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A B S T R A C T

Demand response (DR) plays an essential role in power system management. To facilitate the implementation
of these techniques, many aggregators have appeared in response as new mediating entities in the electricity
market. These actors exploit the technologies to engage customers in DR programs, offering grid services like
load scheduling. However, the growing number of aggregators has become a new challenge, making it difficult
for utilities to manage the load scheduling problem. This paper presents a multi-agent reinforcement Learning
(MARL) approach to a price-based DR program for multiple aggregators. A dynamic pricing scheme based on
discounts is proposed to encourage residential customers to change their consumption patterns. This strategy
is based on a cooperative framework for a set of DR Aggregators (DRAs). The DRAs take advantage of a
reward offered by a Distribution System Operator (DSO) for performing a peak-shaving over the total system
aggregated demand. Furthermore, a Shapley-Value-based reward sharing mechanism is implemented to fairly
determine the individual contribution and calculate the individual reward for each DRA. Simulation results
verify the merits of the proposed model for a multi-aggregator system, improving DRAs’ pricing strategies
considering the overall objectives of the system. Consumption peaks were managed by reducing the Peak-
to-Average Ratio (PAR) by 15%, and the MARL mechanism’s performance was improved in terms of reward
function maximization and convergence time, the latter being reduced by 29%.
1. Introduction

The ever-growing demand for electricity and rapid electrification
cross economic sectors (leading to an increase in daily and seasonal
nergy peaks), combined with the problem of limited energy resources,
wakens the importance of optimizing energy consumption. The imme-
iate problem lies in traditional centralized approaches, which need
o be enhanced to improve their ability to optimize energy demand
nd exploit the flexibility potentials of energy consumers. These cen-
ralized perspectives fall short of capturing the intricate dynamics of
he complex and diverse power grid ecosystem and managing the
volving complexity of grid flexibility [1]. Consequently, the smart
rid paradigm emerges, bringing with it the opportunity to facilitate
he implementation of demand response (DR) programs, which are
onsidered a viable option for managing energy demand by providing
nergy consumers a more active role [2]. These programs look for effi-
ient solutions for minimizing generation costs, managing high demand
eaks, reducing emissions, and improving the reliability of generation,
ransmission, and distribution systems [3]. They offer monetary incen-
ives to induce changes in users’ consumption patterns. The financial

∗ Corresponding author.
E-mail address: nilson.henao@uqtr.ca (N. Henao).

stimuli provide participants payments for reducing their consumption
during periods of high demand or using time-varying price profiles
to incentivize consumers to move their consumption to low-demand
periods where lower prices are established [4].

In this context, a third-party entity is proposed called DR aggregator
(DRA), which seeks to exploit the capacities of residential customers by
implementing DR programs [5]. According to the literature, the role
of DRAs is to group different agents in a power system to act as a
single entity when participating in power system markets or selling
services to the system operator. The management of users’ flexibility
potentials enables DRAs to participate on their behalf in the electricity
market, where DRAs can identify flexibility potentials, automate their
activation, and sell flexibility in electricity markets. Finally, DRAs can
provide solutions to stabilize the revenues of market participants and
bundle various services in the energy markets [6]. This, however,
implies the need to determine monetary policies to maximize the DRAs’
profit while offering a benefit to the users, leading the way to a new
challenge [7]. For this reason, the policy generation problem has been
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Nomenclature

Acronyms

DR Demand Response
DRA Demand Response Aggregator
DSO Distribution System Operator
EHS Electric Heating System
IPPO Independent Proximal Policy Optimization
MARL Multi-Agent Reinforcement Learning
MG Markov Game
PAR Peak-to-Average Ratio
RL Reinforcement Learning
SV Shapley Value
Functions

𝝀(⋅) DSO reward in terms of PAR reduction
𝐴̂𝑡 Advantage at episode 𝑡
𝛬(⋅) DRA welfare function
𝜋𝑘(⋅) Price generator function
𝜑𝑛(⋅) Marginal contribution based on SV calcula-

tion
𝑓 (⋅) Thermal model
𝑃 𝐴𝑅(⋅) Peak-to-average ratio function
𝑅𝑛,𝑡 Reward function at episode 𝑡 for 𝑛th DRA
𝑈 (⋅) Thermal comfort function
𝑣(⋅) Characteristic function for coalition valua-

tion
𝑍(⋅) Objective function for IPPO algorithm
Indices

𝑗 House index
𝑘 Time-step index
𝑛 DRA index
𝑡 Iteration index
Parameters

𝛼 Rate of price change
𝜆𝑚𝑎𝑥 Maximum reward from DSO
𝜋0 Initial constant price
𝜋𝑚𝑖𝑛 Lower price limit
𝑀 Power value on inflexion point
Variables

𝒀 𝑡 System aggregated consumption at episode
𝑡

𝒚𝑛,𝑡 Aggregated consumption at episode 𝑡 for 𝑛th
DRA

𝛿𝑗𝑘 Thermal discomfort factor of 𝑗th house
𝜋𝑛
𝑘 Price tariff defined by 𝑛th DRA at time-step

𝑘
𝑎𝑛,𝑡 Action at episode 𝑡 for 𝑛th DRA
𝐶 Coalition of DRAs
𝑜𝑛,𝑡 Individual observation at episode 𝑡 for 𝑛th

DRA
𝑠𝑛,𝑡 State at episode 𝑡 for 𝑛th DRA based on

system state and individual observation
𝑆𝑡 System state at episode 𝑡
I

2 
𝑢𝑗𝑘 Energy consumption reported of 𝑗th house
at time-step 𝑘

𝑥𝑗𝑘 Indoor temperature of 𝑗th house at time-
step 𝑘

𝑥𝑜𝑢𝑡𝑘 Outdoor temperature at time-step 𝑘
𝑥𝑗𝑠𝑝 Set-point temperature profile of 𝑗th house
𝑦𝑘 Aggregated energy consumption time-step 𝑘

addressed in the literature for different types of DR programs, from
incentive-based to price-based [8]. Although the proposed approaches
have made it possible to identify strategies for generating DRA’s poli-
cies, as the number of aggregators increases, the challenge grows for
utility companies to achieve load scheduling and produce reference
ignals for each of them [9].

In price-based DR programs, dynamic pricing has become one of
he most influential and prominent strategies to encourage consumers
o modify their consumption. However, defining an optimal policy to
nfluence customers conveniently becomes challenging due to some
ncertainties of load management. These uncertainties are related to
he energy demand for each user, changing peak periods, and changes

in the number of users and their preferences [10,11]. From the DRA
erspective, there is also a need to propose policies guaranteeing

aspects such as respect for user privacy throughout the strategy gen-
ration process [12]. This translates into increased uncertainty due
o the significant lack of information in the decision-making process.
s a result, reinforcement learning (RL) approaches have proven to

be a valuable solution for dealing with the inherent uncertainties in
different applications in DR context [13]. Nevertheless, when solving
the price policy generation problem for a single DRA, it is not possible
to guarantee that the individual solutions will lead to the best solution
for the system. And, on the other hand, successfully implementing dy-
namic pricing with multiple DRAs requires a comprehensive evaluation
and allocation of rewards among participating agents. This is where
Shapley value (SV), a concept from cooperative game theory, comes
into play [14].

SV is a classical mechanism from cooperative game theory, enabling
he division of the total payoff so that each player receives a fair
ayment [15]. This method evaluates the marginal contribution of
ach player to the system and defines a uniquely equitable assignment
f rewards, performing as a metric to measure the individual effort
f each player [16]. As the main issue of the MARL mechanisms is
hat the actions performed by all agents influence the state transition,
heir interactions create a non-stationary environment from a single
gent’s view [17]. The proposed strategy demonstrates that combin-
ng SV to determine the DRAs’ individual contribution alleviates the
on-stationarity problem in the MARL-based multi-aggregator system,
mproving the obtained results during the training phase.

.1. Related works

The definition of optimal dynamic pricing mechanism in DR pro-
rams is a relevant research topic that has been studied, and some
olutions have been proposed. Its goal is to encourage users to change
heir consumption patterns to avoid generators’ costly operation [18].
owever, the definition of optimal price policies is a difficult task due

o a lack of information on user preferences, price-responsive behavior
inked to consumer flexibility, and the constantly changing energy load
nd energy generation of customers [19].

To address this problem, some authors have explored mechanisms
o optimize the dynamic price policy generation decision-making pro-
ess. For instance, the works done in [20] propose an optimization
roblem considering the stochasticity of renewable energy resources.
n fact, the implementation of strategies where the objective function
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of each player is embedded in one optimization problem is one of the
pproaches followed in the literature [21,22]. The problem with these
pproaches relies on affecting customers’ privacy, negatively impacting
ser interest in participating in the DR program. To avoid this, authors
ave considered implementing game theoretical frameworks, in which
he mechanisms seek to leverage their iterative process to reach an
greement and generate a price policy [23–25]. The problem is that the
onvergence process depends on the information customers provide.
herefore, this approach allows customers to cheat on the system to
ain advantages, resulting in new challenges linked to the need to
etermine customers’ trustworthy levels [26].

According to [27], RL techniques are well-known for their potential
pplicability in complex real-world applications, such as DR. In general,
hey are adaptable and capable of learning users’ preferences through
nteraction without an explicit mathematical model. This makes RL
n important tool for both sides, residential and supply, to properly
efine load control strategies and optimize price rates and incentives,
espectively. For instance, authors in [28] utilized RL to optimize the
bjective function of the supply and demand side simultaneously. In re-
ard to the aforementioned limitations, RL approaches have emerged as
 valuable option to deal with problems related to the optimal price pol-
cy generation process. Authors, in [28], adopted a Q-learning method
o decide the retail electricity price, considering service provider and
ustomers profit, without requiring the full knowledge of the system
ynamics and uncertainties. In [29], a deep Q network strategy was
ollowed to build a dynamic subsidy price generation framework for a
oad aggregator avoiding the significant dependence on incorporating
ser feedback in its control loop. Furthermore, the works performed
n [30,31] clearly stated the importance of RL in dealing with the lack
f information about the customers’ time-varying load demand and
nergy consumption patterns in the pricing optimization process. In
ddition to this, the authors in [32] even made use of this capability of
L algorithms to determine optimal pricing policies by learning from

he price-responsive behavior of microgrids.
System operators may be unable to take on the additional effort

f developing personalized price profiles for residents while determin-
ng their consumption patterns and preferences. This is due to the
ransaction costs and operational complexity that the system operator
ould otherwise have to bear when interacting with numerous individ-
al buildings [33]. This is where DRA effectively facilitates customer
articipation by working in a more customer-oriented manner [34].
articularly, multi-aggregator systems have only been addressed in
 few works by implementing multi-agent systems. Authors in [9]
mplemented a hierarchical alternating direction method of multipliers
H-ADMM) to determine load following signals for multiple aggrega-
ors. In this mechanism, they assume aggregators have direct load
ontrol for individual devices, affecting customers’ privacy and com-
ort. In [35], a bargaining-based cooperative game is proposed to solve
rreconcilable incentive pricing strategies for multi-aggregators, where,
gain, the results depend on the excessive reliance on the users.

Considering RL approaches for determining dynamic pricing rates
nd multi-agent systems for multi-aggregator structures makes the
ARL concept come into play. MARL has been gaining popularity

n different smart grid scenarios, as it is presented in [36], due to
ts ability to deal with the inherent uncertainties of DR programs.
hese uncertainties can affect conventional approaches’ performance,
aking them unsuitable for real-world implementations. In [37], ac-

ive voltage control is proposed, based on Dec-POMDP, to enable
eal-world applications of MARL algorithms in power systems. Au-
hors in [38] implemented a MARL approach to controlling a com-
lex system of production resources, battery storage, electricity self-
upply, and short-term market trading. In [39], authors demonstrate
he value of MARL mechanism, which can quickly optimize ther-
ostatically controlled load performance by applying collaborative
ulti-agent decision-making processes. In [40], an incentive-based DR

rogram is considered based on MARL, which looks to maintain the

3 
apacity limits of the grid to prevent grid congestion by financially in-
entivizing residential consumers to reduce their energy consumption.
n pricing strategies, authors in [41] proposed a mechanism design
ramework based on MARL to simultaneously determine the optimal
harging prices for multiple charging stations over a period considering
ower output limits. In [42], authors developed a real-time pricing
echanism based on MARL where an RL-based grid agent defines a buy
rice to a set of RL-based prosumer agents. Finally, the works presented
n [43], employ a cooperative-competitive MARL strategy based on Q-
earning that enables the determination of optimal prices and incentives
or maximizing benefits for both customers and service providers. This
aper considers the effect of cooperation and competition among RL
gents in the context of DR. However, these previous approaches have
ot considered fairness in the reward allocation process for each RL-
ased agent. For the specific case of DRAs, proposing MARL as a
ricing approach for multi-aggregator systems makes determining a
air incentive allocation strategy necessary, as the definition of their
ewards must be based on their individual contribution to the system
peration performance. In [44], authors demonstrated that combining
he DR programs with SV helps retailers assure profitability and also
nhances user participation. Authors in [45,46] utilize SV to fairly di-
ide the profit among microgrids and houses according to their efforts.
hese significant achievements presented in the literature highlight
he potential of exploring the implementation of SV in a MARL-based
ulti-aggregator context for optimizing the exploitation of end-users’

lexibility.

.2. Motivation and contributions

This article delves deeper into dynamic pricing with multiple DRAs,
here each DRA will determine price signals offering discounts based
n customer responses in a cooperative game framework. The pro-
osed mechanism incorporates a decentralized decision-making pro-
ess, where each DRA aims to use its individual aggregated consump-
ion profile as the only source of information to optimize the price
olicy generation process. However, for this purpose, it is necessary to
ace the uncertainties that appear in such a complex environment with
ncomplete information. Therefore, the implementation of an RL-based
pproach is proposed, that allows dealing with this type of scenario, in
rder to set the parameters of a dynamic price generator function. This
nables the optimization of the tariff generation process, according to a
lobal target set by the DSO. Accordingly, a mechanism based on MARL
nd SV-based reward-sharing mechanisms is described. The proposed
ooperative MARL architecture harnesses the principles of game theory
nd RL to enable autonomous agents to learn and adapt to their
nvironment. This approach ensures customers’ privacy throughout the
rocess of generating their optimal responses that minimize their costs
nd maximize their benefits. Each DRA will receive a reward from the
istribution System Operator (DSO) based on its individual contribu-

ion to peak shaving through the SV calculation. Integrating SV will
rovide a fair framework for distributing the benefits of cooperation
mong agents by assigning rewards to each agent’s contribution and
valuating their marginal impact on the overall system. For brevity of
he presentation, Table 1 compares the differences between the existing
ethods and the proposed model. Accordingly, this work contributes,

1. A cooperative price-based DR program for a set of DRA agents
that cooperate to achieve better results in line with the DSO’s
objectives regarding peak shaving.

2. A cooperative MARL architecture to determine dynamic pricing
strategies over the course of a coordination loop. The result-
ing price policies maximize the individual DRA’s profit while
providing gains to users.

3. A mechanism to fairly distribute the total gain of RL-based
DRA agents through an SV-based reward-sharing mechanism.
The calculation of its marginal contribution also speeds up the
convergence process of the MARL algorithm.
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Table 1
Comparison of state-of-the-art works.

Ref DR Mechanism Solution
Method

Demand side
target

Energy system Objective function Presence
of DRA

Multiple
aggregators

Price policy
optimiza-
tion

Reward
sharing
mechanism

[18] Dynamic pricing Price
responsive
modeling

Energy
consumers

Deadline-
Constrained electric
loads

Estimation of consumer’s price
responsive behavior.

✗ ✗ ✓ ✗

[19] Dynamic pricing Bi-level,
meta-heuristic

Customers with
smart meters

Interruptible,
non-interruptible
and curtailable
appliances

Maximize retailer profit while
customers aim to minimize their
electricity bills.

✗ ✗ ✓ ✗

[20] Real-time pricing Stochastic
optimization

Residential,
commercial and
industrial
customers

Energy storage
systems

Minimize the cost for end-user
customers and increasing the
retailer profit while flattering the
load profile.

✗ ✗ ✓ ✗

[21] Dynamic pricing Multi-objective
optimization

Energy
demanders in
micro-grids

electricity, heat and
cool loads

optimal value of energy prices
under different entities interest.

✗ ✗ ✓ ✗

[22] Time-of-Use Multi-objective
optimization

Residential
consumers

Shiftable appliances Maximize consumer surplus by
adjusting the electricity price,
guaranteeing a fixed profit to the
utility company.

✗ ✗ ✓ ✗

[23] Dynamic pricing Game-theoretic
model

Residential
consumers with
thermostatically
controlled loads

Thermostatically
controlled loads

Maximize the social welfare
defined as the sum of consumer
surplus and retail profit.

✗ ✗ ✓ ✗

[24] Time-of-Use Game-theoretic
model

DRAs Schedulable loads Minimize the total cost of
purchasing electricity from the
bulk market for the utility
company and maximize DRAs
payoff function.

✓ ✗ ✓ ✗

[25] Time-of-Use Game-theoretic
model

Residential
customers

Heterogeneous loads Minimize the player’s costs based
on the predicted strategy of all
other players.

✗ ✗ ✓ ✗

[28] Dynamic pricing RL Residential
customers

Curtailable loads Maximize service provider’s profit
and minimize customers’ costs.

✗ ✗ ✓ ✗

[29] Dynamic pricing RL Customers
contracted with
a wind farm

Electric heating
system

Maximize the load aggregator
revenue.

✗ ✗ ✓ ✗

[9] Load following
signals

H-ADMM Customers with
controllable
HVAC systems

HVAC systems Minimize the penalty for drawing
power beyond a predefined limit,
and minimize customer
discomfort.

✗ ✓ ✗ ✗

[30] Real-Time
pricing

RL Residential
customers

Mathematical
response function

Minimize the total expected
system cost.

✗ ✓ ✗ ✗

[31] Dynamic pricing RL Residential
customers

Accumulated load
demand

Minimize the expected total cost
or customers’ disutility.

✗ ✓ ✗ ✗

[32] DLMP RL Microgrids Dispatchable
generator

Maximize the profit from selling
energy while minimizing the PAR.

✗ ✓ ✗ ✗

[35] Diverse
compensation
price

Game-theoretic
model

Energy
consumers

Curtailable loads Minimize the electric utility cost
of the electric utility company,
minimize DRA cost and maximize
its revenue, and maximize
customer incentive and minimize
its discomfort.

✓ ✓ ✓ ✗

[40] Incentive-based MARL Residential
consumers

Curtailable and
shiftable appliances

Minimize financial costs for the
aggregator while maintaining the
capacity limits of the electricity
grid and preventing grid
congestion.

✗ ✗ ✗ ✗

[41] Dynamic pricing MARL Charging stations Electric vehicle Maximize the long-term network
revenue considering the social
welfare of all users.

✗ ✗ ✓ ✗

[42] Dynamic pricing MARL Prosumers in
micro-grids

Energy storage and
PV systems

Maximize the long term profit of
players.

✗ ✗ ✓ ✗

[43] Real-time
pricing,
Time-of-Use,
direct load
control

MARL Customers with
elastic loads

Elastic loads Maximize benefits for both
customers and electric Service
Provider

✗ ✗ ✓ ✗

Proposed
work

Dynamic pricing MARL Residential
customers

Electric heating
system

Maximize DRAs profit while
reducing the consumption peaks
of the system.

✓ ✓ ✓ ✓
4 



A. Fraija et al. Sustainable Energy, Grids and Networks 40 (2024) 101560 
Fig. 1. Automatic DR sequence for the multi-aggregator system.
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The rest of the paper is organized as follows: Section 2 summarizes
the methodology for the developed MARL framework. The case study
is discussed in Section 3, followed by the conclusion in Section 4.

2. DR mechanism and problem formulation

DSOs are expected to explore the distribution-level flexibility po-
tential for tackling grid problems, making reducing the system’s peak
power one of its goals. For this reason, the DSO interacts with a group
of DRA agents who will manage the flexibility of different groups
of houses. As presented in Fig. 1, the DSO rewards each DRA for
contributing to the peak shaving objective in a day-ahead scheme.
In response, the DRA stipulates price policies through a coordination
loop, where the DRA acts as a leader of the group of residential agents
that respond with a consumption plan until an agreement is reached.
The dynamic price policies based on discounts induce customers to
modify their consumption patterns, while the DRA performs a trade-
off between the profit of selling energy to residential customers and
the DSO’s monetary incentive for peak shaving. The coordination loop
is performed at the beginning of the day, and once the agreement
is reached, the price profile is established, and residential customers
are committed to following their consumption plans during the day
according to the contract defined with the DRA. At the end of the
day, DSO verifies the improvement of the consumption demand and
the contribution of each DRA by means of the SV-based reward-sharing
mechanism to determine their rewards. Fig. 2, provides a representa-
tion of the interaction between the different actors of the proposed
scenario. As seen in Figs. 1 and 2, the only information that each DRA
uses to define the pricing policy is the consumption profile reported by
each customer. This guarantees respect for users’ privacy but generates
a high complexity in the policy optimization process due to the lack
of information. It is for this reason that a MARL approach is proposed
below. Finally, Even though there is no information exchange between
the different DRAs, there exists an interdependence between them,
as the action performed by each aggregator significantly impacts the
performance or behavior of others, due to their individual contributions
to the collective goal, ending in the need to cooperate [47].

2.1. DRA agents

From the upper level, the DRAs communicate their aggregated
consumption plans to the DSO before implementing a dynamic pricing
mechanism, i.e., with a constant price 𝜋0. It is assumed that all players
communicate truthful information in this first interaction since the
analysis of the effect of perverse players is out of the scope of this

work. With this information, the DSO establishes a reward 𝝀 for the

5 
DRAs that depends on the peak shaving of the load profile. For this, the
SO utilizes the peak-to-average ratio (PAR), which is used to measure

he effectiveness of the demand-side management algorithms [48]. The
SO considers the overall PAR ratio as a mechanism to determine the

eduction of the overall peak demand. Dividing a one-day period in
timestamps, the calculation of this ratio is performed over the total

ggregated load demand 𝒀 = {𝑌1,… , 𝑌𝐾}, as follows:

𝑃 𝐴𝑅(𝒀 ) = max𝑘{𝒀 }
1
𝐾
∑𝐾

𝑘=1 𝑌𝑘
(1)

At the bottom level, each DRA interacts with its group of residential
agents as retailers in a Stackelberg game. As a leader, each DRA seeks
to optimize its profits that depend on its individual income from selling
the energy to the set of customers. However, in order to gain the
advantage of the reward offered by the DSO, the DRA defines discounts
uring the day to incentivize users to change their consumption pat-
erns. The utilization of these discounts will guarantee a reduction of
he customers’ bills, with respect to their normal consumption when an
nitial constant price 𝜋0 is established. In this way, each DRA benefits

from the coordination loop, using the aggregated consumption plan
of the houses 𝒚 = {𝑦1,… , 𝑦𝐾} as the only source of information as a
privacy-preserving approach. To ensure the generation of price profiles
considering the upper limit as the constant price 𝜋0 and the lower limit
linked to the least price value to be offered by each DRA, the aggregator
pplies a monotonic transformation of 𝒚 based on the logistic function
o determine 𝝅 = {𝜋1,… , 𝜋𝐾} as follows:

𝜋𝑘(𝑦𝑘) = 𝜋𝑚𝑖𝑛 +
𝜋0 − 𝜋𝑚𝑖𝑛

1 + exp
(

−𝑦𝑘 +𝑀
𝛼

) (2)

where 𝜋𝑚𝑖𝑛 is the minimum price that each DRA is willing to offer to
its customers, 𝛼 is a parameter to control the price rate of change,
nd 𝑀 is the power value where the inflection point of the function
s set. According to [49], this function provides a better approach
or exploiting the flexibility potentials from the residential sector in

a more controllable way, when it is utilized in a coordination loop
with a regularization of the residential agents’ response. Translating
he 𝑀 value as the target for maximum power consumption of the
aily profile. The monotonic transformation will allow as well the
arameterization of the pricing policy to reduce the complexity of

calculation in its generation, ensuring the generation of higher price
values when consumption is higher and lower price values during lower
consumption periods. Once the new price profile is generated, it is
communicated to the customers, which will replay with a new plan
until an agreement is reached. Therefore, the benefit of each DRA

 the trade-off between the profit from selling the
can be explained by
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Fig. 2. Interaction between market participants in the DR program.
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nergy to its customers and the reward received from the DSO from
ontributing to the peak shaving objective,

arg max
𝝅

𝛬(𝝅) = 𝜔1𝝀[𝑃 𝐴𝑅(𝒀 )] + 𝜔2

𝐾
∑

𝑘=1
𝜋𝑘𝑦𝑘 (3)

where 𝜔1 and 𝜔2 are weighting factors to balance these two terms,
and 𝝀(⋅) is the DSO’s function to calculate the reward in terms of PAR.
These 𝜔 values allow the assignation of a lighter or heavier importance
to each term of the objective function. To properly establish these
arameters, several simulations are performed to obtain a dataset of
ifferent results for each term of the reward function. Finally, each of
hese weighting factors is defined first by the inverse of the unweighted
verage of each term to guarantee a normalized result; after that, these
alues can be slightly modified if it is necessary to give more impor-
ance to any of the terms in (3). As the proposed approach does not
onsider a convex PAR-related metric, this objective function cannot
e treated with the classical gradient-based optimization approaches,
s the PAR function itself of the total aggregated system consumption
s not convex. Moreover, as the reward 𝝀 depends on the aggregated
erformance of the DRAs, it is necessary to determine a fairness strategy
o determine the reward for each aggregator in terms of its marginal
ontribution. Consequently, the MARL architecture is implemented to
eal with the intractability of the DRAs’ objective function for optimiz-
ng the dynamic pricing decision-making process. Furthermore, an SV
alculation is implemented to determine the marginal contribution of
ach DRA in the proposed scenario.

.2. Cooperative MARL method for multi-aggregator system

verview of MARL. RL algorithms are machine learning techniques
ased on a trial-and-error process for sequential decision-making prob-
ems. In a single-agent RL mechanism, an agent interacts with an

unknown environment by executing actions to extract useful infor-
mation, and the environment responds with an immediate reward to
evaluate the selected action. The agent aims to maximize its reward
by realizing a trade-off between exploring new actions and exploiting
those who seem optimal. This strategy is advantageous in scenarios
such as the one proposed in this paper, where DRAs need to deter-
mine a price policy relying only on the information of their daily
consumption plan. The absence of relevant information, combined with
the high-dimensional, non-convex nature of the problem, and the lack
of a predefined price-responsive mathematical model, pose significant
challenges for classical optimization methods. In contrast, RL offers a
distinct advantage in managing these complex decision-making scenar-
ios by effectively navigating uncertainty and non-linearity. However, a
acrifice needs to be made in order to obtain the information needed
o optimize the price policy generation process, which is related to the
gents’ learning period and convergence guarantees. RL often requires
6 
arge amounts of data and significant computational resources for
raining. Furthermore, classical optimization algorithms, especially for
onvex problems, have well-established convergence guarantees. RL
lgorithms might converge slowly or even fail to converge in complex,

non-stationary environments.
Moving to MARL, new relationships appear between agents in the

ame environment that compete or cooperate between them to max-
mize their rewards. As a result, agents’ rewards are influenced by
tates and actions performed by the other RL agents. Mathematically
peaking, in single-agent RL approaches, the interactions between the
nvironment and the agent are modeled by a Markov Decision Pro-
ess (MDP). In the case of MARL, these interactions are based on a

Markov game (MG), a combination of MDP and game theory [50]. For
these reasons, this work proposed the combination of the MARL ar-
chitecture with an SV-based reward-sharing mechanism. This approach
mitigates the cross-influence between RL agents while enhancing model
convergence.

Markov game formulation. The proposed scenario considers a multi-
agent system composed of RL-based DRAs, each interacting with their
own residential customer group. To explore the generation of dynamic
pricing strategies, the interactions between the residential agents and
the RL agents are modeled by a finite MG. Therefore, the components
equired are: 𝑁 agents corresponding to 𝑁 DRAs. A shared state set

and the collection of agents’ private observation sets {O1,…,𝑁}. The
ction sets {A1,…,𝑁} and individual reward sets {R1,…,𝑁}. And a set
f state transition functions {P1,…,𝑁}. Considering the state 0 of the
ystem as the aggregation of the users’ consumption plan when all

the DRAs establish a constant price. The proposed scenario defines an
episode for the MARL mechanism as the coordination loop between
DRAs and residential agents, where each step comprises the definition
of a price signal from the DRAs with its associated DR. The MG
components are stated as follows:

1. System state and MG observations: The system state 𝑆𝑡 is described
by the aggregated power consumption profile of the system
𝒀 normalized concerning the maximum power consumption
max𝑘 𝒀 0 presented in the consumption plan of the user when
initial constant prices are established. Similarly, the individual
private observation for agent 𝑛 is defined as 𝑜𝑛,𝑡, described by the
aggregated power consumption profile of its customers 𝒚𝑛 nor-
malized to the maximum initial power consumption max𝑘 𝒚𝑛,0.

2. MG Actions: For each agent 𝑛 the action 𝑎𝑛,𝑡 = {𝑀 , 𝛼 , 𝜋𝑚𝑖𝑛} mod-
ifies its price generator function presented in Eq. (2), where 𝑀
values can go from the initial aggregated average consumption
1
𝐾
∑𝐾

𝑘=1 𝑦
0
𝑘 to the maximum consumption max𝑘{𝒚0}.

3. Reward functions: Finally the reward function for the 𝑛 agent is
𝑅𝑛,𝑡.
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Fig. 3. Representation of the proposed Markov Game.
i

To avoid an improper calculation of rewards for each DRA, it is nec-
ssary to utilize a fair strategy to calculate the individual contribution
f each DRA on the system peak shaving. This strategy will modify the
eward functions of the MG, improving the agents’ understanding of the
mpact of their actions on the environment [51]. To better understand
he interaction between the residential agents and the RL-based DRA
gents, Fig. 3 provides an illustrative explanation of the Markov Game
or the proposed methodology. The explanation of the fair strategy
ased on SV and the final agents’ reward function is explained below.

hapley-Value based reward sharing mechanism. The DSO seeks to deter-
ine rewards fairly for the DRAs, according to the objective established

y him, and the marginal contribution of each DRA. For this purpose,
 total reward function is defined to determine the total reward that
SO will distribute between DRAs. This reward function is inversely
roportional to the PAR of the system aggregated load profile. The
tilized function 𝝀(⋅) is based on the same proposed by [46], as follows:

𝝀[𝑃 𝐴𝑅(𝒀 )] = 1
1 + 𝑒𝑐1(𝑃 𝐴𝑅(𝒀 )−𝑐2)

𝜆𝑚𝑎𝑥 (4)

𝑐1 and 𝑐2 are function parameters defined by the DSO to adjust
the reward function shape, and 𝜆𝑚𝑎𝑥 is the maximum reward for PAR
reduction. The 𝑐1 and 𝑐2 values are preset after a negotiation process
etween the system operator and DSO. This ensures the definition of the

reward function before starting the learning process of the RL agents.
Such an idea follows the methodology presented in [46]. Furthermore,
this work also proposes the values for these parameters for a load
factor-based reward function. Thus, the choice of 𝑐1 and 𝑐2 will be based
on the equivalent PAR-based representation. Finally, the reward 𝜆𝑚𝑎𝑥 is
based on a proportion of the operational and generation cost reduction.

By creating a grand coalition, the DRAs collaborate looking for
maximizing individual and system objectives. As the contribution of
each player might be different, it is necessary to measure each DRA’s
contribution to the peak shaving achievement for determining the
allocation of the total payoff. With 𝑁 DRAs and a function 𝑣 that maps
subsets of DRAs to the real numbers. The amount that a DRA 𝑛 receives
in the given coalitional (𝑣,C) game is,
𝜑𝑛(𝑣) =

∑

𝐶 ⊆C∖{𝑛}
|𝐶|!(𝑁 − |𝐶| − 1)!

𝑁!
(𝑣(𝐶 ∪ 𝑛) − 𝑣(𝐶)) (5)

where C represents the set of all possible coalitions, 𝐶 is a subset of
C, | ⋅ | determines the cardinality of the given set, and 𝑣(𝐶) represents
the valuation for the coalition 𝐶. The sums is done over all coalition
subsets not containing the DRA 𝑛. The contribution of each DRA 𝑛 is
calculated for all 𝐶 based on the expression 𝑣(𝐶 ∪ 𝑛) − 𝑣(𝐶), and then
the average of these contributions is calculated to determine the fair
7 
allocation of its reward. Finally, the characteristic function is designed
as:

𝑣(𝐶) =
‖𝒚𝐶 ,0 − 𝒚𝐶 ,𝑡‖22
‖𝒀 0 − 𝒀 𝑡

‖

2
2

(6)

𝑦𝐶 ,0 represents the aggregated profile for the coalition 𝐶 in state 0,
i.e, for the constant price, and 𝑦𝐶 ,𝑡 is the aggregated profile after the
mplementation of the dynamic pricing mechanism. Likewise, 𝑌 0 and
𝑌 𝑡 present the aggregated profiles of the system.

Independent Proximal policy optimization (IPPO) method.

Algorithm 1: IPPO algorithm
For each DRA agent 𝑛:
DRA asks residential agents for their stipulated consumption
plan under the initial constant price 𝜋0, and defines 𝑜𝑛,0.

DRA communicates the aggregated plan to the DSO, which
returns the system aggregated profile state 𝑆0 for defining the
initial state 𝑠𝑛,0 = {𝑆0} × {𝑜𝑛,0}
for 𝑡 = 0, 1, 2, ... do

Define the action 𝑎𝑛,𝑡 = {𝑀𝑛, 𝛼𝑛, 𝜋𝑚𝑖𝑛}. (Price function
transformation defined by DRA 𝑛).

Calculate the pricing profiles based on (2) using 𝑎𝑛,𝑡 and
send them to the residential agents.

Residential agents solve their optimization problems
according to (13)

DRA communicates to the DSO its aggregated consumption
plan and defines its individual observation 𝑜𝑛,𝑡.

DSO calculates its individual contribution 𝜑𝑛,𝑡(𝑣) with
Shapley-Value, based on equations (5) and (6).

DSO communicates the reward calculated based on (4), and
the system aggregated profile 𝑆𝑡.

Get the normalized state 𝑠𝑛,𝑡{𝑆𝑡} × {𝑜𝑛,𝑡}. (cartesian product
between the system state and its individual observation).

Calculate rewards 𝑅𝑛,𝑡.
Collect the set of partial trajectories {(𝑠𝑛,𝑡, 𝑎𝑛,𝑡, 𝑅𝑛,𝑡, 𝑠𝑛,𝑡+1)}
on policy 𝜙𝑛,𝑡 = 𝜙𝜃𝑛,𝑡 (𝑎𝑛,𝑡, 𝑠𝑛,𝑡).

Estimate advantage 𝐴̂𝑛,𝑡.
if 𝑡 mod 𝑇 = 0 then

Compute policy update

𝜃𝑛,𝑡+1 = ar g max
𝜃

𝑇
∑

𝑗=0
𝑍(𝜃)

via stochastic gradient ascent with Adam [52].
end

end
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As the customers are different for each DRA, the actions needed
during each coordination process are different. It means that each
RL-based DRA must learn its own best strategies independently. For
this purpose, an Independent Proximal Policy Optimization (IPPO)
technique is proposed. According to [53], empirical studies have shown
that IPPO can offer excellent performances, close to or even better than
the MARL techniques based on centralized training with decentralized
execution, in several benchmarks. This algorithm is a cooperative
MARL strategy where each RL agent learns independently using PPO.
PPO is a practical and effective policy gradient algorithm derived from
Trust Region Policy Optimization (TRPO), that replaces a trust region
constraint with a simpler clip trick. The algorithm uses a parameter 𝜃
to optimize a policy 𝜙𝜃(𝑎𝑡, 𝑜𝑡). In RL theory, this policy describes the
agent’s behavior in deciding the action that must be performed in a
given state. Using the clip trick, this technique stabilizes the training
process by avoiding high policy alterations during the parameter up-
dating process. This trick attempts to keep old and new policies closer,
esulting in reward enhancement and stability [54]. The parameter
pdating of 𝜃 is achieved by maximizing the objective function,

𝑍(𝜃) = Ê𝑡[min(𝑟𝑡(𝜃)𝐴̂𝑡, 𝑐 𝑙 𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖 , 1 + 𝜖)𝐴̂𝑡)] (7)

where 𝐸̂𝑡 is the expectation over episode 𝑡, 𝑟𝑡(𝜃) presents the probability
ratio between the new and old policies in terms of 𝜙𝜃(𝑎𝑡, 𝑠𝑡) ∕𝜙𝜃𝑜𝑙 𝑑 (𝑎𝑡, 𝑠𝑡).
𝜖 is the hyperparameter for clipping to avoid large deviations in the 𝜃
updating process. And 𝐴̂𝑡 is the advantage estimation to measure the
performance of the selected action given the current state, using the
RL value function 𝑉 (𝑠𝑡), the discount factor 𝛾 and the batch size 𝑇 , and
is calculated as follows:

𝐴̂𝑡 = −𝑉 (𝑠𝑡) + 𝛾 𝑅𝑡 +⋯ + 𝛾𝑇−𝑡+1𝑅𝑇−1 + 𝛾𝑇−𝑡𝑉 (𝑠𝑇 ) (8)

𝑠𝑡 and 𝑅𝑡 are the state and the reward on episode 𝑡 for each RL agent,
respectively. Being the system state 𝑆𝑡 the only shared information
between the DRA agents, for the proposed scenario, the state 𝑠𝑛,𝑡 for
the DRA 𝑛 will be established as the Cartesian product 𝑆𝑡×𝑜𝑛,𝑡 between
the system state and its individual observation, i.e., 𝑠𝑛,𝑡 = {𝑆𝑡, 𝑜𝑛,𝑡}.
Furthermore, combining the Eqs. (3) and (5), the individual reward at
state 𝑠𝑡 for agent 𝑛 can be finally stated as follows:

𝑅𝑛,𝑡 = 𝜔1𝜑
𝑛,𝑡(𝑣)𝝀[𝑃 𝐴𝑅(𝒀 𝒕)] + 𝜔2

𝑁
∑

𝑘=1
𝜋𝑛
𝑘(𝑎

𝑛,𝑡)𝑦𝑛,𝑡𝑘 (9)

The Algorithm 1 represents the utilized IPPO technique, based on
the PPO mechanism presented by [52].

2.3. Automated DR for residential agents

For the case of the residential agent, it is assumed that each of
them is equipped with a home energy management system (HEMS).
The HEMS deals with controllable and non-controllable loads to modify
the consumption plan by scheduling the consumption of the flexible
ones. In this case, the controllable load refers to electric heating systems
(EHS) controlled by smart thermostats, and the non-controllable loads
are the other household appliances. Based on end-users comfort, the
HEMS can modify the heating consumption to provide the flexibility
required for residential agents to gain an advantage from the dis-
counts offered by the dynamic pricing mechanism. Subsequently, the
individual welfare maximization for each user 𝑗, can be expressed by,

Maximize
𝐮𝑗={𝑢𝑗𝑘}

𝐾
𝑘=1

𝐾
∑

𝑘=1
(𝑈 (𝑢𝑗ℎ,𝑘) − 𝜋𝑛

𝑘𝑢
𝑗
𝑘)

subject to 𝑥𝑗𝑘+1 = 𝑓 (𝑥𝑗𝑘, 𝑥out
𝑘 , 𝑢𝑗ℎ,𝑘,𝒘𝑗 )

𝑥𝑗𝑘 ∈ [𝑥𝑗min, 𝑥
𝑗
max]

𝑢𝑗𝑘 ∈ [0, 𝑢𝑗max]
𝑗 𝑗 𝑗

(10)
𝑢𝑘 = 𝑢ℎ,𝑘 + 𝑢𝑓 𝑖𝑥,𝑘
8 
where the vector 𝒖𝑗 = {𝑢𝑗1,… , 𝑢𝑗𝐾} represents the consumption plan of
the 𝑗th house, considering the aggregation of thermal and fixed loads,
𝑢𝑗𝑘 = 𝑢𝑗ℎ,𝑘 + 𝑢𝑗𝑓 𝑖𝑥,𝑘. As the residential agent interacts with the DRA 𝑛,
𝜋𝑛
𝑘 is the dynamic tariff this aggregator defines at timestamp 𝑘. The

parameters 𝑥𝑗min and 𝑥𝑗max are the lower and upper bounds for the
allowed internal temperature according to users thermal preferences,
respectively, and 𝑢𝑗max is the maximum heating system capacity in
time slot k. 𝑓 (⋅) is a linear model for describing the dynamic thermal
response of the house. This model depends on the indoor temperature
𝑥𝑗𝑘, the outdoor temperature 𝑥out

𝑘 , the heating power consumption 𝑢𝑗ℎ,𝑘
and the matrix coefficients 𝒘𝑖. According to [55,56] this model can be
expressed as:

𝑥𝑗𝑘+1 = 𝑓 (𝑥𝑗𝑘, 𝑥out
𝑘 , 𝑢𝑗ℎ,𝑘,𝒘𝑗 ) (11)

= 𝑤𝑗
1𝑥

𝑗
𝑘 +𝑤𝑗

2𝑥
out
𝑘 +𝑤𝑗

3𝑢
𝑗
ℎ,𝑘.

The first term in Eq. (10) refers to the customer’s utility function;
he second term is the customer’s cost expressed by the bill to pay.
he utility function 𝑈 (𝑢𝑗𝑘) models the thermal user’s thermal comfort

and is determined by the set-point temperature 𝑥𝑗sp and 𝛿𝑗𝑘, the comfort
weight factor representing the user’s elasticity. 𝛿𝑗𝑘 explains how much
users are willing to sacrifice their comfort to reduce the bill, and it
is also used for weighting the utility with respect to the cost [55].
This comfort factor is a daily profile based on a historical analysis
of set-point profiles. This means that the user’s elasticity changes in
time during the day. The 𝛿𝑗𝑘 can take values from the set [0, 𝛿𝑗max],
following the set-point shape profile, assuming that higher values of
set-points mean higher thermal comfort needs. In the case of 𝛿𝑗𝑘 = 𝛿𝑗max,
occupants are inelastic, and they are interested in maintaining their
comfortable temperature set-point. Conversely, the agent can freely
modify the internal temperature when 𝛿𝑘 = 0 while respecting the
constrain 𝑥𝑗𝑘 ∈ [𝑥𝑗min, 𝑥

𝑗
max]. This strategy maximizes the flexibility

potentials of the residential agent while respecting its thermal comfort
constraints. Finally, according to [57], the residential thermal comfort
function can be modeled through,

𝑈 (𝑢𝑗ℎ,𝑘) = −𝛿𝑗𝑘(𝑥
𝑗
sp − 𝑥𝑗𝑘)

2, (12)

The residential agents receive the price policy from the DRA simul-
aneously and selfishly solve their optimization problems. In order to

make them coordinate through the coordination loop, it is necessary
o regularize their decision-making process. The proposed regulariza-
ion strategy is based on proximal decomposition as a distributed
lgorithm [58]. For this, a regularization parameter, 𝜏, is utilized to
enalize differences between consecutive defined consumption plans
hrough the coordination loop, i.e., penalize significant variations be-
ween episodes 𝑡 and 𝑡 − 1 [59]. Thus, the dual optimization problem

residential agents’ cost function can be defined by (13).

Minimize
𝐮𝑗={𝑢𝑗𝑘}

𝐾
𝑘=1

𝐾
∑

𝑘=1
𝛿𝑗𝑘(𝑥

𝑗
sp − 𝑥𝑗𝑘)

2 + 𝜋𝑛
𝑘𝑢

𝑗
𝑘 + 𝜏(𝑢𝑗 ,𝑡𝑘 − 𝑢𝑗 ,𝑡−1𝑘 )2

subject to 𝑥𝑗𝑘+1 = 𝑓 (𝑥𝑗𝑘, 𝑥out
𝑘 , 𝑢𝑗ℎ,𝑘,𝒘𝑗 )

𝑥𝑗𝑘 ∈ [𝑥𝑗min, 𝑥
𝑗
max]

𝑢𝑗𝑘 ∈ [0, 𝑢𝑗max]

𝑢𝑗𝑘 = 𝑢𝑗ℎ,𝑘 + 𝑢𝑗𝑓 𝑖𝑥,𝑘

(13)

For each residential group interacting with a DRA, it is necessary to
determine the regularization parameter that ensures the convergence of
the mechanism and the avoidance of rebound peaks in the day-ahead
market [60]. The selection of the 𝜏 value is performed according to the
inequality:

𝜏 > 4(𝐽𝑛 − 1)𝜋0 (14)

where 𝐽𝑛 is the number of residential agents interacting with the

DRA 𝑛 and 𝜋0 is the initial constant price [56]. For each iteration,
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Fig. 4. Aggregate energy demand when exposed to a winter outdoor temperature profile.
T
S

the DRA sends the new price policy, and the residential agent solves
the optimization problem (13) until an agreement is reached. Finally,
the coordination process between the DRA and the residential agents
converges when the relative PAR of the aggregated profile between
successive iterations is lower than a predefined threshold:
‖𝑃 𝐴𝑅(𝒚𝑡)‖2
‖𝑃 𝐴𝑅(𝒚𝑡−1)‖2

< 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑 (15)

3. Results and discussion

This section provides the simulation results of the proposed MARL-
ased DR mechanism. First, a validation of the residential consumption
ehavior model is carried out. Then, the training process results are
xamined through the learning process of the best parameters selection
or the price function during the coordination loop and the results in

peak-shaving of the IPPO-based RL technique combined with the SV-
based reward-sharing mechanism. Finally, the importance of the SV is
resented, and how it improves the performance of the proposed MARL
echnique.

esidential agents behavior. The system environment for validating
he proposed technique comprises 11 residential agents. We collected
ata from 11 single-family detached houses in Trois-Rivieres, Quebec,
anada, during a winter period (from January to April 2018), with a
5-minute sampling interval. The houses are equipped with electrical
aseboards and controllable thermostats for temperature control. Using
he real-world data, we constructed the thermal models for all the
esidential agents, considering the recorded indoor temperatures, the
lectrical heating power consumption, and the outdoor temperature.
nd a ridge regression mechanism was applied to determine the matrix
oefficients 𝒘𝑗 needed in Eq. (11). Furthermore, statistical information
rom a previous study conducted in [61] is utilized to randomly
enerate the set-point values 𝑥𝑗sp from the set {20, 21, 22, 23} in degree
elsius [C]. The different levels of users’ thermal elasticity 𝛿𝑗𝑘 for the
tility functions can be extracted from a log-normal distribution with
he expectation, E(𝛿max) = 5, and variance, 𝑉 𝑎𝑟(𝛿max) = 1. Finally, with
he historical power consumption of energy-extensive appliances other
han electric boards, an aggregate load profile of non-controllable loads
s generated and added to the simulated heating consumption.

Fig. 4 shows the aggregated consumption behavior of the residential
users exposed to a temperature profile of a winter day. The behav-
ior shown in the Figure demonstrates that the developed residential

odels follow the expected power consumption pattern of Quebec’s
esidential sector. It is important to note that each residential agent per-
orms a model predictive control to perform actions such as preheating
he house to avoid high-price regions, respecting comfort needs, and
et-point temperature changes.
9 
able 2
pecifications of the computer used for the simulation process.
Component Description

Processor Intel Xeon W-2245 3.90 GHz
Memory 128 GB - DDR4
Hard drive size 4TB SSD
OS Ubuntu-22.04

Table 2 provides the hardware specification of the computer used
for simulation purposes. It is important to mention that most of the
computational burden was linked to the residential models. These
computations accounted for more than 98% of the system computa-
tion time. This problem can be alleviated through the implementation
of distributed computation strategies that better represent the actual
behavior of these architectures.

MARL for optimizing DRA dynamic pricing strategy. The MARL envi-
ronment is developed using the OpenAI Gym API. The 11 developed
residential agents are distributed between three DRAs in this environ-
ment. One DRA with three customers and the other two with four. The
price limits at the aggregator level are 𝜋0 = 15 ¢∕k Wh and 𝜋𝑚𝑖𝑛 can
be established by the DRAs within the interval [5, 15] in ¢∕k Wh. These
values will be used to build the price generator function. At the DSO
level, the reward function (4) will utilize the parameters 𝑐1 = 20 and
𝑐2 = 1.42. These parameters come from the PAR-based form of the
function proposed by [46]. Finally, as it is important to balance the
terms of each DRA’s reward function (9) and it is not an easy task to
determine the grid cost reduction for a peak shaving achieved, 𝜆𝑚𝑎𝑥 = 1
representing the 100% of a given reward, and 𝜔1 = 1 as well. On
the other hand, for each DRA 𝑛, 𝜔2 =

∑𝑁
𝑘=1 𝜋

𝑛
𝑘(𝑎

𝑛,0)𝑦𝑛,0𝑘 to normalize
the second term of the rewards function with respect to the initial
DRA revenue with the constant price 𝜋0. These values are fixed for all
iterations in this case study.

The proposed MARL approach starts with a learning process during
1000 episodes. Each episode comprises a coordination loop that stops
after a maximum of 10 iterations between each aggregator and its
customers or when threshold defined in (15) is less than 1%. Fig. 5 pro-
vides the IPPO algorithm’s performance during training, presenting the
aggregate reward of the different RL agents. The DRAs initially select
poor actions for the parameter setting of the price function through the
coordination loop. By exploiting the experience they gradually gain, the
DRAs finally start improving their decision-making process, achieving
higher rewards and cooperating better to decrease the PAR for the
system aggregated load profile. After 500 episodes, the algorithm con-
verges, and the system is ready for validation. More specifically, Fig. 6
evidence how each aggregator maximizes its own reward function
during the training process by individually improving their decision-

making rules. This Figure evidences how each agent realizes that
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Fig. 5. Analysis of the IPPO mechanism performance during the training process.
Fig. 6. Analysis of the individuals DRAs training process.
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ffering price discounts to the end-users allows the capitalization of
he DSO’s reward.

Fig. 7 shows the performance in peak reduction of the dynamic
pricing mechanism for the proposed multi-aggregator system. These
esults demonstrate that implementing a MARL mechanism combined
ith SV-based reward-sharing mechanism calculation can significantly

educe peak load in a cooperative scenario. In fact, it is also possi-
ble to verify the achievement of PAR reduction, reducing the system
aggregated profile’s PAR from 1.9 to 1.61. Fig. 8 provides an insight
into the role of each DRA in achieving the peak-shaving presented of
the system aggregated consumption profile. The figure demonstrates
how the coordination loop can reduce the peaks utilizing dynamic price
profiles when the DRA determines the optimized parameters for the
price generator function for each iteration.

Shapley-Value-based reward-sharing mechanism. Finally, to analyze the
importance of combining the IPPO algorithm with the SV-based reward-
sharing mechanism, in Fig. 9, a performance comparison is presented.
A comparative study is conducted by implementing the same IPPO
technique without utilizing the SV calculation, i.e., dividing the DSO’s
reward evenly between the three DRAs. In this, it is possible to verify
that the fair reward-sharing mechanism improves the convergence
performance of the MARL technique in terms of the convergence time,

hich is reduced by 29%, representing 290 episodes less for training.
alculating the marginal contributions for each DRA provides the RL
gents with a better understanding of the impact of their actions on
he system. This extra information helps deal with the non-stationarity
roblem of MARL techniques, resulting in a faster and more optimized
olution.

erformance comparison. The proposed MARL-based mechanism is fi-
ally compared with a proximal decomposition approach proposed
 t
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Fig. 7. Peak reduction after learning process.

by the authors in [60]. This mechanism is applied by each DRA
applying a billing mechanism proportional to the consumption plan
uring ten iterations. Furthermore, this mechanism is adapted to re-

spect the price limits established in the proposed scenario for a more
air comparison. Table 3 provides the obtained results. This information
emonstrates that the proximal decomposition approach can provide a

higher aggregators’ income from selling energy. However, the proposed
ARL-based mechanism provides better results regarding PAR reduc-

tion, representing a DSO’s reward 50% higher than the reward obtained
ith the proximal decomposition approach. This highlights the ability
f the proposed model to make different aggregators cooperate in order
o achieve an overall system objective.
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Fig. 8. DRAs’ coordination loops after training.
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Table 3
Performance comparison between the proposed MARL-based mechanism and a proximal
decomposition approach.

DRA 1 DRA 2 DRA 3

IPPO
Income 74.6$ 62.2$ 55.05
PAR 1.42 1.44 1.75

DSO’s reward 73.1%

Proximal decomposition
Income 91.6$ 80.9$ 66.1$
PAR 1.91 1.87 1.67

DSO’s reward 19.8%
11 
4. Conclusions

This paper proposes a cooperative price-based demand response
mechanism for a multi-aggregator system, utilizing multi-agent rein-
forcement learning (MARL) and a Shapley Value-based reward-sharing
approach. In this regard, an IPPO-based MARL architecture is employed
o coordinate a set of demand response aggregator (DRA) agents,
iming to harness the flexibility potential of residential customers. The
RAs establish dynamic pricing discounts in an iterative process, where
RAs communicate their price profiles and customers adjust their con-

umption plans accordingly. In this win–win approach, the residential
users leverage the flexibility of their controllable loads to reduce their
ills, while the DRAs capitalize on this flexibility to decrease the sys-
tem’s aggregated peak demand. As a result, DRAs gain access to rewards
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Fig. 9. MARL performance with and without the SV-based reward-sharing mechanism.
D

R

offered by the DSO for improving the peak-to-average ratio (PAR) of the
daily profile. The results presented demonstrate a significant reduction
in the PAR of total power demand, from 1.9 to 1.61. Furthermore, the
importance of implementing the SV-based reward-sharing mechanism
s shown, improving the optimization of the solution and reducing the

convergence time by 29% while increasing the reward obtained by
he agents by more than 5%. The proposed approach has also been

compared with a mechanism based on proximal decomposition. This
strategy can lead to higher income for aggregators from energy sales.
However, the proposed MARL-based mechanism yields superior results
in terms of PAR reduction, resulting in a DSO reward that is 50% higher
than that achieved with the proximal decomposition approach.

This study has the limitation of not considering the willingness to
participate from the residential users. The development of such a model
would make it possible to develop strategies for adapting DRA agents
according to the users who wish to participate in the program. It would
also allow the evaluation of the performance of competitive scenarios
among DRA agents seeking to increase the number of enrolled clients.
In future studies, the development of the willingness model will be
performed, as well as the consideration of a progressive change in
user elasticity. Furthermore, the proposed approach will be analyzed in
terms of future application by analyzing the performance of strategies
to pre-train the MARL mechanism in a historical day and then evaluate
the algorithm in out-of-sample days. In addition, the consideration of
users’ deviations from consumption plans will be explored.
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