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Diagnosis of Parkinson’s disease (PD) is commonly based on medical observations
and assessment of clinical signs, including the characterization of a variety of motor
symptoms. However, traditional diagnostic approaches may suffer from subjectivity
as they rely on the evaluation of movements that are sometimes subtle to human
eyes and therefore difficult to classify, leading to possible misclassification. In the
meantime, early non-motor symptoms of PD may be mild and can be caused by many
other conditions. Therefore, these symptoms are often overlooked, making diagnosis
of PD at an early stage challenging. To address these difficulties and to refine the
diagnosis and assessment procedures of PD, machine learning methods have been
implemented for the classification of PD and healthy controls or patients with similar
clinical presentations (e.g., movement disorders or other Parkinsonian syndromes). To
provide a comprehensive overview of data modalities and machine learning methods
that have been used in the diagnosis and differential diagnosis of PD, in this study, we
conducted a literature review of studies published until February 14, 2020, using the
PubMed and IEEE Xplore databases. A total of 209 studies were included, extracted
for relevant information and presented in this review, with an investigation of their aims,
sources of data, types of data, machine learning methods and associated outcomes.
These studies demonstrate a high potential for adaptation of machine learning methods
and novel biomarkers in clinical decision making, leading to increasingly systematic,
informed diagnosis of PD.

Keywords: Parkinson’s disease, machine learning, deep learning, diagnosis, differential diagnosis

INTRODUCTION

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases with a prevalence
rate of 1% in the population above 60 years old, affecting 1-2 people per 1,000 (Tysnes and Storstein,
2017). The estimated global population affected by PD has more than doubled from 1990 to 2016
(from 2.5 million to 6.1 million), which is a result of increased number of elderly people and
age-standardized prevalence rates (Dorsey et al., 2018). PD is a progressive neurological disorder
associated with motor and non-motor features (Jankovic, 2008) which comprises multiple aspects
of movements, including planning, initiation and execution (Contreras-Vidal and Stelmach, 1995).
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During its development, movement-related symptoms such
as tremor, rigidity and difficulties in initiation can be observed,
prior to cognitive and behavioral alterations including dementia
(Opara et al,, 2012). PD severely affects patients’ quality of life
(QoL), social functions and family relationships, and places heavy
economic burdens at individual and society levels (Johnson et al.,
2013; Kowal et al., 2013; Yang and Chen, 2017).

The diagnosis of PD is traditionally based on motor
symptoms. Despite the establishment of cardinal signs of PD
in clinical assessments, most of the rating scales used in the
evaluation of disease severity have not been fully evaluated
and validated (Jankovic, 2008). Although non-motor symptoms
(e.g., cognitive changes such as problems with attention and
planning, sleep disorders, sensory abnormalities such as olfactory
dysfunction) are present in many patients prior to the onset of
PD (Jankovic, 2008; Tremblay et al., 2017), they lack specificity,
are complicated to assess and/or yield variability from patient to
patient (Zesiewicz et al., 2006). Therefore, non-motor symptoms
do not yet allow for diagnosis of PD independently (Braak et al.,
2003), although some have been used as supportive diagnostic
criteria (Postuma et al., 2015).

Machine learning techniques are being increasingly applied
in the healthcare sector. As its name implies, machine learning
allows for a computer program to learn and extract meaningful
representation from data in a semi-automatic manner. For the
diagnosis of PD, machine learning models have been applied to
a multitude of data modalities, including handwritten patterns
(Drotér et al., 2015; Pereira et al., 2018), movement (Yang et al.,
2009; Wahid et al., 2015; Pham and Yan, 2018), neuroimaging
(Cherubini et al., 2014a; Choi et al., 2017; Segovia et al., 2019),
voice (Sakar et al., 2013; Ma et al., 2014), cerebrospinal fluid
(CSF) (Lewitt et al., 2013; Maass et al., 2020), cardiac scintigraphy
(Nuvoli et al., 2019), serum (Véradi et al., 2019), and optical
coherence tomography (OCT) (Nunes et al,, 2019). Machine
learning also allows for combining different modalities, such as
magnetic resonance imaging (MRI) and single-photon emission
computed tomography (SPECT) data (Cherubini et al., 2014b;
Wang et al., 2017), in the diagnosis of PD. By using machine
learning approaches, we may therefore identify relevant features
that are not traditionally used in the clinical diagnosis of PD
and rely on these alternative measures to detect PD in preclinical
stages or atypical forms.

In recent years, the number of publications on the application
of machine learning to the diagnosis of PD has increased.
Although previous studies have reviewed the use of machine
learning in the diagnosis and assessment of PD, they were limited
to the analysis of motor symptoms, kinematics, and wearable
sensor data (Ahlrichs and Lawo, 2013; Ramdhani et al., 2018;
Beli¢ et al., 2019). Moreover, some of these reviews only included
studies published between 2015 and 2016 (Pereira et al., 2019).
In this study, we aim to (a) comprehensively summarize all
published studies that applied machine learning models to the
diagnosis of PD for an exhaustive overview of data sources,
data types, machine learning models, and associated outcomes,
(b) assess and compare the feasibility and efficiency of different
machine learning methods in the diagnosis of PD, and (c) provide
machine learning practitioners interested in the diagnosis of PD

TABLE 1 | Boolean search strings used for the retrieval of relevant publications on
PubMed and IEEE Xplore databases.

Database Boolean search string

PubMed (“Parkinson Disease”’[Mesh] OR Parkinson*) AND
(“Machine Learning”’[Mesh] OR machine learn* OR
machine-learn® OR deep learn* OR deep-learn®) AND
(human OR patient) AND

(“Diagnosis”’[Mesh] OR diagnos* OR detect* OR classif*

OR identif*) NOT review[Publication Type]

(Parkinson*) AND

(machine learn* OR machine-learn* OR deep learn* OR
deep-learn*) AND (human OR patient) AND

(diagnosis OR diagnose OR diagnosing OR detection OR
detect OR detecting OR classification OR classify OR
classifying OR identification OR identify OR identifying)

IEEE Xplore

with an overview of previously used models and data modalities
and the associated outcomes, and recommendations on how
experimental protocols and results could be reported to facilitate
reproduction. As a result, the application of machine learning to
clinical and non-clinical data of different modalities has often led
to high diagnostic accuracies in human participants, therefore
may encourage the adaptation of machine learning algorithms
and novel biomarkers in clinical settings to assist more accurate
and informed decision making.

METHODS

Search Strategy

A literature search was conducted on the PubMed (https://
pubmed.ncbi.nlm.nih.gov) and IEEE Xplore (https://ieeexplore.
ieee.org/search/advanced/command) databases on February 14,
2020 for all returned results. Boolean search strings used
are shown in Table1. No additional filters were applied in
the literature search. All retrieved studies were systematically
identified, screened and extracted for relevant information
following the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines (Moher et al., 2009).

Inclusion and Exclusion Criteria
Studies that satisfy one or more of the following criteria and used
machine learning methods were included:

(1) Classification of PD from healthy controls (HC),

(2) Classification of PD from Parkinsonism (e.g., progressive
supranuclear palsy (PSP) and multiple system
atrophy (MSA)), and

(3) Classification of PD from other movement disorders (e.g.,
essential tremor (ET)).

Studies falling into one or more of the following categories
were excluded:

(1) Studies related to Parkinsonism or/and diseases other than
PD that did not involve classification or detection of
PD (e.g., differential diagnosis of PSP, MSA, and other
atypical Parkinsonian disorders),
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(2) Studies not related to the diagnosis of PD (e.g., subtyping or
severity assessment, analysis of behavior, disease progression,
treatment outcome prediction, identification, and localization
of brain structures or parameter optimization during surgery),

(3) Studies related to the diagnosis of PD, but performed
analysis and assessed model performance at sample level (e.g.,
classification using individual MRI scans without aggregating
scan-level performance to patient level),

(4) Classification of PD from
(e.g., Alzheimer’s disease),

(5) Study did not use
measure classification performance,

(6) Study used organisms other than human (e.g., Caenorhabditis
elegans, mice or rats),

(7) Study did not provide sufficient or accurate descriptions
of machine learning methods, datasets or subjects used
(e.g., does not provide sample size, or incorrectly described
the dataset(s) used),

(8) Not original journal article or conference proceedings papers
(e.g., review and viewpoint paper), and

(9) Inlanguages other than English.

non-Parkinsonism

metrics that

Data Extraction

The following information is included in the data extraction
table: (1) objectives, (2) type of diagnosis (diagnosis, differential
diagnosis, sub-typing), (3) data source, (4) data type, (5) number
of subjects, (6) machine learning method(s), splitting strategy
and cross validation, (7) associated outcomes, (8) year, and
(9) reference.

For studies published online first and archived in another year,
“year of publication” was defined as the year during which the
study was published online. If this information was unavailable,
the year in which the article was copyrighted was regarded as the
year of publication. For studies that introduced novel models and
used existing models merely for comparison, information related
to the novel models was extracted. Classification of PD and scans
without evidence for dopaminergic deficit (SWEDD) was treated
as subtyping (Erro et al., 2016).

Study Objectives

To outline the different goals and objectives of included studies,
we have further categorized them based on the type of diagnosis
and their general aim. From the perspective of diagnostics, these
studies could be divided into (a) the diagnosis or detection
of PD (which compares data collected from PD patients
and healthy controls), (b) differential diagnosis (discrimination
between patients with idiopathic PD and patients with atypical
Parkinsonism), and (c) sub-typing (discrimination among sub-
types of PD).

Included studies were also analyzed for their general aim:
For studies with a focus on the development of novel technical
approaches to be used in the diagnosis of Parkinson’s disease,
e.g., new machine learning and deep learning models and
architectures, data acquisition devices, and feature extraction
algorithms that haven’t been previously presented and/or
employed, we defined them as (a) “methodology” studies. Studies
that validate and investigate (a) the application of previously

published and validated machine learning and deep learning
models, and/or (b) the feasibility of introducing data modalities
that are not commonly used in the machine learning-based
diagnosis of PD (e.g., CSF data), were defined as (b) “clinical
application” studies.

Model Evaluation
In the present study, accuracy was used to compare performance
of machine learning models. For each data type, we summarized
the type of machine learning models that led to the per-
study highest accuracy. However, in some studies, only one
machine learning model was tested. Therefore, we define “model
associated with the per-study highest accuracy” as (a) the only
model implemented and used in a study or (b) the model that
achieved the highest accuracy or that was highlighted in studies
that used multiple models. Results are expressed as mean (SD).
For studies reporting both training and testing/validation
accuracy, testing or validation accuracy was considered. For
studies that reported both validation and test accuracy, test
accuracy was considered. For studies with more than one dataset
or classification problem (e.g., HC vs. PD and HC vs. idiopathic
hyposmia vs. PD), accuracy was averaged across datasets or
classification problems. For studies that reported classification
accuracy for each group of subjects individually, accuracy
was averaged across groups. For studies reporting a range
of accuracies or accuracies given by different cross validation
methods or feature combinations, the highest accuracies were
considered. In studies that compared HC with diseases other than
PD or PD with diseases other than Parkinsonism, diagnosis of
diseases other than PD or Parkinsonism (e.g., amyotrophic lateral
sclerosis) was not considered. Accuracy of severity assessment
was not considered.

RESULTS

Literature Review

Based on the search criteria, we retrieved 427 (PubMed) and 215
(IEEEXplore) search results, leading to a total of 642 publications.
After removing duplicates, we screened 593 publications for titles
and abstracts, following which we excluded 313 based on the
exclusion criteria and examined 280 full text articles. Overall, we
included 209 research articles for data extraction (Figure 1 and
see Supplementary Materials for a full list of included studies).
All articles were published from the year 2009 onwards, and an
increase in the number of papers published per year was observed
(Supplementary Figure 1).

Data Source and Sample Size

In 93 out of 209 studies (43.1%), original data were collected
from human participants. In 108 studies (51.7%), data used were
from public repositories and databases, including University of
California at Irvine (UCI) Machine Learning Repository (Dua
and Graft, 2018) (n = 44), Parkinson’s Progression Markers
Initiative (Marek et al, 2011) (PPMI; n = 33), PhysioNet
(Goldberger et al., 2000) (n = 15), HandPD dataset (Pereira et al.,
2015) (n = 6), mPower database (Bot et al., 2016) (n = 4), and 6
other databases (Mucha et al., 2018; Vlachostergiou et al., 2018;
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FIGURE 1 | PRISMA Flow Diagram of Literature Search and Selection Process showing the number of studies identified, screened, extracted, and included in the

review.
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Bhati et al., 2019; Hsu et al., 2019; Taleb et al., 2019; Wodzinski
etal., 2019; Table 2).

In 3 studies, data from public repositories were combined with
data from local databases or participants (Agarwal et al., 2016;
Choi et al,, 2017; Taylor and Fenner, 2017). In the remaining
studies, data were sourced (Wahid et al., 2015) from another
study (Fernandez et al., 2013), collected at another institution
(Segovia et al., 2019), obtained from the authors’ institutional
database (Nunes et al., 2019), collected postmortem (Lewitt et al.,
2013), or commercially sourced (Varadi et al., 2019).

The 209 studies had an average sample size of 184.6 (289.3),
with a smallest sample size of 10 (Kugler et al.,, 2013), and a
largest sample size of 2,289 (Tracy et al., 2019; Figure 2A). For
studies that recruited human participants (n = 93), data from an
average of 118.0 (142.9) participants were collected (range: 10—
920; Figure 2B). For other studies (n = 116), an average sample
size of 238.1 (358.5) was reported (range: 30-2,289; Figure 2B).
For a description of average accuracy reported in these studies in
relation to sample size, see Figure 2C.

Study Objectives

In included studies, although “diagnosis of PD” was used as the
search criteria, machine learning had been applied for diagnosis
(PD vs. HC), differential diagnosis (idiopathic PD vs. atypical
Parkinsonism) and sub-typing (differentiation of sub-types of
PD) purposes. Most studies focused on diagnosis (n = 168,

80.4%) or differential diagnosis (n = 20, 9.6%). Fourteen studies
performed both diagnosis and differential diagnosis (6.7%), 5
studies (2.4%) diagnosed and subtyped PD, 2 studies (1.0%)
included diagnosis, differential diagnosis, and subtyping.
Among the included studies, a total of 132 studies (63.2%)
implemented and tested a machine learning method, a model
architecture, a diagnostic system, a feature extraction algorithm,
or a device for non-invasive, low-cost data acquisition that
hasn’t been established for the detection and early diagnosis
of PD (methodology studies). In 77 studies (36.8%), previously
proposed and validated machine learning methods were tested in
clinical settings for early detection of PD, identification of novel
biomarkers or examination of uncommonly used data modalities
for the diagnosis of PD (e.g., CSF; clinical application studies).

Comparing Studies With Different

Objectives

Source of Data

In the 132 studies that proposed or tested novel machine learning
methods (i.e., methodology studies), a majority used data from
publicly available databases (n = 89, 67.4%). Data collected from
human participants were used in 41 studies (31.1%) and the
two remaining studies (1.5%) used commercially sourced data or
data from both existing public databases and local participants
specifically recruited for the study. Out of the 77 studies that
used machine learning models in clinical settings (i.e., clinical

Frontiers in Aging Neuroscience | www.frontiersin.org 4

May 2021 | Volume 13 | Article 633752


https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

Mei et al.

Machine Learning in Parkinson’s Disease

TABLE 2 | Source of data of the included studies.

Data source/Database Number of Percentage

studies
independent recruitment of human participants 93 43.06%
UCI Machine Learning Repository 44 20.37%
PPMI database 33 15.28%
PhysioNet 15 6.94%
HandPD dataset 2.78%
mPower database 1.85%
Other databases 2.78%
(1 PACS, 1 PaHaW, 1 PC-GITA database, 1
PDMultiMC database, 1 Neurovoz corpus, 1 The
NTUA Parkinson Dataset)
Collected postmortem 1 0.46%
Commercially sourced 1 0.46%
Acquired at another institution 1 0.46%
From another study 1 0.46%
From the author’s institutional database 1 0.46%
Others 3 1.39%

(1 PPMI + Sheffield Teaching Hospitals NHS
Foundation Trust;

1 PPMI + Seoul National University Hospital cohort;
1 UCI + collected from participants)

PACS, Picture Archiving and Communication System,; PaHaW, Parkinson’s Disease
Handwriting Database.

application studies), 52 (67.5%) collected data from human
participants, 22 (28.6%) used data from public databases. Two
(2.6%) studies obtained data from a database and a local cohort,
and 1 (1.3%) study collected data postmortem.

Data Modality

In methodology studies, the most commonly used data modalities
were voice recordings (n = 51, 38.6%), movement (n = 35,
26.5%), and MRI data (n = 15, 11.4%). For studies on clinical
applications, MRI data (n = 21, 27.3%), movement (n = 16,
20.8%), and SPECT imaging data (n = 12, 15.6%) were of
high relevance. All studies using CSF features (n = 5) focused
on validation of existing machine learning models in a clinical
setting (Figure 3A).

Number of Subjects

The average sample size was 137.1 for the 132 methodology
studies (Figure 3B). For 41 out of the 132 studies that used data
from recruited human participants, the average sample size was
81.7 (Figure 3C). In the 77 studies on clinical applications, the
average sample size was 266.2 (Figure 3B). For 52 out of the 77
clinical studies that collected data from recruited participants, the
average sample size was 145.9 (Figure 3C).

Machine Learning Methods Applied to the
Diagnosis of PD

We divided 448 machine learning models from the 209 studies
into 8 categories: (1) support vector machine (SVM) and variants
(n = 132 from 130 studies), (2) neural networks (n = 76 from
62 studies), (3) ensemble learning (n = 82 from 57 studies),

(4) nearest neighbor and variants (n = 33 from 33 studies), (5)
regression (n = 31 from 31 studies), (6) decision tree (n = 28
from 27 studies), (7) naive Bayes (n = 26, from 26 studies),
and (8) discriminant analysis (# = 12 from 12 studies). A small
percentage of models used did not fall into any of the categories
(n = 28, used in 24 studies).

On average, 2.14 machine learning models per study were
applied to the diagnosis of PD. One study may have used
more than one category of models. For a full description of
data types used to train each type of machine learning models
and the associated outcomes, see Supplementary Materials and
Supplementary Figure 2.

Performance Metrics

Various metrics have been used to assess the performance of
machine learning models (Table 3). The most common metric
was accuracy (n = 174, 83.3%), which was used individually
(n = 55) or in combination with other metrics (n = 119) in
model evaluation. Among the 174 studies that used accuracy,
some have combined accuracy with sensitivity (i.e., recall) and
specificity (n = 42), or with sensitivity, specificity and AUC (n =
16), or with recall (i.e., sensitivity), precision and F1 score (n =
7) for a more systematic understanding of model performance.
A total of 35 studies (16.7%) used metrics other than accuracy.
In these studies, the most used performance metrics were AUC
(n = 19), sensitivity (n = 17), and specificity (n = 14), and
the three were often applied together (n = 9) with or without
other metrics.

Data Types and Associated Outcomes

Out of 209 studies, 122 (58.4%) applied machine learning
methods to movement-related data, i.e., voice recordings (n = 55,
26.3%), movement data (n = 51, 24.4%), or handwritten patterns
(n = 16, 7.7%). Imaging modalities analyzed including MRI (n
= 36, 17.2%), SPECT (n = 14, 6.7%), and positron emission
tomography (PET; n = 4, 1.9%). Five studies analyzed CSF
samples (2.4%). In 18 studies (8.6%), a combination of different
types of data was used.

Ten studies (4.8%) used data that do not belong to
any categories mentioned above, such as single nucleotide
polymorphisms (Cibulka et al., 2019) (SNPs), electromyography
(EMG) (Kugler et al., 2013), OCT (Nunes et al., 2019), cardiac
scintigraphy (Nuvoli et al., 2019), Patient Questionnaire of
Movement Disorder Society Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) (Prashanth and Dutta Roy, 2018), whole-
blood gene expression profiles (Shamir et al., 2017), transcranial
sonography (Shi et al., 2018) (TCS), eye movements (Tseng et al.,
2013), electroencephalography (EEG) (Vanegas et al., 2018), and
serum samples (Véaradi et al., 2019).

Given that studies used different data modalities and sources,
and sometimes different samples of the same database, a
summary of model performance, instead of direct comparison
across studies, is provided.

Voice Recordings (n = 55)
The 49 studies that used accuracy to evaluate machine learning
models achieved an average accuracy of 90.9 (8.6) % (Figure 4A),
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FIGURE 2 | Sample size of the included studies. (A) Cumulative relative frequency
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FIGURE 3 | Data modality (A) and number of subjects (B,C) of included studies, summarized by objectives (i.e., methodology or clinical application). Orange, studies
with a focus on the development of a novel technical approach to be used in the diagnosis of Parkinson’s disease (i.e., methodology); blue, studies that investigate the
use of published machine learning models or novel data modalities (i.e., clinical application). (A) Proportion of data modalities in included studies displayed as
percentages. (B) Sample size in all included studies. (C) Sample size in studies that collected data from recruited human participants. Data shown are means (SD).

ranging from 70.0% (Kraipeerapun and Amornsamankul, 2015;
Ali et al, 2019a) to 100.0% (Hariharan et al., 2014; Abiyev
and Abizade, 2016; Ali et al., 2019¢; Dastjerd et al., 2019).
In 3 studies, the highest accuracy was achieved by two types
of machine learning models individually, namely regression or
SVM (Ali et al., 2019a), neural network or SVM (Hariharan
et al, 2014), and ensemble learning or SVM (Mandal and
Sairam, 2013). The per-study highest accuracy was achieved
with SVM in 23 studies (39.7%), with neural network in 16
studies (27.6%), with ensemble learning in 7 studies (12.1%),
with nearest neighbor in 3 studies (5.2%), and with regression
in 2 studies (3.4%). Models that do not belong to any given
categories led to the per-study highest accuracy in 7 studies
(12.1%; Figure 4B).

Voice recordings from the UCI machine learning repository
were used in 42 studies (Table 4). Among the 42 studies, 39 used
accuracy to evaluate classification performance and the average
accuracy was 92.0 (9.0) %. The lowest accuracy was 70.0% and the
highest accuracy was 100.0%. Eight out of 9 studies that collected
voice recordings from human participants used accuracy as
the performance metric, and the average, lowest and highest
accuracies were 87.7 (6.8) %, 77.5%, and 98.6%, respectively. The
4 remaining studies used data from the Neurovoz corpus (n =
1), mPower database (n = 1), PC-GITA database (n = 1), or
data from both the UCI machine learning repository and human
participants (n = 1). Two out of these 4 studies used accuracy
to evaluate model performance and reported an accuracy of 81.6
and 91.7%.
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Movement Data (n = 51)

The 43 out of 51 studies using accuracy to assess model
performance achieved an average accuracy of 89.1 (8.3) %,
ranging from 62.1% (Prince and de Vos, 2018) to 100.0%
(Surangsrirat et al, 2016; Joshi et al, 2017; Pham, 2018;
Pham and Yan, 2018; Figure 4A). One study reported three

TABLE 3 | Performance metrics used in the evaluation of machine learning
models.

Performance metric Definition Number
of
studies
TP+TN
Accuracy TPEINAFPTAN 174
i i
Sensitivity (recall) TRLFN 110
. ™
Specificity (TNR) TNLFP 94
AUC The two-dimensional area under the 60
Receiver Operating Characteristic
(ROC) curve
TPxTN—FPxFIN
MCC JTPEFPTP+FN)(TNAFP)TNAFN) 9
iai TP
Precision (PPV) TP+FP 31
™
NPV NN 8
ionxrecall
F1 score rocision-trecal 25
Others N/A 28

(7 kappa; 4 error rate; 3 EER; 1
MSE; 1 LOR; 1 confusion matrix; 1
cross validation score; 1 YI; 1 FPR; 1
FNR; 1 G-mean; 1 PE; 5
combination of metrics)

TNR, true negative rate; AUC, Area under the ROC Curve; MCC, Matthews correlation
coefficient; PPV, positive predictive value; NPV, negative predictive value; EER, equal error
rate; MSE, mean squared error; LOR, log odds ratio; Y, Youden’s Index; FPR, false positive
rate; FNR, false negative rate; PE, probability excess.

machine learning methods (SVM, nearest neighbor and decision
tree) achieving the highest accuracy individually (Félix et al.,
2019). Out of the 51 studies, the per-study highest accuracy
was achieved with SVM in 22 studies (41.5%), with ensemble
learning in 13 studies (24.5%), with neural network in 9
studies (17.0%), with nearest neighbor in 4 studies (7.5%), with
discriminant analysis in 1 study (1.9%), with naive Bayes in 1
study (1.9%), and with decision tree in 1 study (1.9%). Models
that do not belong to any given categories were associated
with the highest per-study accuracy in two studies (3.8%;
Figure 4B).

Among the 33 studies that collected movement data from
recruited participants, 25 used accuracy in model evaluation,
leading to an average accuracy of 87.0 (7.3) % (Table5). The
lowest and highest accuracies were 64.1% (Martinez et al,
2018) and 100.0% (Surangsrirat et al., 2016), respectively. Fifteen
studies used data from the PhysioNet database (Table5) and
had an average accuracy of 94.4 (4.6) %, a lowest accuracy of
86.4% and a highest accuracy of 100%. Three studies used data
from the mPower database (n = 2) or data sourced from another
study (n = 1), and the average accuracy of these studies was
80.6 (16.2) %.

MRI (n = 36)

Average accuracy of the 32 studies that used accuracy to evaluate
the performance of machine learning models was 87.5 (8.0) %.
In these studies, the lowest accuracy was 70.5% (Liu L. et al.,
2016) and the highest accuracy was 100.0% (Cigdem et al,
2019; Figure 4A). Out of the 36 studies, the per-study highest
accuracy was obtained with SVM in 21 studies (58.3%), with
neural network in 8 studies (22.2%), with discriminant analysis
in 3 studies (8.3%), with regression in 2 studies (5.6%), and with
ensemble learning in 1 study (2.8%). One study (2.8%) obtained
the highest per-study accuracy using models that do not belong to
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FIGURE 4 | Data type, machine learning models applied, and accuracy. (A) Accuracy achieved in individual studies and average accuracy for each data type. Error
bar: standard deviation. (B) Distribution of machine learning models applied per data type. MRI, magnetic resonance imaging; SPECT, single-photon emission
computed tomography; PET, positron emission tomography; CSF, cerebrospinal fluid; SVM, support vector machine; NN, neural network; EL, ensemble learning;
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TABLE 4 | Studies that applied machine learning models to voice recordings to diagnose PD (n = 55).

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
Classification of PD  Diagnosis UCI machine 31; 8 HC 4+ 283 PD  Fuzzy neural system with Testing accuracy = 100% 2016  Abiyev and
from HC learning repository 10-fold cross validation Abizade, 2016
Classification of PD  Diagnosis UCI machine 31; 8HC + 23 PD RPART, C4.5, PART, Bagging SVM: 2019 Aichetal, 2019
from HC learning repository CART, random forest, Accuracy = 97.57%
Boosted C5.0, SVM Sensitivity = 0.9756
Specificity = 0.9987
NPV = 0.9995
Classification of PD  Diagnosis UCI machine 31; 8HC + 23PD DBN of 2 RBMs Testing accuracy = 94% 2016  Al-Fatlawi et al.,
from HC learning repository 2016
Classification of PD  Diagnosis UCI machine 31; 8HC + 23 PD EFMM-OneR with 10-fold Accuracy = 94.21% 2019  Sayaydeha and
from HC learning repository cross validation or 5-fold Mohammad, 2019
cross validation
Classification of PD  Diagnosis UCI machine 40; 20 HC 4+ 20 PD Linear regression, LDA, Logistic regression or 2019 Alietal, 2019a
from HC learning repository Gaussian naive Bayes, SVM-linear accuracy = 70%
decision tree, KNN,
SVM-linear, SVM-RBF with
leave-one-subject-out cross
validation
Classification of PD  Diagnosis UCI machine 40; 20 HC + 20 PD LDA-NN-GA with Training: 2019 Alietal, 2019c
from HC learning repository leave-one-subject-out cross  Accuracy = 95%
validation Sensitivity = 95%
Test:
Accuracy = 100%
Sensitivity = 100%
Classification of PD  Diagnosis UCI machine 31;8HC + 23PD  NNge with AdaBoost with Accuracy = 96.30% 2018  Algahtani et al.,
from HC learning repository 10-fold cross validation 2018
Classification of PD  Diagnosis UCI machine 31; 8HC + 23 PD Logistic regression, KNN, KNN accuracy = 95.513% 2018 Anandetal., 2018
from HC learning repository naive Bayes, SVM, decision
tree, random forest, DNN with
10-fold cross validation
Classification of PD  Diagnosis UCI machine 31;8HC +23PD MLP witha Training accuracy = 97.86% 2012  Bakaret al., 2012
from HC learning repository train-validation-test ratio of  Test accuracy = 92.96%
50:20:30 MSE = 0.03552
Classification of PD  Diagnosis UCI machine 31 (8HC + 23 PD) FKNN, SVM, KELM with FKNN accuracy = 97.89% 2018 Caietal, 2018
from HC learning repository  for dataset 1 and 68 10-fold cross validation
(20 HC + 48 PD) for
dataset 2
Classification of PD  Diagnosis UCI machine 40; 20 HC 4+ 20 PD SVM, logistic regression, ET,  Logistic regression accuracy 2019 Celik and Omurca,
from HC learning repository gradient boosting, random = 76.03% 2019
forest with train-test split ratio
=80:20
Classification of PD  Diagnosis UCI machine 40; 20 HC + 20 PD MLP, GRNN with a GRNN: 2016  Gimen and Bolat,

from HC

learning repository

training-test ratio of 50:50

Error rate = 0.0995 (spread
parameter = 195.1189)
Error rate = 0.0958 (spread
parameter = 1.2)

Error rate = 0.0928 (spread
parameter = 364.8)

2016

(Continued)
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TABLE 4 | Continued

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
Classification of PD  Diagnosis UCI machine 31; 8HC + 23 PD ECFA-SVM with 10-fold cross Accuracy = 97.95% 2017 Dashetal., 2017
from HC learning repository validation Sensitivity = 97.90%
Precision = 97.90%
F-measure = 97.90%
Specificity = 96.50%
AUC = 97.20%
Classification of PD  Diagnosis UCI machine 40; 20 HC 4+ 20 PD Fuzzy classifier with 10-fold ~ Accuracy = 100% 2019 Dastjerd et al.,
from HC learning repository cross validation, 2019
leave-one-out cross validation
or a train-test ratio of 70:30
Classification of PD  Diagnosis UCI machine 31; 8 HC + 23 PD  Averaged perceptron, BPM, Boosted decision trees: 2017  Dinesh and He,
from HC learning repository boosted decision tree, Accuracy = 0.912105 2017
decision forests, decision Precision = 0.935714
ot regression, N\, Syl 078 = 0942368
with 10-fold cross-validation AUC = 0.966293
Classification of PD  Diagnosis UCI machine 50; 8HC + 42 PD  KNN, SVM, ELM with a SVM: 2017  Erdogdu Sakar
from HC learning repository train-validation ratio of 70:30  Accuracy = 96.43% etal., 2017
MCC =0.77
Classification of PD  Diagnosis UCI machine 252; 64 HC + 188 CNN with Accuracy = 0.869 2019  Gunduz, 2019
from HC learning repository  PD leave-one-person-out cross  F-measure = 0.917
validation MCC = 0.632
Classification of PD  Diagnosis UCI machine 31;8HC + 23PD SVM, logistic regression, DNN: 2018 Hagetal., 2018
from HC learning repository KNN, DNN with a train-test  Accuracy = 98%
ratio of 70:30 Specificity = 95%
sensitivity = 99%
Classification of PD  Diagnosis ~ UCI machine 31; 8 HC + 23 PD  SVM-RBF, SVM-linear with  Accuracy = 99% 2019 Hagetal., 2019
from HC learning repository 10-fold cross validation Specificity = 99%
Sensitivity = 100%
Classification of PD  Diagnosis UCI machine 31;8HC + 23PD LS-SVM, PNN, GRNN with  LS-SVM or PNN or GRNN: 2014 Hariharan et al.,
from HC learning repository conventional (train-test ratio of Accuracy = 100% 2014
50:50) and 10-fold cross Precision = 100%
validation "
Sensitivity = 100%
specificity = 100%
AUC =100
Classification of PD  Diagnosis UCI machine 31; 8 HC + 23 PD Random tree, SVM-linear, FBANN: 2014  Islam et al., 2014
from HC learning repository FBANN with 10-fold cross Accuracy = 97.37%
validation Sensitivity = 98.60%
Specificity = 93.62%
FPR = 6.38%
Precision = 0.979
MSE = 0.027
Classification of PD  Diagnosis UCI machine 31; 8HC + 23 PD  SVM-linear with 5-fold cross  Error rate ~0.13 2012  Jiand Li, 2012
from HC learning repository validation
Classification of PD  Diagnosis UCI machine 40; 20 HC + 20 PD Decision tree, random forest, SVM-linear: 2018  Junior et al., 2018
from HC learning repository SVM, GBM, XGBoost FNR = 10%
Accuracy = 0.725
Classification of PD  Diagnosis UCI machine 31; 8HC + 23 PD CART, SVM, ANN SVM accuracy = 93.84% 2020 Karapinar Senturk,

from HC

learning repository

2020

(Continued)
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TABLE 4 | Continued

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
Classification of PD  Diagnosis UCI machine Dataset 1: 31; 8 HC EWNN with a train-test ratio of Dataset 1: 2018 Khanetal., 2018
from HC learning repository 4+ 23 PD 90:10 and cross validation ~ Accuracy = 92.9%
Dataset 2: 40; 20 Ensemble classification
HC + 20 PD accuracy = 100.0%
Sensitivity = 100.0%
MCC = 100.0%
Dataset 2:
Accuracy = 66.3%
Ensemble classification
accuracy = 90.0%
Sensitivity = 93.0%
Specificity = 97.0%
MCC = 87.0%
Classification of PD  Diagnosis UCI machine 40; 20 HC 4+ 20 PD Stacked generalization with  Accuracy = ~70% 2015  Kraipeerapun and
from HC learning repository CMTNN with 10-fold cross Amornsamankul,
validation 2015
Classification of PD  Diagnosis UCI machine 40; 20 HC + 20 PD HMM, SVM HMM: 2019  Kuresanet al.,
from HC learning repository Accuracy = 95.16% 2019
Sensitivity = 93.55%
Specificity = 91.67%
Classification of PD  Diagnosis UCI machine 31; 8HC + 23 PD IGWO-KELM with 10-fold Iteration number = 100 2017 Lietal, 2017
from HC learning repository cross validation Accuracy = 97.45%
Sensitivity = 99.38%
Specificity = 93.48%
Precision = 97.33%
G-mean = 96.38%
F-measure = 98.34%
Classification of PD  Diagnosis UCI machine 31;8HC + 23PD SCFW-KELM with 10-fold Accuracy = 99.49% 2014 Maetal., 2014
from HC learning repository cross validation Sensitivity = 100%
Specificity = 99.39%
AUC = 99.69%
F-measure = 0.9966
Kappa = 0.9863
Classification of PD  Diagnosis UCI machine 31; 8HC + 23 PD SVM-RBF with 10-fold cross Accuracy = 96.29% 2016  Maetal, 2016
from HC learning repository validation Sensitivity = 95.00%
Specificity = 97.50%
Classification of PD  Diagnosis UCI machine 31; 8 HC 4+ 23 PD  Logistic regression, NN, SVM, Average accuracy across all 2013  Mandal and
from HC learning repository SMO, Pegasos, AdaBoost, = models = 97.06% Sairam, 2013
ensemble selection, FURIA,  SMO, Pegasos, or
rotation forest Bayesian AdaBoost accuracy =
network with 10-fold 98.24%
cross-validation
Classification of PD  Diagnosis UCI machine 31; 8HC + 23 PD  Logistic regression, KNN, ANN: 2018 Mararetal., 2018
from HC learning repository SVM, naive Bayes, decision  Accuracy = 94.87%
tree, random forest, ANN Specificity = 96.55%
Sensitivity = 90%
Classification of PD  Diagnosis UCI machine Dataset 1: 31; 8 HC KNN Dataset 1 accuracy = 90% 2017  Moharkan et al.,
from HC learning repository  + 23 PD 2017
(Continued)
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TABLE 4 | Continued

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
Dataset 2: 40; 20 Dataset 2 accuracy = 65%
HC + 20 PD
Classification of PD  Diagnosis UCI machine 31; 8 HC 4+ 23 PD  Rotation forest ensemble with Accuracy = 87.1% 2011 Ozcift and Gulten,
from HC learning repository 10-fold cross validation Kappa error = 0.63 2011
AUC = 0.860
Classification of PD  Diagnosis UCI machine 31;8HC + 23 PD  Rotation forest ensemble Accuracy = 96.93% 2012 Ogzcift, 2012
from HC learning repository Kappa = 0.92
AUC = 0.97
Classification of PD  Diagnosis UCI machine 31;8HC + 23PD SVM-RBF with 10-fold cross 10-fold cross validation: 2016  Peker, 2016
from HC learning repository validation or a train-test ratio - Accuracy = 98.95%
of 50:50 Sensitivity = 96.12%
Specificity = 100%
F-measure = 0.9795
Kappa = 0.9735
AUC = 0.9808
Classification of PD  Diagnosis UCI machine 31; 8HC + 23PD  ELM with 10-fold cross Accuracy = 88.72% 2016  Shahsavari et al.,
from HC learning repository validation Recall = 94.33% 2016
Precision = 90.48%
F-score = 92.36%
Classification of PD  Diagnosis UCI machine 31;8HC + 23PD  Ensemble learning with Accuracy = 90.6% 2019  Sheibaniet al.,
from HC learning repository 10-fold cross validation Sensitivity = 95.8% 2019
Specificity = 75%
Classification of PD  Diagnosis UCI machine 31;8HC + 23PD GLRA, SVM, bagging Bagging: 2017  Wuetal, 2017
from HC learning repository ensemble with 5-fold cross  Sensitivity = 0.9796
validation Specificity = 0.6875
MCC = 0.6977
AUC = 0.9558
SVM:
Sensitivity = 0.9252
specificity = 0.8542
MCC = 0.7592
AUC = 0.9349
Classification of PD  Diagnosis UCI machine 31; 8HC + 23 PD  Decision tree classifier, logistic SVM: 2011 VYadavetal,, 2011
from HC learning repository regression, SVM with 10-fold Accuracy = 0.76
cross validation Sensitivity = 0.9745
Specificity = 0.13
Classification of PD  Diagnosis UCI machine 80; 40 HC + 40 PD KNN, SVM with 10-fold cross SVM: 2019  Yaman et al., 2020
from HC learning repository validation Accuracy = 91.25%
Precision = 0.9125
Recall = 0.9125
F-Measure = 0.9125
Classification of PD  Diagnosis UCI machine 31; 8HC + 23 PD MAP, SVM-RBF, FLDA with  MAP: 2014 VYangetal.,, 2014

from HC

learning repository

5-fold cross validation

Accuracy = 91.8%
Sensitivity = 0.986
Specificity = 0.708
AUC = 0.94

(Continued)
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TABLE 4 | Continued

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
Classification of PD  Differential Collected from 50; 30 PD + 9 MSA SVM, KNN, DA, naive Bayes, SVM-linear: 2016 Benbaetal.,
from other disorders diagnosis participants + 5FND + 1 classification tree with LOSO Accuracy = 90% 2016a
somatization + 1 Sensitivity = 90%
dystonia +2CD + 1 e ano
ET+1GPD Specificity = 90%
MCC = 0.794067
PE =0.788177
Classification of PD  Differential Collected from 40; 20 PD + 9 MSA SVM (RBF, linear, polynomial, SVM-linear accuracy = 85% 2016 Benbaet al.,
from other disorders diagnosis participants + 5FND + 1 and MLP kernels) with LOSO 2016b
somatization + 1
dystonia + 2CD +
1ET + 1 GPD
Classification of PD  Diagnosis Collected from 52; 9 HC + 43 PD SVM-RBF with cross Accuracy = 81.8% 2014  Frid et al., 2014
from HC and assess participants validation
the severity of PD
Classification of PD  Diagnosis Collected from 54; 27 HC + 27 PD SVM with stratified 10-fold ~ Accuracy = 94.4% 2018 Montana et al.,
from HC participants cross validation or Specificity = 100% 2018
leave-one-out cross validation Sensitivity = 88.9%
Classification of PD  Diagnosis Collected from 40; 20 HC + 20 PD KNN, SVM-linear, SVM-RBF  SVM-linear: 2013 Sakaretal., 2013
from HC participants with leave-one-subject-out or Accuracy = 77.50%
summarized leave-one-out MCC = 0.5507
Sensitivity = 80.00%
Specificity = 75.00%
Classification of PD  Diagnosis ~ Collected from 78; 27 HC 4 51 PD KNN, SVM-linear, SVM-RBF,  SVM-RBF: 2017 Sztaho et al., 2017
from HC participants ANN, DNN with leave-one-out Accuracy = 84.62%
cross validation Precision — 88.04%
Recall = 78.65%
Classification of PD  Diagnosis  Collected from 88; 33 HC + 55 PD KNN, SVM-linear, SVM-RBF, SVM-RBF: 2019  Sztaho et al., 2019
from HC and assess participants ANN, DNN with Accuracy = 89.3%
the severity of PD leave-one-subject-out cross Sensitivity = 90.2%
validation o
Specificity = 87.9%
Classification of PD  Diagnosis Collected from 43; 10 HC + 33 PD Random forests, SVM with  SVM accuracy = 98.6% 2012 Tsanas et al., 2012
from HC participants 10-fold cross validation and a
train-test ratio of 90:10
Classification of PD  Diagnosis Collected from 99; 35 HC + 64 PD Random forest with internal  EER = 19.27% 2017  Vaiciukynas et al.,
from HC participants out-of-bag (OOB) validation 2017
Classification of PD  Diagnosis UCI machine 40 and 28; 20 HC + ELM Training data: 2016  Agarwal et al.,
from HC learning repository 20 PD and 28 PD, Accuracy = 90.76% 2016
and participants respectively MCC = 0.815
Test data:
Accuracy = 81.55%
Classification of PD  Diagnosis The Neurovoz 108; 56 HC + 52 PD Siamese LSTM-based NN EER =1.9% 2019 Bhatiet al., 2019
from HC corpus with 10-fold cross- validation
Classification of PD  Diagnosis mPower database 2,289; 2,023 HC + L2-regularized logistic Gradient boosted decision 2019 Tracyetal., 2019
from HC 246 PD regression, random forest, trees:
gradient boosted decision Recall = 0.797
trees with 5-fold cross Precision = 0.901
validation F1-score = 0.836
(Continued)
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TABLE 4 | Continued

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
Classification of PD  Diagnosis PC-GITA database 100; 50 HC + 50 PD ResNet with train-validation ~ Precision = 0.92 2019  Wodzinski et al.,
from HC ratio of 90:10 Recall = 0.92 2019

F1-score = 0.92
Accuracy = 91.7%

ANN, artificial neural network; AUC, area under the receiver operating characteristic (ROC) curve; CART, classification and regression trees;, CD, cervical dystonia; CMTNN,
complementary neural network; CNN, convolutional neural network; DA, discriminant analysis; DBN, deep belief network; DNN, deep neural network; ECFA, enhanced chaos-based
firefly algorithm; EFMM-OneR, enhanced fuzzy min-max neural network with the OneR attribute evaluator; ELM, extreme Learning machine; ET, extra trees or essential tremor; EWNN,
evolutionary wavelet neural network; FBANN, feedforward back-propagation based artificial neural network; FKNN, fuzzy k-nearest neighbor; FLDA, Fisher’s linear discriminant analysis;
FND, functional neurological disorder; FNR, false negative rate; FPR, false positive rate; FURIA, fuzzy unordered rule induction algorithm; GA, genetic algorithm, GBM, gradient
boosting machine; GLRA, generalized logistic regression analysis; GPD, generalized paroxysmal dystonia; GRNN, general(ized) regression neural network; HC, healthy control; HMM,
hidden Markov model; IGWO-KELM, improved gray wolf optimization and kernel(-based) extreme learning machine; KELM, kernel-based extreme learning machine; KNN, k-nearest
neighbors; LDA, linear discriminant analysis; LOSO, leave-one-subject-out; LS-SVM, least-square support vector machine; LSTM, long short-term memory; MAF, maximum a posteriori
decision rule; MCC, Matthews correlation coefficient; MLE, multilayer perceptron; MSA, multiple system atrophy; MSE, mean squared error; NN, neural network; NNge, non-nested
generalized exemplars; NPV, negative predictive value; PD, Parkinson’s disease; PNN, probabilistic neural network; RBM, restricted Boltzmann machine; ResNet, residual neural network;
RPART, recursive partitioning and regression trees; SCFW-KELM, subtractive clustering features weighting and kernel-based extreme learning machine; SMO, sequential minimal
optimization; SVM, support vector machine; SVM-linear, support vector machine with linear kernel; SVM-RBF, support vector machine with radial basis function kernel; XGBoost,
extreme gradient boosting.

any of the given categories (Figure 4B). In 8 of 36 studies, neural ~ PET (n = 4)

networks were directly applied to MRI data, while the remaining ~ All 4 studies used sensitivity and specificity (Table 7) in model

studies used machine learning models to learn from extracted  evaluation while 3 used accuracy. Average accuracy of the 3

features, e.g., cortical thickness and volume of brain regions, to  studies was 85.6 (6.6) %, with a lowest accuracy of 78.16%

diagnose PD. (Segovia et al, 2015) and a highest accuracy of 90.72% (Wu
Out of 17 studies that used MRI data from the PPMI database, et al., 2019; Figure 4A). Half of the 4 studies (50.0%) obtained

16 used accuracy to evaluate model performance and the average  the highest per-study accuracy with SVM (Segovia et al., 2015;

accuracy was 87.9 (8.0) %. The lowest and highest accuracies were ~ Wu et al.,, 2019) and the other half (50.0%) with neural networks

70.5 and 99.9%, respectively (Table 6). In 16 out of 19 studies  (Figure 4B).

that acquired MRI data from human participants, accuracy

was used to evaluate classification performance and an average ~ CSF (n = 5)

accuracy was 87.0 (8.1) % was achieved. The lowest reported  All 5 studies used AUC, instead of accuracy, to evaluate machine

accuracy was 76.2% and the highest reported accuracy was  learning models (Table 7). The average AUC was 0.8 (0.1), the

100% (Table 6). lowest AUC was 0.6825 (Maass et al., 2020) and the highest AUC

was 0.839 (Maass et al., 2018), respectively. Two studies obtained

the highest per-study AUC with ensemble learning, 2 studies with

Handwriting Patterns (n = 16) SVM and 1 study with regression (Figure 4B).

Fifteen out of 16 studies used accuracy in model evaluation and
the average accuracy was 87.0 (6.3) % (Table 7). Among these
studies, the lowest accuracy was 76.44% (Ali et al., 2019b) and the
highest accuracy was 99.3% (Pereira et al., 2018; Figure 4A). The
highest accuracy per-study was obtained with neural network in
6 studies (37.5%), with SVM in 5 studies (31.3%), with ensemble
learning in 4 studies (25.0%), and with naive Bayes in 1 study
(6.3%; Figure 4B).

Other Types of Data (n = 10)

Only 5 studies used accuracy to measure the performance of
machine learning models (Table 7). An average accuracy of 91.9
(6.4) % was obtained, with a lowest accuracy of 84.85% (Shi
et al,, 2018) and a highest accuracy of 100% (Nuvoli et al., 2019;
Figure 4A). Out of the 10 studies, 5 (50%) used SVM to achieve
the per-study highest accuracy, 3 (30%) used ensemble learning,
1 (10%) used decision trees and 1 (10%) used machine learning
SPECT (n =14) models that do not belong to any given categories (Figure 4B).
Average accuracy of 12 out of 14 studies that used accuracy

to measure the performance of machine learning models was ~ Combination of More Than One Data Type (n = 18)
94.4 (4.2) % (Table 7). The lowest reported accuracy was 83.2%  Out of the 18 studies that used more than one type of data,
(Hsu et al., 2019) and 97.9% (Oliveira F. et al., 2018; Figure 4A). 15 used accuracy in model evaluation (Table7). An average
SVM led to the highest per-study accuracy in 10 out of 14  accuracy of 92.6 (6.1) % was obtained, and the lowest and highest
studies (71.4%). The highest per-study accuracy was obtained  accuracy among the 15 studies was 82.0% (Prince et al., 2019)
with neural networks in 3 studies (21.4%) and with regression in ~ and 100.0% (Cherubini et al., 2014b), respectively (Figure 4A).
1 study (7.1%; Figure 4B). The per-study highest accuracy was achieved with ensemble
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TABLE 5 | Studies that applied machine learning models to movement data to diagnose PD (n = 51).

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
Classification of PD  Diagnosis Collected from 108; 71 HC + 32 PD Ensemble method of 8 Sensitivity = 96% 2017  Adams, 2017
from HC participants models (SVM, MLP, logistic Specificity = 97%
regression, random forest, AUC = 0.98
NSVC, decision tree, KNN,
QDA)
Classification of PD, Diagnosis and Collected from 293; 57 HC + 27 PD + Ensemble method of 7 8-class classification 2019 Ahmadietal.,
HC and other differential participants 49 AVS + 12 PNP + 48 models (logistic regression, accuracy = 82.7% 2019
neurological stance  diagnosis CA + 16 DN + 25 OT + KNN, shallow and deep
disorders 59 PPV ANNSs, SVM, random
forest, extra-randomized
trees) with 90% training
and 10% testing data in
stratified k-fold
cross-validation
Classification of PD  Diagnosis Collected from 137; 38 HC + 99 PD SVM with PD vs. HC accuracy = 2016  Bernad-Elazari
from HC participants leave-one-out-cross 92.3% etal., 2016
validation Mild vs. severe accuracy
=89.8%
Mild vs. HC accuracy =
85.9%
Classification of PD  Diagnosis Collected from 30; 14 HC + 16 PD SVM (linear, quadratic, Classification with ANN: 2019  Buongiorno et al.,
from HC participants cubic, Gaussian kernels),  Accuracy = 89.4% 2019
ANN, with 5-fold Sensitivity = 87.0%
cross-validation .
Specificity = 91.8%
Severity assessment with
ANN:
Accuracy = 95.0%
sensitivity = 90.0%
Specificity = 99.0%
Classification of PD  Diagnosis Collected from 28; 12 HC + 16 PD NN with a SVM: 2017 Buttetal., 2017
from HC participants train-validation-test ratio of Accuracy = 85.71%
70:15:15, SVM with Sensitivity = 83.5%
leave-one-out Specificity = 87.5%
cross-validation, logistic
regression with 10-fold
cross validation
Classification of PD  Diagnosis Collected from 28;12HC + 16 PD Logistic regression, naive  Naive Bayes: 2018 Buttetal., 2018
from HC participants Bayes, SVM with 10-fold  Accuracy = 81.45%
cross validation Sensitivity = 76%
Specificity = 86.5%
AUC = 0.811
Classification of PD  Diagnosis Collected from 54, 27 HC + 27 PD Naive Bayes, LDA, KNN,  Majority of votes 2018 Caramia et al.,
from HC participants decision tree, SVM-linear, (weighted) accuracy = 2018
SVM-RBF, majority of votes 96%
with 5-fold cross validation
Classification of PD, Diagnosis Collected from 90; 30 PD + 30 HC + 30 SVM, random forest, naive Random forest: 2019 Cavallo et al.,
HC and PD, HC, IH participants IH Bayes with 10-fold cross  HC vs. PD: 2019
validation Accuracy = 0.950
F-measure = 0.947
HC + IH vs. PD:
Accuracy = 0.917
F-measure = 0.912
HC vs. IH vs. PD:
(Continued)
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TABLE 5 | Continued

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
Accuracy = 0.789
F-measure = 0.796
Classification of PD  Diagnosis, Collected from PD vs. HC: Decision tree, naive Bayes, Adaptive boosting with 2015  Cook et al., 2015
from HC and differential participants random forest, SVM, decision tree:
classification of HC, diagnosis and 75: 50 HC + 25 PD adaptive boosting (with PD vs. HC:
MCI, PDNOMCI, and subtyping decision tree or random Accuracy = 0.79
PDMCI ) forest) with 10-fold cross
Subtyping: validation AUC = 0.82
52; 18 HC + 16 Subtyping (HOA vs. MCI
PDNOMCI + 9 PDMCI + vs. PDNOMCI vs. PDMCI):
9 MClI
Accuracy = 0.85
AUC = 0.96
Classification of PD  Diagnosis Collected from 580; 424 HC + 156 PD  Hidden Markov models Accuracy = 85.51% 2017  Cuzzolin et al.,
from HC participants with nearest neighbor 2017
classifier with cross
validation and train-test
ratio of 66.6:33.3
Classification of PD  Diagnosis Collected from 80; 40 HC + 40 PD Random forest, SVM with  SVM-RBF: 2017  Djuri¢-Jovici¢
from HC participants 10-fold cross validation Accuracy = 85% etal., 2017
Sensitivity = 85%
Specificity = 82%
PPV = 86%
NPV = 83%
Classification of PD  Diagnosis Collected from 13; 5HC + 8 PD SVM-RBF with 100% HC and PD 2014  Droretal., 2014
from HC participants leave-one-out cross classified correctly
validation (confusion matrix)
Classification of PD  Diagnosis Collected from 75; 38 HC + 37 PD SVM with leave-one-out  Accuracy = 85.61% 2014  Drotér et al., 2014
from HC participants cross validation
Sensitivity = 85.95%
Specificity = 85.26%
Classification of PD  Differential Collected from 24;13PD + 11 ET SVM-linear, SVM-RBF with Accuracy = 83% 2016  Ghassemi et al.,
from ET diagnosis participants leave-one-out cross 2016
validation
Classification of PD  Diagnosis Collected from 41; 22 HC + 19 PD SVM, decision tree, SVM accuracy = 0.89 2018 Kileinetal., 2017
from HC participants random forest, linear
regression with 10-fold and
leave-one-individual out
(L10) cross validation
Classification of PD  Diagnosis Collected from 74; 33 young HC + 14 SVM with 10-fold cross Sensitivity = ~90% 2017 Javedetal., 2018
from HC participants elderly HC + 27 PD validation
Classification of PD  Diagnosis Collected from 55; 20 HC + 35 PD SVM with leave-one-out  PD diagnosis: 2016  Koger and Oktay,

from HC and assess participants cross validation Accuracy = 89% 2016
the severity of PD Precision = 0.91
Recall = 0.94
Severity assessment:
HYS 1 accuracy = 72%
HYS 2 accuracy = 77%
HYS 3 accuracy = 75%
HYS 4 accuracy = 33%
(Continued)
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TABLE 5 | Continued

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
Classification of PD  Diagnosis Collected from 45; 20 HC + 25 PD Nalve Bayes, logistic BagDT: 2015  Kostikis et al.,
from HC participants regression, SVM, Sensitivity = 82% 2015
AdaBoost, C4.5, BagDT  Specificity = 90%
with 10-fold stratified AUC = 0.94
cross-validation apart from
BagDT
Classification of PD  Diagnosis Collected from 40; 26 HC + 14 PD Random forest with Accuracy = 94.6% 2017  Kuhneretal., 2017
from HC participants leave-one-subject-out Sensitivity = 91.5%
cross-validation Specificity = 97.2%
Classification of PD  Diagnosis Collected from 177, 70 HC + 107 PD  ESN with 10-fold cross AUC = 0.852 2018 Lacyetal, 2018
from HC participants validation
Classification of PD  Diagnosis Collected from 39; 16 young HC + 12 LDA with leave-one-out Multiclass classification 2018 Martinez et al.,
from HC participants elderly HC + 11 PD cross validation (young HC vs. 2018
age-matched HC vs. PD):
Accuracy = 64.1%
Sensitivity = 47.1%
Specificity = 77.3%
Classification of PD  Diagnosis Collected from 38; 10 HC + 28 PD SVM-Gaussian with Training accuracy = 2018  Oliveira H. M.
from HC participants leave-one-out cross 96.9% etal.,, 2018
validation
Test accuracy = 76.6%
Classification of PD  Diagnosis Collected from 30; 15 HC + 15 PD SVM-RBF, PNN with SVM-RBF: 2015 Oungetal., 2015
from HC participants 10-fold cross validation Accuracy = 88.80%
Sensitivity = 88.70%
Specificity = 88.15%
AUC = 88.48
Classification of PD  Diagnosis Collected from 45;14 HC + 31 PD Deep-MIL-CNN with LOSO With LOSO: 2019  Papadopoulos
from HC participants or RkF Precision = 0.987 etal, 2019
Sensitivity = 0.9
specificity = 0.993
F1-score = 0.943
With RKkF:
Precision = 0.955
Sensitivity = 0.828
Specificity = 0.979
F1-score = 0.897
Classification of PD, Diagnosis and Collected from 11;,3HC+5PD+3  MTFL with 10-fold cross ~ PD vs. HC AUC = 0.983 2017  Papavasileiou
HC and post-stroke  differential participants post-stroke validation etal., 2017
diagnosis
Classification of PD  Diagnosis Collected from 182; 94 HC + 88 PD LSTM, CNN-1D, CNN-LSTM: 2019 Reyesetal.,, 2019
from HC participants CNN-LSTM with 5-fold Accuracy = 83.1%
cross-validation and a Precision = 83.5%
training-test ratio of 90:10
Recall = 83.4%
F1-score = 81%
Kappa = 64%
Classification of PD  Diagnosis Collected from 60; 30 HC + 30 PD Naive Bayes, KNN, SVM  SVM: 2019 Ricci et al., 2020

from HC

participants

with leave-one-out cross

validation

Accuracy = 95%
Precision = 0.951
AUC = 0.950

(Continued)
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TABLE 5 | Continued

Objectives Type of Source of data

diagnosis

Number of
subjects (n)

Machine learning
method(s), splitting
strategy and cross
validation

Outcomes Year References

Classification of PD,
HC and IH

Diagnosis and  Collected from
differential participants
diagnosis

Classification of PD, Diagnosis and Collected from
HC and H differential participants
diagnosis

Collected from
participants

Differential
diagnosis

Classification of PD
from ET

Collected from
participants

Classification of PD
from HC

Diagnosis

Collected from
participants

Classification of PD
from HC

Diagnosis

90; 30 HC + 30 PD + 30 SVM-polynomial, random

H

45; 15 HC + 15 PD + 15 SVM-polynomial, random

IH

52; 32 PD + 20 ET

12,10 HC + 2 PD

39; 16 HC + 23 PD

forest, naive Bayes with
10-fold cross validation

forest with 5-fold cross
validation

SVM-linear with 10-fold
cross validation

Naive Bayes, LogitBoost,
random forest, SVM with
10-fold cross-validation

SVM-RBF with 10-fold
stratified cross validation

HC vs. PD, naive Bayes or 2018  Rovini et al.,, 2018

random forest:
Precision = 0.967
Recall = 0.967
Specificity = 0.967
Accuracy = 0.967
F-measure = 0.967

HC + IH vs. PD, random
forest:

Precision = 1.000
Recall = 0.933
Specificity = 1.000
Accuracy = 0.978
F-measure = 0.966

Multiclass classification,
random forest:
Precision = 0.784
Recall = 0.778
Specificity = 0.889
Accuracy = 0.778
F-measure = 0.781

HC vs. PD, random forest: 2019
Precision = 1.000

Recall = 1.000

Specificity = 1.000

Accuracy = 1.000

Rovini et al., 2019

F-measure = 1.000

Multiclass classification

(HC vs. IH vs. PD),

random forest:

Precision = 0.930

Recall = 0.911

Specificity = 0.956

Accuracy = 0.911

F-measure = 0.920

2016

Accuracy = 1 Surangsrirat et al.,

Sensitivity = 1 2016
Specificity = 1
Random forest: 2017
Accuracy = 92.29%
Precision = 0.99
Recall = 0.99
Sensitivity = 88.9%
Specificity = 100%
Precision = 100%
FPR = 0.0%

Tahavori et al.,
2017

2010 Tienetal., 2010

(Continued)
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TABLE 5 | Continued

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
Classification of PD  Diagnosis Collected from 60; 30 HC + 30 PD Logistic regression, naive  Random forest: 2018 Urcuquiet al.,
from HC participants Bayes, random forest, Accuracy = 82% 2018
decision tree with 10-fold 5o negative rate = 23%
cross validation .
False positive rate = 12%
Classification of PD  Diagnosis PhysioNet 47,18 HC + 29 PD SVM, KNN, random forest, SVM with cubic kernel: 2017 Alametal., 2017
from HC decision tree Accuracy = 93.6%
Sensitivity = 93.1%
Specificity = 94.1%
Classification of PD  Diagnosis PhysioNet 34; 17 HC + 17 PD MLP, SVM, decision tree  MLP: 2018  Alaskar and
from HC Accuracy = 91.18% Hussain, 2018
Sensitivity = 1
Specificity = 0.83
Error = 0.09
AUC =0.92
Classification of PD  Diagnosis PhysioNet 166; 73 HC + 93 PD 1D-CNN, 2D-CNN, LSTM, 2D-CNN and LSTM 2019  Alharthi and
from HC and assess decision tree, logistic accuracy = 96.0% Ozanyan, 2019
the severity of PD regression, SVM, MLP
Classification of PD  Diagnosis PhysioNet 146; 60 HC + 86 PD SVM-Gaussian with 3- or  Accuracy = 100%, 2019 Andreietal., 2019
from HC 5-fold cross validation 88.88%, and 100% in
three test groups
Classification of PD  Diagnosis PhysioNet 166; 73 HC + 93 PD ANN, SVM, naive Bayes ~ ANN accuracy = 86.75% 2017 Babyetal., 2017
from HC with cross validation
Classification of PD  Diagnosis PhysioNet 31;16 HC + 15 PD SVM-linear, KNN, naive SVM, KNN and decision 2019 Félix et al., 2019
from HC Bayes, LDA, decision tree tree accuracy = 96.8%
with leave-one-out cross
validation
Classification of PD  Diagnosis PhysioNet 31; 16 HC + 15 PD SVM-linear with Accuracy = 100% 2017  Joshietal., 2017
from HC leave-one-out cross
validation
Classification of PD  Diagnosis PhysioNet 165; 72 HC + 93 PD KNN, CART, decision tree, SVM: 2019  Khoury et al., 2019
from HC random forest, naive Accuracy = 90.32%
Bayes, SVM-polynomial,  Precision = 90.55%
SVM-linear, K-means, Recall = 90.21%
GMM with leave-one-out  F-measure = 90.38%
cross validation
Classification of ALS, Diagnosis PhysioNet 64; 16 HC + 15 PD + 13 String grammar PD vs. HC accuracy = 2018 Klomsae et al.,
HD, PD from HC ALS + 20 HD unsupervised possibilistic  96.43% 2018
fuzzy C-medians with
FKNN, with 4-fold cross
validation
Classification of PD  Diagnosis PhysioNet 166; 73 HC + 93 PD Logistic regression, KNN: 2018 Mittra and Rustagi,
from HC decision trees, random Accuracy = 93.08% 2018
forest, SVM-Linear, Precision = 89.58%
SVM-RBF, SUM-Poly, KNN 0 il = 84.319%
with cross validation
F1-score = 86.86%
Classification of PD  Diagnosis PhysioNet 85; 43 HC + 42 PD LS-SVM with Leave-one-out cross 2018 Pham, 2018
from HC leave-one-out, 2- or validation:
10-fold cross validation AUC = 1
Sensitivity = 100%
Specificity = 100%
Accuracy = 100%
(Continued)
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TABLE 5 | Continued

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
10-fold cross validation:
AUC = 0.89
Sensitivity = 85.00%
Specificity = 73.21%
Accuracy = 79.31%
Classification of PD  Diagnosis PhysioNet 165; 72 HC + 93 PD LS-SVM with Accuracy = 100% 2018 Pham and Yan,
from HC leave-one-out, 2- or 5- or  Sensitivity = 100% 2018
10-fold cross validation o
Specificity = 100%
AUC =1
Classification of PD  Diagnosis PhysioNet 166; 73 HC + 93 PD DCALSTM with stratified ~ Sensitivity = 99.10% 2019 Xia et al., 2020
from HC 5-fold cross validation Specificity = 99.01%
Accuracy = 99.07%
Classification of HC, Diagnosis and PhysioNet 64; 16 HC + 15 PD + 13 SVM-RBF with 10-fold PD vs. HC: 2009 Yang et al., 2009
PD, ALS and HD differential ALS + 20 HD cross validation Accuracy = 86.43%
diagnosis AUC = 0.92
Classification of PD, Diagnosis PhysioNet 64; 16 HC + 15 PD + 13 Adaptive neuro-fuzzy PD vs. HC: 2018 VYeetal, 2018
HD, ALS and ND ALS + 20 HD inference system with
from HC leave-one-out cross
validation
Accuracy = 90.32%
Sensitivity = 86.67%
Specificity = 93.75%
Classification of PD  Diagnosis mPower database 50; 22 HC + 28 PD Random forest, bagged =~ Random forest: 2017  Abujrida et al.,
from HC and assess trees, SVM, KNN with 2017
the severity of PD 10-fold cross validation
PD vs. HC accuracy =
87.03%
PD severity assessment
accuracy = 85.8%
Classification of PD  Diagnosis mPower database 1,815; 866 HC + 949 PDCNN with 10-fold cross ~ Accuracy = 62.1% 2018  Prince and de Vos,
from HC validation 2018
F1 score = 63.4%
AUC = 63.5%
Classification of PD  Diagnosis Dataset from 49; 26 HC + 23 PD KFD-RBF, naive Bayes, Random forest accuracy 2015 Wahid et al., 2015

from HC

Fernandez et al.,
2013

KNN, SVM-RBF, random
forest with 10-fold cross
validation

=092.6%

ALS, amyotrophic lateral sclerosis; ANN, artificial neural network; AUC, area under the receiver operating characteristic (ROC) curve; AVS, acute unilateral vestibulopathy, BagDT,
bootstrap aggregation for a random forest of decision trees; CA, anterior lobe cerebella atrophy; CART, classification and regression trees; DCALSTM, dual-modal with each branch has
a convolutional network followed by an attention-enhanced bi-directional LSTM; DN, downbeat nystagmus syndrome; ESN, echo state network; FKNN, fuzzy k-nearest neighbor; GMM,
Gaussian mixture model; HC, healthy control; HD, Huntington’s disease; IH, idiopathic hyposmia; KFD, kernel Fisher discriminant; KNN, k-nearest neighbors; LDA, linear discriminant
analysis; LOSO, leave-one-subject-out; LS-SVM, least-squares support vector machine; LSTM, long short-term memory; MCI, mild cognitive impairment; MIL, multiple-instance learning;
MLR, multilayer perceptron; MTFL, multi-task feature learning; NN, neural network; NSVC, nu-support vector classification; OT, primary orthostatic tremor; PD, Parkinson’s disease;
PDMCI, PD participants who met criteria for mild cognitive impairment; PDNOMCI, PD participants with no indication of mild cognitive impairment; PNN, probabilistic neural network; PNR,
sensory polyneuropathy; PPV, phobic postural vertigo, QDA, quadratic discriminant analysis; RkF, repeated k-fold; SVM, support vector machine; SVM-Poly, support vector machine
with polynomial kernel; SVM-RBF, support vector machine with radial basis function kernel.
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TABLE 6 | Studies that applied machine learning models to MRI data to diagnose PD (n = 36).

Objectives

Type of
diagnosis

Source of data

Number of
subjects (n)

Machine learning
method(s), splitting
strategy and cross
validation

Outcomes Year

References

Classification of PD
from MSA

Classification of PD
from MSA

Classification of PD
from HC

Classification of PD
from HC

Classification of PD
from PSP

Classification of PD,

MSA, PSP and HC

Differential
diagnosis

Differential
diagnosis

Diagnosis

Diagnosis

Differential
diagnosis

Diagnosis and
differential
diagnosis

Collected from
participants

Collected from
participants

Collected from
participants

Collected from
participants

Collected from
participants

Collected from
participants

150; 54 HC + 65 PD +

31 MSA

161; 59 HC + 62 PD +

30 MSA

94; 50 HC + 44 PD

47;26 HC + 21 PD

78, 57 PD + 21 PSP

106; 36 HC + 35 PD +

16 MSA + 19 PSP

SVM with
leave-one-out-cross
validation

SVM with
leave-one-out-cross
validation

CNN with 85 subjects for
training and 9 for testing

SVM-linear with
leave-one-out cross
validation

SVM with leave-one-out
cross validation

Elastic Net regularized
logistic regression with
nested 10-fold cross
validation

MSA vs. PD:

Accuracy = 0.79
Sensitivity = 0.71
Specificity = 0.86

MSA vs. HC:

Accuracy = 0.79
Sensitivity = 0.84
Specificity = 0.74

MSA vs. subsample of PD:
Accuracy = 0.84
Sensitivity = 0.77
Specificity = 0.90
Accuracy = 77.17%
Sensitivity = 83.33%
Specificity = 74.19%
Training accuracy = 95.24%

2019

2019

2019
Testing accuracy = 88.88%
Accuracy = 93.62%
Sensitivity = 90.47%
Specificity = 96.15%
Accuracy = 100%

2015

2013
Sensitivity = 1
Specificity = 1
HC vs. PD/MSA-P/PSP:
AUC = 0.88
Sensitivity = 0.80
Specificity = 0.83
PPV = 0.82

NPV = 0.81

HC vs. PD:

AUC = 0.91
Sensitivity = 0.86
Specificity = 0.80
PPV = 0.82

NPV = 0.89

PD vs. MSA/PSP:
AUC = 0.94
Sensitivity = 0.86
Specificity = 0.87
PPV = 0.88

NPV = 0.84

PD vs. MSA:
AUC = 0.99
Sensitivity = 0.97
Specificity = 1.00
PPV = 1.00

NPV = 0.93

PD vs. PSP:

AUC = 0.99

2017

Abos et al., 2019

Baggio et al.,
2019

Banerjee et al.,
2019

Chen et al.,
2015

Cherubini et al.,
2014a

Duetal., 2017

(Continued)
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TABLE 6 | Continued

Objectives Type of Source of data

diagnosis

Number of
subjects (n)

Machine learning
method(s), splitting
strategy and cross
validation

Outcomes Year References

Classification of HC, Diagnosis and Collected from
PD, MSA and PSP differential participants
diagnosis

Collected from
participants

Differential
diagnosis

Classification of PD
and atypical PD

Collected from
participants

Differential
diagnosis

Classification of PD
and other forms of
Parkinsonism

Classification of HC, Diagnosis and Collected from

64; 22 HC + 21 PD + 11 SVM-linear with
MSA + 10 PSP leave-one-out cross
validation

40; 17 PD + 283 atypical SVM-RBF with 10-fold
PD cross-validation

SVM-RBF with 10-fold
cross validation

36; 16 PD + 20 other
Parkinsonism

464; 73 HC + 204 PD + SVM-RBF with 10-fold

Sensitivity = 0.97
Specificity = 1.00
PPV = 1.00

NPV = 0.94

MSA vs. PSP:

AUC = 0.98
Sensitivity = 0.94
Specificity = 1.00
PPV = 1.00

NPV = 0.93

PD vs. HC:
Accuracy = 41.86%
Sensitivity = 38.10%
Specificity = 45.45%
PD vs. MSA:
Accuracy = 71.87%
Sensitivity = 36.36%
Specificity = 90.48%
PD vs. PSP:
Accuracy = 96.77%
Sensitivity = 90%
Specificity = 100%
MSA vs. PSP:
Accuracy = 76.19%
MSA vs. HC:
Accuracy = 78.78%
Sensitivity = 54.55%
Specificity = 90.91%
PSP vs. HC:
Accuracy = 93.75%
Sensitivity = 90.00%
Specificity = 95.45%
Accuracy = 97.50%
TPR =0.94

FPR = 0.00

TNR = 1.00

FNR = 0.06
Accuracy = 86.92%
TP =0.87

FP =0.14

TN =0.87

FN =0.13

PD vs. HC:

2011 Focke et al.,

2011

2012 Haller et al.,

2012

2012 Haller et al.,

2013

2016  Huppertz et al.,

PD, PSP, MSA-C and differential participants 106 PSP + 21 MSA-C + cross validation Sensitivity = 65.2% 2016
MSA-P diagnosis 60 MSA-P Specificity = 67.1%
Accuracy = 65.7%
(Continued)
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TABLE 6 | Continued

Objectives

Type of
diagnosis

Source of data

Number of
subjects (n)

Machine learning
method(s), splitting
strategy and cross
validation

Outcomes

Year

References

Classification of PD
from HC

Diagnosis

Collected from
participants

Classification of PD, Diagnosis and Collected from

PSP, MSA-P and HC

Classification of PD
from HC
Classification of PD,
PSP, MSA-C and
MSA-P

Classification of PD
from HC

Classification of PD,
PSP and HC

differential
diagnosis

Diagnosis

Differential
diagnosis

Diagnosis

Diagnosis and

differential
diagnosis

participants

Collected from
participants
Collected from
participants

Collected from
participants

Collected from
participants

42;21 HC + 21 PD

419; 142 HC + 125 PD
+ 98 PSP + 54 MSA-P

65; 31 HC + 34 PD

SVM-linear with stratified
10-fold cross validation

CNN with train-validation

ratio of 85:15

PD vs. PSP:
Sensitivity = 82.5%
Specificity = 86.8%
Accuracy = 85.3%
PD vs. MSA-C:
Sensitivity = 76.2%
Specificity = 96.1%
Accuracy = 94.2%
PD vs. MSA-P:
Sensitivity = 86.7%
Specificity = 92.2%
Accuracy = 90.5%
Accuracy = 78.33%
Precision = 85.00%
Recall = 81.67%
AUC = 85.28%
PD:

Sensitivity = 94.4%
Specificity = 97.8%
Accuracy = 96.8%
AUC = 0.995

PSP:

Sensitivity = 84.6%
Specificity = 96.0%
Accuracy = 93.7%
AUC = 0.982
MSA-P:

Sensitivity = 77.8%
Specificity = 98.1%
Accuracy = 95.2%
AUC = 0.990

HC:

Sensitivity = 100.0%
Specificity = 97.5%
Accuracy = 98.4%
AUC = 1.000

FCP with 36 out of the 65 AUC = 0.997

subjects as the training set

85; 47 PD + 22 PSP + 9 SVM-linear with

MSA-C + 7 MSA-P

89; 47 HC + 42 PD

84; 28 HC + 28 PSP +

28 PD

leave-one-out cross
validation

4-class classification (MSA-C
vs. MSA-P vs. PSP vs. PD)

accuracy = 88%

Boosted logistic regression Accuracy = 76.2%

with nested
cross-validation

SVM-linear with
leave-one-out cross
validation

Sensitivity = 81%
Specificity = 72.7%
PD vs. HC:
Accuracy = 85.8%
Specificity = 86.0%

2017

2019

2016

2017

2019

2014

Kamagata et al.,
2017

Kiryu et al., 2019

LiuH. etal.,
2016

Morisi et al.,
2018

Rubbert et al.,
2019

Salvatore et al.,
2014
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TABLE 6 | Continued

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
Sensitivity = 86.0%
PSP vs. HC:
Accuracy = 89.1%
Specificity = 89.1%
Sensitivity = 89.5%
PSP vs. PD:
Accuracy = 88.9%
Specificity = 88.5%
Sensitivity = 89.5%
Classification of PD, Diagnosis and Collected from 100; 35 HC + 45 PD + CNN-DL, CR-ML, RA-ML PD vs. HC with CNN-DL: 2019  Shinde et al.,
APS (MSA, PSP) and differential participants 20 APS with 5-fold cross-validation Test accuracy = 80.0% 2019
HC diagnosis Test sensitivity = 0.86
Test specificity = 0.70
Test AUC = 0.913
PD vs. APS with CNN-DL:
Test accuracy = 85.7%
Test sensitivity = 1.00
Test specificity = 0.50
Test AUC = 0.911
Classification of PD  Diagnosis Collected from 101; 50 HC + 51 PD SVM-RBF with Sensitivity = 92% 2017 Tangetal., 2017
from HC participants leave-one-out cross Specificity = 87%
validation
Classification of PD  Diagnosis Collected from 85; 40 HC + 45 PD SVM-linear with Accuracy = 97.7% 2016  Zeng et al., 2017
from HC participants leave-one-out, 5-fold,
0.632-fold (1-1/e), 2-fold
cross validation
Classification of PD  Diagnosis PPMI database  543; 169 HC + 374 PD  RLDA with JFSS with Accuracy = 81.9% 2016 Adelietal., 2016
from HC 10-fold cross validation
Classification of PD  Diagnosis PPMI database ~ 543; 169 HC + 374 PD RFS-LDA with 10-fold Accuracy = 79.8% 2019 Adelietal., 2019
from HC cross validation
Classification of PD  Diagnosis PPMI database  543; 169 HC + 374 PD Random forest (for feature Accuracy = 0.93 2018 Amoroso et al.,
from HC selection and clinical AUC = 0.97 2018
score); SVM with 10-fold Sensitivity = 0.93
stratified cross validation o
Specificity = 0.92
Classification of PD, Diagnosis PPMI database  906; 203 HC + 66 MLP, XgBoost, random MLP: 2020 Chakraborty
HC and prodromal prodromal + 637 PD forest, SVM with 5-fold Accuracy = 95.3% etal., 2020
cross validation Recall — 95.41%
Precision = 97.28%
F1-score = 94%
Classification of PD  Diagnosis PPMI database  Dataset 1: 15; 6 HC + 9 SVM with leave-one-out ~ Dataset 1: 2014 Chenetal.,
from HC PD cross validation EER = 87% 2014
Dataset 2: 39; 21 HC + Accuracy = 80%
18 PD AUC = 0.907
Dataset 2:
EER = 73%
Accuracy = 68%
AUC = 0.780
Classification of PD  Diagnosis PPMI database  80; 40 HC + 40 PD Naive Bayes, SYM-RBF ~ SVM: 2019 Cigdem et al.,
from HC vvitlh 1Q—fo|d Cross Accuracy = 87.50% 2019
validation
(Continued)
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TABLE 6 | Continued

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
Sensitivity = 85.00%
Specificity = 90.00%
AUC = 90.00%
Classification of PD  Diagnosis PPMI database  37; 18 HC + 19 PD SVM-linear with Accuracy = 94.59% 2017  Kazeminejad
from HC leave-one-out cross etal., 2017
validation
Classification of PD, Diagnosis and PPMI database = 238; 62 HC + 142 PD + Joint learning with 10-fold HC vs. PD: 2018 Leietal, 2019
HC and SWEDD subtyping 34 SWEDD cross validation Accuracy = 91.12%
AUC = 94.88%
HC vs. SWEDD:
Accuracy = 94.89%
AUC = 97.80%
PD vs. SWEDD:
accuracy = 92.12%
AUC = 93.82%
Classification of PD  Diagnosis PPMI database  Baseline: 238; 62 HC + SSAE with 10-fold cross  HC vs. PD: 2019 Lietal, 2019
and SWEDD from HC 142 PD + 34 SWEDD  validation Accuracy = 85.24%,
12 months: 186; 54 HC 88.14%, and 96.19% for
+ 123 PD 4+ 9 SWEDD baseline, 12m, and 24 m
24 months: 127; 7 HC + HC vs. SWEDD:
88 PD + 22 SWEDD Accuracy = 89.67%,
95.24%, and 93.10% for
baseline, 12m, and 24 m
Classification of PD  Diagnosis PPMI database  112; 56 HC + 56 PD RLDA with 8-fold cross Accuracy = 70.5% 2016  LiuL.etal,
from HC validation AUC = 711 2016
Classification of PD  Diagnosis PPMI database  60; 30 HC + 30 PD SVM, ELM with train-test ELM: 2016  Pahuja and
from HC ratio of 80:20 Training accuracy = 94.87% Nagabhushan,
Testing accuracy = 90.97% 2016
Sensitivity = 0.9245
Specificity = 0.9730
Classification of PD  Diagnosis PPMI database  172; 103 HC + 69 PD  Multi-kernel SVM with 2017 Pengetal., 2017
from HC 10-fold cross validation Accuracy = 85.78%
Specificity = 87.79%
Sensitivity = 87.64%
AUC = 0.8363
Classification of PD  Diagnosis and PPMI database = 109; 32 HC + 77 PD (55 SVM with 2-fold cross PD vs. HC: 2016 Pengetal., 2016

from HC

subtyping

PD-NC + 22 PD-MCI)

validation

Accuracy = 92.35%
Sensitivity = 0.9035
Specificity = 0.9431
AUC = 0.9744
PD-MClI vs. HC:
Accuracy = 83.91%
Sensitivity = 0.8355
Specificity = 0.8587
AUC = 0.9184
PD-MCI vs. PD-NC:
Accuracy = 80.84%
Sensitivity = 0.7705
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TABLE 6 | Continued

Objectives Type of Source of data Number of Machine learning Outcomes Year References
diagnosis subjects (n) method(s), splitting
strategy and cross
validation
Specificity = 0.8457
AUC = 0.8677
Classification of PD, Diagnosis and PPMI database  831; 245 HC + 518 PD LSSVM-RBF with cross ~ Accuracy = 99.9% 2015  Singh and
HC and SWEDD subtyping + 68 SWEDD validation Specificity = 100% Samavedham,
Sensitivity = 99.4% 2015
Classification of PD, Diagnosis and PPMI database  741; 262 HC + 408 PD LSSVM-RBF with 10-fold  PD vs. HC accuracy = 2018 Singhetal.,
HC and SWEDD differential + 71 SWEDD cross validation 95.37% 2018
diagnosis PD vs. SWEDD accuracy =
96.04%
SWEDD vs. HC accuracy =
93.03%
Classification of PD  Diagnosis PPMI database ~ 408; 204 HC + 204 PD CNN (VGG and ResNet)  ResNet50 accuracy = 88.6% 2019  Yagis et al., 2019
from HC
Classification of PD  Diagnosis PPMI database  754; 168 HC + 596 PD FCN, GCN with 5-fold AUC = 95.37% 2018 Zhangetal.,
from HC cross validation 2018

APS, atypical parkinsonian syndromes; AUC, area under the receiver operating characteristic (ROC) curve; CNN, convolutional neural network; CNN-DL, convolutional neural network
with discriminative localization; CR-ML, contrast ratio classifier; EER, equal error rate; ELM, extreme learning machine; FCN, fully connected network; FCR, folded concave penalized
(learning); FN, false negative; FNR, false negative rate; FF, false positive; FPR, false positive rate; GCN, graph convolutional network; HC, healthy control; JFSS, joint feature-sample
selection; LSSVM, least-squares support vector machine; MLF, multilayer perceptron; MSA, multiple system atrophy; MSA-C, multiple system atrophy with a cerebellar syndrome;
MSA-F, multiple system atrophy with a parkinsonian type; PD, Parkinson’s disease; PD-MCI, PD participants who met criteria for mild cognitive impairment; PD-NC, PD participants with
no indication of mild cognitive impairment; PSF, progressive supranuclear palsy; RA-ML, radiomics based classifier; ResNet, residual neural network; RFS-LDA, robust feature-sample
linear discriminant analysis; RLDA, robust linear discriminant analysis; SSAE, stacked sparse auto-encoder; SVM, support vector machine; SVM-RBF, support vector machine with radial
basis function kernel;, SWEDD, PD with scans without evidence of dopaminergic deficit; TN, true negative; TNR, true negative rate; TF, true positive; TPR, true positive rate; XgBoost,

extreme gradient boosting.

learning in 6 studies (33.3%), with neural network in 5 studies
(27.8%), with SVM in 4 studies (22.2%), with regression in 1
(5.6%) study and with nearest neighbor (5.6%) in 1 study. One
study (5.6%) used machine learning models that do not belong
to any given categories to obtain the highest per-study accuracy
(Figure 4B).

DISCUSSION

Principal Findings

In this review, we present results from published studies that
applied machine learning to the diagnosis and differential
diagnosis of PD. Since the number of included papers
was relatively large, we focused on a high-level summary
rather than a detailed description of methodology and direct
comparison of outcomes of individual studies. We also
provide an overview of sample size, data source and data
type, for a more in-depth understanding of methodological
differences across studies and their outcomes. Furthermore,
we assessed (a) how large the participant pool/dataset was,
(b) to what extent new data (i.e., unpublished, raw data
acquired from locally recruited human participants) were
collected and used, (c) the feasibility of machine learning
and the possibility of introducing new biomarkers in the
diagnosis of PD. Overall, methodology studies that proposed
and tested novel technical approaches (e.g., machine learning
and deep learning models, data acquisition devices, and feature

extraction algorithms) have repetitively shown that features
extracted from data modalities including voice recordings and
handwritten patterns could lead to high patient-level diagnostic
performance, while facilitating accessible and non-invasive data
acquisition. Nevertheless, only a small number of studies
further validated these technical approaches in clinical settings
using local human participants recruited specifically for these
studies, indicating a gap between model development and their
clinical applications.

A per-study diagnostic accuracy above chance levels was
achieved in all studies that used accuracy in model evaluation
(Figure 4A). Apart from studies using CSF data that measured
model performance with AUC, classification accuracy associated
with 8 other data types ranged between 85.6% (PET) and
94.4% (SPECT), with an average of 89.9 (3.0) %. Therefore,
although the small number of studies of some data types
may not allow for a generalizable prediction of how well
these data types can help us differentiate PD from HC or
atypical Parkinsonian disorders, the application of machine
learning to a variety of data types led to high accuracy in
the diagnosis of PD. In addition, an accuracy significantly
above chance levels was achieved in all machine learning
models (Supplementary Table 1), while SVM, neural networks
and ensemble learning were among the most popular model
choices, all yielding great applicability to a variety of data
modalities. In the meantime, when compared with other
models, they led to the per-study highest classification accuracy
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TABLE 7 | Studies that applied machine learning models to handwritten patterns, SPECT, PET, CSF, other data types and combinations of data to diagnose PD (n = 67).

Objectives  Type of Source of Type of data Number of Machine learning Outcomes Year References
diagnosis data subjects (n) method(s), splitting
strategy and cross
validation
Classification Diagnosis HandPD Handwritten 92; 18 HC + LDA, KNN, Gaussian naive Chi-2 with Adaboost: 2019  Alietal., 2019b
of PD from patterns 74 PD Bayes, decision tree, Chi2 Accuracy = 76.44%
HC with Adaboost with 5- or Sensitivity = 70.94%
4-fold stratified cross Specificity = 81.94%
validation
Classification Diagnosis PPMI More than one  388; 194 HC  Ensemble method of several Accuracy = 94.38% 2018  Castillo-Barnes
of PD (PD + database + 168 PD +  SVM with linear kernel with et al., 2018
SWEDD) from 26 SWEDD leave-one-out cross validation
HC
Classification Diagnosis PPMI More than one 586; 184 HC  MLP, BayesNet, random Boosted logistic regression: 2016  Challaetal., 2016
of PD from database + 402 PD forest, boosted logistic Accuracy = 97.159%
HC regression with a train-test AUC curve = 98.9%
ratio of 70:30
Classification  Differential Collected More than one  30; 15 tPD +  Multi-kernel SVM with Accuracy = 100% 2014  Cherubini et al.,
of tPD from  diagnosis from 15rET leave-one-out cross validation 2014b
rET participants
Classfication  Diagnosis, PPMI SPECT imaging PPMI: 701; CNN with train-validation ratio PPMI: 2017  Choietal., 2017
of PD, HC differential database and data 193 HC + 431 of 90:10 Accuracy = 96.0%
and atypical  diagnosis and SNUH cohort PD + 77 Sensitivity = 94.2%
PD subtyping SWEDD Specificity = 100%
snuh: 82 PD SNUH:
Accuracy = 98.8%
Sensitivity = 98.6%
Specificity = 100%
Classification Diagnosis Collected Other 270; 120 HC  Random forest Classification error = 49.6% 2019  Cibulka et al.,
of PD from from + 150 PD (rs11240569) 2019
HC participants Classification error = 44.8%
(rs708727)
Classification error =
49.3% (rs823156)
Classification Diagnosis HandPD Handwritten 92; 18 HC + Naive Bayes, OPF, SVM with SVM-RBF accuracy = 2018  de Souzaet al.,
of PD from patterns 74 PD cross-validation 85.54% 2018
HC
Classification  Diagnosis PPMI More than one  1194; 816 HC BoostPark Accuracy = 0.901 2017  Dhamietal,,
of PD from database + 378 PD AUC-ROC = 0.977 2017
HC AUC-PR = 0.947
F1-score = 0.851
Classification Diagnosis PPMI More than one 430; 127 HC  AdaBoost, SVM, naive Bayes, PD vs. HC (adaboost): 2016 Dinov et al., 2016
of PD and database + 263 PD +  decision tree, KNN, K-Means Accuracy = 0.98954704
HC, and PD 40 SWEDD with 5-fold cross validation Sensitivity = 0.97831978
+ SWEDD Specificity = 0.99796748
and HC PPV = 0.99723757
NPV = 0.98396794
LOR = 10.0058805
PD + SWEDD vs HC
(adaboost):
Accuracy = 0.9825784
Sensitivity = 0.97560976
Specificity = 0.98780488
PPV = 0.98360656
NPV =0.98181818
LOR = 8.08332861
Classification Diagnosis Collected CSF Cohort 1: 160; Elastic Net and gradient Ensemble of 60 decision 2018  Dos Santos et al.,
of PD from from 80 HC + 80  boosted regression with trees identified with gradient 2018
HC participants PD 10-fold cross validation boosted model:
Cohort 2: 60; Sensitivity = 85%
30 HC + 30 Specificity = 75%
PD PPV =77%
NPV = 83%
AUC =0.77
(Continued)
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TABLE 7 | Continued

Objectives  Type of Source of Type of data Number of Machine learning Outcomes Year References
diagnosis data subjects (n) method(s), splitting
strategy and cross
validation
Classification Diagnosis Collected Handwritten 75; 38 HC + SVM-RBF with stratified Accuracy = 88.13% 2015  Drotéretal., 2015
of PD from from patterns 37 PD 10-fold cross-validation Sensitivity = 89.47%
HC participants Specificity = 91.89%
Classification Diagnosis Collected Handwritten 75; 38 HC + KNN, ensemble AdaBoost,  SVM: 2016  Drotaretal., 2016
of PD from from patterns 37 PD SVM Accuracy = 81.3%
HC participants Sensitivity = 87.4%
Specificity = 80.9%
Classification  Differential Collected More than one 45; 15 HC + MLP, DBN with 10-fold cross IPD + VaP vs HC with MLP: 2018  Fernandes et al.,
of IPD, VaP  diagnosis from 151PD + 15 validation Accuracy = 95.68% 2018
and HC participants VaP Specificity = 98.08%
Sensitivity = 92.44%
VaP vs. IPD with DBN:
Accuracy = 75.33%
Specificity = 72.31%
Sensitivity = 79.18%
Classification Diagnosis Collected More than one  75; 15 HC +  SVM-linear, random forest SVM AUC for FDOPA + 2019  Glaab et al., 2019
of PD from from 60 PD with leave-one-out cross metabolomics: 0.98
HC participants blood: 75; 15  validation SVM AUC for FDG +
HC + 60 PD metabolomics: 0.91
FDOPA PET:
58; 14 HC +
44 PD
FDG PET: 67;
16 HC +
51 PD
Classification  Diagnosis and PPMI More than one  666; 415 HC  EPNN, PNN, SVM, KNN, EPNN: PD vs SWEDD vs 2015  Hirschauer et al.,
of PD, HC subtyping database + 189 PD +  classification tree with HC accuracy = 92.5% 2015
and SWEDD 62 SWEDD train-test ratio of 90:10 PD vs HC accuracy =
98.6%
SWEDD vs HC accuracy =
92.0%
PD vs. SWEDD accuracy
=95.3%
Classification Diagnosis Picture SPECT imaging 202; 6 HC +  Linear regression, SYM-RBF  SVM-RBF: 2019 Hsuetal, 2019
of PD from Archiving and data 102 mild PD + with a train-test ratio of 50:50 Sensitivity = 0.828
HC and Communication 94 severe PD Specificity = 1.000
assess the System PPV = 0.837
severity of PD (PACS) NPV = 0.667
Accuracy = 0.832
AUC = 0.845
Kappa = 0.680
Classification  Differential Collected SPECT imaging 244; 164 PD + Logistic regression, LDA, SVM SVM: 2014  Huertas-
of PD from VP diagnosis from data 80 VP with 10-fold cross-validation ~ Accuracy = 0.904 Fernandez et al.,
participants Sensitivity = 0.954 2015
Specificity = 0.801
AUC = 0.954
Classification Diagnosis Collected SPECT imaging 208; 108 HC ~ SVM, KNN, NM with 3-fold ~ SVM: 2012 llanetal., 2012
of PD from from data + 100 PD cross validation Sensitivity = 89.02%
HC participants Specificity = 93.21%
AUC = 0.9681
Classification Diagnosis Collected Handwritten 72;15HC +  CNN with 10-fold cross Accuracy = 88.89% 2018  Khatamino et al.,
of PD from from patterns 57 PD validation or leave-one-out 2018
HC participants cross validation
Classification Diagnosis Collected Other 10;5HC +5 SVM with Sensitivity = 0.90 2013  Kugler et al.,
of PD from from PD leave-one-subject-out cross  Specificity = 0.90 2013
HC participants validation
(Continued)
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TABLE 7 | Continued

Objectives  Type of Source of Type of data Number of Machine learning Outcomes Year References
diagnosis data subjects (n) method(s), splitting
strategy and cross
validation
Classification Diagnosis UCI machine Handwritten 72;15HC + SVM-linear, SVM-RBF, KNN  SVM-linear: 2019 jetal., 2019
of PD from learning patterns 57 PD with leave-one-subject-out  Accuracy = 97.52%
HC repository cross validation MCC = 0.9150
F-score = 0.9828
Classification Diagnosis Collected CSF 105; 57 HC + SVM with 10-fold cross Sensitivity = 65% 2013 Lewitt et al., 2013
of PD from postmortem 48 PD validation Specificity = 79%
HC AUC =0.79
Classification Diagnosis Collected CSF 78; 42 HC + Random forest and extreme  Extreme gradient tree 2018 Maass et al,,
of PD from from 36 PD gradient tree boosting with boosting: 2018
HC participants 10-fold cross validation Specificity = 78.6%
Sensitivity = 83.3%
AUC = 83.9%
Classification Diagnosis and Collected CSF 157; 68 HC + SVM with 10-fold cross Cohort 1, PD vs HC: 2020 Maassetal.,
of PD from differential from 82PD+7 validation or leave-one-out AUC = 0.76 2020
HC or NPH  diagnosis participants NPH cross validation Cohort 2, PD vs HC:
AUC =0.78
Cohort 3, PD vs HC:
AUC = 0.31
Cohort 4, PD vs NPH:
AUC = 0.88
Classification Diagnosis PPMI More than one 550; 157 HC ~ SVM, random forest, MLP, Motor features, SVM: 2018  Mabrouk et al.,
of PD from database + 342 PD +  logistic regression, KNN with  Accuracy = 78.4% 2019
HC 51 SWEDD nested cross-validation AUC = 84.7%
Non-motor features, KNN:
Accuracy = 82.2%
AUC = 88%
Classification Diagnosis PPMI SPECT imaging 642; 194 HC ~ CNN (LENET53D, ALEXNET3D: 2018  Martinez-Murcia
of PD from database data + 448 PD ALEXNET3D) with 10-fold Accuracy = 94.1% etal., 2018
HC stratified cross-validation AUC = 0.984
Classification Diagnosis Collected Handwritten 75,10 HC + MLP, non-linear SVM, random MLP: 2015 Memedi et al.,
of PD from from patterns 65 PD forest, logistic regression with Accuracy = 84% 2015
HC participants stratified 10-fold Sensitivity = 75.7%
cross-validation Specificity = 88.9%
Weighted Kappa = 0.65
AUC = 0.86
Classification Diagnosis Parkinson’s  Handwritten 69; 36 HC + Random forest with stratified Accuracy = 89.81% 2018  Muchaetal,
of PD from Disease patterns 33 PD 7-fold cross-validation Sensitivity = 88.63% 2018
HC Handwriting Specificity = 90.87%
Database MCC = 0.8039
(PaHaW)
Classification Differential Collected SPECT imaging 578; 208 HC ~ SVM with 5-fold Accuracy = 58.4-92.9% 2019  Nicastro et al,,
of PD, MSA,  diagnosis from data + 280 PD +  cross-validation 2019
PSP, CBS participants 21 MSA + 41
and HC PSP + 28
CBs
Classification Diagnosis Collected Handwritten 30; 15 HC +  KNN, decision tree, random  Random forest accuracy = 2018 Nommetal.,
of PD from from patterns 15 PD forest, SVM, AdaBoost with  0.91 2018
HC participants 3-fold cross validation
Classification Diagnosis and The authors’  Other 75;27 HC + SVM-RBF with 2-, 5- and Accuracy = 87.7% 2019
of HC, AD differential institutional 28 PD + 20 10-fold cross validation HC sensitivity = 96.2% Nunes et al.,
and PD diagnosis oct database AD HC specificity = 88.2% 2019
PD sensitivity = 87.0%
PD specificity = 100.0%
Classification Differential Collected Other 85; 50 SVM, random forest with SVM accuracy = 100% 2019 Nuvoli et al., 2019
of idiopathic  diagnosis from idiopathic PD  leave-one-out cross validation Random forest accuracy
PD, atypical participants + 26 atypical =98.5%
Parkinsonian PD + 9 ET
and ET
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TABLE 7 | Continued

Objectives  Type of Source of Type of data Number of Machine learning Outcomes Year References
diagnosis data subjects (n) method(s), splitting
strategy and cross
validation
Classification Diagnosis PPMI SPECT imaging 654; 209 HC ~ SVM-linear with leave-one-out Accuracy = 97.86% 2015  Oliveira and
of PD from database data + 445 PD cross validation Sensitivity = 97.75% Castelo-Branco,
HC Specificity = 98.09% 2015
Classification Diagnosis PPMI SPECT imaging 652; 209 HC ~ SVM-linear, KNN, logistic SVM-linear: 2017  Oliveira F. et al.,
of PD from database data + 443 PD regression with leave-one-out Accuracy = 97.9% 2018
HC cross validation Sensitivity = 98.0%
Specificity = 97.6%
Classification  Differential Collected SPECT imaging 90; 56 PD +  SVM-RBF with leave-one-out Accuracy = 95.6% 2014 Palumbo et al.,
of PD and diagnosis from data 34 non-PD or 5-fold cross validation 2014
non-PD (ET, participants
drug-induced
Parkinsonism)
Classification Diagnosis Collected Handwritten 55; 18 HC + Naive Bayes, OPF, SVM-RBF Naive Bayes accuracy = 2015  Pereiraet al.,
of PD from from patterns 37 PD with 10-fold cross validation ~ 78.9% 2015
HC participants
Classification Diagnosis HandPD Handwritten 92; 18 HC +  Naive Bayes, OPF, SVM-RBF SVM-RBF recognition rate 2016  Pereiraetal.,
of PD from patterns 74 PD with cross-validation (sensitivity) = 66.72% 2016a
HC
Classification Diagnosis Extended Handwritten 35;21 HC +  CNN with cross validation Accuracy = 87.14% 2016  Pereiraetal.,
of PD from handpd patterns 14 PD with a train:test ratio of 75:25 2016b
HC dataset with or 50:50
signals
extracted
from a smart
pen
Classification Diagnosis HandPD Handwritten 92; 18 HC + CNN, OPF, SVM, naive Bayes CNN-Cifar10 accuracy = 2018  Pereiraet al.,
of PD from patterns 74 PD with train-test split = 50:50  99.30% 2018
HC Early stage accuracy with
CNN-ImageNet = 96.35%
or 94.01% for Exam 3 or
Exam 4
Classification Diagnosis UCI machine More than one Dataset 1: 40; Random forest, KNN, Ensemble method: 2019  Phametal., 2019
of PD from learning 20HC +20  SVM-RBF, ensemble method Accuracy = 95.89%
HC repository PD with 5-fold cross validation Specificity = 100%
dataset 2: 77; Sensitivity = 91.43%
15 HC +
62 PD
Classification Diagnosis PPMI More than one  618; 195 HC ~ SVM-linear, SVM-RBF, SVM-RBF, test set: 2014  Prashanth et al.,
of PD from database + 423 PD classification tree with a Accuracy = 85.48% 2014
HC train-test ratio of 70:30 Sensitivity = 90.55%
Specificity = 74.58%
AUC = 88.22%
Classification Diagnosis and PPMI SPECT imaging 715; 208 HC ~ SVM, naive Bayes, boosted ~ SVM: 2016  Prashanth et al.,
of PD from subtyping database data + 427 PD 4+  trees, random forest with Accuracy = 97.29% 2017
HC 80 SWEDD 10-fold cross validation Sensitivity = 97.37%
Specificity = 97.18%
AUC = 99.26
Classification Diagnosis PPMI More than one 584; 183 HC  Naive Bayes, SVM-RBF, SVM: 2016 Prashanth et al.,
of PD from database + 401 PD boosted trees, random forest Accuracy = 96.40% 2016
HC with 10-fold cross validation  Sensitivity = 97.03%
Specificity = 95.01%
AUC = 98.88%
Classification Diagnosis PPMI Other 626; 180 HC  Logistic regression, random  Accuracy > 95% 2018  Prashanth and
of PD from database + 446 PD forests, boosted trees, SYM  AUC > 95% Dutta Roy, 2018
HC with cross validation Random forests:

Accuracy = 96.20-97.14%
(95% Cl)
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TABLE 7 | Continued

Objectives  Type of Source of Type of data Number of Machine learning Outcomes Year References
diagnosis data subjects (n) method(s), splitting
strategy and cross
validation
Classification Diagnosis mPower More than one 133 out of Logistic regression, random  Ensemble learning: 2019  Princeetal,,
of PD from database 1,613 with forests, DNN, CNN, Classifier Accuracy = 82.0% 2019
HC complete Ensemble, Multi-Source F1-score = 87.1%
source data;  Ensemble learning with
46 HC 4+ 87  stratified 10-fold cross
PD validation
Classification Diagnosis HandPD Handwritten 35;21 HC +  Bidirectional Gated Recurrent The Spiral dataset: 2019  Ribeiro et al.,
of PD from patterns 14 PD Units with a Accuracy = 89.48% 2019
HC train-validation-test ratio of Precision = 0.848
40:10:50 or 65:10:25 Recall = 0.955
F1-score = 0.897
The Meander dataset:
Accuracy = 92.24%
Precision = 0.952
Recall = 0.883
F1-score = 0.924
Classification Diagnosis Collected Handwritten 130; 39 elderly KNN, SVM-Gaussian, random SVM for PD vs young HC: 2019  Rios-Urrego
of PD from from patterns HC + 40 forest with leave-one-out Accuracy = 94.0% etal., 2019
HC participants young HC +  cross validation Sensitivity = 0.94
39 PD + 6 PD Specificity = 0.94
(validation set) F1-score = 0.94
+ 6 HC SVM for PD vs elderly HC:
(validation set) Accuracy = 89.3%
Sensitivity = 0.89
Specificity = 0.89
F1-score = 0.89
Random forest for validation
set:
Accuracy = 83.3%
Sensitivity = 0.92
Specificity = 0.93
F1-score = 0.92
Classification  Differential Collected PET imaging 87;39IPD + SVM with leave-one-out cross Accuracy = 78.16% 2015  Segovia et al.,
of IPD from  diagnosis from 48 non-IPD validation Sensitivity = 69.29% 2015
non-IPD participants (24 MSA + 24 Specificity = 85.42%
PSP)
Classification Diagnosis Dataset from SPECT imaging 189; 94 HC + SVM with 10-fold cross Accuracy = 94.25% 2019  Segovia et al.,
of PD from “Virgen de la data 95 PD validation Sensitivity = 91.26% 2019
HC Victoria” Specificity = 96.17%
hospital
Classification Diagnosis Collected Other 486; 233 HC  SVM-linear with Validation AUC = 0.79 2017  Shamir et al.,
of PD from from + 205 PD +  leave-batch-out cross Test AUC = 0.74 2017
HC participants 48 NDD validation
Classification Diagnosis Collected PET imaging 350; 225 HC  GLS-DBN with a Test dataset 1: 2019  Shenetal., 2019
of PD from from + 125 PD train-validation ratio of 80:20  Accuracy = 90%
HC participants Sensitivity = 0.96
Specificity = 0.84
AUC = 0.9120
Test dataset 2:
Accuracy = 86%
Sensitivity = 0.92
Specificity = 0.80
AUC = 0.8992
Classification Diagnosis Collected Other 33; 18HC + SMMKL-linear with Accuracy = 84.85% 2018  Shietal., 2018
of PD from from 15 PD leave-one-out cross validation Sensitivity = 80.00%
HC participants Specificity = 88.89%
Yl = 68.89%
PPV =85.71%
NPV = 84.21%
F1 score = 82.76%
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TABLE 7 | Continued

Objectives  Type of Source of Type of data Number of Machine learning Outcomes Year References
diagnosis data subjects (n) method(s), splitting
strategy and cross
validation
Classification Diagnosis Collected More than one Plasma PLS, random forest with PLS: 2018  Stoessel et al.,
of PD from from samples: 166; 10-fold cross validation with  AUC (plasma) = 0.77 2018
HC participants 76 HC +80  train-test ratio of 70:30 AUC (CSF) = 0.90
PD;
CSF samples:
77;37 HC +
40 PD
Classification Diagnosis PPMI SPECT imaging 658; 210 HC  Logistic Lasso with 10-fold Test errors: 2017  Tagare et al.,
of PD from database data + 448 PD cross validation FP =2.83% 2017
HC FN = 3.78%
Net error = 3.47%
Classification Diagnosis PDMultiMC  handwritten 42;21 HC + CNN, CNN-BLSTM with CNN: 2019  Talebetal., 2019
of PD from patterns 21 PD stratified 3-fold cross Accuracy = 83.33%
HC validation Sensitivity = 85.71%
Specificity = 80.95%
CNN-BLSTM:
Accuracy = 83.33%
Sensitivity = 71.43%
Specificity = 95.24%
Classification Diagnosis PPMI SPECT imaging Local: 304; SVM with stratified, nested Local data: 2017 Taylor and
of PD from database and data 113 Non-PDD 10-fold cross-validation Accuracy = 0.88 to 0.92 Fenner, 2017
HC local + 191 PD PPMI:
database PPMI: 657; Accuracy = 0.95 to 0.97
209 HC +
448 PD
Classification Diagnosis Collected CSF 87; 43HC +  Logistic regression Sensitivity = 0.797 2017  Trezzietal., 2017
of PD from from 44 PD speclFICITy = 0.800
HC participants AUC = 0.833
Classification Diagnosis Collected Other 38;24 HC + SVM-RFE with repeated Accuracy = 89.6% 2013 Tsengetal., 2013
of PD from from 14 PD leave-one-out bootstrap
HC participants validation
Classification  Differential Collected More than one  85; 25 HC + NN AUC =0.775 2019  Tsudaetal., 2019
of MSA and  diagnosis from 30 PD + 30
PD participants MSA-P
Classification Diagnosis Collected Other 59; 30 HC +  Logistic regression, decision  Extra tree AUC = 0.99422 2018  Vanegas et al.,
of PD from from 29 PD tree, extra tree 2018
HC participants
Classification Diagnosis Commercially Other 30; 15HC +  Decision tree Cross validation score = 2019  Véradietal., 2019
of PD from sourced 15 PD 0.86 (male)
HC Cross validation score =
0.63 (female)
Classification Diagnosis Collected More than one 84; 40 HC + CNN with train-validation-test Accuracy = 97.6% 2018  Vasquez-Correa
of PD from from 44 PD ratio of 80:10:10 AUC = 0.988 etal., 2019
HC participants
Classification  Differential The NTUA More than one  78; 55 PD +  MTL with DNN Accuracy = 0.91 2018  Vlachostergiou
of PD and diagnosis Parkinson 23 Precision = 0.83 etal., 2018
Parkinsonism Dataset Parkinsonism Sensitivity = 1.0
Specificity = 0.83
AUC = 0.92
Classification Diagnosis PPMI More than one  534; 165 HC ~ pGTL with 10-fold cross Accuracy = 97.4% 2017  Wangetal.,, 2017
of PD from database + 369 PD validation
HC
Classification Diagnosis PPMI SPECT imaging 645; 207 HC ~ CNN with train-validation-test Accuracy = 0.972 2019  Wenzel et al.,
of PD from database data + 438 PD ratio of 60:20:20 Sensitivity = 0.983 2019
HC Specificity = 0.962
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TABLE 7 | Continued

Objectives  Type of Source of Type of data Number of Machine learning Outcomes Year References
diagnosis data subjects (n) method(s), splitting
strategy and cross
validation
Classification Diagnosis Collected PET imaging Cohort 1: 182; SVM-linear, SVM-sigmoid, Cohort 1: 2019  Wuetal., 2019
of PD from from 91 HC +91  SVM-RBF with 5-fold cross ~ Accuracy = 91.26%
HC participants PD validation Sensitivity = 89.43%
Cohort 2: 48; Specificity = 93.27%
26 HC + Cohort 2:
22 PD Accuracy = 90.18%
Sensitivity = 82.05%
Specificity = 92.05%
Classification  Differential Collected PET imaging 920; 502 PD + 3D residual CNN with 6-fold  Classification of PD: 2019  Zhaoetal., 2019
of PD, MSA  diagnosis from 239 MSA +  cross validation Sensitivity = 97.7%
and PSP participants 179 PSP Specificity = 94.1%

PPV = 95.5%
NPV = 97.0%
Classification of MSA:

Sensitivity = 96.8%
Specificity = 99.5%
PPV = 98.7%

NPV = 98.7%
Classification of PSP:
Sensitivity = 83.3%
Specificity = 98.3%
PPV = 90.0%

NPV = 97.8%

AD, Alzheimer’s disease; AUC or AUC-ROC, area under the receiver operating characteristic (ROC) curve; AUC-PR, area under the precision-recall (PR) curve; BLSTM, bidirectional long
short-term memory; CBS, corticobasal syndrome; CNN, convolutional neural network; CSF, cerebrospinal fluid; DBN, deep belief network; DNN, deep neural network; EPNN, enhanced
probabilistic neural network; ET, essential tremor; FN, false negative; FF, false positive; GLS-DBN, group Lasso sparse deep belief network; HC, healthy control; IPD, idiopathic Parkinson’s
disease; KNN, k-nearest neighbors; LDA, linear discriminant analysis;, LOR, log odds ratio; MCC, Matthews correlation coefficient; MLF, multilayer perceptron; MSA, multiple system
atrophy; MSA-R, Parkinson’s variant of multiple system atrophy; MTL, multi-task learning;, NDD, neurodegenerative disease; NM, nearest mean,; non-PDD, patients without pre-synaptic
dopaminergic deficit, NPH, normal pressure hydrocephalus;, NPV, negative predictive value; OPF, optimum-path forest; PD, Parkinson’s disease; PET, positron emission tomography;
pPGTL, progressive graph-based transductive learning; PLS, partial least square; PNN, probabilistic neural network; PPV, positive predictive value; PSF, progressive supranuclear palsy;
rET, essential tremor with rest tremor; SMMKL, soft margin multiple kernel learning; SPECT, single-photon emission computed tomography; SVM, support vector machine; SVM-RBF,
support vector machine with radial basis function kernel; SVM-RFE, support vector machine-recursive feature elimination; SWEDD, PD with scans without evidence of dopaminergic
deficit; tPD, tremor-dominant Parkinson'’s disease; VaP or VR, vascular Parkinsonism; Y1, Youden'’s Index.

in >50% of all cases (50.7, 51.9, and 52.3%, respectively;
Supplementary Table 1). Despite the high diagnostic accuracy
and performance reported, in a number of studies, data splitting
strategies and the use of cross validation were not specified.
For data modalities such as 3D MRI scans, when 2D slices are
extracted from 3D volumes, multiple slices could be generated
for one subject. Having data from the same subject across
training, validation and tests sets can lead to a biased data split
(Wen et al, 2020), causing data leakage and overestimation
of model performance, thus compromising reproducibility of
published results.

As previously discussed (Belic et al, 2019), although
satisfactory diagnostic outcomes could be achieved, sample
size in few studies was extremely small (<15 subjects). The
application of some machine learning models, especially neural
networks, typically rely on a large dataset. Nevertheless, collecting
data from a large pool of participants remains challenging
in clinical studies, and data generated are commonly of high
dimensionality and small sample size (Vabalas et al., 2019).
To address this challenge, one solution is to combine data

from a local cohort with public repositories including PPMI,
UCI machine learning repository, PhysioNet and many others,
depending on the type of data that have been collected from the
local cohort. Furthermore, when a great difference in group size
is observed (i.e., class imbalance problem), labeling all samples
after the majority class may lead to an undesired high accuracy. In
this case, evaluating machine learning models with other metrics
including precision, recall and F-1 score is recommended (Jeni
et al., 2013).

Even though high diagnostic accuracy of PD has been
achieved in clinical settings, machine learning approaches have
also reached high accuracy as shown in the present study, while
models including SVM and neural networks are particularly
useful in (a) diagnosis of PD using data modalities that have
been overlooked in clinical decision making (e.g., voice), and
(b) identification of features of high relevance from these
data. For example, the use of machine learning models with
feature selection techniques allows for assessing the relative
importance of features of a large feature space in order to
select the most differentiating ones, which is conventionally
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challenging using manual approaches. For the discovery of
novel markers allowing for non-invasive diagnostic options
with relatively high accuracy, e.g., handwritten patterns, a
small number of studies have been conducted, mostly using
data from published databases. Given that these databases
generally included handwritten patterns from a small number
of diagnosed PD patients, sometimes under 15, it would
be of great importance to validate the use of handwritten
patterns in early diagnosis of PD in clinical studies of a
larger scale. In the meantime, diagnosing PD using more than
one data modality has led to promising results. Accordingly,
supplying clinicians with non-motor data and machine learning
approaches may support clinical decision making in patients with
ambiguous symptom presentations, and/or improve diagnosis at
an earlier stage.

An issue observed in many included studies was the
insufficient or inaccurate description of methods or results, and
some failed to provide accurate information of the number and
type of subjects used (for example, methodology studies on early
diagnosis of PD missing a table summarizing the characteristics
of subjects, therefore it was challenging to understand the stage
of PD in recruited patients), or how machine learning models
were implemented, trained and tested. Infrequently, authors
skipped basic information such as number of subjects and
their medical conditions and referred to another publication.
Although we attempted to list model hyperparameters and
cross-validation strategies in the data extraction table, many
included studies did not make this information available in
the main text, leading to potential difficulties in replicating
the results. Apart from these, rounding errors or inconsistent
reporting of results also exist. Furthermore, although we
treated the differentiation of PD from SWEDD as subtyping,
there is ongoing controversy regarding whether it should be
considered as differential diagnosis or subtyping (Lee et al.,
2014; Erro et al., 2016; Chou, 2017; Kwon et al., 2018). Given
these limitations, clinicians interested in adapting machine
learning models or implementing diagnostic systems based on
novel biomarkers are advised to interpret published results
with care. Further, in this context we would like to stress
the need for uniform reporting standards in studies using
machine learning.

In both machine learning research and clinical settings,
appropriately interpreting published results and methodologies
is a necessary step toward an understanding of state-of-the-
art methods. Therefore, vagueness in reporting not only
compromises the interpretation of results but makes further
methodological developments based on published research
unnecessarily challenging. Moreover, for medical doctors
interested in learning how machine learning methods could be
applied in their domains, insufficient description of methods
may lead to incorrect model implementation and failure
of replication.

To enable efficient replication of published results, detailed
descriptions of (a) model and architecture (hyperparameters,
number and type of layers, layer-specific parameter
settings, regularization strategies, activation functions), (b)
implementation (programming language, machine learning

and deep learning libraries used, model training and
testing, metrics and model evaluation, validation strategy,
optimization), and (c) version numbers of software/libraries
used for both preprocessing and model implementation,
are often desirable, as newer software versions may lead to
differences in pre-processing and model implementation stages
(Chepkoech et al., 2016).

Due to the use of imbalanced datasets in medical sciences,
reporting model performance with a confusion matrix may give
rise to a more comprehensive understanding of the model’s
ability to discriminate between PD and healthy controls. In
the meantime, due to costs associated with acquisition of
patient data, researchers often need to expand data collected
from a local cohort using data sourced from publicly available
databases or published studies. Nevertheless, unclear description
of data acquisition and pre-processing protocols in some
published studies may lead to challenges in the integration
of newly acquired data and previously published data. Taken
together, to facilitate early, refined diagnosis of PD and
efficient application of novel machine learning approaches in
a clinical setting, and to allow for improved reproducibility of
studies on machine learning-based diagnosis and assessment
of PD, a higher transparency in reporting data collection,
pre-processing protocols, model implementation, and study
outcomes is required.

Limitations

In the present study, we have excluded research articles
in languages other than English and results published in
the form of conference abstracts, posters, and talks. Despite
the ongoing discussion of advantages and importance of
including conference abstracts in systematic reviews and
reviews (Scherer and Saldanha, 2019), conference abstracts
often do not report sufficient key information which is
why we had to exclude them. However, this may lead
to a publication and result bias. In addition, since the
aim of the present review is to assess and summarize
published studies on the detection and early diagnosis of
PD, we noticed that few large-scale, multi-centric studies on
subtyping or/and severity assessment of PD were therefore
excluded. Given the current challenges in subtyping, severity
assessment and prognosis of PD, a further step toward a
more systematic understanding of the application of machine
learning to neurodegenerative diseases would be to review
these studies.

Moreover, due to the high inter-study variance in the
data source and presentation of results, it was challenging
to directly compare outcomes associated with each type of
model across studies, as some studies failed to indicate
whether model performance was evaluated using a test set,
and/or results given by models that did not yield the best
per-study performance. Results of published studies were
discussed and summarized based on data and machine learning
models used, and for data modalities such as PET (n =
4) or CSF (n = 5), the number of studies were too
small despite the high total number of studies included.
Therefore, it was improbable to assess the general performance
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of machine learning techniques when PET or CSF data
are used.

CONCLUSIONS

To the best of our knowledge, the present study is the first review
which included results from all studies that applied machine
learning methods to the diagnosis of PD. Here, we presented
included studies in a high-level summary, providing access to
information including (a) machine learning methods that have
been used in the diagnosis of PD and associated outcomes, (b)
types of clinical, behavioral and biometric data that could be used
for rendering more accurate diagnoses, (c) potential biomarkers
for assisting clinical decision making, and (d) other highly
relevant information, including databases that could be used to
enlarge and enrich smaller datasets. In summary, realization of
machine learning-assisted diagnosis of PD yields high potential
for a more systematic clinical decision-making system, while
adaptation of novel biomarkers may give rise to easier access to
PD diagnosis at an earlier stage. Machine learning approaches
therefore have the potential to provide clinicians with additional
tools to screen, detect or diagnose PD.
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