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Conventional greenhouse producers face significant challenges in integrating advanced Industry 4.0 technologies
into their production processes. One of the main obstacles is the lack of clarity regarding the components
of technological costs. This article develops a cost mapping for the implementation of such technologies in
the context of greenhouses. The mapping distinguishes between capital expenditures (CAPEX) and operational
expenditures (OPEX), categorizing the key technological components and their financial implications. Based
on the general findings from the literature review, several cost areas can be identified and classified as
follows: hardware acquisition, installation and retrofitting, integration and customization, software and services,
operational and maintenance costs. This cost structure will serve as a basis for future economic models and cost-
benefit analysis (CBA), promoting strategic decision-making and a more informed and precise selection of digital
technologies.
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Introduction

The social, economic, and environmental challenges driven by in-
eased energy consumption and the need for food autonomy highlight 
e need for substantial efforts to optimize energy efficiency and boost 
ricultural production capacity throughout the year [37]. This is partic-
arly important for countries with very short favorable climate seasons 
d a short growing season, which restrict production and increase de-
ndency on imports, with the level of dependency varying by product 
pe [38]. In the case of Canada, a significant portion of the fruit and 
getable supply relies on imports, thereby leaving the country vul-
rable in the event of any disruption to global trade that would be 
trimental to maintaining local supply capability [9].
Greenhouses and CEA (Controlled Environment Agriculture) systems 

tely represent a promising way to reduce such dependence. However, 
eir high energy consumption suggests that maintaining an optimal 
icroclimate in colder regions entails a significant energy cost [51]. 
 Quebec, energy consumption in greenhouses operated by small and 
edium-sized producers largely depends on sources such as natural gas, 
opane, and fossil fuels, significantly contributing to greenhouse gas 
HG) emissions [15,56]. The major factors of energy use are the heat-
g/cooling and ventilation systems, along with artificial lighting [11]. 

Corresponding author.

Electrification of the agricultural sector therefore creates an opportu-
nity for better sustainability and competitiveness, but at the same time 
raises important challenges, as high energy consumption during winter 
may overload the electrical grid and strain the distribution infrastruc-
ture [31].

Due to such challenges, mechanisms have been developed to increase 
the resilience of the agricultural sector through modern technological in-
novations. Among them are various financial programs for greenhouse 
producers, which were intended to make it easier to access digitization 
and modernization of the agricultural sector [37]. Through automation 
and intelligent control, these advanced technologies improve productive 
efficiency and enable real-time adjustments to energy resource con-
sumption [58]. In this respect, the digital transformation of agricultural, 
driven by Industry 4.0 technologies, is playing an important role in up-
dating agricultural practices. Greenhouses are increasingly becoming 
high-tech, well-connected, and sustainable with the use of technologies 
such as the Internet of Things (IoT), cloud computing, Big Data, Arti-
ficial Intelligence (IA), Machine Learning (ML), and Advanced Systems 
of Automation. These are innovations that enable the complete man-
agement of agricultural processes by means of monitoring, regulation, 
and optimization operations remotely and in real time [4,30]. These ad-
vantages turn to benefits when the field practices improve on disease 
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tection, irrigation management, fertilizer handling, the identification 
 crop maturity, marketing operations, supply chain management, and 
ergy management [64].
However, the adoption of these technologies progresses unevenly 
d heterogeneously, complicating the search for solutions by producers 
at meet their needs, particularly since the horticultural market lacks 
ature and readily available technologies, especially in the field of au-
mation [32]. This situation creates additional obstacles for farmers, 
rticularly those managing small and medium-sized operations [76]. 
ccording to a study by CIRANO [61], the main obstacles to adopt-
g modernization and digitalization strategies in Quebec’s horticultural 
ctor are the high costs of acquiring digital technologies, their rapid 
olution, uncertainty about long-term profitability, fear of dependency 
 technology providers, and the need for specialized advice.
The economic viability of digital technologies has increasingly be-
me one of the drivers of decision-making in their adoption, hence 
manding a comprehensive cost-benefit analysis of the technologies to 
lance the costs of implementation against the potentially accruable 
onomic benefits thereof [71,57]. However, such decisions in the ab-
nce of full information on the most economically viable solutions for 
eir needs remain challenging for farmers. This lack of clarity causes 
decision due to the possibility of making the wrong decisions that may 
ter result in financial losses [24,25]. While the literature indicates that 
ch technologies are likely to provide certain possible benefits, the fear 
 high initial capital costs, and relative uncertainty over long-term ben-
ts remain among major concerns for many producers [60,39]. These 
e not the only limitations but also come from commercial, technical, 
d sectoral problems that complicate the choice of technologies which 
st fit each case [22]. On this matter, hesitation to adopt new tech-
logies because of a lack of profitability analysis is not an exclusive 
oblem of the agricultural sector, since this is a phenomenon shared 
ith most industrial sectors [45]. In this context, there is a clear lack 
 economic viability analysis in general, highlighting the need for a 
eper academic approach [58] to propose profitability studies for dig-
l technologies in the industry [21].
The increasing complexity of digital technologies and automation 
s raised the proportion of indirect costs, reducing the effectiveness 
 traditional methods for evaluating the economic viability of digi-
l technologies [54]. This challenge requires the development of more 
mplete approaches to consider costs throughout the adoption cycle, 
eaning during all phases of a digitization project [54]. Without an ap-
opriate structure, which groups these costs into certain categories, 
alyses are usually incomplete and difficult to extrapolate to other 
ses. This might illustrate the need for cost models that standardize 
e organization and classification of expenses, so these costs are easily 
mparable among different technologies. Consequently, the adoption 
 Industry 4.0 technologies requires a rethinking of cost management, 
anning, and budgeting [62].
This research represents a preliminary effort to identify and map cost 

ements related to the assessment and acquisition process of Industry 
0 technologies for greenhouses to equip decision-makers with a tool 
at would enable them to perform not only direct costs identification 
t also accounting for indirect costs, which in many situations remain 
dden from classical cost accounting. The research categorizes these 
mponents and, therefore, contributes to further studies. This also lays 
e foundation for improving the economic profitability models for tech-
logies. Accordingly, the research seeks to answer the question: How 
n the different cost components related to the implementation of In-
stry 4.0 technologies in greenhouses be categorized? In this respect, 
detailed mapping of the different costs involved in the adoption of 
ese technologies is proposed. Such mapping comprises initial costs 
d technologies’ operational costs, as well as the technical and opera-
nal challenges that arise from the integration of digital technologies. 
 doing so, all the above aspects will be integrated into the research to 
2

er a wide perspective on the costs throughout the technology adop- re
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n cycle that might help reduce financial surprises and optimize Return 
 Investment (ROI) in the Industry 4.0 project for greenhouses.
The rest of the paper is divided into four sections: the first section 
esents a literature review on modernization and Industry 4.0 technolo-
es, including economic aspects and cost elements; the second section 
troduces cost mapping into key categories. The third section discusses 
ogram results, and the last section presents the conclusions.

 Literature review

The literature review was subdivided into several sections so that 
st-related components of implementing Industry 4.0 technologies in 
eenhouses could be identified comprehensively. Section one compares 
e evolution of greenhouse modernization, identifying key Industry 4.0 
chnologies. The second section looks at the challenges that impede the 
option of the technologies. The third section focused on works dealing 
ith the economic feasibility assessment of greenhouses. Section four 
en described studies that classify the costs concerning digital tech-
logies, including examples from other industries to create a bigger 
cture of cost models relevant for digital agriculture.
The review was conducted using an exploratory search methodol-
y in academic databases such as Scopus and Google Scholar, as well 
 through market reports and specialized publications. The selected key 
search terms included: Industry 4.0, Agriculture 4.0, greenhouse tech-
logies, smart agriculture, modernization of greenhouses, cost models, 
st structure, and cost-benefit analysis. These terms were selected with 
e purpose of covering both technical studies of technologies imple-
ented within greenhouses, as well as economic analyses.

1. Greenhouses and industry 4.0

As a specific form of CEA, greenhouses provide the conditions for the 
oper development of plants throughout the year [53]. These facilities 
ve undergone a remarkable transformation, evolving from simple pro-
ctive structures to highly sophisticated agricultural systems [60,34]. 
e evolution of greenhouse agriculture reflects the impact of technol-
y through industrial revolutions, moving from initial mechanization 
 today’s advanced digitization, integrating automation and smart tech-
logies for optimized year-round production [40].
Fig. 1 presents the chronology of greenhouses, from their very origin 

 the point where the adoption of new technologies turned this sector 
ound completely over the centuries. The developments in this sector 
gan to take a major turn in the 18th century with the introduction 
 heating systems with conduit ovens, followed later in the 19th cen-
ry by steam, hot water systems, and hot air systems. The development 
 electric lighting in the 19th century paved the way for controlled 
periments on the effects of light on plant growth. It facilitated the 
udy of controlled ventilation and aeration starting in the 1930s. In the 
50s, humidification and evaporating cooling techniques were intro-
ced. In the 1960s, significant progress was made with the beginning 
 using combustion gases as an additional source of carbon dioxide 
3,14]. Since the 1970s, commercial greenhouses and climate control 
tomation have been implemented, using computer studies to regu-
te radiation, ventilation, humidity, and temperature. From the end of 
e 1980s, smart greenhouse management began to emerge. This period 
ould mark the use of sensors, software, and other systems that enable 
ecision and accuracy concerning environmental condition manage-
ent. [16]. By the late 1990s, robotic systems began to integrate into 
is field. In the early 2000s, greenhouses began the application of Wire-
ss Sensor Networks (WSN), allowing environmental monitoring, early 
arning generation, and remote control [58]. The use of WSN in agri-
lture kept evolving to more IoT-compatible solutions, making use of 
ore generic standards for communication [70]. Currently, the trend in 
eenhouses is marked by the use and incorporation of fourth industrial 

volution technologies [12]. These technologies analyze large volumes 
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Fig. 1. Modernization and greenhouse agriculture, adapted from [40].
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 data in real-time and make independent decisions, thus enhancing 
e efficiency and accuracy of decision-making in greenhouses [27].
A significant portion of academic research has focused on developing 

rategies to optimize the geometry, orientation, and materials of struc-
res. Particular emphasis is placed on microclimate control, energy 
anagement, integration of renewable energies, as well as optimizing 
oduction schedules and the integrated operation of agricultural infras-
uctures [77,8]. Also, decision-making mechanisms have been subject 
 modernization, which in turn has resulted in increasing develop-
ents towards greenhouse automation. According to [48], the evolution 
 these technologies has evolved from human-to-human interaction, 
here traditional equipment requires manual supervision, to human-
achine collaboration, whereby, through remote monitoring systems, 
erators can adjust variables by using intuitive interfaces. Finally, 
achine-to-machine collaboration takes control, with autonomous sys-
ms regulating climate and plant nutrition, learning from previous cy-
es to continuously optimize growing conditions.
The fourth industrial revolution is transforming all industries, in-

uding agriculture, where it is also known as Agriculture 4.0 [40]. The 
chestration of such technologies configures a system that can coordi-
te and construct more effective, intelligent, and optimized solutions in 
rious industrial and commercial fields [4]. These are applied to a few 
ain aspects of this horticulture: automation of actuators, disease detec-
n, irrigation and fertilizer management, crop maturity identification, 
 well as supply chain and marketing optimization [64]. Industry 4.0 
s increasingly focused on underlining the technology’s relevance for 
g volumes of data generation [24]. The volume necessitates IoT archi-
ctural solutions which proficiently handle data collection, processing, 
d analysis [17]. The IoT architecture presented in Fig. 2 describes an 
ganizational scheme for smart agriculture where other technologies 
t up and communicate in a system. Special functions that ensure the 
herent work of the entire system are separated and located in different 
yers. Each layer is responsible for certain aspects of IoT in agriculture, 
arting from data perception and its gathering to its analysis and appli-
tion, which make integration and management of technology easier 
2].
In an IoT system, the physical layer resolves the hardware compo-
nts such as sensors and actuators in charge of detecting environmen-
l conditions and physical actuators in the real system [4], whereas 
e communication layer acts as an intermediary between the physi-
l devices and their capability for communication with other devices 
 systems. It provides the necessary connection through which data 
all be transferred using various network and communication proto-
ls [70,52]. The service layer is essential for processing and analyzing 
e received data. Here, IoT platforms, middleware, and advanced tech-
logies such as Big Data, ML and AI process large volumes of data 
 generate actionable information and make strategic decisions based 
 these analyses [27]. The application layer provides the interfaces 
d functionalities with which users interact. These applications enable 
3

ers to monitor the state of crops, manage resources intelligently, and fo
Fig. 2. Conceptual IoT architecture for Agriculture 4.0, adapted from [4].

ake better and optimal decisions in key areas, such as control, logis-
s, as well as predicting for future problems [68]. In brief, this layered 
ethodology integrates hardware with communication techniques and 
ta analysis on an interdependent system and optimizes operation ef-
iency with the productivity of the greenhouse [52].

2. Challenges in the adoption of digital technologies

The adoption of IoT solutions and data-driven systems in agriculture 
quires advanced infrastructures, such as specialized sensors, cloud-
sed analytics platforms, and robust communication networks [43,65]. 
ese initial investments are typically capital-intensive and are often 
mpounded by the need to integrate with existing infrastructures and 
e lack of standardization in communication protocols [7]. Although 
e physical infrastructure, such as sensors and irrigation devices, can 
 initially installed, a significant challenge is the integration of this 
twork. In this regard, significant investments are required in software 

r platforms that enable data aggregation and analysis, as well as in 
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stom integration services that facilitate the connection between these 
sparate devices [41]. Additionally, in rural areas, access to reliable 
ectricity and the internet is not always guaranteed, which can under-
ine the effectiveness of smart systems that rely on constant data flow 
d real-time control [32].
Upgrading an existing greenhouse poses even greater challenges 

hen it comes to modernizing its infrastructure. [28] highlight the 
mplexity of integrating new technologies into traditional greenhouse 
ructures without disrupting ongoing operations. In most cases, this 
quires a phased approach that balances the need for technological 
vancements with the practicalities of maintaining production. Key 
allenges in integration include ensuring interoperability between sys-
ms from different providers and legacy equipment, addressing data 
liability issues caused by equipment failures and environmental fac-
rs, and developing scalable solutions to manage the large number of 
T devices expected to be deployed [22].
According to [1,35], the success of this implementation hinges on 
e standardization of data from all sensors and devices, which ensures 
amless communication and accurate data interpretation. Standardiza-
n also allows developers to create a unified interface for managing 
e greenhouse, enabling real-time data transfer and synchronization. 
rthermore, the integration of AI models into an operational control 
stem adds another layer of complexity. As shown by [33] in their 
ork on predicting climate conditions in greenhouses, deploying AI can 
 effective if, in addition to technical integration, it is grounded in a 
ep understanding of the agricultural context in which the technology 

 intended to operate.
Even though technologies like automation in greenhouses promise 
gher yields and more efficient resource management, the reality is that 
any small-scale farmers lack the financial resources and proper train-
g to adopt these innovations without external support. Furthermore, 
gulatory challenges concerning data ownership between farmers and 
ch companies create uncertainty, which undermines producers’ confi-
nce in these solutions [61].

3. Economic viability in greenhouses

The economic viability of greenhouses is usually appraised by re-
arch studies focusing on the initial investment costs related to con-
ruction and equipment, in addition to operating costs like irrigation, 
ergy, labor, and maintenance. These are also the factors deemed up to 
w to make it possible to assess the profitability of agricultural systems 
d their capability to enhance productive performance. For example, 
] evaluate the economic risks of investment in tomato production by 
sessing the impact of initial and operating costs (such as energy costs 
d labor costs) on the economic viability of the greenhouse. In a similar 
in, [69] highlight the importance of energy costs when carrying out an 
onomic feasibility analysis of Combined Cooling, Heating, and Power 
CHP) systems, considering installation costs and operation costs of 
ergy consumption. Thereafter, [10] introduce uncertainty into the 
st analysis and underline the fact that lack of accurate data, along 
ith capital and operating costs, are the major challenges to profitabil-
 related to vertical farms. Regarding the techno-economic aspect, the 
ork of [73] paid special attention to global optimization, duly relating 
e importance of the analysis of fixed and variable costs in relation to 
preciation, agricultural inputs, and climate control systems in deter-
ining the viability of different greenhouse designs.
On the other hand, some recent research has evaluated the economic 
ability of the adoption of digital technologies in greenhouses. [55]
esents a study on the economic feasibility of smart greenhouse tech-
logy using a Software Cost Estimation Model. For this, the variables 
 fixed costs are supposed to be the development of software modules 
d infrastructure needed to keep the operation of the greenhouse up 
d running. Meanwhile, [20] applies econometric models and Data En-
lopment Analysis (DEA) to evaluate economic management in green-
4

uses. In this context, it estimates the magnitude of the effect of the in- tio
Smart Agricultural Technology 9 (2024) 100634

gration of digital platforms on profitability, cost reduction, and techni-
l efficiency improvement in greenhouses. [72] assessed the economic 
nefit of integrating digital technologies in greenhouses and plant fac-
ries through multi-objective optimization modeling. This work will 
trofit technologies like sensors, robots, and automated systems, con-
dering the reduction of cost to a minimum and profit maximization to 
sure maximum ROI. It is also observed that these studies present gen-
al analyses on global economic benefits, such as increased operational 
ciency or long-term cost reduction of the technologies; however, 
w provide a detailed breakdown of specific costs associated with im-
ementing these technologies. The lack of detailed analysis makes it 
fficult to compare the implementation costs of specific technologies 
ith the economic benefits they generate. As a rule, such technologies’ 
sts are hidden in a variety of wide general production processes or 
htly touched upon, without any deep analysis that would make their 
pact on profitability and return on investment in the processes assess-
le individually.
Among these economic analyses of agriculture, attempts, such as 
7], model the relationship that exists between the costs of implement-
g IoT in agriculture in terms of hardware, maintenance, and services, 
d perceived benefits accruing to farmers and service providers. While 
e study indeed brought up a general framework for evaluating these 
chnologies, the approach is very theoretical and does not provide any 
lidation with real-world data.

4. Cost structures of digital technologies

Similar to manufacturing, cost structures in the greenhouse sector 
ve dramatically changed with the smart technologies and Industry 
0 advancements in automation, AI, and the use of IoT. Operational 
sts for greenhouses have traditionally been dominated by direct costs, 
cluding labor, energy, water, and raw materials like seeds and fer-
izers, as was common in early manufacturing cost models. Indirect 
sts, on the other hand, have been apparently driven upwards by 
ch inclusion of smart technologies once investment in advanced sys-
ms, employee training, and modernization of various facilities be-
mes obligatory [54]. Such a shift testifies to an emerging focus on 
ciency and precision but at the same time refocusing financial priori-
s toward technological development and infrastructural development, 
process that reshapes the cost dynamic of contemporary management 
6].
Cost structures, including the adoption of modernization of green-
uses with integrated technologies that improve operational efficiency, 
ve taken the center stage in the literature recently. Many studies 
ve emphasized the evaluation of Total Cost of Ownership (TCO), 
is approach is widely applied across multiple sectors and techno-
gical areas due to its ability to analyze financial implications over 
e. In the agricultural field, a study [63] proposed a TCO frame-

ork for evaluating the costs of physical infrastructure and hardware 
 smart greenhouses, covering irrigation systems, environmental con-
ol, and sensors, along with operational and maintenance costs. How-
er, this study did not specifically address the costs associated with 
gital technologies. In contrast, other works have applied the TCO 
odel to areas like cloud computing, IoT networks, and data cen-
rs. For example, [74] examined cloud computing services by con-
dering CAPEX and OPEX to reveal hidden costs and risks, which 
e particularly relevant for startups lacking internal IT infrastruc-
re. Similarly, [29] calculated TCO for IoT networks by focusing on 
uipment, infrastructure, installation, and maintenance costs. Addi-
nally, [42] provided a techno-economic framework for evaluating 
O in disaggregated data center infrastructures compared to tradi-
nal models. These studies highlight the expanding scope of TCO 
alysis, extending beyond traditional hardware to include digital and 
formation technologies fundamental to modern greenhouse opera-

ns.
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 Methods

The literature review highlights the need for more detailed infor-
ation regarding the implementation costs of Industry 4.0 technologies 
 greenhouses. While different attributes have been studied, detailed 
st breakdowns by researchers would contribute to better economic 
alysis and aid in informed decision-making regarding the adoption of 
ese technologies. Within this framework, the article raises the devel-
ment of a mapping of the costs, a tool created for the identification, 
scription, and analysis of the costs related to the adoption of digital 
chnologies. The methodology is based on an interpretation of the in-
rmation gathered from the literature review, considering the different 
proaches that represent the costs of digital technologies derived from 
plementation, operation, and challenges.

1. Theoretical foundations for cost mapping

Each of the tools that compose Industry 4.0 technology has certain 
les to play at different phases of the process. Some technologies spe-
alize in giving out certain keys or data with which other technologies 
e developed or optimized analytically. It is complicated to find the 
st per technology in the general overview of Industry 4.0. Therefore, 
e mapping of the cost structure will be done through an integrated 
proach, considering technological solutions proposed and implica-
ns of their adoption from a technical and economic point of view. 
n attained holistic approach will be ensured through the TCO method, 
abling the better visualization of CAPEX and OPEX.
Various functional elements and technical challenges identified in 
e literature were considered to propose categories that group the dif-
rent cost elements. First, the layered structure of IoT was taken into 
count, which includes hardware (sensors and actuators), the commu-
cation layer, cloud service infrastructure, and applications that enable 
al-time decision-making [4,52]. These elements define the spectrum 
 costs, ranging from hardware acquisition to ongoing software services 
d data analysis. Each of the proposed categories addresses the techni-
l and economic needs observed in studies on the implementation and 
allenges inherent to the adoption of technologies in Agriculture 4.0. 
us, categories were established, including: hardware of acquisition, 
stallation and retrofitting, integration and customization, as well as 
ftware and services, operational, and maintenance.
The physical layer and the communication layer of an IoT archi-
cture form the foundation for establishing an efficient network in a 
gitized agricultural environment. An IoT sensing device requires at 
ast three elements: sensors, microcontrollers, and connectivity to send 
ta [59]. In this context, this category focuses on identifying the initial 
penditure on sensors, actuators, controllers, gateways, base station 
frastructure, and other equipment necessary to automate and oper-
e an agricultural system in smart greenhouses. The costs related to 
ese elements are significant and represent one of the main challenges 
r farmers. On the other hand, the adaptation of these devices to the 
oduction system requires initial installations and potentially the modi-
ation of the existing environment for the new technologies. This may 
 the restructuring of the space, planning the correct number of de-
ces, incorporating systems that would permit control of environmental 
riables. Therefore, this category presents the need for adaptation of 
ready existing infrastructures and all the expenses concerning this 
ocess should be contemplated to enable the greenhouses to take ad-
ntage of technological innovations without further complications.
Integration and customization address the critical need to adapt tech-
logical solutions to fit the specific characteristics and needs of each 
eenhouse. It includes the integration of new systems with existing 
chnology, which may require additional technical adjustments that 
mand specialized configurations. This, in the sense of IoT systems 
d digital platforms, often requires customization to very local con-
tions, such as crop characteristics or climate [41]. Additionally, the 
5

gidity of applications is another technical challenge, which increases es
Smart Agricultural Technology 9 (2024) 100634

Fig. 3. Cost mapping in the Greenhouse Sector.

sts due to the adjustments and adaptations an application must un-
rgo to be useful for a particular agricultural need. Additionally, it is 
cessary to implement comprehensive security measures from the out-
t, both in hardware and software, to protect against data breaches or 
chnical failures. At the same time, personnel must be trained for the 
oper use of these technologies, which involves an initial expense in 
aining and operational adaptation [65].
Service models in digital technologies have been proposed, such 

 On-Premise, IaaS (Infrastructure as a Service), PaaS (Platform as a 
rvice), and SaaS (Software as a Service) [41,36]. Depending on the 
osen model, management of local or cloud infrastructure may vary, 
 some layers of an IoT architecture can be managed internally or 
tsourced. This directly impacts how costs are distributed, allowing 
xibility between initial investment, maintenance, and reliance on ex-
rnal providers, thereby enabling the selection of an expense structure 
cording to the technological needs to be implemented in the process. 
e literature highlights that operating costs are key to managing tech-
logies in smart greenhouses, including maintenance, data storage and 
ocessing management, and subscriptions to cloud services and con-
ctivity fees [17]. Additionally, expenses related to ongoing training, 
ftware updates, and periodic repairs to keep the system running must 
 considered.

2. Cost mapping

To achieve a clear and consistent cost breakdown, we have inte-
ated and categorized the main elements identified from literature. 
ccordingly, the Fig. 3 maps and categorizes such key elements, pre-
nting a structured overview of the costs for adopting Industry 4.0 
chnologies in greenhouses. The diagram brings out the categories and 
stematizes them, making it easier then to discuss the different cost 
mponents and approaches that should be considered in the cost anal-
is.

2.1. Acquisition of hardware
Key hardware acquisition for smart greenhouses represents one of 
e main investments that undertake the adoption of Industry 4.0 tech-
logies; among them, the basic components include IoT sensors the 
sis of data collection and some control modules, along with connec-
ity infrastructure for process automation. This is due to the fact that 
ch of the previously mentioned elements affects cost groups deeply, 

sentially around CAPEX, the costs of which depend on factors such as 
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e level of sophistication, number of devices to be deployed, multivari-
le control capacity, and ease of use, among others.
Sensors and control modules are directly related to their ability to 
llect and process data on variables primarily related to climate, soil, 
ants, and the environment [2]. The price range varies considerably 
pending on factors such as precision, durability, reliability, storage 
pacity, portability, coverage, data processing, connectivity, energy 
anagement, data acquisition, and control [19,26,13]. Sensors may be 
ivariate, that is, measure one variable, or some may be multivari-
e, measuring different variables at one and the same time. The cost 
so varies according to the type of variable being measured. Sensors for 
mple variables like temperature are more affordable, while those mea-
ring pH or multiple variables at the same time are more expensive due 
 their greater complexity. Additionally, more advanced sensors with 
nnectivity features (e.g., Wi-Fi, Bluetooth) and edge computing capa-
lities tend to increase costs, and integrating them into a larger system 
ten requires investment in gateways, platforms, and cloud services 
8]. As they become more sophisticated, they can integrate internal 
ogramming logic to issue alerts and make automatic real-time adjust-
ents [59].
On the other hand, control modules can be integrated with pre-
isting systems, such as HVAC (Heating, Ventilation, and Air Condi-
ning), irrigation, lighting, and CO2 generators. These modules are 
ailable on the market both for controlling individual systems and for 
anaging multiple systems simultaneously and in a coordinated man-
r. They can be implemented in centralized approaches, where a single 
ntroller manages all operations, more economical but with a higher 
sk of critical failures, or in distributed approaches, which use multiple 
ntrollers to offer greater resilience and scalability, though at a higher 
st [67]. There are a number of control approaches reported in the 
erature, specifically: fuzzy logic controllers, PID controllers, genetic 
gorithms, robust control, and Bayesian networks [3]. These control 
chniques are applied either remotely in the cloud or at a local level by 
eans of control modules processing data collected by sensors. Micro-
ntrollers or PLCs (Programmable Logic Controllers) make decisions 
sed on the algorithms used, and relays or transistors act as interme-
aries, sending signals to actuators that perform the physical actions 
1].
Advances in IoT architectures have increased the diversity of com-
unication protocols, with some of the most common being LoRaWAN, 
gbee, WiFi, Bluetooth, NB-IoT, among others [7]. However, in such 
oices, technical needs are not the only issue; appropriate protocols 
so need consideration with a view to costs. A series of issues, which 
clude coverage, energy consumption, data rate, reliability, and in-
roperability between different standards and protocols, need to be 
nsidered with a view to the underlying costs of infrastructure, opera-
n, and system maintenance [21,24]. Strategies using local gateways, 
hich filter and process data before sending it to the cloud, are being 
plemented to optimize bandwidth usage and reduce cloud processing 
sts. Moreover, the topology that best fits should be considered before 
e deployment of any network, along with selecting the proper mecha-
sm: wired networks, more stable but with higher installation costs, or 
ireless networks, more economic and flexible though potentially with 
verage limitations [23,67].

2.2. Installation and retrofitting
Installation and modernization are important processes that require 
clear understanding of the producer’s specific challenges and objec-
es. At this stage, a characterization is necessary to provide diagnostics 
 the facilities, equipment, and existing structural configurations. This 
ill facilitate the planning of a better deployment strategy, the correct 
acement of sensors and controllers, and possibly structural modifica-
ns. These will help in the distribution of the systems responsible for 
e creation of a controlled environment, therefore addressing problems 
sociated with the optimal placement of devices in terms of minimum 
6

terference and maximum operational efficiency. In initial installa- de
Smart Agricultural Technology 9 (2024) 100634

ns, they are increasingly opting for plug-and-play technologies. These 
stems, despite their higher initial cost, have gained popularity due to 
eir ease of integration and quick deployment. By reducing the need 
r specialized personnel and simplifying the installation process, they 
low for a smoother and faster start-up. This makes them ideal for those 
oking to get up and running quickly without the long-term challenges 
 complex integration [47].
An initial installation often requires modernization of the facilities 

 take full advantage of the new technologies adopted. This moderniza-
n may involve integrating physical control systems, such as heating, 
ntilation, and lighting, to help manage key internal variables and op-
ize crop production. This approach, supported by studies such as 
2], who propose viable retrofitting combinations to maximize return 
 investment, emphasizes the importance of balancing initial costs with 
ng-term benefits. Similarly, research by [73] highlights the impor-
nce of evaluating different greenhouse designs based on their financial 
tcomes, considering the integration of heating systems, CO2 enrich-
ent, misting systems, among others.

2.3. Integration and customization
Introducing new technologies into greenhouses is an especially im-
rtant challenge when there is any integration with older technologies, 
rectly related to cost issues. Compatibility costs have often related to 
rdware and software settings, while in many such cases, it involves 
en the replacement of the equipment, either due to its becoming ob-
lete or simply because of the high cost that their integration has made 
cessary. From this perspective, proposals have been made to achieve 
tegral interoperability through middleware systems, which act as me-
ators for the communication and integration of data between the dif-
rent technological platforms [70]. This would also require additional 
vestment for middleware implementation in both technical infras-
uctures, such as servers and cloud storage, and also for specialized 
chnical support, which would ensure the smooth operation, updating, 
d maintenance of such systems.
The customization of technologies in greenhouses addresses the need 

 adapt systems to the specific conditions of each operation, as there 
 no one-size-fits-all solution. However, this process incurs additional 
sts, both in hardware configuration and software development, since 
neric solutions do not meet all specific needs [41]. To mitigate this 
allenge, the Buy-and-Integrate approach has gained popularity, al-
wing companies to adopt preconfigured technologies that can then be 
justed to the specific requirements of each greenhouse. This reduces 
th costs and implementation time compared to full development from 
ratch [47].
Since most of these technologies also involve sophisticated inter-
ces, this further requires not only the training of staff on new methods 
d continuous technical support but also updates to infrastructural se-
ps for operations to be seamlessly and effectively carried out. Besides, 
vestments in data security and access control should not be viewed as 
 additional cost but rather as part of strategic investment within risk 
st planning. Such investments hold the arsenal of safeguarding the op-
ational infrastructure, maintaining information integrity, and making 
e greenhouse resilient against technological risks [22,1].

2.4. Software and services
Costs vary depending on the chosen service model (On-Premise, IaaS, 
aS, or SaaS) due to how management responsibilities are distributed 
tween the company and the provider. In On-Premise, the greenhouse 
dustry assumes everything, from infrastructure down to applications, 
hich implies high CAPEX and OPEX costs because it has to purchase, 
aintain, and manage all local hardware and software. IaaS reduces 
PEX costs by renting the infrastructure that includes servers, storage, 
d networks. However, operation, maintenance, and development at 
e platform, application, and security level are still the responsibility of 
e enterprise. Meanwhile, PaaS is a ready-to-use platform for creating, 

ploying, and managing applications without taking any bother about 
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frastructure. Expenses include platform use, data storage, database 
eries, the number of users, and application development by the pro-
cer. With SaaS, everything falls under the provider’s responsibility, 
 users pay only for the use of the applications, giving them access to 
lly managed software in return for a subscription, which means less 
chnical flexibility but greater ease of use [74,36].
IThe implementation of IoT platforms has been widely explored in 
e literature, consistently highlighted as a key technological solution 
r industries that need connected systems [65]. These platforms make 
easier to collect and monitor real-time data from IoT devices, enabling 
ocess optimization through predictive and prescriptive analysis [5]. A 
eat example of this is the use of advanced techniques like Big Data and 
achine learning in smart agriculture, which has shown to significantly 
prove resource management and boost agricultural productivity [65].

2.5. Operational
The investment in smart technologies for greenhouses is not a one-
e expense; it is ongoing. The costs of cloud service subscriptions are 
ked to access to these services, as providers typically charge periodic 
es, either monthly or yearly, for using their platforms. These fees can 
ry depending on the service level, the processing and analysis capa-
lities required, and the type of subscription. Cloud data storage also 
nerates costs based on the volume of data stored and how frequently 
is accessed. Some providers offer free subscription packages, but with 
ited features and storage capacity [1]. Connectivity fees arise from 

ansferring data between IoT devices and cloud servers, with charges 
nerally based on the volume of data transmitted and bandwidth us-
e. Furthermore, unforeseen costs can emerge, making the operating 
dget unpredictable. This uncertainty requires an emergency reserve 
 the capacity to make rapid adjustments in response to external fac-
rs. These aspects must be carefully factored into financial planning 
d risk management when adopting smart technologies [62].
Investing in training programs for staff and bringing in experts, such 

 data scientists and specialists, is fundamental. These expenses are 
going, as continuous education and skill development are necessary 
 stay aligned with the rapid pace of technological advancements. At 
e same time, it’s important to maintain a thoughtful balance between 
tomation and human expertise. While automated systems can handle 
any tasks efficiently, the judgment and adaptability that humans bring 
e invaluable. [75] emphasize this through the concept of human-in-
e-loop, where human oversight plays a key role in enhancing both the 
curacy and efficiency of AI-powered systems.

2.6. Maintenance
One of the main challenges for any maintenance is ensuring sys-
m reliability and minimizing downtime. This will require software 
dates, security, and hardware upgrades to maintain the system’s ef-
ctiveness and security [65]. The article [72] estimates maintenance 
d replacement costs by calculating how many times these activities 
e required during the system’s lifespan, considering both equipment 
placement and the labor involved. Typically, data security specifica-
ns are integrated into a provider’s standard services, but the areas 
 responsibility for implementing and maintaining those security mea-
res largely depend on one of the following service model options: 
n-Premise, IaaS, PaaS, or SaaS.

 Discussion

Cost mapping is a tool in structuring cost elements for adoption, 
om acquisition and installation to operation, of Industry 4.0 tech-
logies in greenhouses. It underlines six main categories: hardware of 
quisition, installation and retrofitting, integration and customization, 
ftware and services, operational and maintenance, which frame the 
sting context during the whole technological adoption process. This 
so highlights the necessity of considering direct costs, as well as indi-
7

ct costs, that arise as the project progresses in an industrial workflow. w
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Breaking down costs by category and element provides a dynamic, 
xible analytical framework, which may be adjusted for different con-
xts and technological adoption scenarios. In such detail, each eco-
mic component can be changed in accordance with the particular 
nditions of each greenhouse, including variability in existing infras-
ucture, production goals, available resources, and levels of desired 
gitalization, which result in significant differences in technological 
eds and, therefore, variations in projected costs. The structured ap-
oach of the cost mapping facilitates the comparison of scenarios and 
e consideration of technological alternatives, acting as a mechanism 
at can help organize cost data to carry out economic feasibility assess-
ents across various technological options. Additionally, it allows for 
e visualization of a scalable adoption model, which favors the plan-
ng of controlled initial investments in basic technological components, 
ith the possibility of progressively expanding toward more advanced 
stems, optimizing the investment as new production needs or contin-
us improvements in the system are identified.
The key findings will be presented in light of the financial, technical, 
d operational challenges brought about by the adoption of Industry 
0 technologies in greenhouses. We will also mention limitations and 
dicate where further research is needed.

1. Real world data

Real-world information and analysis for the adoption of Industry 4.0 
chnologies in agriculture remain limited and challenging, as much of 
e literature lacks detailed quantitative data. This gap complicates thor-
gh assessments and meaningful comparisons of costs, especially for 
all and medium-sized producers. According to [44], the absence of a 
andardized approach to the economic evaluation of digital technology 
option limits the comparability of results and restricts a full under-
anding of its financial impacts. Several studies highlight potential ben-
ts without providing robust cost frameworks, leaving decision-makers 
ithout clear guidance on investment strategies. This underscores the 
cessity for standardization in cost evaluation, which has also been 
hoed in other sectors of smart agriculture [17,70].
Regional variability further complicates this picture, driven by dif-

rences in technology providers, local economic conditions, and labor 
sts. As noted in studies on IoT adoption [52], technology providers 
ten offer varying pricing models, service levels, and infrastructure 
quirements, all of which contribute to the complexity of projecting 
liable cost estimates. Economic conditions such as energy prices and 
bor costs, especially in regions where agriculture is highly dependent 
 external resources, add another layer of variability [24]. This vari-
ility requires a case-by-case assessment when considering investment 
ternatives, as emphasized in techno-economic studies for other high-
ch sectors, such as vertical farming [78] and smart irrigation systems 
0].
Moreover, different digital technologies, from IoT sensors to AI-
iven automation, come with distinct cost structures, requiring spe-
fic technical expertise for installation and integration [41,67]. For 
eenhouse operators, the lack of standardized, comparable cost models 
ads to significant uncertainty in financial planning, which can hinder 
oader technology adoption. This heterogeneity, combined with evolv-
g technologies, calls for a concerted effort by researchers and industry 
akeholders to develop more unified frameworks for evaluating the eco-
mic viability of smart technologies in agriculture.

2. Changing costs in time

Other cardinal considerations concern the cost structure, which is 
namic over medium and long-term horizons. The price of hardware 
nds to decline with time as technology continues to improve with 
onomies of scale [49]. At the same time, software costs can continue 
 rise as more features and updates are developed [46]. The hard-

are costs will fall in the medium term, but operators should budget for 
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creased software licensing and subscription fees, plus continuing train-
g and integration costs. In the longer run, maintenance costs could 
abilize as systems become more reliable, though periodic upgrades and 
placement of obsolete hardware will still be required. This dynamic 
st landscape underlines that a dynamic approach in adopting budgets 
 necessary; financial flexibility should go hand in hand with altered 
nditions. [78] has shown that economies of scale in the construction of 
ant Factories with Artificial Lighting can help reduce unit costs consid-
ably with an increasing scale of production. This finding emphasizes 
e potential for substantial cost savings in hardware through scaling, 
inforcing the importance of planning for both decreasing hardware 
sts and variable software and operational expenses.

3. The role of AI

In the next generation of greenhouses, the role of AI is going to 
shape the cost structure significantly. These AI-driven systems will 
hance automation, improve the usage of resources, and make better 
cisions through predictive analytics, climate control automation, and 
op health management. In the process of integrating AI technologies, 
sts can be high initially. However, one of the biggest current chal-
nges is the lack of quality data to train AI/ML models. This shortage 
 data increases initial costs, as it requires time to accumulate enough 
formation or the implementation of synthetic data generation tech-
logies to overcome this limitation [50].
These are expected to bring significant benefits in resource efficiency 
d higher crop yields, leading to considerable cost savings [43]. The 
st structure is likely to shift toward higher upfront capital expenditure 
r system implementation and integration, while operational expenses 
crease due to greater efficiency and automation. This might be related 
 higher costs of maintenance also, as these AI systems will have some 
rticular maintenance and updating. On the other hand, these costs are 
pected to decrease over time, as AI technologies mature and spread 
ore broadly, ultimately making these technologies more affordable for 
all and medium-sized greenhouse operators.

4. Technology intensity

The level of technology applied in greenhouses makes quite a big 
fference in the degree and structure of the cost elements involved. 
s technological integration increases and development deepens, costs 
adually shift among various aspects. For instance, in low-tech green-
uses, much of the expenditure goes toward raw materials and human 
bor costs. Their investment is relatively low, although the produc-
n cost remains high due to the need for human intervention. Greater 
tomation, on the other hand, leads to much higher initial capital in-
stment for acquiring, integrating, and customizing advanced systems 
ch as automated climate control and sensor networks. In highly tech-
logical greenhouses using AI and IoT, initial investments focus on 
rdware and software acquisition and integration, while labor costs 
crease with less human involvement. However, operational costs rise 
e to software licensing, AI system updates, and staff training. Special-
ed maintenance costs may be higher initially but tend to stabilize as 
stems become more reliable and staff gain experience.

5. Perspectives and future work

One of the main limitations of this study is the lack of detailed 
antitative data related to the cost structures of adopting Industry 4.0 
chnologies in the agricultural sector. Although the article provides an 
alysis of the available literature, the absence of specific empirical data 
events a more precise and representative comparison of costs between 
fferent technologies and regions. This limitation restricts the study’s 
ility to offer more accurate and generalizable estimates to various 
enarios and types of greenhouses. In particular, the specific costs as-
ciated with the integration of emerging technologies such as AI and 
8

e IoT have not yet been well documented in agricultural contexts.
Smart Agricultural Technology 9 (2024) 100634

It is recommended that future research focus on capturing quanti-
tive data related to the costs of adopting IoT and AI technologies in 
eenhouses across different regions and a wide range of technology 
oviders, in order to build a representative and maybe public dataset. 
dditionally, it would be valuable for studies to explore detailed re-
onal cost analyses, considering variables such as labor costs, local 
onomic conditions, and price variability among suppliers. Integrating 
is data with profitability analyses and economic models would con-
ibute to a more comprehensive understanding of the costs and benefits 
sociated with the adoption of smart technologies in agriculture.

 Conclusion

By integrating Industry 4.0 technologies into greenhouses, there is 
gnificant potential for improving operational efficiency and optimiz-
g resource use in controlled-environment agriculture. However, while 
ese technologies offer many benefits, they also come with challenges, 
rticularly regarding implementation costs. This research outlined a 
tailed cost mapping approach that categorizes and analyzes the finan-
al components of adopting digital technologies in greenhouses. The 
ap highlights six key cost categories: hardware acquisition, installa-
n and modernization, integration and customization, software and 
rvices, operational and maintenance costs. This framework addresses 
th CAPEX and OPEX, offering greenhouse operators a more system-
ic way to understand and manage financial commitments.
Digital technologies like IoT, AI, and automation systems have made 
e cost structure in this sector more complex and sophisticated. While 
ey hold the promise of long-term cost savings and production effi-
ency gains, the initial investments and ongoing operational costs cre-
e significant barriers, particularly for small and medium-sized produc-
s. As modernization costs are constantly changing due to technological 
vances and economies of scale, careful financial planning is required 
 ensure low-risk investments.
Future research should focus on gathering real-world cost data and 
veloping models to help greenhouse operators make better decisions. 
spects like regional differences, fluctuating hardware and software 
ices, and the rise of AI will all play a part in determining whether 
ese technologies are economically viable. A deeper understanding of 
ese financial factors will help farmers and other stakeholders make 
arter, more strategic choices when it comes to adopting smart farm-
g tech.
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