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ARTICLE INFO ABSTRACT

Keywords: This paper presents a Reinforcement Learning (RL) approach to a price-based Demand Response (DR) program.
Demand response The proposed framework manages a dynamic pricing scheme considering constraints from the supply and market
Demand response aggregator side. Under these constraints, a DR Aggregator (DRA) is designed that takes advantage of a price generator

Dynamic pricing
Market constraints
Capacity limitation
Reinforcement learning

function to establish a desirable power capacity through a coordination loop. Subsequently, a multi-agent system
is suggested to exploit the flexibility potential of the residential sector to modify consumption patterns utilizing
the relevant price policy. Specifically, electrical space heaters as flexible loads are employed to cope with the
created policy by reducing energy costs while maintaining customers’ comfort preferences. In addition, the
developed mechanism is capable of dealing with deviations from the optimal consumption plan determined by
residential agents at the beginning of the day. The DRA applies an RL method to handle such occurrences
while maximizing its profits by adjusting the parameters of the price generator function at each iteration.
A comparative study is also carried out for the proposed price-based DR and the RL-based DRA. The results
demonstrate the efficiency of the suggested DR program to offer a power capacity that can maximize the profit
of the aggregator and meet the needs of residential agents while preserving the constraints of the system.

1. Introduction The DR programs have been developed to mitigate peak load by
changing consumption patterns in response to price or incentive signals

Demand-side management plays a key role in optimizing end-users’ [4,5]. Monetary incentives influence clients to modify their load profiles
demand in smart grids. This idea facilitates power system operation without significantly compromising their comfort preferences [6]. From

through different services, including the liberalization of electricity
markets, real-time balance of demand and supply, the improvement of
load control strategies, the reduction of energy consumption, and the in-
tegration of decentralized energy resources [1]. Accordingly, it assists
the smart grid with the self-optimization concept (distributed optimiza-
tion) that promotes more continuous and sophisticated demand-side
participation. Particularly, Demand Response (DR) programs, as an im-
portant facet of demand-side management, enable the management of
various controllable and programmable loads in the residential sector,

a realistic standpoint, peak demand management is crucial to power
system reliability regarding the designed capacity of the grid. From a
financial perspective, such a service is pivotal to electricity generators
that must operate with higher costs during peak periods to manage the
additional usage [7]. Therefore, the reduction of peak load through im-
plementing DR programs is a key strategy that offers benefits for both
the demand and supply sides.

An effective DR program can be realized through capturing demand

such as thermostatic devices, plug-in electric vehicles, and smart ap- flexibility at its full potential. Accordingly, the DR Aggregator (DRA)
pliances [2]. This energy flexibility program leads to the realization of has emerged as a commercial entity to explore such an opportunity by
smart distribution grids where residential customers participate in grid negotiating agreements between consumers and market [8]. This medi-
operation as active players [3]. ator recruits customers and directly contacts clients using information
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Nomenclature

Acronyms

DR Demand Response
DRA Demand Response Aggregator
DSO Distribution System Operator

ESH Electric Space Heating

MDP Markov Decision Process
PAR Peak-to-Average Ratio

PPO Proximal Policy Optimization
RL Reinforcement Learning
Functions

A, Advantage at episode ¢

w() Power generation cost reduction function
E() DRA welfare function

g(9) Thermal model

R, Reward function at episode ¢
U(ui{) Thermal comfort function
Indices

i House index

k Time-step index

t Iteration index

Parameters

a Rate of price change

T max Upper price limit

T min Lower price limit

M Capacity limit

Variables

6;( Thermal discomfort factor of i*” house

n Capacity limit reduction

12;( Actual energy consumption of i*” house at time-step &
;4," Normalized aggregated consumption

a, Action at episode ¢

s State at episode ¢

”;c Energy consumption reported of i house at time-step k
x;'( Indoor temperature of i"" house at time-step k

xZ‘” Outdoor temperature at time-step k

xi omf Set-point temperature profile of i* house

Vi Aggregated energy consumption time-step k

and communication technologies [9]. As a result, it collects load flex-
ibility and offers it as a service to the Distribution System Operator
(DSO). Congestion management, power quality improvement, and grid
capacity expansion are critical exercises performed by the DSO based
on this flexibility [10,3].

Specifically in the residential sector, an important source of flexibil-
ity is the thermal loads [11]. In countries with harsh winters, residential
thermal loads are among the major energy-expensive appliances. For
instance, in Quebec, Electric Space Heating (ESH) systems account for
about 60% of household energy consumption [12]. These appliances
can cause a significant increase in power demand during peak load
and, at the same time, represent a critical factor in the user’s electric-
ity bill. Because of this, smart programmable thermostats are widely
employed to manage the problems, from the user’s point of view, of re-
ducing their electricity bills. Alternatively, these controllable devices
release the opportunity to capture the flexibility potentials of these
loads, which can be capitalized by the DRA, enabling new possibilities
for both the demand side and the DRA that can be exploited through
the implementation of DR programs [13].

One of the key elements in the correct implementation of DR pro-
grams in the residential sector, is the optimal generation of price-based
policies [14]. The main goal of these mechanisms is to exploit the flex-
ibility potential from the demand side to deal with the problem of
consumption peaks. However, there exist some challenges for the DRA
in implementing these mechanisms at the residential level, starting with
significant privacy concerns [15], resulting in affecting the optimality
of DR policies due to the uncertainty that comes from the lack of in-
formation provided by the user, like users’ thermal comfort preferences
[16]. Moreover, if the problem is analyzed from the grid perspective,
performing this exercise without considering the needs of the network
can generate imbalances in the system, as shown in [17]. In addition,
existing market regulations establish limits for the sale of energy, which
makes most of the studies that do not consider restrictions on price gen-
eration unsuitable for retailers such as DRAs [18]. This is evidence of
the need to continue exploring these types of scenarios to avoid a my-
opic generation of pricing tariffs that end up affecting the grid stability
or in unprofitable strategies for the DRA.

In this regard, this research study addresses optimizing thermal en-
ergy usage among a group of residential customers considering a DRA
despite supply and market constraints. It tackles this issue by introduc-

ing a price generator function that utilizes the aggregated consumption
profile as the only source of information to generate price policies.
Furthermore, the function takes into account the existing market reg-
ulations to establish restrictions in a dynamic pricing approach, and
allows the translation of a target capacity limit into a dynamic pric-
ing policy through a coordination process. As a result, this mechanism
proves its capabilities at exploiting residential flexibility in a controlled
manner, and reducing power generation costs while simultaneously in-
creasing the profit for the DRA. To set the function parameters that
optimize the generation of price-based policies through the coordina-
tion loop, a reinforcement learning (RL) mechanism is used to deal with
the lack of information regarding the users’ objectives. The RL mecha-
nism is implemented for two reasons, first, it allows dealing with the
complex environment with incomplete information on the DR program,
and second, it will handle the users’ deviations in the execution of the
consumption plans to guarantee the respect of the capacity limit stipu-
lated by the DSO.

1.1. Related works

Price-based DR programs are formulated to deal with the challenges
of defining prices/rates for different time blocks in an optimal manner,
especially in day-ahead markets [19]. In fact, the idea of offering fixed
prices to residential customers for long periods in order to maintain the
balance of the power grid as a complex real-time system can yield ineffi-
cient performances [20]. In this regard, the implementation of dynamic
pricing schemes is suggested that can provide an efficient utilization of
generation capacity. These strategies encourage users to change their
consumption patterns without modifying generators’ costly operation
[21]. Nevertheless, acquiring an optimal pricing design is difficult due
to inherent uncertainties in DR programs related to customers’ dynamic
load consumption and price-responsive behavior. For instance, the au-
thors in [22,23] have addressed this situation by developing optimal
dynamic pricing mechanisms that allow a trade-off between consumers
and the utility. Their method has roots in the two most popular practices
in price-based DR programs. The first performs optimization problems
that rely on an extensive exchange of specific information [22,24,25].
Subsequently, in many cases, they can affect the privacy and participa-
tion interests of customers. The second implements iterative processes
commonly based on game theoretical frameworks [23,26,27]. The over-
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reliance of these procedures on users can give them opportunities to
game the system. In response to these issues, in [28,29], the authors
have proposed non-cooperative approaches to reduce the peak of ag-
gregated energy consumption profile. A similar strategy that shares
the power consumption cost between users has been suggested by the
authors in [29]. However, these solutions suffer from the lack of con-
straints on price generators that can result in either unwanted penalties
against users or barriers to implementing constrained markets.

On the other hand, the emergence of DRA in the implementation
of DR services has allowed different approaches to be explored. The
interactions between these entities and households have also enabled
the development of markets with capacity constraints. As an exam-
ple, the authors in [30] took advantage of this interaction to impose
capacity constraints, in which they propose a strategy for construct-
ing a bidding curve for capacity increments. In this regard, in [31] a
market-clearing mechanism was developed for offering a capacity lim-
itation service. This work investigates at what costs aggregators can
offer capacity constraints, and how these can reduce the DSO’s net-
work operating cost. These bidding mechanisms have a good response
in capacity-constrained flexibility markets. However, the need for intru-
sive approaches to the construction of aggregators’ bidding models can
be a disadvantage in their implementation. Moreover, the additional
workload for DSOs to submit or clear bids in these markets remains a
major obstacle to their implementation. In this regard, authors in [32]
proposed a mathematical framework for a dynamic pricing mechanism
in an energy community to enable the provision of capacity limita-
tion services to the DSO. They highlight the importance of extending
the portfolio of local flexibility resources to thermostatically controlled
loads. However, no price limits have been taken into account, and the
suggestion of a bi-level optimization may result in privacy issues from
the demand side.

Recently, researchers have focused their efforts on utilizing Rein-
forcement Learning (RL) methods in order to solve the existing issues.
Particularly, an RL agent can handle system uncertainties without any
prior knowledge [33]. The approach of the authors in [34,35] relies on
employing the RL technique for an optimization problem with a com-
bined objective function to meet the desires of both consumers and the
aggregator in a real-time context. However, such a manner of formu-
lating users’ preferences raises privacy issues since it requires access to
their dissatisfaction information during the price policy generation pro-
cess. In a previous study, the authors have addressed this obstacle by
developing a learning procedure only based on the aggregated load to
define RL actions, and thus, alleviated privacy concerns [36,37]. The
related research also considered price constraints determined by the
market to improve either the Peak-to-Average ratio (PAR) or the Load
Factor. Although there are significant achievements in terms of flatten-
ing the energy consumption curve by means of RL techniques, there is
no clear link between peak reduction and system balance. This high-
lights the need to explore a different approach that allows for utilizing
end-users flexibility in a controlled way based on the maximum con-
sumption expected by the DSO. Such consideration brings about an
optimal means to facilitate maintaining the power grid’s reliability.

1.2. Motivation and contribution

The main objective of this paper is to derive a dynamic pricing
mechanism to provide a capacity limitation service considering the es-
tablished energy market regulations. For brevity of the presentation,
Table 1 compares the differences between the existing methods and the
proposed model, demonstrating the lack of consideration of price limits
in the literature, which could significantly impact the optimization pro-
cesses. In addition, capacity services in a pricing context are usually of-
fered through bidding mechanisms, which leads to high computational
costs and an over-reliance on the information provided by customers.
These points are a further barrier to DR program implementations [18]
related to current regulatory and tariff structures, particularly for resi-
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dential customers. Moreover, one of the remaining fundamental issues
is pricing in a demand response scenario of the power market by re-
specting both the capacity and operational costs of responding.

To overcome the aforementioned issue and develop a dynamic pric-
ing mechanism, we introduce a price generator function for the DRA
by considering power capacity and market constraints. Each residential
user independently determines its best response strategy to minimize
energy costs and maximize profit. The proposed DRA uses the price
generator function in a game theoretic scenario to coordinate customer
responses. The proposed method takes advantage of RL techniques to
estimate the price generator function parameters and a proximal de-
composition algorithm as a regularizer on the customers’ side. The
regularization allows us to ensure the convergence of the proposed
multi-agent system. Accordingly, this work contributes,

1. A price-based DR program centred on proposing a price-generating
function for the DRA agents that considers the market price restric-
tions. This work identifies a sigmoid function that, combined with
the regularization of users’ DR based on proximal decomposition in
a coordination loop, allows the reduction of local peaks according
to the stipulated capacity limits.

2. An RL method to determine the parameters of the price generator
function during the coordination loop. These parameters assist in
maximizing the DRA’s profit while respecting DSO’s service needs.
The PPO algorithm is used to overcome the lack of user information
in the process of optimizing pricing policies.

3. An RL-based DRA agent that considers the deviations from con-
sumers from their stipulated consumption plans. This agent can
characterize users’ variations to avoid significant impacts on the
power constraints of the system while improving the DRA’s profit.
The data-driven mechanism makes it possible to characterize the
uncertainty of user deviations during the execution of consump-
tion plans.

The rest of the paper is organized as follows: Section 2 presents the
methodology for the developed framework. Section 3 covers the val-
idation setup. The results are discussed in Section 4, followed by the
conclusion in Section 5.

2. DR mechanism and problem formulation

In a residential distribution grid, operated by automated agents,
DSO interacts with a DRA agent in order to manage load flexibility of
a group of residences. The DRA provides monetary incentives by man-
aging the price policy. In response, the customers change their energy
consumption patterns that helps avoid network congestion and ensure
the system reliability. Indeed, this constitutes a mechanism in which
customers communicate their consumption plan with the DRA in re-
sponse to a stipulated price profile. Although the DRA does not know
consumers’ preferences in this structure, it can adapt the price pro-
file according to their propositions. In this regard, Fig. 1 illustrates the
structure of the proposed price-based DR mechanism. In the designed
framework, the DRA runs the day-ahead planning of a set of residential
agents. It communicates to them price signals in a coordination loop
and induces them to react. Through this interaction, the DRA seeks to
decrease the aggregate peak demand by regulating customers’ power
profiles. Specifically, the DRA defines a constant price profile and waits
for the users’ response. Upon receiving the feedback, the DRA adapts
the price profile and waits for the residential agents’ new consumption
plan until reaching an agreement.

2.1. Price generator function
In order to define the DRA’s price profile, a price generator func-

tion is formulated considering r,,, and z,,,, as the market’s minimum
and maximum price constraints accepted for the DR mechanism. This



Table 1

Comparison between the existing methods and the proposed model regarding objective functions, consideration of capacity limitation, and price constraints.

Ref DR Mechanism Pricing generation Method Objective Function Capacity Price Demand side strategy
Limitations Constraints
[20] Dynamic pricing Binary genetic algorithm Minimize the average system cost and rebound X X Load scheduling with photovoltaic renewable
peaks energy source integration
[22] Dynamic pricing Multi-objective optimization Considers the benefits and costs of the opposing X X Energy optimization and scheduling for
entities at both ends of supply and demand renewable microgrid
[23] Dynamic pricing Multi-objective optimization Social welfare maximization X X Optimal scheduling of thermostatically controlled
loads
[24] Dynamic pricing Bi-level, meta-heuristic Profit maximization for retail electricity provider X X Consumption optimization of interruptible,
and cost minimization for customers non-interruptible, non-shiftable, and curtailable
loads.
[25] Real-time pricing Single-objective optimization Minimize the electricity cost and electricity X X Energy optimization for prosumers with
model consumption dissatisfaction distributed energy and energy storage devices
[26] Demand biding Bi-level game-theoretic model Maximizes the social welfare of the local power X v Optimal control of customers’ switching behaviors
exchange market and minimizes the social cost of
the day-ahead wholesale market
[27] Day-ahead pricing Stackelberg game-theoretic Maximize aggregator’s profit X X Flexibility level based price-responsive behavior
model
[28] Time-ahead pricing Game-theoretic model Minimizes the player’s costs based on the X X Optimal charging of electric vehicles
predicted strategy of all other players
[29] Dynamic pricing Game-theoretic model Minimizes the square euclidean distance between X X Optimal appliance scheduling and control of
the instantaneous load demand and the average energy storage devices
demand for the energy provider and minimizes
energy payment for the users
[30] Demand biding Stochastic optimization Minimizes the deviation from a baseline load v X Optimal control of thermostatically controlled
profile loads and photovoltaic generators
[31] Demand biding Market clearing mechanisms Minimizes overall social cost v X Optimal energy management strategy for their
distributed energy resources
[32] Dynamic pricing Bi-level optimization r minimizes the total operational cost of an v X Optimal control of production facilities and/or an
energy community energy storage system for prosumers
[34] Dynamic pricing Reinforcement learning Maximizes service provider profit and minimizes X X Energy management of critical and curtailable
customers’ costs loads
[35] Dynamic pricing Reinforcement learning Minimizes the expected discounted system cost of X X Minimize consumers’ dissatisfaction utilizing an
the service provider energy disutility function
[36] Distribution locational Reinforcement learning maximize the total profit of selling power X X A data-driven deep neural network to model a
marginal price multi-microgrid price responsive behavior
[37] Time-of-Use Reinforcement learning Maximizes the load factor and demand response X v Optimal control of electric space heating
aggregator’s profit
[38] Dynamic pricing Three-tiered optimization Maximize the financial savings from renewable X v energy optimization and scheduling for renewable
energy microgrids
[39] Dynamic pricing Stackelberg game-theoretic Maximize subcontracting power supply profit X v Control capabilities of air-conditioning systems
model and electric vehicles for commercial buildings
Proposed Dynamic pricing Reinforcement learning Minimizes demand response aggregator profit v v Optimal control of electric space heating
work reduction and the cost of exceeding the capacity

limitations
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consideration is important as it restricts the implementation of many ex-
isting mechanisms that do not consider these price constraints in their
algorithms. Then, the following price generator function allows enti-
ties like DRAs to compete in this type of market, where optimizing
their profits becomes an important challenge. Moreover, the genera-
tor function considers a capacity limitation factor M established by the
system. This factor is defined by the DSO based on the power genera-
tor cost function of the energy provider (see Fig. 2). This means that
the DSO may define a value for M when the power grid operation is
compromised. Aspects such as maintenance reduction or operating cost
reduction, would determine the M value based on physical system con-
straints (such as maximum transformer capacity) or maximum desired
node capacity (for reducing system losses), respectively. Accordingly,
we propose the following price generator function,

T — i
max min (1)

v+ M\’
1+exp<yk7>
a

where y, represents the aggregate consumption at time stamp k €
{1,...,N}. This value corresponds to the sum of individual household
energy consumption, i.e. y; = ZZ | uj{, where H represents the num-

”k(yk) = Tpin +

conducted by the DRA agent due to the lack of existing information
linked to the relationship between the users’ elasticity and flexibility.

The proposed price generator function, ;(y,), has some particular
properties that make it suitable for reducing aggregate load peaks of
the aggregated demand profile. In fact, the developed function estab-
lishes a direct correlation between consumption and price at every time
slot. This means that prices increase or decrease in the same way that
aggregate consumption does.

Furthermore, the function has an inflection point at M that allows
for a division into two convex regions, as shown in Fig. 3. Since users
participate with their best responses, their energy payments either de-
crease or remain unchanged while reducing their consumption peaks.
As a result, consumers try to avoid the high price region. This tendency
makes max, (y,) lie within a neighborhood centred at M with a radius
of r depending on the users’ elasticity level.

2.2. DRA agent

In the described scenario, the DRA takes into account the prevail-
ing market regulations that impose restrictions on energy unit selling
prices. Additionally, the proposed approach aims to mitigate consump-
tion peaks considering the defined objectives set by the DSO regarding
capacity constraints. These limitations are accounted for in the design
of the price generator function. Consequently, the DRA endeavors to
maximize its profit by avoiding exceeding the stipulated capacity limit,
utilizing the feedback obtained from the interaction with the residential
agents.
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This interaction between the set of residential agents and the DRA is
modeled as a multiple-follower and one-leader Stackelberg game. In this
model, the leader seeks to optimize its usefulness which depends on the
profit from the electricity supply to customers and the cost of exceed-
ing the power constraints of the system. The energy cost related to the
provider can be modeled by the quadratic function C(y,) = ayi +by,+c
that has been widely used in the literature [29,40]. For this analysis, we
define a = x,,,, /M and b = ¢ =0, considering the break-even point be-
tween the cost function and the revenue produced by z,,,,. The profit
depends on the price policy established by the DRA in (1), while the
cost is indirectly controlled through interactions between the followers
and the leader. The DSO determines the DRA reward y based on the
cost reduction concerning the initial aggregated consumption plan, i.e.,

N N

w= Clo = ), Cn) @
k=1 k=1

Therefore, considering = = {z,..., 7y} as the price policy for the

next interaction, the DRA benefit can be explained by the difference
between its income and the cost of exceeding the power constraint,

N
&(m) = w, <2 Vi + w) —w,( max_y,— M), ©)
fort k=1,...N
where w; and w, are weighting factors to balance these two terms.
In this case, each one of these factors is defined first by the inverse
of the unweighted historical average of each term to guarantee a nor-
malized result; thereafter, these values are slightly modified to give
more importance to the cost per overrun. This function (3) is difficult to
optimize since it is not convex; thus, it cannot be treated by the classi-
cal gradient-based optimization methods. Moreover, the deviation from
the consumption plan by the residential agents during the DR practice
evidences the need for an algorithm with the ability to handle such un-
certainty. Consequently, the RL method is implemented to deal with the
intractability of the DRA price generation problem. RL algorithms have
strong exploration capabilities that enable them to interact continuously
with an unknown environment and constantly update the agents’ expe-
rience towards an optimal decision [41]. Despite the drawback linked
to the training time of RL algorithms, they offer the benefit of address-
ing nonlinearities within optimization problems, as outlined in [42].
This study illustrates how RL methods have been utilized to overcome
the necessity of acquiring the dynamics of nonlinear systems for imple-
menting optimal control strategies. The aforementioned demonstrates
that employing the RL approach enables the optimization of the DRA’s
pricing strategy within the intended scenario.

2.2.1. An overview of the RL

RL algorithms are based on an agent interacting with an unknown
environment and performing actions to extract useful information.
Through these interactions, the agent attempts to maximize its reward
by realizing a trade-off between exploring new actions and exploiting
those that seem optimal [43]. This process starts by observing the state
of the environment. The RL agent acts and receives an immediate re-
ward and the resulting new state from the environment. This is because,
during the iterative process of interactions between the RL agent and
the environment, the action affects the environment causing a change
in its state according to a given probability [44].

When starting the iterative process, the RL agent is unaware of the
link between the action performed in a given state with the reward
and the new state received as a response from the environment. In fact,
the agent learns this knowledge by continuously interacting with the
environment. The acquired comprehension is used by the agent to max-
imize not only the immediate reward but also the expectation of the
future ones. It can be deduced that an RL algorithm is a trial-and-error
approach that looks to optimize a decision-making process.
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2.2.2. RL representation of a dynamic pricing mechanism under capacity
constraints

The targeted scenario considers a multi-agent system composed of a
set of residential agents and an RL-based DRA. The interactions between
the residential environment and the RL agent are modeled by a Markov
Decision Process. This decision-making formalism allows modeling an
environment as a set of states where the states of the environment are
Markovian, and actions can be performed to control the system’s state
for maximizing some performance criteria. This can be used to learn
sequential decision-making processes by mapping states onto actions
in such a way that the expected outcome will produce the intended
effect. These mapping strategies are called policies in this theory. Thus,
the Markov Decision Process framework enables the gradual learning of
optimal policies through consecutive trials, applying different methods
developed in the literature [45]. According to the aforementioned, the
model is represented by a tuple (S, A, P, R,y), where S and A are the
sets of states and actions, respectively. P presents the state transition
probability, R is a reward function, and y stands for a discount factor
[46].

The RL-based DRA defines the action a, € A at each step according
to the state s, € S. s, = {4, 1, H;25---» Hy y } is the normalized aggregate
Yk

ma
ke{l,.,).(,N}{yk}

fies the price generator function to maximize the reward of DRA within
the coordination loop. In this regard, a, = {#, «} where 7 is a parameter
established to allow the DRA to transform the price generator function
for dealing with residential agents’ deviations. As a result, the price gen-
erator function, 7, (.), utilized by the DRA and the reward function, R,,
defined for our RL set-up, can be described through (4) and (5), respec-
tively.

consumption profile, where y, ; = . The action g, modi-

T — i
T Vi 1 0) = Ty + '"“jy v ; ()
+exp (ki)
04
R, =&(7) )

The DRA agent determines actions that maximize its cumulative
reward G, = Y, yf"Rj as the return over a number of steps named
episode. In this case, an episode is equal to the coordination loop be-
tween the DRA and residential agents.

2.2.3. Proximal policy optimization (PPO) method

The implemented RL algorithm is based on the PPO technique. This
policy gradient means is used to optimize the policy ¢y(a,,s;) based
on the parameter 6. The policy describes the agent’s behavior as a rule
to decide the action in a given state. This technique tries to stabilize
the training process of the RL agent by avoiding parameter updates
that can produce a high policy alteration in a single step. Additionally,
it attempts to keep old and new policies as closely as possible, ensur-
ing reward enhancement and stability during the process [47]. For this
purpose, the PPO scheme maximizes an objective function, J(0), with
respect to 0, i.e.

J(0) = E,[min(r,(0)A,, clip(r,(0),1 — e, 1 + €)A))], (6)

where E, is the expectation over episode ¢, r,(#) presents the proba-
bility ratio between the new and old policies in terms of ¢y(a;ls,) /
®,,,(a,]s,). The PPO method uses A, = =V (s)+y R+ +yT R+
yT~'V (sy) as the estimated advantage at episode ¢, where T is the batch
size. This advantage function measures the performance of a selected
action given the current state. Finally, € is the hyperparameter for clip-
ping. This parameter avoids large deviations in the 6 updating process
by setting the ratio in the interval [1 — ¢, 1 + €] [48]. The Algorithm 1
in Appendix A represents the utilized PPO technique for the targeted
scenario.
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2.3. Automated DR for residential agents

It is assumed that each residential agent is equipped with a home
energy management system (HEMS), which enables flexible demand. In
this practice, flexible load refers to heating systems controlled by smart
thermostats based on end-users’ comfort. The possibility to modify the
thermal load provides the flexibility required for residential agents’ par-
ticipation in the DR program. On the other hand, fixed load refers to
other household appliances operating without the same strategy.

Subsequently, the heating consumption can be computed by maxi-
mizing the individual welfare, expressed by,

Maxlmlze J()
w=l L
) ) .
subject to x;<+1 = g(x}(,xzu ,u’hk),
i i i 7
xk € [xrnin’xmax]’ ( )
u [0, umax]

i —_ i i
W =ty +Ug g

where the vector u’ = {ui ’tv} is the consumption plan of the it
out are the indoor and outdoor tempera-

stands for the heatlng energy consumption. The total energy

house. The variables x and xp

tures. uh &

consumption of the i™ house at the time k accounts for the aggrega-
tion of thermal and fixed loads, u} =uj, , .- The thermal model of
the house, g(-), is a discrete linear model descrlbed in [49]. The setting
of this model, based on real data, is presented in Section 3. The param-
eters x:“ ., and xinax are the minimum and maximum allowed internal
temperatures set by the user. The objective function, J(u'), is defined

as,

N
Ju) =Y U) - mul, ®)
k=1
where 7, represents the energy price at k and U (uf() is the utility func-
tion of the customer, which in this case is the thermal comfort, i.e., the
goal of the user is to maintain its comfort needs while reducing its bill.
According to the literature, several methods for modeling user com-
fort have been proposed as presented in [50]. These models are based
on ISO and ASHRAE standards to determine which are more interest-
ing [51]. Based on this, the Fanger model is a very common analysis,
that utilizes the characteristic numbers Predicted Mean Vote (PMV) and
Predicted Percentage of Dissatisfied (PPD) to determine the thermal
comfort of occupants, [52]. However, implementing these strategies im-
plies using a larger number of variables, needing the utilization of more
complex thermal models. This would result in a significant increase in
algorithmic complexity. For this reason, without losing generality, a
linear thermal model is implemented, which is computationally less de-
manding. The model g(-) for the thermal dynamics of the house, based
on the indoor temperature x , the outdoor temperature xz‘“ and the
thermal consumption ! hk is deﬁned as follows, where ﬁ’ =[p,p s ﬂ;
are the state transition coefficients:

Xepr = 8CG Xty ) = Byxj + By + B - ()
Then, the residential agents aim to minimize their thermal com-
fort dissatisfaction, i.e., the difference between the desired and indoor
temperature has to be minimized [53]. With this in mind, since the res-
idential agent uses the thermal load as flexible demand, this function
is determined based on thermal comfort parameters consisting of xiomf
as the set-point temperature and 5;{ as the comfort weight factor. This
element represents users’ ability to sacrifice comfort to reduce the bill.
According to [49,54], the thermal comfort can be modeled with the
following quadratic utility function,
Ul =—6i(xl .—xi), (10)

comf
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where §, can take two values from the set {0,6,,.,}. In the case of
6 = 6max» OCcupants are interested in reaching their comfortable tem-
perature set-point. Indeed, the parameter 6, advertises the price
elasticity of the heating energy. This strategy maximizes the flexibil-
ity of the residential agent without compromising its thermal comfort
constraints. For instance, the agent can freely modify the internal tem-
perature under &, = 0 while respecting the constrain x; € [xmln x;nax]

Since the residential agents are simultaneously solvmg their opti-
mization problem in a selfish way, it is necessary to regularize their
optimization problems. According to theorem 3 in [29], this regular-
ized plan of the houses combined with the non-negative users’ payments
granted by the price generator function guarantees the existence of a
Nash equilibrium in the proposed DR mechanism. The proximal decom-
position can perform the regularization as a distributed algorithm [55].
In this regard, a regularization parameter, 7, is utilized to penalize the
difference between consecutive defined consumption plans, i.e., penal-
ize significant variations between episodes t and 7 — 1 [37]. As a result,
the dual optimization problem to minimize the residential agents’ cost
function can be defined by (11).

N
Minimize Z S = xi )P+ mud + o, —ul )
w= )N & ’ '
subject to g(xk, X, ;,k)’
N ’ 11)
E [xmm max]’
uk € [0, umax]

i i
le uh’k+ua’k.

Although all customers intend to report and consume the optimal
demand, which minimizes their costs, deviations can appear during run
time. Such deviations indicate that users consumed d, times their re-
ported plan, i.e., i, =d,u, at each time stamp [56]. In order to model
the occurrence of such deviations, d; can be expressed as a random
variable that follows a Log-normal distribution with parameters y =e,
and ¢ = 0.05.

3. Validation setup

In this section, the proposed DR mechanism is validated through nu-
merical analyses. The experimental data used for constructing the ther-
mal models is described. The validation procedure aims to investigate
the ability of residential agents to modify their standard consumption
patterns by exploiting their flexibility potential in response to the price
profile.

This work uses real-world data to construct thermal models and gen-
erate stochastic load profiles for a set of residential buildings. The data
is related to 11 single-family detached houses, located in the city of
Trois-Rivieres, Quebec, Canada. The houses are equipped with electri-
cal baseboards and thermostats for temperature control. The acquisition
system records indoor temperature, electrical heating power consump-
tion, and outdoor temperature. The collected data spans four winter
months, from January to April 2018. Fig. 4 depicts the conditional den-
sity of the power consumption and the difference between the indoor
and outdoor temperatures. The measurements have 15-minute sampling
intervals. The data allows for constructing linear thermal models of
targeted houses. The ridge regression is utilized to determine the co-
efficients ' = [p], 5, §;] for the linear model [571,

Xepr = 8Cxj X ) (12)

In addition, the power consumption of energy-extensive appliances
other than electric baseboards is considered. This process aims to gen-
erate a stochastic aggregate load profile of non-flexible residential ap-
pliances [58]. This profile is added to the simulated heating demand.
Fig. 5 shows the conditional mean and 95% confidence interval of the
weekly load profile for a single house. The data presented is utilized to
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Fig. 5. Average weekly power profile from 8 real houses (space heating load is
not included).

obtain the distributions needed to introduce realistic uncertainties for
the HEMS optimization simulation process. It should be noted that sta-
tistical information from a previous study on temperature preferences
in residential buildings is utilized to derive sensible comfort desires for
the simulation [59].

For the i™M house, the comfortable temperature, xi ome? is drawn from
a discrete distribution as the highest set-point. The generated value
is used to compute the household utility function through (10). In
this study, the discrete set accounts for four different set-point values
obtained by discretizing an empirical distribution over set-point tem-
peratures in Quebec dwellings [59]. The possible values of xi omf 2T€
[20,21,22,23] in degree Celsius [C], and their corresponding proba-
bilities, P(x%P), are [0.1,0.3,0.5,0.1]. Besides, the value of the mini-
mum allowed temperature for the same house is generated through
xlo=xl.—xl  wherex! isthe set—back value. This quantity is taken
randomly from the set {1,2,3,4} with P(x;b) =10.1,0.3,0.4,0.2], calcu-
lated by the same manner used for xi omf [59]. Finally, the value of the
parameter 6., required by the utility function (10), is assumed to be
extracted from a log-normal distribution with the expectation, E(6,,y),
and variance, Var(é,,,), equal to 5 and 1, respectively.

4. Results

This section provides the simulation results of the proposed DR
mechanism by performing the analysis in three steps. First, validation of
the consumption behavior of the residential agents is carried out with-
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Fig. 6. One-day aggregated power demand without DR.

out the DR mechanisms. Then, the effectiveness of the proposed price
generator function for different capacity limits is examined. Finally, the
PPO-based RL technique is used to optimize the parameters of the price
generator function within the coordination loop to deal with the devia-
tions of the residential agents and maximize the DRA’s profits.

4.1. The scenario without DR

Fig. 6 shows the aggregated consumption profile of a set of 11 sim-
ulated buildings during a cold day. The consumption behavior in the
figure demonstrates that the models developed are in accordance with
the expected power consumption pattern in Quebec’s residential sector.
Each residential agent performs a model predictive control, meaning
they tend to anticipate comfort needs considering the price profile.
Therefore, agents will perform actions such as preheating the house
before the setpoint temperature changes to xiomf. From Fig. 6 it can be
observed that in the absence of a management mechanism, high peak
loads have occurred during morning and evening hours.

4.2. Coordination loop

The performance of the proposed price-based demand response
strategy is evaluated utilizing the price generator function proposed in
(1). Here, a constrained market is considered, where 7,,;, = 0.05$/kW h
and x,,,, = 0.20$/kW h. The DRA agent starts the coordination loop by
establishing a flat price profile. Once aggregating the received response
of the users’ consumption plan, the DRA agent uses the proposed price
generator function (1) to establish the new price policy. This process is
performed 10 times before reaching the agreement in the multi-agent
system. Fig. 7 shows the results obtained for the capacity constraints
M =90,80,70kW for an a = 5. The Figure presents the step-by-step
interaction between the DRA and the resistive agents. To be more pre-
cise, each graph shows the aggregated profiles starting from the users’
consumption plan before the DR program’s implementation and end-
ing with the consumption profile of the agreement reached. The former
is represented in each graph as a red time series and the latter as a
blue time series. These results demonstrate that the proposed method
allows the translation of a pricing policy into a desired maximum ca-
pacity value in a restricted market. Moreover, it can be observed that
for higher values of M, residential agents can keep their peak consump-
tion further away from the capacity constraint to exploit further the low
price region of the price-generating function. However, as M decreases,
this difference is reduced because the users’ flexibility starts hitting the
limit.

4.3. RL for optimizing DRA pricing strategy

Finally, we evaluate the performance of the proposed PPO-based RL
approach in defining the parameters of the price generator function (4)
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Fig. 7. Performance analysis of the coordination method for different M values.

during the coordination loop. For this case, the capacity constraint will
be established as M = 75kW . The RL-based DRA agent seeks to maxi-
mize its profit from electricity sales by setting the function’s parameters.
However, it must also deal with the problem of users’ deviations from
the consumption plan during its execution. Users try to follow the con-
sumption plan from the agreement as this is the one that maximizes
their profit. However, this consumption may deviate from the plan due
to possible changes in their activities. Therefore, the DRA agent must
be prepared against these changes to avoid being penalized by the DSO.
Each RL episode is represented by a coordination loop, which will stop
according to criteria based on the change in the percentage of power
generation cost reduction with respect to the initial cost and the change
in the PAR from one iteration to another. In this case, the coordination
will stop when the cost change is less than 0.01%, and the PAR change
is less than 0.01. According to the analyses conducted, the proposed cri-
teria are usually met after ten iterations. To better illustrate this, Fig. 8
presents the convergence curve of the coordination loop.

Fig. 9 presents the average curves resulting from the learning pro-
cess of the DRA agent. The blue curve shows the progression in episodes
of the average reward, based on function (5), in red the improvement
in PAR at the end of each coordination loop of each episode, and finally
in green the aggregator’s profit for selling energy using the pricing pol-
icy of the agreement. It can be seen that after 600 episodes, the agent
improves the reward obtained at the end of the day. In addition, the
figure shows how the agent improves its profit per sale of electricity by
35%. At the same time, it offers a reduction of the PAR, demonstrating
the performance improvement of the proposed RL method.

Fig. 10 presents a coordination loop between the DRA agent and
the residential agents after learning. It can be observed that the im-
plementation of the RL method in the parameter setting of the price
generator function enables the DRA agent to utilize the flexibility po-
tential on the residential agent side to improve the aggregate power
consumption profile in comparison to the results obtained in Fig. 7. A
remarkable point is the amount of electricity consumption shifted from
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Fig. 8. Power generation cost percentage and PAR curves during coordination
loop.

the peaks to the valley. This type of behavior is due to the nature of
the controllable load of the residential agents. In houses with electric
space heating systems exposed to winter temperatures, the set-point
profiles have a significant incidence on initial consumption peaks. For
the control mechanisms, these values are used to determine the ther-
mal preference profiles of residential users. This means that for higher
set-point periods, the residential agent assumes that a greater need for
thermal comfort is requested. Therefore, during lower values, these pe-
riods are used to give the residential agent the freedom to control the
indoor temperature freely. This means that internally, the house must
be preheated to a higher temperature than the higher set-point so that
the need for heating is reduced during peak consumption. Because of
this preheating, a greater increase in consumption during the valley is
likely to be found to meet thermal comfort needs during the peaks.
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3
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g o el
aggregate consumption of the houses after the 600 episodes. The pro-
posed method demonstrates the effectiveness of the proposed strategy
in dealing with uncertainty arising from deviations from the consump-
tion plan of residential agents. As it is represented, the DRA even tries
to accept a slight deviation from the consumption plan of the agreement
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Fig. 11. Analysis of average capacity constraint overruns.

In terms of deviation, Fig. 11 The Figure presents the results re-
lated to the difference between the established capacity limit and the
maximum peak consumption of the users after the execution of their
consumption plan. For this purpose, the final calculation of the reward
function is performed after the execution of the consumption plans, i.e.,
the calculation of the reward is made using the consumption profile
i, Considering those deviations in the plan, the blue curve represents
the average spread of the differences between the maximum peak con-
sumption during the 24 hours and the capacity limit. In addition, the
red curve indicates the occurrence of exceeding this limit, measured in
a number of timesteps encountered in excess of the M limit. These re-
sults illustrate that the DRA agent maintains a trend in decreasing the
average occurrence of exceeding the capacity constraint. In addition,
the figure also shows that the agent decreases the power difference be-

10

in order to use these deviations to its advantage in the execution. This
in order to obtain a higher profit from the sale of energy. However, this

type of behavior could be avoided by adjusting the values of w; and w,
in equation (3).

4.4. Performance comparison

To determine the effectiveness of the selected approach, a perfor-
mance comparison was made for both the proposed price generator
function and the implemented RL mechanism. First, we compare the
price function (4) with a standard piece-wise linear function. This new
function was constructed based on the derivative of our sigmoid func-
tion to ensure an approximate shape between them. Another winter
day was selected randomly to verify the performance of the proposed
generator in exploiting the flexibility potential of a set of residential
customers. Fig. 13 provides a performance comparison within the coor-
dination loop, for M = 70kW . The results illustrate that the proposed
sigmoid function (1) is able to exploit, in a superior manner, the flexi-
bility potentials of the residential agents, considering the same environ-
mental conditions. This can be noticed by comparing overruns of the
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Fig. 13. Performance analysis of different price generator functions.
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Fig. 14. Comparative performance of our PPO mechanism with A2C and DDPG.

capacity limitation M. For instance, in terms of the number of over-
runs, the sigmoid function outperforms the piece-wise linear function
by achieving 41% fewer overruns at the end of the coordination loop.
Furthermore, the power consumption over M is higher in the piece-
wise linear function by 75%, evidencing the significant differences in
terms of flexibility exploitation.

Taking into account the performance of the RL algorithm, the se-
lected PPO mechanism was compared with the popular Advantage-
Actor-critic (A2C) and Deep Deterministic Policy Gradient (DDPG)
methods. Fig. 14 provides the curves of the progression in iterations
of the average reward, based on function (5). The results demonstrate
that the selected approach provides better efficiency in dealing with the
uncertainty of the scenario encountered. According to this Figure, the
PPO and A2C algorithms are able to obtain better results than DDPG.
Furthermore, the PPO mechanism converges to a solution that provides
a reward 38% higher than the A2C method, meaning that by imple-
menting the PPO algorithm, the DRA agent will be able to capitalize
its effort in terms of higher profits from energy selling and DSO reward
received.

Finally, to better illustrate the performance of the proposed method,
a last comparison is performed, taking into account the uncertainty in
the behavior of residential users. Fig. 15 provides a comparative result
after the training process during 20 days of the winter season. It is
possible to verify that the average results are almost the same in terms
of DRA’s profit from energy sales. However, considering overruns of
the capacity limit, there exists a significant difference as in the case
without the uncertainty, the average cumulative daily power over the
limit is 0.05kW, but in the case where the deviations are considered,
the accumulated power is around 4kW . This can translate to a better
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Fig. 15. Performance analysis related to the consideration of users’ deviations
from consumption plans.

exploitation of the DSO’s reward and a higher DRA’s profit when this
uncertainty is not considered.

5. Discussions and future prospects

The optimal generation of pricing policies has been a critical aspect
in implementing price-based DR programs. Moreover, the consideration
of existing regulations would be an important issue in the implementa-
tion of these programs. These regulations define limits on price sales
per energy unit, creating new constraints for the optimization problems
existing in the literature and affecting the optimality of their solutions.
Another key aspect is the goal of these DR mechanisms in the residen-
tial sector. Their goal is to exploit their flexibility potential to reduce
consumption peaks. However, implementing such strategies can result
in imbalances and losses in the power grid if the system’s real needs are
not considered [57]. In this regard, some studies have been conducted
in the literature considering pricing policies where capacity limits are
established [32], especially in the presence of electric vehicles [60].
However, integrating these capacity limitations, taking into account
other sources of flexibility from the residential sector, needs to be fur-
ther explored. This is an important point as Smart Energy Systems are
focused on merging the electricity, heating, and transport sectors with
storage options to foster the adaptability required for accommodating
significant amounts of fluctuating renewable energy [61]. This clearly
expresses the need for integrating electric heating systems with new
flexibility sources like battery electric vehicles in the same capacity-
constrained scenario. Therefore, the aforementioned highlights the im-
portance of developing new strategies, such as the one presented in
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this paper, to facilitate the future integration of heating systems with
emerging technologies in residential smart energy systems.

The traditional fixed-rate pricing schemes have been widely imple-
mented around the world. However, the increase in price volatility has
made the retailers migrate to more dynamic pricing strategies like Time-
of-Use programs. This means that we are at a stage where hourly rates
are becoming a standard, and therefore, it is expected that the rate time
resolution will soon drop by 15 minutes, as is the case in Europe. [32].
For this reason, it is necessary to develop dynamic pricing mechanisms,
such as the one presented in this paper, to allow the management and
optimization of residential consumption in these evolving scenarios. In
particular, the consideration of the energy consumption of the heating
sector in this type of scheme facilitates the intended energy transition
and contributes to limiting the need for new infrastructures, as shown
in [62].

In this sense, it is important to define strategies that allow users to
coordinate through these pricing policies. This represents a great ben-
efit for entities such as the DSO, as presented in [29]. In this paper,
the authors propose a dynamic pricing mechanism that significantly
reduces consumption peaks. This is achieved through a coordination
loop in which pricing policies proportional to the aggregate consump-
tion profile are used, allowing users’ privacy to be respected. However,
price limits are not considered for generating the policies, hindering
the possibility of their implementation under the existing regulations
in the energy markets. This can also lead to significant decreases in
energy sales profits, as shown in [37]. For this reason, the approach
proposed in this work considered the utilization of a dynamic price
generator function by a DRA to improve the ideas presented in [29].
This function performs a monotonic transformation of the aggregate
consumption profile, taking into account price constraints and capacity
limits, allowing the achievement of a reduction in peak consumption in
a more controllable manner. As a result, the way in which user flexibil-
ity is managed enables the opportunity to offer capacity services to the
DSO, and highlights the benefits of exploiting the flexibility potentials
of heating systems for the system.

The performance of this function is compared with a piece-wise lin-
ear function, demonstrating how the proposed sigmoid-based function
provides better management of the residential flexibility by accomplish-
ing significant results in terms of capacity overruns. However, it is not
an easy task to determine the correct parameter settings of this func-
tion, as any information from the demand side is known by the DRA.
Moreover, users can deviate from their stipulated consumption plans
during run time due to external variables or unexpected events that
may affect non-controllable load consumption. For this reason, a Deep-
RL mechanism is proposed to handle the uncertainties related to the
lack of this information. The results evidence that the RL-based DRA
is able to set the parameters of the proposed price generator function
properly in order to guarantee the capacity limit and price constraints
while maximizing its profit for selling energy. This significant achieve-
ment can contribute to the smart energy system transition by reducing
the electricity demand consciously, which indirectly influences power
generation. To illustrate, this could mean a reduction of biomass con-
sumption, increasing the feasibility of carrying out energy transition
strategies such as the one presented in [63].

In order to improve the obtained results, further considerations must
be taken into account. For instance, the integration of energy storage
systems may be very beneficial, as these systems can help with the ab-
sorption of energy consumption deviations from the demand side. This
can allow a better performance of the mechanism proposed in terms of
players’ profits and increase flexibility opportunities within smart en-
ergy systems. Furthermore, the integration of electric vehicles must be
prospectively evaluated to analyze the effect of capacity limitations for
electric vehicle charging on the management of the heating sector. The
implementation of the proposed DR program, based on dynamic pric-
ing, should be carried out to evaluate the effect on demand response
under the management of these two different types of loads.
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6. Conclusions

In this paper, a price-based DR program is proposed that incor-
porates power capacity and market constraints to coordinate a set of
residential agents. For this purpose, a price generator function is pro-
posed, considering existing market regulations that limit energy sales
prices. This function allows translating the maximum desirable capac-
ity into a pricing policy through a coordination loop in a Stackelberg
game-theoretic framework, obtaining a mechanism that allows exploit-
ing residential flexibility in a more controlled way. The price generator
function performance is demonstrated through a comparison against a
linear piece-wise function, evidencing 41% fewer overrun and a power
consumption over the capacity limit 75% lower at the end of the coor-
dination loop. Furthermore, an RL-based DRA agent utilizes this price
generator to define pricing policies that maximize its profit in the con-
strained proposed scenario, where the DRA needs to deal with devia-
tions from users’ stipulated consumption plans. The proposed strategy
was able to exploit residential agents’ flexibility, adjusting the parame-
ters of the price generator function within the coordination loop. More-
over, the proposed approach evidences the viability of exploiting the
flexibility potentials of electric space heating systems from the residen-
tial sector, in such scenarios where capacity limitations are required
from the DSO. The simulation results demonstrated that the proposed
DR strategy improved DRA’s profits by 35% while dealing with residen-
tial agents’ deviations. The comparative study displayed the superiority
of the proposed price-based DR program and the adopted PPO-based RL
technique converging to a solution that provides a reward 38% higher
for the DRA than the well-known A2C and DDPG methods.
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Appendix A. PPO algorithm

Procedure for the implementation of the proposed dynamic pricing
mechanism based on PPO.
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Algorithm 1: PPO algorithm.

DSO communicates the desirable capacity limit M.

The DRA asks residential agents for their stipulated consumption plan
under a constant price.

DRA determines the initial state s,.

forr=0,1,2,...do

Define the action a, = {n, a}. (Transformation of Price function (4)
defined by the aggregator agent)

Each Residential agent solves its own optimization problem
expressed in (11).

Get the normalized state s,. (Aggregated residential agents’ response)

Calculate rewards-to-go R, based on (5).

Collect the set of partial trajectories {(s,,a;, R, s, + 1)} on policy
¢, = ¢0,(ar’ 8;)-

Estimate advantage A,.

if t mod T =0 then

Compute policy update by means of (6):

T
6,,, =arg max ; J(0)

via stochastic gradient ascent with Adam [48].
end
end
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