

# 1 Olfaction and Declarative Memory in Aging: A

## 2 Meta-analysis

3 **Jobin**, Benoît<sup>1,2,3</sup>, **Roy-Côté**, Frédérique<sup>4</sup>, **Frasnelli**, Johannes<sup>2,5</sup>, **Boller**, Benjamin<sup>1,3</sup>

4<sup>1</sup> Department of Psychology, Université du Québec à Trois-Rivières, Qc, Canada.

5<sup>2</sup> Research Centre of the Hôpital du Sacré-Cœur de Montréal, Qc, Canada.

6<sup>3</sup> Research Centre of the Institut universitaire de gériatrie de Montréal, Qc, Canada.

7<sup>4</sup> Department of Psychology, Université du Québec à Montréal, Qc, Canada

8<sup>5</sup> Department of Anatomy, Université du Québec à Trois-Rivières, Qc, Canada.

9

10 Corresponding author: Benoît Jobin, benoit.jobin@uqtr.ca, +1 (514) 606-1530, 3351

11 Boulevard des Forges, C.P. 500 Trois-Rivières (Québec) G9A 5H7, Room 3470 Léon-

12 Provencher.

13

14

15

16

17

18     **Abstract**

19           Olfactory and declarative memory performances are associated, as both functions are  
20        processed by overlapping medial-temporal and prefrontal structures and decline in older adults.  
21        While decline in olfactory identification may be related to a decline in declarative memory, the  
22        relationship between olfactory detection threshold and declarative memory remains unclear. In  
23        this meta-analysis, we assessed (1) the relationship between olfactory identification/detection  
24        threshold and verbal declarative memory in cognitively normal older adults, and (2) the effect  
25        of age on these relationships.

26           We included articles from PsychNet, PubMed, and Academic Search Complete  
27        according to the following criteria: 1) inclusion of cognitively normal older adults; 2)  
28        assessment of episodic or semantic memory; and 3) assessment of olfactory identification or  
29        detection threshold. Seventeen studies and 22 effect sizes were eligible and included in this  
30        meta-analysis.

31           Olfactory identification was associated with episodic (small effect size:  $r = .19$ ;  $k = 22$ )  
32        and semantic memory (small effect size:  $r = .16$ ;  $k = 23$ ). Similarly, the olfactory detection  
33        threshold was associated with both episodic (small to medium effect size:  $r = .25$ ;  $k = 5$ ) and  
34        semantic memory (small effect size:  $r = .17$ ;  $k = 7$ ). Age was found to moderate the relationship  
35        between olfactory detection threshold and memory performance.

36           Both olfactory identification and detection threshold performances are associated with  
37        declarative memory in older adults, and age only moderates the relationship between olfactory  
38        detection threshold and declarative memory performances.

39           Keywords: Olfaction, Episodic Memory, Semantic Memory, Aging, Meta-Analysis.

40

41 INTRODUCTION

42 Olfactory function and declarative memory are associated in young and older adults  
43 (e.g. Hedner et al., 2010; Knight et al., 2020; Larsson et al., 2016; Lehrner, 1999). Compared  
44 to procedural memory, declarative memory is a long-term memory involving explicit,  
45 conscious storage, and retrieval of factual information or previous experiences (Ullman, 2004).  
46 Declarative memory encompasses episodic and semantic memory, which are two  
47 distinguishable concepts: episodic memory pertains to the memory of personally experienced  
48 events that occurred at specific times and places, while semantic memory refers to facts,  
49 concepts, and general knowledge (Tulving, 1972).

50

51 Olfaction is the sense by which odors are perceived. Most commonly, olfaction is  
52 assessed through odor identification and odor detection threshold tasks. Olfactory identification  
53 tasks measure the ability to identify or associate a target odor among different labels, while  
54 olfactory detection threshold tasks measure the lowest concentration of an odorant that can be  
55 detected reliably. Olfactory identification is often characterized as a “central” olfactory  
56 function because of its relation to higher cognitive functions such as executive function, and  
57 episodic and semantic memory (Dulay et al., 2008; Economou, 2003; Larsson, 2004). More  
58 specifically, some authors have conceptualized olfactory identification as a function involving  
59 semantic memory for olfactory stimuli, since odor identification relies on an individual’s prior  
60 specific knowledge to properly label the target odor (Hedner et al., 2010; Larsson, 1997;  
61 Larsson et al., 2016; Schab, 1991).

62

63                   Key structures supporting learning and retrieval of previously learned information  
64                   (Gabrieli et al., 1997; Squire, 2004; Squire & Zola, 1996; Squire & Zola-Morgan, 1991) are  
65                   also involved in the identification of olfactory stimuli (i.e., the hippocampus , the entorhinal  
66                   and the parahippocampal cortex). On a structural level, the entorhinal cortex is part of the  
67                   primary olfactory cortex, as it receives direct input from the olfactory bulb (Gottfried, 2010;  
68                   Lundström et al., 2011), and the hippocampus receives olfactory information from entorhinal  
69                   projections; only three synapses separate it from the peripheral receptive structures in the  
70                   olfactory mucosa (Schwerdtfeger et al., 1990; Staubli et al., 1984, 1986). On a functional level,  
71                   the hippocampus, parahippocampal and entorhinal cortex are activated during both olfactory  
72                   stimulation (Steffener et al., 2021; Torske et al., 2021) and olfactory identification tasks  
73                   (Kjelvik et al., 2012, 2021; Kose et al., 2021).

74

75                   Olfactory detection threshold, in turn, has been suggested to reflect the functioning of  
76                   the peripheral olfactory system (Hedner et al., 2010; Hummel et al., 2007; Moberg, 1999) since  
77                   several pathologies affecting the peripheral olfactory system lead to decreased sensitivity for  
78                   olfactory stimuli (Landis et al., 2005; Nordin & Brämerson, 2008; Patel et al., 2022). For  
79                   instance, septal deviation (Pfaar et al., 2004) and allergic rhinitis (Stuck et al., 2003) are  
80                   associated with a decreased sensitivity for olfactory stimuli without any alteration in the ability  
81                   to identify these stimuli.

82

83                   However, olfactory detection threshold and identification functions may not completely  
84                   be independent, as olfactory detection threshold and identification performances are associated  
85                   (Doty et al., 1984, 1994). This suggests that olfactory detection threshold function may involve

86 some cognitive processes. This hypothesis is further supported by the common decline in  
87 olfactory detection threshold and memory in older adults (Dulay et al., 2008; Dulay & Murphy,  
88 2002). Key structures to support this hypothesis are the hippocampal and prefrontal regions, as  
89 they are both vulnerable to the aging process (Bartsch & Wulff, 2015; Bettio et al., 2017),  
90 related to odor detection (Igarashi et al., 2014; Murphy et al., 2003; Potter & Butters, 1980;  
91 Steffener et al., 2021; Zhang et al., 2019), and memory functioning (Borders et al., 2022;  
92 Cabeza et al., 2002; Kesner & Hunsaker, 2010; Melrose et al., 2020; Sexton et al., 2010).

93

94 The association between olfaction and memory is of particular interest in older adults,  
95 since this population is at risk of developing olfactory and memory decline. A study involving  
96 more than 9000 participants showed that performance in both olfactory identification and  
97 detection threshold decline in adulthood and more severely from the age of 60 onwards  
98 (Oleszkiewicz et al., 2019). In healthy adults above 60 years of age, roughly 40% show  
99 olfactory impairment while a similar proportion exhibits some sort of memory decline (Dintica  
100 et al., 2019; Oleszkiewicz et al., 2019; Small, 2001). Even semantic memory, which is  
101 relatively preserved in aging, plateaus at around 60 years of age (Salthouse, 2019).

102

103 A decline in both olfactory and memory performances is also found in Alzheimer's  
104 disease. Indeed, decline in both declarative memory and olfactory function are among the first  
105 symptoms to appear in the progression of Alzheimer's disease, possibly as a result of the tau  
106 pathology accumulation, which first appears in the trans-entorhinal and hippocampal regions  
107 of the brain (Aschenbrenner et al., 2018; Braak & Braak, 1991; Hessen et al., 2015; Risacher  
108 et al., 2017; Weigand et al., 2021). In this context, it is noteworthy that olfactory impairment

109 in Alzheimer's disease and in mild cognitive impairment is more pronounced for olfactory  
110 identification than for olfactory detection threshold (Rahayel et al., 2012; Roalf et al., 2017).  
111 Since memory impairment occurs early in the development of Alzheimer's disease, it has been  
112 hypothesized that impairment of higher cognitive processes may explain functional differences  
113 between olfactory identification and olfactory detection threshold (Rahayel et al., 2012). As a  
114 consequence, olfactory identification, as opposed to the olfactory detection threshold, is  
115 considered to be an early clinical marker of Alzheimer's disease (Jobin et al., 2021; Quarmley  
116 et al., 2016; Roalf et al., 2017).

117

118 In the same vein, decline in olfactory identification has been associated with a decline  
119 in declarative memory in cognitively normal older adults. More specifically, impaired olfactory  
120 identification, which was found to predict a general cognitive decline in healthy older adults  
121 (Olofsson et al., 2009; Sohrabi et al., 2012), appears to affect verbal episodic and semantic  
122 memory (Dintica et al., 2019; Swan & Carmelli, 2002). Similarly, older adults genotyped as  
123 apolipoprotein E-ε4 (APOE-ε4) carriers – a risk factor for Alzheimer's disease – were found  
124 to experience a decline in episodic memory over one to two decades, which was also associated  
125 with an impairment to identify olfactory stimuli (Olofsson et al., 2016). On the other hand, the  
126 age-related decline in olfactory detection threshold performance has been explained by  
127 anatomical and physiological changes to peripheral structures (such as nasal diseases, damages  
128 to the olfactory epithelium, ossification of the cribriform plate, and neurochemical changes)  
129 and central nervous structures (e.g., damage to olfactory cells receptor, and neuronal damages  
130 associated with neurodegenerative disease pathologies) (for reviews on this, see, Doty &  
131 Kamath, 2014; Olofsson et al., 2021), rather than changes in cognition or memory.

132

133       According to the literature, aging-associated decline in olfactory identification is  
134    associated with a decline in declarative memory, while the relationship between olfactory  
135    detection threshold and declarative memory remains unclear. Because the relationship between  
136    olfactory function and memory performance has not yet been evaluated systematically in older  
137    adults, this meta-analysis aimed to provide a comprehensive overview of (1) the relationship  
138    between olfactory identification/detection threshold and verbal declarative memory in  
139    cognitively normal older adults, and on (2) the potential effect of age on these relationships.

140

## 141   **Methods**

142       **Eligibility criteria of the studies selected.** To be eligible, studies had to examine the  
143    relation between (1) a memory score ((a) episodic or (b) semantic) and (2) an olfactory score  
144    ((a) identification or (b) detection threshold). Participants of selected studies had to be  
145    cognitively normal and aged >45 years and the mean age of participants >55 years. This  
146    criterion is based on previous studies showing that both memory and olfaction already started  
147    declining before the age of 55 (Oleszkiewicz et al., 2019; Salthouse, 2009, 2019). Studies  
148    involving participants with any condition that could affect cognition (i.e., psychiatric  
149    diagnoses and/or neurological conditions) or olfaction were excluded.

150       **Outcome.** Included studies had to measure verbal declarative memory. (a) Episodic  
151    memory measurements included (i) immediate and (ii) delayed recalls of word lists, as  
152    measured by the California Verbal Learning Test (CVLT, Delis et al., 2008), the Rey Auditory  
153    Verbal Learning Test (RAVLT, Schmidt, 1996) or the Hopkins Verbal Learning Test (HVLT,  
154    Benedict et al., 1998). Next, (b) semantic memory had to be measured by (i) categorical fluency  
155    tasks, as measures by the Delis-Kaplan Executive Function System Battery Tests (Delis et al.,

156 2001), (ii) denomination, (iii) general knowledge, and (iv) vocabulary tasks, as evaluated  
157 through subtests from the Wechsler Adult Intelligence Scale (Wechsler, 2008). We did not  
158 include correlations from composite scores that included other olfactory or memory  
159 components.

160 Typically, (a) olfactory identification was evaluated by a validated behavioral test, e.g.,  
161 the Sniffin' Sticks Identification Test (Hummel et al., 1997), the University of Pennsylvania  
162 Smell Identification Test (UPSIT, Doty et al., 1984), or any other common olfactory  
163 identification test. In short, olfactory identification tasks involve matching an odor to the right  
164 label among different choices. (b) Olfactory detection threshold was assessed using the  
165 Sniffin' Sticks Threshold Test (Hummel et al., 1997) or another equivalent test. Typically,  
166 threshold test procedures require the participant to choose between three stimuli that are  
167 presented sequentially. Among these stimuli, only one is odorous (target). The concentration  
168 of the target changes between trials (for a more detailed procedure description see Rumeau et  
169 al., 2016).

170

171 **Search Strategy and Information Source.** We searched for studies published up to  
172 January 1<sup>st</sup>, 2023. No studies were excluded from our meta-analysis based on their country of  
173 origin and only studies published in English were included. We searched for published studies  
174 in the following databases: PsychNet, PubMed, and Academic Search Complete (Ebsco). The  
175 following keywords were used in our search ("olfac\*" OR "smell" OR "odor") AND  
176 ("memor\*" OR "cogniti\*") AND ("correlat\*"). We also verified the presence of potential  
177 eligible studies in the references of eligible studies found in database extraction. After  
178 excluding duplicate studies, 1539 titles and abstracts were reviewed. Studies were excluded  
179 when they were off topic (e.g., animal studies, assessment of other sensory modalities, etc.), or  
180 when they qualified as reviews, case studies, qualitative papers, or if they only included clinical  
181 groups. Only direct correlations between a specific cognitive domain and a specific olfactory

182 domain were eligible. Two hundred and twenty-eight studies were identified for a full-text  
183 examination (Figure 1).

184  
185  
186 **Study selection.** The eligibility of the studies was assessed by BJ and FRC according  
187 to the criteria mentioned above. Articles were included if they were approved by both BJ and  
188 FRC based on the risk of bias assessment (Munn et al., 2020).

189  
190 **Risk of bias in individual studies.** Risk of bias was evaluated for each selected study  
191 according to the Joanna Briggs Institute's Checklist for Analytical Cross-Sectional Studies  
192 (as recommended by Ma et al., 2020), addressing the possibility of bias in design, conduct  
193 and analysis. BJ and FRC evaluated each eligible study according to the inclusion criteria  
194 mentioned above. When disagreement emerged at this stage, the most conservative result was  
195 selected. A consensus was reached after pooling the results and no major disagreement  
196 emerged. No studies were excluded following this evaluation.

197

## 198 **Analyses**

199 We performed analyses using *Meta-Essentials* (Suurmond et al., 2017). We used  
200 Fisher's *r*-to-*z* transformation for each correlation coefficient to determine an effect size for  
201 each sample. Next, we calculated combined effect sizes. According to Cohen's guidelines, we  
202 interpreted  $r = .10$ ,  $r = .30$ , and  $r = .50$  as small, medium, and large effect sizes, respectively  
203 (Cohen, 2013). We used the more conservative random effects model to compute the  
204 significance level of the mean effect sizes for each study.

205           **Risk of bias across studies.** We qualified heterogeneity using Cochrane's Q-statistic  
206 and quantified the degree of heterogeneity using  $I^2$  among effect sizes (Hedges & Olkin,  
207 2014). We assumed heterogeneity if  $P_Q$  was significant at  $p < .05$ . When heterogeneity was  
208 assumed and the number of included studies per subgroup was sufficient as suggested (Fu et  
209 al., 2011; Higgins et al., 2019), we then tested the moderating effect of each measure of  
210 episodic memory (i.e. (i) immediate and (ii) delayed recalls of word lists) and semantic  
211 memory (i.e. (i) categorial fluency, (ii) denomination, (iii) general knowledge, and (iv)  
212 vocabulary).

213           Finally, we performed meta-regressions with age as a potential moderator for the  
214 relationships between olfactory identification and olfactory detection threshold and  
215 declarative memory performances.

216  
217           We qualified publication bias using both visual inspection of funnel plots and  
218 Rosenthal's failsafe-N test that gives the number of potential unpublished studies that are  
219 required to turn the combined effect size statistically insignificant or to change the  
220 conclusions of the meta-analysis (Rosenthal, 1979).

221

## 222   **Results**

223           **Correlations between olfactory identification and declarative memory.** After  
224 analyzing full-text articles, twenty-two correlations between olfactory identification and  
225 episodic memory scores, and twenty-three correlations between olfactory identification and  
226 semantic memory scores, were included in the meta-analysis (Table 1). We present effect size  
227 correlations between olfactory identification and episodic and semantic memory in Figure 2.  
228 The analysis on olfactory identification and episodic memory scores revealed a significant  
229 small effect size ( $r = .19$ , 95% CI [.13, .25];  $k = 22$ ) that was significantly heterogeneous

230 (Q=50.69, P<sub>Q</sub><.001;  $I^2=58.58\%$ ). We further found significant small effect size correlations  
231 between olfactory identification scores and (i) immediate recall ( $r = .18$ , 95% CI [.10, .27];  $k$   
232 = 15) and (ii) delayed recall scores ( $r = .20$ , 95% CI [.09, .31];  $k = 7$ ).

233

234 The correlational analysis on olfactory identification and semantic memory scores  
235 revealed a significant small effect size ( $r = .16$ , 95% CI [0.09, 0.22];  $k = 23$ ) that was  
236 significantly heterogeneous (Q=134.27, P<sub>Q</sub><.001;  $I^2=83.61$ ). We found significant correlations  
237 for (ii) denomination tests ( $r = .13$ , 95% CI [.02, 0.23];  $k = 5$ ; small effect size), (iii) general  
238 knowledge tests ( $r = .08$ , 95% CI [.04, .12];  $k = 3$ ; small effect size), and (iv) vocabulary ( $r =$   
239 .22, 95% CI [0.14, 0.28];  $k = 7$ ), but not for i) categorical fluency tests ( $r = .15$ , 95% CI [-.09,  
240 .37];  $k = 8$ ).

241

242 Rosenthal's failsafe-N was 1302 for the correlation between olfactory identification and  
243 episodic memory, and 2054 for the correlation between olfactory identification and semantic  
244 memory, indicating no publication bias. Asymmetry at the bottom (left) of the funnel plot  
245 (Figure 3), which analyzes the relationship between olfactory identification and episodic  
246 memory, suggests an overrepresentation of a negative relationship between these two concepts  
247 and, therefore, a possible publication bias.

248

249 **Correlations between olfactory detection threshold and declarative memory.**

250 After analyzing full-text articles, five correlations between olfactory detection  
251 threshold and episodic memory scores and seven correlations between olfactory detection  
252 threshold and semantic memory scores included in the meta-analysis (Table 2). Figure 4

253 shows effect size correlations between olfactory detection threshold and episodic memory  
254 (left) and semantic memory (right). The analysis on olfactory detection threshold and  
255 episodic memory scores revealed a significant small-to-medium effect size ( $r = .25$ , 95% CI  
256 [.02, .45];  $k = 5$ ) that was homogenous ( $Q=8.48$ ,  $P_Q=.08$ ;  $I^2=52.81$ ).

257

258 Next, the analysis on olfactory detection threshold and semantic memory scores  
259 revealed a significant small effect size ( $r = .17$ , 95% CI [.04, .29];  $k = 7$ ) that was  
260 homogenous ( $Q=8.33$ ,  $P_Q=0.26$ ;  $I^2=27.94$ ). While most of the studies included a three-  
261 alternative forced-choice procedure to assess olfactory detection threshold, the one study  
262 (Dulay et al., 2005) that included a two-alternative forced-choice procedure showed a smaller  
263 effect size compared to the others (Table 2).

264

265 Rosenthal's failsafe-N was 33 for the correlation between olfactory detection  
266 threshold and episodic memory, and 25 for the correlation between olfactory detection  
267 threshold and semantic memory, indicating a potential publication bias. However, the  
268 generated funnel plot showed no major asymmetry, indicating no potential publication bias  
269 (Figure 3).

270

### 271 **Age as a moderator**

272 Meta-regressions showed that age was not a significant moderator of the relationship  
273 between olfactory identification and declarative memory performance in older adults.  
274 However, we found a significant moderator effect of age on the relationship between  
275 olfactory detection threshold and declarative memory performance, showing a higher

276 relationship between olfactory detection threshold and memory scores in studies including  
277 participants with an older mean age (Figure 5).

278

279 **Discussion**

280 This meta-analysis assesses the relationship between olfactory and verbal declarative  
281 memory performance in a cognitively normal older adult population. We found that (1)  
282 olfactory identification and detection threshold are both significantly correlated with  
283 declarative memory in cognitively normal older adults, with comparable effect sizes; and (2)  
284 age moderates the relationship between olfactory detection threshold and declarative memory  
285 performances.

286

287 As expected, our meta-analytical results are in line with previous reports suggesting  
288 that olfactory identification and episodic memory are associated in older adults (Chen, Zhong,  
289 Mai, Peng, Zhang, et al., 2018; Devanand et al., 2019; Larsson et al., 2016; Seubert et al., 2020)  
290 and younger adults (Hedner et al., 2010). Patients suffering from diseases associated with  
291 episodic memory deficits, such as Alzheimer's disease, also typically exhibit olfactory  
292 identification dysfunction (Bahar-Fuchs et al., 2010; Park et al., 2018; Rahayel et al., 2012).  
293 Olfactory identification is the first observed olfactory deficit in Alzheimer's disease (Hedner et  
294 al., 2010; Murphy et al., 2003; Serby et al., 1991), and a lower olfactory identification score is  
295 associated with episodic memory decline in patients with Alzheimer's disease (Knight et al.,  
296 2018).

297

298 Our results also support the notion of an association between olfactory identification  
299 and semantic memory. This link is not surprising as olfactory identification requires labelling  
300 a specific odor, which relies on one's semantic knowledge (Larsson, 1997; Schab, 1991).  
301 However, the association is characterized by a small effect size. This result might support a  
302 model of an olfactory memory as being separate from – although influenced by – verbal  
303 declarative memory (Larsson et al., 2016), an idea initially suggested by Herz & Engen (1996).  
304 Larsson et al. (2016) suggested various hypotheses to explain the differences between olfactory  
305 memory and memory for other sensory stimuli, such as differences with respect to the  
306 neuroanatomical organization of olfactory imagery capacity (Arshamian & Larsson, 2014) and  
307 the olfactory-language network (Olofsson et al., 2014). Indeed, connections between the  
308 piriform cortex and the cortical regions associated with semantic networks are more direct  
309 although less elaborate, compared to other sensory modalities. This difference could lead to a  
310 lack of olfactory feature analysis, a poor translation of odor objects to lexical representations,  
311 and a cumulative deterioration of signal quality over different processing stages from odor  
312 input to odor identification (Herz, 2005; Olofsson et al., 2013, 2014; Olofsson & Gottfried,  
313 2015).

314

315 Next, our results showed a significant association between olfactory detection threshold  
316 and declarative memory scores with a small effect size, suggesting that olfactory detection  
317 threshold procedures involve mnestic processes (Dulay et al., 2008). Two possible hypotheses  
318 can be put forward to explain these results. One hypothesis (1) relies on the procedure for  
319 assessing olfactory detection threshold. Typically (e.g., Sniffin' Sticks olfactory threshold test,  
320 Hummel et al., 1997), olfactory threshold tests are based on alternative forced-choice

321 procedures consisting in distinguishing between stimulations with and without odors (target vs.  
322 non-target) in random temporal order. In other words, the participant must remember and  
323 compare each stimulus before identifying the target among two or three non-targets. Thus, to  
324 pass the test, one solution is to use a cognitive strategy based on the ability to detect non-targets  
325 and thus guess the stimulation that is the target. Interestingly, one study from the present meta-  
326 analysis (Dulay et al., 2005) included a two-alternative forced choices method instead of a three-  
327 alternative forced choices method, and showed smaller effect sizes, which could suggest a lower  
328 cognitive load compared to a three-alternative forced choices method.

329

330 Furthermore, the use of alternative olfactory detection tests designed to have minimal  
331 memory or cognitive impact (Doty & Laing, 2015) could test this first hypothesis. Signal  
332 detection tests are good candidates, as they are based on a non-forced choice procedure (i.e.  
333 participants are asked to determine whether the stimulus presented is detectable or not, without  
334 having to directly compare it with another one previously presented, e.g. Doty et al., 1981) and  
335 account for the subject's response criterion in reporting the detection of an odor or not  
336 (liberalism vs. conservatism) (Doty et al., 1981; Doty & Laing, 2015). In the present meta-  
337 analysis, however, none of the included studies used a signal detection test to assess olfactory  
338 threshold detection. Future studies involving patients with cognitive disorders should keep that  
339 potential bias in mind when assessing the olfactory detection threshold in these populations.

340

341 The positive association between olfactory detection threshold and declarative memory  
342 performances may alternatively be explained by (2) the effect of age on brain regions that are  
343 common to both declarative memory and olfaction (Baltes & Lindenberger, 1997; Dulay &  
344 Murphy, 2002). Aging effects on hippocampal and prefrontal regions (Bartsch & Wulff, 2015;

345 Bettio et al., 2017) could play a mediator role in the relationship between olfactory detection  
346 threshold and declarative memory performance, as both regions are involved in odor detection  
347 (Igarashi et al., 2014; Murphy et al., 2003; Potter & Butters, 1980; Steffener et al., 2021; Zhang  
348 et al., 2019) and memory functioning (Borders et al., 2022; Cabeza et al., 2002; Melrose et al.,  
349 2020; Sexton et al., 2010). Future neuroimaging studies should evaluate the potential mediating  
350 effect of hippocampal and prefrontal cortex volume on the relationship between odor detection  
351 threshold and declarative memory.

352

353 Meta-regressions showed that age moderates the relationship between olfactory  
354 detection threshold and memory performance in older adults, as the relationship is stronger in  
355 advanced age. The effect of age on the relationship can be explained by the fact that these  
356 two capacities are especially weakened by the aging process. Normative data suggest that  
357 olfactory detection thresholds are most sensitive to aging compared to other olfactory  
358 functions (Hummel et al., 2007; Oleszkiewicz et al., 2019). The same phenomenon is found  
359 with memory, as episodic memory is the type of long-term memory that is the most sensitive  
360 to aging, while semantic memory is mostly preserved (Nyberg et al., 2003, 2012; Rönnlund et  
361 al., 2005). Again, age-related damages to medial-temporal lobe structures have been  
362 associated with both worse declarative memory and olfactory detection threshold  
363 performance in healthy older adults. More specifically, levels of Tau and  $\beta$ -amyloid  
364 aggregations in the brain are associated with atrophy of medial temporal lobe structures and  
365 worse declarative memory in cognitively normal older adults compared to young adults  
366 (Marks et al., 2017), while olfactory detection threshold performance has been associated

367 with a smaller volume of the hippocampus and other medial temporal structures, such as the  
368 amygdala and the entorhinal cortex, in healthy older adults (Murphy et al., 2003).

369

370 Our study has certain limitations. First, there was heterogeneity regarding tests that  
371 were included. With regards to the olfactory tests, a majority of included correlations were  
372 performed using validated tests such as the Sniffin' Sticks Test (Hummel et al., 1997, 2007),  
373 the University of Pennsylvania Smell Identification Test (UPSIT, Doty et al., 1984), the  
374 Scandinavian Odor-Identification Test (Nordin et al., 1998), and the 12-item Cross-Cultural  
375 Smell Identification Test (Doty et al., 1996), while others used equivalent experimental tests.  
376 Similarly, regarding memory tests, we only included similar and comparable tests (episodic  
377 memory: free immediate and delayed recalls of word list learning; semantic memory: categorial  
378 fluency, denomination, general knowledge, and vocabulary tasks). When heterogeneity was  
379 found in different effect sizes, we analyzed correlation effect sizes for each subcategory of  
380 memory tests. Further, this meta-analysis does not include other cognitive domains that may  
381 influence olfactory scores, such as working memory (Hedner et al., 2010; Dulay et al., 2008;  
382 Tonacci et al., 2017). Another limitation is the small number of studies included that assessed  
383 the relationship between olfactory detection threshold and declarative memory ( $k = 5$  for  
384 episodic memory;  $k = 7$  for semantic memory). Therefore, our results must be interpreted  
385 carefully. Finally, by design, this study only included studies with linear correlation effect sizes  
386 between olfactory and memory performance in cognitively normal older adults. Other studies  
387 may have included data relating to olfactory and memory performance in this population, but  
388 did not show correlational effect sizes, which prevented us from including them in the present  
389 meta-analysis.

390

391 **Conclusion**

392 Olfactory identification and olfactory detection threshold are related to declarative  
393 memory in cognitively normal older adults. These results suggest that both olfactory  
394 performances are related to verbal declarative memory but remain distinct from it. Finally,  
395 age moderates the association between olfactory detection threshold and memory  
396 performance.

397 **Conflict of interest**

398 The authors declare no conflict of interest.

399

400 **Funding**

401 This work was supported by grants from NSERC (Natural Sciences and Engineering  
402 Research Council of Canada) [2015-04597] (JF), FRQS (Fonds de Recherche du Québec -  
403 Santé) [#32618] (JF), CIHR (Canadian Institutes of Health Research) [#PJT-173514] (JF),  
404 and CRIUGM (research centre of the Institut universitaire de gériatrie de Montréal) (BB)  
405 research fund. BJ is supported by scholarships from FRQS and CIHR.

406

407 **Acknowledgements**

408 We would like to thank Gabrielle Ciquier for English editing.

409 **Data availability**

410 This meta-analysis used accessible data from different published studies. This study  
411 was not preregistered.

412

413 **References**

414 Arshamian, A., & Larsson, M. (2014). Same same but different: The case of olfactory imagery.  
415 *Frontiers in Psychology*, 5. <https://doi.org/10.3389/fpsyg.2014.00034>

416 Aschenbrenner, A. J., Gordon, B. A., Benzinger, T. L. S., Morris, J. C., & Hassenstab, J. J. (2018).  
417 Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer  
418 disease. *Neurology*, 91(9), e859–e866. <https://doi.org/10.1212/WNL.0000000000006075>

419 Bahar-Fuchs, A., Moss, S., Rowe, C., & Savage, G. (2010). Olfactory Performance in AD, aMCI, and  
420 Healthy Ageing: A Unihinal Approach. *Chemical Senses*, 35(9), 855–862.  
421 <https://doi.org/10.1093/chemse/bjq094>

422 Bailie, J. M. (2009). *The Influence of Odorant Intensity on Odor Identification in Older Adults*.

423 Baltes, P. B., & Lindenberger, U. (1997). Emergence of a powerful connection between sensory and  
424 cognitive functions across the adult life span: A new window to the study of cognitive aging?  
425 *Psychology and Aging*, 12(1), 12.

426 Bartsch, T., & Wulff, P. (2015). The hippocampus in aging and disease: From plasticity to  
427 vulnerability. *Neuroscience*, 309, 1–16. <https://doi.org/10.1016/j.neuroscience.2015.07.084>

428 Benedict, R. H. B., Schretlen, D., Groninger, L., & Brandt, J. (1998). Hopkins Verbal Learning Test –  
429 Revised: Normative Data and Analysis of Inter-Form and Test-Retest Reliability. *The  
430 Clinical Neuropsychologist*, 12(1), 43–55. <https://doi.org/10.1076/clin.12.1.43.1726>

431 Bettio, L. E. B., Rajendran, L., & Gil-Mohapel, J. (2017). The effects of aging in the hippocampus  
432 and cognitive decline. *Neuroscience & Biobehavioral Reviews*, 79, 66–86.  
433 <https://doi.org/10.1016/j.neubiorev.2017.04.030>

434 Borders, A. A., Ranganath, C., & Yonelinas, A. P. (2022). The hippocampus supports high-precision  
435 binding in visual working memory. *Hippocampus*, 32(3), 217–230.  
436 <https://doi.org/10.1002/hipo.23401>

437 Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. *Acta  
438 Neuropathologica*, 82(4), 239–259. <https://doi.org/10.1007/BF00308809>

439 Cabeza, R., Dolcos, F., Graham, R., & Nyberg, L. (2002). Similarities and Differences in the Neural  
440 Correlates of Episodic Memory Retrieval and Working Memory. *NeuroImage*, 16(2), 317–  
441 330. <https://doi.org/10.1006/nimg.2002.1063>

442 Chen, B., Zhong, X., Mai, N., Peng, Q., Wu, Z., Ouyang, C., Zhang, W., Liang, W., Wu, Y., Liu, S.,  
443 Chen, L., & Ning, Y. (2018). Cognitive Impairment and Structural Abnormalities in Late Life  
444 Depression with Olfactory Identification Impairment: An Alzheimer's Disease-Like Pattern.  
445 *International Journal of Neuropsychopharmacology*, 21(7), 640–648.  
446 <https://doi.org/10.1093/ijnp/pyy016>

447 Chen, B., Zhong, X., Mai, N., Peng, Q., Zhang, M., Chen, X., Wu, Z., Zou, L., Liang, W., Ouyang,  
448 C., Wu, Y., & Ning, Y. (2018). Interactive Effect of Depression and Cognitive Impairment on  
449 Olfactory Identification in Elderly People. *Journal of Alzheimer's Disease*, 66(4), 1645–1655.  
450 <https://doi.org/10.3233/JAD-180760>

451 Cohen, J. (2013). *Statistical power analysis for the behavioral sciences*. Routledge.

452 Cozac, V. V., Auschra, B., Chaturvedi, M., Gschwandtner, U., Hatz, F., Meyer, A., Welge-Lüssen,  
453 A., & Fuhr, P. (2017). Among Early Appearing Non-Motor Signs of Parkinson's Disease,  
454 Alteration of Olfaction but Not Electroencephalographic Spectrum Correlates with Motor  
455 Function. *Frontiers in Neurology*, 8, 545. <https://doi.org/10.3389/fneur.2017.00545>

456 Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). *Delis-Kaplan executive function system*.

457 Delis, D. C., Kaplan, E., Kramer, J. H., & Ober, B. A. (2008). *California verbal learning test (CVLT)*.

458 Devanand, D. P., Liu, X., Cohen, H., Budrow, J., Schupf, N., Manly, J., & Lee, S. (2019). Long-Term  
459 Test–Retest Reliability of the UPSIT in Cognitively Intact Older Adults. *Chemical Senses*,  
460 44(6), 365–369.

461 Dintica, C. S., Marseglia, A., Rizzuto, D., Wang, R., Seubert, J., Arfanakis, K., Bennett, D. A., & Xu,  
462 W. (2019). Impaired olfaction is associated with cognitive decline and neurodegeneration in  
463 the brain. *Neurology*, 92(7), e700–e709. <https://doi.org/10.1212/WNL.0000000000006919>

464 Doty, R. L., & Kamath, V. (2014). The influences of age on olfaction: A review. *Frontiers in  
465 Psychology*, 5. <https://doi.org/10.3389/fpsyg.2014.00020>

466 Doty, R. L., & Laing, D. G. (2015). Psychophysical measurement of human olfactory function.  
467 *Handbook of Olfaction and Gustation*, 225–260.

468 Doty, R. L., Marcus, A., & William Lee, W. (1996). Development of the 12-Item Cross-Cultural  
469 Smell Identification Test(CC-SIT). *The Laryngoscope*, 106(3), 353–356.  
470 <https://doi.org/10.1097/00005537-199603000-00021>

471 Doty, R. L., Shaman, P., Kimmelman, C. P., & Dann, M. S. (1984). University of Pennsylvania Smell  
472 Identification Test: A rapid quantitative olfactory function test for the clinic. *The  
473 Laryngoscope*, 94(2), 176–178.

474 Doty, R. L., Smith, R., McKeown, D. A., & Raj, J. (1994). Tests of human olfactory function:  
475 Principal components analysis suggests that most measure a common source of variance.  
476 *Perception & Psychophysics*, 56(6), 701–707. <https://doi.org/10.3758/BF03208363>

477 Doty, R. L., Snyder, P. J., Huggins, G. R., & Lowry, L. D. (1981). Endocrine, cardiovascular, and  
478 psychological correlates of olfactory sensitivity changes during the human menstrual cycle.  
479 *Journal of Comparative and Physiological Psychology*, 95(1), 45.

480 Dulay, M. F., Gesteland, R. C., Shear, P. K., Ritchey, P. N., & Frank, R. A. (2005). *Assessment of the  
481 influence of cognition and cognitive processing speed on three tests of olfaction* [University  
482 of Cincinnati]. <https://www.tandfonline.com/doi/full/10.1080/13803390701415892>

483 Dulay, M. F., Gesteland, R. C., Shear, P. K., Ritchey, P. N., & Frank, R. A. (2008). Assessment of the  
484 influence of cognition and cognitive processing speed on three tests of olfaction. *Journal of  
485 Clinical and Experimental Neuropsychology*, 30(3), 327–337.

486 Dulay, M. F., & Murphy, C. (2002). Olfactory acuity and cognitive function converge in older  
487 adulthood: Support for the common cause hypothesis. *Psychology and Aging*, 17(3), 392–404.  
488 <https://doi.org/10.1037/0882-7974.17.3.392>

489 Economou, A. (2003). Olfactory identification in elderly Greek people in relation to memory and  
490 attention measures. *Archives of Gerontology and Geriatrics*, 37(2), 119–130.  
491 [https://doi.org/10.1016/S0167-4943\(03\)00025-6](https://doi.org/10.1016/S0167-4943(03)00025-6)

492 Fu, R., Gartlehner, G., Grant, M., Shamliyan, T., Sedrakyan, A., Wilt, T. J., Griffith, L., Oremus, M.,  
493 Raina, P., Ismaila, A., Santaguida, P., Lau, J., & Trikalinos, T. A. (2011). Conducting  
494 quantitative synthesis when comparing medical interventions: AHRQ and the Effective  
495 Health Care Program. *Journal of Clinical Epidemiology*, 64(11), 1187–1197.  
496 <https://doi.org/10.1016/j.jclinepi.2010.08.010>

497 Gabrieli, J. D. E., Brewer, J. B., Desmond, J. E., & Glover, G. H. (1997). Separate Neural Bases of  
498 Two Fundamental Memory Processes in the Human Medial Temporal Lobe. *Science, New  
499 Series*, 276(5310), 264–266.

500 Gottfried, J. A. (2010). Central mechanisms of odour object perception. *Nature Reviews  
501 Neuroscience*, 11(9), 628–641. <https://doi.org/10.1038/nrn2883>

502 Hedges, L. V., & Olkin, I. (2014). *Statistical methods for meta-analysis*. Academic press.

503 Hedner, M., Larsson, M., Arnold, N., Zucco, G. M., & Hummel, T. (2010). Cognitive factors in odor  
504 detection, odor discrimination, and odor identification tasks. *Journal of Clinical and  
505 Experimental Neuropsychology*, 32(10), 1062–1067.  
506 <https://doi.org/10.1080/13803391003683070>

507 Herz, R. S. (2005). The unique interaction between language and olfactory perception and cognition.  
508 *Trends in Experimental Psychology Research*, 91–109.

509 Herz, R. S., & Engen, T. (1996). Odor memory: Review and analysis. *Psychonomic Bulletin &  
510 Review*, 3(3), 300–313. <https://doi.org/10.3758/BF03210754>

511 Hessen, E., Nordlund, A., Stålhammar, J., Eckerström, M., Bjerke, M., Eckerström, C., Göthlin, M.,  
512 Fladby, T., Reinvang, I., & Wallin, A. (2015). T-Tau is Associated with Objective Memory  
513 Decline Over Two Years in Persons Seeking Help for Subjective Cognitive Decline: A Report  
514 from the Gothenburg-Oslo MCI Study. *Journal of Alzheimer's Disease*, 47(3), 619–628.  
515 <https://doi.org/10.3233/JAD-150109>

516 Higgins, J. P., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2019).  
517 *Cochrane handbook for systematic reviews of interventions*. John Wiley & Sons.

518 Hornung, D. E., Kurtz, D. B., Bradshaw, C. B., Seipel, D. M., Kent, P. F., Blair, D. C., & Emko, P.  
519 (1998). The olfactory loss that accompanies an HIV infection. *Physiology & Behavior*, 64(4),  
520 549–556. [https://doi.org/10.1016/S0031-9384\(98\)00112-7](https://doi.org/10.1016/S0031-9384(98)00112-7)

521 Hummel, T., Kobal, G., Gudziol, H., & Mackay-Sim, A. (2007). Normative data for the “Sniffin’  
522 Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds:  
523 An upgrade based on a group of more than 3,000 subjects. *European Archives of Oto-Rhino-  
524 Laryngology*, 264(3), 237–243. <https://doi.org/10.1007/s00405-006-0173-0>

525 Hummel, T., Sekinger, B., Wolf, S. R., Pauli, E., & Kobal, G. (1997). ‘Sniffin’sticks’: Olfactory  
526 performance assessed by the combined testing of odor identification, odor discrimination and  
527 olfactory threshold. *Chemical Senses*, 22(1), 39–52.

528 Igarashi, M., Ikei, H., Song, C., & Miyazaki, Y. (2014). Effects of olfactory stimulation with rose and  
529 orange oil on prefrontal cortex activity. *Complementary Therapies in Medicine*, 22(6), 1027–  
530 1031. <https://doi.org/10.1016/j.ctim.2014.09.003>

531 Jobin, B., Zahal, R., Bussières, E.-L., Frasnelli, J., & Boller, B. (2021). Olfactory Identification in  
532 Subjective Cognitive Decline: A Meta-Analysis. *Journal of Alzheimer's Disease*, 79(4),  
533 1497–1507. <https://doi.org/10.3233/JAD-201022>

534 Kesner, R. P., & Hunsaker, M. R. (2010). The temporal attributes of episodic memory. *Behavioural*  
535 *Brain Research*, 215(2), 299–309. <https://doi.org/10.1016/j.bbr.2009.12.029>

536 Kjelvik, G., Evensmoen, H. R., Brezova, V., & Håberg, A. K. (2012). The human brain representation  
537 of odor identification. *Journal of Neurophysiology*, 108(2), 645–657.  
538 <https://doi.org/10.1152/jn.01036.2010>

539 Kjelvik, G., Evensmoen, H. R., Hummel, T., Engedal, K., Selbæk, G., Saltvedt, I., & Håberg, A. K.  
540 (2021). The Human Brain Representation of Odor Identification in Amnestic Mild Cognitive  
541 Impairment and Alzheimer's Dementia of Mild Degree. *Frontiers in Neurology*, 11, 1779.

542 Knight, J. E., Bennett, D. A., & Piccinin, A. M. (2018). Variability and Coupling of Olfactory  
543 Identification and Episodic Memory in Older Adults. *The Journals of Gerontology: Series B*.  
544 <https://doi.org/10.1093/geronb/gby058>

545 Knight, J. E., Bennett, D. A., & Piccinin, A. M. (2020). Variability and Coupling of Olfactory  
546 Identification and Episodic Memory in Older Adults. *The Journals of Gerontology: Series B*,  
547 75(3), 577–584. <https://doi.org/10.1093/geronb/gby058>

548 Kose, Y., Hatamoto, Y., Takae, R., Tomiga, Y., Yasukata, J., Komiya, T., & Higaki, Y. (2021).  
549 Association between the inability to identify particular odors and physical performance,  
550 cognitive function, and/or brain atrophy in community-dwelling older adults from the  
551 Fukuoka Island City study. *BMC Geriatrics*, 21(1), 421. <https://doi.org/10.1186/s12877-021-02363-y>

553 Landis, B. N., Hummel, T., & Lacroix, J.-S. (2005). Basic and Clinical Aspects of Olfaction. In J. D.  
554 Pickard, N. Akalan, C. Di Rocco, V. V. Dolenc, R. Fahlbusch, J. Lobo Antunes, M. Sindou,  
555 N. De Tribolet, & C. A. F. Tulleken (Eds.), *Advances and Technical Standards in*  
556 *Neurosurgery* (Vol. 30, pp. 69–105). Springer Vienna. [https://doi.org/10.1007/3-211-27208-9\\_3](https://doi.org/10.1007/3-211-27208-9_3)

558 Larsson, M. (1997). Semantic Factors in Episodic Recognition of Common Odors in Early and Late  
559 Adulthood: A Review. *Chemical Senses*, 22(6), 623–633.  
560 <https://doi.org/10.1093/chemse/22.6.623>

561 Larsson, M. (2004). Demographic and Cognitive Predictors of Cued Odor Identification: Evidence  
562 from a Population-based Study. *Chemical Senses*, 29(6), 547–554.  
563 <https://doi.org/10.1093/chemse/bjh059>

564 Larsson, M., Hedner, M., Papenberg, G., Seubert, J., Bäckman, L., & Laukka, E. J. (2016). Olfactory  
565 memory in the old and very old: Relations to episodic and semantic memory and APOE  
566 genotype. *Neurobiology of Aging*, 38, 118–126.  
567 <https://doi.org/10.1016/j.neurobiolaging.2015.11.012>

568 Lehrner, J. P. (1999). Odor Identification, Consistency of Label Use, Olfactory Threshold and their  
569 Relationships to Odor Memory over the Human Lifespan. *Chemical Senses*, 24(3), 337–346.  
570 <https://doi.org/10.1093/chemse/24.3.337>

571 Liu, M., Chen, B., Zhong, X., Zhang, M., Wang, Q., Zhou, H., Wu, Z., Hou, L., Peng, Q., Zhang, S.,  
572 Yang, M., Lin, G., & Ning, Y. (2022). Differences in Odor Identification in Early-Onset and  
573 Late-Onset Depression. *Brain Sciences*, 12(2), 276. <https://doi.org/10.3390/brainsci12020276>

574 Lundström, J. N., Boesveldt, S., & Albrecht, J. (2011). Central Processing of the Chemical Senses: An  
575 Overview. *ACS Chemical Neuroscience*, 2(1), 5–16. <https://doi.org/10.1021/cn1000843>

576 Ma, L.-L., Wang, Y.-Y., Yang, Z.-H., Huang, D., Weng, H., & Zeng, X.-T. (2020). Methodological  
577 quality (risk of bias) assessment tools for primary and secondary medical studies: What are  
578 they and which is better? *Military Medical Research*, 7(1), 7. <https://doi.org/10.1186/s40779-020-00238-8>

580 Makowska, I., Kłoszewska, I., Grabowska, A., Szatkowska, I., & Rymarczyk, K. (2011). Olfactory  
581 Deficits in Normal Aging and Alzheimer's Disease in the Polish Elderly Population. *Archives  
582 of Clinical Neuropsychology*, 26(3), 270–279. <https://doi.org/10.1093/arclin/acr011>

583 Marks, S. M., Lockhart, S. N., Baker, S. L., & Jagust, W. J. (2017). Tau and  $\beta$ -Amyloid Are  
584 Associated with Medial Temporal Lobe Structure, Function, and Memory Encoding in  
585 Normal Aging. *The Journal of Neuroscience*, 37(12), 3192–3201.  
586 <https://doi.org/10.1523/JNEUROSCI.3769-16.2017>

587 Melrose, R. J., Zahniser, E., Wilkins, S. S., Veliz, J., Hasratian, A. S., Sultzer, D. L., & Jimenez, A.  
588 M. (2020). Prefrontal working memory activity predicts episodic memory performance: A  
589 neuroimaging study. *Behavioural Brain Research*, 379, 112307.  
590 <https://doi.org/10.1016/j.bbr.2019.112307>

591 Memel, M., Woolverton, C. B., Bourassa, K., & Glisky, E. L. (2019). Working memory predicts  
592 subsequent episodic memory decline during healthy cognitive aging: Evidence from a cross-  
593 lagged panel design. *Aging, Neuropsychology, and Cognition*, 26(5), 711–730.  
594 <https://doi.org/10.1080/13825585.2018.1521507>

595 Moberg, P. (1999). Olfactory Dysfunction in Schizophrenia A Qualitative and Quantitative Review.  
596 *Neuropsychopharmacology*, 21(3), 325–340. [https://doi.org/10.1016/S0893-133X\(99\)00019-6](https://doi.org/10.1016/S0893-133X(99)00019-6)

598 Murphy, C., Jernigan, T. L., & Fennema-Notestine, C. (2003). Left hippocampal volume loss in  
599 Alzheimer's disease is reflected in performance on odor identification: A structural MRI  
600 study. *Journal of the International Neuropsychological Society*, 9(3), 459–471.  
601 <https://doi.org/10.1017/S1355617703930116>

602 Nordin, S., & Brämerson, A. (2008). Complaints of olfactory disorders: Epidemiology, assessment  
603 and clinical implications. *Current Opinion in Allergy & Clinical Immunology*, 8(1), 10–15.  
604 <https://doi.org/10.1097/ACI.0b013e3282f3f473>

605 Nordin, S., Brämerson, A., Liden, E., & Bende, M. (1998). The Scandinavian Odor-Identification  
606 Test: Development, reliability, validity and normative data. *Acta Oto-Laryngologica*, 118(2),  
607 226–234.

608 Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and  
609 brain maintenance. *Trends in Cognitive Sciences*, 16(5), 292–305.  
610 <https://doi.org/10.1016/j.tics.2012.04.005>

611 Nyberg, L., Maitland, S. B., Rönnlund, M., Bäckman, L., Dixon, R. A., Wahlin, Å., & Nilsson, L.-G.  
612 (2003). Selective adult age differences in an age-invariant multifactor model of declarative  
613 memory. *Psychology and Aging*, 18(1), 149–160. <https://doi.org/10.1037/0882-7974.18.1.149>

614 Oleszkiewicz, A., Schriever, V., Croy, I., Hähner, A., & Hummel, T. (2019). Updated Sniffin' Sticks  
615 normative data based on an extended sample of 9139 subjects. *European Archives of Oto-  
616 Rhino-Laryngology*, 276(3), 719–728.

617 Olofsson, J. K., Ekström, I., Larsson, M., & Nordin, S. (2021). Olfaction and Aging: A Review of the  
618 Current State of Research and Future Directions. *I-Perception*, 12(3), 204166952110203.  
619 <https://doi.org/10.1177/20416695211020331>

620 Olofsson, J. K., & Gottfried, J. A. (2015). The muted sense: Neurocognitive limitations of olfactory  
621 language. *Trends in Cognitive Sciences*, 19(6), 314–321.  
622 <https://doi.org/10.1016/j.tics.2015.04.007>

623 Olofsson, J. K., Hurley, R. S., Bowman, N. E., Bao, X., Mesulam, M.-M., & Gottfried, J. A. (2014). A  
624 Designated Odor–Language Integration System in the Human Brain. *The Journal of  
625 Neuroscience*, 34(45), 14864–14873. <https://doi.org/10.1523/JNEUROSCI.2247-14.2014>

626 Olofsson, J. K., Josefsson, M., Ekström, I., Wilson, D., Nyberg, L., Nordin, S., Nordin Adolfsson, A.,  
627 Adolfsson, R., Nilsson, L.-G., & Larsson, M. (2016). Long-term episodic memory decline is  
628 associated with olfactory deficits only in carriers of ApoE-ε4. *Neuropsychologia*, 85, 1–9.  
629 <https://doi.org/10.1016/j.neuropsychologia.2016.03.004>

630 Olofsson, J. K., Rogalski, E., Harrison, T., Mesulam, M.-M., & Gottfried, J. A. (2013). A cortical  
631 pathway to olfactory naming: Evidence from primary progressive aphasia. *Brain*, 136(4),  
632 1245–1259. <https://doi.org/10.1093/brain/awt019>

633 Olofsson, J. K., Rönnlund, M., Nordin, S., Nyberg, L., Nilsson, L.-G., & Larsson, M. (2009). Odor  
634 Identification Deficit as a Predictor of Five-Year Global Cognitive Change: Interactive  
635 Effects with Age and ApoE-ε4. *Behavior Genetics*, 39(5), 496–503.  
636 <https://doi.org/10.1007/s10519-009-9289-5>

637 Park, S.-J., Lee, J.-E., Lee, K.-S., & Kim, J.-S. (2018). Comparison of odor identification among  
638 amnestic and non-amnestic mild cognitive impairment, subjective cognitive decline, and early  
639 Alzheimer's dementia. *Neurological Sciences*, 39(3), 557–564.

640 Patel, Z. M., Holbrook, E. H., Turner, J. H., Adappa, N. D., Albers, M. W., Altundag, A.,  
641 Appenzeller, S., Costanzo, R. M., Croy, I., Davis, G. E., Dehgani-Mobaraki, P., Doty, R. L.,  
642 Duffy, V. B., Goldstein, B. J., Gudis, D. A., Haehner, A., Higgins, T. S., Hopkins, C., Huart,  
643 C., ... Yan, C. H. (2022). International consensus statement on allergy and rhinology:  
644 Olfaction. *International Forum of Allergy & Rhinology*, 12(4), 327–680.  
645 <https://doi.org/10.1002/alr.22929>

646 Pfaar, O., Hüttenbrink, K., & Hummel, T. (2004). Assessment of olfactory function after septoplasty:  
647 A longitudinal study. *Rhinology*, 42(4), 195–199.

648 Potter, H., & Butters, N. (1980). An assessment of olfactory deficits in patients with damage to  
649 prefrontal cortex. *Neuropsychologia*, 18(6), 621–628. [https://doi.org/10.1016/0028-3932\(80\)90101-3](https://doi.org/10.1016/0028-3932(80)90101-3)

650 Quarmley, M., Moberg, P. J., Mechanic-Hamilton, D., Kabadi, S., Arnold, S. E., Wolk, D. A., &  
651 Roalf, D. R. (2016). Odor Identification Screening Improves Diagnostic Classification in  
652 Incipient Alzheimer's Disease. *Journal of Alzheimer's Disease*, 55(4), 1497–1507.  
653 <https://doi.org/10.3233/JAD-160842>

654 Rahayel, S., Frasnelli, J., & Joubert, S. (2012). The effect of Alzheimer's disease and Parkinson's  
655 disease on olfaction: A meta-analysis. *Behavioural Brain Research*, 231(1), 60–74.  
656 <https://doi.org/10.1016/j.bbr.2012.02.047>

657 Risacher, S. L., Tallman, E. F., West, J. D., Yoder, K. K., Hutchins, G. D., Fletcher, J. W., Gao, S.,  
658 Kareken, D. A., Farlow, M. R., & Apostolova, L. G. (2017). Olfactory identification in  
659

660 subjective cognitive decline and mild cognitive impairment: Association with tau but not  
661 amyloid positron emission tomography. *Alzheimer's & Dementia: Diagnosis, Assessment &*  
662 *Disease Monitoring*, 9, 57–66.

663 Roalf, D. R., Moberg, M. J., Turetsky, B. I., Brennan, L., Kabadi, S., Wolk, D. A., & Moberg, P. J.  
664 (2017). A quantitative meta-analysis of olfactory dysfunction in mild cognitive impairment.  
665 *Journal of Neurology, Neurosurgery & Psychiatry*, 88(3), 226–232.  
666 <https://doi.org/10.1136/jnnp-2016-314638>

667 Rönnlund, M., Nyberg, L., Bäckman, L., & Nilsson, L.-G. (2005). Stability, Growth, and Decline in  
668 Adult Life Span Development of Declarative Memory: Cross-Sectional and Longitudinal  
669 Data From a Population-Based Study. *Psychology and Aging*, 20(1), 3–18.  
670 <https://doi.org/10.1037/0882-7974.20.1.3>

671 Rosenthal, R. (1979). The file drawer problem and tolerance for null results. *Psychological Bulletin*,  
672 86(3), 638.

673 Rumeau, C., Nguyen, D. T., & Jankowski, R. (2016). How to assess olfactory performance with the  
674 Sniffin' Sticks test ®. *European Annals of Otorhinolaryngology, Head and Neck Diseases*,  
675 133(3), 203–206. <https://doi.org/10.1016/j.anrol.2015.08.004>

676 Salthouse, T. A. (2009). When does age-related cognitive decline begin? *Neurobiology of Aging*,  
677 30(4), 507–514. <https://doi.org/10.1016/j.neurobiolaging.2008.09.023>

678 Salthouse, T. A. (2019). Trajectories of normal cognitive aging. *Psychology and Aging*, 34(1), 17–24.  
679 <https://doi.org/10.1037/pag0000288>

680 Schab, F. R. (1991). Odor memory: Taking stock. *Psychological Bulletin*, 109(2), 242.

681 Schmidt, M. (1996). *Rey auditory verbal learning test: A handbook* (Vol. 17). Western Psychological  
682 Services Los Angeles, CA.

683 Schwerdtfeger, W. K., Buhl, E. H., & Germroth, P. (1990). Disynaptic olfactory input to the  
684 hippocampus mediated by stellate cells in the entorhinal cortex. *The Journal of Comparative  
685 Neurology*, 292(2), 163–177. <https://doi.org/10.1002/cne.902920202>

686 Serby, M., Larson, P., & Kalkstein, D. S. (1991). The nature and course of olfactory deficits in  
687 Alzheimer's disease. *The American Journal of Psychiatry*.

688 Seubert, J., Kalpouzos, G., Larsson, M., Hummel, T., Bäckman, L., & Laukka, E. J. (2020).  
689 Temporolimbic cortical volume is associated with semantic odor memory performance in  
690 aging. *NeuroImage*, 211, 116600. <https://doi.org/10.1016/j.neuroimage.2020.116600>

691 Sexton, C. E., Mackay, C. E., Lonie, J. A., Bastin, M. E., Terrière, E., O'Carroll, R. E., & Ebmeier, K.  
692 P. (2010). MRI correlates of episodic memory in Alzheimer's disease, mild cognitive  
693 impairment, and healthy aging. *Psychiatry Research: Neuroimaging*, 184(1), 57–62.

694 Small, S. A. (2001). Age-Related Memory Decline: Current Concepts and Future Directions. *Archives  
695 of Neurology*, 58(3). <https://doi.org/10.1001/archneur.58.3.360>

696 Sohrabi, H. R., Bates, K. A., Weinborn, M. G., Johnston, A. N. B., Bahramian, A., Taddei, K., Laws,  
697 S. M., Rodrigues, M., Morici, M., Howard, M., Martins, G., Mackay-Sim, A., Gandy, S. E., &  
698 Martins, R. N. (2012). Olfactory discrimination predicts cognitive decline among community-  
699 dwelling older adults. *Translational Psychiatry*, 2(5), e118–e118.  
700 <https://doi.org/10.1038/tp.2012.43>

701 Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective.  
702 *Neurobiology of Learning and Memory*, 82(3), 171–177.  
703 <https://doi.org/10.1016/j.nlm.2004.06.005>

704 Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory  
705 systems. *Proceedings of the National Academy of Sciences*, 93(24), 13515–13522.  
706 <https://doi.org/10.1073/pnas.93.24.13515>

707 Squire, L. R., & Zola-Morgan, S. (1991). The Medial Temporal Lobe Memory System. *Science, New  
708 Series*, 253(5026), 1380–1386.

709 Staubli, U., Fraser, D., Kessler, M., & Lynch, G. (1986). Studies on retrograde and anterograde  
710 amnesia of olfactory memory after denervation of the hippocampus by entorhinal cortex  
711 lesions. *Behavioral and Neural Biology*, 46(3), 432–444. [https://doi.org/10.1016/S0163-1047\(86\)90464-4](https://doi.org/10.1016/S0163-1047(86)90464-4)

713 Staubli, U., Ivy, G., & Lynch, G. (1984). Hippocampal denervation causes rapid forgetting of  
714 olfactory information in rats. *Proceedings of the National Academy of Sciences*, 81(18),  
715 5885–5887. <https://doi.org/10.1073/pnas.81.18.5885>

716 Steffener, J., Motter, J. N., Tabert, M. H., & Devanand, D. P. (2021). Odorant-induced brain  
717 activation as a function of normal aging and Alzheimer's disease: A preliminary study.  
718 *Behavioural Brain Research*, 402, 113078. <https://doi.org/10.1016/j.bbr.2020.113078>

719 Stuck, B. A., Blum, A., Hagner, A. E., Hummel, T., Klimek, L., & Hormann, K. (2003). Mometasone  
720 furoate nasal spray improves olfactory performance in seasonal allergic rhinitis. *Allergy*,  
721 58(11), 1195–1195. <https://doi.org/10.1034/j.1398-9995.2003.00162.x>

722 Suurmond, R., van Rhee, H., & Hak, T. (2017). Introduction, comparison, and validation of *Meta-  
723 Essentials*: A free and simple tool for meta-analysis. *Research Synthesis Methods*, 8(4), 537–  
724 553. <https://doi.org/10.1002/jrsm.1260>

725 Swan, G. E., & Carmelli, D. (2002). Impaired Olfaction Predicts Cognitive Decline in Nondemented  
726 Older Adults. *Neuroepidemiology*, 21(2), 58–67. <https://doi.org/10.1159/000048618>

727 Tonacci, A., Bruno, R. M., Ghiadoni, L., Pratali, L., Berardi, N., Tognoni, G., Cintoli, S., Volpi, L.,  
728 Bonuccelli, U., Sicari, R., Taddei, S., Maffei, L., & Picano, E. (2017). Olfactory evaluation in  
729 Mild Cognitive Impairment: Correlation with neurocognitive performance and endothelial  
730 function. *European Journal of Neuroscience*, 45(10), 1279–1288.  
731 <https://doi.org/10.1111/ejn.13565>

732 Torske, A., Koch, K., Eickhoff, S., & Freiherr, J. (2021). Localizing the human brain response to  
733 olfactory stimulation: A meta-analytic approach. *Neuroscience & Biobehavioral Reviews*,  
734 S0149763421005832. <https://doi.org/10.1016/j.neubiorev.2021.12.035>

735 Tulving, E. (1972). 12. Episodic and semantic memory. *Organization of Memory/Eds E. Tulving, W.  
736 Donaldson, NY: Academic Press*, 381–403.

737 Ullman, M. T. (2004). Contributions of memory circuits to language: The declarative/procedural  
738 model. *Cognition*, 92(1–2), 231–270. <https://doi.org/10.1016/j.cognition.2003.10.008>

739 Wechsler, D. (2008). Wechsler adult intelligence scale–Fourth Edition (WAIS–IV). *San Antonio, TX:  
740 NCS Pearson*, 22(498), 816–827.

741 Wehling, E. I., Nordin, S., Espeseth, T., Reinvang, I., & Lundervold, A. J. (2010). Familiarity, Cued  
742 and Free Odor Identification and Their Association with Cognitive Functioning in Middle  
743 Aged and Older Adults. *Aging, Neuropsychology, and Cognition*, 17(2), 205–219.  
744 <https://doi.org/10.1080/13825580903042684>

745 Weigand, A. J., Thomas, K. R., Bangen, K. J., Eglit, G. M. L., Delano-Wood, L., Gilbert, P. E.,  
746 Brickman, A. M., Bondi, M. W., & for the Alzheimer's Disease Neuroimaging Initiative.  
747 (2021). APOE interacts with tau PET to influence memory independently of amyloid PET in  
748 older adults without dementia. *Alzheimer's & Dementia*, 17(1), 61–69.  
749 <https://doi.org/10.1002/alz.12173>

750 Zhang, S., Chen, B., Zhong, X., Zhang, M., Wang, Q., Wu, Z., Hou, L., Zhou, H., Chen, X., Liu, M.,  
751 Yang, M., Lin, G., Hummel, T., & Ning, Y. (2022). Interactive Effects of Agitation and  
752 Cognitive Impairment on Odor Identification in Patients With Late-Life Depression.  
753 *Frontiers in Psychiatry*, 13, 839012. <https://doi.org/10.3389/fpsyg.2022.839012>

754 Zhang, Z., Zhang, B., Wang, X., Zhang, X., Yang, Q. X., Qing, Z., Zhang, W., Zhu, D., & Bi, Y.  
755 (2019). Olfactory Dysfunction Mediates Adiposity in Cognitive Impairment of Type 2  
756 Diabetes: Insights From Clinical and Functional Neuroimaging Studies. *Diabetes Care*, 42(7),  
757 1274–1283. <https://doi.org/10.2337/dc18-2584>

758

759

760

761

762

763

764

765

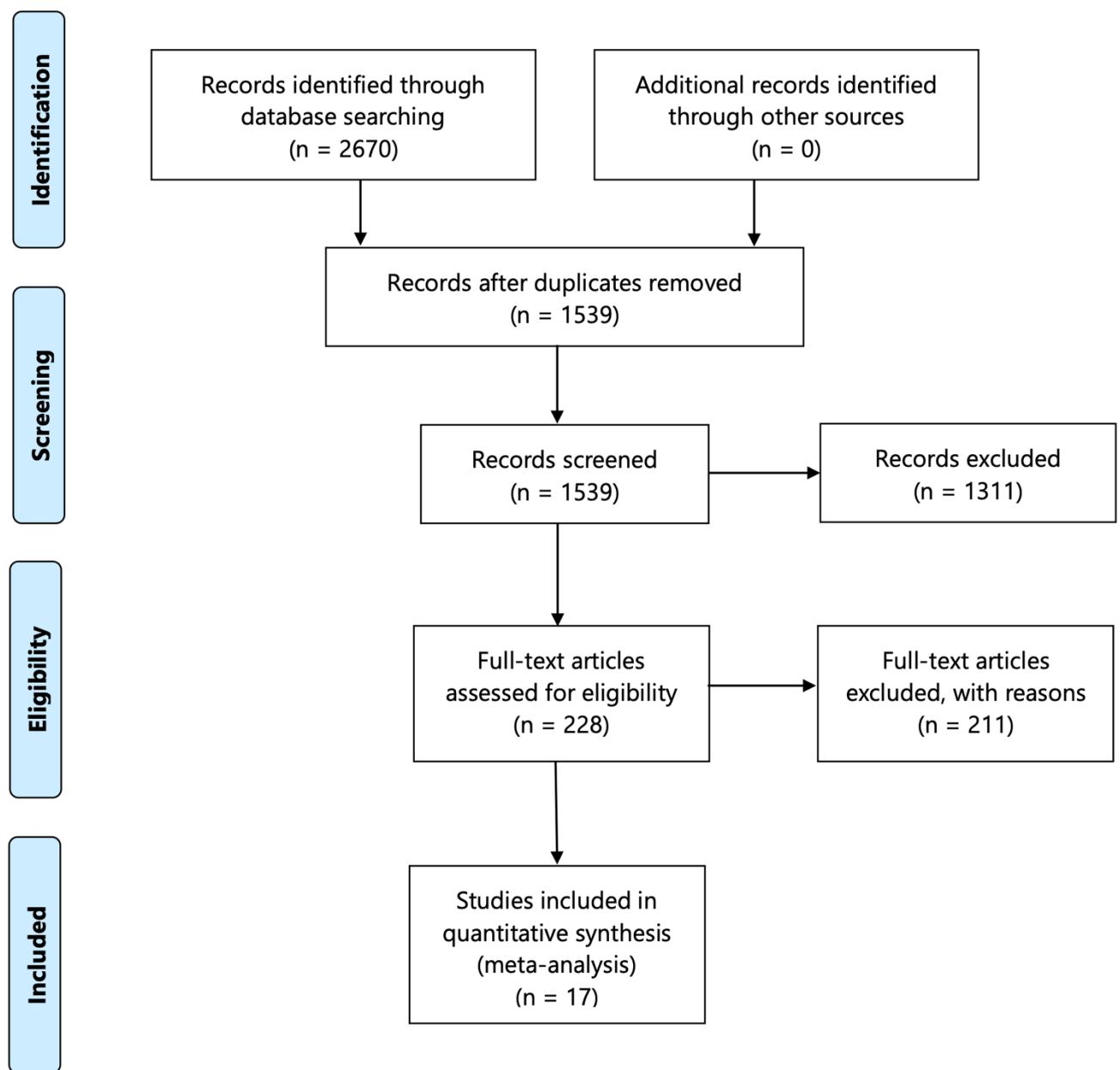
766

767

768

769

770


771

772

773

774

775



776

777

778

Figure 1. PRISMA flowchart illustrating the selection of the studies.

779

780

781

782

783

784

785

786

787

788

789

790

| Study                   | Participants characterization                                                                                                                       | n   | Mean Age (SD)                 | Olfactory Test                              | Memory Test                                                                   | Effect size                                                                                                                                                                                                                                                                      |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------|---------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Bailie, 2009)          | Aged 55 and over, from skilled nursing homes, independent living facilities, and senior citizen support groups.                                     | 45  | 75.76 (10.30)                 | Multiple Intensity Odor Identification Test | CVLT<br>BNT<br>CF                                                             | .40<br>.25<br>.67                                                                                                                                                                                                                                                                |
| (Chen, et al., 2018)    | Evaluated by two psychiatrists, including a comprehensive neuropsychological assessment.                                                            | 154 | 67.63 (8.5)                   | Sniffin' Sticks                             | AVLT<br>LMT<br>CF                                                             | .22<br>.10<br>.09                                                                                                                                                                                                                                                                |
| (Cozac et al., 2017)    | Participants screened by neuropsychologist and neurologist.                                                                                         | 21  | 67.5 (N/A)                    | Sniffin' Sticks                             | SVCF                                                                          | -.08                                                                                                                                                                                                                                                                             |
| (Devanand et al., 2019) | Intact cognition after a neuropsychological assessment.                                                                                             | 92  | 77.55 (4.49)                  | UPSIT                                       | SRT                                                                           | Total Immediate Recall = .27<br>Delayed Recall = .16                                                                                                                                                                                                                             |
| (Dulay et al., 2005)    | - Older adults from living retirement communities.<br>- Exclusion of participants with known neurologic or psychiatric conditions.<br>- DRS-2 > 131 | 80  | 77.08 (8.50)<br>(Full-Sample) | UPSIT                                       | CVLT-II Short-Form                                                            | .01                                                                                                                                                                                                                                                                              |
| (Hedner et al., 2010)   | All participant were in good health and underwent a detailed ear–nose–throat (ENT) examination.                                                     | 170 | 57.2 (13.8)                   | Sniffin' Sticks                             | 16 Concrete Nouns Test                                                        | .21                                                                                                                                                                                                                                                                              |
| (Larsson, 2004)         | Population based study. MMSE score > 24 and absence of subjective olfactory disorder.                                                               | 190 | 67.5 (N/A)                    | SOIT                                        | CF<br>Vocabulary                                                              | .15<br>.31                                                                                                                                                                                                                                                                       |
| (Larsson et al., 2016)  | Population based study including geriatric, neurological, and psychiatric assessments; and neuropsychological testing.                              | 228 | 71.46 (9.68)                  | Sniffin' Sticks                             | 16 Unrelated Nouns Test<br>Vocabulary<br>GK<br>Vocabulary                     | Free Odor Identification = .26<br>Total Odor Identification = .25<br>Free Odor Identification = .19<br>Total Odor Identification = .21<br>Free Odor Identification = .09<br>Total Odor Identification = .07<br>Free Odor Identification = .19<br>Total Odor Identification = .21 |
| (Liu et al., 2022)      | Evaluation made by at least two neurologists with expertise in dementia, a neuropsychologist, and a geriatric psychiatrist.                         | 189 | 67.29 (7.49)                  | Sniffin' Sticks                             | AVLT (RAVLT)<br>BNT<br>Verbal Fluency Test                                    | Short-term delayed recall = .30<br>Long-term delayed recall = .20<br>0.16<br>0.13                                                                                                                                                                                                |
| (Makowska et al., 2011) | MMSE > 27.                                                                                                                                          | 30  | 72.33 (6.29)                  | PST                                         | ADAS-COG Cognitive Subscale – Word Recall                                     | Absolute Identification = -.43<br>Forced Choice = -.40                                                                                                                                                                                                                           |
| (Seubert et al., 2020)  | MMSE > 24.                                                                                                                                          | 422 | 69.73 (8.76)                  | Sniffin' Sticks                             | 30-Item Vocabulary Test<br>Free Recall<br>30-Item Vocabulary Test<br>Synonyms | 0.14<br>0.21                                                                                                                                                                                                                                                                     |
| (Wehling et al., 2010)  | No neurological or psychiatric disorders, head trauma, or other                                                                                     | 136 | 61.7 (7.8)                    | SOIT                                        | CVLT                                                                          | Cued Odor Identification: Total Learning = .18<br>Long Delay Free Recall = .26                                                                                                                                                                                                   |

|                      |                                                                                    |     |                |                 |                                                                 |                                                                                                                                                    |
|----------------------|------------------------------------------------------------------------------------|-----|----------------|-----------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | significant medical conditions. Normosmia assessed by an olfactory detection test. |     |                |                 |                                                                 | Free Odor Identification: Total Learning = .26<br>Long Delay Free Recall = .29<br>Cued Odor Identification = .02<br>Free Odor Identification = .19 |
| (Zhang et al., 2022) | Assessed by two neuropsychiatrists, one neuropsychologist, and one psychiatrist.   | 105 | 67.30<br>(6.5) | Sniffin' Sticks | Vocabulary (WASI)<br>AVLT (RAVLT)<br>Animal Verbal Fluency Test | .11<br>-.25                                                                                                                                        |

793

794 *Note.* BNT: Boston Naming Test; CC-SIT: Cross-Cultural Smell Identification Test; CF: Category Fluency; GKQ: General Knowledge; LMT: Logical Memory Test; MMSE: Mini-Mental State Evaluation; N/A: Not available; PST: Pocket Smell Test; RAVLT: Rey Auditory Verbal Learning Test; SOIT: Scandinavian Odor Identification Test; SRT: Selective Reminding Test; SVCF: Semantic Verbal Categorical Fluency; UPSIT: University of Pennsylvania Smell Identification Test; WASI: Wechsler Abbreviated Scale of Intelligence.

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

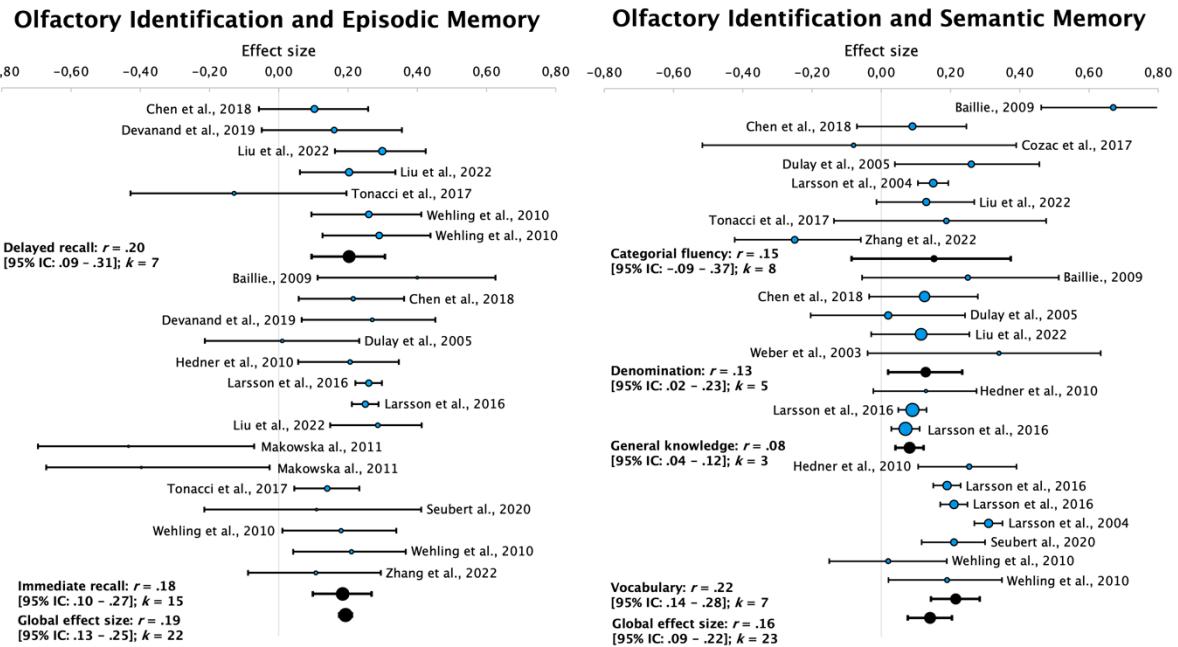
814

815

816

817

818


819

820

821

822

823



824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

Figure 2. Forest plot of effect sizes for the correlations between olfactory

identification and episodic memory (left) and semantic memory (right). Error bars

represent 95% CIs.

840 **Table 2**841 *Olfactory Detection Threshold and Memory Correlations*

| Study                  | Participants characterization                                                                                                                       | n   | Mean Age (SD)                 | Olfactory Test                                          | Memory Test                                       | Effect size                                              |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------|---------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|
| (Bailie, 2009)         | Aged 55 and over, from skilled nursing homes, independent living facilities, and senior citizen support groups.                                     | 45  | 75.76 (10.30)                 | Four Odor Threshold Tests for <i>N</i> -Butanol (3-AFC) | CVLT                                              | 0.54<br>0.20<br>0.46                                     |
| (Dulay et al., 2005)   | - Older adults from living retirement communities.<br>- Exclusion of participants with known neurologic or psychiatric conditions.<br>- DRS-2 > 131 | 80  | 77.08 (8.50)<br>(Full-Sample) | PEAT (2-AFC)                                            | BNT<br>CF<br>CVLT-II Short-Form                   | 0.12<br>0.04<br>0.02                                     |
| (Hedner et al., 2010)  | All participant were in good health and underwent a detailed ear–nose–throat (ENT) examination.                                                     | 170 | 57.2 (13.8)                   | Sniffin' Sticks (3-AFC)                                 | BNT Short-Form<br>CF<br>16 Concrete Nouns Test GK | 0.13<br>0.15<br>0.23                                     |
| (Tonacci et al., 2017) | Neuropsychological assessment was performed                                                                                                         | 41  | 73.5 (4.3)                    | Sniffin' Sticks (3-AFC)                                 | Vocabulary<br>RAVLT GK                            | Immediate Recall = 0.26<br>Delayed Recall = 0.27<br>0.14 |

842

843 Note. AFC: alternative forced choice; BNT: Boston Naming Test; CF: Category Fluency; CVLT: California  
 844 Verbal Learning Test; DRS-2: Dementia Rating Scale 2; GK: General Knowledge; PEAT: Two Alternative  
 845 Forced-choice Phenyl Ethyl Alcohol Threshold; RAVLT: Rey Auditory Verbal Learning Test.

846

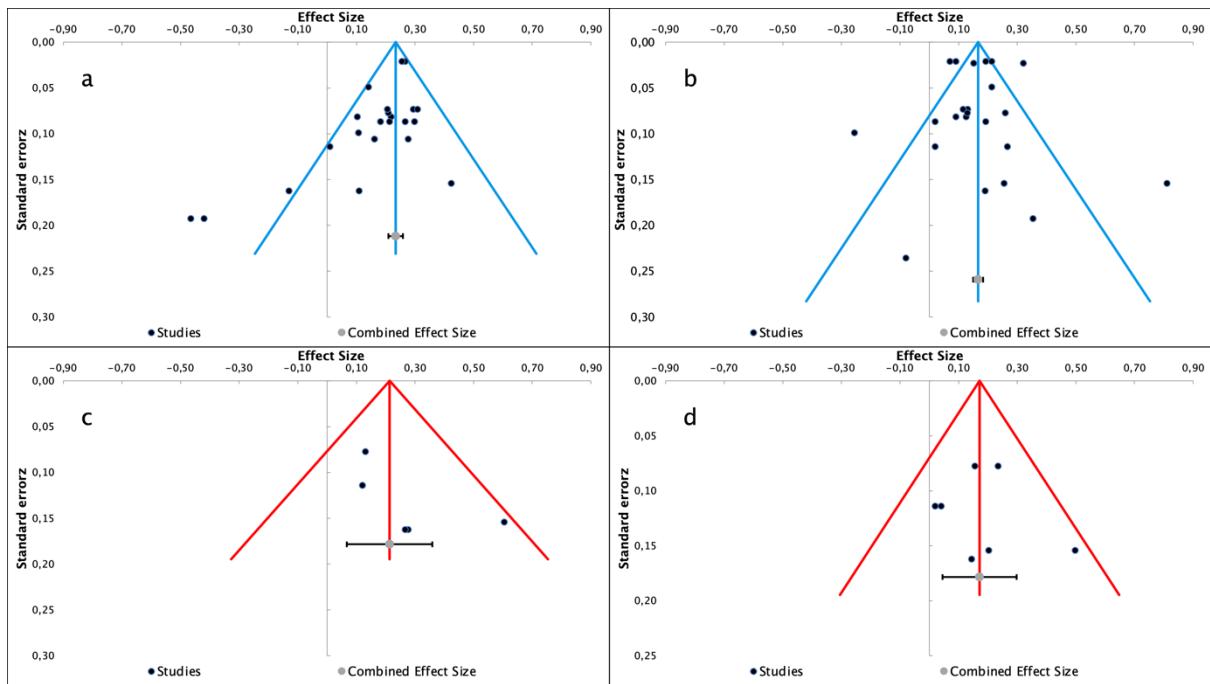
847

848

849

850

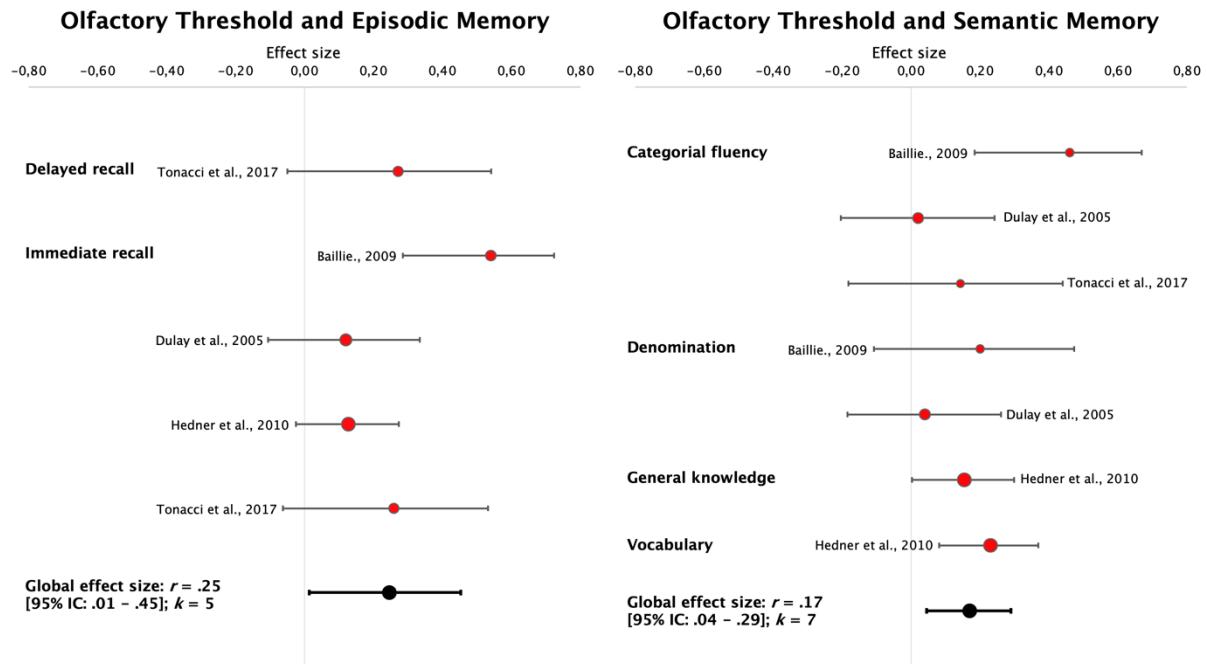
851


852

853

854

855


856



857

858 Figure 3. Funnel plot of standard errors z of effect sizes for each meta-analysis. a) represents  
 859 the funnel plot of the relationship between olfactory identification and episodic memory; b)  
 860 olfactory identification and semantic memory; c) olfactory detection threshold and episodic  
 861 memory; d) olfactory detection threshold and semantic memory. Error bars represent 95%  
 862 CIs.

863



864

865       Figure 4. Forest plot of effect sizes for the correlations between olfactory  
 866       detection threshold and episodic memory (left) and semantic memory (right). Error  
 867       bars represent 95% CIs.

868

869

870

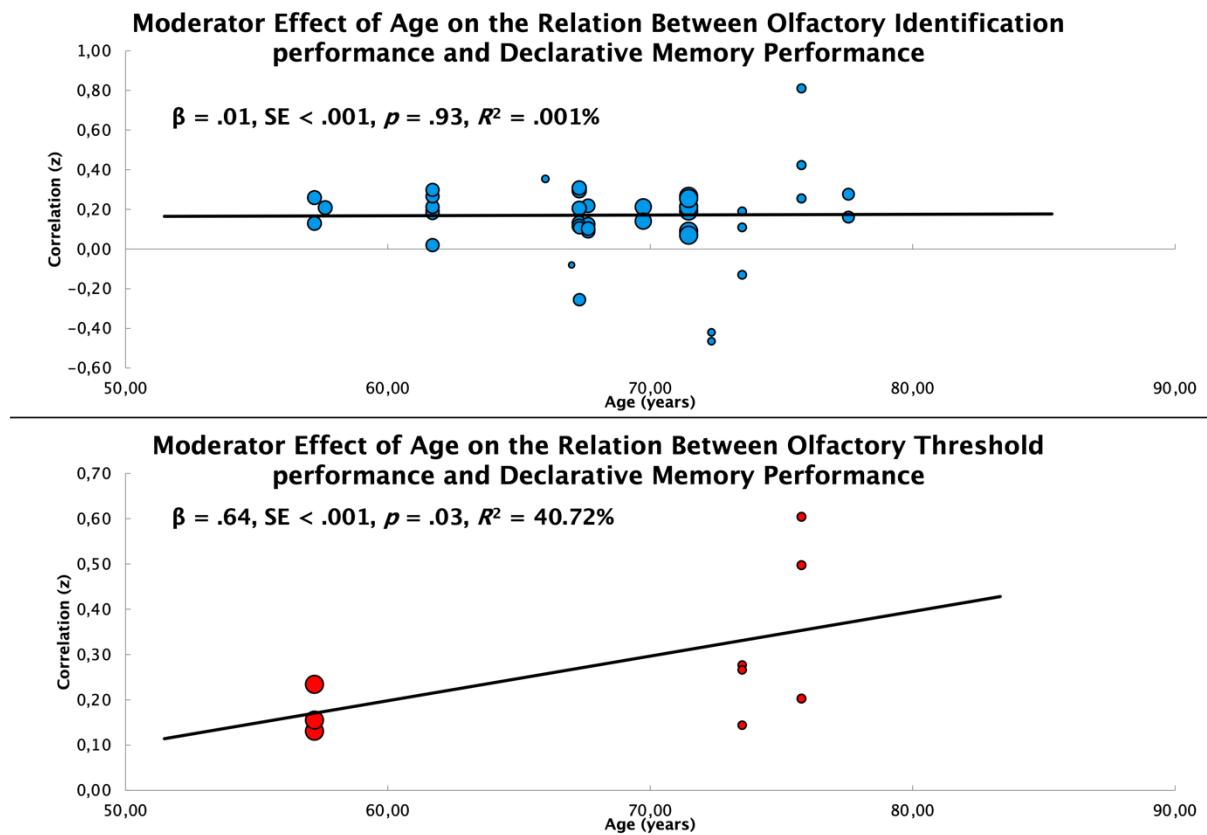
871

872

873

874

875


876

877

878

879

880



881

882 Figure 5. Meta-regressions evaluating the moderator effect of age on the relationship between  
883 olfactory capacities and declarative memory. The analyses were completed with studies  
884 whose information was available (two studies missing).

885

886

887

888