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Demand response (DR) plays an essential role in power system management. To facilitate the implementation
of these techniques, many aggregators have appeared in response as new mediating entities in the electricity
market. These actors exploit the technologies to engage customers in DR programs, offering grid services like
load scheduling. However, the growing number of aggregators has become a new challenge, making it difficult
for utilities to manage the load scheduling problem. This paper presents a multi-agent reinforcement Learning
(MARL) approach to a price-based DR program for multiple aggregators. A dynamic pricing scheme based on
discounts is proposed to encourage residential customers to change their consumption patterns. This strategy
is based on a cooperative framework for a set of DR Aggregators (DRAs). The DRAs take advantage of a
reward offered by a Distribution System Operator (DSO) for performing a peak-shaving over the total system
aggregated demand. Furthermore, a Shapley-Value-based reward sharing mechanism is implemented to fairly
determine the individual contribution and calculate the individual reward for each DRA. Simulation results
verify the merits of the proposed model for a multi-aggregator system, improving DRAs’ pricing strategies
considering the overall objectives of the system. Consumption peaks were managed by reducing the Peak-
to-Average Ratio (PAR) by 15%, and the MARL mechanism’s performance was improved in terms of reward
function maximization and convergence time, the latter being reduced by 29%.

1. Introduction stimuli provide participants payments for reducing their consumption
during periods of high demand or using time-varying price profiles
to incentivize consumers to move their consumption to low-demand
periods where lower prices are established [4].

In this context, a third-party entity is proposed called DR aggregator
(DRA), which seeks to exploit the capacities of residential customers by

implementing DR programs [5]. According to the literature, the role

The ever-growing demand for electricity and rapid electrification
across economic sectors (leading to an increase in daily and seasonal
energy peaks), combined with the problem of limited energy resources,
awakens the importance of optimizing energy consumption. The imme-
diate problem lies in traditional centralized approaches, which need
to be enhanced to improve their ability to optimize energy demand

and exploit the flexibility potentials of energy consumers. These cen-
tralized perspectives fall short of capturing the intricate dynamics of
the complex and diverse power grid ecosystem and managing the
evolving complexity of grid flexibility [1]. Consequently, the smart
grid paradigm emerges, bringing with it the opportunity to facilitate
the implementation of demand response (DR) programs, which are
considered a viable option for managing energy demand by providing
energy consumers a more active role [2]. These programs look for effi-
cient solutions for minimizing generation costs, managing high demand
peaks, reducing emissions, and improving the reliability of generation,
transmission, and distribution systems [3]. They offer monetary incen-
tives to induce changes in users’ consumption patterns. The financial
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of DRAs is to group different agents in a power system to act as a
single entity when participating in power system markets or selling
services to the system operator. The management of users’ flexibility
potentials enables DRAs to participate on their behalf in the electricity
market, where DRAs can identify flexibility potentials, automate their
activation, and sell flexibility in electricity markets. Finally, DRAs can
provide solutions to stabilize the revenues of market participants and
bundle various services in the energy markets [6]. This, however,
implies the need to determine monetary policies to maximize the DRAs’
profit while offering a benefit to the users, leading the way to a new
challenge [7]. For this reason, the policy generation problem has been
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Rate of price change
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System aggregated consumption at episode
t
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DRA
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Price tariff defined by nth DRA at time-step
k

Action at episode ¢ for nth DRA

Coalition of DRAs

Individual observation at episode ¢ for nth
DRA

State at episode ¢ for nth DRA based on
system state and individual observation
System state at episode ¢

u{( Energy consumption reported of jth house
at time-step k

xi Indoor temperature of jth house at time-
step k

X Outdoor temperature at time-step k

xf:p Set-point temperature profile of jth house

Vi Aggregated energy consumption time-step k

addressed in the literature for different types of DR programs, from
incentive-based to price-based [8]. Although the proposed approaches
have made it possible to identify strategies for generating DRA’s poli-
cies, as the number of aggregators increases, the challenge grows for
utility companies to achieve load scheduling and produce reference
signals for each of them [9].

In price-based DR programs, dynamic pricing has become one of
the most influential and prominent strategies to encourage consumers
to modify their consumption. However, defining an optimal policy to
influence customers conveniently becomes challenging due to some
uncertainties of load management. These uncertainties are related to
the energy demand for each user, changing peak periods, and changes
in the number of users and their preferences [10,11]. From the DRA
perspective, there is also a need to propose policies guaranteeing
aspects such as respect for user privacy throughout the strategy gen-
eration process [12]. This translates into increased uncertainty due
to the significant lack of information in the decision-making process.
As a result, reinforcement learning (RL) approaches have proven to
be a valuable solution for dealing with the inherent uncertainties in
different applications in DR context [13]. Nevertheless, when solving
the price policy generation problem for a single DRA, it is not possible
to guarantee that the individual solutions will lead to the best solution
for the system. And, on the other hand, successfully implementing dy-
namic pricing with multiple DRAs requires a comprehensive evaluation
and allocation of rewards among participating agents. This is where
Shapley value (SV), a concept from cooperative game theory, comes
into play [14].

SV is a classical mechanism from cooperative game theory, enabling
the division of the total payoff so that each player receives a fair
payment [15]. This method evaluates the marginal contribution of
each player to the system and defines a uniquely equitable assignment
of rewards, performing as a metric to measure the individual effort
of each player [16]. As the main issue of the MARL mechanisms is
that the actions performed by all agents influence the state transition,
their interactions create a non-stationary environment from a single
agent’s view [17]. The proposed strategy demonstrates that combin-
ing SV to determine the DRAs’ individual contribution alleviates the
non-stationarity problem in the MARL-based multi-aggregator system,
improving the obtained results during the training phase.

1.1. Related works

The definition of optimal dynamic pricing mechanism in DR pro-
grams is a relevant research topic that has been studied, and some
solutions have been proposed. Its goal is to encourage users to change
their consumption patterns to avoid generators’ costly operation [18].
However, the definition of optimal price policies is a difficult task due
to a lack of information on user preferences, price-responsive behavior
linked to consumer flexibility, and the constantly changing energy load
and energy generation of customers [19].

To address this problem, some authors have explored mechanisms
to optimize the dynamic price policy generation decision-making pro-
cess. For instance, the works done in [20] propose an optimization
problem considering the stochasticity of renewable energy resources.
In fact, the implementation of strategies where the objective function
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of each player is embedded in one optimization problem is one of the
approaches followed in the literature [21,22]. The problem with these
approaches relies on affecting customers’ privacy, negatively impacting
user interest in participating in the DR program. To avoid this, authors
have considered implementing game theoretical frameworks, in which
the mechanisms seek to leverage their iterative process to reach an
agreement and generate a price policy [23-25]. The problem is that the
convergence process depends on the information customers provide.
Therefore, this approach allows customers to cheat on the system to
gain advantages, resulting in new challenges linked to the need to
determine customers’ trustworthy levels [26].

According to [27], RL techniques are well-known for their potential
applicability in complex real-world applications, such as DR. In general,
they are adaptable and capable of learning users’ preferences through
interaction without an explicit mathematical model. This makes RL
an important tool for both sides, residential and supply, to properly
define load control strategies and optimize price rates and incentives,
respectively. For instance, authors in [28] utilized RL to optimize the
objective function of the supply and demand side simultaneously. In re-
gard to the aforementioned limitations, RL approaches have emerged as
a valuable option to deal with problems related to the optimal price pol-
icy generation process. Authors, in [28], adopted a Q-learning method
to decide the retail electricity price, considering service provider and
customers profit, without requiring the full knowledge of the system
dynamics and uncertainties. In [29], a deep Q network strategy was
followed to build a dynamic subsidy price generation framework for a
load aggregator avoiding the significant dependence on incorporating
user feedback in its control loop. Furthermore, the works performed
in [30,31] clearly stated the importance of RL in dealing with the lack
of information about the customers’ time-varying load demand and
energy consumption patterns in the pricing optimization process. In
addition to this, the authors in [32] even made use of this capability of
RL algorithms to determine optimal pricing policies by learning from
the price-responsive behavior of microgrids.

System operators may be unable to take on the additional effort
of developing personalized price profiles for residents while determin-
ing their consumption patterns and preferences. This is due to the
transaction costs and operational complexity that the system operator
would otherwise have to bear when interacting with numerous individ-
ual buildings [33]. This is where DRA effectively facilitates customer
participation by working in a more customer-oriented manner [34].
Particularly, multi-aggregator systems have only been addressed in
a few works by implementing multi-agent systems. Authors in [9]
implemented a hierarchical alternating direction method of multipliers
(H-ADMM) to determine load following signals for multiple aggrega-
tors. In this mechanism, they assume aggregators have direct load
control for individual devices, affecting customers’ privacy and com-
fort. In [35], a bargaining-based cooperative game is proposed to solve
irreconcilable incentive pricing strategies for multi-aggregators, where,
again, the results depend on the excessive reliance on the users.

Considering RL approaches for determining dynamic pricing rates
and multi-agent systems for multi-aggregator structures makes the
MARL concept come into play. MARL has been gaining popularity
in different smart grid scenarios, as it is presented in [36], due to
its ability to deal with the inherent uncertainties of DR programs.
These uncertainties can affect conventional approaches’ performance,
making them unsuitable for real-world implementations. In [37], ac-
tive voltage control is proposed, based on Dec-POMDP, to enable
real-world applications of MARL algorithms in power systems. Au-
thors in [38] implemented a MARL approach to controlling a com-
plex system of production resources, battery storage, electricity self-
supply, and short-term market trading. In [39], authors demonstrate
the value of MARL mechanism, which can quickly optimize ther-
mostatically controlled load performance by applying collaborative
multi-agent decision-making processes. In [40], an incentive-based DR
program is considered based on MARL, which looks to maintain the
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capacity limits of the grid to prevent grid congestion by financially in-
centivizing residential consumers to reduce their energy consumption.
In pricing strategies, authors in [41] proposed a mechanism design
framework based on MARL to simultaneously determine the optimal
charging prices for multiple charging stations over a period considering
power output limits. In [42], authors developed a real-time pricing
mechanism based on MARL where an RL-based grid agent defines a buy
price to a set of RL-based prosumer agents. Finally, the works presented
in [43], employ a cooperative-competitive MARL strategy based on Q-
learning that enables the determination of optimal prices and incentives
for maximizing benefits for both customers and service providers. This
paper considers the effect of cooperation and competition among RL
agents in the context of DR. However, these previous approaches have
not considered fairness in the reward allocation process for each RL-
based agent. For the specific case of DRAs, proposing MARL as a
pricing approach for multi-aggregator systems makes determining a
fair incentive allocation strategy necessary, as the definition of their
rewards must be based on their individual contribution to the system
operation performance. In [44], authors demonstrated that combining
the DR programs with SV helps retailers assure profitability and also
enhances user participation. Authors in [45,46] utilize SV to fairly di-
vide the profit among microgrids and houses according to their efforts.
These significant achievements presented in the literature highlight
the potential of exploring the implementation of SV in a MARL-based
multi-aggregator context for optimizing the exploitation of end-users’
flexibility.

1.2. Motivation and contributions

This article delves deeper into dynamic pricing with multiple DRAs,
where each DRA will determine price signals offering discounts based
on customer responses in a cooperative game framework. The pro-
posed mechanism incorporates a decentralized decision-making pro-
cess, where each DRA aims to use its individual aggregated consump-
tion profile as the only source of information to optimize the price
policy generation process. However, for this purpose, it is necessary to
face the uncertainties that appear in such a complex environment with
incomplete information. Therefore, the implementation of an RL-based
approach is proposed, that allows dealing with this type of scenario, in
order to set the parameters of a dynamic price generator function. This
enables the optimization of the tariff generation process, according to a
global target set by the DSO. Accordingly, a mechanism based on MARL
and SV-based reward-sharing mechanisms is described. The proposed
cooperative MARL architecture harnesses the principles of game theory
and RL to enable autonomous agents to learn and adapt to their
environment. This approach ensures customers’ privacy throughout the
process of generating their optimal responses that minimize their costs
and maximize their benefits. Each DRA will receive a reward from the
Distribution System Operator (DSO) based on its individual contribu-
tion to peak shaving through the SV calculation. Integrating SV will
provide a fair framework for distributing the benefits of cooperation
among agents by assigning rewards to each agent’s contribution and
evaluating their marginal impact on the overall system. For brevity of
the presentation, Table 1 compares the differences between the existing
methods and the proposed model. Accordingly, this work contributes,

1. A cooperative price-based DR program for a set of DRA agents
that cooperate to achieve better results in line with the DSO’s
objectives regarding peak shaving.

2. A cooperative MARL architecture to determine dynamic pricing
strategies over the course of a coordination loop. The result-
ing price policies maximize the individual DRA’s profit while
providing gains to users.

3. A mechanism to fairly distribute the total gain of RL-based
DRA agents through an SV-based reward-sharing mechanism.
The calculation of its marginal contribution also speeds up the
convergence process of the MARL algorithm.
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Table 1
Comparison of state-of-the-art works.
Ref DR Mechanism  Solution Demand side Energy system Objective function Presence  Multiple Price policy Reward
Method target of DRA aggregators optimiza- sharing
tion mechanism
[18] Dynamic pricing Price Energy Deadline- Estimation of consumer’s price X X v X
responsive consumers Constrained electric responsive behavior.
modeling loads
[19] Dynamic pricing Bi-level, Customers with  Interruptible, Maximize retailer profit while X X v X
meta-heuristic smart meters non-interruptible customers aim to minimize their
and curtailable electricity bills.
appliances
[20] Real-time pricing Stochastic Residential, Energy storage Minimize the cost for end-user X X v X
optimization commercial and  systems customers and increasing the
industrial retailer profit while flattering the
customers load profile.
[21] Dynamic pricing Multi-objective Energy electricity, heat and optimal value of energy prices X X v X
optimization demanders in cool loads under different entities interest.
micro-grids
[22] Time-of-Use Multi-objective Residential Shiftable appliances Maximize consumer surplus by X X v X
optimization consumers adjusting the electricity price,

guaranteeing a fixed profit to the
utility company.

[23] Dynamic pricing Game-theoretic Residential Thermostatically Maximize the social welfare X X v X
model consumers with  controlled loads defined as the sum of consumer
thermostatically surplus and retail profit.
controlled loads
[24] Time-of-Use Game-theoretic DRAs Schedulable loads Minimize the total cost of v X v X
model purchasing electricity from the

bulk market for the utility
company and maximize DRAs
payoff function.

[25] Time-of-Use Game-theoretic Residential Heterogeneous loads Minimize the player’s costs based X X v X
model customers on the predicted strategy of all
other players.
[28] Dynamic pricing RL Residential Curtailable loads Maximize service provider’s profit X X v X
customers and minimize customers’ costs.
[29] Dynamic pricing RL Customers Electric heating Maximize the load aggregator X X 4 X
contracted with  system revenue.
a wind farm
[9] Load following ~ H-ADMM Customers with HVAC systems Minimize the penalty for drawing X v X X
signals controllable power beyond a predefined limit,
HVAC systems and minimize customer
discomfort.
[30] Real-Time RL Residential Mathematical Minimize the total expected X v X X
pricing customers response function system cost.
[31] Dynamic pricing RL Residential Accumulated load  Minimize the expected total cost X v X X
customers demand or customers’ disutility.
[32] DLMP RL Microgrids Dispatchable Maximize the profit from selling X v X X
generator energy while minimizing the PAR.
[35] Diverse Game-theoretic Energy Curtailable loads Minimize the electric utility cost v v v X
compensation model consumers of the electric utility company,
price minimize DRA cost and maximize

its revenue, and maximize
customer incentive and minimize
its discomfort.
[40] Incentive-based = MARL Residential Curtailable and Minimize financial costs for the X X X X
consumers shiftable appliances aggregator while maintaining the
capacity limits of the electricity
grid and preventing grid
congestion.
[41] Dynamic pricing MARL Charging stations Electric vehicle Maximize the long-term network X X v X
revenue considering the social
welfare of all users.

[42] Dynamic pricing MARL Prosumers in Energy storage and Maximize the long term profit of X X v X
micro-grids PV systems players.
[43] Real-time MARL Customers with  Elastic loads Maximize benefits for both X X v X
pricing, elastic loads customers and electric Service
Time-of-Use, Provider
direct load
control
Proposed Dynamic pricing MARL Residential Electric heating Maximize DRAs profit while v v v v
work customers system reducing the consumption peaks

of the system.
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Fig. 1. Automatic DR sequence for the multi-aggregator system.

The rest of the paper is organized as follows: Section 2 summarizes
the methodology for the developed MARL framework. The case study
is discussed in Section 3, followed by the conclusion in Section 4.

2. DR mechanism and problem formulation

DSOs are expected to explore the distribution-level flexibility po-
tential for tackling grid problems, making reducing the system’s peak
power one of its goals. For this reason, the DSO interacts with a group
of DRA agents who will manage the flexibility of different groups
of houses. As presented in Fig. 1, the DSO rewards each DRA for
contributing to the peak shaving objective in a day-ahead scheme.
In response, the DRA stipulates price policies through a coordination
loop, where the DRA acts as a leader of the group of residential agents
that respond with a consumption plan until an agreement is reached.
The dynamic price policies based on discounts induce customers to
modify their consumption patterns, while the DRA performs a trade-
off between the profit of selling energy to residential customers and
the DSO’s monetary incentive for peak shaving. The coordination loop
is performed at the beginning of the day, and once the agreement
is reached, the price profile is established, and residential customers
are committed to following their consumption plans during the day
according to the contract defined with the DRA. At the end of the
day, DSO verifies the improvement of the consumption demand and
the contribution of each DRA by means of the SV-based reward-sharing
mechanism to determine their rewards. Fig. 2, provides a representa-
tion of the interaction between the different actors of the proposed
scenario. As seen in Figs. 1 and 2, the only information that each DRA
uses to define the pricing policy is the consumption profile reported by
each customer. This guarantees respect for users’ privacy but generates
a high complexity in the policy optimization process due to the lack
of information. It is for this reason that a MARL approach is proposed
below. Finally, Even though there is no information exchange between
the different DRAs, there exists an interdependence between them,
as the action performed by each aggregator significantly impacts the
performance or behavior of others, due to their individual contributions
to the collective goal, ending in the need to cooperate [47].

2.1. DRA agents

From the upper level, the DRAs communicate their aggregated
consumption plans to the DSO before implementing a dynamic pricing
mechanism, i.e., with a constant price z,. It is assumed that all players
communicate truthful information in this first interaction since the
analysis of the effect of perverse players is out of the scope of this
work. With this information, the DSO establishes a reward A for the

DRAs that depends on the peak shaving of the load profile. For this, the
DSO utilizes the peak-to-average ratio (PAR), which is used to measure
the effectiveness of the demand-side management algorithms [48]. The
DSO considers the overall PAR ratio as a mechanism to determine the
reduction of the overall peak demand. Dividing a one-day period in
K timestamps, the calculation of this ratio is performed over the total
aggregated load demand Y = {Y},...,Yx}, as follows:

PARY) = % (¢
X Zkzl Yk

At the bottom level, each DRA interacts with its group of residential
agents as retailers in a Stackelberg game. As a leader, each DRA seeks
to optimize its profits that depend on its individual income from selling
the energy to the set of customers. However, in order to gain the
advantage of the reward offered by the DSO, the DRA defines discounts
during the day to incentivize users to change their consumption pat-
terns. The utilization of these discounts will guarantee a reduction of
the customers’ bills, with respect to their normal consumption when an
initial constant price z is established. In this way, each DRA benefits
from the coordination loop, using the aggregated consumption plan
of the houses y = {y,,...,yx} as the only source of information as a
privacy-preserving approach. To ensure the generation of price profiles
considering the upper limit as the constant price r;, and the lower limit
linked to the least price value to be offered by each DRA, the aggregator
applies a monotonic transformation of y based on the logistic function

to determine z = {x,,...,7g} as follows:
Ty — T
nk(yk) = Thin + e (2)
(=)
l+exp| ———
a
where z,,, is the minimum price that each DRA is willing to offer to

its customers, « is a parameter to control the price rate of change,
and M is the power value where the inflection point of the function
is set. According to [49], this function provides a better approach
for exploiting the flexibility potentials from the residential sector in
a more controllable way, when it is utilized in a coordination loop
with a regularization of the residential agents’ response. Translating
the M value as the target for maximum power consumption of the
daily profile. The monotonic transformation will allow as well the
parameterization of the pricing policy to reduce the complexity of
calculation in its generation, ensuring the generation of higher price
values when consumption is higher and lower price values during lower
consumption periods. Once the new price profile is generated, it is
communicated to the customers, which will replay with a new plan
until an agreement is reached. Therefore, the benefit of each DRA
can be explained by the trade-off between the profit from selling the
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energy to its customers and the reward received from the DSO from

contributing to the peak shaving objective,
K

argmax A(r) = o, ALPAR(Y)] + @, Y, 7y, 3)
T k=1

where w; and w, are weighting factors to balance these two terms,
and A(-) is the DSO’s function to calculate the reward in terms of PAR.
These w values allow the assignation of a lighter or heavier importance
to each term of the objective function. To properly establish these
parameters, several simulations are performed to obtain a dataset of
different results for each term of the reward function. Finally, each of
these weighting factors is defined first by the inverse of the unweighted
average of each term to guarantee a normalized result; after that, these
values can be slightly modified if it is necessary to give more impor-
tance to any of the terms in (3). As the proposed approach does not
consider a convex PAR-related metric, this objective function cannot
be treated with the classical gradient-based optimization approaches,
as the PAR function itself of the total aggregated system consumption
is not convex. Moreover, as the reward 4 depends on the aggregated
performance of the DRAs, it is necessary to determine a fairness strategy
to determine the reward for each aggregator in terms of its marginal
contribution. Consequently, the MARL architecture is implemented to
deal with the intractability of the DRASs’ objective function for optimiz-
ing the dynamic pricing decision-making process. Furthermore, an SV
calculation is implemented to determine the marginal contribution of
each DRA in the proposed scenario.

2.2. Cooperative MARL method for multi-aggregator system

Overview of MARL. RL algorithms are machine learning techniques
based on a trial-and-error process for sequential decision-making prob-
lems. In a single-agent RL mechanism, an agent interacts with an
unknown environment by executing actions to extract useful infor-
mation, and the environment responds with an immediate reward to
evaluate the selected action. The agent aims to maximize its reward
by realizing a trade-off between exploring new actions and exploiting
those who seem optimal. This strategy is advantageous in scenarios
such as the one proposed in this paper, where DRAs need to deter-
mine a price policy relying only on the information of their daily
consumption plan. The absence of relevant information, combined with
the high-dimensional, non-convex nature of the problem, and the lack
of a predefined price-responsive mathematical model, pose significant
challenges for classical optimization methods. In contrast, RL offers a
distinct advantage in managing these complex decision-making scenar-
ios by effectively navigating uncertainty and non-linearity. However, a
sacrifice needs to be made in order to obtain the information needed
to optimize the price policy generation process, which is related to the
agents’ learning period and convergence guarantees. RL often requires

large amounts of data and significant computational resources for
training. Furthermore, classical optimization algorithms, especially for
convex problems, have well-established convergence guarantees. RL
algorithms might converge slowly or even fail to converge in complex,
non-stationary environments.

Moving to MARL, new relationships appear between agents in the
same environment that compete or cooperate between them to max-
imize their rewards. As a result, agents’ rewards are influenced by
states and actions performed by the other RL agents. Mathematically
speaking, in single-agent RL approaches, the interactions between the
environment and the agent are modeled by a Markov Decision Pro-
cess (MDP). In the case of MARL, these interactions are based on a
Markov game (MG), a combination of MDP and game theory [50]. For
these reasons, this work proposed the combination of the MARL ar-
chitecture with an SV-based reward-sharing mechanism. This approach
mitigates the cross-influence between RL agents while enhancing model
convergence.

Markov game formulation. The proposed scenario considers a multi-
agent system composed of RL-based DRAs, each interacting with their
own residential customer group. To explore the generation of dynamic
pricing strategies, the interactions between the residential agents and
the RL agents are modeled by a finite MG. Therefore, the components
required are: N agents corresponding to N DRAs. A shared state set
7 and the collection of agents’ private observation sets {&;  y}. The
action sets {7 _} and individual reward sets {#%; _y}. And a set
of state transition functions {47 ). Considering the state 0 of the
system as the aggregation of the users’ consumption plan when all
the DRAs establish a constant price. The proposed scenario defines an
episode for the MARL mechanism as the coordination loop between
DRAs and residential agents, where each step comprises the definition
of a price signal from the DRAs with its associated DR. The MG
components are stated as follows:

1. System state and MG observations: The system state .S’ is described
by the aggregated power consumption profile of the system
Y normalized concerning the maximum power consumption
max, Y° presented in the consumption plan of the user when
initial constant prices are established. Similarly, the individual
private observation for agent » is defined as o™, described by the
aggregated power consumption profile of its customers y” nor-
malized to the maximum initial power consumption max, y".
2. MG Actions: For each agent n the action ¢ = {M, a, ,,;,} mod-
ifies its price generator function presented in Eq. (2), where M
values can go from the initial aggregated average consumption
% Zf=1 yg to the maximum consumption max, {y°}.

3. Reward functions: Finally the reward function for the n agent is
R,
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Fig. 3. Representation of the proposed Markov Game.

To avoid an improper calculation of rewards for each DRA, it is nec-
essary to utilize a fair strategy to calculate the individual contribution
of each DRA on the system peak shaving. This strategy will modify the
reward functions of the MG, improving the agents’ understanding of the
impact of their actions on the environment [51]. To better understand
the interaction between the residential agents and the RL-based DRA
agents, Fig. 3 provides an illustrative explanation of the Markov Game
for the proposed methodology. The explanation of the fair strategy
based on SV and the final agents’ reward function is explained below.

Shapley-Value based reward sharing mechanism. The DSO seeks to deter-
mine rewards fairly for the DRAs, according to the objective established
by him, and the marginal contribution of each DRA. For this purpose,
a total reward function is defined to determine the total reward that
DSO will distribute between DRAs. This reward function is inversely
proportional to the PAR of the system aggregated load profile. The
utilized function A(-) is based on the same proposed by [46], as follows:

1 max (4)

APARY)) = T ey

¢; and ¢, are function parameters defined by the DSO to adjust
the reward function shape, and A"** is the maximum reward for PAR
reduction. The ¢; and ¢, values are preset after a negotiation process
between the system operator and DSO. This ensures the definition of the
reward function before starting the learning process of the RL agents.
Such an idea follows the methodology presented in [46]. Furthermore,
this work also proposes the values for these parameters for a load
factor-based reward function. Thus, the choice of ¢, and ¢, will be based
on the equivalent PAR-based representation. Finally, the reward 2™ is
based on a proportion of the operational and generation cost reduction.

By creating a grand coalition, the DRAs collaborate looking for
maximizing individual and system objectives. As the contribution of
each player might be different, it is necessary to measure each DRA’s
contribution to the peak shaving achievement for determining the
allocation of the total payoff. With N DRAs and a function v that maps
subsets of DRAs to the real numbers. The amount that a DRA n receives
in the given coalitional (v, C) game is,

C|/(N - |C|-D)!
so= 3 loe-D

CcC\{n}

@(CUn)—v(C)) ()

where C represents the set of all possible coalitions, C is a subset of
C, | - | determines the cardinality of the given set, and v(C) represents
the valuation for the coalition C. The sums is done over all coalition
subsets not containing the DRA n. The contribution of each DRA n is
calculated for all C based on the expression v(C U n) — v(C), and then
the average of these contributions is calculated to determine the fair

allocation of its reward. Finally, the characteristic function is designed
as:

ly©0 — y<|12
WC)= —— 2 (6)
Yo -v'|2

y©0 represents the aggregated profile for the coalition C in state 0,
i.e, for the constant price, and y is the aggregated profile after the
implementation of the dynamic pricing mechanism. Likewise, Y° and
Y’ present the aggregated profiles of the system.

Independent Proximal policy optimization (IPPO) method.

Algorithm 1: IPPO algorithm

For each DRA agent n:

DRA asks residential agents for their stipulated consumption
plan under the initial constant price 7, and defines o"°.

DRA communicates the aggregated plan to the DSO, which
returns the system aggregated profile state SO for defining the
initial state s"0 = {5} x {0"0}

fortr=0,1,2,... do

Define the action ™' = {M",a", x,,;,}. (Price function
transformation defined by DRA n).

Calculate the pricing profiles based on (2) using a™' and
send them to the residential agents.

Residential agents solve their optimization problems
according to (13)

DRA communicates to the DSO its aggregated consumption
plan and defines its individual observation o™'.

DSO calculates its individual contribution ¢™'(v) with
Shapley-Value, based on equations (5) and (6).

DSO communicates the reward calculated based on (4), and
the system aggregated profile S'.

Get the normalized state s™'{.S"} x {0™'}. (cartesian product
between the system state and its individual observation).

Calculate rewards R™.

Collect the set of partial trajectories {(s",a"™, R, s™*1)}
on policy ¢™" = ¢gus(a™, s™").

Estimate advantage A"

if t mod T = 0 then

Compute policy update

T
0™+ = argmax Y Z(6)
max 3

s
via stochastic gradient ascent with Adam [52].

end

end
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As the customers are different for each DRA, the actions needed
during each coordination process are different. It means that each
RL-based DRA must learn its own best strategies independently. For
this purpose, an Independent Proximal Policy Optimization (IPPO)
technique is proposed. According to [53], empirical studies have shown
that IPPO can offer excellent performances, close to or even better than
the MARL techniques based on centralized training with decentralized
execution, in several benchmarks. This algorithm is a cooperative
MARL strategy where each RL agent learns independently using PPO.
PPO is a practical and effective policy gradient algorithm derived from
Trust Region Policy Optimization (TRPO), that replaces a trust region
constraint with a simpler clip trick. The algorithm uses a parameter 0
to optimize a policy ¢,(d’,0"). In RL theory, this policy describes the
agent’s behavior in deciding the action that must be performed in a
given state. Using the clip trick, this technique stabilizes the training
process by avoiding high policy alterations during the parameter up-
dating process. This trick attempts to keep old and new policies closer,
resulting in reward enhancement and stability [54]. The parameter
updating of 6 is achieved by maximizing the objective function,

Z(9) = B'[min(F (0) A", clip(r' (0),1 — ¢, 1 + €)A")] %)

where E! is the expectation over episode 1, r(§) presents the probability
ratio between the new and old policies in terms of ¢, (d’, s')/ b6, (d,s").
e is the hyperparameter for clipping to avoid large deviations in the
updating process. And A’ is the advantage estimation to measure the
performance of the selected action given the current state, using the
RL value function V (s"), the discount factor y and the batch size T, and
is calculated as follows:

A = V(") 4 7R + o 4T HRT-1 4y Tty (6T ®

s" and R’ are the state and the reward on episode ¢ for each RL agent,
respectively. Being the system state S’ the only shared information
between the DRA agents, for the proposed scenario, the state s™' for
the DRA n will be established as the Cartesian product .S* x o™ between
the system state and its individual observation, i.e., s* = {S’,0"}.
Furthermore, combining the Egs. (3) and (5), the individual reward at

state s’ for agent n can be finally stated as follows:
N

R™ = w,¢" ()A[PARY")] + ©, Z i (ay! 9
k=1

The Algorithm 1 represents the utilized IPPO technique, based on
the PPO mechanism presented by [52].

2.3. Automated DR for residential agents

For the case of the residential agent, it is assumed that each of
them is equipped with a home energy management system (HEMS).
The HEMS deals with controllable and non-controllable loads to modify
the consumption plan by scheduling the consumption of the flexible
ones. In this case, the controllable load refers to electric heating systems
(EHS) controlled by smart thermostats, and the non-controllable loads
are the other household appliances. Based on end-users comfort, the
HEMS can modify the heating consumption to provide the flexibility
required for residential agents to gain an advantage from the dis-
counts offered by the dynamic pricing mechanism. Subsequently, the
individual welfare maximization for each user j, can be expressed by,

K
Maximize Z(U(ui )= )
Ll UAF R =
subject to f(xk,xOut u{l’k,wf)
10)
x € [xmm xfnax]

uk € [0 umax]

W =
w=u +uf1xk
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where the vector w/ = {u{, T ) represents the consumption plan of
the jth house, considering the aggregatlon of thermal and fixed loads,
uf{ ¥ 7 ix As the residential agent interacts with the DRA n,
@ is the dynam1c tarlff this aggregator defines at timestamp k. The
parameters x/ . and x) .. are the lower and upper bounds for the
allowed internal temperature according to users thermal preferences,
respectively, and u’,, is the maximum heating system capacity in
time slot k. f(-) is a linear model for describing the dynamic thermal
response of the house. This model depends on the indoor temperature

> the outdoor temperature x°llt the heating power consumption ik
and the matrix coefficients w'. Accordlng to [55,56] this model can be

expressed as:
J o _ J out J
Xyt = SO Xy hk’wI) 11)
S out J
= wyx, + ”’éxk + wguh,k'

The first term in Eq. (10) refers to the customer’s utility function;
the second term is the customer’s cost expressed by the bill to pay.
The utility function U (u};) models the thermal user’s thermal comfort
and is determined by the set-point temperature xSp and éi, the comfort
weight factor representing the user’s elasticity. 5’ explains how much
users are willing to sacrifice their comfort to reduce the bill, and it
is also used for weighting the utility with respect to the cost [55].
This comfort factor is a daily profile based on a historical analysis
of set-point profiles. This means that the user’s elasticity changes in
time during the day. The 5] can take values from the set [0, 5,4,
following the set-point shape profile, assuming that higher values of
set-points mean higher thermal comfort needs. In the case of 5] = 5{nax,
occupants are inelastic, and they are interested in mamtammg their
comfortable temperature set-point. Conversely, the agent can freely
modify the internal temperature when §, = 0 while respecting the
constrain x{; S [xmm x)ax]- This strategy maximizes the flexibility
potentials of the residential agent while respecting its thermal comfort
constraints. Finally, according to [57], the residential thermal comfort
function can be modeled through,

U, ) = =8, (xgy = x))° (12)

The residential agents receive the price policy from the DRA simul-
taneously and selfishly solve their optimization problems. In order to
make them coordinate through the coordination loop, it is necessary
to regularize their decision-making process. The proposed regulariza-
tion strategy is based on proximal decomposition as a distributed
algorithm [58]. For this, a regularization parameter, 7, is utilized to
penalize differences between consecutive defined consumption plans
through the coordination loop, i.e., penalize significant variations be-
tween episodes 7 and 7 — 1 [59]. Thus, the dual optimization problem
residential agents’ cost function can be defined by (13).

K
Minimize Z 5J(xsp —x ) + ”Z”j + r(u” /t 1y
W=l k=1

subject to f(xk,x"“t S w))

Ynto (13)
x S [x max]

uk € [0, umax]

fc = ”h,k + ”fix,k
For each residential group interacting with a DRA, it is necessary to
determine the regularization parameter that ensures the convergence of
the mechanism and the avoidance of rebound peaks in the day-ahead
market [60]. The selection of the r value is performed according to the
inequality:

T>4(J, - Dr, 14)

where J, is the number of residential agents interacting with the
DRA n and r; is the initial constant price [56]. For each iteration,
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Fig. 4. Aggregate energy demand when exposed to a winter outdoor temperature profile.

the DRA sends the new price policy, and the residential agent solves
the optimization problem (13) until an agreement is reached. Finally,
the coordination process between the DRA and the residential agents
converges when the relative PAR of the aggregated profile between
successive iterations is lower than a predefined threshold:

IPARGOI,

< threshold
IPAR(Y" DI,

(15)

3. Results and discussion

This section provides the simulation results of the proposed MARL-
based DR mechanism. First, a validation of the residential consumption
behavior model is carried out. Then, the training process results are
examined through the learning process of the best parameters selection
for the price function during the coordination loop and the results in
peak-shaving of the IPPO-based RL technique combined with the SV-
based reward-sharing mechanism. Finally, the importance of the SV is
presented, and how it improves the performance of the proposed MARL
technique.

Residential agents behavior. The system environment for validating
the proposed technique comprises 11 residential agents. We collected
data from 11 single-family detached houses in Trois-Rivieres, Quebec,
Canada, during a winter period (from January to April 2018), with a
15-minute sampling interval. The houses are equipped with electrical
baseboards and controllable thermostats for temperature control. Using
the real-world data, we constructed the thermal models for all the
residential agents, considering the recorded indoor temperatures, the
electrical heating power consumption, and the outdoor temperature.
And a ridge regression mechanism was applied to determine the matrix
coefficients w’ needed in Eq. (11). Furthermore, statistical information
from a previous study conducted in [61] is utilized to randomly
generate the set-point values xép from the set {20,21,22,23} in degree
Celsius [C]. The different levels of users’ thermal elasticity Si for the
utility functions can be extracted from a log-normal distribution with
the expectation, E(6,,,4) = 5, and variance, V ar(5y,,¢) = 1. Finally, with
the historical power consumption of energy-extensive appliances other
than electric boards, an aggregate load profile of non-controllable loads
is generated and added to the simulated heating consumption.

Fig. 4 shows the aggregated consumption behavior of the residential
users exposed to a temperature profile of a winter day. The behav-
ior shown in the Figure demonstrates that the developed residential
models follow the expected power consumption pattern of Quebec’s
residential sector. It is important to note that each residential agent per-
forms a model predictive control to perform actions such as preheating
the house to avoid high-price regions, respecting comfort needs, and
set-point temperature changes.

Table 2
Specifications of the computer used for the simulation process.
Component Description
Processor Intel Xeon W-2245 3.90 GHz
Memory 128 GB - DDR4
Hard drive size 4TB SSD
0os Ubuntu-22.04

Table 2 provides the hardware specification of the computer used
for simulation purposes. It is important to mention that most of the
computational burden was linked to the residential models. These
computations accounted for more than 98% of the system computa-
tion time. This problem can be alleviated through the implementation
of distributed computation strategies that better represent the actual
behavior of these architectures.

MARL for optimizing DRA dynamic pricing strategy. The MARL envi-
ronment is developed using the OpenAl Gym APIL The 11 developed
residential agents are distributed between three DRAs in this environ-
ment. One DRA with three customers and the other two with four. The
price limits at the aggregator level are z, = 15 ¢/kWh and z,,, can
be established by the DRAs within the interval [5, 15] in ¢/kWh. These
values will be used to build the price generator function. At the DSO
level, the reward function (4) will utilize the parameters ¢, = 20 and
¢, = 1.42. These parameters come from the PAR-based form of the
function proposed by [46]. Finally, as it is important to balance the
terms of each DRA’s reward function (9) and it is not an easy task to
determine the grid cost reduction for a peak shaving achieved, "% = 1
representing the 100% of a given reward, and o, 1 as well. On
the other hand, for each DRA n, w, = Z,’L | nZ(a"*O)yZ’O to normalize
the second term of the rewards function with respect to the initial
DRA revenue with the constant price 7. These values are fixed for all
iterations in this case study.

The proposed MARL approach starts with a learning process during
1000 episodes. Each episode comprises a coordination loop that stops
after a maximum of 10 iterations between each aggregator and its
customers or when threshold defined in (15) is less than 1%. Fig. 5 pro-
vides the IPPO algorithm’s performance during training, presenting the
aggregate reward of the different RL agents. The DRAs initially select
poor actions for the parameter setting of the price function through the
coordination loop. By exploiting the experience they gradually gain, the
DRAs finally start improving their decision-making process, achieving
higher rewards and cooperating better to decrease the PAR for the
system aggregated load profile. After 500 episodes, the algorithm con-
verges, and the system is ready for validation. More specifically, Fig. 6
evidence how each aggregator maximizes its own reward function
during the training process by individually improving their decision-
making rules. This Figure evidences how each agent realizes that
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Fig. 6. Analysis of the individuals DRAs training process.

offering price discounts to the end-users allows the capitalization of
the DSO’s reward.

Fig. 7 shows the performance in peak reduction of the dynamic
pricing mechanism for the proposed multi-aggregator system. These
results demonstrate that implementing a MARL mechanism combined
with SV-based reward-sharing mechanism calculation can significantly
reduce peak load in a cooperative scenario. In fact, it is also possi-
ble to verify the achievement of PAR reduction, reducing the system
aggregated profile’s PAR from 1.9 to 1.61. Fig. 8 provides an insight
into the role of each DRA in achieving the peak-shaving presented of
the system aggregated consumption profile. The figure demonstrates
how the coordination loop can reduce the peaks utilizing dynamic price
profiles when the DRA determines the optimized parameters for the
price generator function for each iteration.

Shapley-Value-based reward-sharing mechanism. Finally, to analyze the
importance of combining the IPPO algorithm with the SV-based reward-
sharing mechanism, in Fig. 9, a performance comparison is presented.
A comparative study is conducted by implementing the same IPPO
technique without utilizing the SV calculation, i.e., dividing the DSO’s
reward evenly between the three DRAs. In this, it is possible to verify
that the fair reward-sharing mechanism improves the convergence
performance of the MARL technique in terms of the convergence time,
which is reduced by 29%, representing 290 episodes less for training.
Calculating the marginal contributions for each DRA provides the RL
agents with a better understanding of the impact of their actions on
the system. This extra information helps deal with the non-stationarity
problem of MARL techniques, resulting in a faster and more optimized
solution.

Performance comparison. The proposed MARL-based mechanism is fi-
nally compared with a proximal decomposition approach proposed
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Fig. 7. Peak reduction after learning process.

by the authors in [60]. This mechanism is applied by each DRA
applying a billing mechanism proportional to the consumption plan
during ten iterations. Furthermore, this mechanism is adapted to re-
spect the price limits established in the proposed scenario for a more
fair comparison. Table 3 provides the obtained results. This information
demonstrates that the proximal decomposition approach can provide a
higher aggregators’ income from selling energy. However, the proposed
MARL-based mechanism provides better results regarding PAR reduc-
tion, representing a DSO’s reward 50% higher than the reward obtained
with the proximal decomposition approach. This highlights the ability
of the proposed model to make different aggregators cooperate in order
to achieve an overall system objective.
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4. Conclusions
Table 3
Performan.c'e comparison between the proposed MARL-based mechanism and a proximal This paper proposes a Cooperative price-based demand response
decomposition approach. . . 1 . .
mechanism for a multi-aggregator system, utilizing multi-agent rein-
DRA 1 DRA 2 DRA 3 . .
forcement learning (MARL) and a Shapley Value-based reward-sharing
PP0 gf,fﬁme 144:3; i’zjf ;357'25 approach. In this regard, an IPPO-based MARL architecture is employed
i - - to coordinate a set of demand response aggregator (DRA) agents,
’; 9 . . ITREE B . . .
DSO's reward 731% aiming to harness the flexibility potential of residential customers. The
) N Income 9L.68 80.98 66.13 DRAs establish dynamic pricing discounts in an iterative process, where
Proximal decomposition PAR 1.91 1.87 1.67 . . . . . .
DRAs communicate their price profiles and customers adjust their con-
DSO’s reward 19.8%

sumption plans accordingly. In this win—win approach, the residential
users leverage the flexibility of their controllable loads to reduce their
bills, while the DRAs capitalize on this flexibility to decrease the sys-
tem’s aggregated peak demand. As a result, DRAs gain access to rewards
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Fig. 9. MARL performance with and without the SV-based reward-sharing mechanism.

offered by the DSO for improving the peak-to-average ratio (PAR) of the
daily profile. The results presented demonstrate a significant reduction
in the PAR of total power demand, from 1.9 to 1.61. Furthermore, the
importance of implementing the SV-based reward-sharing mechanism
is shown, improving the optimization of the solution and reducing the
convergence time by 29% while increasing the reward obtained by
the agents by more than 5%. The proposed approach has also been
compared with a mechanism based on proximal decomposition. This
strategy can lead to higher income for aggregators from energy sales.
However, the proposed MARL-based mechanism yields superior results
in terms of PAR reduction, resulting in a DSO reward that is 50% higher
than that achieved with the proximal decomposition approach.

This study has the limitation of not considering the willingness to
participate from the residential users. The development of such a model
would make it possible to develop strategies for adapting DRA agents
according to the users who wish to participate in the program. It would
also allow the evaluation of the performance of competitive scenarios
among DRA agents seeking to increase the number of enrolled clients.
In future studies, the development of the willingness model will be
performed, as well as the consideration of a progressive change in
user elasticity. Furthermore, the proposed approach will be analyzed in
terms of future application by analyzing the performance of strategies
to pre-train the MARL mechanism in a historical day and then evaluate
the algorithm in out-of-sample days. In addition, the consideration of
users’ deviations from consumption plans will be explored.
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