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Abstract: Greenhouse technologies provide controlled environmental conditions for crop
growth, often incorporating automation to enhance productivity. Energy management,
which involves monitoring, controlling, and conserving energy, is particularly crucial in
northern climates, where greenhouses are among the most energy-intensive sectors of
agriculture. This paper presents a comprehensive review of state-of-the-art greenhouse
technologies from an energy management perspective, exploring their role in enhanc-
ing efficiency and sustainability. It examines the energy management framework, key
technological advancements, benefits, challenges, and available solutions in the market.
Furthermore, it discusses principles and methods of energy optimization, best practices for
sustainable greenhouse operations, and emerging trends in smart grids, renewable inte-
gration, and automation. Unlike previous studies primarily focusing on agricultural and
control perspectives, this review highlights new insights into integrating greenhouse energy
management with smart grid participation, leveraging model predictive control (MPC) for
energy optimization, multi-agent reinforcement learning (DRL) for adaptive control, and
digital twin technology for real-time system modeling. By bridging greenhouse energy
management with transactive energy platforms, this paper underscores the importance of
intelligent, data-driven decision-making in enhancing efficiency, sustainability, and system
resilience while minimizing environmental impact.

Keywords: agricultural greenhouse; microclimate; energy management; control strategies;
optimization; modeling; demand response

1. Introduction
The rise in the global urban population is anticipated to be substantial by 2050, reach-

ing a staggering 9.7 billion [1]. This represents an increase of approximately 21.25%,
signifying a remarkable growth, equivalent to an additional 1.7 billion people within the
span of three decades. This urbanization trend intensifies the demand for food by almost
70% [2], creating pressure on existing food systems as cities grow. Consequently, urban
communities find themselves increasingly reliant on food sourced from rural areas or
imported from distant regions [3]. Furthermore, the expanding urban footprint contributes
to a growing disparity between food production and consumption. When examining the
entire life cycle, it becomes evident that emissions associated with current food systems
constitute a significant portion, representing approximately one-third of total global green-
house gas (GHG) emissions. However, this figure represents a global estimate and can
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vary by region due to differences in agricultural practices, energy sources, and transporta-
tion methods. For instance, emissions from food systems in industrialized nations may
differ from those in developing regions due to variations in mechanization, fertilizer use,
and supply chain efficiencies. Additionally, transportation related to food systems alone
accounts for about one-fifth of total food system emissions. This highlights the need to
reduce food imports and develop self-sufficient, sustainable food production strategies to
address climate uncertainties and reduce emissions that contribute to global warming [4,5].
Importantly, self-sufficient sustainable food production is a challenging task for certain
geographical realms, depending on the climate and weather conditions, limited arable
land, soil quality, transportation and infrastructure, limited technological adoption, and
many more [6]. In Canada, import dependence varies substantially across different fruits
and vegetables. Mostly, Canada relies on international imports for over 80% of its national
supply [7], and provincial dependencies rely on their personal supplies. For example,
in Québec, only half of the wholesale food consumed is grown/processed locally; the rest is
imported. This heavy import is due to low self-sufficiency and sustainability, which stems
from the vulnerabilities to climate change [7].

In addition to traditional field methods, greenhouses are vital in enhancing crop pro-
duction and achieving self-sufficient fruit and vegetable growth. Their structures protect
plants from unfavorable climatic conditions and allow them to grow efficiently and sustain-
ably at any time of the year [8,9]. The greenhouses’ controlled microclimate environment
ensures desired levels of indoor vitals as well as protects against external factors [9], thus
providing high-quality live stocks all year round [10]. Especially in northern climates,
greenhouse production is of particular interest. Despite greenhouses evolving toward
industrialization and scalability owing to the advancements in facility-based farming, one
significant challenge faced is their substantial energy consumption [11]. Microclimate
control activities, such as lighting, heating, ventilation, and air conditioning, contribute
significantly to this energy demand. For instance, this high energy demand during winter
peaks in northern climates can strain the electrical grid, leading to congestion and other
potential issues [12]. Traditional rule-based control methods often fail to optimize energy
usage and ensure constraint satisfaction [13]. That underscores the importance of the energy
management perspective in greenhouse technologies. Figure 1 displays the terminologies
of potential work and research in advancing greenhouse technologies towards the grids of
the future.

Globally, there is a strong push towards renewable energy and smart grid technologies
to create more resilient and sustainable energy systems. Specifically, in Québec, by 2035,
75% of the new electricity generation will be dedicated to decarbonizing the environment,
out of which 35% will be dedicated to industrial decarbonization [14]. As a significant
energy consumer, the agricultural sector has a crucial role in this transition. Improving grid
performance and reducing grid stress in agricultural greenhouses involves a multifaceted
approach integrating advanced mathematical modeling, sophisticated control strategies,
energy optimization techniques, and demand response programs. Mathematical modeling
involves creating mathematical representations of greenhouse energy systems to simulate
and analyze their behavior under various conditions, including models for energy con-
sumption, crop production, and storage [15]. That enables precise planning and dynamic
response to energy demand fluctuations. Implementing automated control strategies [16],
such as smart thermostats and HVAC systems, enables real-time adjustments that reduce
energy consumption and shift demand away from peak grid periods. Energy optimiza-
tion, through efficient lighting and insulation, coupled with adjusting energy use based
on grid conditions and demand-side energy management strategy, ensures sustainable
operations while maintaining crop quality [17]. Participating in flexibility markets and
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embedding renewable energy sources [18], like solar panels, further alleviates grid stress by
providing additional flexibility and reducing reliance on fossil fuels. Design optimization
of greenhouses enhances these benefits by integrating energy-efficient structures from the
outset [19]. By adjusting energy use based on grid conditions, demand-side management
further optimizes energy consumption patterns [20]. Collectively, these strategies contribute
to significant energy savings, operational efficiency, and decarbonization, which are crucial
in mitigating climate change and enhancing the sustainability of agricultural practices.

Energy
Savings

Greenhouse
Technologies

Energy
Optimization

Energy
Savings

Mathematical
Modelling

Internet of
Things

Design
Optimization

Crop
Quality

Energy
Management

Embedding
Renewables

Flexibility 
Market

Participation

Control 
Strategies

Figure 1. Terminologies surrounding the important aspects of greenhouse technologies.

Energy management is a crucial aspect of greenhouse operations, affecting cost-
effectiveness, profitability, and grid operations. In the greenhouse operations context,
several reviews are available from the crop-production perspective [21–23]. Also, we
can find several reviews describing ways to achieve energy efficiency, implementing dif-
ferent controls and modeling techniques, embedding renewables, and different design
methods for cost-effectiveness. For instance, Qayyum et al. [24] discuss econometric
models for sustainable agriculture, Zhang et al. [11] describe energy-saving designs and
control for sustainable greenhouses, and Cuce et al. [25], Gorjian et al. [26] mention var-
ious renewable energy integration options towards sustainable energy saving. Energy
efficiency in agricultural greenhouses has often been linked with control methods, mod-
eling, and operations. Iddio et al. [27] discuss energy-efficient modeling and operations,
whereas Paris et al. [18] describe energy efficiency measures in greenhouses, especially
for the EU region. Zhang et al. [28] discuss various control strategies for improving en-
ergy efficiency in agricultural greenhouses. With the advent of the Internet of Things
(IoT), various studies have been carried out for resource management towards automated
agricultural greenhouses [29,30]. The decarbonization perspective on greenhouse gas miti-
gation has also been explored in agricultural greenhouses [31,32]. Badji et al. [19] discuss
various design trends specifically related to the construction and management of the
greenhouse environment.
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While numerous studies have explored improvements in greenhouse technologies
from agricultural and control perspectives, the integration of energy management strategies
remains an evolving challenge. With the emergence of smart grids, there is a pressing
need to enable greenhouse participation in energy markets, incorporate renewable energy
sources, and harness demand-side flexibility for demand response (DR) programs. This
review addresses this gap by providing new insights into energy management techniques
tailored for agricultural greenhouses. It highlights the pivotal role of model predictive con-
trol (MPC) in optimizing energy usage, the growing adoption of multi-agent reinforcement
learning (DRL) for adaptive control, and the potential of digital twin technology in develop-
ing accurate greenhouse models. By bridging greenhouse energy management with trans-
active energy platforms, this paper underscores the importance of intelligent, data-driven
decision-making in enhancing efficiency, sustainability, and overall system resilience.

2. Greenhouse Energy Management in the Smart Grid Context
Energy management within the smart grid context involves the integration of ad-

vanced technologies and strategies to optimize energy consumption and production [33].
Smart grids utilize real-time data, automation, and communication technologies to enhance
the efficiency and reliability of electricity distribution. This enables the grid to adapt to
fluctuations in energy demand and supply, thereby improving overall grid stability and
resilience. Smart grids also facilitate the integration of renewable energy sources, dis-
tributed energy resources, and energy storage systems, which are essential for achieving
sustainability goals.

One of the key components of smart grid energy management is demand response
(DR) [34], which involves adjusting energy demand to match supply conditions. DR
mechanisms provide grid operators with the flexibility to manage load fluctuations, partic-
ularly during peak demand periods, by incentivizing consumers to reduce or shift their
energy usage. This is especially critical in managing the challenges posed by increasing
energy demand during winter peaks, as it helps to alleviate pressure on distribution system
operators (DSOs).

As we move towards more sophisticated energy management frameworks, the concept
of transactive energy (TE) emerges as a promising approach. TE frameworks extend the
capabilities of smart grids by integrating economic signals and market mechanisms to
optimize energy use and production. This involves integrating advanced technologies
and market mechanisms to optimize energy use and production within greenhouses. That
includes dynamic pricing [35] and economic incentives [36,37], embedding renewable,
energy storage elements [18,38], and distributed energy resources [39], among others.
From a broader perspective of the TE framework, DR can be viewed as a mechanism
adjusting demand to balance supply, which can be a part of a broader range of mechanisms,
including automated energy trading, comprehensive grid management, and real-time
pricing. Mainly, DR provides promising solutions for load management from the consumer
side when the increasing load demand causes significant problems for the DSOs, especially
during winter peaks [40].

Figure 2 represents a typical DR mechanism, where various sub-systems within agricul-
tural greenhouses can interact to respond to the demand response events. That contributes
to grid stability through an optimized energy consumption strategy that aligns with exter-
nal grid requirements while maintaining greenhouse microclimate conditions. The process
starts with a dispatch event from the distributed system operator (DSO) sending a price
signal or request for flexibility to the aggregator based on capacity limits and grid distance.
Then, the requirement is evaluated with flexible availability, which is further activated if
accepted by the DSO. The role of a greenhouse energy management system (GHEMS) is
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to calculate the flexibility possibility within its sub-systems. Once the offer is activated,
GHEMS commands its sub-system (greenhouse control system (GHCS)) to achieve de-
fined consumption objectives according to the received flexibility instructions based on the
price policy.

The DR mechanism illustrated in Figure 2 adapts the conventional demand response
framework to the unique requirements of agricultural greenhouses, where energy con-
sumption directly influences crop growth and environmental stability. Unlike traditional
home energy management systems that primarily regulate household loads, greenhouse
energy management must balance demand-side flexibility with precise microclimate con-
trol to prevent disruptions in plant growth. The greenhouse energy management system
(GHEMS) plays a crucial role in ensuring this balance by assessing the flexibility potential
across sub-systems such as heating, cooling, lighting, and CO2 enrichment. By dynamically
responding to price signals and grid constraints while preserving optimal growing condi-
tions, this mechanism not only enhances grid stability but also optimizes energy efficiency
in agricultural operations, reducing costs and enabling greater integration of renewable
energy sources.

:Distributed
System  Operator

:ADRA

dispatch event

inform the execution

:GHEMS :GHCS

based on the capacity limit
& price signal from DSO,

send signal for flexibility requirement 

response with flexibility availability

set sub-control systems
to achieve the defined power 

measurements

send signal for flexibility activation

calculate the flexibility
possibility within sub-systems

smart metering

if offer acceptable,
signal for activation

make an offer

GHEMS:  Greenhouse Energy Management System
GHCS:  Greenhouse Control System
ADRA:  Agricultural Demand Response Aggregator

Figure 2. Sequence diagram of a DR mechanism for a greenhouse.

Note that Figure 2 is a scenario of a grid operated by automated agents; there are
mainly three bifurcations from the perspective of automation: (i) manual DR, (ii) semi-
automated DR, and (iii) automated DR [41]. Many sources are available for energy man-
agement strategies in the TE framework.
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However, in the context of smart grids, agricultural greenhouses participating in
the energy markets or specific DR programs have been scarcely available until recently.
For instance, Rezaei et al. [42] considered a network of greenhouses participating in demand
response to reduce power consumption during peak hours, thereby managing power
exchange with the primary grid. Table 1 shows a high-level comparison of different
demand-side energy management strategies for grid-connected agricultural greenhouses
to participate in DR programs. From the survey, it can be found that multi-agent DRL and
MPC are the most popular methodologies for specific tasks. Moreover, only a few research
works have considered uncertainties and maximum demand limit constraints from the
aggregator side. Most of the work encapsulated the PV generation for trading with the
grid aggregator, whereas only a few considered the model of the crop. That is one of the
important aspects of agricultural greenhouse microclimate. The importance of crop models
brings the mathematical intricacies for the overall energy optimization problem, which
will be further discussed in Section 3.2. To solve the demand-side and aggregator-side
problems, the interaction between entities is crucial, and it has become a point of interest
for many researchers in recent years [43].

Substantially, game-theoretic approaches in collaboration with a multi-agent system
perspective are widely used in energy optimization for greenhouses, particularly for man-
aging energy consumption. They provide a structured way to analyze and design energy
management strategies, considering participants’ interactions. These methods often involve
strategic decision-making among multiple participants, such as energy prosumers, utility
companies, and consumers, to achieve an optimal balance between energy supply and
demand [44]. Naz et al. [45] proposed a two-stage non-cooperative Stackelberg game to
capture the interconnection between the consumers and the micro-grid.

One of the principal uses of non-cooperative games has been in strategic bidding
in electricity markets. Moreover, cooperative games have also found a place in energy
management to improve the collective playoffs, including sharing distributed resources or
coordinating energy consumption. Dynamics and static games are also often utilized for
energy trading systems for demand-side management [46]. Apart from individual research
articles, Ji et al. [47] provide a systematic review of the game-theoretic approach for decision-
making on demand-side energy management. Wang et al. [48] comprehensively review the
evolutionary game approach for sustainable energy development, encompassing energy
savings, carbon emission reduction, energy vehicles, electric power market, DERs, micro-
grids, smart grids, and energy storage. Similarly, He et al. [49] focused on reviewing the
application of game theory in integrated energy systems.
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Table 1. Comparison of demand-side management methods for DR programs of agricultural greenhouse.

References Method Objective Pricing

Renewable
Energy
Integration

Maximum
Demand
Limit

Mathematical Model Unc. Reliability/Scalability

PV WT HVAC TESS PV BESS WP AL Crop

[50] Multi-agent DRL Load reduction Dynamic pricing ✓ - - ✓ - ✓ ✓ - ✓ - -

It can be adapted to
include other renewable
sources, such as wind
and geothermal energy

[42] ADMM-based MPC for
a multi-greenhouse system

Aggregator water
reservoir pumping system Dynamic pricing ✓ - ✓ ✓ - ✓ ✓ - ✓ - -

Applicable for multi
greenhouse system,
limited to the use of
water reservoir

[51] Prosumer-based
PSO problem-solving

Maximizes power income and
time-shifting power usage

Day-ahead
dynamic pricing
(peak and valley)

✓ - - ✓ - ✓ ✓ - - - -
Limited to
prosumer-based
models

[52] Bi-level MILP
Stackelberg game theory Minimize HVAC consumption Hourly load

curve-based pricing - - ✓ ✓ - - - - - - -

20% HVAC flexibility
demonstrated, which can
be extended to stochastic
formulations

[53]
Coordinated
optimization
embedded MPC

Optimal dispatch
of renewables, water storage,
and HVAC

- ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ - -
Balanced use of
renewables and
power loads

[54] Supervisory
Centralized MPC

Operating setpoints of
microclimate - ✓ ✓ - ✓ - ✓ ✓ ✓ - - ✓

Applicable to
Smart Multi-floor
Vertical Greenhouses

[55] Agent-based implicit DR Optimal overall consumption Time-varying
spot market pricing - - - ✓ - - - - ✓ ✓ - Commercial software

dependencies

[56]
Robust optimization
(grid-connected and
islanded mode)

Balancing power buying
and selling to grid

Time-of-use (ToU)
market pricing ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ - ✓

Applicable for
trading in different
operational modes

[57] Multi-agent system with
modified contract protocol

Minimizing operational cost
of building micro-grid
(energy transactions with grid)

ToU day-ahead
market pricing ✓ - - ✓ ✓ ✓ ✓ - ✓ - - Applicable to rooftop

type greenhouses

[58] Time-based DR Optimal energy consumption
of artificial lighting

Spot market
pricing - - - ✓ - - - - ✓ - -

Commercial software
dependencies, limited
modeling ability

[59] Monte Carlo Simulation
and MILP

Minimizing total energy
cost and demand charges

Real-time pricing
+ demand charges
+ flat rate price

- - - ✓ - - - - ✓ - ✓
Applicable to hierarchical
control approach for
greenhouses

Unc.: uncertainty, PV: photovoltaics, WT: wind turbine, BESS: battery energy storage system, TESS: thermal energy storage system, WP: water pump, AL: artificial lighting, DRL: deep
reinforcement learning, MPC: model predictive control, DR: demand response, MILP: mixed integer linear programming, PSO: particle swarm optimization, and ToU: time of use.
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3. Greenhouse Microclimate
The GHEMS is critical to address grid challenges and participate in DR programs.

Figure 3 depicts the stages involved in greenhouse microclimate environment management.
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Desired
Setpoints

Indoor Climate
Control
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Figure 3. Stages of the greenhouse energy management system (GHEMS).

3.1. Sensors and Data Acquisition

The first stage in greenhouse energy management is data acquisition and monitoring,
which has gained significant attention with the rise of Industry 4.0 [30]. This stage is critical
as it involves collecting high-frequency data from multiple sources, ensuring robust and
efficient handling of large datasets while maintaining data quality. Over recent decades,
sensor technology has evolved significantly, becoming increasingly industrialized and
technology-driven [60]. With the integration of IoT-based smart agricultural tools, growers
now have enhanced control over crop growth, improved predictability, and increased
operational efficiency.

However, the challenge comes in handling the heterogeneity and fast pace of data
generation, particularly with smart grids that introduce numerous data points and require
high-frequency monitoring [61]. Additionally, sensor calibration and data accuracy remain
critical concerns. Over time, factors such as temperature fluctuations, humidity, and sensor
drift can lead to measurement errors, affecting real-time decision-making in greenhouse
operations. Studies have shown that insufficient ventilation around sensors can cause
temperature over-estimations by up to 1–2 °C and relative humidity underestimations
by 10–20%, highlighting the need for regular calibration and validation protocols [62].
Implementing self-calibrating sensors or periodic recalibration procedures is essential to
maintaining data reliability.

Beyond calibration, sensor failures can severely disrupt greenhouse management.
Failures may occur due to power supply issues, hardware malfunctions, or long-term wear,
leading to either complete data loss (hard failures) or gradual inaccuracies (soft faults) that
persist undetected [63]. The latter can be particularly problematic, as slow sensor drift
can result in incorrect climate control adjustments, ultimately impacting crop health and
energy efficiency. Deploying redundancy strategies, such as multi-sensor networks for
critical parameters, and integrating fault detection algorithms can mitigate these risks and
enhance system reliability.

Furthermore, high capital expenditures remain a challenge for small and medium-
sized growers, as advanced sensing technologies often come with significant costs.
To address this, a three-s (sensing, smart, and sustainable) strategy was proposed by
Miranda et al. [64], advocating for cost-effective, scalable sensor solutions that balance
affordability with technological advancement [65].

In Table 2, we summarize the key measurement variables for greenhouse microcli-
mates that are essential from both a crop growth and energy management perspective.
The table categorizes variables based on their relevance to different irrigation systems,
acknowledging that their communication protocols, environmental adaptability, and eco-
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nomic feasibility vary widely, posing unique challenges that remain beyond the scope of
this paper.

Table 2. Measurement variables for comprehensive agricultural greenhouse management.

Category Variable Drip
Irrigation

Sprinkler
Irrigation Hydroponics Crop

Growth
External
Weather

Climate Control Temperature ✓ ✓ ✓ ✓ ✓
Humidity ✓ ✓ ✓ ✓ ✓
CO2 concentration ✓ ✓ ✓ ✓ -
Light intensity ✓ ✓ ✓ ✓ ✓

Soil Parameters Soil moisture ✓ ✓ - ✓ -
Soil temperature ✓ ✓ - ✓ -
Soil pH ✓ ✓ - ✓ -
Soil salinity ✓ ✓ - ✓ -

Water Quality Water pH ✓ ✓ ✓ - -
Water salinity ✓ ✓ ✓ - -
Water temperature ✓ ✓ ✓ - -

Plant Growth Plant height - - - ✓ -
Leaf area index - - - ✓ -
Chlorophyll content - - - ✓ -
Biomass - - - ✓ -

Hydroponics Nutrient concentration - - ✓ - -
pH level - - ✓ - -
Dissolved oxygen - - ✓ - -

External Weather Ambient temperature - - - - ✓
Wind speed - - - - ✓
Rainfall - - - - ✓
Solar radiation - - - - ✓

3.2. Modeling and Simulation

This stage involves creating mathematical models to simulate the system’s behavior
under different conditions. The challenge is ensuring that the models accurately represent
the real-world system and predict its behavior under various scenarios. As mentioned
earlier, agricultural greenhouses provide a controlled environment to optimize the indoor
microclimate, mitigating the variability caused by weather, diseases, and soil conditions.
However, external factors, such as freezing weather, still present challenges, necessitating
continuous reassessment and adjustment of cultivation strategies. For that purpose, digital
twins can be considered an ideal choice to test the algorithms based on real-time data
or near real-time data [66]. Digital twins are virtual representations of physical systems,
processes, or assets. They mirror the real-world behavior of their counterparts and allow
real-time monitoring, analysis, and prediction [67].

Implementing digital twins in greenhouse environments involves integrating various
Industry 4.0 technologies, including the Internet of Things (IoT), artificial intelligence
(AI), big data analytics, and cloud computing. These technologies collectively enable the
creation of a virtual replica of the greenhouse, facilitating real-time monitoring and control.
The process begins with deploying IoT sensors throughout the greenhouse to collect data
on critical parameters such as temperature, humidity, CO2 levels, and light intensity. These
data are then transmitted to the cloud, where AI algorithms process them to simulate
the greenhouse’s behavior under different conditions. The digital twin is validated by
comparing its outputs with actual greenhouse performance, ensuring accuracy in modeling
and simulation [68]. Incorporating digital twins into greenhouse management represents a
significant advancement in precision agriculture, enabling more sustainable and efficient
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production systems, see [69] for a comprehensive review on the implementation of DTs for
smart agriculture.

A notable example of digital twin implementation is the Greenhouse Industry 4.0
(GHI4.0) project in Denmark [67]. This initiative developed a digital twin software platform
that integrates IoT, AI, big data, and cloud computing to optimize greenhouse produc-
tion processes. The digital twin allows for the co-optimization of production schedules,
energy consumption, and labor costs by considering factors such as production dead-
lines, quality grading, heating, artificial lighting, energy prices, and weather forecasts.
By simulating various operational scenarios, the digital twin aids in decision-making,
enhancing energy efficiency and productivity without compromising product quality or
sustainability. The technical implementation of digital twins in greenhouses involves
several key components:

• IoT sensors collect real-time data on environmental conditions and plant health.
• Data analytics process large datasets to identify patterns and predict outcomes.
• AI algorithms enable predictive modeling and optimization of greenhouse operations.
• Cloud computing provides scalable storage and computational power for data processing.

By integrating these components, digital twins offer several benefits:

• Enhanced decision-making simulates different scenarios to inform strategies.
• Energy efficiency optimizes resource usage, reducing energy consumption.
• Improved productivity streamlines operations for higher yields and better quality.

Given the benefits of DTs with smart grids, the complexity increases due to the need
to model and simulate various components like renewable energy sources, storage devices,
and consumer loads. It is argued that DTs can be crucial in cyber-physical system-based
DR programs [70]. Van Der Veen et al. [71] discuss the importance of DTs in the interaction
between the cyber and physical systems for the coordination between various stakehold-
ers, such as prosumers, consumers, DSOs, and DRAs. With the advent of Industry 4.0,
digital twins in power systems (DTiPS) have been coined with a focus on real-time or
near real-time energy management systems for better decision-making [72]. DTs can have
essential characteristics to be addressed, such as timeliness, fidelity, integration, intelligence,
and complexity. Broadly, DTs can be based on three modeling paradigms [73]: black box,
gray box, and white box.

3.2.1. White Box

These models are derived from the energy and mass balance equations and are capable
of describing physics-based dynamics. These models are considered the most detailed and
closest-to-reality models, which are ideal for DTs. However, their parameters carry physical
meaning and hence must be obtained from technical documentation, orientation, geometry,
properties, and specifications. Here are the principal benefits and drawbacks mentioned
for white box models.

Benefits:

• Detailed Process Insight: Provides a comprehensive insight into the dynamics, enhanc-
ing our understanding of every aspect of the system.

• Predictive Precision: Considers that all the details are rightfully mentioned and under-
stood. It can provide extremely precise predictions of the system under study, making
it ideal for DTs.

• Customizability: It can be customized to specific systems and conditions, allowing
tailored solutions.

• Reliability: Complimentary to the precision, they provide reliable results under
perfect details.



Sustainability 2025, 17, 3407 11 of 30

• Controllability: Higher controllability at a granular level.

Drawbacks:

• Complexity: As the number of variables grows, model complexity increases, demand-
ing greater domain-specific knowledge and expertise.

• Sensitivity to Parameter Change: Model accuracy and stability can be questionable
due to the model sensitivity to parameter changes.

• Time Expense: Describing the system’s aspects is tedious and time-consuming, making
it computationally expensive.

• Adaptation Difficulty: Challenging to adapt quickly to new or significantly changing
conditions without extensive recalibration or redevelopment.

For the brevity of the presentation, a foundational generalized greenhouse model
for energy management is presented. Contributions from diverse sources [74–77] are
considered to comprehensively describe the model with a particular focus on aligning them
with the GHEMS, including both the climatic and agronomic axes.

Indoor Temperature: Maintaining an appropriate indoor temperature is vital for plant
health and productivity. The temperature inside the greenhouse influences several phys-
iological processes in plants, including photosynthesis, respiration, and transpiration.
From the first law of thermodynamics, we have

Cair
dTin

dt
= Qheat − Qcool + Qsolar + Qvent − Qwalls, cond

− Qwalls, conv − Qex, air − Qtrans, crop + Qlight,
(1)

where Qsolar = ηsolar Aglazing Isolar(1 − e−kL), and Qtrans, crop is the latent heat loss due
to crop transpiration, which is proportional to ṁtrans, i.e., Qtrans, crop = λṁtrans (la-
tent heat of vaporization λ). Qlight represents the heat generated by artificial light-
ing, i.e., Qlight = Plight(tlight/Vair)(Tlight − Tin). Qwalls, cond = (κA/d)(Tin − Text) and
Qwalls, conv = hA(Tin − Text).

Crop Canopy Temperature: The temperature of the crop canopy is a critical component
of the greenhouse microclimate. The crop canopy temperature (Tcrop) affects both the
indoor temperature and humidity balance. It is influenced by solar radiation, ambient
air temperature, and the transpiration process. The energy balance equation for the crop
canopy temperature can be written as follows:

Ccrop
dTcrop

dt
= Qsolar,crop − Qtrans + Qex,air, (2)

where Qsolar,crop = ηcrop Acrop Isolare−k·L with k as the extinction coefficient varying with
the type of vegetation, leaf orientation, and solar angle. Qex,air = hc Acrop(Tcrop − Tin)

represents the heat exchange between the crop canopy and the indoor air. Note that Qtrans

and Qtrans, crop refer to the same physical process of latent heat loss due to transpiration.
However, their perspective is different: for (1), it is the heat loss from the air due to the
latent heat of transpiration by the crop, and in (2), it is the latent heat loss from the crop
canopy due to transpiration.

Leaf Area Index (LAI) Growth Model: LAI affects both the light interception and tran-
spiration rates, influencing the greenhouse’s energy and humidity balance. LAI can be
described as a function of the node development rate, which is itself influenced by tem-
perature and other environmental conditions. The LAI dynamics can be modeled using
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a growth equation, such as the logistic growth model, where the rate of change in LAI
depends on the node development rate and the current temperature.

dL
dt

= α · NDR ·
(

1 − L
Lmax

)
, (3)

where NDR = f (Tcrop) represents the node development rate (NDR) influenced by tem-
perature. Generally, f (Tcrop) can take the form of a polynomial or an exponential function
that accounts for the optimal temperature range for crop growth. Golzar et al. [15] can be
referred to for a more detailed model of LAI.

Indoor Humidity: Moisture balance within a greenhouse is a crucial aspect of maintain-
ing optimal growing conditions for crops. This balance is influenced by both the ventilation
system, which exchanges air with the outside environment, and the transpiration process,
where plants release moisture into the air.

dHin

dt
=

1
Vair

(ṁw, in − ṁw, out + ṁevap − ṁcond + ṁtrans), (4)

where ṁtrans denotes crop transpiration, which can be modeled by the Penman–Monteith
method as follows:

ṁtrans =
∆(Rn − G) + ρacp

Dv
ra

∆ + γ(1 + rs
ra
)

, (5)

or empirically as ṁtrans = βL(1 − Lmax/L) · f (Tcrop, Dv, ra, rs). Equation (5) uses radiative,
aerodynamic, and resistive factors to estimate transpiration, whereas the simple empirical
model uses a coefficient and a function of environment factors to estimate transpiration [78].

Soil Temperature and Humidity: Soil environment is the backbone of promoting crop
nutrient uptake. The temperature and humidity of the soil can be provided by the following:

Csoil
dTsoil

dt
= ksoil∇2Tsoil + Qex, air

− Qloss − Qtransn, crop,
(6)

dHsoil
dt

=
1

Vsoil
(ṁw, in − ṁw, uptake

− ṁw, evap − ṁw, drain − ṁtrans).
(7)

CO2 Concentration: CO2 in a greenhouse can enhance photosynthesis rates and im-
prove crop yields. Importantly, ventilation and plant respiration can mainly influence
CO2 concentration.

dCO2,in

dt
=

1
Vair

(ṁCO2, in − ṁCO2, out − ṁCO2, uptake), (8)

where ṁCO2,uptake = φ · L · f (Tcrop, CO2,in) with γ as a coefficient that scales the CO2 uptake
rate with LAI.

Ventilation System: Ventilation systems play a pivotal role in regulating temperature
and humidity within the greenhouse. By exchanging air with the external environment,
ventilation helps to remove excess heat and moisture, introducing fresh air and maintaining
optimal growing conditions. Effective ventilation management is crucial for preventing
overheating, reducing humidity to acceptable levels, and ensuring a constant supply of
CO2 for photosynthesis.

Qvent = ṁaircp(Text − Tin) + ṁair((Hin(Cp,vaporTin + λ)

− Hext(Cp,vaporText + λ)).
(9)
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Equation (9) consists of sensible and latent heat components. The first term represents
the energy due to the temperature difference between the inside and outside air. The sec-
ond term represents the energy associated with moisture content change, including both
sensible heat of water vapor and the latent heat of vaporization. This formulation ensures
that both temperature and moisture dynamics are accurately captured in the ventilation
system model.

ṁw, vent = ṁair(Hext − Hin) + ṁtrans, (10a)

ṁCO2, vent = ṁair(CO2,out − CO2,in)− ṁCO2, uptake. (10b)

Note that although the above mathematical model (1) to (10b) aims to provide a
comprehensive understanding of the greenhouse system dynamics, it is essential to ac-
knowledge that specific components, such as empirical coefficients, may require more
profound expertise in thermodynamics or agricultural science for precise determination.
These aspects represent areas where further refinement and specialized knowledge could
enhance the model’s accuracy and applicability. Additionally, the dynamics change as we
add other components and distributed/renewable energy sources, such as water pumps,
wind turbines, photovoltaic (PV) systems, battery energy storage systems (BESS), and ther-
mal energy storage systems (TESS).

3.2.2. Gray Box

Gray box models have always found a sweet spot between black and white, as they
offer a more practical and flexible approach to modeling. For real-world applications, if the
data from the greenhouse are accessible, then gray box models are a practical solution
as they can be effectively calibrated and validated using experimental data. Gray box
models balance physical principles and empirical relationships to capture the essential
dynamics [79]. Below are some of the benefits and drawbacks of a typical gray box model.

Benefits:

• Development Time: Compared to white box models, gray box models take less time
owing to the partial dependence on empirical data.

• Robustness: They are more robust to the stochasticity of variables, such as climate
conditions, compared to black box models, enhancing crop yield predictions.

• Management: Combined simplified plant growth models and data can improve
environmental management.

Drawbacks:

• Calibration Complexity: Robust parameter estimation methods are required to im-
prove accuracy, which is one of the major challenges of gray box models.

• Computational Demand: The complexity of the model’s physical part and the objective
function’s complexity can make them computationally expensive.

• Re-calibration: Periodic re-calibration is required with more recent data.
• Moderate Data and Knowledge Requirement: Though better than the black box model,

it might be challenging to fit sometimes if the training period is too long. Additionally,
appropriate knowledge is necessary as some of the sub-processes can have an analogy
or be empirical.

Traditionally, the RC analogy is the most widely used method to achieve a well-suited
gray box model for control applications. Equations (11a)–(11f) covers a simplified RC model
for the greenhouse system. The RC model analogy allows us to represent the CO2 transfers,
temperature, humidity, crop, and soil dynamics in terms of capacitive and resistive elements,
capturing the system’s transient response to changes in environmental conditions.
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Cair
dTin

dt
=

Text − Tin

Rheating
− Tin − Text

Rcooling
+

Text − Tin

Rvent
−

Tin − Tcrop

Rtrans

+
Tlight − Tin

Rlight
+ ηsolar Aglazing Isolar(1 − e−kL), (11a)

Cair
dHin

dt
=

Hext − Hin

Rhumid
− Hin − Hext

Rdehumid
, (11b)

Cair
dCO2,in

dt
=

CO2,ext − CO2,in

RCO2,supp
− CO2,in − CO2,ext

RCO2,vent
−

CO2,in − CO2,crop

RCO2,uptake
, (11c)

Csoil
dTsoil

dt
=

Text − Tsoil
Rheating, soil

− Tsoil − Text

Rcooling, soil
, (11d)

Ccrop
dTcrop

dt
= ηcrop Acrop Isolar · LAI − ṁtransλ −

Tcrop − Tin

Rex, air
, (11e)

ṁtrans = β · L ·
(

1 − L
Lmax

)
· f (Tcrop, Dv, ra, rs). (11f)

In the indoor temperature balance (11a), thermal capacitance Cair represents the ther-
mal inertia of the air inside the greenhouse, while the resistances (R) correspond to heat
transfer rates between different components of the system, such as heating, cooling, ven-
tilation, and crop canopy exchange. Similarly, Equations (11b)–(11f) represent moisture
content, CO2 concentration, the thermal mass of the soil, and crop canopy temperature.
Notice that heat gain from solar radiation is often treated separately due to its direct de-
pendence on light interception efficiency and LAI. This term remains empirical and based
on the specific characteristics of the crop and glazing, capturing the direct impact of solar
radiation on the greenhouse temperature.

Various optimization techniques can be utilized to obtain the parameters of a gray box
model, namely, convex optimization [79], PSO [80], genetic algorithm [75] evolutionary
algorithms [81], etc. There are two stages of this parameter estimation: batch and online.
Batch estimation includes minimization of the model error over a specific period of time,
which can be performed offline. On the other hand, an online estimation can be argued
as a filtering technique such as Kalman filtering [82], non-linear Kushner filtering [83],
sequential Monte Carlo, and many others.

Figure 4 displays a potential application of integrated modeling, which can be adapted
to manage the microclimate of greenhouses effectively. Notably, the DT/white box can
virtually represent an actual greenhouse that creates a database by simulating various
scenarios [67,84]. It could contain a detailed greenhouse simulation, including all the
components in this context. Subsequently, a gray box or a black box model can be learned to
capture the dynamics essential for a particular control/optimization technique, for instance,
MPC. That can also take decisions and apply the changes to the real greenhouse or digital
twin. Consequently, this decision-making mechanism can be of great use to interact and
test various algorithms and management schemes.

Table 3 compares various simulators available based on their offerings. Altes-Buch et al. [85]
provide a detailed simulator compared to others by leveraging Modelica libraries. However,
the control scheme is limited to PID only. On the other hand, Szalai [86] provide a complete
open-source Python-based library for greenhouse simulations. It provides predominately
vertical farming simulations, where the crop models are limited to just two, and the control
solution is only a proportional controller. Nevertheless, owing to its open-source nature,
the framework can be further extended to improve the controller, add types of crops,
and use other optimization techniques from an energy management perspective.
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Real Greenhouse

Digital Twin /
White-box Database

Model Learning
Grey-box /
Black-boxDecisions

Real-time
Control &

Optimization

Figure 4. Schematic representation of integrated modeling approaches in greenhouse technologies.

3.2.3. Black Box

Purely data-driven black box models rely on historical data and machine learning algo-
rithms to predict system behavior without prior knowledge of the underlying physics-based
dynamics. Broadly, black box models can be classified into parametric and non-parametric
models. Parametric linear models are argued to be the simplest of all, mainly covering the
offspring of regressive and auto-regressive models [87,88]. Recently, parametric nonlinear
models such as NN, ANN, LSTM, etc., have become the most popular, demonstrating
improved microclimate predictions [89,90]. LSTMs are flexible as they do not make strong
assumptions about the form of the mapping function from inputs to outputs. Instead, they
are designed to learn the patterns from the data, regardless of the underlying distribution.
Gharghory [91] can be consulted for detailed time series prediction of microclimate data
inside the greenhouse. On the other hand, Zhou et al. [92] claimed to improve the pre-
diction accuracy of the process-based greenhouse with a combination of particle filtering
and DNN. Also, a multi-model DL approach has recently surfaced [93], addressing the
prediction imbalances in smart greenhouses arising from a single-model approach.

Benefits:

• Rapid Deployment: Quick to implement for real-time monitoring and control based
on historical data.

• Cost-effective: Lower initial cost is one of the major benefits of black box models as
they do not require domain-specific knowledge.

• Flexible and Scalable: Large dataset handling capacity and swiftly transformable to
state space formulation for control applications.

Drawbacks:

• Generalization: Cannot be generalized as they are vulnerable to uncertain conditions
previously not encountered.

• Data Dependent: As no physics-based knowledge is involved, they are highly depen-
dent on data and can lead to inaccuracies for certain processes where knowledge is
paramount, for instance, plant growth patterns or anomalies.

• Trust Issues: Lack of insights can limit the understanding of predictions.
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Table 3. Comparison of simulators for agricultural greenhouses.

References Platform Method Open
Source

Modular
Design

Microclimate
Model

Crop
Model

Crops
Grown

Supplementary
Lighting

Validated /
Location

Sub-Systems
Measurements

Data
Acquisition Control

[85] Modelica Sub-process
oriented

✓ (3-clause
BSD License) ✓ ✓ ✓ Tomato ✓ ✓ (Beglium)

HVAC, Window
Aperture, Lighting,
Energy Consumption

✓ ✓ (PID)

[94] MATLAB
+ EnergyPlus ODEs ✗ (Apache 2.0) ✗ ✓

Yes, Detailed
Crop Model Tomato ✓ (Configurable

HPS/LED)
✓ (The Netherlands
and USA)

Microclimate, Lighting,
Energy Consumption ✓ ✗

[95] Sketchup
+ TRNSYS CFD ✗

✓ (Requires new
3D design)

✓ (20 Thermal
Zones) ✓

Flowering
Crops ✓ (HPS) ✓ (Italy) Crop Thermal Condition,

Energy Consumption ✓ (Hourly) ✗

[77] Undisclosed Undisclosed ✗
✓ (Semi-closed
and Closed) ✓ ✓

Multiple
vegetables
and fruits

✓
✓ (Weather File
Required)

HVAC, Lighting,
Energy Consumption ✓ (Hourly) ✓

[86] Python ODEs ✓
✗ (Changeable
characteristics
of the structure)

✓ ✓ Basil, Tomato ✓ (LEDs) ✓ (Spain)

Microclimate,
Ventilation,
CO2, Humidity,
Lighting, Energy
Consumption

✓ (Custom) ✓ (only P)

[96]
Web-based
Application,
ActionScript 2.0

Energy and
Mass Balance ✗

✓ (Three different
structure) ✓

✓ (Plant
Transpiration) Tomato ✗ ✓ (Arizona, USA) Microclimate ✓ (15 min

time step) ✓ (ON/OFF)
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3.3. Control and Optimization

In this stage, an objective function is defined, and the system parameters are tuned to
optimize this function. The challenge in this stage is to ensure that the optimization process
leads to a solution that is not only optimal but also feasible in the real world. In the context
of smart grids, the optimization process becomes complex due to the need to balance
various factors like energy efficiency, cost, reliability, and sustainability.

A critical challenge in optimizing smart grid operations is the intermittency of renew-
able energy sources, such as solar and wind power, which can cause fluctuations in energy
availability [97]. These fluctuations necessitate advanced predictive control strategies and
real-time optimization algorithms to ensure a stable power supply. Studies have shown that
high penetration of non-synchronous renewable energy sources can impact grid stability
due to a lack of rotational inertia, making efficient energy management crucial [98]. The in-
tegration of hybrid energy storage systems (HESS), combining battery storage, thermal
energy storage, and pumped hydro storage, has been explored as a solution to mitigate
these challenges [99]. Proper storage sizing and optimal charging-discharging schedules
are essential for maximizing efficiency while ensuring cost-effectiveness [100].

Subsequently, the final stage involves executing the optimized strategies through
control decisions. The challenge is to ensure that control strategies are robust, adap-
tive, and capable of responding to real-time grid conditions and renewable energy varia-
tions [101]. With smart grids, control implementation becomes particularly complex due
to the need to manage a large number of interconnected devices and ensure coordinated
operation. AI-driven optimization techniques have been widely studied to address this
complexity, providing predictive modeling capabilities for energy demand and renewable
generation [102].

The onset of smart grid technologies has indeed brought about numerous challenges,
including security and privacy concerns, information management issues, grid imbalance
problems, and the integration of renewable and distributed energy resources. However,
these challenges also present opportunities for innovation. Predictive optimization, AI-
driven demand-side management, and multi-agent control frameworks are promising
solutions that help balance grid operations while ensuring optimal energy utilization,
storage integration, and real-time adaptability [101]. Leveraging these advanced method-
ologies allows for a more resilient and flexible energy system, enabling greenhouses and
other smart grid participants to efficiently integrate renewables while maintaining stability
and reliability.

Figure 5 depicts a schematic of an existing greenhouse system with its control system
for controlling the microclimate. Here, an entity responsible for energy management is
established that evaluates the greenhouse model, utility price signal, weather, and the
constraints to generate optimal power profiles for optimizing energy usage with respect
to the price signal as well as plant comfort. In flexibility/energy markets, this manager
can respond to the ADRA in the hierarchy (Figure 2). This optimizer is essentially for
demand-side problem solving; similarly, the ADRA also solves an optimization problem.
As discussed in Section 2, various game-theoretic strategies can be employed for energy
management, encompassing case-specific optimization algorithms. Table 4 shows the
comparison of control and optimization algorithms employed for greenhouse systems. Also,
a bifurcation of the roles of various variables of the greenhouse control system is devised.
The objective of each methodology has to be divided into either a setpoint or energy cost
perspective. Moreover, comments on the results of the study, convergence/stability criteria
undertaken, sensitivity, platform, and crops grown are also considered. Here, we present
the most commonly used optimization problems in the literature for greenhouse control
and optimization. From the energy management perspective participating in DR scenarios,
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the common modes of operation adopted are the grid-connected and islanded modes.
The optimization problem adopted for grid-connected mode is as follows [103].

Control
Decisions

Constraints/Model

Existing Control
System CropDesired

Ranges

Weather
Data

Optimizer

Price Signal

Optimized 
Trajectories 

Yield

Greenhouse

Figure 5. Control and optimization framework: greenhouse energy usage and crop yield with
price adaptation.

minimize ∑
0≤t≤T

(CG
t + COP

t + CBP
t − CSP

t )

subject to microclimate bounds

power generation bounds

I/O bounds

. (12)

In (12), CG
t denotes the cost of the generation of power and startup, which can be

sourced from various renewable energy resources. COP
t depicts the operational cost. CBP

t −
CSP

t is for the difference in the cost of buying the power from the grid to maintain the
microclimate conditions and selling the generated power to the grid. Based on the number
of units for power production and the type of renewables used, (12) can be modified to
accommodate the changes. Importantly, the objective function in (12) is subject to certain
constraints. Specifically, microclimate bounds are the indoor environmental conditions
that need to be maintained within the greenhouse, such as temperature, humidity, light
intensity, CO2 concentration, etc. The energy management system should ensure these
conditions are kept within certain ranges for optimal plant growth. Moreover, power
generation bounds could be the limits on the amount of power that can be generated or
used. For instance, there might be a maximum limit on the power that can be drawn from
the grid or a minimum amount of power that needs to be generated by the greenhouse’s
own energy sources (like solar panels or wind turbines). On the contrary, in the islanded
mode, the following objective function could be adopted:

minimize ∑
0≤t≤T

(CG
t + COP

t + CP
t )

subject to microclimate bounds

power generation bounds

I/O bounds

penalty bounds

. (13)

Here, in (13), a total penalty cost is added to the objective function. That covers the
cost of violating the microclimate bounds, which may cover the basic penalty factor as
well as an additional penalty for consecutive interval violations. This penalty term CP

t is
important as the violation of not maintaining the microclimate parameters at the desired
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levels can adversely affect the growth of plants. Lin et al. [104] proposed an optimization
to reduce the consumption of not only energy but water and CO2 as well, i.e.,

minimize ∑
0≤t≤T

(pE
t ψE

t + pW
t ψW

t + pCO2
t ψCO2

t )

subject to ventilation rate

CO2 injection rate

microclimate bounds

. (14)

In (14), pE
t , pW

t , and pCO2
t are the prices for energy ($/kWh), water ($/L), and CO2

($/ton). ψE
t is the total energy consumed by heating/cooling, ventilation, irrigation pump,

and artificial lighting. ψW
t is the water consumption, and ψCO2

t is the CO2 consumption.
Importantly, water requirements have no constraints as they depend on the crop. Ref. [103]
proposed a more growers-oriented objective function, i.e.,

maximize ∑
0≤t≤T

(CG
t − CO

t )

subject to input bounds

models

microclimate bounds

harvesting time

, (15)

where CG
t is the gross economic return of the production process by selling the harvested

crops at the harvest auction, and CO
t represents the overall operating cost for maintaining

the microclimatic conditions. Moreover, another instance of a grower-oriented objective
function can be found in [105], i.e.,

minimize ∑
0≤t≤T

(−γt + ψE
t )

subject to input bounds

models

microclimate bounds

. (16)

The aim of this objective function (16) is to maximize the crop yield γt and minimize
the energy usage ψE

t at the same time. Ref. [50] utilized the most commonly used objective
function comprising of all microclimate-controlled variables (from i to N) and energy
consumption (17). This helped to minimize the energy consumption and maximize the
plant comfort.

minimize ∑
0≤t≤T

∑
0≤i≤N

(xi
t − x̂i

t)
2 + ptψ

E
t

subject to input bounds

models

microclimate bounds

. (17)
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Table 4. Comparison of control and optimization algorithms for agricultural greenhouses.

Reference Control
Framework

Optimization
Algorithm

Linear/
Nonlinear

Controlled
Variables

Maniplulated
Variables

Disturbance
Variables

Objective Convergence/
Stability Sensitivity Results of the Study Platform Climate Crop

SP EC

[17] NMPC IPOPT N T, H, CO2, AL

Fan flow rate,
heating,
CO2 injection,
fogging rate,
shade curtain
coverage

Ext. T, H,
SR, CO2

Min. control cost
CO2, Nat. Gas
and Elec.

Jacobian
linearization
for stability

On penalty weights
and energy costs

A 20% reduction in
control costs and
40% increase in nominal\
sensitivity analysis

do-MPC /
Python

Winter,
Spring,
Summer

Tomato

[103]
Two-stage
optimal PI
control

Maximum
Principle of
Pontryagin

L CDW, T, H, CO2
Ventilation, heating,
CO2 injection

Ext. T, H,
SR, CO2,
WS

Max. the diff. B/W
gross income
and operating cost

Necessary
conditions to
achieve optimality

N/A
Cascade control loop with
slower crop growth and faster
microclimate dynamics

N/A Winter Lettuce

[81] MIMO PID Multi-objective EA L T, H Ventilation,
fogging rate

Ext. T, H,
SR, CO2,
WS

Static-dynamic
ref. tracking ISE convergence N/A

Time-consuming method
not suitable for real-time
control requirement

MATLAB N/A

[106] Nonlinear
control N/A N T, H Heating,

fogging rate
Ext. T, H,
SR, CO2

Ref. tracking
with fixed rules N/A N/A

Improved transient
time response
in comparison to SMC

MATLAB Summer N/A

[104]
MPC—
two layer
strategy

IPOPT N T, H, CO2

Heating/cooling,
ventilation,
CO2 injection,
solar radiation-based
shading rate

Ext. T, H,
SR, CO2

Min. energy, water
and CO2
consumption

N/A Energy, water and
CO2 costs

Cannot work in
sub-zero exterior climates,
67% of total cost reduction

MATLAB Winter
(above 10C) N/A

[105]
Receding
Horizon MPC IPOPT N CDW, T, H, CO2

Heating/cooling,
ventilation,
CO2 injection

Ext. T, H,
SR, CO2

Max. crop yield
Min. energy N/A N/A

MPC achieves a higher
economic return but
slow due to an opt. problem

CasADi +
MATLAB

Winter
(2 to 8.5 C ) Lettuce

RL agent-based
control DDPG N CDW, T, H, CO2

Heating/cooling,
ventilation,
CO2 injection

Ext. T, H,
SR, CO2

Max. crop yield
Min. energy

500 epochs
agent training,
each epoch is
one day of
crop growth

White noise data
to avoid overfitting

RL is faster after learning but
permissive with
humidity constraints.
A health problem for the crops

N/A N/A N/A

[107] DRL agent-based
control

ϵ-greedy
strategy with SGA
for
max. Q-learning

N T Heating power Ext. T Maintaining T N/A Stochastic transient
dyanmics

61% more energy savings in
Q-learning than DDPG MATLAB Winter,

Spring Tomato

[16]
AI-based
model-free
control

Robust Opt.
with L-BFGS/
Adam

N

T, H, CO2,
Carbohydrates
per unit area in fruit,
leaves and stem

Heating/cooling,
humidification,
CO2 injection, AL

Ext. T, RH,
SR, CO2,
ST

Max. comfort Improve energy
efficiency N/A Weather unc.

26.8% improvement
in ref. tracking and 57%
in energy consumption
over traditional MPC

MATLAB Winter Tomato

[108]
Multivariate
Robust
control

LMI formalism L T, H Heating, Moistening,
Roofing, Shadiness

Ext. T, H,
SR, CO2

Min. H2 norm Check of robust
stability performed Model unc. 12% and 33 % improvement

in the ref. tracking for T and H MATLAB Spring N/A

[109] Optimal
control PROPT algorithm N T, H, CO2

Heating/cooling,
ventilation,
CO2 injection

Ext. T, H,
SR, CO2,
WS

Min. energy N/A N/A
Heating and cooling energy
were potentially reduced
by 47% and 15%

MATLAB Year around

Tomato,
Cucumber,
Sweet Pepper,
and Rose

[110] Robust MPC ADF policy L T, H, CO2

Heating/cooling,
dehumidifcation,
CO2 injection

Ext. T, H,
SR, CO2

Min. power
of actuators and
constraint
violation penalty

Bounded I/Os
and COV
for stability

Weather unc.

PCA and KDE-based
data-driven robust MPC
needs lower total control cost
than rule-based control

MATLAB Summer Tomato

T: temperature, H: humidity, AL: artificial lighting, CDW: crop dry weight, ST: sky temperature, WS: wind speed, EA: evolutionary algorithm, RL: reinforcement learning, IPOPT: interior
point optimizer, ADF: affine disturbance feedback, Nat. Gas: natural gas, DDPG: deep deterministic policy gradient, DRL: deep reinforcement learning, MPC: model predictive control,
SMC: sliding mode control, Unc.: uncertainty, and Ref.: reference.
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4. Discussions and Future Research
According to the literature, the scarcity of an energy management perspective for

agricultural greenhouse systems is evident due to a lack of awareness of the inherent
intricacies of multi-variable greenhouse systems and the diversity of available optimiza-
tion algorithms. Energy management within the transactive energy (TE) framework for
agricultural greenhouses integrates advanced technologies and market mechanisms to
optimize energy use and production. Key strategies include dynamic pricing, economic
incentives, renewable energy integration, and distributed energy resource (DER) deploy-
ment. Demand response (DR) plays a crucial role in this framework, adjusting demand to
match supply and offering load management solutions during peak periods, particularly
in winter. DR mechanisms involve the interaction between distributed system operators
(DSOs) and greenhouse energy management systems (GHEMS), which evaluate and im-
plement flexible energy consumption strategies to maintain grid stability while meeting
greenhouse microclimate requirements. The literature highlights the importance of multi-
agent systems (MAS), game-theoretic approaches, and machine learning techniques such
as deep reinforcement learning (DRL) and model predictive control (MPC) in optimizing
these processes. Studies reveal that while many efforts focus on integrating photovoltaic
generation and energy trading, fewer address crop modeling and its direct impact on
energy management.

Despite these advancements, financial and technological barriers remain significant
obstacles to the widespread adoption of smart grid technologies in greenhouse operations.
High initial investment costs for sensor networks, automation, and renewable energy sys-
tems can be prohibitive for small and medium-sized greenhouse operators. Additionally,
the complexity of managing and analyzing real-time data from heterogeneous sources
requires specialized expertise, posing another challenge to effective implementation. Cy-
bersecurity risks further complicate adoption, as interconnected greenhouse systems are
vulnerable to potential cyber threats, necessitating robust security frameworks to ensure
operational resilience. Clausen et al. [58] implemented a novel software for integrating
supplemental lighting control for greenhouse cultivation in Northern Europe. In Northern
Europe, light is a limiting factor for greenhouse cultivation from late autumn to early
spring. This dynamic control of supplemental lighting, utilizing weather forecasts and
dynamic electricity prices, led to approximately 25% electricity savings without noticeable
reductions in plant flowering and production time. Quebec’s weather has a similar chal-
lenge, as mentioned earlier, underscoring how financial incentives, regulatory support,
and technological innovation can facilitate the integration of smart grid principles into
greenhouse energy management.

On the other hand, in GHEMS, data acquisition and monitoring play a crucial role but
also pose challenges, including handling heterogeneous and fast-paced data generation and
the high costs of new technologies, especially for small and medium-sized growers. Key
greenhouse monitoring variables, crucial for crop growth and energy management, require
specialized sensors tailored to different irrigation systems. While white-box modeling
offers a robust foundation for digital twins and virtual greenhouse simulations, it is often
time-consuming and resource-intensive. As a result, gray-box and black-box approaches
are frequently adopted for faster control implementation and real-time energy management
schemes. Additionally, while various control and optimization algorithms have been
proposed, selecting the most suitable one remains context-dependent, requiring a balance
between precision, adaptability, and computational efficiency.



Sustainability 2025, 17, 3407 22 of 30

4.1. Future Research Opportunities
4.1.1. Crop Model

Crop models are essential for accurately predicting the growth and yield of crops
under varying environmental conditions, which directly impact energy management in
greenhouses. Integrating these models with energy models is crucial for creating a com-
prehensive management system that optimizes both crop production and energy usage.
However, current literature often overlooks the detailed integration of crop models with
energy models in the context of smart grids. Future research should focus on developing
comprehensive crop-energy models that dynamically link plant physiological processes
with greenhouse energy consumption patterns. A promising approach involves hybrid
modeling frameworks, which combine white-box mechanistic models (capturing crop
physiology and energy flows) with data-driven gray-box models (leveraging real-time
sensor data and machine learning for adaptive control). Additionally, further work is
needed to refine real-time calibration techniques for crop-energy models, incorporating
feedback from IoT-based sensor networks to enhance model accuracy. Future studies
should explore multi-objective optimization techniques that co-optimize crop growth rates,
energy efficiency, and cost-effectiveness. By integrating predictive analytics, reinforcement
learning, and data assimilation techniques, these models can facilitate more adaptive and
self-learning control strategies for greenhouse energy management. Collaboration across
agricultural science, control engineering, and computational modeling will be key to achiev-
ing these advancements. Developing open-source crop-energy modeling platforms can
further accelerate research and provide practical tools for greenhouse operators seeking to
implement intelligent, energy-efficient, and climate-resilient cultivation strategies.

4.1.2. Integrated Modeling Approach

An integrated modeling approach that leverages virtual greenhouses can significantly
enhance energy management strategies. Virtual greenhouses can simulate different scenar-
ios and control strategies without impacting real-world operations, allowing for the testing
and optimization of various energy management techniques. Despite the potential benefits,
the inclusion of virtual greenhouses in energy management research is still limited. Future
research should explore how virtual greenhouses can be used to develop and validate
integrated models that combine environmental control, energy consumption, and crop
production. This approach can provide a robust framework for testing new energy man-
agement technologies and strategies, ultimately leading to more efficient and sustainable
greenhouse operations.

4.1.3. Smart Grid-Inclined Management

Integrating multi-agent systems (MAS) into greenhouse energy management presents
unique challenges and opportunities. One significant challenge is ensuring effective coordi-
nation among diverse agents, such as heating, ventilation, and lighting systems, to maintain
optimal microclimate conditions while responding to energy demands. Security concerns
also arise, as the interconnected nature of MAS can expose systems to cyber threats, poten-
tially compromising both energy management and crop health. Additionally, balancing
workloads among agents to prevent resource contention and inefficiencies is crucial for
seamless operation [111].

Beyond these technical challenges, barriers to adoption also limit the widespread
implementation of smart grid technologies in greenhouse operations. High initial costs for
deploying MAS frameworks, including advanced sensors, controllers, and communica-
tion infrastructures, can be prohibitive for small and medium-sized greenhouse operators.
Furthermore, the successful implementation of MAS and game-theoretic approaches re-
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quires specialized expertise in control engineering, artificial intelligence, and data analytics,
which may not be readily available to all growers. Cybersecurity risks further complicate
adoption, as increasing interconnectivity exposes greenhouse systems to potential cyber
threats, necessitating robust security measures.

Game theory offers valuable tools to address these challenges within MAS frame-
works. By modeling the interactions among self-interested agents, game theory facilitates
the design of strategies where each agent’s decisions lead to a Nash equilibrium, optimiz-
ing overall system performance. For instance, in a greenhouse setting, game-theoretic
approaches can be employed to allocate energy resources efficiently among various sub-
systems, ensuring that the collective energy consumption aligns with both operational
requirements and external grid demands [112].

Future research should focus on developing MAS frameworks that incorporate game-
theoretic models to enhance decision-making processes in greenhouse energy management
while addressing key adoption barriers. This includes creating cost-effective deployment
strategies, developing user-friendly automation tools that require minimal specialized
expertise, and implementing adaptive cybersecurity protocols to protect greenhouse net-
works. By overcoming these hurdles, smart grid technologies can be more accessible and
practical for real-world greenhouse operations, leading to improved energy efficiency,
reduced operational costs, and enhanced sustainability.

While the advancement of energy management technologies and methodologies for
greenhouses is promising, these findings can be applied in real-world scenarios to improve
energy efficiency, reduce costs, and ensure sustainable operations. A critical step is to
adapt these findings to specific regional conditions, such as Quebec’s seasonal challenges,
by incorporating climate-specific energy strategies, including dynamic lighting controls,
and leveraging renewable energy integration in greenhouse systems. The development of
hybrid crop-energy models combining physiological processes with real-time energy usage
data will allow greenhouse operators to optimize both crop yield and energy consumption.
Moreover, policies promoting the adoption of these technologies, including financial incen-
tives for small and medium-sized growers, can facilitate their transition toward smarter,
more energy-efficient operations. Policy recommendations should focus on providing sub-
sidies for sensor networks, renewable energy systems, and smart grid technologies, along
with support for cybersecurity infrastructure to address potential risks in interconnected
systems. These improvements, alongside industrial applications like virtual greenhouse
simulations, will enhance real-time decision-making and foster more efficient, cost-effective
greenhouse operations, ensuring that smart grid principles are widely adopted.

5. Concluding Remarks
This review provides a comprehensive analysis of recent advancements in greenhouse

energy management, emphasizing the integration of smart grid participation, transactive en-
ergy frameworks, and advanced control strategies. Model predictive control (MPC) remains
a cornerstone of energy optimization, while multi-agent reinforcement learning (DRL) is
gaining prominence for its adaptability to dynamic energy conditions. The incorporation
of crop growth models into greenhouse energy management systems (GHEMS) is essential
for achieving precise environmental control and optimizing energy efficiency. However,
balancing sensor accuracy and cost remains a challenge, particularly for small to medium-
sized growers. The use of digital twins and virtual greenhouse simulations is recommended
to enhance predictive modeling, with white-box approaches offering high-fidelity represen-
tations and open-source simulators providing scalable alternatives, albeit with limitations
in crop diversity. Furthermore, integrating data-driven decision-making and real-time
adaptive control can significantly enhance greenhouse sustainability, improve demand-side
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flexibility, and enable participation in transactive energy platforms. Ultimately, selecting the
appropriate control and optimization methods is highly context-dependent, requiring a bal-
ance between computational efficiency, adaptability, and precision to ensure cost-effective
and resilient greenhouse operations.
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Nomenclature

Abbreviations
ADF Affine Disturbance Feedback
ADRA Agricultural Demand Response Aggregator
AL Artificial Lighting
ANN Artificial Neural Network
BESS Battery Energy Storage System
CDW Crop Dry Weight
DER Distributed Energy Resources
DNN Deep Neural Network
DDPG Deep Deterministic Policy Gradient
DT Digital Twin
DTiPS Digital Twins in Power Systems
DR Demand Response
DRL Deep Reinforcement Learning
DSO Demand Side Operator
EC Energy Cost
EA Evolutionary Algorithm
GHCS Greenhouse Control System
GHEMS Greenhouse Energy Management System
GHG Greenhouse Gas
HVAC Heating, Ventilation, Air Conditioning
IoT Internet of Things
IPOPT Internal-point Optimizer
LSTM Long Short Term Memory
MPC Model Predictive Control
MILP Mixed-integer Programming
NDR Node Development Rate
NN Neural Network
PSO Particle Swarm Optimization
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PV Photovoltaic
SMC Sliding Mode Control
SP Set Point
TE Transactive Energy
TESS Thermal Energy Storage System
WT Wind Turbine
WP Water Pump
Greek Symbols
ρa Air density
ηsolar Efficiency of solar radiation conversion
ηcrop Efficiency of crop light interception
γ Psychrometric constant
∆ Slope of the saturation vapor pressure curve
β Coefficient for transpiration rate
∇2 Laplacian operator
α Growth coefficient for LAI
φ Coefficient for CO2 uptake rate
λ Latent heat of vaporization
Variables
ṁw,in Mass flow rate of water vapor entering
ṁw,out Mass flow rate of water vapor leaving
ṁevap Mass flow rate of water vapor due to evaporation
ṁcond Mass flow rate of water vapor due to condensation
ṁtrans Mass flow rate of water vapor due to transpiration
ṁw,drain Mass flow rate of water drainage
ṁw,uptake Mass flow rate of water uptake by plants
ṁCO2,uptake Mass flow rate of CO2 uptake by plants
ṁair Mass flow rate of air
ṁCO2,in Mass flow rate of CO2 entering the greenhouse
ṁCO2,out Mass flow rate of CO2 exiting the greenhouse
ṁw,vent Mass flow rate of water vapor due to ventilation
Acrop Effective area of the crop canopy
Aglazing Area of the greenhouse glazing
cp Specific heat of air
Cair Thermal capacitance of indoor air
Ccrop Thermal capacitance of the crop canopy
Csoil Thermal capacitance of the soil
CO2,in Indoor CO2 concentration
CO2,out External CO2 concentration
Dν Vapor pressure deficit
G Soil heat flux density
Hext External humidity
Hin Indoor humidity
Hsoil Soil humidity
Isolar Incident solar radiation
k Extinction coefficient for light interception
ksoil Thermal conductivity of the soil
L Leaf area index (LAI)
Lmax Maximum LAI
Plight Power of the artificial lighting system
Qcool Heat removal by the cooling system
Qex,air Heat exchange with the soil and plants
Qheat Heating input from the heating system
Qlight Heat generated by artificial lighting
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Qloss Heat loss to deeper soil layers or surroundings
Qsolar Solar heat gain
Qsolar,crop Solar heat absorbed by the crop canopy
Qtrans,crop Latent heat loss due to transpiration
Rn Net radiation at the crop surface
Tcrop Crop canopy temperature
Tin Indoor temperature
Tlight Temperature of artificial lighting
Tsoil Soil Temperature
Vair Indoor air volume
Vsoil Volume of soil
ra Aerodynamic resistance
rs Stomatal resistance
tlight Duration of artificial lighting
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