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ABSTRACT

The presence of a perceptual bias due to anxiety is well demonstrated in cognitive
and sensory task for the visual and auditory modality. Event-related potentials, by their
specific measurement of neural processes, have strongly contributed to this evidence. There
is still no consensus as to whether such a bias exists in the chemical senses; chemosensory
event-related potentials (CSERP) are an excellent tool to clarify the heterogeneous results,
especially since the Late Positive Component (LPC) may be an indicator of emotional
involvement after chemosensory stimulation. This research examined the association
between state and trait anxiety and the amplitude and latency of pure olfactory and mixed
olfactory-trigeminal LPC. In this study, 20 healthy participants (11 women) with a mean
age of 24.6 years (SD=2.6) completed a validated questionnaire to measure anxiety (STAI),
and CSERP were recorded during 40 pure olfactory stimulations (phenyl ethanol) and 40
mixed olfactory-trigeminal stimulations (eucalyptol). LPC latency and amplitude were
measured at Cz (electrode located at midline central) for each participant. We observed a
significant negative correlation between LPC latencies and the state anxiety scores for the
mixed olfactory-trigeminal condition (#(18) =-.513; p =.021), but not for the pure olfactory
condition. We did not observe any effect on LPC amplitudes. This study suggests that a
higher level of state anxiety is related to a more rapid perceptual electrophysiological

response for mixed olfactory-trigeminal stimuli but not for pure odors.
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INTRODUCTION

Whether anxiety stems from a disorder, such as generalized anxiety disorder, or
whether it is non-pathological, it can affect sensory and cognitive domains (Robinson et
al.,2013). Anxiety can be beneficial or detrimental to performance; this distinction depends
mainly on the level of anxiety experienced, the nature of the task and its degree of difficulty
(Arent & Landers, 2003; Eysenck & Calvo, 1992). Many studies have investigated the
impact of anxiety on visual or auditory processing (Asutay & Vastfjdll, 2015; Bar-Haim et
al., 2007; Peschard et al., 2014). These studies suggest an increased selective attention to
possible threats, manifested by a shorter reaction time to ambiguous or threatening stimuli
compared to a longer reaction time to neutral stimuli in the presence of threatening stimuli
(Eldar et al., 2010; Frewen et al., 2008). Compared to vision and audition, less is known
about the influence of anxiety on chemosensory processing. This is surprising considering
that, unlike other senses, olfactory information processing takes place, at least partly, in the
limbic system, which includes areas of basic emotion (Kadohisa, 2013; Kontaris et al.,
2020). Indeed, the olfactory bulb has direct and unique connections with the amygdala and
the hippocampus. These structures are part of the primary olfactory cortex and have strong
reciprocal connections with the orbitofrontal cortex. This circuit is strongly involved in the
processing and regulation of emotions and particularly in responses to threatening

environmental stimuli. (Shipley & Ennis., 1996; Benarroch, 2010; Soudry et al., 2011)

For instance, individuals with high levels of state anxiety had (1) increased
accuracy in discriminating negative odors, (2) hypersensitivity of the primary olfactory

cortex to negative odors and (3) an intensified skin conductance response for negative
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odors (Krusemark & Li, 2012). The authors suggest an exaggerated processing of olfactory
threats (eg., trimethylamine - rotten fish smell) in anxiety for behavioral, autonomic
physiological, and neural domains. In a second functional imaging study, after anxiety was
experimentally induced, neutral odors became negative. This change in affective
perception was related to the level of induced anxiety. The orbitofrontal cortex as well as
the amygdala showed an increased response to neutral odors after anxiety induction
(Krusemark et al., 2013). When intensity and detection time following pleasant, neutral,
and unpleasant odor stimuli were assessed, both pleasant and unpleasant odors were
perceived more quickly and as more intense than neutral stimulus for individuals with high
levels of trait anxiety (Chen & Dalton, 2005). Similarly, participants with high trait anxiety
had faster reaction times to pleasant and unpleasant olfactory stimuli when compared with
their counterparts with low trait anxiety levels. Further, trait anxiety was negatively
correlated with reaction time (La Buissonniére-Ariza et al., 2013). However, although
several studies suggest an increase of olfactory detection abilities in individuals with high
levels of anxiety, other studies suggest that it may actually be reduced (Takahashi et al.,
2015; Pollatos et al., 2007; Clepce et al., 2012; Krusemark et al., 2013). These
inconsistences between studies could be due to differences in sample characteristics and
olfactory testing methods (e.g., the type and nature of odors used), as these can have a
significant impact on olfactory processing (Doty et al., 1997). The presence of a perceptual
bias similar to that identified for auditory and visual perception remains to be confirmed

for chemical senses.

When we smell something, it usually activates more than our olfactory system. In

fact, the trigeminal system is a third chemical sense adjacent to smell and taste (Gerhold &
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Bautista, 2009). The trigeminal system allows for the perception of the spiciness of hot
peppers or the freshness of peppermint (Filiou et al, 2014; Viana, 2011). The trigeminal
system is independent from the olfactory system, i.e., it has (1) distinct chemoreceptors
(e.g., TRPMS, TRPV1; Gerhold & Bautista, 2009), (2) distinct conveying structures (i.e.,
the trigeminal nerve) and (3) distinct central nervous processing centers (Friedland &
Harteneck, 2017; Brand, 2006). However, the trigeminal system interacts very closely with
the olfactory system as most odorous substances activate both the olfactory and the
trigeminal system (Doty et al., 1978; Filiou et al., 2014; Frasnelli et al., 2011; Wysocki et
al., 2003), especially in higher concentrations. Such stimuli are called mixed olfactory-
trigeminal stimuli as opposed to pure odorants that only activate the olfactory system
(Tremblay et Frasnelli, 2018). The trigeminal system plays a role in protecting the body
from environmental threats (Gerhold & Bautista, 2009). Activation of the trigeminal
system may induce reflexes such as sneezing or coughing which protect the integrity of the

airways (Baraniuk & Kim, 2007; Pfaar et al., 2009).

In regards of anxiety, people suffering from post-traumatic stress show increased
sensitivity to trigeminal stimuli (Cortese et al., 2018; Croy et al., 2010). Trigeminal
detection sensitivity has also been found to be related to enhanced neuroticism and induced
stress (Croy et al., 2011; Pacharra et al., 2016). As mentioned above, these findings are not
surprising given the protective role of the trigeminal system. In fact, all the aforementioned
studies that investigated the association between anxiety and olfactory processing used
stimuli that may have activated the trigeminal system, at least to some extent. In order to

examine the link between anxiety and chemosensory processing it is therefore necessary
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to distinguish between pure olfactory and mixed olfactory-trigeminal stimuli while using

odorants of similar valence.

From a methodological point of view, most previous studies used behavioral
measures as dependent variables. This can be problematic because they rely on anxiety-
sensitive cognitive functions, such as working memory, making it impossible to properly
isolate how anxiety influences olfaction (Moran et al., 2016; Hedner et al., 2010) One
potential approach to reducing this bias would be to use Chemosensory Event-Related
Potentials (CSERP), a technique that uses electroencephalography to record specific
components of brain activity in response to specific events or stimuli (Blackwood & Muir,
1990). Event-related potentials (ERP) studies have supported the notion of a perceptual
bias of anxiety for vision and audition (Carlson, 2021). CSERPs have been reported to be
reliable and as valid as visual and auditory ERPs (Thesen & Murphy, 2002). Some
previous studies using ERPs and assessing cross-modality between olfaction and vision
have shown the important influence of olfaction on visual judgment task and categorization
tasks. These studies argue that olfaction plays an important role, even beyond vision, in the
perception of threats and incongruent cues (Bensafi et al., 2002; Dematte et al., 2007;
Horberg, 2020). However, to our knowledge, the link between olfactory perception and

anxiety has never been explored using CSERPs.

In the visual and auditory modality, the P300 component is the prime parameter to
study the impact of anxiety on perception. Some studies evaluating the characteristic of
this component in patients with anxiety disorder show a shorter latency and a greater
amplitude during oddball protocols (Reeb-Sutherland et al., 2009; Hanatani et al., 2005;

Enoch et al., 2001.) In the olfactory modality, the P300 component analogue is the Late
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Positive Component (LPC), an endogenous component of brain activity (Cortese et al.,
2018; Toakeimidis et al., 2021; Sur & Sinha, 2009). The LPC usually reaches its full
amplitude at the parieto-central region and is generally observed 400-900ms after
stimulation (Andersson et al., 2018; Ohla & Lundstrom, 2013). Sex differences are
reported for the LPC following a trigeminal stimulation (CO2). Amplitude tends to be

greater in women than in men (Ohla & Lundstrom, 2013).

The measurement of the LPC is known as valid measure of attentional allocation
and more precisely as an indicator of emotional engagement (Andersson et al., 2018;
Invitto et al., 2018; Pause & Krauel, 2000; Pause et al., 1996; Singh et al., 2019).
Furthermore, it is suggested that the pleasantness/unpleasantness aspect of odors modulate
the amplitude of the LPC, where the amplitude is greater for unpleasant odors (Lundstrom
et al., 2006). Therefore, the LPC may be a component that is highly susceptible to be

affected by anxiety.

In this study, we aimed to determine whether there is an association between
anxiety and the LPC after pure olfactory and mixed olfactory-trigeminal stimulations. We
hypothesized (1) that the level of anxiety will be correlated with the latency of the LPC for
mixed olfactory-trigeminal stimulation but not for pure olfactory stimulation; (2) that the
level of anxiety will be correlated with the amplitude of the LPC for mixed olfactory-

trigeminal stimulation but not for pure olfactory stimulation.

METHODS

PARTICIPANTS
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A total of 31 healthy participants (18 women) aged between 21 and 30 years (mean
age 24.6 years, standard deviation [SD] = 2.5 years) participated in this study. Eleven
participants were excluded from the EEG analysis due to artifacts in the EEG signal (see
“EEG processing”). Therefore, 20 participants (11 women, mean age = 24.6, [SD] = 2.6)
remained in the analysis. We recruited participants from a database of the Chemosensory
Neuroanatomy Laboratory at Universit¢ du Québec a Trois-Rivieres. We used a
recruitment poster on social networks (Facebook) and word was spread around in the
research team. The inclusion criteria were as follow: Women and men aged eighteen and
more with no concussion and without any history of loss consciousness or any diagnosed
of mental illnesses. They also needed to have normal olfactory capacities, as assured by
the Sniffin’Sticks identification test (Hummel et al., 1997; Oleszkiewicz et al., 2018).
Participants were asked not to wear any perfume and not to eat, drink and/or smoke 1h

prior to the testing session. All of them gave written consent prior to testing.

Participants received 10 $ per hour as a financial compensation (average of 30$ per
participants) and their parking fees were paid by the laboratory. This study was approved
by the Ethics Committee in research with humans at Universit¢ du Québec a Trois-

Riviéres.

MATERIALS

Questionnaire

We used the validated French version of the State-Trait Anxiety Inventory
questionnaire (STAI) to measure the levels of anxiety (Gauthier & Bouchard, 1993;

Spielberger, 1970). This questionnaire consists of 40 items, divided into two 20 items
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scales, that estimates the trait and state anxiety, respectively. State anxiety can be defined
as a measure of the immediate, or acute, level of anxiety, whereas trait anxiety reflects the
long-term tendency of an individual to show an increased anxiety response (Gross & John,
2003). Participants were asked to estimate the intensity of their feelings on a 4-point Likert
scale. Total score was calculated using the Likert points for the negative items, and the
inverse for the positive items. A higher score indicated the higher levels of trait or state
anxiety. The trait and state anxiety subscales both have a score range of 20 to 80. The

questionnaire took about 10 minutes to complete.

Stimulation and recording of CSERP

To deliver the chemosensory stimulation in the same manner for each participant,
we used a modular olfactometer OL023 (Burghart Messtechnik, Vedel, Germany). This
device blows an 8L./min constant air flow into the participants’ nostrils. It humidifies the
air at about 60% and heats it to a temperature of 36.5 degrees Celsius to avoid irritation

(Kobal & Hummel, 1988; Kobal, 1985).

We used two odorants with a generally positive valence, eucalyptol (eucalyptus
odor; 25% concentration, Sigma-Aldrich, USA) for the mixed olfactory-trigeminal
stimulus condition and phenyl ethanol (rose odor; 10% concentration, Sigma-Aldrich,
USA) for the pure olfactory stimulus condition. About 5 ml of each odorant were placed
into separate cylinders of the olfactometer. A third cylinder containing odorless water was
used to send non-odorous stimulations. When a nostril received an odorant (eucalyptus or

rose), the other nostril therefore received non-odorous air. Each stimulus lasted 200 ms
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with an inter-stimulus interval of 28—-30 seconds to avoid habituation. The participants had

to identify in which nostril the odorant had been presented.

To compensate for the cerebral activity produced by the sounds of the opening and
closing valves of the olfactometer during the stimulations, the participants wore

headphones in which rain sounds were played.

The electroencephalographic (EEG) data were recorded throughout the ERP
experiment with a BrainVision Recorder, an actiCHamp amplifier and an ActiCap with 32
active electrodes from the Brain Vision series (BrainVision Products, Montreal, Canada).
We placed the ActiCap according to the international 10-20 system (Klem et al., 1999).
The Cz electrode was of interest to evaluate the electrophysiological modifications of the
LPC component (Pause & Krauel, 2000). Two reference electrodes were placed on the
mastoids and two additional electrodes were placed, one under the right eye and one over
the left eye. As usual, we placed a ground electrode in the middle of the forehead of the
participants, which allowed the system to calculate the impedances at each electrode. An
estimate of 0.2-0.3 ml of the SuperVisc gel (BrainVision Products, Montreal, Canada) was
inserted between the electrode and the participant’s skin. Impedances were kept under 10

kQ. Recordings were made with a 500 Hz frequency.

PROCEDURE

Participants were tested in 1 session that lasted approximately 2 hours. After
obtaining consent, the olfactory capacities were measured using the Sniffin’Sticks
identification task - participants with a score below 11 were not included in the study

(Oleszkiewicz et al., 2019). Then participants were then seated on a comfortable chair, and
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we installed the 32-channels EEG cap. Before the experimental task began, participants
completed the French version of the STAI. Following the completion of this questionnaire,

instructions were given to the participant and the ERP session began.

During the ERP session, participants received 2 blocks of 40 olfactory stimulations.
Per block, the participant received 20 stimulations per nostrils, in a pre-programmed order,
which remained the same for each participant. Only one odorant was sent for each block
(either rose or eucalyptus). The order of blocks was randomized. Each stimulus lasted 200

ms with an inter-stimulus interval of 2830 seconds to avoid habituation.

During the whole procedure, participants had to fixate a computer screen in front
of them. To prepare them for a stimulus, a white cross was presented in the middle of a
computer screen for 10 seconds. Participants had to fixate the white cross and try not to
blink because a stimulus was about to be delivered. The participants did not know when
the stimulation was going to occur during the presentation of the cross. After each stimulus,
the participants had to identify in which nostril they perceived the odorant by using a hand-
held mouse and clicking on the left or right arrow. Each block took about 25 minutes to

complete.

We asked the participants to remain focussed and warned them when alpha waves
—an electrophysiological signature of drowsiness — were starting to appear on the live
EEG recordings. We gave the participants the option of taking a small break between the

blocks.

EEG PROCESSING
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We processed EEG datas with the use of BrainVision Analyser 2 (BrainVision
Products, Montreal, Canada). We segmented the EEG recordings into 1700 ms epochs,
starting 200 ms before the stimulation (Rombaux et al., 2006). We then filtered the datas
off-line using a high band-pass filter of 0.01 Hz and a low band-pass filter of 30 Hz. We
added a 5 Hz filter to the HEOG. After baseline correction, we removed the epochs
containing artifacts (eye movement and/or muscular activity exceeding 100 uV) with the
use of the BrainVision Analyser program. Only the participants that had more than 10
artifact free recordings for the selected condition and a visible LPC on their average

visualisation were kept for the statistical analysis (Rombaux et al., 2006).

We averaged the artifact-free recordings for each condition (independent of
stimulated nostril) and subject, to get a single-subject wave. We then calculated the
amplitudes of the LPC component with the “area information” function, while we used the
“peak amplitude” function of BrainVision Analyser 2 (BrainVision Products, Montreal,
Canada) to obtain the latency values. Based on the literature (K. Ohla & J. Lundstrom,
2013; Tateyama et al., 1998) and grand average, we used both functions for the period
between 400 ms and 800 ms post-stimulation after (see Figure 1). We then analyzed the
latency and amplitude of the LPC of each subject for both conditions with IBM SPSS
Statistics 28.0. The Cz electrode was selected for analysis due to its excellent reliability in
measuring late components of CSERPs (Thesen & Murphy, 2002) and the for the great

visibility of the LPC on this particular electrode.

STATISTICAL ANALYSIS
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We calculated the state and trait anxiety scores. We then computed Pearson
correlations between the latency of the LPC component recorded at Cz, and the anxiety
scores for both the mixed olfactory-trigeminal and the pure olfactory condition. We did
similar Pearson correlations between the amplitude of the LPC component recorded at Cz
and the two anxiety scores. To measure effect size of correlations, we used Cohen criteria’s

(Cohen, 2013).

RESULTS

We observed a significant negative correlation between the LPC latency at Cz and
the state anxiety, but not the trait anxiety score for the mixed olfactory-trigeminal condition
(r(18) =-.513; p=.021) (See figure 2a). In contrast, we did not find any significant linear
correlation between LPC latency and both anxiety scores for the pure olfactory condition
(See figure 2b). We did also not observe any significant linear correlation between LPC
amplitudes and the anxiety scores in any condition. No significant differences were
observed between sexes for the latency or LPC amplitude of the different conditions, with
the exception of a significant difference in LPC amplitude for the pure olfactory condition
(t (18) =0.89; p =0.03). Additionally, there were no associations between age and latency

or LPC amplitude for the different conditions (see Table 2).

DISCUSSION

Our study suggests that higher state anxiety scores are associated with shorter LPC
latencies for a mixed olfactory-trigeminal stimulus, but not for a pure odorant. According

to Cohen’s criteria (Cohen, 2013), the effect size of this relation is considered large. These
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results are in accordance with the hypothesis of a perceptual bias towards threatening
stimuli for mixed olfactory-trigeminal stimuli, in line with the notion of the trigeminal
system’s protective role against environmental threats (Gerhold & Bautista, 2009). One of
the major distinctions between the two chemosensory systems is that unlike olfaction, the
trigeminal relays directly to the thalamus (Thaploo et al., 2022; Albrecht et al., 2010). The
thalamus is a key region involved in the regulation of anxiety-related behaviors and may
be involved in the anticipation of uncertain threats in anxious individuals (Geng et al.,
2018; Mutic et al., 2017; Choi et al., 2012.). Specifically, noradrenergic cortical projections
enhance activity in thalamic and sensory regions. This facilitates direct communication
between the thalamus and amygdala, thereby potentializing physiological responses to
threat stimuli (LeDoux, 1996; Ohman, 2005; McEwen & Gianaros, 2010; Rued et al.,
2019). It is therefore possible that the early thalamic anticipation of threatening stimuli is
partly responsible for the observation of a shorter LPC latency from those with a higher
level of state anxiety as for the mixed olfactory-trigeminal stimulations, the trigeminal
system which is connected with the thalamus is activated. Future studies should test this

hypothesis by using functional Magnetic Resonance Imaging (fMRI).

No correlation was observed between LPC latency and trait anxiety. These results
are in contradiction with our initial hypothesis and with studies that have found significant
results supporting the presence of a perceptual bias in individuals with high trait anxiety.
Yet, some studies suggest that trait anxiety is more related with interpersonal threat than
with physical threat (Leal et al., 2017; Endler & Kocovski, 2001). If we follow this
perspective with regards to our findings, it seems appropriate to assume that mixed

olfactory-trigeminal stimulation corresponds more to physical than interpersonal threat.
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We did also not observe any effect of anxiety on the amplitude of the LPC, in line
with an earlier report showing that the LPC amplitude after an olfactory stimulation was
not influenced by state and trait anxiety (Ohla & Lundstrom, 2013). To comprehend this,
it may be worthy to look at the visual modality: here the literature is relatively heterogenous
with regards to the effect of anxiety on the P300 amplitude, the analogue component of the
LPC. For instance, while some researchers observed increased amplitudes in high non-
pathological anxiety levels (Ioakeimidis et al., 2021), others observed opposite results
(Rowe et al., 2021). The implication of working memory during the task (Rowe et al., 2021;
Luck, 2014) could explain some of the discrepancies. Indeed, the amplitude of the P300
corresponds to the memory load and varies according to the frequency of stimulation and
the difficulty of a task (Rowe et al., 2021). It is therefore possible that the heterogeneous
results observed in the amplitude of the P300 are better explained by the choice of the

protocol than by anxiety. This issue would be worth investigating in the context of the LPC.

An important limitation of this study is a relatively low statistical power. Indeed,
the time required to complete the task combined with its repetitiveness led to the presence
of alpha waves in some of the EEG recordings. Alpha waves are patterns of rhythmic
electric impulses produced near the occipital region, usually when the participant is in a
state of rest/when eyes are closed and have a frequency between 8 and 13 Hz (Moini &
Piran, 2020). Since the effects of the olfactory stimulation were expected to be visible
between 5 and 30 Hz, the presence of alpha waves ended up hiding the cerebral activity
produced by the olfactory stimulation. Even if we asked the participants to remain awake,
gave them warnings when alpha waves started to show on the live recordings and gave

them breaks in between the stimulation blocks, many recordings had to be removed
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because the CSERP components were not visible and/or the participant did not have
enough clean recordings to be kept in the statistical analysis. For the future, a task with a
certain level of arousal could be added in the inter stimulus interval to keep participants
vigilant Another limitation is that the valence of the odorants (rose and eucalyptus) was
not rated by the participants. Although these odors are generally known to have a positive
valence, we cannot guarantee that this is the case for our sample. Finally, this study does
not allow for the establishment of a causal link. Future studies should replicate this study
with an experimental protocol that includes a group of people with an anxiety disorder
compared to a control group on chemosensory evoked potentials and a behavioral measure

(e.g. reaction time).

CONCLUSION

We show that state anxiety is negatively correlated with the latency of the LPC occurring
after mixed olfactory-trigeminal stimulation. This suggests that a higher level of state
anxiety is associated to a faster perceptual response for mixed olfactory-trigeminal stimuli
but not for pure olfactory stimuli. This result supports the hypothesis of a perceptual bias
following a mixed olfactory-trigeminal stimulation. In future studies using CSERPs,

anxiety level should be considered as it could potentially affect components characteristics.
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FIGURES LEGENDS

Figure 1: Grand Average mixed olfactory-trigeminal (green) and pure olfactory
(pink) conditions in CZ position. The identification of the time window for the LPC

component was made between 400 and 800 ms.

Figure 2. Correlation between Late Positive Component (LPC) latency in Cz and
state anxiety scores for both mixed olfactory-trigeminal (2a) and pure olfactory conditions

(2b).
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