

OPEN ACCESS | Research Article

Impact of erect shrubs on the cover and fruit productivity of berry species in subarctic Canada

Isabelle Lussier^{a,}, Noémie Boulanger-Lapointe [©], Stéphane Boudreau^{b,d}, and Esther Lévesque^{a,b}

^aDépartement des Sciences de l'environnement, Université du Québec à Trois-Rivières (UQTR), 3351 boul. des Forges, CP 500, Trois-Rivières, QC G9A 5H7, Canada; ^bCentre d'études nordiques, Université Laval, 2405 rue de la Terrasse, Québec, QC G1V 0A6, Canada; ^cDepartement of Geography, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada; ^dDépartement de biologie, Université Laval, 1045 av. de la Médecine, Québec, QC G1V 0A6, Canada

Corresponding author: Noémie Boulanger-Lapointe (email: nboulangerlapointe@uvic.ca)

Abstract

Berry species are an important source of food in late summer for resident and migrant animals, and an integral part of the diet and culture of Indigenous Peoples. This study investigated how the presence of erect shrub patches (cover > 25%) affected the occurrence, cover, and fruit productivity of *Vaccinium uliginosum* L., *Vaccinium vitis-idaea* L., and *Empetrum nigrum* L. in the vicinity of Umiujaq, a subarctic community that has experienced a rapid increase in erect shrub cover since the 1990s. Our results indicated that berry species are ubiquitous in the area although the likelihood of occurrence is nearly three times lower under shrub patches. The cover and fruit productivity of *V. uliginosum* and *E. nigrum* diminished under erect shrub patches and this effect was more pronounced at the center of patches. In contrast, the cover and fruit productivity of *V. vitis-idaea* was not influenced by the presence of erect shrub patches. Finally, erect shrub patches delayed fruit ripening for *V. uliginosum* and *V. vitis-idaea* but differences could not be measured for *E. nigrum*. This study suggests that observed and forecasted increases in erect shrub cover in the Arctic may have widespread negative impacts on berry species.

Key words: berry, climate change, shrubification, subarctic, Vaccinium, Umiujaq

Introduction

In low Arctic ecosystems, the biomass of erect shrubs is increasing under warming temperatures (Elmendorf et al. 2012; Myers-Smith et al. 2015). This trend, also referred to as "shrubification" or vegetation greening (Myers-Smith et al. 2020), is associated with new recruitment (Davis et al. 2021), increases in annual growth (Forbes et al. 2010), and foliage production (Bonta et al. 2023). It has been linked to vegetation indices or spectral greening as detected by remote sensing studies (Berner et al. 2020). While heterogeneity in response is widespread (Myers-Smith et al. 2020), the change in plant community composition and canopy cover is having consequences on local ecosystems with notable impacts on snow cover (Liston et al. 2002; Pomeroy et al. 2006), soil temperatures (Walker et al. 2003; May et al. 2022), nutrient cycling (Cornelissen et al. 2007; Buckeridge et al. 2010), and carbon balance (Mekonnen et al. 2021; Schuur et al. 2022).

At the plant community-level, the increase in erect shrub cover has a range of effects including positive and negative interactions with neighboring plants (Bråthen and Lortie 2016). The larger deciduous leaves and enhanced canopy height directly compete with prostrate plants for light (Chapin et al. 1995). The newly established vertical structure also modifies air circulation, buffering temperatures and increasing seed and particle trapping (Bråthen and Lortie 2016). In summer,

erect shrub patches form a protective barrier against wind abrasion and in winter they shelter low-lying plants under a thicker cover of snow allowing plants to establish beyond their climate optimum (Sturm et al. 2005). The expansion of erect shrub cover has been associated with a widespread decrease in cryptogam species and lichens and an increase in forbs, while the response of other plant functional groups is more variable (Pajunen et al. 2012; Crofts et al. 2018; Chagnon and Boudreau 2019).

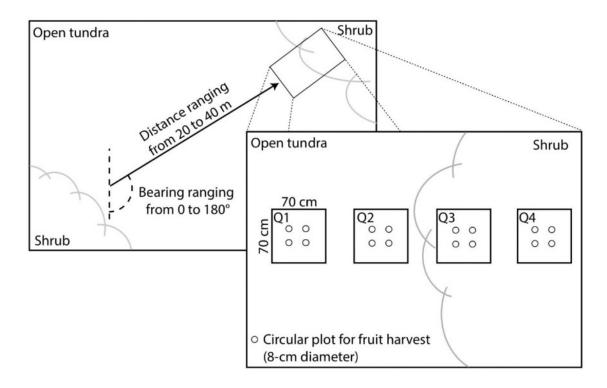
Prostrate berry species are common in the low Arctic and within the forest-tundra ecotone where they are an important source of food for humans and animals. Berry picking is a traditional activity of nutritional and cultural significance for Indigenous Peoples around the circumpolar Arctic (Boulanger-Lapointe et al. 2019; Markkula et al. 2019; Hill et al. 2023). The abundance of fruits during a short period also benefits a wide range of animals including voles (Krebs et al. 2010), passerines (Norment and Fuller 1997), ptarmigans (Weeden 1969), and bears (Hébert et al. 2008; Edwards et al. 2011). Berries constitute a large proportion of the Canada and cackling geese diet during late summer providing crucial premigratory nutrition (Cadieux et al. 2005; Hupp et al. 2013).

Although berry species are an important component of Arctic socio-ecological systems, the impact of recent environmental changes on their growth and reproduction is poorly

Fig. 1. Study region (inset) and location of the study sites in the vicinity of Umiujaq, Nunavik (Quebec, Canada). Maps were created in QGIS (version 3.28); inset uses the *Administrative Boundaries in Canada* vector file (Government of Canada 2021; NAD83), and the main map is a Sentinelle 2 raster image (taken on 23 July 2021; NAD83) with field study sites location (red points).

documented in the Canadian Arctic. Local and Indigenous observations suggest that erect shrubs are competitively excluding berry species with some traditional harvesting sites overgrown with erect shrubs (Cuerrier et al. 2015; Gérin-Lajoie et al. 2016). These observations are congruent with studies near the treeline in Scandinavia showing that berry species produce more flowers when located in open relative to forested habitats due to higher radiation and decreasing apical dominance (Tolvanen 1995; Elisabetta et al. 2013). Shading experiments found similar responses with delayed phenology and a decline in the abundance of flowers with increasing shade for V. vitis-idaea and Arctous alpina (L.) Nied (May et al. 2022). Whether flowers produce viable fruits will depend on pollination success. Fruit set (i.e., the ratio of berries to flower) increases with pollinator activity, which is shaped by local environmental conditions (Parkinson and Mulder 2020). When comparing adjacent forested and open habitats, studies found both positive (Boulanger-Lapointe et al. 2017) and negative (Siegwart Collier 2020) impacts of tree cover on fruit set in berry species. Meanwhile, the influence of shrub canopy cover on pollinator activity in tundra environments is largely unknown (McDermott et al. 2021). The decline in flower production with increasing erect shrub cover is thus

the main documented mechanism by which these shrubs may limit the production of berries.


In this study, we asked a simple question for the species of interest: is the presence of erect shrub patches (cover > 25%) limiting the performance (occurrence, cover, fruit productivity, and ripening) of *Empetrum nigrum* L. (crowberry), *Vaccinium uliginosum* L. (blueberry), and *Vaccinium vitis-idaea* L. (cranberry) in tundra ecosystem? We hypothesized that no matter the underlying environmental conditions, the presence of erect shrub patches will always reduce the overall performance of prostrate berry species in otherwise favourable habitats. Therefore, we predicted that the occurrence, the cover, and the fruit productivity of berry species will decrease along a transect extending from the open tundra to a close erect shrub canopy.

Materials and methods

Study area

The study was conducted near the Inuit community of Umiujaq, Nunavik (56°33′07″N, 76°33′57″W, Fig. 1). Mean annual temperature in Umiujaq was –3.0 °C for the period 1998– 2022 (CEN 2024). Snow cover during winter has an average

Fig. 2. Site location methodology, using displacement of a random distance (ranging from 20 to 40 m) along a random bearing (0°–180°), and sampling design along a transect extending from the open tundra (Q1) to the center of the shrub patches (Q4). A total of 352 sites (1402 quadrats) were sampled near the Inuit community of Umiujaq (56°33′07″N, 76°33′57″W).

thickness of ca. 50 cm, although it is greater under and near erect shrubs (Domine et al. 2015; Paradis et al. 2016). Strong winds, from the Hudson Bay (west and northwest), during winter can reach >100 km h⁻¹ (Fortier et al. 1994). Over the last few decades, warmer air temperatures have triggered rapid permafrost degradation (Payette et al. 2004; Pelletier et al. 2019).

The study area is located at the forest-tundra ecotone (Payette 1983), within the discontinuous permafrost zone (Allard and Seguin 1987). It is characterized by shrub tundra dominated by Betula glandulosa Michx. In sheltered areas, black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb) can form dense clumps of trees and krummholz. Dense patches of Alnus viridis ssp. crispa (Aiton) Turill occur in moist to wet areas at the margin of running water. The proportion of land covered by erect shrubs increased by 12% between 1994 and 2010 (i.e., from 24% to 31%; Provencher-Nolet 2014) and conservative models indicate that this cover may double over the next 50 years (Lemay et al. 2018). Umiujaq is known as a prime location for berry picking and people travel to the community at the end of the summer to participate in the annual Blueberry Festival (Boulanger-Lapointe et al. 2019).

Study species

The berry species studied are all woody prostrate shrubs in the Ericaceae family. They have a circumpolar distribution and range from the forest-tundra ecotone to sheltered areas in the high Arctic (Aiken et al. 2007). Empetrum nigrum is a low (5–30 cm: Aiken et al. 2007) creeping species with horizontal stems that form dense mats. Leaves are evergreen and

needle-shaped; fruits are dark purple to black. In the Arctic, E. nigrum is often reported on rocky or gravelly slopes (Aiken et al. 2007). In the boreal forest, it can dominate the understory (Nilsson and Wardle 2005). Vaccinium vitis-idaea is an evergreen species that produces white to pink flowers and spherical bright red fruits. It is often observed growing in well-drained to dry habitats. There are large interannual variations in the timing of flowering, berry production, and abundance for this species (Langvall and Löfvenius 2021). Vaccinium uliginosum is a deciduous species with small oval and glabrous (i.e., smooth) leaves that grows on moderately to well-drained flat terrain and shallow slopes (Aiken et al. 2007). Flowers are pink and bell-shaped; fruits are dark blue. Vaccinium uliginosum tends to flower earlier than V. vitis-idaea (Khorsand et al. 2024).

Field measurements

Sampling locations (n = 352, Fig. 1) were selected near the community on the coast and in the Tasiapik Valley to the east. An initial random location was chosen within a range of well-drained and mesic sites where berry species are usually most abundant (Fig. 2). At this location, a vector with a direction (0°–180°) and length (20–40 m) determined using a random table was walked. Upon reaching the end of the vector, the nearest erect shrub patch was selected to establish the monitoring transect. A transect was only established if the following criteria were met: (1) there was an erect shrub patch no farther than 10 m away from the end of the vector, (2) there was an erect shrub patch with >25% cover and a diameter > 2 m, and (3) the area was suitable for at least one of the berry

species (i.e., did not present a dense herbaceous vegetation or only a continuous stand of erect shrubs and/or trees).

In July 2015, the cover of berry species (i.e., *E. nigrum*, *V. uliginosum*, and *V. vitis-idaea*) and erect shrubs (e.g., *Alnus viridis*, *B. glandulosa*, and *Salix calcicola* Fernald & Wiegand) was assessed at each transect (n transect = 352) within four 70 cm \times 70 cm quadrats (n quadrat = 1408, Fig. 1). Quadrats were placed as follows: (Q1) in the open tundra at a distance of \geq 70 cm from any erect shrub patch (>25% cover), (Q2) in the open tundra, adjacent to the margin of the erect shrub patch, (Q3) at the margin of the erect shrub patch, and (Q4) inside the erect shrub patch, at \geq 70 cm from the margin, referred to afterwards as the center of the patch. The cover of berry and erect shrub species was assigned a 5% cover class (0%–5%, 5%–10%, etc.) at all sampling sites. The cover of all erect shrub species was pooled and used to define patches, i.e., continuous areas with erect shrub cover > 25%.

At the end of August, 299 (n quadrat = 1196) of the 352 transects were randomly selected for fruit collection. This generally corresponds to the time when fruits start ripening before the local berry picking festival. It was not possible to assess the importance of animal consumption on our plots. Fruits were harvested inside four circular plots of 50 cm² (8 cm diameter) placed at equidistance inside the quadrats previously used to evaluate species cover (Fig. 1). Fruits from each circular plot were pooled by quadrat, they were counted, sorted by ripening stage (1: green; 2: partially ripe, i.e., hard fruit partially green; 3: ripe, i.e., soft fruit and dark color; 4: withered), and weighed fresh and dry (after 48 h at 60 °C). Fruit productivity was expressed as dry fruit biomass per area (g/m^2). We created an index to assess the difference in ripening between plots using the following formula:

(1) Ripening index =
$$\frac{(n \operatorname{stage} 2 * 0.5) + (n \operatorname{stage} 3 * 1)}{n \operatorname{total fruit}}$$

where "n stage 2" is the number of berries in ripening stage 2, "n stage 3" is the number of berries in ripening stage 3, and "n total fruit" is the total number of fruits in stages 1–4.

Statistical analyses

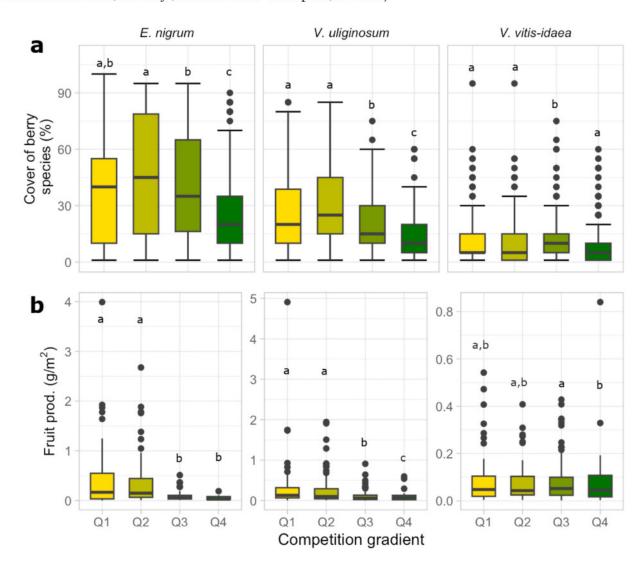
The occurrence of berry species was calculated as the percentage of quadrats (1) where species were present and (2) where species were present and produced berries. A chisquare independence test (balanced, n=352) was used to determine whether differences along the transect were significant. To determine differences among pairs of quadrats, we performed a posteriori paired comparisons (chi-square) test corrected for multiple comparisons to account for the structure of the experimental design (MacDonald and Gardner 2000).

Since the normality assumption was not met for the species cover and fruit productivity, a two-factor Friedman test was used to assess differences among quadrats for those variables (Friedman 1937; Hollander and Wolfe 1999). We then used a post hoc test of Wilcoxon, Nemenyi, and McDonald–Thompson with 2500 Monte Carlo iterations to assess which pairs of quadrats were significantly different (package NSM3; Hollander and Wolfe 1999). The statistics use average ranks

to avoid issues with ties among observations (Hollander and Wolfe 1999).

Due to the low number of sites with fruits of the same species along the transect (n < 10), we pooled the fruits harvested in the open tundra (Q1–Q2) and under erect shrubs (Q3–Q4) to calculate the ripening index for each species (*E. nigrum*, n = 40; *V. uliginosum*, n = 71; *V. vitis-idaea*, n = 47). We then used a Wilcoxon test for paired data to compare fruit ripening between the open tundra and under erect shrub cover. Statistical analyses were computed using the R statistical environment, version 2.0.0 (R Core Team 2020).

Results


The study species (*E. nigrum*, *V. uliginosum*, and *V. vitis-idaea*) were common throughout the study area and completely absent in only 9% of the quadrats. These quadrats without berry species were nearly three times more common at the center of erect shrub patches than at the other three positions along the transect. The most ubiquitous species was *V. vitis-idaea*, found in 72% of the quadrats, followed by *V. uliginosum* (46%) and *E. nigrum* (34%). The three species co-occurred in 16% of the quadrats. *Vaccinium vitis-idaea* was the sole berry species found in 35% of the quadrats, far ahead of *V. uliginosum* (9%) and *E. nigrum* (3%). Erect shrub cover was on average 74% (SD = 14) at the margin of patches (Q3) and 76% (SD = 14) at the center of patches (Q4).

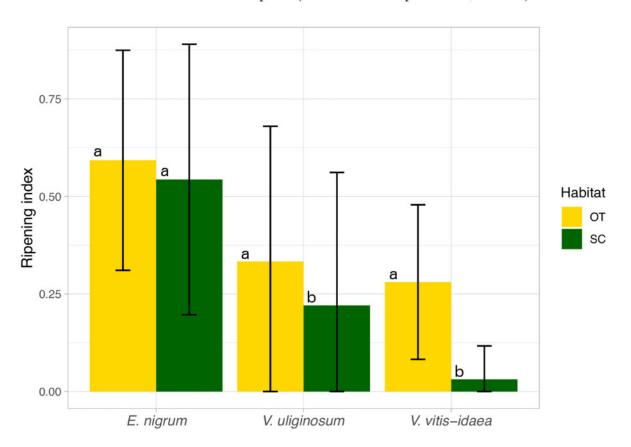
The occurrence of E. nigrum ($\chi 2 = 12.62$, p = 0.006) and V. uliginosum ($\chi 2 = 23.17$, p < 0.001) varied along the transect. These two species were found less frequently at the center of the erect shrub patch (Q4) than at the other three positions along the transect (Q1-Q3). The occurrence of V. vitis-idaea did not vary along the transect ($\chi 2 = 3.42$, p = 0.331). The occurrence of fruit-bearing individuals of the three species varied significantly along the transect (E. nigrum: $\chi 2 = 49.32$, p < 0.001; V. uliginosum: $\chi 2 = 66.62$, p < 0.001; V. vitis-idaea: $\chi 2 = 20.63$, p < 0.001). For E. nigrum, fruit-bearing individuals were less frequently observed in erect shrub patches (Q3-Q4: 12%–23%) than in the open environment (Q1–Q2: 31%–32%). For V. uliginosum, individuals bearing fruits were less frequent at the center of the erect shrub patch (Q4: 20%) than at the other positions (Q1-Q3: 40%-46%). Finally, for V. vitis-idaea, there were significantly more fruit-bearing individuals at the margin of the erect shrub patch (Q3: 46%) than at the center (Q4: 30%).

Cover, fruit productivity, and ripening

Mean cover of berry species ranged from 5% to 20% (Fig. 3b), while fruit productivity rarely exceeded 5 g/m^2 (Fig. 3). The cover of E. nigrum was lower at the center of the erect shrub patch (Q4) than at any other position along the transect (p < 0.001). However, fruit productivity was clearly lower both inside the erect shrub margin (Q3) and at the center of the patch (Q4) (p < 0.001). For V. uliginosum, both cover (p < 0.001) and productivity (p < 0.001) were lower inside the erect shrub margin (Q3) and at the center of patches (Q4) than in the open environments (Q1–Q2). The cover of V. vitis-idaea (p < 0.001) was higher under the erect shrub margin (Q3) than at the three other positions (Q1–Q2, Q4). However, there was a

Fig. 3. Effect of the treatment on the (a) cover (mean \pm SE) (%, n=352) and (b) fruit productivity (mean \pm SE) (g/m², n=299) for *Empetrum nigrum*, *Vaccinium uliginosum*, and *Vaccinium vitis-idaea* along a transect extending from the open tundra (Q1) to the center of the shrub patches (Q4). Different letters show significant differences between positions for each species based on a post hoc test of Wilcoxon, Nemenyi, and McDonald–Thompson; $\alpha=0.05$).

significant difference in fruit productivity only between the inside margin and the center of the patch (p < 0.001). At the time of measurement, most *E. nigrum* berries were ripe and no difference in fruit ripening (p = 0.346; Fig. 4) was measured along the transect. However, fruit ripening of both *V. uliginosum* (p = 0.002) and *V. vitis-idaea* (p < 0.001) was delayed in the erect shrub patch.


Discussion

Our results suggest that the observed and predicted increase in erect shrub cover in the Arctic may have a widespread negative impact on the availability of berries. In this study, we measured significantly lower cover and fruit productivity of *E. nigrum* and *V. uliginosum*, but not *V. vitis-idaea*, at the center of erect shrub patches in areas that are otherwise good berry patches. This trend was consistent across hundreds of sampling locations in a region recognized

both for its good berry picking and rapid increase in erect shrub cover. Our results are consistent with local observations of the impact of erect shrub cover on berry species (Cuerrier et al. 2015; Gérin-Lajoie et al. 2016) and shifts in plant functional groups, from prostrate to erect species, observed in other studies on understorey plant composition in the Arctic (Pajunen et al. 2012; Crofts et al. 2018; Chagnon and Boudreau 2019). They give some insights into the impact of biotic interactions under a warming climate.

In this study, the clearest negative impact of erect shrub cover was observed at the center of patches, and this may be due to two concurring factors. First, plant habit characterized by the presence of horizontal stems branching extensively means that measures taken at the inside margin of the patch may reflect conditions for an "individual" subsidized by ramets located outside the patch. Secondly, since erect shrub cover is rapidly increasing in the region (Provencher-Nolet 2014; Beck et al. 2015), plots at the inside margin of

Fig. 4. Ripening index (mean \pm SE) of Empetrum nigrum (n = 40), Vaccinium uliginosum (n = 71), and Vaccinium vitis-idaea (n = 47) in the open tundra (OT), corresponding to Q1–Q2, and under erect shrub cover (SC), Q3–Q4. Different letters show significant differences between the two environments for each species (Wilcoxon test for paired data; α = 0.05).

erect shrub patches may not have been experiencing interspecific competition for a long time and thus cover may still be reflecting recent more open conditions. While the transition from prostrate to erect shrubs is unlikely to lead to the exclusion of berry species at the regional level (Kitagawa et al. 2020), results from this study indicate that *E. nigrum* and *V. uliginosum* will experience a continued reduction in cover and reproductive success as the cover of erect shrubs continues to increase in the region (Lemay et al. 2018).

In terms of the impact of erect shrubs on phenology, the difference in the ripening indices for *V. uliginosum* and *V. vitisidaea* indicated that conditions under the canopy delay fruit maturity, potentially reducing seed viability in the event of an early frost. Delayed fruit ripening is consistent with delayed peak flowering of *V. vitis-idaea* measured under experimental shading conditions (May et al. 2022). For *E. nigrum*, it is not possible to know whether the lack of difference in ripening indices indicates shade tolerance or whether differences were simply no longer visible at the time of harvest because of the species' earlier fruit ripening.

Ericaceous species, such as *E. nigrum* and *V. uliginosum*, are well known to rely heavily on clonal growth for population maintenance (Eriksson 1989; Szmidt et al. 2002). However, some studies reported frequent *E. nigrum* seedling establishment and the importance of sexual reproduction in newly formed (Boudreau et al. 2010) or eroding (Hill et al. 2012) coastal systems suggesting that a diminution in seed availability could affect population establishment and expansion.

Moreover, delayed fruit maturity may cause temporal mismatch for herbivore species relying on berries in late summer such as migratory geese (Hupp et al. 2013) and bears (Hébert et al. 2008).

While canopy cover delayed the fruit ripening of V. vitisidaea, it otherwise had little impact on cover and fruit abundance suggesting a higher tolerance of this species to shading. Similarly, May et al. (2022) found that only the highest level of shading (i.e., 80%) affected flowers in V. vitis-idaea. They did not measure a decline under intermediary shading conditions (i.e., 40%), mirroring measurements at the margin of erect shrub patches in this study. Siegwart Collier (2020), in their study of the impact of experimental warming on V. vitis-idaea, V. uliginosum, and E. nigrum in Nain and Torr Bay (Nunatsiavut), found on the contrary that V. vitis-idaea was the only species to demonstrate a negative response in fruit production with increasing cover of B. glandulosa, even if the total cover of erect deciduous shrubs in their plots was less than 40%. Interestingly, Nunatsiavut receives a very large amount of precipitation during the summer compared to other Arctic locations (Rapaić et al. 2015), which may make it a unique case where increasing temperatures are not necessarily associated with drier soils (Siegwart Collier 2020). The response of V. vitis-idaea is particularly interesting considering recent results documenting a decline in berry species cover over the last 18-26 years in the northern boreal forest, except for V. vitis-idaea (Krebs et al. 2024). In this later study, climate variables were not significantly correlated to changes in cover.

The authors hypothesized that light availability may be responsible for the observed pattern, although this variable was not explicitly measured in the study. While studies using different methodologies over different timescales should be interpreted with caution, Krebs et al. (2024), Siegwart-Collier (2020), and this study all linked berry species cover to fruit productivity, but showed contrasting impact of shading on productivity, highlighting the strong control exerted by site-specific conditions. These results underline the need to investigate the impact of response time, local and regional environment changes, and their interactions to understand the mechanisms of change in berry production.

Studies across the Arctic have shown differential impacts of warming temperatures on berry species performance (Bråthen et al. 2007; Wilson and Nilsson 2009; Vowles et al. 2017; Weijers et al. 2018) and distribution (Hirabayashi et al. 2022; Hamilton et al. 2024). Hence, warming temperatures may not directly disadvantage these species, but our results indicate the potential for erect shrub patches to reduce the performance of *V. uliginosum* and *E. nigrum*. Wherever erect shrub cover is increasing, a progressive decline in the abundance of berry species may be expected north of the tree line.

Conclusion

Our results demonstrate that shifts in erect shrub abundance will have negative impacts on V. uliginosum and E. nigrum cover and fruit productivity, delay phenology of V. uliginosum and V. vitis-idaea, and potentially impact local cultural practices and resource availability for animals. The influence of erect shrubs on V. vitis-idaea would need to be further investigated but this study and others (May et al. 2022; Krebs et al. 2024) suggest that it may, at least in the short term, not be strongly influenced by canopy closure. Considering current predictions of an increase in erect shrub cover in the region, we can expect a further diminution in the availability of V. uliginosum and E. nigrum in the coming years. The impact on animal populations has yet to be quantified, but these changes may affect species distribution and feeding behaviour. Local harvesters will similarly have to modify berry picking routes and may not be able to return to traditional harvesting sites.

Acknowledgements

The authors are grateful to the Umiujaq community for its hospitality and enthusiasm towards this research project. We would like to acknowledge the help of Guillaume Rheault, Ariane Bisson, and Marc-André Lemay during the field season and of Amélie Lapointe and Mélanie Normandeau-Bonneau in the laboratory.

Article information

History dates

Received: 21 June 2024 Accepted: 29 March 2025

Accepted manuscript online: 13 June 2025 Version of record online: 26 September 2025

Notes

This article is part of a collection entitled "Indigenous Knowledges and Approaches to Botanical Research".

Copyright

© 2025 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Data availability

Data generated or analyzed during this study are available from the corresponding author upon request.

Author information

Author ORCIDs

Noémie Boulanger-Lapointe https://orcid.org/ 0000-0002-0104-6065

Author contributions

Conceptualization: IL, SB, EL

Data curation: IL Formal analysis: IL, NB Funding acquisition: SB, EL Investigation: IL, EL

Methodology: IL, SB, EL Project administration: EL Supervision: SB, EL

Visualization: NB

Writing - original draft: IL, NB

Writing - review & editing: IL, NB, SB, EL

Competing interests

The authors declare there are no competing interests.

Funding information

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC; grant No. 2015-05319) and ArcticNet (Network of Centers of Excellence of Canada; grant No. 268150-2011). Guillaume Rheault, Ariane Bisson, Marc-André Lemay, and Isabelle Lussier received individual funding from the Northern Scientific Training Program (NSTP). Isabelle Lussier received scholarships from EnviroNord (NSERC CREATE Training Program in Northern Environmental Science).

References

Aiken, S.G., Dallwitz, M.J., Consaul, L.L., McJannet, C.L., Boles, R.L., Argus, G.W., and Harris, J.G. 2007. Flora of the Canadian Arctic Archipelago: descriptions, illustrations, identification, and information retrieval. Available from nature.ca/aaflora/data/index.htm [accessed 30 September 2024].

Allard, M., and -Seguin, M.K. 1987. Le pergélisol au Québec nordique: bilan et perspectives. Géogr. Phys. Quat. 41: 141-152. doi:10.7202/032671ar.

Beck, I., Ludwig, R., Bernier, M., Lévesque, E., and Boike, J. 2015. Assessing permafrost degradation and land cover changes (1986–2009) us-

- ing remote sensing data over Umiujaq, Sub-Arctic Québec. Permafr. Periglac. Process. 26: 129–141. doi:10.1002/ppp.1839.
- Berner, L.T., Massey, R., Jantz, P., Forbes, B.C., Macias-Fauria, M., Myers-Smith, I., and Goetz, S.J. 2020. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11: 4621. doi:10.1038/s41467-020-18479-5.
- Bonta, C., King, G.M., and Danby, R.K. 2023. Greening on the Bathurst caribou range in northern Canada: are erect shrubs responsible for remotely sensed trends? Arct. Sci. 9: 581-599. doi:10.1139/ as-2022-0036.
- Boudreau, S., Ropars, P., and Harper, K.A. 2010. Population dynamics of Empetrum hermaphroditum (Ericaceae) on a subarctic sand dune: evidence of rapid colonization through efficient sexual reproduction. Am. J. Bot. 97: 770–781. doi:10.3732/ajb.0900304.
- Boulanger-Lapointe, N., Gérin-Lajoie, J., Siegwart Collier, L., Desrosiers, S., Spiech, C., Henry, G.H.R., and Cuerrier, A. 2019. Berry plants and berry picking in Inuit Nunangat: traditions in a changing socio-ecological landscape. Hum. Ecol. 47: 81–93. doi:10.1007/s10745-018-0044-5.
- Boulanger-Lapointe, N., Järvinen, A., Partanen, R., and Herrmann, T.M. 2017. Climate and herbivore influence on Vaccinium myrtillus over the last 40 years in northwest Lapland, Finland. Ecosphere, 8: e01654. doi:10.1002/ecs2.1654.
- Bråthen, K.A., and Lortie, C. 2016. A portfolio effect of shrub canopy height on species richness in both stressful and competitive environments. Funct. Ecol. 30: 60–69. doi:10.1111/1365-2435.12458.
- Bråthen, K.A., Ims, R.A., Yoccoz, N.G., Fauchald, P., Tveraa, T., and Hausner, V.H. 2007. Induced shift in ecosystem productivity? Extensive scale effects of abundant large herbivores. Ecosystems, 10: 773–789. doi:10.1007/s10021-007-9058-3.
- Buckeridge, K.M., Zufelt, E., Chu, H., and Grogan, P. 2010. Soil nitrogen cycling rates in low arctic shrub tundra are enhanced by litter feedbacks. Plant Soil, 330: 407–421. doi:10.1007/s11104-009-0214-8.
- Cadieux, M.-C., Gauthier, G., and Hughes, R.J. 2005. Feeding ecology of Canada Geese (Branta Canadensis Interior) in Sub-Arctic Inland Tundra during brood-rearing. Auk, 122: 144–157. doi:10.1093/auk/122.1.144.
- CEN. 2024. Climate station data from the Umiujaq region in Nunavik, Quebec, Canada. Nordicana D9. doi:10.5885/ 45120SL-067305A53E914AF0.
- Chagnon, C., and Boudreau, S. 2019. Shrub canopy induces a decline in lichen abundance and diversity in Nunavik (Québec, Canada). Arct. Antarct. Alp. Res. 51: 521–532. doi:10.1080/15230430.2019.1688751.
- Chapin, F.S., Shaver, G.R., Giblin, A.E., Nadelhoffer, K.J., and Laundre, J.A. 1995. Responses of arctic tundra to experimental and observed changes in climate. Ecology, 76: 694–711. doi:10.2307/1939337.
- Cornelissen, J.H.C., Van Bodegom, P.M., Aerts, R., Callaghan, T.V., Van Logtestijn, R.S.P., Alatalo, J., and Team, M.O.L. 2007. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol. Lett. 10: 619–627. doi:10.1111/j.1461-0248.2007.01051.x.
- Crofts, A.L., Drury, D.O., and McLaren, J.R. 2018. Changes in the understory plant community and ecosystem properties along a shrub density gradient. Arct. Sci. 4: 485–498. doi:10.1139/as-2017-0026.
- Cuerrier, A., Brunet, N.D., Gérin-Lajoie, J., Downing, A., and Lévesque, E. 2015. The study of Inuit Knowledge of climate change in Nunavik, Quebec: a mixed methods approach. Hum. Ecol. 43: 379–394. doi:10.1007/s10745-015-9750-4.
- Davis, E., Trant, A., Hermanutz, L., Way, R.G., Lewkowicz, A.G., Siegwart Collier, L., and Whitaker, D. 2021. Plant-environment interactions in the Low Arctic Torngat Mountains of Labrador. Ecosystems, 24: 1038– 1058. doi:10.1007/s10021-020-00577-6.
- Domine, F., Barrere, M., Sarrazin, D., Morin, S., and Arnaud, L. 2015. Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra. Cryosphere, 9: 1265–1276. doi:10.5194/tc-9-1265-2015.
- Edwards, M.A., Derocher, A.E., Hobson, K.A., Branigan, M., and Nagy, J.A. 2011. Fast carnivores and slow herbivores: differential foraging strategies among grizzly bears in the Canadian Arctic. Oecologia, 165: 877–889. doi:10.1007/s00442-010-1869-9.
- Elisabetta, B., Flavia, G., Paolo, F., Giorgio, L., Attilio, S.G., Fiorella, L.S., and Juri, N. 2013. Nutritional profile and productivity of bilberry (Vaccinium myrtillus L.) in different habitats of a protected area of the Eastern Italian Alps. J. Food Sci. 78: C673–C678. doi:10.1111/1750-3841. 12120.

- Elmendorf, S.C., Henry, G.H., Hollister, R.D., Björk, R.G., Boulanger-Lapointe, N., Cooper, E.J., and Elumeeva, T.G. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change, 2: 453–457. doi:10.1038/nclimate1465.
- Eriksson, O. 1989. Seedling dynamics and life histories in clonal plants. Oikos, 55: 231–238. doi:10.2307/3565427.
- Forbes, B.C., Fauria, M.M., and Zetterberg, P. 2010. Russian Arctic warming and 'greening' are closely tracked by tundra shrub willows. Global Change Biol. 16: 1542–1554. doi:10.1111/j.1365-2486.2009.02047.x.
- Fortier, R., Allard, M., and Seguin, M.-K. 1994. Effect of physical properties of frozen ground on electrical resistivity logging. Cold Reg. Sci. Technol. 22: 361–384. doi:10.1016/0165-232X(94)90021-3.
- Friedman, M. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Statist. Assoc. 32: 675–701. doi:10.1080/01621459.1937.10503522.
- Gérin-Lajoie, J., Cuerrier, A., and Collier, L.S. 2016. The Caribou taste different now." Inuit elders observe climate change. Nunavut Arctic College Media, Iqaluit.
- Government of Canada. 2021. Administrative Boundaries in Canada—CanVec Series. Available from https://open.canada.ca/data/en/dataset/306e5004-534b-4110-9feb-58e3a5c3fd97/resource/903df5db-8496-4d54-ae20-789e7e199fbc [accessed 1 June 2023].
- Hamilton, C., Smithwick, E., Spellman, K., Baltensperger, A., Spellman, B., and Chi, G. 2024. Predicting the suitable habitat distribution of berry plants under climate change. Landsc. Ecol. 39. doi:10.1007/s10980-024-01839-7.
- Hébert, R., Samson, C., and Huot, J. 2008. Factors influencing the abundance of berry plants for black bears, *Ursus americanus*, in Quebec. Can. Field Nat. 122: 212–220. doi:10.22621/cfn.v122i3.601.
- Hill, C., Nash, S., Hopkins, S., Boyer, B., OBrien, D., and Bersamin, A. 2023. Diet quality is positively associated with intake of traditional foods and does not differ by season in remote Yup'ik communities. Int. J. Circumpolar Health, 82(1): 1–9. doi:10.1080/22423982.2023. 2221370.
- Hill, N.M., Vander Kloet, S.P., and Garbary, D.J. 2012. The regeneration ecology of Empetrum nigrum, the black crowberry, on coastal heathland in Nova Scotia. Botany, 90: 379–392. doi:10.1139/b2012-022.
- Hirabayashi, K., Murch, S.J., and Erland, L.A.E. 2022. Predicted impacts of climate change on wild and commercial berry habitats will have food security, conservation and agricultural implications. Sci. Total Environ. 845: 157341. doi:10.1016/j.scitotenv.2022.157341.
- Hollander, M., and Wolfe, D.A. 1999. Nonparametric statistical methods. Wiley, New York.
- Hupp, J.W., Safine, D.E., and Nielson, R.M. 2013. Response of cackling geese (Branta hutchinsii taverneri) to spatial and temporal variation in the production of crowberries on the Alaska Peninsula. Polar Biol. 36: 1243–1255. doi:10.1007/s00300-013-1343-3.
- Khorsand, R.S., Sancier-Barbosa, F., May, J.L., Høye, T.T., and Oberbauer, S.F. 2024. Effects of short- and long-term experimental warming on plant-pollinator interactions and floral rewards in the Low Arctic. Arct. Sci. 10: 424–442. doi:10.1139/as-2022-0034.
- Kitagawa, R., Masumoto, S., Nishizawa, K., Kaneko, R., Osono, T., Hasegawa, M., and Mori, A.S. 2020. Positive interaction facilitates landscape homogenization by shrub expansion in the forest-tundra ecotone. J. Veg. Sci. 31: 234–244. doi:10.1111/jvs.12818.
- Krebs, C.J., Boonstra, R., Kenney, A.J., Hofer, E., Jung, T.S., and O'Donoghue, M. 2024. Trends in groundberry cover under climate change in the southern and central Yukon, 1997–2022. Botany, 102: 1–9. doi:10.1139/cjb-2023-0068.
- Krebs, C.J., Cowcill, K., Boonstra, R., and Kenney, A.J. 2010. Do changes in berry crops drive population fluctuations in small rodents in the southwestern Yukon? J. Mammal. 91: 500–509. doi:10.1644/ 09-MAMM-A-005.1.
- Langvall, O., and Löfvenius, M.O. 2021. Long-term standardized forest phenology in Sweden: a climate change indicator. Int. J. Biometeorol. 65: 381–391. doi:10.1007/s00484-019-01817-8.
- Lemay, M.-A., Provencher-Nolet, L., Bernier, M., Lévesque, E., and Boudreau, S. 2018. Spatially explicit modeling and prediction of shrub cover increase near Umiujaq, Nunavik. Ecol. Monogr. 88: 385– 407. doi:10.1002/ecm.1296.
- Liston, G.E., Mcfadden, J.P., Sturm, M., and Pielke, R.A. 2002. Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs. Global Change Biol. 8: 17–32. doi:10.1046/j.1354-1013.2001.00416.x.

- MacDonald, P.L., and Gardner, R.C. 2000. Type I error rate comparisons of post hoc procedures for I j chi-square tables. Educ. Psychol. Meas. 60: 735–754. doi:10.1177/001316400219708.
- Markkula, I., Turunen, M., and Rasmus, S. 2019. A review of climate change impacts on the ecosystem services in the Saami homeland in Finland. Sci. Total Environ. 692: 1070–1085. doi:10.1016/j.scitotenv. 2019.07.272.
- May, J.L., Oberbauer, S.F., Unger, S.L., Simon, M.J., Betway, K.R., and Hollister, R.D. 2022. Shading decreases and delays NDVI and flowering of prostrate Arctic shrubs. Arct. Sci. 8: 967–978. doi:10.1139/ as-2020-0043.
- McDermott, M.T., Doak, P., Handel, C.M., Breed, G.A., and Mulder, C.P.H. 2021. Willow drives changes in arthropod communities of northwestern Alaska: ecological implications of shrub expansion. Ecosphere, 12: e03514. doi:10.1002/ecs2.3514.
- Mekonnen, Z.A., Riley, W.J., Berner, L.T., Bouskill, N.J., Torn, M.S., Iwahana, G., and Grant, R.F. 2021. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett. 16: 053001. doi:10.1088/1748-9326/abf28b.
- Myers-Smith, I.H., Elmendorf, S.C., Beck, P.S., Wilmking, M., Hallinger, M., Blok, D., and Forbes, B.C. 2015. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change, 5: 887–891. doi:10.1038/nclimate2697.
- Myers-Smith, I.H., Kerby, J.T., Phoenix, G.K., Bjerke, J.W., Epstein, H.E., Assmann, J.J., and Wipf, S. 2020. Complexity revealed in the greening of the Arctic. Nat. Clim. Change, 10: 106–117. doi:10.1038/ s41558-019-0688-1.
- Nilsson, M.-C., and Wardle, D.A. 2005. Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front. Ecol. Environ. 3: 421–428. doi:10.1890/1540-9295(2005) 003[0421:UVAAFE]2.0.CO;2.
- Norment, C.J., and Fuller, M.E. 1997. Breeding-season frugivory by Harris' sparrows (Zonotrichia querula) and white-crowned sparrows (Zonotrichia leucophrys) in a low-arctic ecosystem. Can. J. Zool. 75: 670–679. doi:10.1139/z97-087.
- Pajunen, A., Virtanen, R., and Roininen, H. 2012. Browsing-mediated shrub canopy changes drive composition and species richness in forest-tundra ecosystems. Oikos, 121: 1544–1552. doi:10.1111/j. 1600-0706.2011.20115.
- Paradis, M., Lévesque, E., and Boudreau, S. 2016. Greater effect of increasing shrub height on winter versus summer soil temperature. Environ. Res. Lett. 11: 085005. doi:10.1088/1748-9326/11/8/085005.
- Parkinson, L.V., and Mulder, C.P.H. 2020. Patterns of pollen and resource limitation of fruit production in *Vaccinium uliginosum* and *V. vitis-idaea* in Interior Alaska. Environ. Res. Lett. 11: e0224056. doi:10.1088/1748-9326/11/8/085005.
- Payette, S. 1983. The forest-tundra and present tree-lines of the northern Québec-Labrador peninsula. In Proceedings of the northerns Quebec tree-line conférence Nordicana. pp. 3–24.
- Payette, S., Delwaide, A., Caccianiga, M., and Beauchemin, M. 2004. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31: 1–4. doi:10.1029/2004GL020358.

- Pelletier, M., Allard, M., and Levesque, E. 2019. Ecosystem changes across a gradient of permafrost degradation in subarctic Québec (Tasiapik Valley, Nunavik, Canada). Arct. Sci. 5: 1–26. doi:10.1139/as-2016-0049.
- Pomeroy, J.W., Bewley, D.S., Essery, R.L.H., Hedstrom, N.R., Link, T., Granger, R.J., and Janowicz, J.R. 2006. Shrub tundra snowmelt. Hydrol. Processes, 20: 923–941. doi:10.1002/hyp.6124.
- Provencher-Nolet, L. 2014. Détection de changement à court terme de la toundra arbustive à partir de photographies aériennes, région d'Umiujaq, Nunavik (Québec, Canada). MSc thesis, Université du Québec, Institut national de la recherche scientifique, Québec.
- R Core Team. 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Rapaić, M., Brown, R., Markovic, M., and Chaumont, D. 2015. An evaluation of temperature and precipitation surface-based and reanalysis datasets for the Canadian Arctic, 1950–2010. Atmos. Ocean, 53: 283–303. doi:10.1080/07055900.2015.1045825.
- Schuur, E., Abbott, B., Commane, R., Ernakovich, J., Euskirchen, E., Hugelius, G., and Turetsky, M. 2022. Permafrost and climate change: carbon cycle feedbacks from the warming Arctic. Annu. Rev. Environ. Resour. 47: 343–371. doi:10.1146/annurev-environ-012220-011847.
- Siegwart Collier, L. 2020. Climate change impact on berry shrub performance in treeline and tundra ecosystems. PhD thesis, Memorial University, Department of Biology.
- Sturm, M., Schimel, J., Michaelson, G., Welker, J.M., Oberbauer, S.F., Liston, G.E., and Romanovsky, V.E. 2005. Winter biological processes could help convert Arctic tundra to shrubland. Bioscience, 55: 17–26. doi:10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2.
- Szmidt, A.E., Nilsson, M.-C., Briceño, E., Zackrisson, O., and Wang, X.-R. 2002. Establishment and genetic structure of Empetrum hermaphroditum populations in northern Sweden. J. Veg. Sci. 13: 627–634. doi:10. 1111/j.1654-1103.2002.tb02090.x.
- Tolvanen, A. 1995. Aboveground growth habits of two Vaccinium species in relation to habitat. Can. J. Bot. 73: 465–473. doi:10.1139/b95-047.
- Vowles, T., Lovehav, C., Molau, U., and Björk, R.G. 2017. Contrasting impacts of reindeer grazing in two tundra grasslands. Environ. Res. Lett. 12: 034018. doi:10.1088/1748-9326/aa62af.
- Walker, D.A., Jia, G.J., Epstein, H.E., Raynolds, M.K., Chapin, F.S., III, Copass, C., and Shiklomanov, N. 2003. Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies. Permafr. Periglac. Process. 14: 103–123. doi:10.1002/ppp.452.
- Weeden, R.B. 1969. Foods of rock and willow ptarmigan in Central Alaska with comments on interspecific competition. Auk, 86: 271– 281. doi:10.2307/4083500.
- Weijers, S., Myers-Smith, I.H., and Löffler, J. 2018. A warmer and greener cold world: summer warming increases shrub growth in the alpine and high Arctic tundra. Erdkunde, 72: 63–85. doi:10.3112/erdkunde.
- Wilson, S.D., and Nilsson, C. 2009. Arctic alpine vegetation change over 20 years. Global Change Biol. 15: 1676–1684. doi:10.1111/j.1365-2486. 2009.01896.x.