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 A B S T R A C T

The uncoordinated management of Electric Vehicle (EV) Charging Station Management Systems (CSMS) and 
Home Energy Management Systems (HEMSs) has been shown to have detrimental effects on the distribution 
system, leading to the creation of new demand peaks (rebound) and increased power loss in the grid. This paper 
develops a distributed coordination approach for managing CSMS and HEMSs agents, aimed at mitigating the 
negative impacts of uncoordinated consumers within a neighborhood. A comprehensive model of consumer 
flexibility is developed by integrating residential demands with detailed CSMS features, including EV charging 
schedules and energy requirements, as well as the impact of temperature on charging duration. The proposed 
coordination technique not only fulfills individual objectives of agents but also addresses shared objectives of 
the neighborhood, which are distributed among all agents by a coordinator. The technique aims to harmonize 
HEMSs and CSMS consumption profiles to smooth out the aggregated profile and reduce the neighborhood’s 
total energy costs. Afterward, an incentive allocation mechanism has been devised to assess the marginal 
contributions of agents and distribute rewards accordingly. The proposed CSMS and HEMSs coordination is 
evaluated through case studies encompassing diverse preferences, coordination levels, as well as parameters 
uncertainties. Additionally, the proposed approach is compared against both the uncoordinated and indirect 
coordination cases, implemented using proximal dynamic prices. The evaluation demonstrates that, compared 
to the baseline scenario, the load factor improves significantly by up to 35%, and the total neighborhood 
discounted bill is reduced by up to 27%.
1. Introduction

1.1. Motivation

In the context of modern energy systems, coordinating Energy Man-
agement Systems (EMS) is crucial for integrating residential consumers 
exploiting Home Energy Management Systems (HEMS), distributed 
generations, energy storage systems, and electric vehicles (EV) in neigh-
borhood areas of the distribution grid [1]. Coordinated EMSs harness 
flexibility sources within the neighborhood to tackle local challenges 
such as rebound peak and contingency, and alleviate stress on the 
distribution system, all without substantial infrastructure upgrades [2]. 
The application of coordinated EMS spans various domains: [1,3,4] 
encompass innovative demand side managements, [5–8] delve into 
distributed generations, [9,10] focus on EVs charging, and [11,12] 
explore storage system and power flow.

∗ Corresponding author.
E-mail address: farshad.etedadi.aliabadi@uqtr.ca (F. Etedadi).

According to the Canada Energy Regulator report [13], currently, 
electricity accounts for nearly 43% of the residential energy demand, 
a figure projected to rise to 76% by 2050. This trend indicates a 
significant increase in electrification within the residential sector, high-
lighting the importance of coordinating HEMSs to effectively manage 
the anticipated surge in electricity demand and alleviate strain on the 
grid. Besides, a recent study by the International Energy Agency (IEA) 
forecasts that 64% of global light-duty vehicles will be electric by 2030, 
with a full 100% electrification expected by 2050 [14]. Uncoordinated 
EV charging behaviors can lead to demand peaks and increased power 
loss in the distribution network. Hence, considering the trends in EVs 
and residential consumption, coordinating HEMSs and EV charging is 
essential for flattening the aggregate load and optimizing total energy 
costs bu exploiting users’ flexibility.
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Nomenclature

Acronyms

LF Load factor
ADMM Alternating direction method of multipliers
CC Constant current
CCCV Constant current - constant voltage
CS Charging station
CSMS Charging station management system
CV Constant voltage
DR Demand response
DSO Distribution system operators
EH Electric heater
EMS Energy management system
EV Electric vehicle
EVSE Electric vehicle supply equipment
HEMS Home energy management system
PEV Plug-in electric vehicle
SOC State of charge
TCM Transactive coordination mechanism
Parameters

𝛥𝑡 EV charging optimization time step in hour
𝜂̂𝑣𝑐,𝑇 Charging efficiency estimate for EV index 𝑣

considering the ambient temperature 𝑇
𝑃 𝑣
av Average power profile of EV index 𝑣 in kW
SOC𝑣desired Desired state of charge of the EV index 𝑣

battery at the departure time
SOC𝑣initial Initial state of charge of the EV index 𝑣

battery at the arrival time
𝑝𝐷𝑖 Active power demand at bus 𝑖
𝑠𝑣ℎ Parking status of the EV index 𝑣 in the 

charging station at the time index ℎ
𝛼, 𝛽, 𝛾 Thermal coefficients
EV Number of electric vehicles in neighbor-

hood
 Number of houses in neighborhood
 Number of neighborhoods
CR Coordination level
𝜔 Daily comfort levels profile
𝜃 Electricity price
𝐸DT
max Maximum energy capacity of secondary 

distribution transformer
𝐸NT
max Maximum energy capacity of neighborhood 

transformer
𝐸𝐻
min, 𝐸𝐻

max Minimum and maximum house total energy 
profile limit

𝐸EH
min, 𝐸EH

max Minimum & maximum EH energy
𝐻 Horizon length
𝑄𝑣
cap Battery capacity of EV index 𝑣 in kWh

𝑇 𝛿 Indoor temperatures allowable range
𝑇 in
min and 𝑇 in

max Minimum & maximum allowable indoor 
temperatures

𝑇 SP Desired indoor temperature
𝑇out Outdoor temperature
𝑇 𝛿 , 𝑃 (𝑇 𝛿) Indoor temperature allowable range distri-

bution
𝑇 SP, 𝑃 (𝑇 SP) Desired indoor temperature distribution
𝜔min, 𝜔max Minimum & maximum comfort levels
2 
Indices

𝐶𝐺 Grand coalition comprising all agents
𝑠 EV charging session index
𝑣 EV index
ℎ Time-slot
RG𝑙 ,RG𝑚 Residential groups set l & m
S𝑓 , S𝑔 Societies set f & g
𝑖 House’s index
𝑘 Iteration’s index
𝑅𝐺 Residential group
Sets

 Set of time step space for optimization
 Set of all EV in the neighborhood coordina-

tion scheme
𝛺 Comfort set
C Set of all possible agent coalitions
 Horizon set
Variables and Functions
𝑢𝑣ℎ Binary control variable representing the 𝑣th 

EV charging decision (ON/OFF) at the time 
slot ℎ from the CSMS

𝑥𝑣ℎ Accumulated energy charged to the EV bat-
tery indexed by 𝑣 from the plug-in time to 
the time index ℎ.

𝑥𝐶𝐶
𝑠 EV energy requirement in CC phase

𝑥𝐶𝑉
𝑠 EV energy requirement in CV phase

𝑍̄ Global variables averaged (ADMM)
𝜆 Dual variables (ADMM)
(𝐶) Worth of coalition 𝐶 (known as value 

function)
𝛹𝑖() Agents shares (Shapley values)
SOC𝑣ℎ State of charge of the battery of the EV 

index 𝑣 at time slot ℎ
𝐸CR
𝐶𝐺

Energy profile of grand coalition 𝐶 when 
there is coordination

𝐸NCR
𝐶𝐺

Energy profile of grand coalition 𝐶 when 
there is no coordination

𝐸CR
𝐶 Energy profile when in sub coalition 𝐶 there 

is coordination
𝐸NCR
𝐶 Energy profile of sub coalition 𝐶 when there 

is no coordination
𝑇 in Indoor temperature
𝐽𝐻
𝑖 Individual cost function of house 𝑖

𝐽CS Individual cost function of charging station
𝑍 Global variables averaged (ADMM)
𝐸CS Charging station total energy consumption
𝐸EH Electric heater energy usage
𝐸FL House fixed load demand
𝐸𝐻 Household total energy consumption

1.2. Related works

It is crucial to delineate multi-agent coordination approaches from
other valuable but distinct contributions within the broader energy 
management literature. Notably, some research focuses on energy man-
agement and control for individual entities, such as a EV station [15] or 
a smart home integrating assets such as local generation and EV [16–
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18]. Other works address distinct problems entirely, such as the design
and sizing of energy systems [19], vehicle to grid (V2G) [20], or focus
on grid functionality and operational issues, using power system analy-
sis such as stability, power quality, and power flow [21,22]. To provide 
a structured overview, the following subsections categorize the main 
coordination schemes found in the literature.  Specifically, different 
control approaches for coordinating agents (EV chargers, HEMS, or 
other applications) can be broadly classified into direct and indirect
coordination frameworks [1].

1.2.1. Indirect coordination
In an indirect coordination scheme, agents indirectly coordinate 

through Demand Response (DR) price signals without exchanging mes-
sages and team objectives using a decentralized decision-making frame-
work.

Indirect HEMSs coordination. Numerous works have highlighted the 
matters of indirect coordination of agents in HEMS [11,23–28] appli-
cations.  [23] devised an energy sharing management framework by
a Stackelberg game to orchestrate collaborative energy sharing among
prosumers, thereby maximizing the utilities of both prosumers and the 
grid operator through indirect coordination strategies.  [24] proposed 
a distributed energy management system based on the Stackelberg 
game, elucidating the Pareto front regarding trade-offs between con-
sumer welfare and retailer profit, with consumer behavior influenced 
indirectly through day-ahead pricing strategies. Adika et al. [25] de-
veloped dynamic pricing using a non-cooperative Nash equilibrium
game, indirectly coordinating storage batteries in homogeneous con-
sumer grids based on power surplus/deficit profiles.  [27] proposed 
a decentralized multi-agent HEMS system where agents adjust de-
cisions based on dynamic prices without direct communication or
shared objectives, thereby achieving individual goals indirectly. Saf-
darian et al. [26] explored decentralized and indirect coordination of
HEMSs to mitigate rebound peaks, facilitated by transmitting desired
profiles.  [11] introduced a distributed demand response program 
using proximal decomposition to indirectly coordinate thermal storage 
systems in a residential cluster, utilizing dynamic pricing to reduce 
overall consumption

Indirect EVs coordination. Several studies have explored the indirect
EVs charging coordination as reflected in works by [29–32]. [29] 
devised a stochastic dynamic programming framework for optimizing 
energy management in smart homes with plug-in EVs (PEV) energy
storage, aiming to minimize electricity costs while meeting power
demand and charging needs, evaluated under time-varying electricity
prices and weekdays power demands. [30] developed a game-theoretic
approach to distributed charging control for plug-in EVs in distribu-
tion networks, ensuring cost minimization for individual customers
while meeting network security constraints. [31] introduced a trans-
action and centralized real-time EV charging management scheme for
commercial buildings with PV generation and EV charging services, 
optimizing charging under uncertainties while respecting EV owners’ 
preferences and achieving cost-effective demand response coordina-
tion.  [32] presented a centralized non-cooperative approach for or-
chestrating EVs and household appliances, with the utility indirectly
coordinating through sharing aggregated demand updates.

1.2.2. Direct coordination
Conversely to indirect coordination, direct coordination can occur

through message exchanges between end-user agents or via an inter-
mediary using a third-party entity such as a coordinator, with various
topologies facilitating this process [1,2].
3 
1.2.2.1. Direct HEMSs coordination. Multiple studies have explored di-
rect coordination between HEMSs.  [1] elaborated a distributed coor-
dination technique for HEMSs with demand response-enabled electric
heaters, aiming to mitigate the negative impacts of uncoordinated 
HEMSs on the distribution system. The proposed technique achieves 
consensus among HEMSs to optimize individual and shared objectives, 
as evidenced by simulation results showcasing enhanced peak shaving 
and reduced electricity bills. Souza et al. [33] proposed a bi-level 
optimization for coordination of HEMSs, optimizing energy costs and 
user comfort at the first level and minimizing total electricity costs
and incentives at the aggregator level using distributed Dantzig–Wolfe
decomposition.  [34] designed a novel control that orchestrates air 
conditioning load clusters. In this framework, each HEMS optimizes 
its AC loads in response to a dynamic regulation signal from the
coordinator, who continually adjusts this signal based on user inputs 
to achieve the desired target. Zhang et al. [35] studied demand re-
sponse using a bi-level game model, initially using indirect coordination 
through price adjustments and later transitioning to direct coordination 
with information sharing among consumers.  [36] developed a cen-
tralized coordination approach using Shapley game theory to minimize 
collective energy costs but faced challenges due to computational com-
plexity and the absence of a gain-sharing mechanism among players. 
[37] explored decentralized and centralized methods for coordinated
load management but lacked an incentive policy and mechanism to 
distribute penalties based on consumers’ contributions. In a distribu-
tion system characterized by highly distributed generation, end-users 
form coalitions to maximize their payoffs and profits using a game
theory-based HEMS, as presented by Zhang et al. [7].

1.2.3. Direct EVs coordination
[38] developed a distributed coordination strategy through a Nash 

bargaining game-theory-based peer-to-peer transactions to maximize 
charging stations’ profits. Analytical target cascading (ATC) and alter-
nating direction method of multipliers (ADMM) have been used to solve 
the direct coordination problem with a bi-level parallel coupling frame-
work. In [39], the problem is transformed into a distributed scenario by 
employing decomposition techniques for joint optimization of optimal
power flow (OPF) and EV charging, solved iteratively in a nested 
manner. [40] implemented a primal–dual subgradient method for EV 
control within a residential distribution network. These studies offered
a robust EV charging algorithm; however, they overlook addressing
uncertainties in EV charging schedules and fulfilling network-level 
constraints such as voltage fluctuations induced by EV control in the 
distribution grid. [41] presented a multiagent system for EV charging 
control. The authors investigated the bidding strategy for EV energy in-
jection into the grid and proposed energy management strategies based 
on it. Oshnoei et al. [42] implemented a two-layer model predictive 
control to improve the response of battery energy storage systems for 
primary frequency control. The authors in [43] proposed a multiagent-
based control structure for EV charging, considering factors like driver 
behavior, charging station location, and electricity price. However,
their focus remained on EVs and charging strategy without addressing
the impact of their algorithm on the distribution grid. The research 
detailed in [44] introduced a chance-constrained energy management 
system using the ADMM to handle the stochastic nature of EVs and 
addressed an EV charging scheduling optimization problem. While it
effectively addressed EV randomness, the study did not thoroughly ex-
amine the impact of the proposed charging solution on the distribution 
grid. Fan et al. [45] developed a distributed ADMM-based multi-period 
problem, wherein the DSO addressed OPF issues with a substantial 
influx of controlled EVs managed by aggregators. Their approach also 
emphasized the maintenance of critical grid security parameters, in-
cluding voltage limits and transmission line capacities. A similar EV 
charging and grid voltage stability objective is discussed in [46]. The 
authors addressed a complex objective function with interconnected 
power flow constraints using a decentralized hierarchical ADMM-based
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method. The ADMM-based methods discussed above utilized iterative 
techniques in discrete time, highlighting the significance of sampling 
frequency for result accuracy. Given the intermittent nature of EV
charging, a minimal sampling interval is crucial for real-time optimiza-
tion dynamics, ensuring the sustained optimality of solutions over time
steps. The work in [47] presented a real-time EV charge scheduling 
solution using a dynamic non-cooperative game method, employing 
ADMM for problem decomposition and real-time solution implemen-
tation. While the results are intriguing for real-time applications, the 
study overlooks the effects of charging scheduling on distribution grid 
metrics like voltage. [48] introduced a distributed real-time ADMM
technique for controlling EVs and BSSs, addressing voltage regulation 
while maximizing utility. However, scalability challenges in real-world 
implementation were not thoroughly explored, and communication 
overhead in distributed control was not extensively analyzed. Further 
investigation is warranted to assess system robustness under varying
conditions. 

1.3. Literature limitations summary

The literature limitations identified in prior research include:
• Lacks of exploration of establishing a global consensus among
HEMSs and CSMS, sharing team objectives, and complementary
actions through a distributed framework. This gap is particularly 
significant for addressing local grid challenges arising from high 
EV penetration and winter peak loads.

• Exploring a method to accurately gauge HEMS and CSMS agents 
contributions in coordination, and fairly gain allocation of collec-
tive gains among agents, remains unexplored.

• Insufficient focus on incentive mechanisms that encourage volun-
tary participation without penalizing users.

To the authors’ knowledge, no prior works in the literature address all
these aspects collectively. 

1.4. Main contributions

This study targets the outlined limitations and seeks to bridge ex-
isting gaps in research. The primary contributions of this investigation
are outlined as follows: 

• Integrated Distributed Coordination with Privacy-Preserving
Consensus: We develop a modular, agent-based framework where
HEMS and CSMS agents coordinate through a non-punitive con-
sensus and sharing mechanism. This distributed approach facili-
tates the sharing of collective objectives among agents to enable
them to reach a global agreement, such as meeting grid con-
straints, enhancing load factor, and reducing energy bills—and 
facilitates synchronized, complementary actions. The coordina-
tion is inherently privacy-preserving, as it relies on aggregated
energy profiles rather than sensitive individual data, distinguish-
ing it from centralized alternatives. The framework is designed 
to balance individual goals with collective needs, preserve user
autonomy, and achieve Pareto efficiency, guaranteeing that no
agent is disadvantaged by participating.

• Contribution-Based Non-Punitive Incentive Allocation: We 
introduce a novel non-punitive incentive and gain-sharing mech-
anism grounded in Shapley value theory, enabling fair and trans-
parent distribution of coordination gains according to each agent’s
quantified marginal contribution without imposing monetary pen
alties for consumers. This approach transparently rewards agents 
based on their flexibility, promoting equitable reward allocation.

• Benchmark for Future Research: This work provides a trans-
parent benchmark for evaluating residential coordination frame-
works, focusing on the core effects and benefits of coordination, 
and enabling meaningful assessment.
4 
Fig. 1. The coordination framework of HEMSs and CSMS in a residential 
neighborhood.

The rest of this paper is structured as follows. Section 2 designs the
CSMS and HEMSs coordination system framework. Section 3 introduces 
the neighborhood system model, including residential consumers and
EV charging station sub-models. Section 4 elaborates on the proposed
optimization problem formulations to implement the coordination be-
tween CSMS and HEMS. Section 5 defines the Case studies and analyzes 
the effectiveness of the proposed coordination method for HEMSs and 
CSMS, presenting the numerical results concisely. Finally, Section 6
briefly summarizes the paper’s findings and conclusions.

2. Coordination system framework

Let us delve into the system framework, consisting of 𝑁𝐻  houses 
equipped with HEMSs controlling flexible loads, an electric vehicle
Charging Station (CS) managed by a CSMS handling 𝑁EV EVs, along-
side a neighborhood coordinator and the distributed system operator 
(DSO) representative, illustrated in Fig.  1. The network illustrated in
Fig.  1 represents a typical residential setting, where EV charging is 
supported by Level 2 chargers [49,50]. These chargers operate on
a standard 240 V single-phase circuit, consistent with the electrical 
supply commonly available in residential areas. 

The decision-making mechanism in the system is orchestrated among
four types of agents: HEMSs agents, the CSMS agent, the neighborhood 
coordinator agent, and the DSO agent. A single distribution transformer 
serves the EV Charging Station and all houses. The Distribution System
Operator provides the necessary energy supply and broadcasts the 
electricity rates. The DSO plays a crucial role in implementing a 
mechanism to incentivize both CS (and thus EV owners) and residential 
consumers to engage in the coordinated demand response program
actively. One emerging mechanism for this purpose is reward policies,
which may involve monetary incentives or energy credits based on the
level of flexibility users provide to support ancillary services. Individual 
customers’ and CS’ rewards can be contingent upon their level of partic-
ipation in the global coordination and their contributions to the overall 
coordination scheme. These rewards are distributed among them by 
the coordinator based on their marginal contributions. Each residence 
includes both non-flexible and flexible loads, with the latter serving as 
the source of user flexibility in demand response programs. The HEMS 
in each house regulates electric heaters (EHs) based on the user’s flex-
ibility level, which includes indoor temperature set-points and comfort 
preferences in demand response programs. The CS implements a charg-
ing strategy for all EVs to minimize operational costs and meet user 
preferences. The CSMS functions as an independent decision-maker,
ensuring EV owners’ energy needs are met and reducing charging costs 
through coordination program participation. It retains full autonomy, 
choosing whether to participate and determining charging amounts,
such as bypassing coordination to charge immediately upon connection, 
with costs calculated based on a DSO-generated price signal dissemi-
nated by the coordinator agent. The neighborhood coordinator’s role 
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involves orchestrating demand responses between CSMS and HEMSs 
to reach a consensus that aligns with the collective goals of the
team while also considering each agent’s individual objectives and
constraints. Acting as a consumer representative, the coordinator seeks 
to enhance the team’s total gain by coordinating efforts to meet the
DSO’s objectives and address specific challenges within the local grid. 
The coordinator is tasked with safeguarding user privacy, ensuring 
reliable and secure data communication among agents, measuring 
agents’ contributions to the coordination, and subsequently distributing
total gained rewards accordingly. Therefore, the coordinator must 
dynamically manage HEMSs and CS charging schedules to ensure that
the overall increase in grid power demand remains within acceptable
limits, thereby lowering operating costs for the DSO. This involves
coordinating flexible load handling by HEMSs and EV charging pro-
gram management by CSMS through a streamlined message exchange 
framework, while also safeguarding user privacy. By orchestrating the 
charging of the EV fleet and residential flexible loads, the coordinator 
negotiates advantageous incentives and energy tariffs with the DSO, 
leveraging solving grid challenges and cost reduction as bargaining
chips.  The proposed distributed coordination framework is designed 
for high versatility, capable of adapting to neighborhoods with diverse
types of flexible loads beyond electric baseboard heaters, such as heat
pumps, water heaters, smart appliances, or even distributed generation
and storage. The fundamental coordination framework remains same
and robust, as its core principle involves accurately modeling the 
operational characteristics of each flexible asset and integrating these 
models into the local optimization problem of the HEMS or CSMS. This 
allows the framework to leverage any provided flexibility, irrespective 
of its source. For instance, extending the HEMS to incorporate heat
pumps or various smart appliances simply requires including their spe-
cific mathematical models and constraints. This inherent adaptability 
ensures the coordination mechanism remains effective and efficient 
across varied setups without changing the coordination procedure, even 
when consumers possess different combinations of flexible assets. 

3. System model

As depicted in Fig.  1, the neighborhood comprises  houses with 
HEMSs, one charging station (CS) managed by a CSMS handling EV
EVs, a coordinator, and the DSO. At the coordinator level, the residen-
tial neighborhood is supplied by a common distribution transformer 
and interconnected through shared connections. The tie-connections at
the DSO and coordinator levels are subject to capacity constraints, as 
specified by, 
|

|

|

|

|

|

𝑁𝑁
∑

𝑖=1
𝐸NT
𝑖,𝑚𝑎𝑥

|

|

|

|

|

|

⩽ 𝐸DT
max, &

|

|

|

|

|

|

𝑁𝐻
∑

𝑖=1
𝐸𝐻
𝑖 + 𝐸CS

|

|

|

|

|

|

⩽ 𝐸NT
max. (1)

Where 𝐸CS =
∑𝑁EV

𝑣=1 𝐸𝐸𝑉
𝑣  The energy consumption constraints for the

CS and houses are also specified by, 
CS
𝑚𝑖𝑛 ⩽ 𝐸CS(ℎ) ⩽ 𝐸CS

max & 𝐸𝐻
𝑚𝑖𝑛 ⩽ 𝐸𝐻 (ℎ) ⩽ 𝐸𝐻

max (2)

Let  = 1, 2,… , ℎ indicate the time horizon set, with measurements
taken every 15 minutes throughout the day, resulting in ℎ = 96
intervals. This division means the interval [1, ℎ] is segmented into ℎ
15-minute intervals. Both HEMSs and CSMS agents have the ability to
adjust and schedule their flexible loads.

While this work integrates seasonal variations in EV charging effi-
ciency (based on temperature) and models residential consumer pref-
erences and EV chargers using real data and machine learning (normal 
distributions), we acknowledge other real-world uncertainties. How-
ever, to clearly highlight the core benefits of our proposed coordi-
nation framework as a benchmark, we deliberately did not explicitly 
model uncertainties with potentially larger impacts, such as unexpected 
changes in user preferences, occupancy patterns, or EV charging be-
haviors. It is noteworthy that the distributed and iterative nature of 
5 
our algorithm provides inherent adaptability, allowing agents to re-
optimize and adjust to dynamic conditions during the negotiation pro-
cess. This work serves as a foundation for future research to explicitly
address these broader uncertainties, including those related to system 
models, communication failures, and distributed energy generation 
fluctuations. 

3.1. House model

Each household’s HEMS manages electric heaters as flexible loads 
for participation in the coordinated demand response program and 
consumer comfort satisfaction, while fixed loads operate based on
standard energy consumption patterns and are not flexible during
coordination. The indoor temperature (𝑇 in

𝑖 ) of each household is a 
state variable demonstrated as 𝑇 in

𝑖 =
[

𝑇 in
𝑖 (1), 𝑇 in

𝑖 (2),… , 𝑇 in
𝑖 (ℎ)

]

. The 
relation among electric heater’s energy consumption profile (𝐸EH

𝑖 ), 
indoor temperature (𝑇 in

𝑖 ), and outdoor temperature (𝑇 in) is modeled 
using a linear thermal model [51], and the house thermal dynamic 
response is modeled through the state-space representation denoted
by Eq.  (3), where 𝛼𝑖 (state matrix), 𝛽𝑖 (input matrices associated with 
the heater), and 𝛾𝑖 (input matrices associated with the weather) are 
thermal coefficient parameters. These parameters are estimated using
experimental data and applying a ridge regression approach [52,53] for 
system identification. 
𝑇 in
𝑖 (ℎ + 1) = 𝛼𝑖𝑇

in
𝑖 (ℎ) + 𝛽𝑖𝐸

EH
𝑖 (ℎ) + 𝛾𝑖𝑇

out (ℎ) (3)

The fixed loads are modeled based on recorded data from experiments,
including all user energy consumption except electric heater consump-
tion. Eq. (4) represents the total energy demand of each household, 
where 𝐸FL

𝑖  denotes the total loads’ consumption except the heater. 

𝐸𝐻
𝑖 = 𝐸EH

𝑖 + 𝐸FL
𝑖 (4)

The energy cost of each house is computed by, 

𝐶𝑖 =
ℎ
∑

ℎ=1
𝜃
(

ℎ
)

𝐸𝐻
𝑖
(

ℎ
)

(5)

A quadratic utility function in (6) models the discomfort, where 𝜔𝑖
defines comfort levels and can take values from the set 𝛺 ∈ [𝜔min, 𝜔max], 
which 𝜔min = 0. Additionally, the parameter 𝜔max in (6) was derived 
from a log-normal distribution with variance 𝑉 𝑎𝑟(𝜔max) = 1 and expec-
tation E(𝜔max) = 5, shaping the setpoint profiles and house preferences 
based on these distributions. 
𝐷𝑖 = 𝜔𝑖(ℎ)

(

𝑇 SP𝑖 (ℎ) − 𝑇𝑖(ℎ)
)2 (6)

Constraints on indoor temperature and heater energy consumption 
are represented by (7). Consumer preferences in indoor temperature 
set-points and comfort zones are modeled based on experimental data 
and ASHRAE Standard-55-2004. 
𝑇 in
𝑖 ∈ [𝑇 in

𝑖,min, 𝑇
in
𝑖,max] & 𝐸EH

𝑖 ∈ [𝐸EH
𝑖,min, 𝐸

EH
𝑖,max] (7)

The comfort preferences and power consumption profiles of houses 
in Trois-Rivières, Québec, were modeled using statistical data exclud-
ing electric heaters. A semi-synthetic data-driven model was devel-
oped using this data to simulate non-flexible load profiles, combining
both flexible (heaters) and non-flexible loads to create an aggregated
consumption profile. The consumers’ set-point temperature 𝑇 SP𝑖  was 
devised from the experimental data, with thermostats stochastically 
programmed based on the distribution of set-point temperature 𝑇 𝑆𝑃

𝑖 , 
which ranges from 20 to 23 degrees Celsius with probabilities 𝑃 (𝑇 𝑆𝑃

𝑖 ) =
[0.1, 0.3, 0.5, 0.1]. The minimum indoor temperatures 𝑇 in

𝑖,min were calcu-
lated as 𝑇 in

𝑖,min = 𝑇 𝑆𝑃
𝑖 −𝑇 𝛿

𝑖 , where 𝑇 𝛿
𝑖  is a discrete random variable with

values 1, 2, 3, 4 in Celsius and probabilities 𝑃 (𝑇 𝛿
𝑖 ) = [0.1, 0.3, 0.4, 0.2].

The HEMS model is designed to manage diverse flexible loads or 
assets within individual homes. While this paper primarily focuses 
on electric baseboard heaters as the flexible load, the framework is
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capable of seamlessly integrating other new flexible assets and loads,
such as PV, heat pumps, electric water heater, smart appliances, or 
individual EV chargers. This adaptability allows for different homes to 
participate with varying types and combinations of flexibility sources,
as the coordination process is asset-agnostic and relies on the HEMS to 
accurately model and optimize its specific controllable devices without
requiring changes to the core coordination framework. 

3.2. Charging station model

The individual EV charging is managed by the CSMS (Charging 
Station Management System) based on the arrival battery SOC, desired 
SOC and parking duration. The SOC of each EV index 𝑣 (𝑣 ∈ ) is 
modeled using the Coulomb counting technique described by: 

SOC𝑣ℎ+1 = SOC
𝑣
ℎ + 𝜂̂𝑣𝑐,𝑇

𝑝𝑣ℎ𝛥𝑡
𝑄𝑣
cap

𝑠𝑣ℎ𝑢
𝑣
ℎ, 𝑣 ∈  (8)

where SOC𝑣ℎ indicates the state of charge of the battery at the time 
step ℎ. 𝑠𝑣ℎ and 𝑢𝑣ℎ are binary variables used by the CSMS to manage the
charging process. 𝑠𝑣ℎ denotes the parking status of the EV, being 1 when 
the EV is parked (from plug-in to plug-out) and 0 otherwise. Similarly, 
𝑢𝑣ℎ is a control signal that turns the EVSE (Electric Vehicle Supply
Equipment) charging ON or OFF. 𝜂̂𝑣𝑐,𝑇  and 𝑄𝑣

cap represent the charging 
efficiency in % and battery capacity in kWh, respectively. The variable
𝑝𝑣ℎ denotes the charging power (in kW), and 𝛥𝑡 corresponds to the time 
step duration (15 min, or 0.25 h).  When considering vehicle-to-grid 
(V2G) operations, the charging power 𝑝𝑣ℎ can take negative values to
represent discharging from the EV to the grid. In this case, the charging
efficiency 𝜂̂𝑣𝑐,𝑇  should be replaced with the discharging efficiency 𝜂̂𝑣𝑑,𝑇 , 
which is typically slightly lower than the charging efficiency due to
additional conversion losses [20]. It is important to note that frequent
V2G operations may accelerate battery degradation, and a trade-off 
should be considered in practical implementations. 

Most EVs utilize the Constant Current-Constant Voltage (CCCV [54–
56]) charging mode, leading to non-linear behavior in charging power
and a linear time-variant state equation, as shown in (8) [57]. This 
can be approximated using an average charging power profile. Given 
the battery capacity, initial SOC, and charging efficiency, the state 
dynamics can be expressed in terms of the energy state as: 

𝑥𝑣ℎ+1 = 𝑥𝑣ℎ + 𝜂̂𝑣𝑐,𝑇
𝑃 𝑣
av𝛥𝑡
𝑄𝑣
cap

𝑠𝑣ℎ𝑢
𝑣
ℎ, 𝑣 ∈  (9)

Where 𝑥𝑣ℎ represents the accumulated energy in kWh charged to EV
 since it was plugged in, and 𝑃 𝑣

av is the estimated average charging 
ower. The state constraints are defined as :

𝑥𝑣𝑡𝑣𝑎 = 0 (10)

𝑥𝑣𝑡𝑣𝑑
≥ 𝑥̂𝑣min (11)

𝑠𝑣ℎ =

{

1 if 𝑡𝑣𝑎 ≤ ℎ ≤ 𝑡𝑣𝑑
0 else

(12)

where 𝑥̂𝑣min = 𝑄𝑣
cap

(

SOC𝑣desired − SOC
𝑣
initial

) defines the minimum energy
that needs to be charged to the EV to satisfy the user’s preferred state
of charge SOC𝑣desired. 𝑡𝑣𝑎 and 𝑡𝑣𝑑 indicate the EV’s arrival and departure 
times, respectively. 

The average charging power 𝑃 𝑣
av is estimated based on the initial 

and desired SOC, battery capacity, and historical charging profiles. It 
can be approximated using the reference power in the constant current 
phase, 𝑃CC, typically 3.3 kW for Level 1 charging (120V) and 6.6 
kW/7.3 kW for Level 2 charging (240V) if the desired SOC at the 
expected departure time is less than 80%. The CSMS can control this 
rate via the control pilot for the SAE J1772 charging standard. The 
same protocol can be used by the CSMS to detect EV plug-in and
plug-out time, hence 𝑠𝑣 . However, when the desired SOC at departure 
ℎ

6 
exceeds 80%, the average power can be estimated using historical 
charging profiles from complete sessions. The energy requirement for 
the constant voltage (CV) phase is derived from these profiles [58], 
while the constant current (CC) phase requirement is calculated as: 
𝑥̂𝐶𝐶,𝑣
𝑠 = 𝑥̂𝑣min − 𝑥𝐶𝑉 ,𝑣

𝑙 (13)

where in the current session, 𝑠, 𝑥𝐶𝐶,𝑣
𝑠 , and 𝑥𝐶𝑉 ,𝑣

𝑙  are the energy demand 
in the CC and CV phases, respectively.

The duration of the CC phase, in terms of the number of simulation
time steps ℎ, 𝑡𝐶𝐶,𝑣

𝑠 , is estimated by: 

𝑡𝐶𝐶,𝑣
𝑠 =

𝑥̂𝐶𝐶,𝑣
𝑠

𝑃 𝑣
av

60
𝛥𝑡

(14)

The charging profile is then constructed as follows: 

𝑃 𝑣
ℎ =

⎧

⎪

⎨

⎪

⎩

𝑃 𝑣
CC for ℎ ∈

[

𝑡𝑣𝑎, 𝑡
CC,𝑣
𝑠

]

𝑃 CV,𝑣ℎ,𝑠∗ for ℎ ∈
[

𝑡CC,𝑣𝑠 ∶ 𝑡CC,𝑣𝑠 + 𝑡CV,𝑣𝑙

] (15)

Where 𝑃 CV,𝑣ℎ,𝑠∗  is the charging power during the CV phase, recorded 
from the last (most recent) full charge for the same charging condition. 
The average of this constructed power profile provides 𝑃 𝑣

av for the state
equation.

The temperature effect is a critical aspect of EV charging, par-
ticularly in winter and cold regions. Low temperatures increase the 
battery’s internal resistance, slowing down electrochemical reactions
and extending charging duration.  To account for the temperature ef-
fect, EV charging efficiency loss is modeled by a third-order polynomial:

𝜂̂𝑣𝑐,𝑇 = 𝑎𝑇 3 + 𝑏𝑇 2 + 𝑐𝑇 + 𝑑 (16)

This model captures the non-linear relationship between temperature 
and charging efficiency loss, enabling the CSMS to predict battery 
behavior over a range of temperatures. This directly impacts charging
duration and scheduling to meet user preferences. Parameters 𝑎, 𝑏, 
𝑐, and 𝑑 can be determined through experimental data fitting under 
controlled temperature environment tests or using machine learning 
techniques with historical charging session records. Fig.  2 illustrates
the variation of a typical Lithium battery capacity with respect to the
temperature [59]. Fig.  3 presents an EV charging session based on the
CCCV modes, highlighting the uncertainty in the charging profile due 
to external factors such as ambient temperature.

This profile is similar to the one observed in DC fast charging, with 
the key difference being the addition of a conditioning phase prior to
the high-current regulation phase in the constant current (CC) stage to 
ensure battery safety. It is also strongly recommended to stop charging 
(unplug) at the end of the CC phase, typically when the battery reaches
around 80% state of charge (SOC) for DC fast charging.

The total energy demand of the charging station 𝐸CS and the energy 
ost 𝐶CS of the charging station is determined by,

𝐸CS =
𝐻−1
∑

ℎ=0

(𝑁EV
∑

𝑣=1
𝐸𝑣
ℎ

)

(17)

𝐶CS =
𝐻−1
∑

ℎ=0
𝜃ℎ

(𝑁EV
∑

𝑣=1
𝐸𝑣
ℎ

)

(18)

Where 𝐸𝑣
ℎ = 𝑃 𝑣

av𝛥𝑡𝑠
𝑣
ℎ𝑢

𝑣
ℎ is the energy charged to EV 𝑣 at each time

step ℎ. 

3.3. EVs charging model for the CSMS agent

The charging stations, as part of the neighborhood, are managed 
by a centralized controller CSMS. The main goal of this CSMS is to
coordinate EV charging with respect to the overall aggregate demand of
the neighborhoods. By participating in this overall aggregate demand
management, the CSMS ensures a reduction in the charging cost for 
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Fig. 2. Discharge capacity of a typical lithium cobalt oxide battery with a rating of 10 Ah at different temperatures  [59].
Fig. 3. Typical EV charging process with a fixed charging rate at AC level 1 and 2 EVSE charger.
 

 

 
 

 

 
 

 

 

 

 

 
 

 

individual EVs while meeting their charging need in terms of the energy 
requirements for their future trips. 

Let 𝐻 be the optimization horizon, 𝑃 𝑣
av the average charging power 

for each EV 𝑣 ∈  and the 𝜃 an array representing the electricity price 
over the horizon 𝐻 . The CSMS in the first iteration solves the following
mathematical optimization problem to define the optimally controlled 
input 𝑢𝑣,∗ℎ  for each EV at each time index ℎ with respect to the individual 
desired 𝑥𝑣min and the estimated departure/plug-out time.

arg min
{

𝑢𝑣ℎ, 𝑥
𝑣
ℎ
}𝑣∈
ℎ∈

𝐽CS =
𝐻−1
∑

ℎ=0

(𝑁EV
∑

𝑣=1
𝜃ℎ𝑃

𝑣
av𝛥𝑡 𝑠

𝑣
ℎ𝑢

𝑣
ℎ

)

(19a)

subject to (9)–(11), (19b)

0 ≤ 𝑢𝑣ℎ ≤ 1, 𝑣 ∈  , ℎ ∈  (19c)

After the CSMS solves the selfish optimization (uncoordinated case) 
in (19a)–(19c) with respect to other loads in the neighborhood, the 
coordination phase is engaged in the following iterations and the 
CSMS updates its decisions to participate in the coordination. In the 
coordination case, during the iterative negotiation process with the 
coordinator, the CSMS sends the aggregated scheduled energy demand
∑

𝑣∈ ,ℎ∈ 𝑢𝑣,∗ℎ 𝑃 𝑣
av𝛥𝑡 obtained by solving (19a)–(19c) to the neighbor-

hood energy demand coordinator. At this step, the coordinator cal-
culates the global and dual optimization variables to coordinate EV
charging with respect to the other home energy management systems in
the neighborhood and sends the updated global/dual variables back to 
7 
the CSMS. This process will be continued until all agents in the neigh-
borhood reach a global agreement. The details and the coordination 
problem will be presented in the next section.

Note that the decision to charge each EV 𝑣, represented by the 
binary variable 𝑢𝑣ℎ, is taken by a centralized CSMS. This holds true
whether the EVSEs are physically connected to the same electrical 
panel fed by a dedicated transformer (as shown in Fig.  1) or if each
neighborhood house EVSE communicates critical parameters (such as
𝑡𝑣𝑎, 𝑡

𝑣
𝑑 , and 𝐸ch) to the CSMS. This underscores the transversality of the 

proposed coordination framework.
Notably, the actual charging cost for fast chargers (Level 3) is 

typically higher than that of slower chargers (Level 2) due to the high
infrastructure costs [49]. Consequently, car owners generally use fast 
chargers for emergency charging only. Level 3 chargers, also known
as DC Fast Chargers, provide significantly faster charging. However, 
these chargers require higher-voltage three-phase power, which is un-
common in residential settings, and their installation is often cost-
prohibitive due to the need for substantial upgrades to the MV/LV
transformer and local grid infrastructure [54]. Furthermore, frequent 
use of Level 3 charging can accelerate battery degradation, making it
less suitable for daily residential use [60]. In contrast, Level 2 chargers 
align with the single-phase 120/240V supply common in residences,
providing practical charging speeds suitable for overnight charging and
compatible with typical residential energy consumption patterns [49]. 
Given their practicality and alignment with residential infrastructure,
this study focuses primarily on Level 2 chargers as the standard for 
residential applications. While a comparative analysis of Level 2 and 
Level 3 chargers is included to highlight their differences, all analyses 
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in this paper are based on the use of Level 2 chargers due to their
predominant role in residential settings. 

4. Proposed CSMS and HEMSs coordination

This section introduces a centralized coordination technique aimed 
at establishing consensus and distributing shared objectives among 
CSMS and HEMSs. Following this, a distributed coordination technique 
is developed. Lastly, a reward-sharing mechanism is proposed.

4.1. Proposed centralized CSMS and HEMSs coordination

Our proposed CSMS and HEMSs coordination approach is outlined
in this subsection. The coordination aims to fulfill individual and col-
lective objectives, addressing local grid challenges. The team objective
𝐽 joint is a function of the sum of CSMS and HEMSs energy profiles. The 
coordination problem is formulated centrally as, 

min
𝐻
𝑖 ,𝐸CS

𝑁𝐻
∑

𝑖=1
𝐽𝐻
𝑖
(

𝐸𝐻
𝑖
)

+ 𝐽CS(𝐸CS)

+CR 𝐽 joint(
𝑁𝐻
∑

𝑖=1
𝐸𝐻
𝑖 + 𝐸CS),

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ (1) − (11), (19c)

(20)

The coordination problem aims to find an equilibrium that balances
joint objectives with individual goals. It employs a convex optimization 
approach, ensuring that every local minimum is also a global minimum
within convex sets. At the equilibrium point, all participants achieve
optimal decisions, meeting both individual and joint objectives. Ad-
justing the coordination level parameter CR allows for control over
the emphasis placed on joint versus individual goals. The individual 
objective function for each HEMS is defined by, 
𝐻
𝑖 = 𝐶𝑖 +𝐷𝑖 (21)

4.2. Proposed distributed CSMS and HEMSs coordination

While effective in mitigating issues from uncoordinated HEMSs,
the centralized coordination method requires significant computational
resources and processing time. Thus, this subsection introduces the
coordination methodology, detailing agent interactions for distributed
coordination. The distributed coordination approach streamlines com-
putations across multiple processors, leading to reduced processing 
time. The proposed distributed coordination approach involves several
key players: HEMSs, CSMS, coordinator, and DSO. Initially, the coor-
dinator gets electricity rates and incentive policies from the DSO to 
handle local grid challenges and gathers baseline profiles (no demand 
response case) from each household. Using this data, the coordinator 
computes the initial aggregated profile and updates global and dual
variables to guide HEMSs and CSMS towards achieving both individual 
and collective goals. Then, HEMSs and CSMS agents receive input on 
electricity price and updated global and dual variables from the coor-
dinator. Subsequently, each agent engages in convex optimization to
minimize electricity costs, enhance comfort, and maximize their share 
of the team’s total gain by contributing effectively to the coordination.
After optimization, each consumer computes the optimal load profile 
and transmits it to the coordinator. On the coordinator’s side, convex 
optimization is also conducted to fulfill several primary tasks, including
smoothing the aggregated profile to improve load factor, reducing the 
aggregate electricity bill for the team, maximizing total team incen-
tives, ensuring fair distribution of rewards among HEMSs and CSMS, 
facilitating data exchange among participants, and negotiating with 
the DSO regarding reward rates and desired load factors. This itera-
tive negotiation process between the coordinator and team members 
(HEMSs and CSMS) will continue until the coordinator exhausts all 
team flexibility, reaches a consensus, and is unable to update global 
8 
or dual variables anymore. The collaborative efforts of HEMSs and 
CSMS result in accomplishing shared objectives and attaining overall 
gain. Each agent receives a share of the gain proportionate to its 
marginal contribution compared to other members. The coordination is
structured as a mutually beneficial arrangement, promoting collective
benefits. The following section elaborates on the proposed distributed
coordination procedure, employing the Alternating Direction Method 
of Multipliers (ADMM). The distributed coordination between 𝑁 agents 
including 𝑁𝐻  HEMSs and one CSMS is elucidated by, 

minimize
𝐸𝐻
𝑖 &𝐸CS&𝑍̄

𝑁𝐻
∑

𝑖=1
𝐽𝐻
𝑖
(

𝐸𝐻
𝑖 (ℎ)

)

+ 𝐽CS(𝐸CS(ℎ)
)

+CR 𝐽 joint(𝑁𝑍̄(ℎ)
)

,

𝑠.𝑡. ∶ 𝑍̄ = ( 1
𝑁

)
𝑁
∑

𝑗=1
𝑍𝑗 & 𝐸𝑗 −𝑍𝑗 = 0,

(1)–(19c) ⧵ {(19a)} .

(22)

The problem represented byEq.  (22) is transformed into a dis-
ributed problem focusing on sharing and consensus. This transfor-
ation is achieved through the scaled form of ADMM, as shown in 

Eqs. (23) through (25).
𝐸𝐻,𝑘+1
𝑖 ∶= argmin

𝐸𝐻
𝑖 ,𝑖∈[1,𝑁𝐻 ]

𝐽𝐻
𝑖
(

𝐸𝐻
𝑖
)

+
𝜌
2
‖

‖

‖

𝐸𝐻
𝑖 − 𝐸𝐻,𝑘

𝑖 + 𝐸̄𝑘 − 𝑍̄𝑘 + 𝜆𝑘‖‖
‖

2

2
(23)

𝐸CS,𝑘+1 ∶= argmin
𝐸CS

𝐽CS(𝐸CS)

+
𝜌
2
‖

‖

‖

𝐸CS − 𝐸CS,𝑘 + 𝐸̄𝑘 − 𝑍̄𝑘 + 𝜆𝑘‖‖
‖

2

2
(24)

𝑍̄𝑘+1 ∶= argmin
𝑍̄𝑘

CR 𝐽 joint(𝑁𝑍̄𝑘)

+
𝑁𝜌
2

‖

‖

‖

𝑍̄𝑘 − 𝜆𝑘 − 𝐸̄𝑘+1‖
‖

‖

2
2
)

(25)

𝜆𝑘+1 = 𝜆𝑘 + 𝐸̄𝑘+1 − 𝑍̄𝑘+1 (26)

where 𝐸̄ =
(

∑𝑁𝐻
𝑖=1 𝐸𝐻

𝑖

)

+𝐸CS

𝑁  is the average of all HEMSs and CSMS
agents. The coordination procedure involves several steps, with each 
agent carrying out specific tasks independently in a parallel manner. 
HEMS agents execute the 𝐸𝐻 -update step (given by (23)) in parallel,
while the CSMS agent performs the 𝐸CS-update step (given by (24)). 
The coordinator then aggregates the decisions from all agents to form 
the average 𝑍̄ in the 𝑍̄-update step (25), which is crucial for satisfying
joint objectives. Additionally, the 𝜆-update step (indicated by (26))
involves updating the dual variable, allowing the coordinator to adjust 
global and dual variables and transmit them to all agents for consensus 
building. This iterative process continues until either the dual-residual 
is close to zero or the maximum iteration count is reached, ensuring 
convergence towards joint objectives. The team’s shared objectives pri-
oritize flattening the aggregated consumption profile and minimizing
overall energy costs, ensuring optimal outcomes for both individual and 
joint goals. 

𝐽 joint(𝑁𝑍̄
)

=
‖

‖

‖

‖

‖

‖

𝑁𝑍̄ −

( 𝐻
∑

ℎ=0

𝑁𝑍̄ℎ
𝐻

)

‖

‖

‖

‖

‖

‖

2

2

+
‖

‖

‖

‖

‖

‖

𝐻
∑

ℎ=0
𝑁𝑍̄ℎ

‖

‖

‖

‖

‖

‖

2

2

, (27)

The coordination level CR signifies the degree of emphasis placed on 
joint objectives relative to individual goals, with CR being selectable 
from the range 𝐶𝑅 ∈ [0, 1]. A CR value of 0 indicates no coordination
among agents, while CR of 1 signifies maximal coordination for shared 
goal attainment. In a real-world setting, the value of CR would be 
determined through negotiation between the coordinator and the DSO,
driven by the DSO’s specific challenges (e.g., improving load factor) and 
the total negotiated reward for collective benefits. Agents delegate their
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decision-making about team’s coordination level to the coordinator,
trusting it to represent their interests in these negotiations. The CR
parameter and joint objectives can be updated post-negotiation, where
the DSO aims to resolve local grid challenges through joint objectives,
while the coordinator seeks to enhance the team’s gains by negotiating 
reward rates. The optimal CR value is sensitive to the team’s aggregate
flexibility and the negotiated reward rate; for instance, if no flexibility 
remains, increasing CR will have no further effect, or a low reward rate
might lead to a lower chosen CR. For the case studies in this paper, the 
CR is assumed to be pre-defined based on such negotiation.

The algorithm 1 delineates and summarizes the step-by-step pro-
cess of implementing the coordinated CSMS and HEMSs, focusing on 
achieving consensus and sharing joint objectives.
Algorithm 1: Coordination Procedure for HEMS and CSMS Agents
Result: Achieve global consensus on energy profiles to satisfy 

individual objectives and shared objectives (minimize 
overall energy costs and flatten neighborhood aggregated 
profile)

Initialization:
• Set initial values for 𝜃, 𝐸𝐻 , 𝐸CS, 𝑍̄, and 𝜆
• Initialize iteration counter 𝑘 = 0

while dual-residual ≠ 0 or 𝑘 < maximum iterations do
Parallel Update Steps:

• HEMS Agent: Update 𝐸𝐻
𝑘+1 using (23)

• CSMS Agent: Update 𝐸CS
𝑘+1 through (24)

Coordinator Update Steps:

• Global Variable: Aggregate decisions to form and update 
average 𝑍̄𝑘+1 by (25)

• Dual Variable: Update dual variable 𝜆𝑘+1 through (26)
• Transmit updated 𝑍̄ and 𝜆 to all agents for consensus
building

Increment iteration counter 𝑘 = 𝑘 + 1
End:

• Convergence achieved when dual-residual is close to zero (less 
than the threshold) or maximum iterations reached

4.3. Proposed incentive policy and non-punitive gain allocation

The negotiation between the coordinator and DSO is conducted in a 
fair and mutually beneficial manner. Assuming successful negotiation,
a total incentive function is proposed to determine the DSO’s payment
to the coordinator for the entire team, proportional to the load factor
of the aggregated load profile. Maximizing the daily load factor is
selected as an approach to effectively address network constraints. The 
collective incentive function [1] is formulated as follows, 

𝜎joint =
𝜎rate

1 + 𝑒−𝐴(LF−𝐵)
(28)

The collective incentive rate, denoted as 𝜎rate = 20%, represents the 
discount applied to the aggregate bill paid to the DSO. This discount
can reach a maximum of 20% of the team’s aggregated bill. Parameters
𝐴 = 20 and 𝐵 = 0.7 are utilized to adjust the shape of the incentive
function. The negotiation between the DSO and coordinator is pivotal 
in determining the values of 𝜎rate, 𝐴, and 𝐵. The incentive policy,
as presented by (28), offers incentives based on load factors, with
no reward for factors at or below 0.4 and a maximum reward of 
20% for a factor of 1. Achieving high load factors is challenging due
to individual preferences, yet the neighborhood can enhance its load 
factor, and incentive shares can be distributed based on contributions. 
The collaboration between HEMSs and CSMS agents forms a coalition
 

9 
aimed at fulfilling individual and joint objectives while maximizing col-
lective gain. Assessing each agent’s marginal contribution is crucial for
equitable gain allocation, ensuring those who contribute more receive 
a proportionate share. The gain allocation mechanism is inspired by 
the Shapley value concept, where the collective gain is allocated based 
on agents’ marginal contributions, promoting fairness and incentivizing
active participation in the coordination process.

The coalitional game involves a group of   agents and a coalition 
worth function  that assigns the worth of coalitions to subsets of
agents. The share 𝛹𝑖 received by agent 𝑖 in this coalitional game ( ,)
is computed by (29). 

𝛹𝑖() =
∑

𝐶⊆C⧵{𝑖}

|𝐶|!( − |𝐶| − 1)!
 !

(𝐶 ∪ {𝑖}) −(𝐶), (29)

C is the set of all possible agent coalitions, 𝐶 signifies subsets coali-
tions, |𝐶| indicates the subset size of 𝐶, (𝐶) denotes the worth of
coalition 𝐶, and the sum extends over all subsets 𝐶 of C that do 
not include agent 𝑖. The reward-sharing process involves forming all
feasible coalitions sequentially, with each agent requesting their fair 
marginal contribution by (29). The average marginal contribution over
feasible permutations is then calculated for each agent. The worth of 
a coalition 𝐶 is quantified using  function defined by (30), ensuring 
normalization of (𝐶) within the range [0, 1]. The grand coalition leads 
to the maximum value of 1. 

 (𝐶) =
‖

‖

‖

𝐸CR
𝐶 − 𝐸NCR

𝐶
‖

‖

‖

2

2

‖

‖

‖

𝐸CR
𝐶𝐺

− 𝐸NCR
𝐶𝐺

‖

‖

‖

2

2

, (30)

In this context, 𝐸 deputes the coalition’s energy profile, 𝐶𝐺 stands 
for the grand coalition of all HEMSs and CSMS agents, 𝐸NCR

𝐶  describes 
the energy profile when coalition 𝐶 does not coordinate, and 𝐸CR

𝐶
is the profile post-coordination for coalition 𝐶. The values 𝐸CR

𝐶𝐺
 and

𝐸NCR
𝐶𝐺

 reflects the energy demand for grand coalition 𝐶𝐺 after and 
before coordination, respectively. Eq. (30) ensures that (𝐶) remains 
within the normalized range of 0 to 1. The function (𝐶) quantifies 
how the coalition 𝐶 ′𝑠 aggregate energy profile adapts to the global 
variables generated by the coordinator and how much the coalition 
effort to adapt. This measurement is pivotal for assessing each player’s 
contribution to the coordination and, consequently, determining their
shares (𝛹𝑖 ()) of the collective gain.  The proposed non-punitive 
and Shapley value-based gain sharing mechanism ensures that each 
agent’s reward is directly proportional to its marginal contribution to 
the overall improvement in the neighborhood’s performance without 
imposing monetary penalties for passive consumers. This contribution 
is quantified by considering the difference in the collective benefit 
(primarily measured as improvements in the load factor) achieved with 
and without that specific agent’s participation. In essence, the Shapley
value, as illustrated by Eqs.  (29) and (30), calculates the average
contribution of each agent across all possible coalitions, ensuring a fair 
distribution of the team’s total gain.

Regarding the computational complexity of Shapley values, it is
crucial to note that this calculation is part of the billing process, not
real-time optimization, making a longer computation time acceptable. 
In our scenario, the Shapley value calculation typically takes less than 
one minute. For real-world deployments involving 15–20 houses per 
local distribution feeder end-transformer, the complexity is manage-
able. Even for scenarios with more than 20 agents, where a 100%
participation factor is unlikely, efficiency can be maintained through
estimation approaches to estimate Shapley values with lower compu-
tational complexity, for example, by using model agnostic approaches
such as Kernel-SHAP or Leverage-SHAP [61,62] or by employing hier-
archical coordination framework [63], where agents are divided into 
smaller groups. This ensures that Shapley value calculations remain
efficient and scalable for a large number of consumers. 
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Table 1
Houses characteristics in the case study.
 Location Thermostats 

number
Occupants Area

(sq. ft.)
Floors 
number

Rooms 
number

Washrooms 
number

Total rooms Other  

 Trois-Rivières 8 to 15 1 to 6 1568 to 4020 up to 2 2 to 5 2 to 4 9 to 15 Spa & Basement.  
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5. Evaluation framework

This section analyzes the effectiveness of the proposed coordina-
tion method for HEMSs and CSMS, presenting the numerical results 
concisely. The simulations are designed to examine the efficiency of
household and EV charging station flexibility. Moreover, the simula-
tions evaluate the adjustments made by households and EV charging 
stations to their consumption profiles and test the proposed method for 
distributing the total gain.

5.1. Case study and simulation setup

In this study, we consider a residential neighborhood composed of 
ten houses, an electric vehicle charging station, and a central neigh-
borhood coordinator. The charging station is equipped with seven EV
supply equipment (EVSE) units, each capable of simultaneously charg-
ing one EV, allowing for up to seven EVs to be charged at the same time. 
To ensure the simulation reflects realistic energy usage and charging 
behavior, the study employs household and load models constructed 
using real-world data. Specifically, residential consumption profiles are
based on datasets from Hydro-Québec for of detached single-family 
homes located in the city of Trois-Rivières, while EV charging station 
data is derived from records collected at EVSEs installed on the local 
university campus. The households use their baseboard heaters as
flexible and schedulable assets to participate in the hierarchical coor-
dination program. Table  1 provides a summary of essential parameters 
for houses, including their location, thermostat count, occupancy, area, 
and room count. This table offers a comprehensive view of the actual 
data utilized for consumer modeling. All households are presumed 
to be equipped with electric baseboard heaters rated at 10 kW. The 
stochastic consumption profiles and thermal models for households 
are developed based on empirical data from sources [1,64]. Table  2
provides key EVs’ parameters such as the initial and final state of 
charge (SOCinitial, SOCfinal), the arrival time (𝑡𝑎), the departure time
(𝑡𝑑), rated charging power (𝑃 𝑣

rated), charging efficiency (𝜂̂𝑐,𝑇 ), battery
capacity (𝑄cap), and EV car models (2023). This data is sourced from 
the EV database provided by [65]. Each level 2 EVSE has one 1−phase
32A 240 V setup with a maximum charging power of 7.5 kW.  Charging 
efficiency variation with respect to temperature is illustrated in Fig.
4. By exploiting charging records at different temperatures, including 
parameters such as charging power and state of charge (SOC), an 
empirical model can be estimated to describe the variation in charging 
efficiency and duration according to temperature. In fact, these two
parameters are significantly impacted in winter charging as illustrated 
in Fig.  4. 

The simulation setup and parameter definitions for the proposed
coordination are comprehensively outlined in Table  3. These tables 
offer a detailed summary of the essential parameters and their values 
employed in our simulations, ensuring both transparency and repro-
ducibility of the setup. The information provided sheds light on the 
simulation configuration and the physical and electrical properties 
pertinent to the case study. Each HEMS agent tackles a convex indi-
vidual optimization problem using CVXPY coupled with an Embedded 
Conic Solver (ECOS). The charging station leverages Gekko with the 
APOPT solver for its optimization tasks. Additionally, the neighborhood
coordinator addresses its optimization challenges through CVXPY with 
an Operator Splitting Quadratic Program (OSQP) solver.
10 
Fig. 4. Charging efficiency variation illustration with respect to the tempera-
ure based on the data in [59].

Fig. 5. The baseline scenario highlighting houses and EV charging station 
consumption profiles.

5.2. Baseline: Without coordination

The baseline scenario outlined in the study excludes dynamic pric-
ing mechanisms and coordinated demand response strategies. In this 
scenario, each agent (HEMSs and EV station) independently optimizes 
its electricity costs and meets comfort preferences under a constant
daily price of 10 ¢/kWh across all time slots. This approach prioritizes 
individual objectives, neglecting shared objectives and neighborhood-
level coupled constraints. Fig.  5 depicts the baseline consumption
profiles of houses, encompassing fixed loads and schedulable loads 
(electric heaters), and the EV charging station profile. These profiles
represent the scenario before any coordination or demand response 
program implementation. The aggregate neighborhood profile derived 
from these baselines reveals significant peaks during morning and 
evening periods. The case studies are set in a winter’s cold day context. 
The objective of the proposed coordination between HEMSs and the EV 
charging station is to meet consumers’ objectives, reduce peak loads 
in the neighborhood profile (improve load factor), and lower overall
energy costs.

5.3. Coordination process and evaluation

This section aims to evaluate the effectiveness of the proposed 
coordination between HEMSs and the EV charging station within a
neighborhood setting. The coordination process involves the neigh-
borhood coordinator negotiating with all agents and sharing updated 
global variables iteratively, prompting agents to modify their energy
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Table 2
Electric Vehicle Parameters [65].
 Parameter EV1 EV2 EV3 EV4 EV5 EV6 EV7  
 SOCinitial(%) 25 10 18 35 20 30 11  
SOCfinal(%) 80 82 65 80 70 90 100  
𝑡𝑎 (h:mn) 16:00 16:30 17:00 7:30 16:30 17:15 06:30  
𝑡𝑑 (h:mn) 7:00 (D+1) 7:30 (D+1) 8:15 (D+1) 17:30 7:30 (D+1) 8:30 (D+1) 18:00  
𝑃 𝑣
rated(kW) 6.6 7.4 7.4 7.4 7.4 7.4 7.4  

𝜂̂𝑐,𝑇 0.98 0.98 0.98 0.98 0.98 0.98 0.98  
𝑄𝑐𝑎𝑝(𝑘𝑊 ℎ) 40 51 60 71.4 77.4 99.8 111  
EVSE type Level2 Level2 Level2 Level2 Level2 Level2 Level2  

 Car Model (2023) Nissan Leaf Hyundai Kona Tesla Y Toyota BZ4X Hyundai IONIQ5 Kia EV9 Volvo EX90 
D+1: designate that this time is for the next day.
Table 3
Simulation setup and parameter definitions for the proposed coordination.
 Parameter cr 𝜌 HEMS solver EV solver H 𝑈𝐵𝐻,𝑚𝑎𝑥 𝛼 [min ∶ max] 𝛽 [min ∶ max] 𝛾 [min ∶ max] 𝜃  
 Value 1 0.5 CVXPY/OSQP GEKKO/APOPT 96 (15 min) 10 (kW) [0.9935 0.9998] [0.008 0.299] [0.00028 0.007] [10...10]1×96 
 

 

 

 
 

 

 

 

 
 
 

Fig. 6. The iterative coordination to transit and converge from baseline to a
global consensus.

consumption profiles. As depicted in Fig.  6, the neighborhood aggre-
gate profile evolves throughout the coordination process, transitioning 
from the baseline profile (representing the uncoordinated case) to a 
fully coordinated state where the coordinator optimizes all available 
flexibility in the neighborhood (CR = 1). The figure demonstrates how 
agents, including houses and EVs, adjust their profiles to achieve a more 
flattened aggregate profile (improved load factor), reduce total costs,
and meet individual agent preferences and objectives. Additionally, the 
figure illustrates the progression of the aggregate profile during the 
coordination process, showcasing its convergence towards the global 
agreement. Adjusting the convergence rate parameter 𝜌 allows for tun-
ing the convergence speed and influencing how the aggregate profile 
evolves with each iteration. The outcomes demonstrate a significant
enhancement in the load factor by 35%, rising from 0.59 to 0.8. 
There is a 27% reduction in the total neighborhood discounted bill
(after receiving the coordination reward), declining from 119.4 to 87.
Moreover, the total neighborhood bill exhibits a 17% reduction prior to 
the inclusion of coordination rewards and without accounting for dis-
counts, decreasing from 119.4 to 98.8. Additionally, the coordination
effectively meets the preferences of EV owners and households alike, 
aligning with their objectives of comfort and bill minimization.

Fig.  7(a) illustrates the aggregate profile of an EV charging station 
evolving during the coordination process. The profile transitions from 
the baseline (uncoordinated case) to a fully coordinated state (CR = 1). 
The figure shows how the CSMS agent modifies the charging station’s 
profile to contribute to neighborhood coordination. The CSMS agent
fulfills all EV car owners’ preferences and adheres to their constraints 
regarding arrival and departure times. Fig.  7(b) highlights the reduc-
tion of the EV demand flexibility when a fast charger (level 3) is used
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Fig. 7. The EV charging station iterative process to transit and converge from
baseline to the global consensus.

to charge EVs. In this test, the arrival and departure times, as well as
the power rating parameters, were changed to (6:30, 8:15, 28 kW) for
EV6 and (12:15, 14:35, 34 kW) for EV7. This result highlights that the
more the level 3 chargers are used in place of level 2 chargers, the more 
the energy demand flexibility of EVs is reduced.

5.4. Coordination level

The section emphasizes the impact of varying the coordination 
level parameter CR on the coordination outcome and the resulting 



F. Etedadi et al.

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

International Journal of Electrical Power and Energy Systems 172 (2025) 111142 
Fig. 8. The effect of coordination level on the global agreement for flattening
the aggregate profile and reducing aggregate bill.

Fig. 9. The effect of coordination level on LF and aggregate bill.

changes in the aggregate profile, load factor, and aggregate bill. Fig.  8
illustrates the aggregate profile of the neighborhood for various levels
of coordination within the range of [0, 1].  The coordination level 
parameter CR signifies the relative importance of shared objectives
compared to individual objectives. A lower value of CR indicates that 
agents prioritize individual objectives over common goals. Conversely,
a higher value of CR implies that shared objectives are given equal
importance as individual goals. The case of CR = 0 represents the 
baseline scenario without coordination, where shared objectives are not
prioritized. In contrast, CR = 1 represents the maximum coordination 
level, where shared objectives are as significant as individual objec-
tives. Other coordination levels have been tested and are depicted in 
the figure.

Fig.  9 illustrates the impact of various coordination levels on the 
aggregate neighborhood electricity bill (DSO’s revenue) and the aggre-
gated consumption profile’s load factor (LF). The results indicate that 
the lowest level of coordination (CR = 0) causes the maximum aggre-
gate bill and the minimum LF value, characterized by two significant
demand peaks. Consequently, this scenario yields the team’s mini-
mum total gain. Conversely, the highest level of coordination (CR = 1)
achieves the minimum aggregate bill, the maximum LF value with 
a more flattened profile, and the team’s maximum total gain. These 
findings demonstrate that the coordinator effectively guides the team 
to satisfy both shared and individual objectives. Higher coordination
levels substantially increase the team’s gain by improving the LF and 
reducing the team’s total cost.

Fig.  10 demonstrates the relationship between the LF and the re-
ward rate across different coordination levels. The results indicate that 
as the coordination level increases from CR = 0 to CR = 1, there is a
notable improvement in the aggregated profile’s LF. This improvement 
correlates with an increment in the total team reward rate, illustrating
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Fig. 10. The effect of coordination level on reward rate and aggregate profile 
LF.

the positive impact of higher coordination levels on both the efficiency 
of energy usage and the economic benefits for the team.

5.5. Robustness assessment against model uncertainties

To rigorously assess the robustness and sensitivity of the proposed 
coordination framework to real-world uncertainties, a comprehensive 
Monte Carlo simulation was conducted. Four scenarios were evaluated, 
each isolating or combining key uncertainty sources: EV arrival time 
(Case 1), departure time (Case 2), initial state of charge (SOC) (Case 3),
and all EV parameters combined (Case 4). The uncertainty was mod-
eled by considering variations in EV parameters around their default 
values which are assumed to be provided by the car owner. Table  4
summarizes the distribution of EV parameters used in the simulation. 
Each parameter is modeled with a mean and a standard deviation,
reflecting realistic variations in EV stochastic parameters. For each 
scenario, 50 independent simulation runs were performed with CR = 1
and 𝜌 = 1. In each run, the coordinated load profiles were recorded, 
and the mean, standard deviation, and corresponding one-standard-
deviation error bands (covering 68.2% of outcomes) were computed, 
as shown in Fig.  11.

The analysis of EV parameter uncertainties reveals that these un-
certainties have a limited impact on the aggregated coordinated load 
profile, as illustrated in Fig.  11. This robustness is primarily due to 
the predominance of overnight charging in residential contexts, where 
most EVs are plugged in for extended periods, making the aggregate
demand less sensitive to variations in arrival and departure times.
While uncertainty in the initial state of charge (SOC) does affect the 
total energy required, it does not significantly change the overall shape
of the load profile. As a result, the coordinated profile remains stable 
across these scenarios even when combining all EV uncertainties. It is
also observed that the variability band is relatively wider during the
daytime hours (8:00 to 17:00), reflecting the fact that fewer EVs are 
scheduled to charge during this period, so individual uncertainties have 
a more noticeable effect. In contrast, the variability band narrows con-
siderably during the evening and overnight hours (17:00 to 8:00), when
most EVs are charging. This leads to a more consistent and predictable 
aggregate load profile, further demonstrating the inherent robustness 
of the proposed coordination approach to typical uncertainties in EV 
charging behavior.

Overall, this comprehensive sensitivity analysis demonstrates that 
the proposed distributed coordination scheme is robust to a wide range
of practical uncertainties, consistently achieving its objectives of peak
reduction and cost savings without compromising system stability.
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Table 4
Uncertainty parameters for Monte Carlo simulation analysis.
 Uncertainty parameter EV Mean value Distribution range Number of samples 
 Arrival time (𝑡a) EV1 16:00 1h (±30 m) 50  
 EV2 16:30 1h (±30 m) 50  
 EV3 17:00 1h (±30 m) 50  
 EV4 07:30 1h (±30 m) 50  
 EV5 16:30 1h (±30 m) 50  
 EV6 17:15 1h (±30 m) 50  
 EV7 06:30 30 m (±15 m) 50  
 Departure time (𝑡d) EV1 07:00 30 m (±15 m) 50  
 EV2 07:30 30 m (±15 m) 50  
 EV3 08:15 30 m (±15 m) 50  
 EV4 17:30 30 m (±15 m) 50  
 EV5 07:30 30 m (±15 m) 50  
 EV6 08:15 30 m (±15 m) 50  
 EV7 18:00 30 m (±15 m) 50  
 SOC0 EV1 25 10 (±5) 50  
 EV2 10 5 (±2.5) 50  
 EV3 18 5 (±2.5) 50  
 EV4 35 10 (±5) 50  
 EV5 20 10 (±5) 50  
 EV6 30 10 (±5) 50  
 EV7 11 5 (±2.5) 50  
 All parameters All EVs Combined Combined 50  
Fig. 11. Robustness of the proposed method to key EVs parameters uncertainties.
 

 

 
 

 

 
 
 
 

 

5.6. Consumer contribution and gain sharing

This section evaluates the proposed gain-sharing mechanism de-
signed to measure the contributions of consumers (houses and the EV
charging station) in the coordination process. It assesses how effectively 
the neighborhood’s total gain is distributed among participants based
on their individual efforts and contributions.

Fig.  12 presents the consumption profiles of consumers before and 
after implementing the proposed coordination approach, emphasiz-
ing each participant’s efforts in adjusting their consumption profiles
throughout the coordination process. The findings clearly demonstrate
different degrees of flexibility among consumers. For example, homes 
No. 2 and No. 10 exhibit minimal flexibility, while home No. 7 shows
the greatest flexibility. The total gain within the neighborhood is allo-
cated to the participants according to their marginal contribution levels
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(Shapley values), as evidenced by the modification of their profiles 
during coordination.

As outlined in the reward-sharing mechanism section, calculating
each player’s contribution level (effort in adjusting its energy profile) to
the coordination process is crucial for the fair distribution of the team’s
total gain. Fig.  12 visually depicts players’ contributions, while Fig.  13
showcases the calculated shares allocated to each player through the 
proposed reward-sharing mechanism. The reward-sharing mechanism 
(29) divides this total gain among players based on their active engage-
ment in adjusting their consumption profiles during the coordination 
process. Both active and null participation by players are acceptable. A 
key aspect of our approach is that while active participants contribute 
flexibility and are rewarded based on their marginal contribution (ef-
fort), null or less active participants receive no additional penalty
beyond not receiving a share of the coordination gains, continuing to 
pay their electricity bills at the standard rate. This gain distribution, 
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Fig. 12. Consumption profile of consumers after and before DR for CR = 1.
 

 
 

 

 

 
 
 

 

 
 

 

 
 

 

based solely on the marginal contribution of each player to change its
daily energy profile, ensures fairness; a player with a higher marginal 
contribution receives a larger share. Flexibility is allowed, and the 
level of participation (contribution) for each agent depends on the 
flexibility effort they are willing to provide. For instance, houses such 
as No. 2 and No. 10, which demonstrate limited flexibility and minimal
interest in coordination, receive no share as they make no effort to
adjust their profiles. Conversely, players like No. 1, No. 4, No. 5, 
No. 7, and the charging station display higher contribution levels and
therefore receive larger shares proportionate to their marginal efforts. 
Each player’s share corresponds to its marginal relative contribution 
to forming the collective effort within the coalition. Adding a strong 
contributor like consumer No. 7 or the EV charging station to the 
coalition increases the team’s gain, whereas adding a non-contributor
like consumer No. 10 has no impact on the team’s overall gain. This 
process ensures that high-contributing players receive higher shares 
due to their greater marginal contributions.

The coordinator fosters fairness by offering equal opportunities and 
sharing information transparently with all players, ensuring no supe-
riority among them. Furthermore, the distributed framework ensures 
robustness and adaptability to changes in neighborhood size and the
number of participants; even if some agents choose not to participate
or communication is lost, the remaining active agents can continue the
coordination process. The aggregation of all players’ shares precisely 
matches the total team’s gain, confirming that the intended approach
has effectively distributed the entire team’s gain among its members in 
a budget-balanced manner. Fig.  12, therefore, visually represents these 
participation mechanisms, their impact on coalition dynamics, and the 
resulting fair reward allocation.

5.7. Comparative analysis

The proposed CSMS and HEMSs coordination strategy is bench-
marked against the baseline scenario [66], characterized by individual 
optimization under a fixed flat pricing mechanism. Additionally, it 
is evaluated alongside two established indirect coordination methods: 
dynamic price approach 1 [27] and dynamic price approach 2 [67]. 
The comparison aimed to showcase the performance of the proposed 
coordination approach and highlight its superior outcomes in terms 
of energy efficiency and load factor improvement relative to other
methods. The summary of different well-known methods employed for
the comparison is as follows:
14 
Fig. 13. Shares of agents from the neighborhood‘s total gain [CR = 1].

Baseline. The baseline scenario [66] represents a situation without 
using any demand response programs or coordination strategies. Here, 
each agent independently optimizes to minimize electricity costs under 
a fixed (flat) daily price profile, ensuring comfort and meeting individ-
ual preferences. The flat price is set at 10 ¢∕kWh based on [68]. Each 
agent focuses solely on its own objectives with 𝜋 = 10 ¢∕kWh, without 
considering any shared neighborhood’s goals.
Proximal dynamic price approach 1. Dynamic Price Approach 1, as 
per [11,27], implements a negotiated-based pricing mechanism where
prices adapt to the aggregate profile of the neighborhood. This ap-
proach generates a dynamic day-ahead price profile at the beginning of 
each day through negotiations between consumers and a neighborhood 
aggregator. Each agent in the community submits its day-ahead energy 
demand profile to the aggregator, who aggregates this data to calculate 
and update the electricity rate. The updated price is then communicated
back to consumers, prompting them to adjust their energy demand
profiles accordingly. This iterative process continues until the aggre-
gator exhausts all available flexibility in the neighborhood, stabilizing 
the electricity rate profile. The finalized price profile is established
as the price stabilizes across the neighborhood. Mathematically, this 
dynamic pricing model is represented as 𝜃𝑘 = 𝛤 ∗ 𝐸𝑘

𝑁 , where 𝛤 =
(𝜃 ∗ 𝐸 ).𝑠𝑢𝑚()∕(𝐸 ∗ 𝐸 ).𝑠𝑢𝑚(), 𝐸𝑘  denotes the aggregate energy 
0 𝑁 𝑁 𝑁 𝑁
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Fig. 14. The comparison of pricing mechanisms across the different scenarios.

profile of the neighborhood in iteration 𝑘, and 𝜃0 represents the initial 
price profile. The coefficient 𝛤  reflects the price elasticity to ensure
fluctuations around the desired value, with 𝜃0 = 10 ¢∕kWh according 
to [68] in this study. In summary, the calculation of 𝛤  normalizes the 
weights and adjusts 𝜃𝑘.

Proximal dynamic price approach 2. Dynamic Price Approach 2, based
on [67], employs a sophisticated pricing mechanism designed to mod-
ulate prices according to the aggregate energy profile of the neigh-
borhood. This approach utilizes a dynamic pricing formula given by
𝜃𝑘[ℎ] = 𝜃𝑚𝑖𝑛 + (𝜃max − 𝜃𝑚𝑖𝑛)∕(1 + 𝑒𝑥𝑝(−(𝐸𝑘

𝑁 [ℎ] − 𝑀)∕𝛼)), where 𝜃𝑘[ℎ]
represents the price at time ℎ in iteration 𝑘, 𝜃𝑚𝑖𝑛 and 𝜃max denote
the minimum and maximum price limits, 𝐸𝑘

𝑁 [ℎ] signifies the energy
demand at time-slot ℎ in iteration 𝑘, 𝑀 represents a reference value 
for the capacity limitation factor, and 𝛼 controls the rate of change 
of the price function (smoothness). The design of this pricing formula 
incorporates a sigmoid function, leveraging mathematical properties 
to adjust prices dynamically based on energy demand fluctuations.
The sigmoid function ensures that prices respond sensibly to changes 
in energy demand, with a gradual increase or decrease in prices as
energy demand deviates from the reference value 𝑀 = 30. This
design aims to encourage consumers to shift their energy consumption 
patterns in response to price variations, promoting energy efficiency
and load management within the neighborhood. In summary, Dynamic
Price Approach 2 employs a sigmoid-based pricing model that adapts
prices flexibly to the energy demand profile, fostering efficient energy
utilization and load balancing across the community. 

5.7.1. Electricity price profiles
The difference between the electricity price profiles in different ap-

proaches is clarified in Fig.  14. In our proposed neighborhood’s HEMSs
and EV charging station coordination, a fixed flat price mechanism is 
utilized to ensure fairness among all consumers regarding the shifting 
of their energy consumption. This approach prevents consumer com-
plaints about unequal pricing, as it ensures that no consumer benefits
from lower prices while others face higher prices. By maintaining a con-
sistent price, all consumers are treated equally, promoting fairness in 
the distribution of energy costs and consumption shifts. Conversely, the
other two pricing mechanisms generate the price signal based on energy
demand in each time-slot or according to peak-shaving objectives, as
detailed in the sections on Dynamic Price Approach 1 and Dynamic 
Price Approach 2. These dynamic approaches adjust prices in response
to demand fluctuations or peak load objectives, aiming to penalize
consumers for consuming during peak times, thereby encouraging them
to shift their energy usage to off-peak periods, which helps to optimize 
the overall load profile.
15 
Fig. 15. The comparison of coordination strategies performances and neigh-
borhood aggregate profiles across the four scenarios: (a) baseline, (b) proximal
dynamic price 1, (c) proximal dynamic price 2, and (d) our proposed coordi-
nation approach.

Fig. 16. The comparison of aggregate bills across the four scenarios.

5.7.2. Coordination performance
This section aims to compare the effectiveness of the proposed 

coordination between HEMSs and the CSMS within the neighborhood 
with three different approaches. Fig.  15 compares the neighborhood 
aggregate energy profile in four scenarios: (a) baseline, (b) proposed 
approach (with CR = 1), (c) dynamic price 1, and (d) dynamic price 2.

The comparison demonstrates a significant improvement in the load
factor by using our proposed coordination approach, increasing by 
up to 35% compared with the baseline scenario, from 0.59 to 0.8.
Besides, it reduces the total neighborhood discounted bill up to 27%,
decreasing from 119.4 to 87. The proposed coordination effectively ful-
fills both common objectives (aggregate profile flatness and aggregate
bill reduction) and individual objectives (such as the bill minimization
and comfort preferences of EV owners and households). A detailed
comparison of the neighborhood’s total energy cost reduction and the 
neighborhood aggregate profile load factor improvement in the four 
different approaches is presented in Fig.  16 and Fig.  17, respectively.
The results in the figures Figs.  16 and 17 highlight that the proposed 
coordination approach, compared to other approaches, achieves the 
lowest neighborhood aggregate bill (indicating the highest energy ef-
ficiency) and the highest load factor (indicating the most flattened 
profile).

5.8. Practical implementation of proposed coordination framework

The proposed distributed coordination framework is designed for 
practical, scalable, and cost-effective implementation in real-world res-
idential environments. Its distributed architecture, based on the ADMM 
algorithm, enables seamless addition or removal of agents (HEMSs and 
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Fig. 17. The comparison of aggregate profile load factor across the four
scenarios.

CSMSs) without system reconfiguration, making it inherently adaptable 
to neighborhoods of varying sizes. By decomposing the global optimiza-
tion problem into smaller, parallel subproblems for each agent, the 
framework efficiently manages computational complexity, preserves
privacy, and supports real-time operation. Each agent solves a convex
optimization problem of limited size, which can be handled by open-
source solvers such as CVXPY or Gekko on low-cost edge devices
(e.g., Raspberry Pi), minimizing hardware costs. The framework’s asyn-
chronous and distributed nature ensures resilience to communication 
disruptions, allowing agents to operate locally and re-synchronize when
connectivity is restored.

Communication between agents leverages lightweight, widely adop
ted protocols such as WebSocket, MQTT, or Zigbee, which are already 
prevalent in smart appliances and commercial EVSEs. This facilitates 
integration with existing residential infrastructure and reduces the need 
for extensive hardware upgrades. The central coordinator can be flexi-
bly hosted either on cloud platforms or local edge servers. Furthermore, 
the increasing market penetration of smart appliances (e.g., Tasmota, 
Shelly, Hydro-Québec Hilo and Mysa Smart Thermostats, etc.) further
supports practical feasibility.

For the incentive mechanism, Shapley value calculations are per-
formed at the distribution transformer (neighborhood) level, where
the number of agents is typically limited and manageable. For larger-
scale scenarios, hierarchical approaches can be employed to maintain 
computational feasibility [63]. In this setup, local coordinators (rep-
resenting neighborhoods groups) compute Shapley values for their
respective agents, and these results are then aggregated at higher levels
(e.g., at the distribution transformer). To further reduce computational
complexity for very large populations, efficient estimation techniques 
such as Kernel SHAP or Leverage SHAP can be applied [61,62]. This
hierarchical structure keeps computations tractable while ensuring fair 
and transparent incentive allocation across all agents.

The framework’s asynchronous and distributed nature ensures re-
silience to communication disruptions, allowing agents to operate lo-
cally and re-synchronize when connectivity is restored. While the com-
putational demands and communication overhead are minimized by
design, practical deployment must still address challenges such as
uncertainty in user behavior, flexibility estimation, communication
reliability, and the availability of real-time data to further demonstrate 
the framework’s effectiveness.

While the computational demands and communication overhead 
are minimized by design, practical deployment must still address chal-
lenges such as uncertainties through stochastic decision mechanism,
flexibility estimation, communication reliability, and the availability of 
real-time data to further demonstrate the framework’s effectiveness. Fu-
ture work should focus on field testing to validate the framework under
real-world conditions. These efforts should also address infrastructure 
16 
costs, communication and control constraints, and support the full-
scale deployment of the proposed coordination system in residential
neighborhoods. 

6. Conclusion

This paper addressed the challenges posed by uncoordinated electric
vehicles Charging Station Management Systems (CSMS) and Home En-
ergy Management Systems (HEMSs) in distribution networks, resulting 
in increased power loss and the creation of demand peaks. The paper
proposed a distributed coordination approach to manage CSMS and 
HEMSs, aiming to mitigate these negative impacts within a neighbor-
hood setting. The approach explicitly modeled consumer flexibility,
considering users’ energy demand, preferences, and CSMS features
such as EV arrival/departure times, state of charge, and scheduling 
energy requirements. CSMS and HEMS Agents make rational decisions
based on limited information. The coordination technique not only 
meets individual CSMS and HEMS objectives but also addresses shared 
neighborhood objectives.  Shared objectives are distributed among 
agents to guide optimal complementary decision-making processes. 
The proposed framework is modular and scalable, allowing seamless 
integration of new flexible loads (e.g., heat pumps, smart appliances) 
and adaptation to neighborhoods of varying sizes. Its distributed ar-
chitecture ensures practical deployment using existing smart devices 
and low-cost controllers, while maintaining privacy and resilience to 
communication disruptions.  The method sought to align HEMS and 
CSMS consumption profiles to smoother aggregated profiles and lower 
overall energy costs. An incentive allocation mechanism has been de-
vised to evaluate agents’ marginal contributions and distribute rewards 
accordingly. Case studies assessed the proposed coordination across
diverse preferences and coordination levels, comparing it with uncoor-
dinated (baseline) and indirectly coordinated (proximal dynamic price)
scenarios. Key outcomes include improved consumers’ load profile
alignment, reduced energy costs, and fair reward distribution based on 
their contributions. The proposed neighborhood coordination resulted 
in a significant improvement in the neighborhood aggregate profile’s
load factor, increasing by up to 35% from 0.59 to 0.8. Additionally, it
led to a reduction of up to 27% in the total neighborhood discounted
bill, decreasing from 119.4 to 87.  The proposed distributed coordina-
tion framework also demonstrated robustness to typical uncertainties in
EV charging behavior, maintaining stable aggregate profiles even under 
variations in arrival/departure times and state of charge. 
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