association and

clustering, and so on.

Data mining algorithm: An algorithm accepts structured data and returns a model of
the relationships within a data set (if there are any!). It is a mechanism in which a data
mining task is performed. The algorithm’s performance is measured by its accuracy,
training/testing time, training/testing resource requirements, and the model’s

understandability.

Data mining model: A model is the output of an algorithm. It can be a decision tree, a
linear equation, a set of rules, etc., and it can be descriptive or predictive. A descriptive

model helps understanding of an underlying process or behavior. A predictive model
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makes it possible to predict an unseen or unmeasured value from other known values. As
models are often presented with statistical terms, the evaluation and interpretation of the

results is often very difficult for data miners.

Data mining program: A program is the implementation of an algorithm. It can be an

independent software, but most programs are packaged into data mining suites.

Data mining suite: A suite is a set of programs usually packaged in an integrated
software environment. Each program may perform different tasks and may use different

algorithms to achieve the goal.

The concepts described above are all top-level concepts; they can be further divided to
make a more detailed concept hierarchy for knowledge representations. As
classification, association, regression, and clustering are the four most common and
most applied data mining tasks, the DM techniques section of the DM ontology will
mainly focus on these four categories. The concept hierarchies of data mining task,
algorithm, model and program are illustrated respectively in Figure 4.6, Figure 4.7,
Figure 4.8, and Figure 4.9. To simplify the layout of the concept hierarchies and to give

a better understanding, only some specializations of classification are shown here.

Classification Regression Association Clustering | | ......

Figure 4.6 The concept hierarchy of DM Task
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Figure 4.7 The concept hierarchy of Algorithm

Program

Classification Regression Association Clustering [ ...... I
Program Program Program Program 7S
® : * 3
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Bayesian Decision Neural K-nearest Rule | ...... ’
Network Tree Network Neighbor Induction
Program Program Program Program Program

Figure 4.8 The concept hierarchy of Program




Classification Regression Association Clustering | | ...

Figure 4.9 The concept hierarchy of Model

Let us also remark that Figure 4.5 above also presents the relationships among the
concepts. These relationships connect interrelated concepts together so that all the
concepts can be modeled in a taxonomy. This makes the knowledge representation more
meaningful regarding to its semantics. The instances of the concepts can also be
described more precisely. For example, C4.5 is a decision tree algorithm, which is in the
classification algorithm category, performing the classification task (performsTask),
building a decision tree model (buildsModel), and is implemented in the j48 program

(implementedInProgram).

4.3 Design and implementation of the DM ontology

Now that the scope and structure of knowledge to be represented in the ontology are
well defined, the next step is to build the DM ontology and implement the knowledge
representation into the ontology. The DM ontology describes the data mining concepts
and relationships required in our data mining assistant system, providing a complete set

of unified DM terms and their specified meanings.

The DM ontology is built upon the OWL DL language and developed with the ontology
editor Protégé [10]. Protégé is a free, open-source platform developed at Stanford
University which provides a suite of tools to construct domain models and knowledge-

based applications with ontologies. It supports the creation, visualization, and
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manipulation of ontologies in various representation formats. The Protégé-OWL editor
is an extension of Protégé that supports the OWL language. OWL is the most recent
development in standard ontology languages, endorsed by the World Wide Web
Consortium (W3C) to promote the Semantic Web vision. The Protégé-OWL editor
enables users to edit and visualize classes, properties and instances of an ontology,
define logical class characteristics as OWL expressions, and execute reasoners such as

description logic classifiers.

Ontology Environment

~ DMOntology A
. Evolution Tool

/Ontology Instance Level\

Ontology Concept Level | ]
Data Source CE—
CRISP-DM
Techniques, CBR cases <:> Reasoner

Representation Tool Level !
Classes, Properties, forms, Instance !

Axioms, Inference Rules

Figure 4.10 The DM ontology environment

Figure 4.10 illustrates the ontology environment in the assistant system. A pyramid
structure is adapted for the structure of the DM ontology. The basic level is the
knowledge representation tool level, which provides the models used to represent
knowledge such as class, property, instance, and axioms. The second level is the
ontology concept level, which defines all the data mining concepts including CRISP-
DM, data source, CBR cases and DM techniques. The ontology instance level is the
finest level of ontology, which represents the concrete knowledge of data mining. The

DM ontology is also integrated with a reasoner and an ontology evolution tool. The
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reasoner is used to check the ontology consistency. The ontology evolution tool is a new
Protégé plug-in developed by the author to support OWL ontology updating and

maintenance. This tool will be further discussed in Chapter 5.
4.3.1 Class definition and hierarchies

Class is one of the most important components of an OWL ontology. Classes group the
resources with similar characteristics. They are typically used to represent the different
concepts and their hierarchies involved in a knowledge base. In OWL, classes are built
up from descriptions such as properties and constraints that specify the conditions that
must be satisfied by their own instances. OWL classes may also have several instances

in them to represent the particular individual concepts sharing the same structure.

In our DM ontology, classes represent the theoretical concepts of DM knowledge and
their internal structure. The design and categorization of classes follow the classification
of knowledge discussed in Section 4.2. The highest level of class hierarchy maps the
four main sections of knowledge: CRISP-DM, CBR cases, data source and data mining
techniques, as shown in Figure 4.11. The class CRISP-DM, data source and data mining
techniques are also divided into a series of subclasses to model the complete structure of
data mining knowledge. A class that contains subclasses is annotated with a black/grey

triangle at the left of the class name.

|' owl:Thing
CBRCases
» © CRISP-DM
» @ DataSource
> © Techniques

Figure 4.11 The highest level of class hierarchy in DM ontology
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The CRISP-DM class is further divided into CRISP-DM phase, CRISP-DM task,
CRISP-DM activity, and CRISP-DM output subclasses, corresponding to the CRISP-
DM knowledge representation form. As presented in Figure 4.12, these four subclasses

are further expanded into more detailed levels.

¥ © CRISP-DM
> © CRISP-DMActivity
¥ © CRISP-DMOQutput

o

P

— / > © BusinessUnderstandingOutput
v © CRISP-DM A / » © DataPreparationOutput
CRISP-DMActivity » © DataUnderstandingQutput
CRISP-DMOutput » © DeploymentOutput
CRISP-DMPhase - > © EvaluationQutput
» © CRISP-DMTask . \ » © ModelingOutput
S

| ™ © CRISP-DMPhase

v © CRISP-DMTask
BusinessUnderstandingTask
DataPreparationTask

' DataUnderstandingTask
DeploymentTask
EvaluationTask
ModelingTask

Figure 4.12 The CRISP-DM classes

Similar to the knowledge representation of data source section, three subclasses are
created in class DataSource: System, Attribute, and Table. Figure 4.13 shows the class

hierarchy of data source section.
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¥ © DataSource

v © Attribute
AttributeSpecification
Attribute Types

v © System

¥ @ UniversityUQTR

Application
Registration
Student

Y @ Table
DimensionTable
FactTable

Figure 4.13 The class hierarchy of DataSource

Techniques is the largest, essential class in the DM ontology, which represents the
systematic part of data mining domain knowledge. It is further divided into data
preparation, data understanding, and modeling subclasses. The relationships between the
CRISP-DM methodology and the DM ontology are illustrated in Figure 4.14. The class
CRISP-DM models the high-level knowledge about the data mining methodology and
process, while the class Technigues represents the detailed applicable knowledge of a
special data mining task. The subclasses of Techniques represent the concrete base-level

knowledge of each corresponding phase.
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CRISP-DM DM ontology
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: ) » © CRISP-DMOutput
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Preparation - N EE’"__l ques
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* © AlgerithmSupport

A :
ll = —
Data
DataMiningTask
Evaluation ¢

Model

Data

* %' ModelEvaluation
Program
Suite

Figure 4.14 Relationships between CRISP-DM and DM ontology

Figure 4.15 shows the subclasses of Modeling. The class Modeling consists of two types
of subclasses. One is the main class corresponding to the concepts described in Section
4.2.4.2; this type includes the classes DataMiningTask, Algorithm, Model, Program, and
Suite. The other one is the utility classes, which includes the class AlgorithmSupport and
ModelEvaluation. This type of class depends on the main classes, it provides some
additional knowledge source to the main classes, thus making the knowledge
represented in the main classes more complete and semantically meaningful. For
instance, the class AlgorithmSupport can provide the definition and explanation of the
pruning technique and the splitting criteria used to describe a decision tree algorithm.
When an instance of the DecisionTreeAlgorithm class, say C4.5, needs some knowledge
source to fill its properties “usesPrunningTechnique” and “usesSplittingCriteria”, the
Protégé ontology editor can select the knowledge represented in the utility class

AlgorithmSupport.
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The class ModelEvaluation defines the evaluation methods and metrics of the data
mining results. Most often, the data mining results are presented with statistics, which
makes them difficult to be understood by non-expert data miners, and only few (if any)
DM books and lectures try to address the problem of explaining the interpretation of
statistics in data mining. In order to provide better support for decision makers, our DM
ontology specifically defines a class to represent the statistical knowledge. The class
ModelEvaluation presents the definition and description of some commonly used
statistical terms as well as indications to facilitate results interpretation. For example,
the correlation coefficient is a widely used metric to evaluate the performance of
numeric prediction by comparing predicted values on the test records py, py, ... py, and
the actual values a;, a,, ... a, It ranges from 1 for perfectly correlated results, to 0 when
there is no correlation, to -1 when the results are perfectly correlated negatively. The
larger the correlation coefficient value is, the better the performance of the classification
model will be. This metric is mainly used in evaluation of the linear regression

algorithms and models.

As a complicated class hierarchy, the subclasses of Modeling also contain subclasses,
making the hierarchy several levels deep. The expansion of the classes Algorithm, Model

and Program are respectively presented in Figure 4.16, Figure 4.17, and Figure 4.18.

¥ © Modeling

Algorithm
AlgorithmSupport
DataMiningTask

> @ Model

> © ModelEvaluation
Program
Suite

Figure 4.15 The class Modeling and its subclasses
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¥ © Modeling

» & Algorithm

» © AlgorithmSupport
“ DataMiningTask

> @ Model

* © ModelEvaluation
» © Program
© Suite

?*;.

¥ = Algorithm
' AssociationAlgorithm
¥ © ClassificationAlgorithm
© BayesianAlgorithm
= DecisionTreeAlgorithm
K-NearestNeighborAlgorithm
NeuralNetworkAlgorithm
' RuleInductionAlgorithm
¥ © ClusteringAlgorithm
" Density-basedAlgorithm
' Graph-basedAlgorithm
' HierarchicalAlgorithm
“ PartitioningAlgorithm
RegressionAlgorithm

Figure 4.16 The class Algorithm and its subclasses

¥ © Modeling

> & Algorithm

' AlgorithmSupport

“ DataMiningTask
» @ Model

" ModelEvaluation
» © Program

" Suite

¥ © Model
© AssociationMode!
© ClassificationModel
" ClusteringModel
“ RegressionModel
¥ © ModelEvaluation
© EvaluationMethod

» © EvaluationMetrics

Figure 4.17 The class Model and its subclasses
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¥ “ Modeling ¥ © Program

Algorithm ‘AssociationProgram
AlgorithmSupport ¥ © ClassificationProgram
DataMiningTask BayesianProgram
Model ' DecisionTreeProgram
ModelEvaluation K-NearestNeighborProgram

» © Program i NeuralNetworkProgram
Suite © RulelnductionProgram

— ClusteringProgram

RegressionProgram

Figure 4.18 The class Program and its subclasses

4.3.2 Associated properties and class conditions

The classes alone will not provide enough information to represent domain knowledge.
Once the classes have been defined, we must describe the internal structure of the
concepts. OWL properties provide a mechanism to link the related classes and their
instances as they describe the binary relations between the instances of two different
classes or between the instances and data types. The appropriate definition of properties
has two advantages. One is that they can make the elements of the ontology (e.g.,
classes, instances) more connected as a network; this will ease the information querying
especially when several classes are involved in a single query. The other benefit is that
they can define a structure for describing the characteristics of the classes and their
instances. The more complete the structure is, the more meaningful and significant the
instances are. The properties associated with the sections CRISP-DM, CBRCases,
DataSource, and Techniques are given in Table 4.1, Table 4.2 , Table 4.3, and Table 4.4

respectively.
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Table 4.1 Properties of CRISP-DM

Class Property name Property type
CRISP-DMPhase | description datatype
name datatype
includesTask object
CRISP-DMTask name :iatatype
description datatype
includedInPhase object
generatesOutput object
CRISP-DMOutput | name datatype
description datatype
generatedByTask object
usesActivities object
CRISP- description datatype
DMActivity usedInOutput object
Table 4.2 Properties of CBRCases
Class Property name Property type
name datatype
pbmBusinessArea object
pbmDataAttributes object
pbmDataFormat datatype ]
pbmDmActivity object
CBRCases pbmTargetDataType object
pbmUsesTool object
_s_ltChosenTable object
sitChosenAttibute object
sltSelectedProgram object
outAchievedCriteria datatype
outGUM datatype
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Table 4.3 Properties of DataSource

Class Property name Property type
description datatype
System name datatype
FhasDimensionTable object
hasFactTable object
name datatype
description datatype l
inSystem object
Table hasAttribute object
usedInCases object
primaryKey object
foreignKey object
name datatype
description datatype
Attribute inTable object
accessService datatype |
attributeConstraint datatype
attributeLabel datatype
attribute Type datatype
Table 4.4 Properties of Techniques
Class Property name i’roperty type
DataUnderstanding | description datatype
DataPreparation description datatype
description datatype
buildsModel object
handlesAttributesType object




implementedinProgram object

performsTask object

Pseudo-code datatype

—usesPrunningTechnique object

usesSplittingCriteria object

usesConj unctChoosingC_riteria object -
Modeling usesGrowingStrategy_ | object |

usesStoppingCriteria object -

usesDensity DefinitionApproach object

usesClusterProximity object
usesPointProximity object
evaluatesProgram object
author datatype |
programmingL_anguage datatype
version datatype
implementsAlgorithm object ]
' supportedByéuite object
usesEvaluationMetrics object
supportsProgram object
targetAttributeType object

Relational property and descriptive property

An OWL property can be relational or descriptive when considering its role in an
ontology. A relational property defines the relationships between instances of two
classes while a descriptive property describes the characteristics of the classes and their
instances in which the property is applied. Usually, the object properties are used to
define the relations, and the data type properties are used to describe the characteristics.
Taking the class Algorithm as an example, Table 4.5 lists the descriptive and relational

properties and their functions in the Algorithm class.
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Table 4.5 The properties associated to the class Algorithm

P;'operty Property Type Function
Descriptive | description Datatype property | General description of the
string algorithm
pseudo-code ‘ Datatype property Pseudo-:ode of the algorithm
string
Relational _p;:rfonnsTask Object property Links Algorithm to DMTask _
handlesAttribute Type Object property ” Links Algorithm to AttributeType
buildsModel Object property Links Algorithm to Model |
:nplementedInPr:)gram | Object property Links Algorithm to Program

Domain and range

Domain and range are two axioms associated with properties. A domain of a property
limits the instances to which the property can be applied. For example, if the domain of
the property performsTask is defined as the class Algorithm, then only the instances of
the class Algorithm can use the property performsTask. If the domain of the property
performsTask is defined as the union of the class Algorithm and Program, then
performsTask can be applied to instances from both 4lgorithm and Program. The range
of a property limits the instances that the property may have as its value. If the range of
the property performsTask is set as the class DMTask, then only the instance from
DMTask can be selected as the value of the property. Table 4.6 lists the domain and the

range of the properties associated with the class Algorithm.

Properties may have a domain and a range specified. Properties link instances from
domain to instances from the range. For example, as the domain is Algorithm and the
range is DMTask, the property performsTask links the instances belonging to the class
Algorithm to the instances belonging to class DMTask.
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Table 4.6 Domain and range of the properties associated with Algorithm

:- Property Property type Domain Range ]
description | Datatype property Algorithm string
string
pseudo-code ]_)atatype property Algorithm string
string
- performsTask Object property Algorithm a DMTask
handlesAttributeType | Object property | Algorithm AttributeType N
buildsModel | Object property Algorithm Model
—implementedInProgram Object property Algorithm Program

Inverse and functional properties

Properties have a direction from domain to range. In practice, it is useful to define
relations in both directions. If a property links instance A to instance B, then its inverse
property will link B to A. For example, the inverse property of implementsAlgorithm is
implementedInProgram. If a program j48 implements C4.5, then because of the inverse
property we can infer that C4.5 must be an algorithm and C4.5 is implemented in the

program j48.

If a property is functional, for a given instance, there must be at most one instance that is
related to the instance via the property. In other words, a functional property can only
have one unique value for each instance. For example, a particular algorithm can only
perform one data-mining task; it cannot perform a classification task and a clustering
task at the same time. Therefore, the property performsTask should be defined as

functional. Figure 4.19 shows the constructs of the property performsTask.
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Figure 4.19 The functional property performsTask
Property restrictions and Class constraints

In OWL, properties are used to create restrictions. As the name may suggest, restrictions
are used to restrict the instances that belong to a class. Property restrictions can be
regarded as a special kind of class description. Value constraint is one kind of property
restrictions that sets constraints on the range of the property when applied to this
particular class description. There are three types of value constraints that are broadly
applied in ontology constructions: allValuesFrom, someValuesFrom and hasValue. In
our DM ontology, the three constraints are applied in many classes to specify the class
conditions. Figure 4.20 shows an example using constraints in the

classificationAlgorithm class, which is a subclass of the Algorithm class.

Algorithm

buildsModel only ClassificationModel
‘buildsModel some ClassificationModel
performsTask has Classification

'implementedinProgram only ClassificationProgram

Figure 4.20 The constraints of the class ClassificationAlgorithm
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The property buildsModel has applied both allValuesFrom and someValuesFrom
constraints. The allValuesFrom restriction requires that for every instance of the class
that has instances of the specified property, the values of the property are all members of
the class indicated by the allValuesFrom clause. In this case, allValuedFrom means that
for all the classification algorithms, if they can build models, all the models they build
are classification models. However, this constraint does not restrict the number of
classification models when filling out the property for an instance, the value of this
property can be empty. This is why the property buildModel is also restricted with
someValuesFrom constraint. The someValuesFrom requires that there must be at least
one model that is a classification model, but there may be some models that are not
classification models. When using the two constraints together, it indicates that a
classification algorithm must build at least one model, and all the models the algorithm
builds are classification models. This double restriction can guarantee that the relation
between the classification algorithm and the classification model is particularly

specified.

The property performsTask is restricted with the hasValue constraint. The hasValue
links a restriction class to a particular instance. In our example, classification is an
instance of the class DMTask, and all the classification algorithms must perform the
classification task. Hence, the filler of the property performsTask has only one value,

which is the instance classification.
Inherited properties

When class A is defined as a subclass of class B, class A will inherit the properties and
constraints from class B. In the meantime, class A can also possess its own properties
and more specified constraints. This mechanism of generalization and specification
keeps the class hierarchies more organized and can avoid double definitions of the class,

subclass and properties.
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In our DM ontology, the class Algorithm has a subclass ClassificationAlgorithm, which
in turn has a subclass DecisionTreedlgorithm. The class DecisionTreeAlgorithm inherits
all the six properties defined within the class Algorithm (because there is no added
properties to the class Classificationdlgorithm, the class Algorithm and
ClassificationAlgorithm share the same properties). Besides, it also has three properties
associated only with the class DecisionTreedlgorithm, as shown in Figure 4.21.

Therefore, the class DecisionTreeAlgorithm has nine properties.

Classes Properties
Algorithm |- __ * description
. Tl . * pseudo-code
N il “=~~._ | + performsTask
1| * handlesAttributeType
Classification ' .
- /| = buildsModel
Algorithm '
i * implementedinProgram ]
| / =
— ," [- usesSplittingCrtieria ]
Decision Tree N o m i
o S
Algorithm usesPruningTechnique
| « handlesMissingValue

Figure 4.21 Inherited and created properties of the class DecisionTreeAlgorithm
4.3.3 Added instances

Individual instances are the most specific concepts modeled in a knowledge base; they
are at the lowest level of granularity in the knowledge representation structure [46].
Deciding whether a particular concept is a class in an ontology or an individual instance
depends on the potential applications of the ontology. The main goal of our DM
ontology is to represent data mining knowledge in a more detailed level so that the users
can search the most specific knowledge about a particular concept. An example is the

particular algorithm C4.5: the DM ontology should provide its description, its pseudo-
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code, what data mining task it can perform, what model it can build, and what programs
implement it, etc. This level of granularity is the finest level of data mining knowledge
representation. The knowledge modeled in this level describes the “real” comprehension

of data mining concepts and should be defined as instances.

The ontology without instances has only an empty structure of its classes; it lacks the
concrete knowledge and its semantics. Figure 4.22 shows the boundary of classes and
instances in the Algorithm concept hierarchy. The class hierarchy is a pattern that
defines the category and the structure of the algorithm, while the instances describe the
individual algorithms in a particular class. Thus, for all the instances in the same class,
they share the common features of the class such as its category, constraints, and related

properties; but each instance possesses its own specific characteristics.

Some instances of the class DecisionTreeAlgorithm in the DM ontology are presented in
Figure 4.23. All the instances of the class share the same properties, but the value of one
particular property for each instance can be different. For example, the instance C4.5
with its property fillers is shown in the figure. The value of the property
handlesAttributeType for instance C4.5 is nominal and numeric, while that for instance

CART is numeric.

: ™\
I Algorithm I
| | |
Classification Regression
Algorithm Algorithm > Class
4 Hierarchy
Bayesian Decision | | ...
Network Tree
Algorithm Algorithm J
I | |
g - e — WA I !
r 3 ¢ h @ b} nstance
@ > T o

Figure 4.22 The boundary of classes and instances

71



BT iaxtisnniaky Brnibgh 11 hets -4
(Do R Brd OM e Tods Weow e = iy
Ol ABE md U BEE 14> % <-‘.§\pm£gé
[ % Motadata | OWLClnsses = Properties | # Individuals = Forms ;
| CLABS BROWSER % INSTANCE BROWSER % INDIVIDUAL EDITOR =
For Project: * DMOntology  iFor Class: © DecisionTreeAlg... For individual: ¢ C4.5 (instance of DecisionTreeAlgorithm)
Class Hierarchy Assertad | Inferred E3em T J Annotations
ing Asserted instances - € # x [ proson T i Value il
L:Cnses $C45 || = rdfs:com... : =]
=P-DM ];QCART ! [ e e Dl o T T [’
| Source 3% CHAID ‘
nniques fe1D3 | e gmE— s )
:::S'anr::::_ [l description LR usesSplittingCrite € & «
. e i iafthe ID3 alaorithm.  </p>| # Gain_Ratio
adeling H 1
Algorithm I ‘ { pseudo-code L% handlesAtiributes ¢ ¢ .
» AssociationAlgorithm (1) i o Neminal
ClassificationAlgorithm | i performsTask ¢ 4 & + Numeric
BayesianAlgorithm 2 | ‘ :
['DecisionTreaAlgurimm 4 [ ' = buildfl\_nodel_i_&[
K-NesrestNeighborAlgorith, ! : implementedinPri € 4 4 ¢ Decision_Tres
2 NeuralNetworkAlgorithm o148 usesPrunningTec ¥ @ &
RuleInductionAlgorithm (1, fi # post-pruning
* ClusteringAlgorithm i |§
* RegressionAlgorithm !
AlgorithmSupport '
DataMiningTask (4)
Model
ModelEvaluation
Program -a
Suite (1) Asserted Types t
. — s “ DecisionTreeAlgorithm

Figure 4.23 Instances of the class DecisionTreeAlgorithm
4.3.4 Reasoning

OWL-DL is based on Description Logics (DL) [47], which are decidable fragments of
First Order Logic. Because an OWL-DL ontology can be translated into a Description
Logic representation, it is possible to perform automated reasoning over the ontology
using a Description Logic Reasoner. A Description Logic reasoner performs various
inferencing services, such as computing the inferred super-classes of a class, deciding
whether or not the classes are consistent, deciding whether or not one class is subsumed

by another, etc.

The Protégé OWL plug-in provides access to reasoners such as Racer [48] and Pellet
[49, 50]. The current interface of the plug-in supports two types of DL reasoning:

consistency checking and classification (subsumption). Consistency checking
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determines whether a class is consistent. Based on the conditions (constraints) of a class,
the reasoner can check whether or not it is possible for the class to have any instances. A
class is deemed to be inconsistent if it cannot have any instances. Inconsistent classes are
marked with a red-bordered icon. Classification is to test whether or not one class is a
subclass of another class. By performing such tests on all the classes it is possible for a

reasoner to compute the inferred ontology class hierarchy.

Pellet is the reasoner used in DM ontology. It is a Java-based OWL DL reasoner that can
be integrated in a Protégé OWL plug-in. It is based on the tableaux algorithms [51]
developed for expressive Description Logics. Since a Protégé OWL plug-in only
provides T-Box reasoning techniques, which means reasoning on classes, we cannot
check instances at this time. Thus Pellet is mainly used to check the class consistency of

the DM ontology.

4.4 Discussion

Our DM ontology was developed to provide the core data-mining knowledge to our
data-mining assistant system. Meanwhile, it is also a complete data-mining domain
knowledge reference that can be reused and shared by other applications. From this
point of view, the DM ontology is a hybrid data mining domain ontology. Comparing
with the two other data mining domain ontologies DAMON [35, 36] and IDAs [37], our

DM ontology holds several advantages.

Firstly, our DM ontology possesses a very large knowledge scope that covers all the
theoretical and practical knowledge related to the data mining domain. The knowledge
represented in the DM ontology can be classified into two parts: the conceptual data
mining domain knowledge and the system generated knowledge. The data-mining
domain knowledge contains the methodology and the detailed applicable knowledge of
the whole data mining process from data understanding to model evaluation, while the
system-generated knowledge consists of data annotation and case representation. It puts

emphasis on (1) the whole data mining process, (2) the mapping of methodological
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process and corresponding applicable knowledge, (3) the model evaluation methods and
criteria, and (4) the integration with other system components. The IDAs ontology
covers data pre-processing, induction algorithm and post-processing, but it does not
cover data understanding and results evaluation and interpretation. The DAMON
ontology has a good knowledge representation about algorithms, methods, tasks, and
software, but that corresponds only to the modeling sub-section of our DM ontology.
Considering the knowledge scope, and as far as we know, our DM ontology can be

regarded as the most complete and comprehensive data mining domain ontology.

Secondly, our DM ontology has a well-organized and specifically constrained
representation structure: it is a DL-based formal ontology. It classifies the concepts into
four sections according to the different knowledge types; each section holds a clear
knowledge scope and a well-defined class hierarchy. For each level of the class
hierarchy, the relationships and constraints are precisely defined. The most detailed
knowledge is put into the instance level in order to make the DM ontology even more

semantically meaningful.
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Chapter 5 : ANEW TOOL TO MANAGE THE
EVOLUTION OF A PROTEGE OWL ONTOLOGY

Ontology evolution is a relatively new but very important area in ontology research. The
major reason is the increasing number of ontologies and fast development in ontology-
based projects. Furthermore, the increasing costs associated with adapting them to
changing requirements makes ontology evolution a key step in making ontology a truly
versatile tool in practical applications. Developing ontologies and their applications is
expensive, but evolving them is even more expensive. The importance and challenges of
ontology evolution have been realized recently and a great amount of work is needed in

this area.

This chapter presents a new methodology and software tool to manage the evolution of
an ontology. This methodology is based on the evolution tasks and is implemented as a
Protégé plug-in. The importance and the difficulties of ontology evolution is described
in section 5.1, the task-driven evolution methodology is presented in section 5.2, and
section 5.3 presents the Protégé plug-in, called the Ontology Evolution Tab. Section 5.4
discusses this methodology with other two methodologies and gives some concluding

remarks.

5.1 Challenges of ontology evolution

Change is a constant and continual factor in ontology-based applications. The changes
may come from the ontology itself and the dependent environment. Thus, to improve the
performance and reduce the costs of their modification, the changes have to be reflected
in the underlying ontology. If the underlying ontology is not up-to-date, then the
reliability, accuracy and effectiveness of the system will decrease significantly [52]. As
ontologies are increasingly used in many fields, the need for ontology evolution

becomes inevitable. The task of the ontology evolution is to interpret formally all
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requests for changes coming from different sources and to perform them on the ontology

and its depending applications while keeping consistency of all of them.
5.1.1 The importance of ontology evolution

Most of the work conducted so far in the field of ontologies has focused on ontology
construction issues. It is assumed that domain knowledge encapsulated in an ontology
does not evolve in time. However, in a more open and dynamic business environment,
the domain knowledge and the knowledge-based applications change continually. These
changes include the updating of domain knowledge, the organization of the information
in a better way, the additional functionality of different users’ needs, the modification in
the application domain or in the business strategy, etc. Three basic sources that can

cause ontology changes are described in details in what follows.

As ontology is used to represent domain knowledge, the change of knowledge itself is
the most important task of ontology evolution. With the development of the particular
domain and the usage of the application system, the underlying domain knowledge may
grow rapidly. The growth of knowledge can be the changed or updated information from
the existing knowledge, the new knowledge continually accumulated, the management
of the out-of-date knowledge, and the changed representation structure. How to keep the

ontology updated and accurate is definitely a challenging problem.

Another source of change is the different requirements from different users. Users’
requirements often change after the system has been built. There may be different
opinions, needs and operations with the same ontology. The adaptation of the system is

required for this kind of change.

The third source of change is the environment. The environment in which the ontology-
based system operates can change, thereby invalidating the assumptions initially made
when the system was built. The change of environment should be transferred into the

ontology.
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5.1.2 The problems of ontology evolution

Ontology evolution is not a trivial process, due to the variety of sources and
consequences of changes. It cannot be done manually by an ontology engineer since
he/she is not able to understand all the consequences of a change. Therefore, an
evolution tool that is responsible for maintaining evolution is needed. Building such a
tool has proven to be a difficult task, since there is almost a complete lack of suitable
methodology and techniques. Particularly, there are three challenges for the efficient

realization of an ontology evolution software tool.

1. Complexity. An ontology model is an explicit specification of a
conceptualization that often has a complicated representation structure. The
structure is rich in classes, properties, instances, axioms, constraints and internal
relationships; these interdependent concepts make the structure like a complex
network. Working with this interwoven structure, it is very difficult for an
ontology engineer to interpret the necessary changes for the corresponding
ontology operations. Moreover, when a change is applied, this change leads to a
series of consequent changes. Even when the effects of a change are minor, the

cumulative impact of all the changes can be enormous.

2. Consistency. Consistency is one of the most essential factors that must be
considered during the evolution of the ontology. An inconsistent ontology can
cause serious (sometimes contradictory) problems to its dependent applications
and systems. The challenges of consistency checking lies in two aspects. One is
consistency checking within a single ontology, which does not import or export
other ontologies. When an evolution task is involved, a simple change may
generate a list of consequent changes to keep the ontology consistent. The
complexity of ontology evolution increases when the ontology becomes large
and rich. The other aspect concerns the ontologies reusing and extending other

ontologies. Changes in an ontology may affect the ontologies that are based on it.
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Therefore, changes between dependent ontologies are interrelated, and the

immediate synchronization between dependent ontologies is required.

3. Dependent applications. The ontology and its dependent applications are two
interdependent parts, thus the changes applied to one part may cause some
corresponding changes to the other. On one hand, when the ontology evolves, its
dependent applications must be updated to maintain consistency. On the other
hand, when some changes are applied to the applications, the changes must be

transferred to the ontology.

5.2 Conceptual solutions for OWL ontology evolution

Ontology evolution is the timely adaptation of an ontology to the changes in the business
requirements, to trends in the ontology instances and the patterns of the usage of the
ontology based application, as well as the consistent management and propagation of
these changes to dependent applications [24]. There are two major issues involved in
ontology evolution. The first issue is the understanding of how an ontology can be
changed; the second issue is the decision of when and how to modify an ontology to
keep its consistency. We now discuss the main elements of our original contribution to

the problem of managing the evolution of an OWL ontology.
5.2.1 OWL change operations

To resolve the changes of an OWL ontology, different change operations must be
identified and represented in an appropriate format. Based on the OWL DL language, we
propose three types of change operations: basic changes, composite changes and

complex changes.

Definition 1: A basic change is an ontology change that creates, deletes or modifies an
atomic element of an ontology such as axioms, constructs, constraints, property values,

etc. This type of change only performs one simple task; it cannot be divided further. The
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examples of basic changes are creating a class identifier (name), identifying a class

axiom subClassOf, defining a value constraint allValuesFrom, etc.

Table 5.1 gives a list of some basic changes for the OWL DL language. These changes
are classified by different levels of concepts on which the changes will operate: class
level, property level and instance level. The changes at the class level deal only with the
operations related to the class description such as class identifier, class axioms, and class
conditions. The changes at the property level and the instance level deal with the

operations related to the property description and instance description respectively.

Table 5.1 Some basic change operations of an OWL ontology

Level ] : Change Operations
Identifier Class name create, delete, modify (value)
Axioms sub_CiassOf | create, delete, modify (relation)
equivalentClass create, delete, modify (relation) |
Class disjointWith create, delete, rr_lodify (relation)

Value constraints

Conditions allValuesFrom create, delete, modify (filler, make
(Property ) V, make Ei_) _
restrictions) someValuesFrom create, delete, modify (filler, make
¥V, make 3)
hasValue create, delete, modify (filler, make
Vv, make 1)
Cardinality constraints
maxCardinality create, delete, modify (value)
minCardinality create, delete, modify (value)
cardinality create, delete, modify (value)
Intersection, intersectionOf create, delete, modify (relation)
union, unionOf create, delete, modify (relation)
complement
complementOf create, delete, modify (relation)
Identifier property name create, delete, modify (value)
| type create, delete, modify (type)
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| Constructs domain create, delete, modify (filler)

| Property range | create, delete, modify (filler)
subPropertyOf create, delete, modify (relation)
Relations | equivalentProperty create, delete, modify (relation)
inverseOf ‘ create, delete (Boolean) o
| Global . functionalProperty B create, delete (Boolean)
| ::Srfrig:lé;y InverseF unctio:alP_roperty create, delete (Boolean)
—Log_ical TransitiveProperty create, delete (Boolean)
characteristics SymmetricProperty create, delete (Boolean)
Identifier name create, delete, modify (value)_ ]
Instance - Values Class membership and create, delete, modify (value)
'. | property values

However, this granularity for ontology changes is not always appropriate. Often, the
intended changes may be expressed on a higher level. For example, we may need to
generate a new class and make the new class a subclass of a given class. This task
involves several basic changes such as the class name identifier and the axioms
subClassOf. If we add some constraints to this class, we also need some other basic
changes. In a flexible ontology evolution environment, it should be possible to define

changes on a coarser level.

Definition 2: A composite change is an ontology change that creates, deletes, adds,
removes, or modifies an ontology class, a property or an instance. This type of change is

composed with different related basic changes.

The composite changes represent a group of basic changes applied together. While a
basic change can be seen as an isolated modification of an ontology, a composite change
defines a “context” of the evolution in a more practical fashion. The composite changes
are further divided into three parts: changes for a class, changes for a property, and

changes for an instance. These three parts group different basic changes to accomplish a
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higher-level task. Changes for a class deal with the class identifier, axioms, conditions
and constraints. Changes for a property handle the property identifier, constructs,
relations, restrictions, and logical characteristics, while changes for an instance work on

instance identifier and values.

Table 5.2 describes the change operations applied to the composite changes. The “V* at
the intersection indicates that the operation at the row can be applied at the
corresponding column. These five operations are defined according to the operations
provided by the Protégé ontology editor so that the evolution tool can be well integrated
with Protégé. Note that there is a subtle but important difference between “create” and
“add”, “delete” and “remove”. “Create” means to build a completely new one, while
“add” indicates to add an existing one from the list, “delete” means to take out a selected
concept, while “remove” indicates to take a selected concept away from its container,
but this selected concept will always exist in the list. The “add” and “remove” operations
can only be applied to properties. The operation “modify” means we can change the

values of all the basic changes included in each level-related changes.

Table 5.2 Change operations applied to the composite changes

[ Class Property | Instance ‘
Create v v Vv :
_Delete v v v
Add v
| Remove Vv
Modify \l v v

In order to keep the ontology consistent during the evolution phase, we must consider
the change consequence for each operation at each level. The change consequence will
be executed automatically when the user chooses a certain operation. Table 5.3 provides

the detailed explanation for each possibility.
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Table 5.3 The change operations and their consequences

Change operation

Change consequence

Create a class

The created class will inherit all the properties and conditions from its
super-classes, all its subclasses will inherit the properties and

conditions associated with the created class.

Create a property

If the property is created inside a class, this class will be the domain
of the created property.

Create an instance

This instance will inherit all the properties and conditions defined
within the class to which the created instance belongs.

Delete a class

If the selected class and its subclasses have no instances, this class

and its subclasses can be all deleted.

Delete a property

This property will be deleted from the property list, and will also be
deleted from all the classes (including their instances) that are the
domain of the deleted property.

Delete an instance

This instance will be deleted and the property values of other

instances who point to the deleted instance will also be deleted.

Add a property This will only be executed inside a selected class. This class will be
the domain of the added property.

Remove a property This will only be executed inside a selected class. This class will be
removed from the domain of the removed property.

Modify All the basic changes involved in the related class, property, and

instance can be modified. The modification can be value, filler,
relation, necessary and sufficient condition, etc. This operation is

| more complicated then the others. It may introduce inconsistency in

the ontology.

This is essential for ontology consistency but not sufficient for ontology semantics. The

reason is that ontology evolution is a very complex problem, even at the instance level.

The change sequence can generate a fully or partially consistent ontology syntax

(structure). The remaining part of the ontology syntax, which requires the user’s

contribution, must be provided and the semantics of each involved concept must be

fulfilled by the user. In other words, our methodology to ontology evolution is semi-

automatic. Remember that during the whole evolution process, the change sequence (and

maybe other techniques) will be applied to guarantee the ontology consistency.
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When dealing with a group of classes, for example moving them one level higher in the
class hierarchy, the composite changes are not efficient because they can only handle
one class at a time. We need changes at a higher level that can manage multiple concepts

together.

Definition 3: A complex change is an ontology change that moves, merges, splits
ontology class or sibling classes. This type of change can be decomposed into several
basic and composite changes. Complex changes can be regarded as an extension of

composite changes.
5.2.2 A task-based evolution methodology

Ontology evolution is designed to manage the changes of the ontology; it is often
regarded as an updating task applied to the ontology. When applying changes to a class,
a property or an instance, the tasks are not isolated because there is a large number of
relationships and interactions among them. In some cases, one change in a class may
generate some consequent changes in its associated properties and instances. In fact the
evolution tasks are greatly “internal dependent”. The word “dependence” can be further
explained with two meanings: one is consistency dependence; the other is usage

dependence.

Consistency is an important issue in ontology evolution and its dependent applications.
One change to a class (for example, creating a new property) can trigger a series of
necessary changes (the constraints of the new created property, the domain, the range of
this property, the instances belonging to the class, etc.). These changes must be

considered and well applied to preserve the ontology’s consistency.

Regarding usage dependence, we may consider some common cases of developing an
ontology. When we create a new class in the ontology, we usually will not leave this
class “empty” in the ontology. The class is created to describe something new: new

concepts, new relations, and new instances. In other words, the newly created class will
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be described with axioms, conditions, linked with properties, and filled with instances.
The finest level of change is the instances of this class. Another case is to create a new
property. This property will surely not exist alone; it will be linked to one or several
classes as its domain and range. So how to deal with the classes which are linked to this
property as its domain? For these classes and all their dependent instances, one new
property is added. To keep the ontology more meaningful, richer in semantics, it is better
to fill the value of this property in all affected instances. This means that the change of a
property will also produce some changes in the affected classes and their dependent
instances. The third case to consider is the instance itself. When we create a new
instance, we will not only create its name, but also define its class memberships and

property values. It may be concluded from these problems that:

(1) From the usage point of view, one task may require several changes, and all these
changes mostly occur one by one, or series by series. This is crucial for ontology
evolution development. The well-organized change series will guide users to

understand the dependence of changes, and thus save time and improve accuracy.

(2) The changes associated with the classes, properties and instances are interwoven
together. The changes related to the class level and property level will eventually
cause the changes at the instance level. The property-related change will trigger
the changes to affected classes and corresponding instances, while the class-
related changes will cause the changes to classes properties and all dependent

instances.

Considering the change series and the evolution tasks we have discussed above, what we
actually propose here is to create a new task-based evolution methodology. This
methodology concentrates on the ontology evolution tasks. It aims to group all the
necessary actions and the corresponding changes for the most commonly-used tasks of
ontology development and updating. It can help users, especially non-expert users,

recognize the reason why the actions of a particular task are grouped together in a
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particular order, thus helping them to further understand the techniques and skills
involved in the evolution of an ontology. This methodology is designed for an OWL DL

ontology; it mainly focuses on the composite changes and their operations.

The fundamentals of our methodology are based on the different layers of evolution
tasks. Figure 1.1 shows the main concepts of the methodology. The evolution tasks of an
OWL DL ontology are classified into three layers: class related tasks, property related

tasks, and instance related tasks.

— - B e—— —
Class Related Tasks

Class . Needs to change property??
Description :
Property Related Tasks

Identifier
Axioms Property
Conditions Description Instance Related

Intersection. .. Has influenced Tasks

identificr instances ??
Constructs P gstaqceﬁ
Relations esul'lp on
Restriction {?:lr:;téger

Characteristics

Figure 5.1 The strategy of ontology evolution

Instance-related tasks is the smallest layer that handles only the changes applied to the
instances. It consists of the creation, deletion and modification of instances, including
the instance name and values. Although the instance-related task is simple, it is the most
useful layer of the whole methodology. On the one hand, instance changing is the most
widely applied action of ontology updating and maintenance. When the structure of an
ontology is well defined, it usually does not change a lot, but the accumulated new

instances may need to be added into the ontology and the old instances may need to be
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updated. On the other hand, the instance-related task is the basis of the other two tasks;

class-related tasks and property-related tasks will all generate some instance changes.

The middle layer of the structure is the property-related task. The task begins with the

identification of a property change, which can be creating a new property, deleting or

modifying an existing one. For example, as illustrated in detail in Figure 5.2, if a new

property is required, the property descriptions must be changed. Creation of the property

name, type, domain, range, restrictions, etc., is needed. It is very important to note that

when some classes are specified as the domain of this property, the property-related

tasks is connected to the instance-related tasks. There is a new property added to the

classes defined as the property domain, all the instances of these classes have been

influenced by the newly added property. If the property has some affected instances, the

task goes to the instance layer; a value of this property should be added to the affected

instances.

Create or modify a property

Property
Description

Instance
Description

Fill the new property

¢ Identifier

« Constructs

« Relations

* Restrictions

» Characteristics

* Identifier
» values

within the domain classes = :
Find domain
classes

Figure 5.2 The property related task
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Class-related tasks is the outer layer of the structure, which involves both property-
related tasks and instance-related tasks. Figure 5.3 shows an example of creating a new
class. To create a new class, the class name should be identified and at least one property
should be added because the class conditions and constraints are specified through the
properties associated to the class. The added properties can also make the class more
meaningful in the ontology. If some properties are added, the class-related tasks points
to the property-related tasks, which means the property descriptions should be defined in
this step. When creating instances in this class, the value of the properties should be
identified. These instances can be considered as the affected instances, and the task thus

reaches the instance layer.

Class
Description
* Identifier
* Axioms
+ Conditions
* Constraints

Create a class

Add new property
Property
. Description
nstance i
. * Identifier
Description Fill the new property + Constructs
* Identifier * Relations
* Values * Restrictions
* Characteristics

Figure 5.3 The class related task
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5.3 The ontology evolution tab: a new Protégé plug-in
5.3.1 Overview of the new ontology evolution tab

The Ontology Evolution Tab is a new tool for Protégé OWL ontology evolution
integrated in the Protégé platform. This tab implements the task-based methodology
discussed above to fulfill the ontology evolution tasks. Its main purpose is to guide the
user, especially the non-expert user, to complete the basic common tasks of developing

and updating an ontology step by step.

The Ontology Evolution Tab is based on the OWL ontology language and works as an
extension of the Protégé OWL plug-in. Usually, when we create a class in an ontology
just by defining its name, properties and restrictions using the “Class” widget provided
by Protégé OWL, the job is not totally completed—the class is “empty” although its
frame is well defined. We need to create some instances to make the class more
semantically meaningful. Although adding instances can be done with the “Instance”
widget, some problems do exist for the users who don’t know Protégé well enough to
follow all the steps of their task. The same problem exists when we create a property.
For this end, the newly developed Ontology Evolution Tab aims at grouping and
arranging the necessary steps of each basic task of ontology evolution. It can be used as
a wizard to deal with the tasks on ontology classes, properties and instances such as
“create”, “delete” and “modify” from the very beginning (e.g. choose the task) to the end

(e.g. edit the instance in the created class).

5.3.2 Implementation of the ontology evolution tab

There are five sub-tabs in the Ontology Evolution Tab: Create Class, Delete Class,
Create Property, Delete Property, and Create/Delete Individual. Before executing some
actual tasks, this tool needs users to understand the requirements and the category of the
task. For example, if a user wants to add a new class to the ontology, create a new

property for this class and create some instances in this class, then the task is class
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related and the user should go to the Create Class sub-tab. If a user wants to create a new
property, then the Create property sub-tab is the appropriate sub-tab to use. This sub-tab
will also guide the user to complete all the involved steps to make the newly created
property more meaningful in the ontology. The detailed description of these five sub-

tabs is presented below.
Create class

The Create Class sub-tab performs the class related task: it first creates a class, then
defines its properties and constraints, and finally creates instances in it. The task
performed in this sub-tab is divided into five steps: (1) Choose the location where the
new class will be created. The location can be a subclass or a sibling class of a selected
class. (2) Edit the class. The properties and class conditions and axioms can be added to
the created class. The definition of the class should be complete when this step is
finished. (3) The newly created class will be automatically checked and selected from
the class browser that allows users to verify whether it is the created class. Note that
only the selected class in the class hierarchy is allowed to perform the consequent
actions such as creating instances. (4) Create/delete instances in this class, and (5) Edit

the created instances.

Figure 5.4 shows that a new class Restaurant is created, a property sellsPizza and its
corresponding constraint are added to the class. The class is checked and selected
automatically by the tab, as shown in Figure 5.5, then some instances are added to the

class Restaurant shown in Figure 5.6.
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Delete class

The Delete class sub-tab deals with the deletion of the selected class. If the class has
direct or indirect instances, it is not allowed to be deleted. Users may go to the
Create/Delete/Modify Instance sub-tab to delete its instances first. When selecting a
class to be deleted, the list of the usage of this class is presented at the right part of the
screen. This function allows users to check the class usage carefully before the deletion
action since deleting a class, especially a class with subclasses, can be very problematic.
Indeed, the changed ontology may lose not only the deleted classes from the class
hierarchy, but also the filler of some properties, and some restrictions by a wrong

deletion. The screen shot of deleting the class Restaurant is presented in Figure 5.7.
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Create property

The Create property sub-tab performs the property related task: it (1) Creates a property.
(2) Defines its domain, range, inverse property and other characteristics. (3) Finds the
changed classes caused by the created property, and (4) Edits the instances of the

changed classes.

The task of this sub-tab is further divided into five steps: (1) Choose the property type
(object, dataytpe, or annotation) and create a new property. (2) Edit the created property.
The annotations, domain, range, and some property characteristics (ex. Functional,
reverse) can also be defined in this step. (3) Choose the changed class to edit its
instances. The classes that have been added as the domain of the created property will be
automatically checked and highlighted in red in the class hierarchy panel; these classes
are considered as the changed classes since there is one more property added to their
property list. This change can be reflected either from the Property and Restrictions
widget in the Create Class sub-tab or from the Individual Editor in the Create Property
sub-tab. The instances of the changed class are also changed accordingly: they have one
more property added and the filler of this property is still empty. The purpose of
choosing the changed class is to edit its changed instances. (4) Choose instance(s) from

the changed classes, and (5) edit the selected instance(s).

Figure 5.8 shows that a property makesPizza is created, its domain is set as the class
Restaurant and its range is set as the class NamedPzza. The changed class Restaurant is
highlighted automatically, as illustrated in Figure 5.9, since the property makesPizza is

added to the instances of the class Restaurant, as presented in Figure 5.10.
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Figure 5.8 Create a property makesPizza
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Figure 5.10 The property makesPizza is added to the instances of Restaurant

Delete property

This sub-tab deals with property deletion. Before deleting a property, make sure to check
the usage of this property. When selecting a property to be deleted, the list of usages of
the property is also presented at the right part of the screen. The presented information
list allows users to check the usage of the selected property before deleting it. Figure

5.11 shows the screen shot of deleting the property sellsPizza.
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Figure 5.11 Delete the property sellsPizza
Create/delete/modify instance

This sub-tab provides the functions to create, modify or delete instance(s) from an
existing class. The task is further divided into three steps: (1) Choose an existing class to
edit its instances. (2) Create some new instances or delete some existing instances. (3)
Edit the selected instance(s). When creating an instance, edit instance means to add,
delete or modify the filler of each property of this instance. Note that only the name of
the instance and the filler of the properties describing the instances can be modified.

Figure 5.12 shows the screen shot of editing the instances of the class Restaurant.
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Figure 5.12 Edit the instance of the class Restaurant

The Ontology Evolution Tab is the first step of the implementation of the evolution
methodology. However, we must emphasize that, in our opinion, it constitutes a
significant and original contribution to the current state of the art in ontology evolution,
especially in the context of OWL Protégé for which no similar plug-in existed before.
Also, it must be pointed out that although we have applied our proposal to a DM
ontology, the plug-in is actually domain-independent and could thus be re-used in any
application domain. The plug-in was designed as a step-by-step wizard to guide users to
accomplish some basic evolution tasks. It supports the creation and deletion tasks
involving classes, properties and instances. When applying these two categories of
change operations, it is capable of automatically locating the created class, identifying

the changed class and influenced instances for a created property, and showing the usage
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information about a class or a property to be deleted. Modification is another category of
change operations discussed in the methodology. This is the most complicated and
dynamic category because we can modify almost everything in the ontology. The
difficulty dramatically increases when capturing this type of changes while keeping the
ontology consistent. The plug-in only supports the same modification operations as
Protégé OWL provides for the time being, this can be done through the Create Class,
Create Property, and Create/Delete/Modify Insiance sub-tabs. More sophisticated and

intelligent modification operations are needed in the future.

54 Discussion

As ontologies and ontology-based applications have developed tremendously in various
domains in recent years, the updating and maintaining of ontologies has become a very
important issue. Ontology evolution is a challenging endeavor that faces several
difficulties. Among them, the ontology complexity and consistency are the two most
important difficulties to be considered. Research in this area is still in its initial phase:
the importance of ontology evolution is relatively new and relatively little research
focuses on it. The results are quite limited: most of the research groups working on this
problem tend to propose theoretical ideas and only a few approaches are actually

implemented as actual ontology evolution tools.

The two well-defined methodologies with implemented tools are Stojavonic’s
methodology [24, 25] and Klein’s methodology [28, 29]. Stojavonic et al. propose a
general user-driven ontology evolution process that can be applied to different evolution
tools. They also define the concepts of resolution points that give users flexibility to
choose the proper change consequence. However, the corresponding tool of this
methodology has some drawbacks: it does not consider the dependence of change
consequence; the new changes are not totally integrated into the existing ontology. Klein
et al. propose a component-based framework to manage changes of distributed evolution

between different versions. The methodology defines the change operations of the OWL
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language and an ontology of change operations. This ontology is used as the main
component of the framework. However, this framework is designed to compare and find
change information between two ontology versions, it is not suitable for ontology

evolution tasks.

Our ontology evolution methodology is based on the evolution tasks and their activities.
It takes into account the fact that the tasks of maintaining an ontology are mutually
dependent and emphasizes the consistency dependence and usage dependence of
ontology evolution tasks. This task-based methodology for ontology evolution possesses

four remarkable advantages:

1. Our methodology defines basic, composite and complex changes at three
different granularities. Basic changes deal with the atomic, non-dividable
operations, composite changes deal with the change operations related to the
class, property and instances, and complex changes manage the change
operations of a group of classes. The definition of basic change in our
methodology is similar to the elementary change in Stojavonic’s process and
basic change in Klein’s framework, but the other two levels are different
although we use the same or similar terms. These three layers of change
operations finely define the relationship between evolution tasks and their
containing activities. They provide a solid infrastructure of building our

evolution strategy and its corresponding tool.

2. All related activities (or change operations) are linked and organized in an
appropriate order to fulfill a task. The results of an evolution task, especially the
newly created classes and properties, do not exist separately in the ontology. On
the contrary, they are already integrated into the concept hierarchy of the
ontology when the task is finished. Comparing to Stojavonic’s methodology [24,
25], which leaves the added concepts isolated from the main body of the

ontology, our methodology is capable of managing the relationships between
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change consequence and usage independence. This mechanism can help resolve

problems of ontology consistency.

The ontology evolution tool focuses mainly on the structure and optimized
change consequence of the evolution tasks. It can be regarded as a step-by-step
guide that provides the precise directions of “what to do next” to assist users to
complete the evolution tasks throughout various steps. The wizard-like interface
can make the process more predicable and controllable. These characteristics are

particularly useful for non-expert ontology users.

Ontology evolution is regarded as a process of knowledge adaptation, which
occurs when some changes are demanded. The results of the evolution task can
be an updated ontology or a new version of an existing ontology and its adapted
dependent applications. Klein’s methodology [28, 29] focuses on two ontology
versions: it assumes that the two versions already exist and tries to find and
derive all change information between two versions. It is a post evolution tool.
Our methodology is designed for the evolution process itself, it can be used for
both developing and updating an ontology, and can generate an up-to-date

ontology.

However, as a beginning step towards the solution of ontology evolution, this work still

has several areas that need to be further improved. The methodology and the plug-in are

all semi-automatic; it requires the users’ supervision and interaction. The users are

supposed to know the basic knowledge about ontology development and Protégé OWL.

They should also be able to identify the needs of the evolution task, select the

appropriate task layer and understand each change they made in the activity series.

Another area is consistency checking. Since the ontology consistency is not completely

guaranteed for all the possible changes, manual checking the consistency with a reasoner

is required. The plug-in was developed for the Protégé OWL editor: it uses Protégé’s

undo and redo buttons from its main menu for reverse functions. This is not suitable for
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complex changes, some other new functions to improve the ontology reversibility are

needed.
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Chapter 6 : FUTURE WORK

The DM ontology and the ontology evolution tool is an essential component of our
intelligent data mining assistant system, which is used to represent and keep updated the
data mining knowledge. From the data mining point of view, this is the first phase of
integrating data mining and the decision support system to support successful decision
making. From the ontology point of view, this is the first fruitful result of applying
ontological technique into data mining. This work provides an interesting ontological
platform to manage complex knowledge with very good performance. However, as the
field of ontologies is currently a new and non-mature research area, several future work
items can be identified to improve the results and performance of our DM ontology and

our ontology evolution tool (plug-in).
1. Ontology completion

The DM ontology is a specification of data mining knowledge. As the structure and
hierarchy of DM classes are precisely defined in the DM ontology, the next step would
be to add more instances into the classes. Although a great number of current concepts
are already represented in the ontology, data mining knowledge is increasing
tremendously and the new knowledge should be added into the DM ontology to keep it
complete and up-to-date. For the Technique section of the DM ontology, the new
instances are mostly the new algorithms, new programs and new model evaluation
criteria. For the Data Source section, as new tables and attributes are added into the data
warehouse, their metadata should be added as new instances. For the CBR cases section,
when new cases are created, they could eventually be promoted into the ontology as new

instances.
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2. Improvement of the ontology evolution tool

Currently, the Ontology Evolution Tab supports basic and composite change operations;
the support of complex change operations would be the next step to be further
developed. The complex changes handle the operations applied to a group of classes
such as moving some sibling classes one level higher or changing the super class of
some sibling classes. This level of operation requires a deeper understanding of the
ontology language and editing tools. The implementation of the complex change

operations would also facilitate the ontology evolution tasks.

Another potential improvement of the Ontology Evolution Tab is the enhanced support
of the modification of classes and properties. Presently, the activities of modification are
covered by the Create Class sub-tab and the Create Property sub-tab. These two sub-tabs
can only deal with simple modifications manually; some other more intelligent types of
support are needed. Moreover, how to automatically check the consistency of the
ontology is another question to be solved. It could be possible to integrate the evolution
tool with a reasoner so that the consistency checking and the concept inference could be

carried out to enhance the performance of the evolution tool.
3. Performance evaluation

As one of the fundamental components of our data mining assistant system, the DM
ontology and the ontology evolution tool will be implemented and evaluated through the
DM assistant system. Our DM assistant is initially deployed to support a strategic
decision support department within a university setting. Specifically, the objectives of
the assistant consist of analyzing large amounts of actual student academic details found
within a data warehouse and deriving various predictive and explanatory models using
data mining tools. It mainly focuses on three categories: student admission process,

student retention and student follow-up.
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The evaluation of the DM ontology would mainly focus on the ability of knowledge
representation. This ability could be assessed by the ontology completeness, consistency,
and conciseness. As the DM knowledge increases, the DM ontology could be hardly
complete; the term completeness is a relative concept. In our case, the DM ontology
could be considered complete if it covers all the common and potentially useful DM
knowledge, including both theoretical and practical knowledge, for a data miner who
deals with various data mining activities. The DM ontology is currently consistent;
ontology consistency checking could be useful when some new classes or instances are
added into the ontology. The conciseness of the DM ontology could also be assessed by

checking whether there are some unnecessary or useless definitions in the ontology.

The evaluation of the ontology evolution tool would mainly focus on its performance as
a wizard. This tool is initially designed to guide the non-expert users to manage
ontology-updating tasks. The ability of directing users through different steps, helping
users find the consequence of activities, and reducing the time and effort for a given task

could be some important criteria to evaluate its performance.
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Chapter 7 : CONCLUSION

The well-designed data mining ontology and the new ontology evolution methodology
(and tool/plug-in) are the main results of this research work, which is a fundamental part

of our larger project on intelligent data mining assistance.

The main objective achieved in this work is the development of an ontology-based
methodology to data mining to support non-expert data miners and decision makers to
make better choices during various data mining tasks. We have resolved at a satisfactory
level two important problems in developing the data mining assistant system: the
support of non-expert data miners and the definition of DM knowledge. The core of the
work accomplished is a DM ontology that provides a relatively complete data-mining
knowledge base to the data mining assistant system. Another essential part is the new
ontology evolution methodology to support ontology updating and maintenance. Here

are more details on our main accomplishments.

Firstly, based on the Protégé (Stanford University) software and the OWL language, a
new data mining ontology has successfully been developed. As a knowledge source for
the system, the role of the DM ontology is the knowledge representation. Two types of
knowledge are represented in the DM ontology: data mining domain knowledge and
system generated knowledge. The data mining domain knowledge consists of both the
methodology and the detailed applicable knowledge of the entire data mining process,
which are represented respectively in the section of the CRISP-DM and Techniques
sections in the DM ontology. The system-generated knowledge consists of data
annotations and CBR case representation, which are represented in the Data Source and

CBR Cases sections in the DM ontology.

Particularly, our DM ontology puts emphasis on the whole data mining process, the
mapping of theoretical aspects, including methodological ones, and corresponding

applicable knowledge, the detailed description of data mining algorithms and programs,
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and the statistical interpretation of model evaluation methods and criteria. We believe
these characteristics make our DM ontology the most complete and comprehensive data-
mining domain ontology available. It also gives data miners and decision makers a better
understanding of data mining knowledge, which can greatly facilitate parts of a decision

making process.

Secondly, our DM ontology is further integrated into the DM assistant system. The DM
ontology is one of the three main components in the system; it cooperates with the CBR
system and the data warehouse to provide more intelligent support for data mining
activities. The integration of the DM ontology and CBR cases is realized through two
aspects. One is the ontological representation of the structure and semantics of the cases;
the other is the relationships between cases and related DM knowledge. It can help data
miners to understand, classify, navigate and choose appropriate cases as well as provide

heuristic recommendations for a given DM task.

The DM ontology and data warehouse is integrated through the ontological
representation of the metadata of the data warehouse, which involves the dictionary of
data marts, tables and attributes. The relationships between data source, CBR cases and
DM knowledge are also precisely defined in the DM ontology. Integrating the DM
ontology into the assistant system can greatly assist data miners to better understand the
requirements, activities and outputs of each phase of data mining tasks, thus making

better choices for the given tasks.

Thirdly, a new ontology evolution methodology was proposed in this work. With the
accumulated new knowledge from numerous applications and the changes in the DM
field, the DM ontology needs to be updated. This new methodology defines three levels
of change operations: basic change, composite change and complex change. The strategy
of evolution is based on the evolution tasks and their associated activities. The evolution
tasks focus on the composite change operations and are classified at three layers

according to the different task scopes: instance related tasks is the inner layer that deals
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with the changes only applied to the instances; property related tasks is the middle layer
that handles the changes applied to the properties and their influenced instances; while
class related tasks is the outer layer that manages the changes of classes, their associated

properties and instances.

This evolution strategy is implemented as a Protégé plug-in: the ontology Evolution Tab,
which can be used for any Protégé OWL ontologies, whatever the application domain.
The plug-in groups and arranges the necessary steps of most commonly used evolution
tasks into five sub-tabs: create class, delete class, create property, delete property and
create/delete/modify instance. It is used as a wizard to deal with the tasks on ontology
classes, properties and instances. It is capable of guiding the user, especially the non-
expert user, to complete the basic common tasks of developing and updating an ontology

step by step.

As one fundamental component of our data mining assistant system, the DM ontology
and the ontology evolution tool will be evaluated through the application of the assistant

system.

Our work puts forward the foundations for our data mining assistant system and paved
the way for a better integration of data mining and decision support system.
Furthermore, our versatile DM ontology evolution strategies will greatly improve the
accuracy, consistency, and efficiency of the evolution tasks. More importantly, this
evolution methodology possesses a great potential for further development. We think it
clearly demonstrates the potential success of integrating ontology into data mining and

thus opens a brand new research area in data mining development.
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Appendix

Ontology Evolution Plug-in User Manual

Ontology Evolution Tab is a new Protégé tab widget plug-in that allows you to update
an existing Protégé Owl ontology or to create a new Protégé OWL ontology.

Ontology Evolution Tab is based on the OWL ontology language and works as an
extension of Protégé OWL. The main purpose of Ontology Evolution Tab is to guide the
user, especially the non-expert user to complete the basic common tasks of developing
and updating an ontology step by step. Usually, when we create a class in an ontology
just by defining its name, properties and restrictions using the “Class” widget provided
by Protégé OWL, the consequent work is not totally completed---- the class is “empty”
although its frame is well defined. We need to further create some instances to make the
class more semantically meaningful. Although adding instances can be done in
“Instance” widget, some problems do exist for the users who don’t know Protégé well
enough to follow all the steps of their task. The same problem exists when we create a
property. For this end, the newly developed Ontology Evolution Tab aims at grouping
and arranging the necessary steps of each basic task of ontology evolution. It can be
used as a wizard to deal with the tasks about ontology classes, properties and instances
such as “create”, “delete” and “modify” from the very beginning (e.g. choose the task) to
the end (e.g. edit the instance in the created class).

Ontology Evolution Tab integrates with the Protégé OWL plug-in. It inherits all the
functions of OWL language from Protégé OWL plug-in. It allows you to use the same
main menu provided by Protégé OWL plug-in; it also adapts the same “look and feel” of
Protégé OWL plug-in so that you will feel easy and comfortable to use.

For the time being, the Ontology Evolution Tab mainly supports the creation and
deletion tasks involving classes, properties and instances. The plug-in is semi-automatic;
it requires the users’ supervision and interaction. The users are supposed to know the
basic knowledge about ontology development and Protégé OWL. They should also be
able to identify the needs of the evolution task, select the appropriate task and
understand each change they made in the activity series.

1. How to install

Ontology Evolution Tab is designed for Protégé 3.2 beta.
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1. Put the Ontology Evolution folder in the following directory: <Protégé
installation_dir>/plugins (replacing the Protégé installation dir with your
Protégé installation directory).

2. Run Protégé.

3. Choose “Project” from the main menu, then choose “Configure”, in the Tab
widget list, select OntologyEvolutionTab, click OK, the Ontology Evolution Tab
will appear.

2. How to use

There are five sub tabs in Ontology Evolution Tab: Create Class, Delete Class, Create
Property, Delete Property, and Create/Delete Individual. For each sub tab, some
screenshots and examples are given from step to step to help you become familiar with
its functions.

2.1 Create Class:

Create Class sub tab performs the class related task: it creates a class, defines its
structure and creates instances in it. Create Class sub tab has two pages linked with next
button and back button. Double click the proper button to turn the pages.

Step 1 of 5: Choose location

Two options are provided to create a class: create subclass button which creates a new
class as subclass of the selected class, and create sibling class button which creates a
new class at the same hierarchy level of the selected class.

Figure 1 presents the initial screenshot of the Create Class sub tab. Only the step 1 of the
task is shown when firstly clicking this sub tab. When the location of the new class is
chosen by clicking either create subclass button or create sibling class button, the
second step can be shown on the screen. In this way, you can easily follow the steps one
by one. Clicking the highlighted “next” button can switch to the next page of this sub
tab.
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Figure 1 The initial screenshot of Create Class sub tab

Step 2 of S: Edit class

You can edit the current created class in the class editor. The class editor contains two
switchable views: logic view and property view. The logic view widget provides four
widgets: Class name widget (to change class name), Annotations widget (to add, modify
or remove class annotations), Asserted Conditions widget (to add, modify or remove
asserted conditions) and Disjoints widget (to modify or remove the disjoint classes). The
property view provides Property and Restrictions widget (to create, modify or delete the
properties and restrictions), Class name widget, Annotations widget, and Disjoints
widget.

In Figure 2, a new class is created by clicking create subclass button. The following
figures present how a class can be edited within step 2. From the logic view, the class is
firstly renamed as “Restaurant” in Figure 3, then all its sibling classes
(“DomainConcept” and “ValuePartition” are added to its disjoint classes as indicated in
Figure 4. Figure 5 shows the result of the disjoint classes of the class “Restaurant”. In
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order to create or add properties to this class, we must switch the logic view to the
property view. A new property of the class “restaurant” is created as shown in Figure 6.
This property is named “sellsPizza”, its domain is set as the class “restaurant”, and its
range is set as the class “NamedPizza”. Then we’d like to add a necessary condition
based on the property “sellsPizza”. After switching back to the logic view, as presented
in Figure 7, the necessary condition of the class “Restaurant” is set by defining the filler

of the “sellsPizza” property as allValuesFrom the instances of the class “NamedPizza”.
Figure 8 shows the result of the added condition.
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Figure 2 Create a new class
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Figure 8 The result of Setting a necessary condition

Step 3 of 5: Check created class

The newly created class will be automatically selected from the class browser that
allows you to verify whether it is the created class. Figure 9 gives the screenshot of this
step. Clicking the “back” button can go back to the first page of this sub tab.

Note that only the selected class in class hierarchy panel (class browser) is allowed to
perform the consequent actions such as creating instances.
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Figure 9 Check the created class “Restaurant™

Step 4 of 5: Create/Delete instance(s)

Once created and checked the class, you may want to create some instances in this class
to make it more semantically meaningful. Click the Create instance button in the
instance browser to create instance(s) of the selected class.

Step 5 of 5: Edit Instance(s)

You can select each time an instance from the instance browser to edit (add, delete or
modify) the filler of its properties.

In the example presented in Figure 10, three instances of the class “Restaurant” have
been crested: PizzaHut, PozzaKing and RoyalPalace. With the asserted condition for the
property “sellsPizza” defined in step 2, (sellsPizza allValuesFrom namedPizza), when
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trying to fill the property “cellsPizza” of the instance “PizzaKing”, the only allowed
classes are the class “NamedPizza” and its subclasses. Note that there is no instance in
the allowed classes; thus this property cannot be filled at this moment. It will be filled
later.
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Figure 10 Create and edit instances for class “Restaurant”

2.2 Delete Class

Delete class sub tab deals with the deletion of the selected class. If the class has direct or
indirect instances, it is not allowed to be deleted. You may go to the
Create/Delete/Modify Instance sub tab to delete its instances firstly. Before deleting a
class, make sure checking the usage of this class at the right part of the sub tab carefully
since deleting a class especially a class with subclasses can be very dangerous: you may
lose not only the deleted classes from the class hierarchy, but also the filler of some
properties, and some restrictions!

Followings are some icons used in the usage panel:
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The initial screenshot of Delete Class sub tab is shown in Figure 11.
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Figure 11 The initial screen shot of the Delete Class sub tab
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When clicking the class “Restaurant”, the list of the usage of this class is presented at the
right hand part of the screen, as shown in Figure 12. If we try to delete the class
“Restaurant” by clicking the delete class button, a pop up window with the warning
information will appear. The screenshot is presented in Figure 13. The class
“Restaurant” cannot be deleted because it has three instances. We may go to the
Create/Delete/modify instance sub tab to delete the instances firstly and go back to the
Delete Class sub tab to delete this class. Although there are some inconveniences when
deleting the classes with direct or indirect instances, this deletion mechanism really
helps the user to protect the potential useful information from occasionally wrong
operations. On the other hand, deleting a class without instance is direct and simple.
Figure 14 shows that the class “Hot” is to be deleted. After checking the confirmation
message and clicking “yes”, this class can be deleted. The result of deleting the class
“Hot” is given in Figure 15. However, this operation can be undone by using the undo
icon in Protégé main toolbar.
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Figure 12 The usage of the class “Restaurant”
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Figure 15 The result of deleting the class “Hot”

2.3 Create Property

Create property sub tab performs the property related task: it (1) creates a property, (2)
defines its domain, range, inverse property and other characteristics; (3) finds the
changed classes caused by the created property and (4) edits the instances of the changed
classes.

Create property sub tab has two pages linked with next and back button. Double click
the proper button to turn the pages.

Step 1 of 5: Choose property type and create.

There are four types of creating property: object property, datatype property, annotation
property and all. Clicking the create object property button, create datatype property

132



button, or create annotation property button will create a new property with its
appropriated type; clicking create subproperty button will create a new property as the
sub property of the selected property. Figure 16 shows the initial screenshot of this sub
tab.
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Figure 16 The initial screen shot of the Create Property sub tab

Step 2 of 5: Edit property.

The newly created property can be edited from the property editor. The annotations,
domain, range, and some property characteristics (ex. Functional, reverse) can be
defined in this step.

Figure 17 shows that a new property “makesPizza” is created. This property is created

by clicking create property button in step 1, its domain is set as the class “Restaurant”
and its range is set as the class “NamedPizza” in property editor.
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Figure 17 Create a property “makesPizza”

Step 3 of 5: Choose the changed class to edit its instances

The classes who have been added as the domain of the created property will be
highlighted in red colour in the class hierarchy panel; these classes are considered as the
changed classes since there is one more property added to their property list. This
change can be reflected either from the Property and Restrictions widget in the Create
Class sub tab or from the Individual Editor in the Create Property sub tab. The instances
of the changed class also changed accordingly: they have one more property added and
the filler of this property is still empty. The purpose of choosing the changed class is to
edit its changed instances.

The screenshot of the changed classes is shown in Figure 18. The Create Property sub
tab checks the changed classes automatically and highlights them with red colour. Note
that the domain of the property “makesPizza” is defined as the class “Restaurant”, thus,
as indicated in Figure 18, the changed class is the class Restaurant, which is in red.
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Figure 18 the changed class “Restaurant”

Step 4 of 5: Choose instance(s) to edit.
Select the instance one at a time from instance browser to edit.
Step 5 of 5: Edit instance(s)

The most common task for this step is to specify the filler of the created property by
clicking the Add... button. If the range of this property is well defined in Step 2, the
allowed classes of the property filler can be much specified.

Clicking the class “Restaurant”, its three instances appear in the instance browser, and
the new property “makesPizza” is added for each of them in the instance editor, as
shown in Figure 19. As the range of the property “maksPizza” is defined as the class
“NamedPizza”, only the instances of the class “NamedPizza” or the instances of its sub
classes are allowed as the filler of the property makesPizza.

135



i B 5 ko LVt %, niing it . oo 4|

n-a-mmmzp—wm

Dol A4S a o9 FHHE ar % <0 provégé
¢m "mmm = Properties @ Individusls = Forms % Ontology Evolution

Cresto Class  Delete Class | Create Property Dulete Property Creats/DeleteModily

back
Step 3 of 5: Chaose chengea class‘Sr p 4 of 5: Choose instance(d Step 4 of 5: Edit Instance
! B NS TANCE BROWSER | INDIVIDUAL EDITOR =
Foer}ec.l: Oplmlovd For Class: ® Restaurant For Individual: | PizzaHut (instance of Restsirant)
‘_CIass Hierarchy Elssertedinstmce:v e x LY 2 Annemions
. owlThing ® PizzaHut Propert i o
i perty Value
.+ @ DomalnConcept !0 PizzaQusen rdfs.com...
= W alueFartition |® RayalPaince
® Restaurant () | i

| makesPizza 9@_1.

|
1
1

B s . ;

Altowed Classes {penct Avamtcd etaren +

* NamedPizza I
& Amverican [ ¢
2 AmuaricanHot I
2 Cajum M1 !
& Capricciosa |
2 Caprina
¥ Fiatantina l

selisPizza * e

¥ FourSeasong

t
LB Mnut A I

- - B

ZOK _{ [~ Cancel”

Figure 19 A new property is added to the instances of “Restaurant”

Here is another example illustrating the changed classes. Going back to the first page of
this sub tab, we create another property “soldAtRestaurant”, as shown in Figure 20. We
then define its domain as the class “NamedPizza” and its range as the class “Restaurant”.
Also we set its inverse property as “sellsPizza”. The function of the inverse property will
be discussed later. As its domain is the class “NamedPizza”, when going to the next
page, we can see that the class “namedPizza” and all its sub classes become red as
shown in Figure 21 since these classes are considered the changed classes. All the
instances of the changed classes will have an additional new property
“soldAtRestaurant” added. These instances can be edited further in the following steps
in this sub tab.
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Figure 21 The changed classes of “soldAtRestaurant”

2.4 Delete Property

This sub tab deals with the deletion of the property. Before deleting a property, make
sure to check the usage of this property. The icons used in the usage panel are almost
same as those used in the Delete Class sub tab.

Figure 22 shows the screenshot of the Delete Property sub tab. The property “sellsPizza”
is to be deleted, and the list of usage of this property is shown at the right hand part of
the screen.
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Figure 22 Delete the property “sellsPizza”

2.5 Create/Modify/Delete Instance

This sub tab provides the functions to create, modify or delete instance(s) from an
existing class.

Step 1 of 3: Choose class

Choose the class from the class hierarchy panel in which you want to create, modify, or
delete the instance(s). The initial screenshot of this sub tab is given in Figure 23.
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Figure 24 Choose the class “American” to add instances

Figure 24 indicates that the class “American” is chosen to add some instances. The
instances of the class “American” will be used later in our example as the fillers of the
property “makesPizza” and “sellsPizza”.

Step 2 of 3: Create/Delete individual

Click the Create instance button to create a new instance; click the Delete instance
button to delete an existing instance; or click the Copy instance to make a copy of an
existing instance.

Step 3 of 3: Edit instance

When creating an instance, edit instance means to add, delete or modify the filler of each
property of this instance. Note that only the name of the instance and the filler of the
properties describing the instances can be modified.
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Figure 25 shows that two instances are created for class “American”: “American_a” and
“American_b”. The property “hasBase” and “hasTopping” of the instance “American_a”
are automatically highlighted with the red rectangles by Protégé because the two
properties must be filled according to the asserted conditions of the class “American”.
The asserted conditions of “American” inherited from its super class “Pizza” defines that
“hasBase” must have at least one base that is the instance of the class “PizzaBase” and
“HasTopping” must have at least one topping that is the instance of the class
“PizzaTopping”. Thus, if these two properties are not filled, it is considered inconsistent
in Protégé. For the property “soldAtRestaurnat”, two instances “PizzaHut” and
“PizzaQueen” from the class “Restaurant are selected as its fillers for “American_a”,
and one instance “PizzaHut” is selected for “American_b .

Now, let edit the instances of the class “restaurant”. Since the property
“soldAtRestaurant” is set as the inverse property of “sellsPizza”, we can see from
Figure 26 that the property “sellsPizza” of the instance “PizzaHut” is filled
automatically. This can also be proved from the usage of “PizzaHut”. Figure 27 presents
that another property “makesPizza” is filled with the instance “American_a” from the
class “American”.

Before deleting an instance, always check the usage of the instance in the usage panel.
Figure 28 shows that an instance “PizzaQueen” is to be deleted. The result of the
deletion operation is given in Figure 29.

142



= ] Protegd 17 lela  [File W Wring it 000 i Prodege 1 T Gridlenss)ie

[tk 68 Bews OA fah oo i b

DM+ 0 % e 9% AR 4> ¢ < (i proeége

S| SN e | ST Sl O omis et

Step 1 of 3: Chooss Class .‘,Slep 2 of 3; CreateiDeiete Instancey Step 3 of 3: Edit instance

For Project: ® pizza owd For Class: @ American For Individual: ¢ American_a (instance of Amarican)

clas’s:herwt:h!_ ] :?‘F"_"‘d}"sf?'ffef R 25, | S 5 em __1sAnnotations |
r:amode - T Amorfcln_l | Pr ‘ Value

Amarican (2} * American_t  rdfs:com...
% AmpricanHot I
P Ch i
@ Capticciosa L) 1
& Caprina
i . hasBase € & 4| soldAtRestaurai ¥ &
® Figrentine e e ; —
@ FourSeasons [ Pzzebht
® Frutiivace hasTopping ¢ & ¢ PizzaQueen
® Gisrdiniers
® LaReine
& Margherita
% Mushroom
® Napoletana
% Parmanse
# PolloAdAstra
@ PrincaCarlo b & N : =
® QuattroFeimaggi | Check usage
® Roxa Usage of ¢ American &
# Sicikians ' | (Resource] | Type | Expression
o Tul & Plzeait T TmggHePlyes - staul

® SloppyGiuseppe | | 8 | CEEMMen  w mIohPIEmlsiAiResiuan
® Saho | Assirted Types
#UnclosedPizza || i American

Figure 25 Create and edit the instances of “American”

143



T AL
mnd @ W

L  Restevrant (3)
€

)

TR P

L

R P TerTredegs 0.0

FEE a4 %

Iafrnarsyiew | i rdlp oo mwl ppt| DN 5P lgr]

Choose Class

For Fro}ecl- L pm awl

Class Hierarchy
¥ Mushrooin

T Napoletana
7 Parmense
 PollcAdAstra
O PrinceCario
? QuattroFormaggi
P Rosa
& Siclliana
@ StoppyGiuseppe
% Soho
& UnclosedPizza
UVeneziane
“NonVegetarianPizza.
¢ RealitafianPizza
0 SpicyPizza
i SpicyPizzaEquivalent
©VegetarianPizza
DVagetarianPizzaEquis
&VegetarianPizzaEquiy
» i PizzaBase
> & PlzzaTopping
4 ValugPartifion

{8tep 2 of 3: Create/Dealste Instances

B (NS TANCE BROWSER

For Class: # Rastaurant
Asserted instances

*! o PizzaHut

|0 Pizzaliueen
@ RoyalPalace

! isserted Types
;‘-‘1 > Restaurant

v € X

INDIVIDUAL EDITOR
Far Individust: ¢ Piz

¢

sellsPizza

|—I Matadats © OWLClasses lPropmlos OIndeuds = Forms C?Onﬁobgy Evolution }

" Cresls CI-: Delete Cinse  Create Properly  Dalate Propecdy c'emmaMeMadrFy nstance
Step 3 of 3 Edit Instance

Value

*

@ American_e
‘» American_b

makesPizza € %

s 0 &

L&

‘Check usage

| (instance of Restaurant)

< protége;
—

Annorations
La..

Usage of ¢ PlzzaHut
l [Rcsourct]

| Type

Expression

e -soIdAtR-mmam «» salisPeza
= = goldAtRestaurant - sellsPizza

Figure 26 Edit the instances of the class ”Restaurant(1)

144



VB LB e SN FEE a4k % *Q;pmlég!

¥ Metadata  © OWLClsses = Properties ¢ Indviduals = Fomms G2 Ontology Evolution 1
Cragte Class  Dojete Cisss | Cramte Property  Dalste Property  Creste/DelataM dify Inste
‘Btep 1 of 31 Chaose Class  Step 2 of 3: CreatefDeiete Instance] Step 3 of 3: Edit instance

IELASS BROWSER S 1S TANCE BROWSER INDIVIDUAL EDITOR

For Project: ® pizza.owl For Class: ¥ Restawant i Far individual: OLngHut - (instance of Restaurant)
Class Hierarchy . Asseried instances - R A x| - 3 il
‘  Mustwoom i H'PMHU' !_‘_P’.f_ﬁ‘.rk Value ~’“"“°T§.t:°"s
/5 Napoletana ;rtPimOueen { rdf:: :: : [
P Parmense le RoyalPalace e :
@& PolloAdAstra
& PrinceCarlo
P QusttroFormaggi
e — | | soer ¢4
'10 Amarican_a.
Aliowed Classes S ore smastramamice = '® American_b
5/ NamedPlaza =i le American_s
¥ American (2} # American_b makesPizza ¢ &%
& Americeantot L E’m&;ﬂt‘ S
©Cajun i
{ Capricciosa
& Caprina
“:Florentina
e er e
- hd Check usage
= E—rh Usage of ¢ Ploabit
J ’ - - - 1
» 3l | vox ! |~ * Cancel | [Resource] T Type Expression I
] i@ gl — P
| o e Fo | pmwews 3 SpkARissus s sten
i # ValuePartition: Asserted Types LYY
W Restawrant () J Rastaurant l o
T ¥ = =
[ i3

Figure 27 Edit the instances of the class ”Restaurant”(2)
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