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Abstract:

Intelligent energy management and dispatch in a multi-unit residential apartment building
is a non-trivial task owing to the thermal interactions and diverse requirements of thermal
comfort during the peak hours of the winter season. To address such a challenge, in this work, a
management entity is considered to manage the energy requirements of all the apartments in the
building according to the price signal, minimizing the electricity cost for a 24-hour day ahead
format. Accordingly, the management entity formulates an optimization problem considering
the thermal model, energy utilization and weather. It is also equipped with fuzzy logic to
smartly distribute the requirement for each unit based on the thermal interactions and thermal
comfort levels. The proposed approach of centrally managing a multi-unit residential building
is effectuated on a case study in Québec, Canada. Data-driven thermal modelling is carried
out with actual weather data from Québec to perform the optimization. The results display
the potential of the proposed approach to dispatch heating energy to each building unit with

respect to time-of-use (TOU) price signal and shared objective.
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1. INTRODUCTION

The global energy consumption situation is complex and
constantly changing. In the 21st century, as nations work
towards reducing their impact on the environment and
transitioning to cleaner sources of energy, the energy tran-
sition has achieved the highest priority (Lee et al., 2021).
Despite numerous global initiatives aimed at decarboniz-
ing the energy sector, it continues to play a significant role
in environmental pollution. In Canada, more than 80% of
the country’s greenhouse gas (GHG) emissions come from
energy production and use, with the building sector alone
contributing significantly to about 30% of total GHG emis-
sions (IEA, 2022). Importantly, the residential sector is
the largest electricity consumer in Québec (Hydro-Québec,
2022), with the building sector being a significant contrib-
utor to GHG emissions. Additionally, the construction and
operation of buildings worldwide consume over a third of
the world’s energy (Sharmin et al., 2014). Therefore, it has
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UQTR.

become essential to focus on reducing energy consumption
in the planning, construction, and use of buildings to
mitigate environmental impacts. The building sector has
substantial potential for energy and C'O5 emissions savings
(Gokge and Gokee, 2013). Taking measures to optimize
energy consumption in buildings is crucial for achieving
sustainability goals and reducing environmental harm.

Moreover, in regions like Québec, Canada, where cold
winters are prevalent, heating constitutes the largest por-
tion of electricity consumption (Hydro-Québec, 2023b).
This creates a challenge during winter peaks, which are
periods of high demand when people simultaneously heat
their homes and use energy-intensive appliances (Hydro-
Québec, 2023a). The increasing demand for clean en-
ergy further exacerbates this challenge. Québec, being the
largest electricity producer in Canada, generated 212.9
terawatt-hours of electricity in 2019, primarily through
hydropower, which accounts for 94% of Quebéc’s elec-
tricity generation (CER, 2023). However, reducing energy
consumption during winter peaks is crucial to managing
electricity costs and addressing environmental concerns.
One of the promising ways to address such an issue is
to enhance the grid performance by exploiting flexibility
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on the demand side via controllable loads resulting in re-
duced power losses, electricity cost, GHC, and grid load in
winter peaks (Dominguez-Jiménez et al., 2023). Achieving
this by maintaining thermal comfort in winter is an open
challenge still prevailing (Fournier et al., 2016). This prob-
lem enhances and boils down to an effective management
scheme particular to each multi-unit residential building
(Foroozandeh et al., 2022).

In this regard, several researchers have come up with
various schemes to manage and optimize the environment
inside a building . For instance, Foroozandeh et al. (2022)
proposed a contract-based power optimization scheme to
manage a smart building centrally. Arcos-Vargas et al.
(2018) suggested an energy management model for resi-
dential peaks via an energy storage option during peak
hours. Drgona et al. (2020) provides a distinct viewpoint
on building management systems. Various schemes have
been explored for home energy management in a neigh-
bourhood by considering each house as a thermal zone
where the houses are considered detached without thermal
interactions. Also, efforts have been put into making build-
ings grid-interactive in order to improve the efficiency of
the grid and the building (Bay et al., 2022). A commercial
building case study was explored where a simplified model
was considered by lumping multiple zones into one, ignor-
ing the thermal interaction possible between the zones and
managing the energy resources of each.

Fuzzy Inference Systems (FIS) and optimization tech-
niques have been widely utilized for controlling, managing
and optimizing various energy sources in buildings, houses
and grid levels (Dong et al., 2021; Arcos-Aviles et al.,
2018). For instance, Ahn et al. (2017) developed FIS-
based control strategies for heating energy supply with
respect to the changes in user demands. A plethora of
meta-heuristics optimization approaches in building en-
ergy management has been explored, namely PSO for a
four-zone building (Wang et al., 2019), POSCO for office
buildings (Yuan et al., 2023), comfort management by
Bat algorithm (Fayaz and Kim, 2018). Particularly, meta-
heuristics optimization approaches are better for non-
convex types of the objective function and suffer from the
inconsistent performance of finding local optima instead
of global. Also, owing to the complexity of the multi-
zone buildings attributed to multiple thermal interactions,
many works consider limiting the zones or reducing them
to one zone for the ease of simulations. Hosseini et al.
(2022) explained the impact of zoning and power dispatch
management for multiple zones in a residential house via
difference of area technique. Zoning is an important aspect
of consideration from the perspective of building flexibility
potentials (Hosseini et al., 2022), which proves effective for
dynamic thermal response against dynamic pricing. Nev-
ertheless, it is evident that multi-unit residential building
necessitates multi-zone modelling and an efficient power
dispatch strategy to manage the energy consumption of
the whole building centrally.

To overcome these problems, this paper focuses on sug-
gesting a management framework for optimizing the en-
ergy utilization of every unit in an apartment building in
response to the price signal. Specifically, the management
entity is equipped with fuzzy logic to aid the power dis-
patch based on user-defined thermal comfort and thermal

interactions among the zones. An optimization problem is
framed, accounting for the thermal model and constraints
of a multi-unit residential building, to optimize the energy
consumption for a 24-hour day ahead format. This enables
the flexibility analysis of the whole building, considering
the influence of zoning on the thermal dynamic response
and occupants’ thermal preferences. Typically, the flexi-
bility is analyzed in terms of energy usage by the electric
baseboard heaters (EBHs) in response to winter demands.
The proposed technique is effectuated in a multi-unit
apartment building in Trois-Rivieres, Québec, Canada.
The building geometry with all the parameters is con-
structed in Building Energy Optimization Tool (BEopt)
and utilized to generate consumption data in EnergyPlus,
which is then utilized to model the dynamics and opti-
mization tasks.

2. METHODOLOGY

In this framework, a manager is in charge of the energy
consumption of each unit in the apartment building and
maintaining their respective thermal preferences. Note the
building is billed in bulk at the responsibility of the man-
ager. Fig. 1 displays the overview of the building manage-
ment scheme. The manager is responsible for learning a
black-box thermal model from the data and performing of-
fline optimization. Subsequently, fuzzy logic is constructed
based on the thermal interactions and desired thermal
comfort conditions to distribute the power consumption
amongst the units as constraints to the optimization prob-
lem.

2.1 Buidling thermal dynamics

Let the indoor temperature for the building consisting
of m units be represented as X;, = {x;},-,, the energy
consumption by the EBHs of m units be represented as
Uar = {ui};zl, outside temperature as X,,; and solar
radiation as S,. Then, the following linear thermal model
approximates the dynamics of an apartment building.

Xikn+1 = Aan + BUekbh + CWk’ (1)
where A,B,C are the coefficient matrices of the thermal
model, A = {aij},c;cp, 1<j<n’ B is a diagonal matrix

such that B = {b;;}, Vi,5 € {1,2,--- ,m},i # j =
bij = 0 and C = {cij},;c,, 1<j<o) Where m denotes
the number of units in an apartment building. In (1),
Wk = (le)cut Sff)T represents the weather conditions,
including outside temperature and solar radiations. Note
that the simulation data from the EnergyPlus simulation
of the designed apartment building geometry is utilized to
calculate the parameters of the data-driven linear thermal
model (Dominguez-Jiménez et al., 2023). The coefficient
matrices are calculated using the ridge regression tech-
nique (Boyd and Vandenberghe, 2009).

2.2 Fuzzy Inference System

The purpose of FIS is to determine the values for energy
constraints for the optimization problem depending on the
desired temperature levels and thermal interactions. The
fuzzy system forms a pipeline (Fig. 2) based on the fuzzy
logic principles and the Mamdani inference method (Jang
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Fig. 1. Building Energy Management Scheme

et al., 2015). Intuitively, the first block creates the fuzzy set
by taking crisp values as input and utilizing fuzzy member-
ship functions (MFs). In this work, the three crisp inputs
(desired temperature level and interactions) are fuzzified
into three categories: low, moderate, and high. For the
desired temperature levels, the trapezoidal membership
curves are defined for fuzzification (Kontogiannis et al.,

2021), i.c.
. Te— Q T, —d
ftrap(Te) = max (mm (bc——a’ 1, cc——d> ,O) . (2)

where the parameters a,b,c,d (with a < b < ¢ < d)
determine the x. coordinates of the four corners of the
underlying trapezoidal membership function. In (2), .
denotes the desired temperature level of each residential
unit inside the apartment building for the next 24-hour
window. Similarly, to fuzzify thermal interactions gaussian
membership function is used, i.e.

2
ﬂgauss(mti) = e(xtiic/ﬁa) )

()
where ¢ and o denote MFs mean and variance. The next
block is the decision-making unit that employs a set of
fuzzy rules to map the input values to the desired output
values (Jang et al., 2015). Effectively, the rules are the
statements between antecedents (fuzzy region in the input)
to result in a fuzzy set of the consequent (fuzzy region
in the output); see Fig. 2. Consequently, an aggregator is
established to yield an output MF ug(z), with F' as the
fuzzy set of a universe of discourse Z. Since rules constitute
the basis for pattern identification, the number of rules
should cover every possible outcome. The final block is
the defuzzification unit utilizing the Mamdani approach
to achieve crisp value by the centroid (centre of gravity)
method (Jang et al., 2015), i.e.

A fZ pr(2) - zdz
[, (i
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Fig. 2. Block diagram of a FIS

2.3 Optimization Problem

The main objective of the building manager is to mini-
mize the electricity bill and maximize comfort (incurred
discomfort) while respecting the constraints. The build-
ing manager acts as a centralized entity and poses the
control rights to find the optimal solution and schedule
the flexible loads accordingly. The optimization problem of
the building manager is formulated to schedule the energy
consumption of each unit in the building to reduce the
total consumption of the building, which is given by

minimize J = k4 gk 4

ug Vi€m 1§%N 1;7” (dz + gz) (42)

subject to  XFPH'= f(Xk Uk, XF. S*), (4b)
0 <ul <" ik, (4c)
o < gh < gt vk (4d)

In (4a), d¥ refers to a quadratic function depicting the
inhabitant’s discomfort as

ko)
i,8p/)

df:fyf(xf—z Vi € m,Vk € N, (5)

where x¥ denotes the indoor temperature for i** unit at

k" time step. azf’sp represents the desired comfort level
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(setpoint) of each unit, and ¥ is the preference value
defining weight to the comfort level for each time step.
Linear model (1) acts as linear constraint (4b), keeping
the optimization problem convexified to achieve the global
minimum. Furthermore, the term g¥ in (4a) measures the
cost of consumed energy by EBHs of each unit in the
apartment building with total m units, i.e.

gF = o*uf, Viem,Vk e N, (6)
where ¢* is the price of energy per kWh and u! is the
energy usage by EBH of each unit. Note that the energy
consumption u? is inherently incorporated in the discom-
fort as well as energy cost function as a result of a specific
consumption profile. Importantly, adopting dynamic rates
(Dominguez-Jiménez et al., 2023) to consume the energy
conservatively during peak periods in winter results in a
prisoner’s dilemma reflected as rebound peaks during the
low pricing periods. Accordingly, (4a) can be recast as

o _ ko, k
mmie = 2 | 2 (el ] (T
1<k<N \1<i<m
+Fmax; {u;}im,
subject to  |u; —u;| < Bij, Vi,j€m, (7b)
(4b), (4c), (4d). (Tc)

The constraint (7b) is the result of the fuzzy inference
system in Section 2.2. Here, 3;; is deduced for each pair of
units, which is the crisp value output from the FIS based
on the desired comfort levels and thermal interactions.
The modified optimization objective (7a) will mitigate
the rebound peak to achieve flatter consumption profiles
by penalizing the function to level the maximum heating
power across all units. Besides, the coefficient ¥* in (7a)
adjusts the penalization to harmonize with (5) and (6).

3. CASE STUDY

To evaluate the efficacy of the proposed management and
optimization scheme, we have adopted an actual apart-
ment building situated in Trois-Rivieres, Québec, Canada,
as shown in Fig. 3(a). To generate the data for mod-
elling purposes, a similar geometry is constructed in the
BEopt software (Fig. 3(b)) (Christensen et al., 2005) by re-
specting all the characteristics of the apartment building,
namely the total area, area per unit, window area, attic, in-
sulation, slab, and orientation among others (see Table 1).
The maximum power of the electric baseboard heaters for

Table 1. General properties of the modelled
apartment building in BEopt

Building Specifications

Site location: Trois-Rivieres

Weather data: Trois-Rivieres weather conditions of 2022

Size: 2100sq ft (including corridor 300sq ft)

Number of units: 8 (900sq ft/unit)

Wall thermal resistance: Wood Stud, R23 (closed cell spray foam)

each unit is around 10kW. This study exercises a semi-
synthetic dataset generated by EnergyPlus for the con-
sumption profiles to build a data-driven building thermal
model. Fig. 4 shows the indoor temperature predictions
made by the building thermal model (1). For the brevity
of presentations, the mean temperature plot is shown for

(a) Actual apartment building

(b) Building geometry in BEopt for EnergyPlus simulations

Fig. 3. Case study multi-unit apartment building in Trois-
Rivieres, Québec

eight units, indicating a deviation of £0.4(°C) from the
actual trajectory during the transient. That makes it very
useful for the optimization task without the intricacies of
the white-box model, making predictive optimal control
easier to realize (Drgona et al.,, 2020). Samples of 15
winter days were utilized to train the model at a sampling
instance of 10 minutes.

The optimization schedules the consumption for the next
24 hours. The desired comfort levels of all the units in
the building and their respective interactions are fed to
the FIS for the relative constraint of the optimization.
Fig. 5 depicts the working of FIS with respect to two
inputs (desired temperature levels). Besides, Fig. 6 shows
the crisp output result (moderate) of the FIS system
for a set of inputs (high, moderate and low). Here, the
aggregated output membership function is displayed as a
result of the FIS with the defuzzified crisp output value.
Note that the desired thermal comfort temperature range
is allowed from 18(°C) to 23(°C), which is in accordance
with the Canadian Center for Occupational Health and
Safety, ASHRAE Standard-55-2004 (Henao et al., 2018).
The crisp inputs for thermal interactions are attributed
to A = {aij},cicpn1<j<n achieved from the data-driven
thermal model of the building.
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The optimization for the 24-hour day ahead scheduling
is performed on cvrpy flatform (Boyd and Vandenberghe,
2009) by utilizing (4a) and (7a), shown in Fig. 7 denoted by
dashed and solid lines, respectively. As we can clearly see,
the aggregated profile of the building results in avoiding
peak hour usage (6 AM to 9 AM and 4 PM to 8 PM)
(Hydro-Québec, 2023a) and also maintains the tempera-
ture within the desired limits by exploiting the flexibility
potential. Besides, on utilizing (7a), the aggregated profile
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Fig. 7. Aggregated power profile of the building for a day
with respect to desired temperature level and price
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Fig. 8. Total energy consumption per day of each unit
with the same comfort levels (green bars) and different
comfort levels (yellow bars).

avoids the rebound peak after the high price signal period
and tries to keep the profile flattened. This significantly
reduces the load by modulating the indoor temperature
to £0.75(°C). Furthermore, Fig. 8 shows the difference
in the energy consumption per day of each unit in the
building, which is attributed to the different desired com-
fort and difference in the energy consumption managed
by the proposed management equipped with fuzzy logic.
The green bars show the energy consumption with the
desired comfort kept the same for all the units to 20(°C).
On the other hand, upon changing the desired comfort
levels of each unit, the difference in consumption (yellow
bars) is a result of the fuzzy logic-based constraint for
the optimization problem. That shows the effectiveness of
the proposed setup to manage on a daily basis with the
changing comfort and exploiting flexibility via consump-
tion patterns of EBHs to respond to the TOU price signal.

4. CONCLUDING REMARKS

This paper proposed a management entity responsible
for optimizing the energy consumption of a multi-unit
apartment building and managing the energy utilization of
each unit. It is equipped with an optimization formulation
to minimize the energy cost in response to the utility
price signal and fuzzy logic to assist the energy utiliza-



148 Shaival H. Nagarsheth et al. / [FAC PapersOnLine 57-1 (2024) 143—148

tion of each unit with respect to their desired comfort
levels. As a case study, a multi-unit apartment building in
Trois-Rivieres, Québec, Canada, is chosen and successfully
modelled in EnergyPlus to obtain a data-driven thermal
model with actual recent winter weather data. The opti-
mization task was able to avoid the period of high price
by preheating each unit without compromising on comfort
£0.75(°C). Besides, it was able to reduce the rebound peak
by 30% via spreading the usage along the time instead of
an instant power surge. The proposed strategy of exploit-
ing the flexibility of a multi-unit apartment building will
be highly useful in the demand response scenario with the
dynamic pricing scheme, where an apartment building is
billed in bulk and managed by a single entity responsible
for optimization. In future work, a decentralized scenario
will be analyzed and the proposed method will be extended
to a game theoretic scenario where several other buildings
in a neighbourhood participate in the demand response
scenario with the grid side aggregator.
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