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Abstract—Given the indispensable need for a reliable network 
architecture to cope with 5G networks, 3GPP introduced a covet 
technology dubbed 5G Service Based Architecture (5G-SBA). 
Meanwhile, Multi-access Edge Computing (MEC) combined with SBA 
conveys a better experience to end-users by bringing application 
hosting from centralized data centers down to the network edge, 
closer to consumers and the data generated by applications. Both the 
3GPP and the ETSI proposals offered numerous benefits, particularly 
the ability to deliver highly customizable services. Nevertheless, 
compared to large datacenters that tolerate the hosting of standard 
virtualization technologies (Virtual Machines (VMs) and servers), 
MEC nodes are characterized by lower computational resources, thus 
the debut of lightweight micro-service based applications. Motivated 
by the deficiency of current micro-services-based applications to 
support users’ mobility and assuming that all these issues are under 
the umbrella of Service Function Chain (SFC) migrations, we aim to 
introduce, explain and evaluate diverse SFC migration patterns. The 
obtained results demonstrate that there is no clear vanquisher, but 
selecting the right SFC migration pattern depends on users’ motion, 
applications’ requirements, and MEC nodes’ resources. 

I. INTRODUCTION 

The 3GPP has adopted a new architecture, based on 

microservices and web principles, dubbed 5G-SBA [1]. The SBA 

allows the 5G network to be flexible, reusable, and 

customizable, as it leverages on network functions (NFs) [2]. 

Having such a strong proposal derives the necessity of an 

efficient orchestration system where Network Function 

Virtualization (NFV) and Software-Defined Networking (SDN) 

are expected to be a key future target for allowing a fast and 

reliable NFs’ programmability [3]. Nonetheless, among new 

industry use cases targeted by the 5G, there exist scenarios 

that go beyond what the current device-centric mobility 

approaches can support. The mobility of low latency 

communication services, shared by a group of moving devices, 

e.g., autonomous vehicles that share sensor data, is a prime

example of these cases. These use-cases’ demands for ultra-

low latency can be addressed by leveraging the MEC concept

[4]. By allowing the instantiation of applications nearby to the

network edge, in the vicinity of users, MEC is acknowledged as

one of the key pillars for meeting the demanding Key

Performance Indicators (KPIs) of 5G [5].

However, compared to large data-centers that tolerate the 

hosting of standard virtualization technologies (VMs and 

servers), MEC nodes are characterized by lower computational 

resources. Furthermore, different standards development 

organizations are heavily pushing towards adopting 

microservices approaches and architectures [6], [7]. Therefore, 

when compared to traditional VMs [8] based on quick 

deployment, startup time, fast replication, live service 

migration, and scaling methods, container technologies form 

the ideal alternative for both MEC environments and emerging 

concepts of micro-services. 

Both 3GPP and ETSI proposals offered numerous benefits, 

particularly the reduction of the network latency. However, 

users nowadays are everything except motionless, which 

induces a serious lack of flexibility and may take users far away 

from the original MEC node where their service started 

running, to overcome this problem, a new concept, dubbed 

Follow Me Cloud (FMC) [9], [10], has been introduced. The 

FMC permits services’ movabilities amid different MEC nodes 

while ensuring low latency communications to end-users, as 

an FMC is a single instance moving in concordance with the 

end-user. Moreover, the type of services running in the Data 

Network (DN), which was ignored by telecommunication 

standardization entities, is expected to be a micro-service one. 

Therefore, as modern services may expand over multiple MECs, 

which introduces new issues – the management of instances 

on different MECs instead of one compared to the FMC – to 

ensure service continuity, links between the instances forming 

distributed MEC applications, additionally to links related to 

end-users, must be taken into account. Based on these 

observations, and assuming that all these issues are under 

SFC’s migration umbrella, the contributions of this paper can 

be summarized as follows: 

• The introduction of four practical SFC migration patterns

to support micro-service based applications in the DN

part from the proposed combined architecture of 3GPP

and ETSI;

• A detailed evaluation of the proposed patterns, where

different criteria will be considered to validate the new

suggested type of migrations;
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• A final comparison is presented to determine the most 

suitable SFC migration pattern within the 5G network. 

The remainder of this paper is organized as follows. Section II 
outlines the related works. Various SFC migrations patterns 

with their respective design overview and the suitable 
implementation are presented in Section III. Section IV 

illustrates the experimental setup and discusses the obtained 
results. Finally, we conclude the paper and introduce future 

research challenges in Section V. 

II. RELATED WORK 

Machen et al. [11] presented a multi-layer framework for 

migrating active applications in the MEC, their results show 

reduced total migration times, the downtime was considerable 

with an average of 2s in case of a blank container. The increase 

of the downtime is due to the non-use of the iterative 

approach in the live migration process. The authors of [12] 

proposed and evaluated three different mechanisms to 

improve the enduser experience by using the container-based 

live migration, their results show the efficiency of these 

solutions compared to prior works. Addad et al. [13] presented 

a framework for managing reliable live migrations of virtual 

resources across different Infrastructure as a Service (IaaS), 

handling unexpected cases while ensuring high QoS and a very 

low downtime without human intervention. The authors 

considered the inter-cloud migration by leveraging the SDN 

technology for traffic steering and re-direction, in addition to 

multiple migration processes. 

Sun et al. [14] investigated how to migrate multiple 

correlated instances of VMs, defining the relationship only 

among concurrent migrated VMs. Haikun and Bingsheng [15] 

have presented a Coordinated Live Migration of Multi-Tier 

Applications in Cloud Environments, they detailed the 

difference of a single-VM migration, compared to VMs in a 

multi-tier application followed by a formulation of a correlated 

VM migrations problem. The authors designed and 

implemented a coordination system that can be used as a basis 

for enabling one of the desired strategies of SFC migration 

related to the network control part. However, the authors did 

not investigate the use of micro-services based technologies 

(containers) that are expected to be playing an essential role 

in the 5G and beyond networks. 

With respect to the previously cited works, in this study, we 

introduce complete SFC migrations patterns, the SDN 

implication, and the inter-cloud live migration. Seeing that new 

use-cases entrance will beget a highly mobile environment and 

reduce the latency, this work is a must for achieving the 1 ms 

latency objective for the upcoming 5G mobile systems and 

beyond. 

III. SERVICE FUNCTION CHAINS MIGRATIONS PATTERNS 

FOR BEYOND 5G NETWORKS 

A. Main architecture and problem formulation 

Usually, a three-layer cloud-based architecture can be 

represented as a general 5G architecture, where the core layer 

is a robust computing power setup from different vendors, e.g., 

Azure, Rackspace, and private clouds based on OpenStack, 

while the MEC layer hosts container-based technologies, e.g., 

LXC, LXD, Docker, and Rocket, given the insufficiency of 

computational resources to serve the users layer. For the 

simplicity’s sake, we omit the core layer in this representation, 

moreover, we can host the MEC orchestrator in the core layer 

to allow a global view of all entities present in the MEC layer. 

Normally, the locations of the DNs and the User Plane 

Functions (UPFs) are the choice of the network operator. 

Though, because of a lack of trust between operators and to 

guarantee the most common architecture in a real case, the 

first deployment scenario presented in [2] is adopted. We 

assume that we have a connected car management scenario, 

i.e., it can be a drone-based management scenario as well, the 

connected car moves from a location to another one, from 

MEC1 to MEC2 in Fig. 1. Initially, the car is served by a set of 

network functions (NFs) in perfect coordination and 

synchronization that form an SFC, i.e., Service Function Chain 

1, in Fig. 1. This SFC1 can deliver a secure video streaming 

service whither the n−1 NFs are security checks as firewall and 

IPS; while the remaining NF is the video server streamer. To 

follow end-users’ mobility, the SFC needs to be shifted away, 

i.e., live migrated, while conserving all links and 

communication between NFs forming the moving SFC. The 

main focus is to implement the SFC migration patterns, to 

ensure a seamless migration across MEC nodes, without taking 

into account other use-case-specific aspects, such as the signal 

strength received by each vehicle, user equipment (UE) or UAV, 

and the traffic steering done by the UPF within the 3GPP 

domain. 

 
Fig. 1: Service Function Chain Migration to support 

microservice based application in the Data Network 

To validate our proposed architecture, we need to 

synchronize multiple live migrations. Initially, we start our 

blueprint by presenting all the envisaged SFC migration 

scenarios, how we synchronize NFs’ migration, what is the gain 

and the different constraints and finally decide the approach 



to ratify to meet 5G’s low latency requirements based on 

evaluation in Section IV. 

B. Asynchronous State-full Service Function Chain Migration 

In this type of SFC migration, we start unsupervised live 

migrations for each SFC’s NF, and as the last live migration end, 

we finish the SFC migration. Then, we can reestablish the NFs’ 

network connectivity. We use this scenario as a worstcase 

upper-bound to evaluate the computational, i.e., CPU, RAM, 

and DISK and communication network resources, i.e., delay, 

and bandwidth consumption for the SFC migration. 

C. Synchronized State-full Service Function Chain Migration 

The first approach is considered a trivial solution that may 

consume all types of available resources, thus, we introduce 

the synchronized SFC migration. The well known live migration 

process usually takes four steps, disk copy, non-blocking 

memory copy (pre-dump actions in CRIU [16]), final blocking 

memory copy (dump action in CRIU), and restore. While we 

can do the first two steps without stopping the virtualized 

instances, the third step must freeze containers until the final 

step restore it afterward. Thus, a synchronized SFC migration 

approach aims to efficiently control each step separately, as 

this fine-grained control reduces the overall system resource 

consumption. Albeit different strategies can be employed to 

eliminate the system overhead caused by multiple coordinated 

and parallel migration processes, we selected two patterns to 

be presented, for both patterns we consider an SFC with two 

NFs: 

1) Synchronized Wait-For-Me Pattern: In this strategy, we 

allow the first and second steps of the migration process to run 

in parallel, and we have a barrier just before the final memory 

blocking action, i.e., dump. Then both instances have to wait 

to continue their migration process. We can observe the 

benefits of this approach in scenarios with plenty of network 

resources. However, as the size of the virtualizations instances 

is rarely the same or even equivalent, the first instance 

reaching the memory blocking phase may have to wait for a 

long period, this will result in a bigger downtime as the time 

for waiting, other memory pages could be updated easily. Also 

the CPU, in that case, can be exhausted as the actions are in a 

parallel fashion. 

2) Synchronized Round-Robin Pattern: The Round-Robin 

strategy aims to reduce the migration CPU load, we achieve 

this through grouping by phase the steps of an SFC migration 

and then executing them in-order. This approach reduces 

consumption of system resources caused by an SFC migration, 

albeit at a significantly higher total migration time, as we do 

all actions sequentially and as previously, this SFC migration 

strategy uses all available network resources. 

D. Network-aware based Service Function Chain Migration 

5G networks are expected to support various URLLC’s 

services, which requires strict delay constraint. However, none 

of the previous approaches can guarantee these prerequisites 

because of the randomized way for handling SFC migration 

when it comes to network resources. Indeed, having a huge 

number of applications capable of following and serving users 

can compromise all network resources among MECs by 

allowing a large number of migrations at the same time. We 

propose the network-aware based SFC migration to address 

these requirements, as its purpose is to refine the network 

usage, reducing the overhead, and enabling better users’ QoE. 

By controlling the network’s bandwidth, our network-aware 

based SFC migration triggers low-consumption migration 

operations across the networks. Initially, we gather all the 

available information on bandwidth and latency between each 

pair of MEC nodes, thus obtaining a global knowledge of the 

distributed infrastructure. Then, after each migration’s 

decision is taken, given network resources are reserved to 

allow that migration and better usage of the global bandwidth. 

Finally, our network-aware solution frees the used resources 

as it completes SFC migrations. It is noticed that when using 

rsync, the whole bandwidth is used by one process. But upon 

other processes start a network transfer operation (either 

migration or simple traffic), the bandwidth will be shared 

among all the processes using the best-effort policy. Thus 

based on this observation, if we start “n” migrations 

simultaneously, the bandwidth usage will be shared among 

them. Through a qualitative assessment, we can observe that 

if “n” becomes too big, then the migration time will tend to the 

infinity, which will result in a fiasco to network operators. We 

also emphasize that we reserve bandwidth for each SFC 

migration based on the last iteration, that stops the container. 

Thus, if the reserved bandwidth offers a downtime transfer 

similar to when having the full utilization of the bandwidth 

then the reservation’s limit is set. 

E. Implementation 

 
Fig. 2: Architecture of the implementation. 



Enabling the migration of multiple independent virtual 

instances can be relatively easy when compared to migrating 

several instances with a close relationship (SFC). Initially, 

before enabling an SFC migration, the creation and the 

formation of an SFC is the starting point of interest. As a testing 

SFC implementation is unavailable, we design a service chain 

for a video streaming application. In this SFC, each video 

passes through an intermediate traffic redirection node, built 

on top of an LXC container and has two SDNenabled network 

interfaces. This redirection instance acts as a turnaround node 

in the network where the integrality of the traffic should go 

through in both directions, i.e., from the video server to the 

client and vice versa as depicted in Fig. 2. As stated before, our 

solution considers using the SDN paradigm thus, OVS switches 

are configured using the ONOS SDN controller, where each 

node in the SFC has its own switch. The only requirement is the 

availability of the virtualization software to deploy LXCs 

container engine and programmable switches OVSs. We use 

our previous proposed solution, presented in [13], to allow 

better isolation between incoming/out-coming traffic. To 

implement the turnaround logic in the Dummy-LXC host, a 

Bridge is created inside the Dummy-LXC container (the Red 

Bridge in Fig. 2). Two outer network interfaces, veth0 and 

veth1, respectively, are plugged in the outside OVS (the blue 

one in the same Figure); and inner network interfaces named 

eth0 and eth1 are attached to the red Bridge in their turn. 

IV. EXPERIMENTAL EVALUATION 

We experimentally evaluated our proposed SFC migration 

schemes using one physical server. The server has 48 cores 

with VT-X support enabled, 256 GB of memory, 1Gbps 

interconnection, and Ubuntu 16.04 LTS with the 4.4.0-77-

generic kernel and QEMU-KVM installed. Two virtualized 

computer nodes were used to evaluate the proposed 

implementation. Each one representing a different MEC node 

(i.e. a DN node in ETSI and 3GPP proposals). The first VM is 

acting as a source DN and the latter VM represents the target 

DN. Each DN uses Ubuntu 16.04 LTS with the 4.4.0-64-generic 

kernel and has 16 virtual core CPU and 32GB of main memory. 

The container environment was setup using LXC 2.8 and CRIU 

3.11. It is noticed that two additional hosts were used for the 

management plane. The first host acts as an SDN controller 

that manages the communications between the different DNs. 

As SDN controller, we used ONOS, however, any other SDN 

controller could be used as well. While the second host serves 

as a global orchestrator for handling the life-cycle of SFCs (i.e. 

from the creation phase till the migration or the deletion 

stage). It is noteworthy that the global orchestrator uses an 

enhanced version of MIRA!, a framework previously presented 

in [13], that support our proposed SFC migration patterns and 

schemes. 

We start by evaluating the Asynchronous SFC migration 

pattern under diverse network bandwidth limitations to select 

the most appropriate bandwidth limit for reducing SFC’s 

migration overhead. In that evaluation, both the downtime 

and the total migration time will be analyzed and discussed. 

Finally, based on satisfactory bandwidth usage, a CPU 

consumption analysis will be presented to compare all the 

approaches introduced and detailed earlier in Section III. 

For each SFC migration scheme, we conducted a set of 

experiments evaluating both the downtime and total time 

under various network configurations and CPUs’ load; each 

was repeated ten times. The SFC evaluated is consisting of a 

video server streamer offering videos on demand (VoD) to 

clients passing through an intermediate node dubbed 

DummyLXC node that forms our second virtualization instance 

to be migrated when the SFC migration is triggered. The 

DummyLXC, and video server nodes sizes are equal to 470 MB 

and 573 MB respectively. 

A. Downtime Analysis 

Fig. 3 depicts the induced downtime under diverse network 

configurations. The main purpose of this experiment is to 

optimally exploit network resources and avoid breaking down 

the whole network infrastructure. The detailed explanation on 

how this phenomenon can occur was introduced prior in 

subsection III-D. This experiment outputs the downtime, 

standard deviation, 95% confidence interval (CI), and 

coefficient of variation (CV) results for both elements 

constituting our developed service chain considering various 

bandwidth values as part of defining the most suitable 

network configuration. Detailed values are presented in Table 

I. It is noticed that we used the Asynchronous SFC migration 

pattern to compute a reasonable bandwidth limit as this 

pattern represents the empiric approach due to the absence 

of control in that SFC migration scheme. As expected, the 

results for the videostreaming container are larger when 

compared to the DummyLXC container results for all 

bandwidth values. The difference in these results is due to the 

additional copies of the network connections status. 

 
Fig. 3: Downtime comparison for the Asynchronous SFC 

Migration pattern under diverse network configurations. 



Meanwhile, the full Bandwidth (i.e. 3 GBps) represents the 

maximum available bandwidth between two DNs (i.e. second 

error bar in Fig. 3). The maximal bandwidth value was set using 

the IPerf tool [17], measures were taken ten times, and the 

collected values were averaged to obtain the mean bandwidth. 

This case should deliver the best results in terms of downtime 

and total migration time when fully exploited by instances 

forming the migrated SFC. However, limiting the bandwidth to 

SFC migration processes in 5G networks will allow better 

exploitation of network resources in case of a massive number 

of migrations. Yet, choosing the right value is a challenging 

process, as a low bandwidth can increase both the total 

migration time and the downtime causing damage to the 

migration process. While an overestimated threshold will 

waste network resources in vain. In Fig. 3, we selected three 

bandwidth values for testing the downtime efficiency. The full 

bandwidth usage is taken as a reference and at the same time 

the overestimated value since it is the bigger value and the one 

offering best results in case of lack of overhead. While 0.3 

MBps (i.e. first error bar in Fig. 3) is the underestimated value 

and 2 MBps value is the satisfactory value (i.e. error bar 

number three in Fig. 3). It should be pointed out that the 2 

MBps value was obtained by trying many bandwidth values 

with one constraint in mind, which is having similar/near 

results to the full bandwidth utilization. Based on Fig. 3 and 

Table I, we can derive that the downtime for the Asynchronous 

SFC migration pattern is quite similar for both the full 

bandwidth and the 2 MBps migration bandwidth. The 

obtained value represents a reduction of 99.93% from the 

initially provided bandwidth without affecting downtime 

results. While if selecting the 0.3 MBps value, an increase of 

three times the full value will be observed. 

TABLE I: Downtime comparison in case of different Bandwidth 

values. 
Bandwidth (Asynchronous SFC Mig.) Mean Time (s) Std deviation CI 95% Coef Var 
Dummy-LXC 0.3 MB 2.674 0.075 0.056 0.028 
Video server 0.3 MB 4.397 0.076 0.057 0.017 
Dummy-LXC 3 GB 1.189 0.049 0.037 0.041 
Video server 3 GB 1.429 0.047 0.035 0.033 
Dummy-LXC 2 MB 1.222 0.066 0.05 0.054 
Video server 2 MB 1.571 0.056 0.042 0.036 

B. Total Time Analysis 

 
Fig. 4: Total migration time experienced for the Asynchronous 

SFC Migration pattern under diverse network configurations. 

To strengthen our assumptions related to limiting network 

resources so that more efficient SFC migration schemes will be 

admitted, we extended our evaluation to cover total migration 

time under different bandwidth configurations. We addressed 

this evaluation using the same experimental scenarios of this 

section and plot the results in Fig. 4 for the Asynchronous SFC 

migration pattern (i.e. SFC is composed by the Dummy-LXC 

(red) and video-streaming (blue) containers). In Fig. 4, the Y-

axis is in seconds and for each bar, we also plotted the 95% CI 

of the mean. 

The mean total migration time, the Std deviation, the 95%CI, 

and the CV for SFCs under different network configurations are 

presented in Table II. As expected the full bandwidth (i.e. (3GB) 

second error bar in Fig. 4) and the 2 MBps (last error bar in Fig. 

4) scenarios were quite similar, while the 0.3 MBps case 

increased approximately four times the total migration time 

than the expected value. It is important to note that to get a 

comparable value between the full bandwidth case and the 2 

MBps case, we leveraged our work [18] that optimizes the disk 

copy otherwise the value of the bandwidth must be increased 

as more data need to be transferred over the network. 

From the results, we can also observe that for all bandwidth 

configurations the video-streaming container takes longer 

than the Dummy-LXC one. This additional time is logical as 

initially, the video-server has a bigger size when compared to 

the Dummy-LXC. Furthermore, for the video-server container, 

the longer migration time in comparison with the DummyLXC 

one is due to the greater number of memory pages being 

copied. Thus, we can conclude that the overall total migration 

time of the SFC will increase as the two instances are 

dependent. However, other SFC migration patterns will be 

considered and investigated in terms of CPU load for a better 

approach in the next sub-section. 

TABLE II: Total time comparison in case of different Bandwidth 

values. 
Bandwidth (Asynchronous SFC Mig.) Mean Time (s) Std deviation CI 95% Coef Var 
Dummy-LXC 0.3 MB 16.296 0.667 0.503 0.041 
Video server 0.3 MB 42.658 0.742 0.56 0.017 
Dummy-LXC 3 GB 11.833 1.891 1.426 0.16 
Video server 3 GB 12.661 1.273 0.96 0.1 
Dummy-LXC 2 MB 11.922 1.28 0.965 0.107 
Video server 2 MB 13.842 0.346 0.26 0.025 

C. CPU Consumption Analysis 

The CPU consumption analysis experiment was conducted 

to allow a better understanding of all the proposed SFC 

migration patterns. Based on the two previous analysis, the 

bandwidth was set to 2 MBps. Fig. 5 illustrates the variation of 

CPU loads following three types of SFC migration schemes 

mainly Asynchronous, Synchronized (Wait-For-Me) and 

Synchronized (Round-Robin) SFCs migrations. In Fig. 5, the Y-

axis represents the CPU’s load percentage in the source DN 

node, and the X-axis portrays 100 seconds sample of time in 

seconds where the SFC migrations occur. For the Asynchronous 

SFC migration pattern, the red color is used to represent the 



CPU variation during the migration process. Meanwhile, the 

grey and blue colors are chosen to express Synchronized (Wait-

For-Me) and Synchronized (RoundRobin) SFCs respectively. In 

Fig. 5, before 20 seconds and posterior to 75 seconds periods 

outline before starting the SFC migration and after achieving 

the SFC migration respectively. Meanwhile, in the range 

between 21 and 74 seconds, we can observe that while the 

Asynchronous SFC migration pattern has the fastest migration 

time (i.e. from 35s to 45 seconds, this also can be verified 

leveraging the previous total time graph in Fig. 4 and the Table. 

II respectively), it induces the highest CPU load. The 

Synchronized (Wait-For-Me) SFC migration pattern is the 

symmetrical approach as it stresses the CPU considerably 

while not consuming a lot of time during the SFC migration, 

showed with grey color in Fig. 5. This pattern takes 2 to 3 

supplementary seconds compared to the Asynchronous 

approach. This additional time is due to the increase in the 

downtime as a consequence for waiting for the second 

container to reach the last iteration phase. It should be 

mentioned that this time may increase more when 

augmenting SFC’s components number, especially if they have 

different disk sizes. Finally, the Round-Robin Synchronized 

approach consumes the less CPU overhead among all other 

patterns. It is quite similar to a subsequent migration scheme 

except the Round-Robin policy is applied within the 

decomposed parts of the migration between various 

components of the SFC. 

 
Fig. 5: CPU consumption analysis in case of different SFC 

migration patterns. 

However, this approach takes longer compared to previous 

patterns in term of total migration time. 

D. Results Discussion 

Based on the observations gathered from the previous 

subsections related to the downtime, total migration time, and 

CPUs’ loads we surmise that there is no clear winner in 

performance. Thus, the right SFC migration pattern must be 

selected based on users’ motion, applications’ requirements 

and MEC nodes’ resources. Furthermore, the network-aware 

SFC migration pattern is selected to act as a support for the 

Synchronized (Wait-For-Me), Synchronized (Round-Robin) and 

the Asynchronous SFC migration patterns considering the 

delicacy of 5G networks in terms of the number of users and 

available resources (network or system resources). For 

instance, a combination of the Round-Robin approach and the 

network-aware SFC patterns is accepted when users’ path is 

known and we can proactively plan their trajectories. This will 

reduce the CPU’s overhead and optimize network resource 

wastage. While the Synchronized Wait-For-Me pattern could 

be exploited with the network-aware SFC pattern to handle 

applications that do not require ultra-low latency as the 

WaitFor-Me approach doesn’t guarantee the lowest downtime. 

V. CONCLUSION AND FUTURE WORK 

In this work, we designed, proposed and evaluated four SFC 

migration patterns for allowing the support of synchronized 

depending applications (SFC or state-full micro-services based 

applications). The obtained results showed that there is no 

clear winner in our presented patterns, thus, a trade-off or 

hybrid combinations are the favorite proposals. Additionally, 

we have shown that the network-aware SFC pattern should act 

as a support for the other proposed patterns. Our future work 

will focus on employing Reinforcement Learning (RL) 

techniques to bypass the brute force search method. Along 

with extending the same RL agent to allow dynamic 

manageability of the network’s bandwidth irregularity. 
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