POSTPRINT VERSION. The final version is published here: Afolabi, I., Taleb, T., Frangoudis, P. A., Bagaa, M., & Ksentini, A. (2019). Network Slicing-Based Customization of 5G Mobile Services. In IEEE Network (
10.1109/MNET.001.1800072

Network Slicing-based Customization of 5G Mobile
Services

Ibrahim Afolabi, Tarik Taleb, Pantelis A. Frangoudis, Miloud Bagaa and Adlen Ksentini

Abstract—Through network slicing, different requirements of
different applications and services can be met. These requirements
can be in terms of latency, bandwidth, mobility support, defining
service area, as well as security. Through fine and dynamic tuning of
network slices, services can have their delivery platforms constantly
customized according to their changing needs. In this article, we
present our implementation of an E2E network slice orchestration
platform, evaluate its performance in terms of dynamic deployment
of network slices in an E2E fashion, and discuss how its functionality
can be enhanced to better customize the network slices according to
the needs of their respective services.

Index Terms—5G, Network Slicing, Network Softwarization,
Network Function Virtualization (NFV), Management and
Orchestration (MANO), Software Defined Networking (SDN), and
Service Customization.

I. Introduction

The fifth generation of mobile communications system (5G)
is soon to be deployed, supporting the business requirements
of different mobile virtual network operators (MVNO), over-
thetop (OTT) application providers, and vertical industries [1].
5G is expected to positively impact and revolutionize the
Quality of Service (QoS) perceived by users through an agile
and truly programmable network architecture that allows a
genuine service differentiation. A wide gamut of applications is
expected to be provided by 5G. These applications have
different requirements and pose different levels of challenges
to the underpinning mobile network infrastructure [2]. Their
requirements stem from the individual characteristics
exhibited by each of the mobile network services belonging to
the MVNO, OTT or vertical industry, operating on top of the
same physical network infrastructure.

Most importantly, the 5G vertical industries (e.g., health care,
automotive, media and entertainment, and smart
manufacturing) have demonstrated the need for distinctive
service differentiation. Such service differentiation can be
enabled by accommodating the preferences of end-users
through the customization of the underlying service delivery
networks [3]. For instance, in case of the media and
entertainment vertical, service customization should go
beyond servicing content
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selected only as per the preferences (e.g., movie types and
preferred quality) and contextual information (e.g., location,

language and ethnicity) of viewers, but should also reflect the
network dynamics and the mobility features of viewers. For
example, a video content provider could recommend a video
content to a group of viewers based on their spoken language.
Knowing in addition the mobility patterns of these viewers, the
video content provider could in advance arrange for the right
amount/slice of network resources over the areas to be visited
by the viewers so that the viewers’ perceived Quality of
Experience (QoE) would be maintained at a certain desired
level. In this fashion, service customization goes beyond users’
preferences and contextual information, to also build optimal
network slices to efficiently deliver the services as well.
Accordingly, service customization becomes a
multidimensional concept, whereby both the users’ context
and the underpinning network’s context (e.g., available
network resources, application resources, available technology,
and available network function types) are all taken into
consideration when orchestrating a particular network slice to
serve best the overall needs of a 5G vertical.

By enabling promising 5G-ready applications as well as
complex systems with diverse service and network
requirements on top of a shared infrastructure through
network slicing, 5G technology will address the needs of all
network users in parallel.

In this article, we present a novel framework for the dynamic
orchestration of E2E network slices. We also present an
evaluation of the system, and identify a number of useful
information for 5G network and infrastructure providers. Our
slice orchestration framework supports the creation of
network slices on top of shared infrastructure, and customized
to serve different 5G mobile services. The proposed framework
is compliant with 3GPP specifications on network slicing
orchestration and management [4].

The remaining of this article is organized in the following
fashion. Section Il gives a comprehensive overview of network
slicing, describing slice components, types and templates.
Section Ill presents our architectural framework for E2E
network slicing, focusing on its distinctive characteristics.
Section IV evaluates the performance of our envisioned
framework from user- and system-centric perspectives. The
article concludes in Section V.

Il. Network Slicing

Network slicing is the process of sharing network resources,
such as computing, networking, memory and storage which
are TABLE I: Table of Abbreviations

Acronyms

Full meanings
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3GPP 3rd Generation Partnership Project

5G 5th Generation

CN Core Network

CSMF Communication Service Management Function
E2E End-to-End

MAC Medium Access Control

mMTC Massive Machine Type Communication
MVNO Mobile Virtual Network Operator

NBI Northbound Interface

NFV Network Function Virtualization

NFVI NFV Infrastructure

NFVO NFV Orchestrator

NSMF Network Slice Management Function
NSSMF Network Slice Subnet Management Function
MANO Management and Orchestration

MME Mobility Management Entity

oTT Over-The-Top

PHY physical

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RRB Radio Resource Blocks

SDN Software Defined Networking

uRLLC Ultra Reliable Low Latency Communication
VEPC Virtual Evolved Packet Core

VIM Virtualized Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

xMBB Extreme Mobile Broadband

available on a single set of physical infrastructures, among
different virtual tenants with a certain degree of logical or
physical separation as detailed in [5].

A. Slice Components, Types and Templates

a) Slice components: In general, a network slice
consists of a number of VNFs interconnected and optimally
placed to fulfill a specific set of requirements and meet specific
network constraints in order to realize a particular use-case
scenario. Since every network slice is designed to deliver a
specific usecase scenario, the set of VNFs needed to create an
instance of a network slice will be somewhat different from
another. However, despite the possible differences in the
design of network slices, 5G technology aims to incorporate
simplicity and flexibility in network slicing. This will be done by
sharing and reusing as many network functions as possible in
the instantiation of different network slices [6].

2

b)  Slice types: In the context of E2E network slicing in
5G, a network slice will consist of components in the form of
VNFs, from the Radio Access Network (RAN), the Core Network
(CN), and the transport network.

According to [7], network slices are broadly classified into
three major categories: Extreme/Enhanced Mobile BroadBand
(xMBB), Ultra Reliable Low Latency Communication (URLLC)
and Massive Machine Type Communications (mMTC). Each of
these categories is characterized by its specific performance
requirements, which are reflected through the VNF types and
the amount of virtual resources (i.e., CPU, Storage, Memory)
used.

c) Slice templates: The aforementioned categorization
of network slices facilitates the definition, design and
optimization of blueprints for different network slices
belonging to the different categories. These variant network
slice blueprints are known as network slice templates. A
network slice template is a functional blueprint from which a
particular type of network slice could be instantiated. The
blueprint defines all the necessary VNFs, their composition,
VNF forwarding graph, virtualization technology type,
location(s) of instantiation, level of elasticity and E2E network
resources needed by a network slice. In addition, the slice’s
lifespan (i.e., the operational duration of the slice) is
determined through its blueprint by the values given for its
activation and termination times (e.g., in day(s), week(s),
month(s) or even in year(s)), respectively.

B. End-to-End Network Slice Structure

At a high level, regardless of the underlying system and the
functional requirements of a network slice and its VNF
composition, an E2E network slice should always be composed
of three sub-slices: RAN, Core, and Transport.

1) RAN sub-slice: Ensuring that a network slice is E2E implies
that the RAN must be also sliceable. A notable challenge here
is how to provide the necessary level of performance isolation
across slices which are sharing typically the same access
network, where each slice has its own resource requirements.
These requirements are basically defined by the available
amount of the physical radio resource blocks (RRBs) and the
frequency of scheduling them (determining the slice’s
bandwidth and latency). This physical resource could either be
statically or dynamically allocated [8] at the access network for
use by the RAN sub-slices.

The isolation between RAN sub-slices should be ideally
carried out across the protocol layers responsible for the
aforementioned scheduling and physical radio resource
allocation; particularly, the PHY and MAC scheduling layers of
the mobile access node [9]. The RAN sub-slicing could be
enabled for instance by assigning each sub-slice a unique ID [6].
This ID is used to identify the RAN sub-slices and is also used to
enforce RAN-level differentiated traffic treatment per subslice.



2) Core sub-slice: This sub-slice includes the elements that
correspond to the core network. These elements naturally lend
themselves to a virtualized implementation.

NFV facilitates tailoring a slice to the needs of its respective
service. Allowing the deployment of a virtualized core network
over an NFV Infrastructure (NFVI) comes with the flexibility to
customize the compute and other resources allocated to the
slice. It also allows the slice to scale on demand for cost and
performance optimization, and to select the appropriate
functional configuration of the core network components.
These tasks are supported by maturing relevant standards,
such as the ETSI NFV Management and Orchestration
(NFVMANO) [10] framework and available implementations of
MANO software stacks.

3) Transport sub-slice: After instantiating a virtual core
network sub-slice from a slice template, the VNFs constituting
the core sub-slice should be chained together. The resulting
core sub-slice will then be connected to the appropriate RAN
sub-slice and then to an external network through a
corresponding transport path. The involved transport path will
form the transport sub-slice, whose management is enabled by
the use of technologies such as SDN or Virtual LANs.

All sub-slices provide a communication service (service slice)
at different technological domains. In addition, they include
the necessary dedicated resources (resource slice) needed to
operate the technology-specific service. For instance, at the
RAN level, the service is radio access and the resources are
virtual resource blocks. The core sub-slice provides EPCaas,
which is supported by specific dedicated virtual storage and
compute resources. The transport sub-slice provides a
connectivity service to external networks, with dedicated
virtual network links.

Ill. An End-to-End Slice Orchestration and Management
Framework

A. High-level design

In compliance with the 3GPP specifications of [4], our high-
level network slicing framework is shown in Fig. 1. The
Communication Service Management Function (CSMF)
component, which is outside the scope of this work, receives a
request for a communication service by a vertical and
translates it into specific slice requirements. Then, it interacts
with the End-to-End (E2E) Slicer via the latter’s northbound
interface (NBI) to request the instantiation of an E2E network
slice with specific characteristics. The features, design, and
implementation of the E2E Slicer are the main focus of this
article. For more details on CSMF functions, the interested
reader may refer to [4].

Every 5G service slice shall have a lifecycle, which is handled
by the E2E Slicer’'s Network Slice Management Function
(NSMF). In particular, based on the requested slice type and
specific dimensioning information as reflected in the slice’s
requirements (e.g., slice reliability targets, number of UEs,
traffic characteristics to handle, etc.), a suitable slice template
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shall be retrieved from a catalogue and appropriate Network
Slice Subnet Management Functions (NSSMF) that correspond
to each sub-slice shall be selected, as indicated in the template.
The NSMF then proceeds by composing a customized slice
instance and delegating the instantiation and management of
each sub-slice to the appropriate NSSMF. Note that our
framework supports the MANO-as-a-Service concept by design.
Effectively, each slice template includes fields that indicate the
type of NSSMF that should be used to orchestrate the
underlying sub-slice instance. This functionality is particularly
important for handling core network sub-slices. In this case, the
NSMF will identify which NFV Orchestrator (NFVO) and the
respective MANO stack to

B
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E2E Slicer NSMF, NSSF
RAN sub-slice i Core sub-slice Transport sub-slice
NSSMF NSSMF NSSMF
Infrastructuire i I
Managemeht | i
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[PNF mgmt] [MANOaaS] controllers [SDN]
eNB agents ‘ | Cloud infrastructure/NFVI |
CSMF:  Communication Service Management Function

NSMF:  Network Slice Management Function
NSSF: Network Slice Selection Function
NSSMF: Network Slice Subnet Management Function

Fig. 1: High-level view of our E2E network slicing architecture.
Our design features an E2E Slicer which implements NSMF and
NSSF components. It supports the integration of PNFs for RAN
slicing and different MANO stacks per slice type and interacts
with them via different NSSMF components per sub-slice.

launch or reuse one slice instantiation type. Then, it will access
the NFVOQ’s NBI to request the creation of the appropriate core
network sub-slice instance, appropriately customizing the
included VNF instances (e.g., VMs implementing the Mobility
Management Entity (MME) functionality) and the respective
resources according to the specific service characteristics.

The RAN sub-slice NSSMF includes a RAN resource allocator
component, whose role is to translate slice requirements into
a radio resource allocation and carry out high-level RAN
resource management. As a result, the RAN’s state needs to be
always maintained in terms of the connected UEs per eNodeB
and the quality of their radio connection, per UE/slice bitrate
requirements, and the slice instances to which an eNodeB
participates. The above information is used by the NSSMF to
derive an appropriate RAN resource partition per cell in order
to satisfy the requirements of the coexisting slices (e.g.,
latency). The RAN resource partitioning can be adjusted



dynamically, following updates in the RAN state. Changes in the
radio conditions or the deployment of new slices is enforced by
the NSSMF using the appropriate NBI of the RAN controller. In
this context, the RAN controller can be seen as a RAN-specific
Virtual Infrastructure Manager (VIM), while an agent installed
at an eNodeB works as a hypervisor: It exposes a virtualized
view of RAN resources and offers the necessary primitives to
execute resource management tasks across slicededicated
physical resources on the same radio hardware.

Finally, the role of the transport-level NSSMF is to interact
with network elements such as SDN controllers, in order to
manage the provisioning and isolation of the links connecting
(virtual or physical) network functions of the access and core
network, and towards external networks.

A design with a similar target but distinct differences to our
approach is JOX [11], a Juju-based slicing-oriented
orchestration scheme. Although the design of JOX does not
preclude an NSMF operation, it is more oriented towards
providing NSSMF functionality and does not address slice
selection issues. As such, it can be used in a complementary
fashion to our architecture. In such a case, JOX could be used
to implement different NSSMF plugins, e.g., abstracting the
operation of the RAN controller by offering a RANspecific
NSSMF accessible via its NBI. Similar to this is the Open Source
MANO (OSM), which is a general orchestration framework that
offers lots of features but with no native support for
orchestrating and managing PNFs from which the RAN sub-
slices are orchestrated at the eNodeB. Another similar project
is M-CORD [12] which has made significant contributions to
E2E network slicing. Based on its architecture, M-CORD
includes slice definition components and allows stitching RAN
and core network sub-slices as in our case. Given these
similarities at the architectural and functional level, it should
be noted that our focus is more on ensuring the compliance of
our design with the 3GPP specifications on network slicing, and
on describing our own technical solutions for RAN slicing, slice-
dedicated core network support, and network slice selection
and orchestration, in a more lightweight design and
implementation than M-CORD.
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Fig. 2: 5G vertical use cases over the envisioned network slicing
architecture.

B. Use cases

Different vertical industries have different slicing
requirements, as depicted in Fig. 2. In particular, we focus on
the media and entertainment and the smart industry use cases
and show how our E2E Slicer customizes and orchestrates two
E2E network slices based on both system requirements as well
as customer preferences. For example, in the case of the smart
factory slice, shown in green, the service is deemed as a “low
latency, low bandwidth” service. Effectively, information
transmission of smart devices running in a smart factory would
require very short latency as well as moderately small
bandwidth at the access network. The access network
resources are accordingly allocated in the form of one RRB
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Fig. 3: Detailed architecture of the proposed framework.

(i.e., due to the “low bandwidth” nature of the smart factory
service) to the slice and that is at certain predefined times
corresponding to the “low latency” nature of the smart factory
service. Correspondingly, the VNFs that would be instantiated
at the core network would be more lightweight (i.e., also of low
quality) since the traffic to be processed at the control and data
planes is not resource demanding.

Conversely, in the case of the slice dedicated to a video
streaming service shown in red, the service is deemed as “low
latency, high bandwidth”. Consequently, the corresponding
amount of network resources allocated at both the core and
access parts of the network is higher. Many more resource
blocks are frequently allocated at the RAN compared to the
smart factory use case. Similarly, the VNFs instantiated for the
core network sub-slice are of high quality, able to process video
packets and are running on more virtual resources.



C. Distinctive features

In this section, we present some of our distinctive design and
implementation choices for the E2E Slicer. Our detailed
architecture, following the high-level design principles of
Section IlI-A, is shown in Fig. 3.

It shall be noted that our orchestration system supports
instantiating and orchestrating network slices on multiple
clouds/NFVOs. This functionality is provided by specific
percloud NSSMFs. However, the scope of this work does not
encompass the details of the individual functionalities and
interfaces required to interact with each of the APl endpoints
provided by the different existing cloud administrative domains
NSSMFs. Moreover, the Orchestrated E2E slices are composed
of sub-slices cutting across all the technology domains of the
mobile network as presented in Fig. 3.

1) RAN slicing: To enable RAN slicing, we have adopted the
FlexRAN approach [13]: Each eNodeB runs an agent which is
managed by a centralized controller using a southbound
protocol. The agent exposes RAN-level status information and,
importantly, makes it possible to apply resource sharing
policies at the MAC layer. It is left to the RAN subslice NSSMF
to derive the appropriate resource allocation ratios across all
coexisting slices sharing an eNodeB, and the FlexRAN protocol
allows the NSSMF to enforce them using the appropriate API
call.

Various algorithms [14] for deciding how RAN resources
should be shared across slices are possible, and we do not
discuss them here due to space limitations. Nevertheless, it is
worth noting that these algorithms combine awareness of
service-specific slice requirements (e.g., a strict latency
constraint for a uRLLC slice or a high-throughput demand for
XMBB) and the current RAN conditions. The former are
provided to the E2E Slicer by the slice owner at slice
instantiation time via its northbound REST interface, and the
latter are retrieved periodically or on-demand by eNodeBs
using FlexRAN.

2) Slice-dedicated core network support: A critical feature in
order to support E2E slicing is the ability of an eNodeB to
maintain  associations with multiple core networks
simultaneously, a feature typically termed as S1-flex. This is
important since a shared eNodeB instance may be hosting
multiple RAN sub-slices, which in turn are stitched with
separate core sub-slices potentially running over different
NFVIs. In our case, we have implemented a special S1-flex
agent in OpenAirinterface?, our LTE software of reference, that
handles new eNodeB-MME associations (carried out using the
S1AP protocol) when instructed so by the E2E Slicer. Notably,
this feature not only enables the communication of an eNodeB
with different slice-dedicated core networks, but also serves
for load balancing purposes: A single slice may necessitate the
instantiation of multiple replicas of its core network
components (e.g., MME) to share the UE load; the E2E Slicer
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will have to use the same procedure to notify the involved
eNodeBs about this.

3) Network slice selection function: Beyond the E2E Slicer’s
task of managing the association between RAN and core
network sub-slices, it also has a central role in network slice
selection. In traditional 4G networks, upon UE attachment, the
eNodeB selects the MME responsible for handling that UE
based on the specified PLMN (Public Land Mobile Network)
identity included in the attach request. In our case, this
decision is delegated to the slicer itself. In particular, each time
a UE connects to an eNodeB, the latter accesses a special REST
APl endpoint of the E2E Slicer to query for the appropriate core
sub-slice’s MME to direct the UE to. This offers flexibility, since
it facilitates the development of sophisticated per-slice core
network selection policies implemented as E2E Slicer plugins,
S1AP traffic load balancing algorithms, etc. However, as the
required flexibility comes with centralizing slice selection
decisions, it can lead to increased attachment latencies due to
the additional eNodeB-slicer communication, but also
potential overloads at the slicer level. In Section IV, we discuss
this flexibility-performance trade-off.

4) Slice instantiation and management: The E2E Slicer
provides a RESTful HTTP interface to the CSMF for slice
instantiation and runtime management. This interface allows,
among others, to select the type of slice from the ones
available in the slice catalogue and continue with the
composition of the slice as described in Section IlI-A.

Fig. 4 depicts the sequence of actions and the interactions
between the components of our architecture that take place
from the moment slice instantiation is requested until the slice
is fully operational E2E. Note that we make the distinction
between default and dedicated slices. In our design, the
deployment of a default slice is necessary as a fall-back for the
NSSF of the E2E Slicer when a UE is not associated with any
specific slice. In a typical scenario, the core network sub-slice’s
NSSMF corresponding to the default slice may be simpler, in
the sense that the default slice may involve an already running
legacy core network, thus not requiring its dynamic
deployment over a NFVI and its orchestration using a MANO
stack. The discussion in this section focuses on the case for a
dedicated slice, which in turn involves the dynamic
instantiation of a slice-dedicated core network.

Apart from information on the type of the slice to deploy, a
slice instantiation request also includes the involved service
areas. It should be noted that the E2E slicer is aware of the
eNodeBs belonging to each service area. This will enable it to
configure the deployed RAN sub-slices appropriately. Based on
the slice type as specified in the slice template, the E2E Slicer’s
NSMF selects the NSSMF which is responsible for the
instantiation of the core network over the respective
cloud/NFVI platform. The NSSMF then takes over the
communication with the respective NFVO in order to launch



and configure a virtual core network instance (virtual Evolved
Packet Core (VEPC) network). Different core network
deployment scenarios [15] are possible here, depending on the
selected slice template and the related service requirements.
This information dictates the exact VEPC characteristics (e.g.,
software images, number of VNF instances, and allocated
resources), and is passed on to the NFVO, which then
instantiates all the needed VNFs for the creation of the VEPC by
communicating with the underlying VIM. Upon completion of
the request, the NFVO notifies the E2E Slicer of the VEPC
service information, such as the IP address of the MME VNF,
which is used by the slicer to setup an S1AP association
between the serving eNodeBs and the instantiated vEPC
through the S1-Flex interface.

As soon as the S1AP association is established between the
eNodeB and VEPC, the E2E Slicer employs the RAN sub-slice’s
NSSMF to determine an updated resource sharing policy to
apply to the eNodeBs taking part in the slice, which will be
taking into account the radio resource requirements of all
coexisting slices per eNodeB. In our implementation, as shown
in Fig. 4, after computing the new RAN resource sharing, the
slicer’s NSSMF will communicate with the FlexRAN controller
over its NBI, and the controller will in turn enforce it by
communicating with each involved eNodeB’s FlexRAN agent.
After this procedure is completed, the slice instance is ready
for utilization.

During the slice’s lifetime, which spans until a predefined
time specified in the slice creation request or until its explicit
termination by the slice owner over the E2E Slicer’s NBI, the
E2E Slicer collects runtime monitoring information to perform
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Fig. 4: Sequence diagram for the slice instantiation procedure
in our implementation.
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slice lifecycle management operations. Retrieving monitoring
data and performing such management tasks per sub-slice is
delegated to the respective NSSMFs. Beyond enhancing RAN
and core network performance via appropriate resource
scaling and reconfiguration actions, such runtime information
can also help the E2E Slicer operator to better understand the
overall short- and long-term system behavior and optimize its
orchestration. Tools from artificial intelligence and data
analytics could be used to this end, which we consider a critical
topic for future research.

IV. Evaluation

The results derived from the evaluation of our E2E slice
orchestration platform are presented in this section. Our aim is
to quantify the price to pay for the flexibility offered by our
slicing design in terms of latency overhead and provide
guidelines on how the system operator could use our
performance results to customize the operation of the
deployed slices. We have carried out our evaluation from two
major perspectives: (i) a system-centric perspective which
pertains to the overheads associated with slice instantiation
and (ii) a user-centric one, which aims to quantify the overhead
imposed for end-users during the slice operation.

A. System-centric evaluation: Slice instantiation overhead

From a slice management viewpoint, we are interested in
measuring the delay from the moment slice instantiation is
requested over the E2E Slicer’s NBI until the slice is fully
operational. This system-imposed latency is usually incurred
once, and that is always during the process of deploying a
network slice. As depicted in Fig. 4, this overhead can be
broken down to the following components: (i) the time taken
for the E2E Slicer to instantiate the slice-dedicated core
network VNFs on the laaS platform, (ii) the time to
communicate successfully with the eNodeB to notify it of the
new VEPC instance and instruct it to create a new association
with it, and (iii) the delay to configure the RAN sub-slice for the
participating eNodeBs, which involves accessing the NBI of the
RAN controller to update the radio resources to be shared at
the RAN. The overall latency overhead is dominated by (i) and
is a function of the image size for the VNFs to be deployed,
some laaS configuration options, and, importantly, the core
sub-slice specific reliability and other requirements. Our
testbed measurements revealed that while the E2E Slicer takes
a few tens of milliseconds to communicate with both the
eNodeB and the RAN controller (i.e., 0.036s and 0.027s,
respectively), deploying core network VNF images in the
underlying laaS platform, which in our case is OpenStack Ocata,
takes orders of magnitude more time. To demonstrate this, we
have carried out the instantiation of VNF images of 10 different
sizes, ranging from less than 1GB to up to about 19GB as
presented in Fig 5. We note that drastic performance
improvements can be achieved if VNF images are already
cached at the compute nodes that will host the VNFs or if LXD



containers are used with the Z File System (ZFS), since the time
to transfer them from the image store is eliminated. It is thus
to the advantage of both the E2E Slicer and the laaS operator
(if these two entities do not coincide) to proactively cache
images at least for VNFs that are expected to be frequently
used.

—e— Uncached image o
—— Cached image
—¥— container image ,_,/0’/

102

Time in log scale (sec)

1 3 5 7 s 11 13 15 17 1
VNF image sizes (GB)

Fig. 5: VNF component instantiation times as a function of the
VM and Container images size. Caching VM images at compute
nodes drastically reduces the time to launch an instance.

This discussion also implies that the time to instantiate a
slice and the characteristics and requirements of the latter are
correlated and a trade-off for the E2E Slicer operator to address
is revealed. We elaborate this by an example. Consider a
vertical which requests the instantiation of a highly-available
network service. In this case, and assuming a core network sub-
slice which includes 4G EPC elements, the E2E Slicer will decide
to launch multiple replicas of the MME VNF and appropriately
balance UE association requests among them. How many
virtual instances of a specific function it will launch is a matter
of balancing among slice instantiation delay, available cloud
resources, and the desired slice reliability levels (i.e., more VNF
replicas means more time to launch them, potentially higher
cost, but also increased slice robustness and availability).
Measurement studies, such as the one we present here, could
assist the Slicer operator with such decisions.

B. User-centric evaluation: Slicer scalability and UE
association delays

In our design, the E2E Slicer has a critical role in the NSSF.
The level of centralization that we impose in the decision on
which core network instance a UE is attached to, can increase
the UE connection latency in the following two ways, which we
quantify in this section:

7

- An additional communication exchange needs to take
place anyway between the eNodeB and the E2E Slicer
using the latter’s REST interface upon UE attachment. It is
the E2E Slicer that executes the core sub-slice selection
function and drives the UE towards the appropriate core
network instance.

. Compared to the default 4G core network selection
decision, which is carried out in a distributed fashion by
eNodeBs, in our design the E2E Slicer centrally assumes
this role. It is therefore susceptible to increased latency
when the request load at its end increases.

In this section, we aim to measure the effect of the above
characteristics on UE attachment times. First, we report on the
minimum overhead that we impose in this procedure.
Compared to the default 4G attachment procedure, the
additional message exchange between the eNodeB and the
E2E Slicer causes an additional 36ms latency approximately,
under nonloaded E2E Slicer conditions. This additional time is
quite negligible and can be accommodated within the
maximum allowable time (73410 = 15s), which is a timer
normally started by the UE at the point of attachment to the
network as specified in 3GPP TS24.301. However, as the attach
request workload increases, this latency is expected to also
increase. We therefore carried out the following experiment.
We launched the E2E Slicer as a virtual instance on an
OpenStack cloud, to which we assigned a varying number of
virtual CPUs from 2 to 10 (2, 4, 6, 8 and 10). Then, we generated
parallel HTTP requests towards the E2E Slicer’s UE attachment
APl endpoint and measured its response times. As Fig. 6 shows,
after a specific request workload, the E2E Slicer’s average
response times steeply increase. For example, when it serves a
workload of more than 140 requests/s, the response time goes
significantly beyond 1s for all the compared number of CPUs
except for 10 CPUs. This behaviour is most visible especially
when the E2E Slicer runs on at most 4 CPUs.

The operator of an E2E Slicer will be certainly interested in a
result such as this, since it enables the operator to
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Fig. 6: Response time as a function of concurrent connections
for increasing request workloads while varying the allocated
CPU.

adequately provision needed resources for the E2E Slicer in
order to fulfill the SLA requirements of slice consumers. For
example, a slice consumer might encode a specific UE
attachment time constraints in the SLA requirements of the
slice. The operator then has to appropriately manage the CPU
and network resources allocated to the E2E Slicer to guarantee
this performance objective. In our case, if the slice consumer
sets a 1.5s upper bound to the average UE attachment time,
the operator needs to monitor the request workload on the
NSSF component and, if an increasing load is detected, the
operator shall scale up/out the allocated resources to maintain
aresponse time lower than the upper bound. For instance, this
result reveals that by scaling up the number of CPUs powering
the E2E Slicer from 4 to 8 when the number of connecting UEs
increase beyond 140 requests/s, about 2s response delay can
already be saved. This is a significant amount of delay when
considering the stringent time constraint imposed by many 5G
vertical applications.

V. Conclusion

In this article, we described the design and implementation
of an architecture for E2E mobile network slicing towards
supporting 5G vertical services with heterogeneous
requirements in a flexible and customizable way.
Experimenting with our software implementation has given us
insights into how the set of developed functions can be better
utilized for the overall performance enhancement of the
system and how we can learn from them to better prepare the
orchestration platform to take proactive measures in terms of
the provisioning of system resources for network slice
instances. Our results have shed light onto the limitations as

well as the capacities of our E2E network slicer with respect to
how fast a network slice can be instantiated from an E2E point
of view and what is the performance cost from a system and
user perspectives that is traded off for the achieved flexibility.
Such results can be used as a basis to derive best practices for
the operator of such a system.
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