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ABSTRACT

Electrical energy is a key factor in the development of any nation. Demand has been rising in
recent years. This is putting existing power networks in difficulty, as they have not anticipated
this meteoric rise. Blackouts occur daily and hurt the socio-economic development of nations,
especially the most vulnerable. A predictive network outage solution would contribute
effectively to better transmission network planning. Unfortunately, outage data for conventional
networks are based solely on dispatcher reports and are difficult to exploit. This is the case for
the Electrical Community of Benin transmission network. Understanding the predictive nature
of this data would help implement fault prediction algorithms in this network. This paper aims to
model outages and production in the Electrical Community of Benin power grid using
probability laws. The objective is to contribute to the security of the electricity transmission
network. Predicting the number of outages, their duration and the overall power lost will allow
dispatchers to adjust electrical energy sources to avoid blackouts and save on electrical energy
to impact the cost of producing electrical energy. The Kolmogorov Smirnov test, the error
estimation using Akaike's information criterion and Bayesian information criterion on the one
hand, and the Chi-2 test and the error estimation using the Root Mean Square Error on the other,
were used to fit Benin Electrical Community network outages and accumulated sources using
Weibull's law, outage duration using Erlang's law and energy lost using the Exponential law.
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INTRODUCTION

Electrical energy is a development vector for every nation. It contributes to their economic
and social development. But power cuts are a major brake on development. A study carried out
in Indonesia shows that a 1% increase in the frequency of power cuts leads to a 0.055% drop in
productivity per worker, and a 0.061% drop in value added per worker. Similarly, power
outages reduce labor productivity and losses, which amount to around 4.91 million USD per
year [1]|. The impacts of power grid failures are well known in the literature, especially the
major worldwide failures described in [2] and [3]. Most of these outages are caused by line
tripping, protection system malfunctions, power oscillations, and voltage instability, as well as
system splitting and collapse [4]. Among these, frequency drop and phase shift cannot be
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prevented by system operating actions, whereas overloads and transmission voltage drops can.
Given that inaccurate identification of a fault point can delay network recovery time, resulting
in economic losses and customer dissatisfaction [5], It seems necessary to consider structural
and reliable mechanisms to predict network failures. For example, predicting cascading faults
would effectively manage voltage instability during cascading [6].

As the study carried out by |7] shows a weak predictive character of SCADA data in the
transmission power system, an analysis based on event report data coupled with operating data
of a conventional SCADA-supervised power system is required. The aim is to set up a
predictive system that would enable players in the field to anticipate outages and minimize
their impact, to contribute effectively to the development of any nation, in line with one of the
criteria of smart grids [8].

A survey carried out by [9] showed that the breakdowns by region in the world in 2011 put
sub-Saharan Africa in fourth place, with 210 major outages lasting 7.5 hours per outage. The
transmission networks of Togo and Benin are no exception. A study carried out on the
Electrical Community of Benin (ECB) network showed that between 2015 and 2018 there were
136,487 outages, or 3.89 outages per hour [10]. Given these facts about the ECB transmission
network, an outage prediction solution would enable stakeholders in the field to prioritize
certain power transmission lines in both countries (health, the army, government services, and
certain essential neighborhoods, etc.), to minimize the impact of outages and prevent blackouts
of the entire network. Because a minor interruption would affect a country's critical
infrastructure [11].

For the characterization of electric power operating data, there are bottom-up methods,
which combine statistical and engineering methods, and top-down methods, which combine
economic and technological methods [4]. Statistical analysis effectively contributes to
highlighting the predictive nature of a system or the data of a system [12]. Failure Modes,
Effects, and Criticality Analysis is a widely used qualitative risk analysis method across
various industrial and service applications [13]. For this analysis, probabilistic risk assessment
(PRA) methods are gaining increasing attention in the context of high-voltage transmission
network operations, as they offer a new approach to assessing safety in power system
operations. This is due to the diversity of renewable energy sources connected to the grid,
which tends to render deterministic methods for evaluating power system security obsolete
[14]. In this context, [15] proposed a new PRA methodology aimed at assessing operational
risk, measured by the probability of tripping a set of lines within a 10 to 15-minute interval. In
[16], the practical method of risk probability is studied based on the failure probability of key
equipment by defining the equipment factor and the failure factor. The method for evaluating
risks and hazards in network planning is studied by defining the social influence factor and the
loss-of-load factor. The methods applied to the risk assessment of the Shenzhen network are
reasonable and practical. In [17], authors analyzes the interactions between protection system
components and the power network under extreme events involving simultaneous faults and
cascading failures. The proposed risk assessment considers detailed reliability models of the
protection system components, including circuit breakers and protective relays. The
effectiveness of the proposed risk assessment method is demonstrated using a modified 9-bus
system and the IEEE 68-bus system. Risk-based electricity dispatching has been proposed as a
viable alternative to security-constrained dispatching to reduce power grid costs and help better
understand significant hazards [18]. A high penetration of renewable energy has caused
stochastic power injection at the interface between the transmission and distribution systems
[19]. As a result, stochastic analysis remains one of the most reliable methods for
characterizing electrical energy data. Stochastic processes are mathematical models describing
the behavior of evolving random variables [20]. Electrical data has these behaviors, which can
be modeled by these processes. For statistical methods, probability density functions (PDFs)
are commonly used. Mathematical models for characterizing these PDFs are numerous
and varied.



For sources, [21] proved that among the set of probability distribution functions such as
Gaussian, Skewnormal, Rayleigh, and Exponential, the Skewnormal function best describes
BEC source data. Similarly, of the Gaussian, Skewnormal, and Weibull distributions used to
characterize imports, Weibull holds sway for the TCN source and Skewnormal for the
VRA/CIE source. The Kolmogorov-Smirnov test and performance indicators such as root
Mean Square Error (RMSE) and coefficient of determination (R?) were used. For the prediction
of wind power production, [22] have shown that the mixture of Weibull and extreme value
distributions (mixture of Gumbel, Freche, and Weibull) describes unimodal and bimodal wind
behavior, while the mixture of extreme value and Lognormal distributions describes unimodal
bell-shaped wind behavior.

Regarding network load, the generalized form of the Weibull distribution model provides a
global characterization of billing data and household consumption [23]. Whereas, the Weibull
and Log-normal distributions fit individual consumption in dwellings |24]. Each bus of the 95
IEEE network was well-fitted with a Gaussian mixture [25]. The estimation of the maximum
demand in the low-voltage electrical network is successfully simulated using the Monte Carlo
model, taking into account the statistical deviation of the demand of each half-hour from a
gamma distribution [26].

Electrical network faults are also characterized in the literature. In [27], it proved that the
Weibull distribution makes it possible to specify in a probabilistic manner the faults of
equipment such as circuit breakers and current transformers during stochastic short-circuit
events generated in the electrical network. The results indicate that the defects thus modeled
are short-term. This does not generally characterize the defects in the transmission networks of
developing countries. In [28], it is shown the non-Gaussian nature of the errors in PMUs. With
the adjustment criteria of AIC, BIC and that of the modules. The errors in the PMUs were
adjusted with a semiparametric Gaussian mixture. In [29], to model the resistance of electrical
distribution networks with photovoltaics as backup against network failures, the Weibull
function was selected as the best model. The probability laws are used as a performance
criterion by taking the parameters of long-term failures. The data is not consistent enough to
reflect the reality on the ground.

The transmission network is the backbone of the electricity network. For better planning, it
is necessary to have the overall profile of the source, load faults, and its characters. To
minimize the error rate in the choice of the model that best describes the quantities thus cited, it
is clear that a single test with one or two adjustment criteria remains insufficient. This article
proposes an analysis of transmission network failures based on all the data of sources, loads,
and general parameters of ECB network failures with two tests and several adjustment criteria
as selection criteria. Knowing that an imbalance between the load and the source can cause a
frequency imbalance and lead to a total blackout, predicting holistically, the failures of the
electrical network, the duration of these failures, and the lost power would contribute to
quantifying the reliability of the electrical transmission network and save on the price of
electrical energy.

The data modeling method will be presented in section two, followed by the study results in
section three.

METHODS

Several methods are used today to characterize electrical data: the graphical method, the
power density method, etc. [12], which determine the constants of the chosen distribution
function. The machine learning approach is being increasingly studied, which allows several
probability density models to be proposed so that the machine can propose the models that best
describe the data under study. This study is based on this approach. The data to be modeled will be
presented, followed by the method for modeling these data. It should be noted that the probability
density will be calculated with the SciPy module in Python. The calculated probability density



functions are in normalized form. To scale, you must use the /oc and scale parameters according
to eq. (1):

d x — loc

PAFO) ih = (1)

scale scale

pdf (x) =

Presentation of Electrical Community of Benin

The Electrical Community of Benin (ECB) manages the Togo and Benin electricity
transmission networks. The network comprises 1,288.3 km of high-voltage lines, with
transformer stations with a total capacity of 397.16 MVA. The network is supplied by renewable
sources (hydroelectric and solar), thermal sources, and two import lines from the Volta River
Authority (VRA) from Ghana and the Transmission Company of Nigeria (TCN). The network is
managed using the N-1 method and a SCADA/EMS (Supervisory control and data
acquisition/Energy Management System). A section of the ECB network in Togo is presented

by [30]. It is represented by Figure 1.
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Figure 1. ECB network of Togo [30]

Data modeling method

The data to be modeled are ECB data from February 2014 to December 2018. These data
come from SCADA measurement points and dispatcher incident reports. These data have
undergone preprocessing to obtain the study data. Data from the SCADA database is hourly. And
the incident reports are weekly. The preprocessing consisted of summing the hourly data (sources
and consumption) to obtain the weekly data. The two types of data were then concatenated in the
date column to find the study data. This processing was carried out using Anaconda's Jupiter 6.4.8.
The study data consists of 204 rows and 4 columns. The statistical description of the data used is
shown in Table 1.

The probability densities of the data were run through Kolmogorov Smirnov tests with Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) error estimators compared
to existing models. This is followed by a test of cumulative Chi-2 densities and the root mean
square error (RMSE) estimator to select the model that best characterizes the data studied. This
method is described by the flow chart in Figure 2.



Table 1. Descriptive statistics

Total power Duration of Non distribute
Number of
from sources triooers outages power
(MW) ge (min) (MW)
mean 76293,77 40,11 2035,16 159,03
std 24238,59 17,65 1815,60 110,38
min 6935,29 6 46 22,67
25% 54921,68 27,75 826 78,49
50% 74261,75 40 1645,5 122,39
75% 98405,06 51 2644 209,05
max 11939298 110 12172 545,84
Coefficient of 0.02 0.56 235 126
Skewness
Coefficient of 1,06 0,51 756 0.995
kurtosis
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Figure 2. Methodology diagram

Theoretical foundations of the tools used

The following describes the tools used in this paper to model the data.

Kolmogorov-Smirnov hypothesis test. The Kolmogorov-Smirnov test is a hypothetical test

used to determine whether a sample follows a given distribution known by its continuous



distribution function, or whether two samples follow the same distribution. The reference
hypothesis HO and the opposite hypothesis follow eq. (2):

{HO - F*(x) = F(x) @)
H1 - F*(x) # F(x)

where: F*(x), and F(x) are the empirical and theoretical functions respectively.

In the case of curve fitting of given functions or models, the Kolmogorov-Smirnov (K-S)
statistic is used as a relative indicator. The K-S test is best at estimating errors in curve-fitting
models. It represents the level of rejection of the null hypothesis (HO) of the
Kolmogorov-Smirnov test. The lower the KS value, the higher the acceptance rate of the null
hypothesis. When the K-S value is less than 0.05, you are informed that the mismatch is
significant. The P_value determines whether the H0 hypothesis is accepted or not. If the P_value
is less than 0.05, the HO hypothesis is rejected; otherwise, it is accepted.

Akaike Information Criterion and Bayesian Information Criterion. When it comes to
choosing a model to describe data, it's difficult to choose from the ever-growing pool of models
described in the literature. The Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) are criteria for choosing the right model, striking a balance between the adequacy
and complexity of the model that best describes the data under study. They are powerful measures
of model selection in regression analysis. They enable the selection of simple models that best
describe the data under study. AIC finds a model that maximizes the likelihood of the data while
taking into account the number of parameters used. It is described by eq. (3):

AIC = —log(L) + 2k 3)

where: L represents the maximum likelihood and & the number of parameters including the
intercept and any additional predictors.

Like the AIC, the Bayesian Information Criterion (BIC) is another model selection criterion
that takes into account both model fit and complexity. The BIC is based on Bayesian principles
and provides a higher penalty for model complexity than the AIC. The BIC is given by eq. (4):

BIC = —2log(L) + kLog(n) “4)

where: L represents the maximum likelihood, k£ is the number of parameters including the
intercept and any additional predictors, and # is the sample size. The lower their values, the better
the model describes the data under study.

Sum of squared errors. The sum of squared errors (SSE) is a measure of the deviation
between the data and an estimation model. It is commonly referred to as deviance. The lower the
SES, the tighter the fit of the model to the data used. It is used as an optimality criterion in
parameter and model selection when fitting data. It is defined by eq. (5):

SSE = Z;(Xi _%) )

Chi-2 goodness-of-fit test. The chi-2 test is a goodness-of-fit test that checks whether a
sample of a random variable F(x) gives observations comparable to those of a defined probability
law P. The null hypothesis (HO0) is that the random variable F(x) follows the probability law P.
The null hypothesis here is that the observation is sufficiently close to the theory. The null
hypothesis (H0) is that the random variable F(x) follows the probability law P. The null




hypothesis here is that the observation is sufficiently close to the theory and is generally rejected
when p < 0.05.

Root mean square error. The root-mean-square error (RMSE) in statistics is an indicator that
best measures the difference between the actual observed distributions and the predicted
probabilities for each observation. The lower the RMSE value, the more effective the model is at
modeling the data. The value of the RMSE is given by eq. (6) [12]:

n
1 . )
- E (F —F)
n )

1=1

where: Fi* and F; represent the empirical and theoretical functions of the observed models,
respectively. In this case, the CDF.

1/2

RMSE =

(6)

RESULTS AND DISCUSSION

This section describes the data modelling results in PDF and CDF and presents the test
results for the best model choice.

Best models selecting

PDF functions have been chosen for each of the quantities studied (see Table 2). The
literature models passed the Kolmogorov-Smirnov tests, the Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC) convenience test, and the sum-of-squares-errors
estimation test. Considering the Kolmogorov-Smirnov test, only the Erlang and Beta distributions
apply to the outage duration data. For the number of outages, all the distributions found are
acceptable. As for the non-distributed power data due to outages, the Weibull and Lognormal
distributions are accepted by the Kolmogorov test, while the last three are rejected. For the
sources, even if the Kolmogorov test passes for the Weibull distribution with a rate of 90.1%, the
P-value is less than 0.05, which allows us to reject. According to this test, no distribution can be
used to model total data from ECB sources. Therefore, to use the data from the ECB sources, they
will have to be taken independently, according to the studies carried out by [21]. All these results
are shown in Table 2. The choice of results was made by first comparing the statistics of the
Kolmogorov test. The lower the value of the statistic, the higher the success rate. Followed by
SES, AIC, and BIC in succession. That said, in the case of outage durations for example, the
Exponential distribution has the lowest AIC value, but its statistic value is 0.102, i.e. a
Kolmogorov test success rate of 89.8% against the Erlang and Beta functions with successive AIC
values of 2205.59, 2207.31 for a statistic of 0.045, i.e. a success rate of 95.5%, putting these two
models ahead of the Exponential model.

Table 2. Test results for model selection

Probability density functions Model chose estimators Kolgoromorov Smirnov test

Data

Models Distributions SSE AIC pic St p-value  Decision
parameters stic




Probability density functions Model chose estimators Kolgoromorov Smirnov test

Duration of outages

<
5 — -
2 Models Distributions SSE AIC pic St p-value  Decision
parameters stic
k=1.4718,
Erlang loc=35.4686  2.71e-07 2205.59  -4153.67 0.05 0.782  Accepted
scale=1358.59
a=1.47096
Beta b=3.35 19 2.71e-07 220731 -414831 0.05 0.779  Accepted

loc=35.50642
scale=4.55e+12
loc=46.0

Exponatial ccale=1989.158 4.79e-07  2132.69 -4042.78 0.10 0.0276  Rejected

. loc=-653.349 .
Rayleigh seale="2.29 43 5.05e-07  2477.04 -4032.14 0.14 0.0004 Rejected

c=1.021
dWeibull loc=1642.74 5.33e-07 235795 -4015.53 0.14 0.0005 Rejected
scale=1206.65

Number of outages

c=1.2997
dWeibull loc=38.4972 0.0043 1139.39 -2180.32 0.04 0.83 Accepted
scale=15.1662

s=0.2119
Lognormal loc=-42.515 0.0044 1084.17 -2176.56 0.05 0.56 Accepted

Power lost

| Power

scale=80.7935
a=9.20259
b=1.076 e+9
Beta loc=-13.70973 0.0044 1084.61 -2171.01 0.06 0.52 Accepted
scale=6.29 e+9
a=9.20
Gamma loc=-13.709 0.0044 1082.61 -2176.32  0.06 0.52 Accepted
scale=5.848
Skew a=2.529 loc=
20.461 0.0044 1088.15 -2175.14 0.06 0.47 Accepted
normal
scale=26.379
Expo-norm K=7.28039
al p loc=44.6098 0.0002 1388.36  -2860.94  0.04 0.88 Accepted
scale=15.71597
Skewed a=0.799352
Cauch loc=54.232 0.0002 1412.03 -2.857.96 0.09 0.051 Accepted
Y scale=42.6779
Skew a=16.44380
normal loc=32.909 0.0002 1388.53 -2799.49  0.11 0.010 Rejected
scale=167.422
c=2.1837
dWeibull loc=75405.89 7.71e-09  2489.80 -4879.89  0.09 0.032 Rejected

scale=24581.95



Probability density functions

Model chose estimators

Kolgoromorov Smirnov test

Data

Distributions

Models
parameters

SSE AlIC BIC

Stati-

Decision
stic

p-value

a=2.8054

b=1.59529
loc=904.0497
scale=1.19 et5

loc=3.60 e+4
scale=3.32 et+4

Beta

Rayleigh

s=0.037
loc=-5.605 e+5
scale=636437.6

a=9618.08
loc=-2.294 e+6
scale=246.5

Lognormal

Gamma

1.09¢-08  2390.83  -4802.13

1.14e-08 o -4804.96

1.17e-08 242541  -4794.25

1.18e-08  2419.20  -4793.52

0.17 0.010 Rejected

0.19  0.000  Rejected

0.16  0.000  Rejected

0.17  0.000  Rejected

Probability and cumulative densities functions of the best models selected

The graph shows the best visibility in terms of mathematical model selection for data
modeling. The three best models that best model data have been presented in the form of PDF
and CDF. According to Figure 4 for CDF greater than 0.78, the Skewed Cauchy (skewcauchy)
distribution largely deviates from the CDF of the lost power data so cannot be considered a
better model for the PDF distribution of undistributed power due to transmission network
outages. Figure 3, Figure 4, Figure 5, and Figure 6 show the respective PDF and CDF of the
number of outages, the duration of outages, the power lost due to outages, and the cumulative
powers of the sources and those of the models that best characterize them.
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Choosing the model that best fits the data

Chi-2 tests and RMSE calculations on the CDF were used to select the best model to
characterize our data. The results of these tests are shown in Table 3. For total source power,
all functions were rejected by the Kolmogorov test. But the Chi-2 test and the RMSE value put
the double Weibull (dWeibull) function in the first place. As for Power not supplied due to
outages, the Chi-2 test and the RMSE value put the Exponentially modified Gaussian
(Exponormal) distribution in the first place, followed by Skewcauchy. Although the RMSE
value of the Exponential distribution was low for outage duration, it was rejected by the
Kolmogorov test, enabling us to rank the other two. The Erlang function won out. As for the
number of triggers, it's difficult to decide with both tests The Kolmogorov test should be used.
For Khi-2, the Lognormal law wins out over the Kolmogorov test, which puts double Weibull
ahead with a 95.8% success rate for a P-value of 0.83 against Lognormal with a 94.6% success
rate for a P-value of 0.56. Considering the P-values of the Kolmogorov test, the Weibull
distribution outweighs the Lognormal distribution. Considering the RMSE, that of the Weibull
distribution is lower than that of the Lognormal distribution. Assuming the difference in
chi-square between the two distributions, the Weibull model can be placed first, followed
by Lognormal.

Table 3. Chi-2 test results

Data distribution chi_square RMSE Rang
Number of Lognormal 4.382924 0.128426 2nd
outages Bgta 4.435108 0.127705 3

dWeibull 4.644737 0.117384 Ist

Duration of Erlang 4.267320 0.171638 I
outages Beta . 4.282475 0.17166 2nd
Exponential 67.684226 0.163108 3w

Exponnormal 2.129430 0.13666 I

Power lost Skewcauchy 8.960681 0.14507 2nd
Skewnormal 30.814606 0.16197 3

dWeibull 36.928641 0.02587 I

Power sources Beta 73.006323 0.063119 2nd

Rayleigh 87.413172 0.07388 3w




Probability density functions retained after the study

According to the study, cumulative source and import data are not predictive, whereas
outage data (duration of outage, number of outages, and power lost) are, as shown in Table 4.

Table 4. Fitted PDF for data

DATA PDF theorical function Functions parameters
Number of
outages described _ O =1 —|xC c=1.2997, loc=38.4972
by dWeibull flc)=51xI""e scale=15.1662
distribution
Duration of
: Akxk-1g(-20) k=1.4718,
outafesEcif;;:nbed flx, k,A) = o with loc= 354686,
Y Srang A =1/scale scale=1358.59
distribution
Power lost 1 x—1/K K=7.28039,
described by f(x,K) = i e(ﬁ‘x/l()erﬂ(— 7z ) loc=44.6098
Exponormal 2K scale=15.71597
distribution

This result confirms the non-Gaussian character of power system failures shown by [28] in
the case of PMUs. As the field of study is not the same, then the models that describe power
grid failures can vary depending on the systems and the source of the data. The prediction of
sources can only be based on the study of data from these sources taken individually, as shown
by [21]. The Weibull model for characterizing fault data in a network, proposed by [29] , is still
with the results found. Because the transmission network has hybrid sources. The results show
that data from network dispatcher reports can help predict outages number, and the energy a
network can lose as a result of a power grid failure. They can also help predict the duration of
outages in the transmission network. So the non-predictive nature of SCADA data in the power
grid shown by [7] is no longer verified if static methods are used. SCADA data and data from
protective device readings can therefore make an effective contribution to the prediction of
outages in the transmission grid.

CONCLUSION

In this paper, to avoid blackouts in the transmission network and to save on energy losses
due to repetitive breakdowns, a stochastic statistical analysis has been performed on ECB
network outage data. The Kolmogorov-Smirnov test and model choice estimators such as AIC,
BIC, and SSE were used to select the best models describing the PDFs of the data studied. The
three best of these models are retained. The CDFs passed the Chi-2 test and the RMSE error
estimation, and with an analysis of the results, the best models that characterize the data studied
are retained. A rejection of the total power of ECB sources in the Kolmogorov-Smirnov test
indicates that the use of separate source powers would be the best choice in characterizing ECB
source data. The number of failures is well modeled with the double Weibull function,
followed by the duration of failures and the power lost by these failures respectively using the
Erlang function and the Exponormal function.

These models will enable us to determine predictive models for the number and duration of
outages in the Togo and Benin transmission networks. This will make the network increasingly
intelligent. The question that may arise is the accuracy of the reports, which can influence data
quality. This work, although interesting for the security of the entire network, does not allow to



locate the breakdowns of the transmission network. The continuation of this work would focus
on modeling the data by taking into account the topology of the ECB network.
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NOMENCLATURE
Abbreviations
ECB Electrical Community of Benin
PDF Probability Density Function
CDF Cumulative Density Function
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
SSE Sum of Squared Errors
RMSE Root Mean Square Error
CERME Centre d'Excellence Régional pour la Maitrise de I'Electricité
SCADA Supervisory Control and Data Acquisition
PMU Phasor Measurement Unit
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