POSTPRINT VERSION. The final version is published here: Addad, R. A., Dutra, D. L. C., Bagaa, M., Taleb, T., & Flinck, H. (2019, 9-13 Dec. 2019). Towards Studying Service Function Chain Migration Patterns in 5G Networks and
Beyond. 2019 IEEE Global Communications Conference (SLOBECOM), Waikoloa. 10.1109/GLOBECOM38437.2019.9013983

Towards studying Service Function Chain Migration
Patterns in 5G Networks and beyond

Rami Akrem Addad?, Diego Leonel Cadette Dutra2, Miloud Bagaal, Tarik Talebl4and
Hannu Flinck3

1 Aalto University, Espoo, Finland

2 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

3 Nokia Bell Labs, Espoo, Finland

4 Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland.

Abstract—Given the indispensable need for a reliable network
architecture to cope with 5G networks, 3GPP introduced a covet
technology dubbed 5G Service Based Architecture (5G-SBA).
Meanwhile, Multi-access Edge Computing (MEC) combined with SBA
conveys a better experience to end-users by bringing application
hosting from centralized data centers down to the network edge,
closer to consumers and the data generated by applications. Both the
3GPP and the ETSI proposals offered numerous benefits, particularly
the ability to deliver highly customizable services. Nevertheless,
compared to large datacenters that tolerate the hosting of standard
virtualization technologies (Virtual Machines (VMs) and servers),
MEC nodes are characterized by lower computational resources, thus
the debut of lightweight micro-service based applications. Motivated
by the deficiency of current micro-services-based applications to
support users’ mobility and assuming that all these issues are under
the umbrella of Service Function Chain (SFC) migrations, we aim to
introduce, explain and evaluate diverse SFC migration patterns. The
obtained results demonstrate that there is no clear vanquisher, but
selecting the right SFC migration pattern depends on users’ motion,
applications’ requirements, and MEC nodes’ resources.

|. INTRODUCTION

The 3GPP has adopted a new architecture, based on
microservices and web principles, dubbed 5G-SBA [1]. The SBA
allows the 5G network to be flexible, reusable, and
customizable, as it leverages on network functions (NFs) [2].
Having such a strong proposal derives the necessity of an
efficient orchestration system where Network Function
Virtualization (NFV) and Software-Defined Networking (SDN)
are expected to be a key future target for allowing a fast and
reliable NFs’ programmability [3]. Nonetheless, among new
industry use cases targeted by the 5G, there exist scenarios
that go beyond what the current device-centric mobility
approaches can support. The mobility of low latency
communication services, shared by a group of moving devices,
e.g., autonomous vehicles that share sensor data, is a prime
example of these cases. These use-cases’ demands for ultra-
low latency can be addressed by leveraging the MEC concept
[4]. By allowing the instantiation of applications nearby to the
network edge, in the vicinity of users, MEC is acknowledged as
one of the key pillars for meeting the demanding Key
Performance Indicators (KPIs) of 5G [5].

However, compared to large data-centers that tolerate the
hosting of standard virtualization technologies (VMs and

servers), MEC nodes are characterized by lower computational
resources. Furthermore, different standards development
organizations are heavily pushing towards adopting
microservices approaches and architectures [6], [7]. Therefore,
when compared to traditional VMs [8] based on quick
deployment, startup time, fast replication, live service
migration, and scaling methods, container technologies form
the ideal alternative for both MEC environments and emerging
concepts of micro-services.

Both 3GPP and ETSI proposals offered numerous benefits,
particularly the reduction of the network latency. However,
users nowadays are everything except motionless, which
induces a serious lack of flexibility and may take users far away
from the original MEC node where their service started
running, to overcome this problem, a new concept, dubbed
Follow Me Cloud (FMC) [9], [10], has been introduced. The
FMC permits services’” movabilities amid different MEC nodes
while ensuring low latency communications to end-users, as
an FMC is a single instance moving in concordance with the
end-user. Moreover, the type of services running in the Data
Network (DN), which was ignored by telecommunication
standardization entities, is expected to be a micro-service one.
Therefore, as modern services may expand over multiple MECs,
which introduces new issues — the management of instances
on different MECs instead of one compared to the FMC — to
ensure service continuity, links between the instances forming
distributed MEC applications, additionally to links related to
end-users, must be taken into account. Based on these
observations, and assuming that all these issues are under
SFC’s migration umbrella, the contributions of this paper can
be summarized as follows:

. The introduction of four practical SFC migration patterns
to support micro-service based applications in the DN
part from the proposed combined architecture of 3GPP
and ETSI;

. A detailed evaluation of the proposed patterns, where
different criteria will be considered to validate the new
suggested type of migrations;



« A final comparison is presented to determine the most
suitable SFC migration pattern within the 5G network.

The remainder of this paper is organized as follows. Section I
outlines the related works. Various SFC migrations patterns
with their respective design overview and the suitable
implementation are presented in Section Ill. Section IV
illustrates the experimental setup and discusses the obtained
results. Finally, we conclude the paper and introduce future
research challenges in Section V.

Il. RELATED WORK

Machen et al. [11] presented a multi-layer framework for
migrating active applications in the MEC, their results show
reduced total migration times, the downtime was considerable
with an average of 2s in case of a blank container. The increase
of the downtime is due to the non-use of the iterative
approach in the live migration process. The authors of [12]
proposed and evaluated three different mechanisms to
improve the enduser experience by using the container-based
live migration, their results show the efficiency of these
solutions compared to prior works. Addad et al. [13] presented
a framework for managing reliable live migrations of virtual
resources across different Infrastructure as a Service (laaS),
handling unexpected cases while ensuring high QoS and a very
low downtime without human intervention. The authors
considered the inter-cloud migration by leveraging the SDN
technology for traffic steering and re-direction, in addition to
multiple migration processes.

Sun et al. [14] investigated how to migrate multiple
correlated instances of VMs, defining the relationship only
among concurrent migrated VMs. Haikun and Bingsheng [15]
have presented a Coordinated Live Migration of Multi-Tier
Applications in Cloud Environments, they detailed the
difference of a single-VM migration, compared to VMs in a
multi-tier application followed by a formulation of a correlated
VM migrations problem. The authors designed and
implemented a coordination system that can be used as a basis
for enabling one of the desired strategies of SFC migration
related to the network control part. However, the authors did
not investigate the use of micro-services based technologies
(containers) that are expected to be playing an essential role
in the 5G and beyond networks.

With respect to the previously cited works, in this study, we
introduce complete SFC migrations patterns, the SDN
implication, and the inter-cloud live migration. Seeing that new
use-cases entrance will beget a highly mobile environment and
reduce the latency, this work is a must for achieving the 1 ms
latency objective for the upcoming 5G mobile systems and
beyond.

I1l. SERVICE FUNCTION CHAINS MIGRATIONS PATTERNS

FOR BEYOND 5G NETWORKS

A. Main architecture and problem formulation

Usually, a three-layer cloud-based architecture can be
represented as a general 5G architecture, where the core layer
is a robust computing power setup from different vendors, e.g.,
Azure, Rackspace, and private clouds based on OpenStack,
while the MEC layer hosts container-based technologies, e.g.,
LXC, LXD, Docker, and Rocket, given the insufficiency of
computational resources to serve the users layer. For the
simplicity’s sake, we omit the core layer in this representation,
moreover, we can host the MEC orchestrator in the core layer
to allow a global view of all entities present in the MEC layer.
Normally, the locations of the DNs and the User Plane
Functions (UPFs) are the choice of the network operator.
Though, because of a lack of trust between operators and to
guarantee the most common architecture in a real case, the
first deployment scenario presented in [2] is adopted. We
assume that we have a connected car management scenario,
i.e., it can be a drone-based management scenario as well, the
connected car moves from a location to another one, from
MEC1 to MEC2 in Fig. 1. Initially, the car is served by a set of
network functions (NFs) in perfect coordination and
synchronization that form an SFC, i.e., Service Function Chain
1, in Fig. 1. This SFC1 can deliver a secure video streaming
service whither the n—1 NFs are security checks as firewall and
IPS; while the remaining NF is the video server streamer. To
follow end-users’ mobility, the SFC needs to be shifted away,
i.e., live migrated, while conserving all links and
communication between NFs forming the moving SFC. The
main focus is to implement the SFC migration patterns, to
ensure a seamless migration across MEC nodes, without taking
into account other use-case-specific aspects, such as the signal
strength received by each vehicle, user equipment (UE) or UAV,
and the traffic steering done by the UPF within the 3GPP
domain.

A MIGEMIoN Y5 SDSHE Tk
sarvice based application in the Data Natwork

B | ; S

Fig. 1:
microservice based application in the Data Network

Service Function Chain Migration to support

To validate our proposed architecture, we need to
synchronize multiple live migrations. Initially, we start our
blueprint by presenting all the envisaged SFC migration
scenarios, how we synchronize NFs’ migration, what is the gain
and the different constraints and finally decide the approach



to ratify to meet 5G’s low latency requirements based on
evaluation in Section IV.

B. Asynchronous State-full Service Function Chain Migration

In this type of SFC migration, we start unsupervised live
migrations for each SFC’s NF, and as the last live migration end,
we finish the SFC migration. Then, we can reestablish the NFs’
network connectivity. We use this scenario as a worstcase
upper-bound to evaluate the computational, i.e., CPU, RAM,
and DISK and communication network resources, i.e., delay,
and bandwidth consumption for the SFC migration.

C. Synchronized State-full Service Function Chain Migration

The first approach is considered a trivial solution that may
consume all types of available resources, thus, we introduce
the synchronized SFC migration. The well known live migration
process usually takes four steps, disk copy, non-blocking
memory copy (pre-dump actions in CRIU [16]), final blocking
memory copy (dump action in CRIU), and restore. While we
can do the first two steps without stopping the virtualized
instances, the third step must freeze containers until the final
step restore it afterward. Thus, a synchronized SFC migration
approach aims to efficiently control each step separately, as
this fine-grained control reduces the overall system resource
consumption. Albeit different strategies can be employed to
eliminate the system overhead caused by multiple coordinated
and parallel migration processes, we selected two patterns to
be presented, for both patterns we consider an SFC with two
NFs:

1) Synchronized Wait-For-Me Pattern: In this strategy, we
allow the first and second steps of the migration process to run
in parallel, and we have a barrier just before the final memory
blocking action, i.e., dump. Then both instances have to wait
to continue their migration process. We can observe the
benefits of this approach in scenarios with plenty of network
resources. However, as the size of the virtualizations instances
is rarely the same or even equivalent, the first instance
reaching the memory blocking phase may have to wait for a
long period, this will result in a bigger downtime as the time
for waiting, other memory pages could be updated easily. Also
the CPU, in that case, can be exhausted as the actions are in a
parallel fashion.

2) Synchronized Round-Robin Pattern: The Round-Robin
strategy aims to reduce the migration CPU load, we achieve
this through grouping by phase the steps of an SFC migration
and then executing them in-order. This approach reduces
consumption of system resources caused by an SFC migration,
albeit at a significantly higher total migration time, as we do
all actions sequentially and as previously, this SFC migration
strategy uses all available network resources.

D. Network-aware based Service Function Chain Migration

5G networks are expected to support various URLLC's
services, which requires strict delay constraint. However, none
of the previous approaches can guarantee these prerequisites
because of the randomized way for handling SFC migration
when it comes to network resources. Indeed, having a huge
number of applications capable of following and serving users
can compromise all network resources among MECs by
allowing a large number of migrations at the same time. We
propose the network-aware based SFC migration to address
these requirements, as its purpose is to refine the network
usage, reducing the overhead, and enabling better users” QoE.
By controlling the network’s bandwidth, our network-aware
based SFC migration triggers low-consumption migration
operations across the networks. Initially, we gather all the
available information on bandwidth and latency between each
pair of MEC nodes, thus obtaining a global knowledge of the
distributed infrastructure. Then, after each migration’s
decision is taken, given network resources are reserved to
allow that migration and better usage of the global bandwidth.
Finally, our network-aware solution frees the used resources
as it completes SFC migrations. It is noticed that when using
rsync, the whole bandwidth is used by one process. But upon
other processes start a network transfer operation (either
migration or simple traffic), the bandwidth will be shared
among all the processes using the best-effort policy. Thus
based on this observation, if we start “n” migrations
simultaneously, the bandwidth usage will be shared among
them. Through a qualitative assessment, we can observe that
if “n” becomes too big, then the migration time will tend to the
infinity, which will result in a fiasco to network operators. We
also emphasize that we reserve bandwidth for each SFC
migration based on the last iteration, that stops the container.
Thus, if the reserved bandwidth offers a downtime transfer
similar to when having the full utilization of the bandwidth
then the reservation’s limit is set.

E. Implementation

A

X
containgr
client

SON Contrailer

Fig. 2: Architecture of the implementation.



Enabling the migration of multiple independent virtual
instances can be relatively easy when compared to migrating
several instances with a close relationship (SFC). Initially,
before enabling an SFC migration, the creation and the
formation of an SFC is the starting point of interest. As a testing
SFC implementation is unavailable, we design a service chain
for a video streaming application. In this SFC, each video
passes through an intermediate traffic redirection node, built
on top of an LXC container and has two SDNenabled network
interfaces. This redirection instance acts as a turnaround node
in the network where the integrality of the traffic should go
through in both directions, i.e., from the video server to the
client and vice versa as depicted in Fig. 2. As stated before, our
solution considers using the SDN paradigm thus, OVS switches
are configured using the ONOS SDN controller, where each
node in the SFC has its own switch. The only requirement is the
availability of the virtualization software to deploy LXCs
container engine and programmable switches OVSs. We use
our previous proposed solution, presented in [13], to allow
better isolation between incoming/out-coming traffic. To
implement the turnaround logic in the Dummy-LXC host, a
Bridge is created inside the Dummy-LXC container (the Red
Bridge in Fig. 2). Two outer network interfaces, vethO and
vethl, respectively, are plugged in the outside OVS (the blue
one in the same Figure); and inner network interfaces named
eth0 and eth1 are attached to the red Bridge in their turn.

IV. EXPERIMENTAL EVALUATION

We experimentally evaluated our proposed SFC migration
schemes using one physical server. The server has 48 cores
with VT-X support enabled, 256 GB of memory, 1Gbps
interconnection, and Ubuntu 16.04 LTS with the 4.4.0-77-
generic kernel and QEMU-KVM installed. Two virtualized
computer nodes were used to evaluate the proposed
implementation. Each one representing a different MEC node
(i.e. a DN node in ETSI and 3GPP proposals). The first VM is
acting as a source DN and the latter VM represents the target
DN. Each DN uses Ubuntu 16.04 LTS with the 4.4.0-64-generic
kernel and has 16 virtual core CPU and 32GB of main memory.
The container environment was setup using LXC 2.8 and CRIU
3.11. It is noticed that two additional hosts were used for the
management plane. The first host acts as an SDN controller
that manages the communications between the different DNs.
As SDN controller, we used ONOS, however, any other SDN
controller could be used as well. While the second host serves
as a global orchestrator for handling the life-cycle of SFCs (i.e.
from the creation phase till the migration or the deletion
stage). It is noteworthy that the global orchestrator uses an
enhanced version of MIRA!, a framework previously presented
in [13], that support our proposed SFC migration patterns and
schemes.

We start by evaluating the Asynchronous SFC migration
pattern under diverse network bandwidth limitations to select
the most appropriate bandwidth limit for reducing SFC’s
migration overhead. In that evaluation, both the downtime
and the total migration time will be analyzed and discussed.
Finally, based on satisfactory bandwidth usage, a CPU
consumption analysis will be presented to compare all the
approaches introduced and detailed earlier in Section Ill.

For each SFC migration scheme, we conducted a set of
experiments evaluating both the downtime and total time
under various network configurations and CPUs’ load; each
was repeated ten times. The SFC evaluated is consisting of a
video server streamer offering videos on demand (VoD) to
clients passing through an intermediate node dubbed
DummyLXC node that forms our second virtualization instance
to be migrated when the SFC migration is triggered. The
DummyLXC, and video server nodes sizes are equal to 470 MB
and 573 MB respectively.

A. Downtime Analysis

Fig. 3 depicts the induced downtime under diverse network
configurations. The main purpose of this experiment is to
optimally exploit network resources and avoid breaking down
the whole network infrastructure. The detailed explanation on
how this phenomenon can occur was introduced prior in
subsection 1lI-D. This experiment outputs the downtime,
standard deviation, 95% confidence interval (Cl), and
coefficient of variation (CV) results for both elements
constituting our developed service chain considering various
bandwidth values as part of defining the most suitable
network configuration. Detailed values are presented in Table
I. It is noticed that we used the Asynchronous SFC migration
pattern to compute a reasonable bandwidth limit as this
pattern represents the empiric approach due to the absence
of control in that SFC migration scheme. As expected, the
results for the videostreaming container are larger when
compared to the DummyLXC container results for all
bandwidth values. The difference in these results is due to the
additional copies of the network connections status.

Downtime Analysis

= Dummy Container
= video Container

Time (s)

0.3 MB Bandwidth
migration

3 GB (full) Bandwidth
migration

2 MB Bandwidth
migration

Fig. 3: Downtime comparison for the Asynchronous SFC
Migration pattern under diverse network configurations.



Meanwhile, the full Bandwidth (i.e. 3 GBps) represents the
maximum available bandwidth between two DNs (i.e. second
error bar in Fig. 3). The maximal bandwidth value was set using
the IPerf tool [17], measures were taken ten times, and the
collected values were averaged to obtain the mean bandwidth.
This case should deliver the best results in terms of downtime
and total migration time when fully exploited by instances
forming the migrated SFC. However, limiting the bandwidth to
SFC migration processes in 5G networks will allow better
exploitation of network resources in case of a massive number
of migrations. Yet, choosing the right value is a challenging
process, as a low bandwidth can increase both the total
migration time and the downtime causing damage to the
migration process. While an overestimated threshold will
waste network resources in vain. In Fig. 3, we selected three
bandwidth values for testing the downtime efficiency. The full
bandwidth usage is taken as a reference and at the same time
the overestimated value since it is the bigger value and the one
offering best results in case of lack of overhead. While 0.3
MBps (i.e. first error bar in Fig. 3) is the underestimated value
and 2 MBps value is the satisfactory value (i.e. error bar
number three in Fig. 3). It should be pointed out that the 2
MBps value was obtained by trying many bandwidth values
with one constraint in mind, which is having similar/near
results to the full bandwidth utilization. Based on Fig. 3 and
Table I, we can derive that the downtime for the Asynchronous
SFC migration pattern is quite similar for both the full
bandwidth and the 2 MBps migration bandwidth. The
obtained value represents a reduction of 99.93% from the
initially provided bandwidth without affecting downtime
results. While if selecting the 0.3 MBps value, an increase of
three times the full value will be observed.

TABLE |: Downtime comparison in case of different Bandwidth
values.

Bandwidth (Asynchronous SFC Mig.) Mean Time (s) Std deviation Cl 95% Coef Var
Dummy-LXC 0.3 MB 2.674 0.075 0.056 0.028
Video server 0.3 MB 4.397 0.076 0.057 0.017
Dummy-LXC 3 GB 1.189 0.049 0.037 0.041
Video server 3 GB 1.429 0.047 0.035 0.033
Dummy-LXC 2 MB 1.222 0.066 0.05 0.054
Video server 2 MB 1.571 0.056 0.042 0.036

B. Total Time Analysis

Total Time Analysis

== Dummy Container
%0 = Video Container

2 MB Bandwidth
migration

0.3 MB Bandwidth
migration

3 GB (full) Bandwidth
migration

Fig. 4: Total migration time experienced for the Asynchronous
SFC Migration pattern under diverse network configurations.

To strengthen our assumptions related to limiting network
resources so that more efficient SFC migration schemes will be
admitted, we extended our evaluation to cover total migration
time under different bandwidth configurations. We addressed
this evaluation using the same experimental scenarios of this
section and plot the results in Fig. 4 for the Asynchronous SFC
migration pattern (i.e. SFC is composed by the Dummy-LXC
(red) and video-streaming (blue) containers). In Fig. 4, the Y-
axis is in seconds and for each bar, we also plotted the 95% Cl
of the mean.

The mean total migration time, the Std deviation, the 95%Cl,
and the CV for SFCs under different network configurations are
presented in Table Il. As expected the full bandwidth (i.e. (3GB)
second error bar in Fig. 4) and the 2 MBps (last error bar in Fig.
4) scenarios were quite similar, while the 0.3 MBps case
increased approximately four times the total migration time
than the expected value. It is important to note that to get a
comparable value between the full bandwidth case and the 2
MBps case, we leveraged our work [18] that optimizes the disk
copy otherwise the value of the bandwidth must be increased
as more data need to be transferred over the network.

From the results, we can also observe that for all bandwidth
configurations the video-streaming container takes longer
than the Dummy-LXC one. This additional time is logical as
initially, the video-server has a bigger size when compared to
the Dummy-LXC. Furthermore, for the video-server container,
the longer migration time in comparison with the DummyLXC
one is due to the greater number of memory pages being
copied. Thus, we can conclude that the overall total migration
time of the SFC will increase as the two instances are
dependent. However, other SFC migration patterns will be
considered and investigated in terms of CPU load for a better
approach in the next sub-section.

TABLE 1I: Total time comparison in case of different Bandwidth
values.

Bandwidth (Asynchronous SFC Mig.) Mean Time (s) Std deviation Cl95% Coef Var
Dummy-LXC 0.3 MB 16.296 0.667 0.503 0.041
Video server 0.3 MB 42.658 0.742 0.56 0.017
Dummy-LXC 3 GB 11.833 1.891 1.426 0.16
Video server 3 GB 12.661 1.273 0.96 0.1
Dummy-LXC 2 MB 11.922 1.28 0.965 0.107
Video server 2 MB 13.842 0.346 0.26 0.025

C. CPU Consumption Analysis

The CPU consumption analysis experiment was conducted
to allow a better understanding of all the proposed SFC
migration patterns. Based on the two previous analysis, the
bandwidth was set to 2 MBps. Fig. 5 illustrates the variation of
CPU loads following three types of SFC migration schemes
mainly Asynchronous, Synchronized (Wait-For-Me) and
Synchronized (Round-Robin) SFCs migrations. In Fig. 5, the Y-
axis represents the CPU’s load percentage in the source DN
node, and the X-axis portrays 100 seconds sample of time in
seconds where the SFC migrations occur. For the Asynchronous
SFC migration pattern, the red color is used to represent the



CPU variation during the migration process. Meanwhile, the
grey and blue colors are chosen to express Synchronized (Wait-
For-Me) and Synchronized (RoundRobin) SFCs respectively. In
Fig. 5, before 20 seconds and posterior to 75 seconds periods
outline before starting the SFC migration and after achieving
the SFC migration respectively. Meanwhile, in the range
between 21 and 74 seconds, we can observe that while the
Asynchronous SFC migration pattern has the fastest migration
time (i.e. from 35s to 45 seconds, this also can be verified
leveraging the previous total time graph in Fig. 4 and the Table.
Il respectively), it induces the highest CPU load. The
Synchronized (Wait-For-Me) SFC migration pattern is the
symmetrical approach as it stresses the CPU considerably
while not consuming a lot of time during the SFC migration,
showed with grey color in Fig. 5. This pattern takes 2 to 3
supplementary seconds compared to the Asynchronous
approach. This additional time is due to the increase in the
downtime as a consequence for waiting for the second
container to reach the last iteration phase. It should be
mentioned that this time may increase more when
augmenting SFC’s components number, especially if they have
different disk sizes. Finally, the Round-Robin Synchronized
approach consumes the less CPU overhead among all other
patterns. It is quite similar to a subsequent migration scheme
except the Round-Robin policy is applied within the
decomposed parts of the migration between various
components of the SFC.

70

60

[V
o

CPU load (%)

0 20 40 60 80 100
Time(s)

Synchronized

—— Asynchronous SFC — (Wait-for-me) SFC Sypehonized

~ (round-robin) SFC

Fig. 5: CPU consumption analysis in case of different SFC
migration patterns.

However, this approach takes longer compared to previous
patterns in term of total migration time.

D. Results Discussion

Based on the observations gathered from the previous
subsections related to the downtime, total migration time, and
CPUs’ loads we surmise that there is no clear winner in
performance. Thus, the right SFC migration pattern must be

selected based on users’ motion, applications’ requirements
and MEC nodes’ resources. Furthermore, the network-aware
SFC migration pattern is selected to act as a support for the
Synchronized (Wait-For-Me), Synchronized (Round-Robin) and
the Asynchronous SFC migration patterns considering the
delicacy of 5G networks in terms of the number of users and
available resources (network or system resources). For
instance, a combination of the Round-Robin approach and the
network-aware SFC patterns is accepted when users’ path is
known and we can proactively plan their trajectories. This will
reduce the CPU’s overhead and optimize network resource
wastage. While the Synchronized Wait-For-Me pattern could
be exploited with the network-aware SFC pattern to handle
applications that do not require ultra-low latency as the
WaitFor-Me approach doesn’t guarantee the lowest downtime.

V. CONCLUSION AND FUTURE WORK

In this work, we designed, proposed and evaluated four SFC
migration patterns for allowing the support of synchronized
depending applications (SFC or state-full micro-services based
applications). The obtained results showed that there is no
clear winner in our presented patterns, thus, a trade-off or
hybrid combinations are the favorite proposals. Additionally,
we have shown that the network-aware SFC pattern should act
as a support for the other proposed patterns. Our future work
will focus on employing Reinforcement Learning (RL)
techniques to bypass the brute force search method. Along
with extending the same RL agent to allow dynamic
manageability of the network’s bandwidth irregularity.

ACKNOWLEDGMENT

This research work is partially supported by the European
Union’s Horizon 2020 research and innovation program under
the MATILDA project with grant agreement No. 761898. It is
also partially funded by the Academy of Finland Projects CSN
and 6Genesis under grant agreement No. 311654 and No.
318927, respectively.

REFERENCES

[1] 3GPP, “System Architecture for the 5G System; Stage 2,” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 23.501, 03 2018,
version 15.1.0. [Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationld=3144

[2] European Telecommunications Standards Institute (ETSI), “MEC in 5G
networks,” Tech. Rep., June 2018. [Online]. Available: https://www.etsi.
org/images/files/ETSIWhitePapers/etsi wp28 mec in 5G FINAL.pdf

[3] J.Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca,
and J. Folgueira, “Network slicing for 5g with sdn/nfv: Concepts,
architectures, and challenges,” IEEE Communications Magazine, vol. 55,
no. 5, pp. 80—87, May 2017.

[4] T. Taleb, S. Dutta, A. Ksentini, M. Igbal, and H. Flinck, “Mobile Edge
Computing Potential in Making Cities Smarter,” IEEE Communications
Magazine, vol. 55, no. 3, pp. 38-43, March 2017.

[5] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network


https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf

(6]

(7]

(8l

(9l

(10]

[11]

[12]

(13]

(14]

[15]

[16]
[17]

(18]

edge cloud architecture and orchestration,” IEEE Communications
Surveys Tutorials, vol. 19, no. 3, pp. 1657-1681, thirdquarter 2017.

N. Alshugayran, N. Ali, and R. Evans, “A Systematic Mapping Study in
Microservice Architecture,” in 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications (SOCA), Macau, China,
Nov 2016.

M. Viggiato, R. Terra, H. Rocha, M. Valente, and E. Figueiredo,
“Microservices in Practice: A Survey Study,” in Conference: VI Workshop
on Software Visualization, Evolution and Maintenance, So Carlos, Brazil,
Sep 2018.

W. Li and A. Kanso, “Comparing Containers versus Virtual Machines for
Achieving High Availability,” in 2015 IEEE International Conference on
Cloud Engineering, Tempe, AZ, USA, March 2015.

T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12-19, September 2013.

A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “On Enabling 5G
Automotive Systems Using Follow Me Edge-Cloud Concept,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 6, pp. 5302-5316,
June 2018.

A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live service
migration in mobile edge clouds,” IEEE Wireless Communications, vol.
PP, no. 99, pp. 2-9, 2017.

R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck, “Towards a
Fast Service Migration in 5G,” in 2018 IEEE Conference on Standards for
Communications and Networking (CSCN), Paris, France, Oct 2018.

R. A. Addad, D. L. C. Dutra, T. Taleb, M. Bagaa, and H. Flinck, “MIRA!: An
SDN-Based Framework for Cross-Domain Fast Migration of Ultra-Low
Latency 5G Services,” in 2018 IEEE Global Communications Conference
(GLOBECOM), Abu Dhabi, UAE, Dec 2018.

G. Sun, D. Liao, D. Zhao, Z. Xu, and H. Yu, “Live migration for multiple
correlated virtual machines in cloud-based data centers,” IEEE
Transactions on Services Computing, vol. 11, no. 2, pp. 279-291, March
2018.

H. Liu and B. He, “Vmbuddies: Coordinating live migration of multitier
applications in cloud environments,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 4, pp. 1192-1205, April 2015.

CRIU team, “Iterative migration,” 2016. [Online]. Available: https:
//criu.org/Iterative migration

A. Tirumala, F. J. Qin, J. M. Dugan, J. A. Ferguson, and K. Gibbs, “iperf:
Tcp/udp bandwidth measurement tool,” 2005.

R.A.Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck, “Fast Service
Migration in 5G Trends and Scenarios,” IEEE Network Magazine,
Forthcoming 2019.


https://criu.org/Iterative_migration
https://criu.org/Iterative_migration
https://criu.org/Iterative_migration
https://criu.org/Iterative_migration



