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Abstract

The increase in energy needs of the growing global population and the concern with

its associated Greenhouse Gas emissions cause significant challenges for conventional

power systems. In this regard, the smart grid concept is proposed as a key enabler for

clean energy generation and efficient energy consumption. Under the smart grid paradigm,

the emergence of transactive energy systems brings about a remarkable opportunity

for realizing a modernized power grid through enhanced Energy Management Systems.

Particularly, these new systems offer innovative Demand Response (DR) programs in

order to improve energy efficiency and flexibility and facilitate renewable resources

and energy storage integration. This is achieved by leveraging advanced metering

infrastructure, two-way communication networks, and distributed control systems. The

smart grid also frames a group of mechanisms for DR characterized by generating

incentives or pricing policies in an adaptive and more real-time manner. Consumers can

react by modifying their load profiles in order to minimize energy costs while maintaining

comfort desires. On the grid side, the operator can manage system congestion and

minimize operational costs by reducing the peak demand and deferring the construction

of new power plants and power delivery systems. However, these DR programs

face significant challenges in terms of modeling and management of decision-support

information in dynamic and non-homogeneous environments. Indeed, the incomplete

information on the dynamics of the behind-the-meter resources, the inherent issues

of user data confidentiality, the potential failures in the communication channels, and

the emergence of intelligent loads (including storage) create a complex and uncertain

environment for the decision-making process.

As a result, a new entity is emerging, the demand response aggregator. This aggregator

acts as a mediator between consumers and the electricity market to explore the flexibility
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opportunities offered by the residential sector. This new entity will then seek to offer

benefits to both parties (distributors and users) by exploiting the policies of demand

response programs. The mentioned role translates into an interaction between players

seeking to maximize their gains and thus ends up being framed by game theory. However,

the various sources of uncertainty mentioned above considerably complicate the process

of generating optimal policies. With this in mind, reinforcement learning methods emerge,

offering the possibility of managing uncertainty through a trial-and-error process. In other

words, this approach takes advantage of the interactions between the various players in the

system, in order to achieve an optimized generation of transactive policies.

This thesis proposes to develop an automated agent (meeting the needs of network

managers) for generating optimized transactive policies through interactions in a

residential environment. The proposed approach considers a transactive environment

composed of rational residential agents and a demand response aggregator agent

interacting in a game theoretic framework. The aggregator’s adaptability and ability

to handle uncertainty are considered through reinforcement learning techniques. The

results demonstrate the effectiveness of the proposed method in managing residential

consumption. The aggregator agent is able to offer economic incentives to users through

the development of pricing policies while respecting users’ privacy, in order to exploit the

potential of residential flexibility.



Résumé

L’augmentation des besoins en énergie de la population mondiale et les préoccupations

liées aux émissions de gaz à effet de serre qui y sont associées posent des défis

importants aux systèmes électriques conventionnels. Dans ce contexte, le concept de

réseau intelligent (SG) est proposé comme un outil clé pour la production d’énergie

propre et la consommation d’énergie efficace. Dans le cadre du paradigme du SG,

l’émergence de systèmes énergétiques transactionnels offre une opportunité remarquable

de moderniser le réseau électrique grâce à l’évolution des systèmes de gestion de

l’énergie. En particulier, ces systèmes offrent des programmes innovants de réponse à

la demande (DR) afin d’améliorer l’efficacité et la flexibilité énergétiques et de faciliter

l’intégration des ressources renouvelables et du stockage. Pour ce faire, ils s’appuient sur

une infrastructure de comptage avancée, des réseaux de communication bidirectionnels et

des systèmes de contrôle distribués. Le SG encadre également un groupe de mécanismes

pour le DR caractérisés par la génération d’incitatifs ou de politiques de tarification d’une

manière adaptative et en temps réel. Les consommateurs peuvent réagir en modifiant

leurs profils de charge afin de minimiser les coûts énergétiques tout en maintenant leurs

désirs de confort. Du côté du réseau, l’opérateur peut gérer les contraintes opérationnelles

du réseau et minimiser les coûts opérationnels en réduisant la demande de pointe et en

reportant la construction de nouvelles centrales électriques et de systèmes de distribution

d’énergie. Cependant, ces programmes de réduction de la consommation sont confrontés

à des défis importants en termes de modélisation et de gestion des informations dans des

environnements dynamiques et non homogènes. En effet, les informations incomplètes

sur la dynamique des ressources derrière le compteur, les problèmes inhérents à la

confidentialité des données des utilisateurs, les défaillances potentielles des canaux de

communication et l’émergence de charges intelligentes (y compris le stockage) créent un
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environnement complexe et incertain pour le processus de prise de décision.

En conséquence, une nouvelle entité émerge, l’agrégateur de réponse à la demande

(DRA). Cet entité joue le rôle de médiateur entre les consommateurs et le marché de

l’électricité afin d’explorer les possibilités de flexibilité offertes par le secteur résidentiel.

Cette nouvelle entité cherchera alors à offrir des avantages aux deux parties (distributeurs

et utilisateurs) en exploitant les politiques des programmes de DR. Le rôle mentionné se

traduit par une interaction entre des acteurs cherchant à maximiser leurs gains et finit donc

par être encadré par la théorie des jeux. Cependant, les différentes sources d’incertitude

mentionnées ci-dessus compliquent considérablement le processus de génération de

politiques optimales. Dans cette optique, les méthodes d’apprentissage par renforcement

(RL) apparaissent, offrant la possibilité de gérer l’incertitude par le biais d’un processus

itératif d’action-récompense. En d’autres termes, cette approche tire parti des interactions

entre les différents acteurs du système, afin de parvenir à une génération optimisée de

politiques transactionnelles.

Cette thèse propose de développer un agent DRA automatisé pour générer des

politiques transactionnelles optimisées par le biais d’interactions dans un environnement

résidentiel. L’approche proposée considère un environnement transactionnel composé

d’agents résidentiels rationnels et l’agent DRA interagissant dans un schéma de théorie

des jeux. L’adaptabilité de l’agrégateur et sa capacité à gérer l’incertitude sont prises

en compte grâce à des techniques de RL. Les résultats démontrent l’efficacité des

approches proposées dans la gestion de la consommation résidentielle. L’agent DRA est

capable d’offrir des incitations économiques aux utilisateurs à travers le développement

de politiques de tarification tout en respectant la vie privée des utilisateurs, afin d’exploiter

le potentiel de flexibilité résidentielle.
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Chapter 1 - Introduction

Currently, different environmental challenges have raised the need to develop different

strategies to overcome climate problems. In that sense, power systems have been

experiencing a rapid evolution due to the modus operandi of generation-based electrical

energy systems [1]. In terms of economic limitations and environmental considerations,

the traditional implementation of large centralized generators within a monopoly is

considered non-optimal and unsustainable. Furthermore, the environmental considerations

have resulted in new governmental goals, translated into carbon taxes, emission limits,

and fast implementation of renewable energy technologies [2]. For instance, according to

Hydro-Québec’s 2021 report, nearly 40% of the province of Québec’s energy consumption

is demanded by the residential sector [3]. In addition, the exposure to long winter

periods makes the consumption of thermal loads represent more than 70% of residential

consumption [4], as it is presented in Figure 1.1. Because of this, although the data shows

that energy production is sufficient to meet the needs of grid users, it is possible that on

certain days during the winter period, consumption demand exceeds production during

peak consumption hours [5].

Considering the above, the idea of continuing with a one-way transaction system

has become an obsolete concept. The growth of renewable electricity generation has

opened the opportunity to inject energy into the grid in a decentralized way, resulting in

the creation of new electricity markets that allow transactions even between users [6].

However, this generates an increasing challenge since maintaining the electric power

balance while respecting the constraints of the energy grid is becoming a bigger problem.

On the other hand, the integration of information and communication technologies as the

focus of the Internet of Things has allowed the development of a new concept called
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smart grid (SG). This concept seeks to use these technologies to achieve great energy

savings and improve the agility, reliability, efficiency, security, economy, sustainability,

and environmental friendliness of the power grid [7].

An important focus in implementing the SG concept is the consideration of the role of

users in energy management; this is known as Demand Response (DR). DR is a change

in the electric consumption by customers from their normal consumption behavior. This

is a response to changes in the electricity price or to an incentive payment designed by

the operator. The idea is to induce lower electricity use at times of high wholesale market

prices or when the system reliability is jeopardized [8]. The contribution of DR programs

in the power systems comes from economic and reliability aspects. From the economic

side, DR can shift the energy consumption from high-cost to low-cost periods, which

results in a reduction of cost generation. And from the system reliability, demand response

can help in the challenging task of maintaining the system frequency, and the balance

between supply and demand [9].

In order to obtain an optimal behavior of the grid, a new entity called DR aggregator
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(DRA) has been suggested. A DRA in the electricity market is considered a mediator or

a third-party intermediate between power market participants and electricity prosumers

and consumers, as presented in Figure 1.2. These aggregators offer customers contracts,

enabling them to participate directly in the wholesale market while at the same time

supplying services to operators that improve the reliability of the network. This is due

to the fact that DRA realizes the existence of flexibility opportunities related to the users’

ability to manage loads/generations [12]. They detect these opportunities by managing

energy consumption that consumers carry out during critical periods of the day, such as

peak hours, or the change in their behavior when they are exposed to periods with cheaper

electricity. The DRA capitalizes on these opportunities to be able to enter the wholesale

electricity markets. In this way, the DR can be bought by the operators and other market

entities as ancillary services, capacity reserves, or balancing provisions [10].

It is possible to summarize the above by saying that the definition of this SG has

allowed the development of both technical and economic instruments for the power grid.

This new model enhances the participation of different actors through the emphasis on

information exchange and distributed optimization [13]. These actors can be considered
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agents deployed in a multi-agent environment, capable of negotiating, coordinating,

or cooperating according to the resources they offer or need. As a result, the agents

can reach a system equilibrium by solving their individual optimization problems. This

incredible interaction, called transactive energy, is possible thanks to the bidirectional

communication of the new network. This allows the easy integration of renewable

resources, distributed energy resources, and new technologies such as electric vehicles.

Moreover, it creates a further need for the development of new innovative methodologies

to overcome the new challenges linked to the new management of electricity consumption

[14]. According to the framework presented, the problematic of this research work will be

described below.

1.1 Problematic

Human nature is one of the major problems affecting the design of DR markets. When

analyzing the behavior of large energy consumers, it can be observed that they present

a rational response with respect to maximizing their profits. However, small consumers,

such as residential users, do not show the same rationality. This is because the preferences

of these users differ greatly and in many cases minimizing their bill may not be in their best

interest [2]. Furthermore, authors in [15] conducted an study about the price elasticity of

the houses. This research work found that there not exist a linear relationship between the

consumption change and the price change, as it is conventionally assumed. Instead, they

found that the consumption change in response to any price change will be similar for

any magnitude of that price change. Because of this, although the increasing immersion of

smart devices at the residential level has facilitated the process of exploiting the flexibility

potential of users, the generation of optimal pricing policies remains a challenge for DR

programs [16].
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Therefore, the DRA is in charge of overcoming these problems to optimize the

detection of flexibility opportunities presented in the network and then capitalize on them.

Thus, it is necessary to develop tools for the DRA that allow us to define optimized

transactive policies in order to mitigate consumption peaks from the residential sector [11].

These policies should be adapted through the characterization of the residential users

that will interact with the DRA. As a result, several challenges arise that may affect

the generation of these transactive policies, linked to the anticipation of the responsive

behavior of residential energy consumers and grid operators’ needs. It is possible to

summarize them as follows:

• The uncertainties problems due to the partial observability of DR programs have

resulted in excessive considerations related to access to user information for optimal

policy making [17]. So, the generation of optimized transactive price policies

while avoiding impacts on customer privacy is still a challenge. This approach

will prevent overconfidence in the information received from users, thus avoiding

opportunities for dishonest reporting and cheating the system. At the same time, it

will increase users’ interest in participating in the program.

• The lack of information from users would affect the convergence of the

implemented methods. In addition, the characterization of consumer behavior in

response to price becomes a slow process. The challenge of ensuring convergence

to a near-to-optimal point while reducing the convergence time is important to

guarantee the viability of future implementations of decision-making strategies in

price policy generation.

• The needs of the supplier side may differ as they may be affected not only by

economic aspects (the operational and power generation costs) but also by the

physical constraints of the system. The vast majority of studies consider peak
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shaving as a sufficient solution to improve network performance. However, these

strategies rarely take into account these real needs, which can negatively affect the

economic optimization of DRA decisions.

• Finally, it is necessary to consider the increase in the complexity of the system

as the number of these aggregators increases. More aggregators indicate greater

difficulty in scheduling the load for a utility company [18]. Moreover, aggregators

that are part of different companies must cooperate to achieve global objectives

while maximizing their profitability. This evidences the need for the development

of cooperative models in the process of implementing DR programs.

1.2 Objectives and contributions

In response to the problems presented, this project has as an objective the proposition

of strategies for generating optimized transactive policies based on intelligent agents,

anticipating the individual and collective behavior of residential energy consumers. The

following three specific objectives are defined as follows:

1. Generate mechanisms for the DRA to define optimized transactive policies,

avoiding impacts on customer privacy and increasing user interest in participating

in the DR program.

2. Formulate strategies to consider market and system constraints in the transactive

policy generation process.

3. Develop a multiagent system to establish a cooperative method for a set of DRAs

to achieve an overall system objective while maximizing their own profits.

The achievement of these objectives will result in the accomplishment of the following

three main contributions:
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1. The proposition of a method for the DRA to generate optimized transactive policies

for residential customers utilizing their response to price policies and dealing with

uncertainties related to the lack of domestic information.

2. The proposition of strategies for the generation of optimized transactional policies

based on prices, integrating market and system constraints.

3. The proposition of a cooperative multiagent system, which will enable the

management of a set of DRA to reach a global system objective while maximizing

their profits.

The novelty of this study lies in the generation of pricing policies that take user privacy

into account. Roughly speaking, the state of the art presents different approaches used

for the generation of these policies. However, in order to optimize the transactive policy

generation process, the proposed methods need specific information from consumers,

which can result in two problems. The first is the loss of user interest in participating

in DR programs. The second is placing excessive reliance on the information provided by

customers, giving them the opportunity to cheat the system.

By choosing this approach, new challenges appear linked to the lack of information

available for the generation of transactive policies. For this reason, throughout this thesis,

we seek to answer different aspects, such as:

• The minimum information required to guarantee the optimization of pricing

policies.

• The system conditions to ensure convergence to a near-to-optimal point or Nash

equilibrium.

• The convergence time of the proposed algorithms and the proposal of methods for

their reduction (if necessary).
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• The implementation of fair reward mechanisms in cooperative DRA approaches.

1.3 Methodology

In order to address the discussed problem, an approach based on data-driven

mechanisms is proposed. This approach exploits the interaction between the DRA agent

and the residential agents for the generation of transactive policies. In this sense, a

three-stage analysis is performed to achieve the objectives presented above. The first one

consists of a literature search considering the proposed problem for understanding and

mastering the notions linked to the domain of interest. This will be done at the same

time as the residential agent models are developed so that they can interact with the DRA

agents. In the second stage, the limitations and difficulties of the existing approaches

will be analyzed, taking into account the requirements of the problem addressed. In the

third phase, the proposal that provides an appropriate solution to the research problem

is determined. Finally, the fourth phase is the performance validation of the selected

mechanisms through the utilization of simulation strategies. An illustration summarizing

the explained methodology followed is presented in Figure 1.3.

The exploratory study carried out allowed us to identify the methodologies used for

the generation of transactive policies within the framework of DR programs. Firstly, it has

shown us the need for the development of multi-agent systems to frame the interactions

between the different actors of the DR program. Also, the literature review has shown the

growing popularity of reinforcement learning (RL) methods for different SG applications.

This is due to their ability to deal with the inherent uncertainty of DR programs, linked

to the lack of information in the process of generating transactive policies. Among the

advantages of this approach to solving our problem are the following:
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• This method can be used to solve very complex problems that cannot be solved

with conventional techniques, as it is the case of defining an optimized price policy

while ensuring customers’ privacy.

• The ability to characterize the price response behavior of users through a trial and

error process.

• Once the training process is done, this method can correct errors during

deployment.

• It is an adaptive method that can correct its decision-making process according to

changes in the environment. In this case, changes in user response patterns.

• The possibility of dealing with non-convex optimization problems.
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It is clear that the implementation of RL algorithms has been explored in the SG

context, especially in areas such as electric vehicles. However, certain aspects need to be

analyzed for the proposed scenario to guarantee convergence to a near-to-optimal point in

our multi-agent system. Therefore, the proposed approach seeks to propose a multi-agent

system architecture in which a DRA agent will be able to define an optimized price policy

for a given set of residential agents. This policy will aim to exploit the flexibility potential

of residential agents in order to achieve an overall objective for the energy network.

Thus, to achieve the objectives of this thesis project, following the proposed three-stage

approach, the following activities will be done: First, we will develop models for the

controllable loads that the residential agents will be able to use as a source of flexibility.

Then, a behavioral model will be built for these agents, and a control mechanism will be

stated using the controllable loads to obtain a responsive behavior to stimuli (transactive

policies, weather, etc.). Finally, we will analyze how the DRA can define optimized

transactive policies according to the response in consumption of a given set of residential

agents. The DRA will characterize the responsive behavior of the end-users by learning

from their interactions. A general automated sequence for the implementation of DR

programs is presented in Figure 1.4.

1.4 Assumptions

• It is assumed that the coordination mechanism is fast enough not to interfere with

the execution time of the DR program. This means that the DRA will define

and communicate the transactive policy in time for customers to adjust their

consumption plans before the start of the next 24-hour bidding period.

• In the communication system, it is assumed that the aggregator agent is fair in

sending the same information to all the residential agents. In addition, the market
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works in such a way that it does not allow the exchange of information between the

latter, with the purpose of abusing this extra information, affecting the performance

of the established DR mechanism.

• Finally, it is important to highlight the adopted assumption of consumer economic

rationality, which is the basis for the implementation of DR programs concerning

the price signals or incentives established. Furthermore, according to their

flexibility potential, the residential agents are able to react optimally, according

to the consumer’s rationality.

1.5 Manuscript plan

This thesis document is composed of five chapters structured as follows:

• Chapter 1: General information about the thesis problem. In this chapter, the

problem, objectives, and methodology are clearly defined.
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• Chapter 2: This chapter presents the state of the art related to the generation of

transactive policies. General aspects of DR programs are initially presented. The

approaches used for the generation of transactive policies are discussed. Finally, a

synthesis of the methods used for the generation of pricing policies in the residential

context is presented.

• Chapter 3: This chapter presents the articles that have been dedicated to each

objective in three main sections. Initially, it presents the development of the

multi-agent architecture to ensure convergence. As a result, a first approach for

the generation of pricing policies is suggested. Next, market and supply-side

constraints are taken into account when proposing a DR program. Finally, a

cooperative scheme between different DRAs is developed, using fair mechanisms

based on the contribution of each aggregator in achieving a given global objective.

• Chapter 4: An in-depth discussion is presented to analyze the exhibited results from

the previous chapter. A discussion of new opportunities and challenges that can be

investigated in terms of further research subjects is emphasized for the generation

of optimized price policies.

• Chapter 5: Presents conclusions and recommendations. A synthesis of the work

performed is presented, ending with recommendations that will allow future

improvement of the proposed methods.



Chapter 2 - State-of-the-art

2.1 Demand Side Management

Demand-side management (DSM) is a very important concept for load management

that has been considered an effective tool for different tasks in the transformation of

the traditional power grid into the SG. DSM provides advantages in different areas of

the electricity grid, where the most popular ones are the liberalization of the electricity

market, the balance in real-time of the electricity demand and supply, the improvement of

control management strategies, the reduction of the energy consumption and increasing

the opportunities for the implementation of decentralized energy resources, and electric

vehicles [19]. The main goal of DSM is to use power-saving technologies, monetary

incentives, and electricity tariffs to mitigate the energy consumption peaks, instead of

increasing the generation capacity or strengthening the distribution and transmission of

the grid [20].

Taking into account the above, DSM can be considered as modifications of the energy

consumption pattern from the demand side to enhance the electrical energy system’s

efficiency and operation. These activities can be used to classify DSM techniques in

load shifting, peak clipping, conservation, load building, valley filling, and flexible load

shaping [21], as presented in Figure 2.1.

The literature further classifies these DSM activities into energy efficiency, strategic

load growth, and DR. In the case of energy efficiency, the goal is to reduce the energy

required for the provision of services or products, which can be achieved by applying load

conservation techniques. On the other side, strategic load growth aims to increase the load

level through electrification by applying load growth techniques. However, the modern
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emphasis on defining the active role of the demand side is more focused on improving

the efficient and effective use of electricity, especially in resource-constrained regions.

So, these techniques are not currently a target. Finally, DR activities have the objective

of changing the standard consumption patterns of customers in response to changes in

the price of electricity over time or to incentive payments. These changes are designed to

induce lower electricity use, especially when high wholesale market prices appear or when

the system reliability is jeopardized [22].

2.2 Demand Response

As mentioned before, DR is defined as a change in the end-user’s energy use from

a normal consumption pattern in response to a price change or an incentive payment.

The implementation of these time-based rates is designed to induce a lower electricity

consumption during periods of high wholesale market prices or to ensure the system

reliability [23]. The main goal of a DR program is to improve the system’s energy
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efficiency by exploiting the end-users’ flexibility. As a result, some of the loads will

be shifting from the on-peak to the off-peak periods. In addition, not only do the DR

executors make benefits but also the customers obtain monetary compensations for their

active participation [24].

From the smart grid perspective, DR is an effective means to reduce high operating

costs from expensive generators and mitigate the long-term capacity addition [25].

Furthermore, the implementation of DR can also allow the higher integration of renewable

energy using to the power grid and facilitate the utilization of intermittent energy resources

in a higher proportion [26] [27]. As a result, the use of DR strategies will allow achieving a

more reliable power system. At the same time, the deployment of the electricity market can

be enhanced in terms of transparency and efficiency and reaches mutual financial benefits

for both the power system operator and all users. Finally, during this process of achieving

more efficient uses of the power grid capacity, the emission generation will be reduced,

and the environmental impacts will be alleviated.

DR programs use tariffs to incentivize users to modify their usual energy consumption

pattern. This enables the opportunity for the power system operator to make an indirect

control over end-users’ demand. Taking into account the nature of the tariff offered in the

DR program, it is possible to divide them into two main programs called incentive-based

and price-based, as presented in figure 2.2.

2.2.1 Incentive-based programs

The incentive-based DR programs offer payments to users to motivate demand

participation in balancing the generation-consumption imbalance, especially during peak

load periods or during system contingencies. The program provides a load modification



16

DR programs

Incentive-based Price-based

• Direct load control
• Interruptible / 

Curtailable Load
• Demand Bidding and 

Buyback
• Emergency Demand 

Reduction

• Time-of-Use
• Critical peak pricing
• Real-Time Pricing

Figure 2.2 Main types of demand response programs, [24].

incentive to the users, resulting in a monetary stimulus separated from electricity prices

[28]. The most common incentive programs are:

• Direct load control: The system operator has direct access to control specific loads

or even manage an end user’s entire demand, and in return, incentives are offered

to users for their participation [29].

• Interruptible/Curtailable load: The users agree to cut down a portion of their

interruptible/curtailable load during system contingencies, in exchange of certain

incentive discount on electricity bills. In case the users do not curtail, they can be

penalized [30].

• Demand bidding and buyback: A procedure for peak demand reduction that

encourages the large users (1 MW or more) to curtail their load in peak hours,

and in return, gain cost saving through rewards. For small users, they will need a

third party or an agent to unite and represent them during the bidding process [31].
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• Emergency demand reduction: During emergency reliability accidents when the

grid is out of reserves, the users are notified on very short notice to reduce their

demand, receiving incentive payments in return. Through this program, larger users

can provide auxiliary services to the power utility, behaving as virtual spinning

reserves [32].

2.2.2 Price-based programs

Price-based DR programs provide an alternative to the traditional flat tariffs, evolving

to a concept called smart pricing. These schemes are already applied in various countries

to a large number of residential customers. For instance, in Ontario, Canada, different

price profiles are defined on a seasonal basis (different in summer and winter). Price-based

programs define different electricity tariffs at different times. The users will naturally react

to this information to avoid bill increases or to obtain benefits. As a result, the consumers

will decrease their energy consumption during high price periods and thus reduce their

demand at peak hours. This means that smart pricing allows the opportunity of indirect

control over users’ demand, instead of directly controlling their loads [33].

• Time-of-use: The electricity price is defined according to the energy consumption

at different time intervals of a day, or different seasons of a year. Typically, each

time period for the price is longer than one hour and is defined as on-peak,

mid-peak, and off-peak time block. To make the users shift their loads from the

on-peak to the off-peak and mid-peak periods, the electricity price is much higher

for the on-peak block. The pricing profile for time-of-use (ToU) programs is usually

delivered well in advance, and they typically keep unchanged for an extended

period [34].

• Critical peak pricing: The base structure for this tariff is ToU pricing except
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for the days when utilities observe or anticipate high wholesale market prices or

power system emergency conditions, that jeopardize the grid reliability. Thus, the

normal peak price is substituted by a predefined higher rate to further reduce users’

demand. The time and duration of the peak price are predetermined, but the event

days are not predetermined [35].

• Real-time pricing: Also called dynamic pricing schemes, define electricity prices

that vary during the day. Typically the prices change during time intervals of 15

mins or each hour, and they can be deployed on an hour-ahead, or day-ahead basis

[36].

2.3 Demand Response Aggregator

DRAs are entities that are allowed to participate in some electricity markets. They

are capable of acting as a third-party intermediate between the market and the different

actors of the power grid [10]. These aggregators can capitalize on the customers’ ability to

manage their loads and energy generation. This capitalization is done by sending signals to

historically static consumers and then taking their total accumulative capacity to comply

with requirements for entering into electricity markets [37].

The role of the DRA faces two crucial challenges. The first one is at the customers

level, where the DRA seeks to define DR programs that minimize costs while accurately

modeling the customers’ behavior in response to economic incentives. The second is in

the wholesale market, as the DRA has the challenge of determining the optimal trading

options. However, it may face different options ranging from the pool market, where prices

are uncertain, to bilateral forward contracts where prices are fixed for a given period [38].

The DRA’s ability to captivate the available energy capacities from grid entities is
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beneficial for operators that need to secure extra system capacity. This allows the power

grid to gain advantages of its increasing levels of renewable energy generation from

entities that, as singular parts, may not be considered sufficiently valuable to enter into

the market [39].

2.4 Optimal Transactive Policy Generation

According to the literature, one of the most exciting topics discussed is the use of

control algorithms to facilitate the implementation of DR programs in the residential sector

[40]. The objectives of DR optimization algorithms are to further support the DR programs

and expand the propagation of DR programs in the energy system. The development of

these research works is focused on three different points, the buildings, the market, and

the improvement of attributes of the load curve [41]. In order to improve the quality of the

load curve, one of the most important approaches is the generation of optimal transactional

policies.

Various research studies have examined the potential benefits of DR programs

from different perspectives. They have conducted several investigations on the most

effective pricing strategies to overcome challenges related to quantifying prices and

defining time blocks. The literature has proposed different methods to deal with the

generation of optimal price policies. Decentralized methods have been considered to

address this issue. For instance, in [42], authors developed a coordination method

based on a dynamic pricing strategy to reduce residential bills and aggregated peak

load in a day-ahead market. Similarly, in [43], authors used genetic optimization and

rolling-horizon algorithms to propose a Time of Use (ToU) pricing strategy and an

incentive-based energy management technique, which was employed to decrease the

electricity bill and promote the use of renewable energy. The authors in [44] applied
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dynamic pricing to a day-ahead decentralized coordination problem aimed at reducing the

electricity bill through energy sharing and appliance scheduling. Lastly, in [45], authors

used a proximal decomposition-based dynamic pricing method to minimize the square

Euclidean distance between instantaneous and average energy demand while preserving

users’ privacy by leveraging a sharing-the-cost mechanism.

While decentralized pricing methods improve the operational performance of electrical

grids, require a reliable communication system. As a result, centralized approaches to

demand-side services are being promoted as they alleviate the impact of communication

failures and provide economically efficient solutions. The utilization of DRAs can

provide agents with inexpensive computing equipment to process simple control signals.

Centralized strategies for generating optimal price policies have been developed using

three main algorithmic mechanisms: game theory, constrained optimization, and RL.

Game theory is one of the most commonly used approaches for this purpose. For

instance, the authors of [46] have used cooperative game theory to model ToU pricing,

while [47] has employed a trilayer Stackelberg game to determine optimal ToU tariffs

for a typical community microgrid with prosumers. Authors in [48] have proposed a

scalable, hierarchical, transactional approach integrating batteries and model-free control

mechanisms and used the Stackelberg game to model negotiations between the distribution

system operator and a load aggregator responsible for the coordination and aggregation of

a large number of buildings with flexible energy demand. In [49], the same theory was used

to characterize the transactive price signal of a DRA based on the Nash equilibrium of the

transactive energy in a non-cooperative game. Overall, due to the hierarchical relationship

between the players in a DR program, the Stackelberg leadership model is a popular game

type widely used for price-based DR studies.
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Considering optimization methods for generating transactive policies, authors in [14],

propose a profit maximization algorithm that determines optimal prices for an electric

utility, considering market constraints. The algorithm’s solution is then utilized in a hybrid

model that takes into account customers’ demand based on their response to the generated

price signals. Another study, [15], divides consumers into low and high-energy users

and employs a bi-level optimization problem to establish a fair pricing system. This

system aims to prevent unfair billing for customers with low energy demand through the

demand response decision-making process. The authors of [50] and [51] considered this

problem in the policy generation process. The former proposed personalized real-time

pricing structures, and the latter implemented a load-based clustering method. These

endeavors strive to fulfill users’ requirements while ensuring a reliable power supply

during peak demand. However, the computation costs associated with processing multiple

price policies pose a challenge, potentially hindering real-time applications.

To effectively implement the aforementioned methods, customers must furnish specific

information such as initial consumption and satisfaction rate to handle the inherent

uncertainty of DR. Previous studies have operated under the assumption that user

information is accessible to generate optimal price policies. However, this approach risks

customer privacy and may result in a loss of interest in the proposed price policies.

Furthermore, it opens the door for dishonest behavior and information concealment, which

can undermine the performance of DR programs. For instance, in references [34], [52],

and [53], customers are expected to reveal their price elasticity, demand characteristics

related to energy conversion and storage devices, and models of responsive loads,

respectively. In response, some studies have been conducted considering the significant

involvement of customers in developing pricing strategies that minimize their reliance on

extensive information disclosure. Reference [10] introduces a pricing scheme based on a
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non-cooperative scenario, which achieves peak demand reduction for diverse participants

with minimal communication requirements. Nevertheless, this approach still necessitates

customers to report their total energy consumption, which can impact the accuracy and

truthfulness of the proposed mechanism. Moreover, the authors did not clearly define

the service provider’s objectives in generating price signals, potentially affecting the

scalability of their method.

2.4.1 RL-based Transactive Policy Generation

Due to its ability to handle information limitations and load uncertainties, the RL

methods have emerged as a promising choice for DR applications due to their ability

to deal with uncertainties [54]. In fact, these machine learning approaches are known

for their ability to solve problems with hidden information, and their applications in DR

programs range from managing household scheduling [55,56] to obtaining near to-optimal

transactive policies [57], as they are presented in [58]. However, the learning process in

RL algorithms involves a time-consuming training process which results in a significant

restriction in the real-world application of RL-based developments.

Concerning implementing RL mechanisms in DR programs, reference [2] presents a

deep RL approach to derive optimal incentive policies for incentive-based DR programs.

Similarly, in reference [27], deep RL methods are utilized in continuous action domains to

address load frequency control challenges arising from renewable energy uncertainties.

The authors of reference [16] develop an RL-based decision-making system to assist

end-users in selecting the most advantageous Time of Use (ToU) tariffs and monthly

rates, thereby minimizing electricity costs and dissatisfaction. Further exploration of RL

algorithms in power and energy systems can be found in reference [28], where the focus

is optimizing transactive policies in price-based DR programs.



23

In the context of Real-Time Pricing schemes, references [1] and [29] employ the

Q-Learning algorithm, a model-free RL technique, to minimize customer costs. The

former considers aggregator profit, while the latter addresses utility cost. These studies

utilize information on user dissatisfaction caused by demand reduction to determine the

Real-Time Pricing policy. However, their methods require a large number of episodes to

converge, making real-world implementations challenging. In reference [30], the authors

propose a Monte-Carlo RL technique to optimize retail prices in local micro-grids for

a distribution system operator while also protecting end-user privacy. Their approach

minimizes the peak-to-average ratio and maximizes profit through energy sales, effectively

handling uncertainty problems. However, the assumption that consumer agents are reactive

eliminates the negotiation process and disregards the possibility of agents exploring

alternative strategies to optimize their consumption. This assumption not only impacts the

scalability of the proposed RL-based method for practical applications. These limitations

highlight the need for further research in the price policy generation process of DR

programs.

2.4.2 Multi-aggregator systems

The literature demonstrates that the policy generation problem has been addressed

for different types of DR programs, from incentive-based to price-based [59]. These

approaches aim to solve a local problem, assuming the local solutions will lead to a good

global solution. Nevertheless, when solving the price policy generation problem for a

single DRA, it is not possible to guarantee that the individual solutions will lead to the

best solution for the system. And on the other hand, successfully implementing dynamic

pricing with multiple DRAs requires a comprehensive evaluation and allocation of rewards

among participating agents. Although the proposed approaches have made it possible to
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identify strategies for the generation of a DRA’s policies, as the number of aggregators

increases, the challenge grows for utility companies to achieve load scheduling and

produce reference signals for each of them [60].

The additional effort required for system operators to develop personalized price

profiles while considering residents’ consumption patterns and preferences becomes

increasingly burdensome. However, the concept of DRAs effectively addresses this

challenge by facilitating customer participation in a customer-oriented manner, as

mentioned in [10]. Despite this, there is limited research on multi-aggregator systems,

with only a few works implementing multiagent systems to tackle this issue. In one

such work [18], a hierarchical alternating direction method of multipliers (H-ADMM)

mechanism is employed to determine load following signals for multiple aggregators.

However, this approach assumes that aggregators have direct control over individual

devices, potentially compromising customer privacy. Another proposal, presented in [61],

suggests a bargaining-based cooperative game to resolve conflicting incentive pricing

strategies among multiple aggregators. However, this solution relies excessively on user

involvement, which can have drawbacks.

2.5 Synthesis of the literature review

Generally speaking, different approaches have been used in the literature to generate

optimal policies for DR programs. All these methods are presented in figure 2.3, as well as

the challenges considered in the literature during the transaction policy generation process.

From this point, this list of challenges presented, this figure highlights the four target points

of our study. However, not all of these approaches are suitable for DRAs, in which these

entities act as leaders in the process of exploiting customer flexibility. Considering this

third-party player, figure 2.4 provides information on the most common methods applied
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Figure 2.3 Popular methods applied for optimal transactive policy
generation.

in the literature in the presence of DRA agents. Many research studies have been done

applying game theory, with the Nash equilibrium and Stackelberg games as the preferred.

In order to consider the DRA as a leader in the DR program, the Stackelberg games fit very

well as they frame the relationship between the aggregator and the residential customers in

a leader-follower architecture [48, 49]. In addition to game theory, optimization problems

have been considered targeting costs, energy consumption, or welfare [62, 63]. However,

to apply the mentioned methods, authors suppose they have access to a large amount of

information from residential customers or even direct load control. As a result, it affects

users’ privacy and makes them refuse their participation in the DR program. Furthermore,

it allows the customers to gain advantages of this situation by providing dishonest reports

to cheat the system [64]. Finally, RL mechanisms appear to be increasing in popularity due

to their ability to deal with system uncertainties and as a valuable option for maintaining

customer data privacy.
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Chapter 3 - Article-based statement of the results

The results of the proposed methodology to achieve the objectives of this research

project have been separated into three publications. First, a pricing mechanism is

developed to evaluate the architecture of the multi-agent system to ensure convergence,

then a price generator function is proposed to parameterize the price policy generation

considering constraints from both the market and the supply, and a multi-aggregator

architecture is established using the proposed multi-agent architecture and price generator

function. The publication status of the articles presented below are as follows:

1. The first article was published in IEEE Access on May 17, 2022.

2. The second was published in Smart Energy from Elsevier on March 27, 2024.

3. Finally, the third manuscript was submitted to Sustainable Energy, Grids and

Networks from Elsevier on April 9, 2024, and is currently under revision.

3.1 Multi-agent architecture for transaction policy generation

3.1.1 Background

In this first part, we consider the problem of developing a multi-agent system for

the interaction between the residential agents and a DRA agent as market players.

The interaction between these entities will allow the DRA to optimize the price policy

generation process. So, automated residential agents need to be constructed to ensure

rational responses to DRA agent actions. For the DRA agent case, as the only source of

information for him will be the DR to respect customers’ privacy, a data-driven mechanism

based on RL will be developed to define near-to-optimal price policies.

The DR program established by the DRA will be a discount-based ToU electricity
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pricing strategy. This agent will offer discounts at different hours of the day to encourage

users to change their consumption patterns. The decision-making process is done by

applying a deep RL technique to deal with the different sources of uncertainty due to

the lack of information from the demand side. To guarantee an improvement in the quality

of the aggregated load profile, the DRA agent will try to maximize the load factor (inverse

of the PAR) while, at the same time, maximizing its profit during the definition of the

different discount rates. Using the load factor in the objective function does not admit the

use of gradient-based techniques for the optimization process, making RL a more valuable

approach.

For the residential agent, a thermal model is constructed for the space heating

system by means of historical consumption data from different Quebec houses located

in Trois-Rivieres. This model will enable heating to be used as a source of flexibility

by the users. The HEMS will determine its consumption plan in response to the price

policy by solving an optimization problem utilizing model predictive control. The goal

of the residential agent is to minimize its bill for consuming energy while maintaining

the thermal comfort of the customers. Finally, a regularization mechanism of residential

agent response is applied to guarantee convergence of the multi-agent system, based on a

proximal decomposition approach.

3.1.2 Methodology

The reinforcement learning environment is composed of a set of twenty residential

houses. To determine the customers’ thermal preferences, the information is obtained

from a previous work conducted in Quebec’s context by [65]. By exploiting the collected

historical data, the parameters of the state-space representation for the thermal model are

estimated utilizing a ridge regression mechanism [66]. Finally, a statistical data generation
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process is used for the non-controllable loads, which are added to the thermal model output

to construct the overall power profile of each house.

Once the residential agents are ready to respond to price signals, a historical day is

selected for the offline training of the RL-based DRA. The following analyses were done

to ensure the best performance of the proposed price-based DR program:

1. A performance comparison of different Deep RL techniques, which allow the

selection of PPO as the target mechanism for the implementation of the DR

program.

2. A multi-agent system convergence analysis based on the selection of the

regularization parameter τ for the residential agents.

3. A comparative study between the RL-based proposed approach and a Proximal

decomposition mechanism from the literature in terms of load factor improvement

and DRA’s profit.

Once these evaluations were done offline, the performance of the DRA

decision-making process was evaluated online for consecutive days by randomly selecting

different external temperature profiles from the database. For this purpose, the DRA agent

is trained on a historic winter day. Once the agent learns how to generate the price-based

policies, the online evaluation process starts for consecutive winter days, selecting daily

winter profiles randomly. The proposed procedure is summarized in Figure 3.1.

3.1.3 Outcomes

This work proposes generating a discount-based ToU tariff as a valuable option for

encouraging users to participate in a DR program. The presented approach developed a

data-driven DRA for generating near-to-optimal hourly ToU tariffs. This mechanism offers

a DR service to the grid operator to exploit the flexibility potentials from the demand side



30

Build thermal 
models

Start

Database

Construct RL 
environment

Determine the 
regularization 

parameter

Offline RL pre-
training on a 
historical day

Online 
implementation 

Figure 3.1 Block diagram for the proposed procedure.

to help with peak shaving needs. In this process, the DRA agent determines price policies

based on discounts captured by minimal information exchange with end-user agents, as the

only information needed for determining the price policies is the DR. This design allows

the reduction of infrastructural needs for communication and maintains customer agents’

privacy within reliable interactions.

In terms of implementation, this study has recommended an RL algorithm for

constructing a promising DR system. Furthermore, the proposed approach provides an

offline training phase strategy to deal with the time-consuming convergence of RL

techniques. This proposition reduced the convergence time from more than 1000 days
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to less than 20 days, enabling online implementations. Regarding optimization, the

aggregator agent realizes a trade-off between load factor and total revenue as two contrary

objectives since the DR depends on the economic incentive offered, i.e., the greater

the incentive, the greater the expected exploited flexibility. The obtained results were

compared with two common RL techniques where the proposed RL mechanism manifests

the superior performance of the recommended structure through high and fast convergence

rates. And a proximal decomposition-based coordination scheme is compared as well

where the RL-based DRA can achieve a lower reduction of its profit, although the

near-to-optimal tariff is based on discounts. On the other hand, a larger income reduction

based on the proximal decomposition method evidences that the monetary sacrifice in

a DR program can be high if it is not controlled. These results highlight the suggested

mechanism’s efficiency.
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ABSTRACT Demand Response (DR) programs show great promise for energy saving and load profile
flattening. They bring about an opportunity for indirect control of end-users’ demand based on different
price policies. However, the difficulty in characterizing the price-responsive behavior of customers is a
significant challenge towards an optimal selection of these policies. This paper proposes a Demand Response
Aggregator (DRA) for transactive policy generation by combining a Reinforcement Learning (RL) technique
on the aggregator side with a convex optimization problem on the customer side. The proposed DRA can
maintain users’ privacy by exploiting the DR as the only source of information. In addition, it can avoid
mistakenly penalizing users by offering price discounts as an incentive to realize a satisfying multi-agent
environment. With an ensured convergence, the resultant DRA is capable of learning adaptive Time-of-Use
(ToU) tariffs and generating near-to-optimal price policies. Moreover, this study suggests an off-line training
procedure that can deal with issues related to the convergence time of RL algorithms. The suggested process
can notably expedite the DRA convergence and, in turn, enable online applications. The developed method
is applied to a set of residential agents in order to benefit them by regulating their thermal loads according
to generated price policies. The efficiency of the proposed approach is thoroughly evaluated from the
standpoint of the aggregator and customers in terms of load shifting and comfort maintenance, respectively.
Besides, the superior performance of the selected RL method is represented through a comparative study.
An additional assessment is also conducted by use of a coordination algorithm to validate the competitiveness
of the recommended DR program. The multifaceted evaluation demonstrates that the designed scheme can
significantly improve the quality of the aggregated load profile with a low reduction in the aggregator’s
income.

INDEX TERMS Demand response, demand response aggregator, time-of-use tariffs, reinforcement learning.

NOMENCLATURE
Indices
t Iteration index.
i House index.
k Time-step index.

The associate editor coordinating the review of this manuscript and

approving it for publication was Inam Nutkani .

Parameters
ω Trade-off weighting factor of the

reward function.
τ Regularization parameter of the

proximal decomposition method.
x imin Lower bound of ith household

internal temperature.
x imax Upper bound of ith household

internal temperature.
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ui,Thmax Heating system capacity
of ith house at time-step k .

Variables

st State at episode t .
at Action at episode t .
µht Normalized hourly average of

the aggregated energy consumption.
ūh Average energy consumption

at hour h.
αht Normalized energy price

at hour h.
λht Energy price value

at hour h.
ξ Initial flat energy price.
uik Energy consumption of ith

house at time-step k .
ui,Thk Thermal energy consumption

of ith house at time-step k .
ui,NCk Energy consumption

of non-controllable
loads of ith house at time-step k .

x ik Indoor temperature of ith

house at time-step k .
wik Outdoor temperature at time-step k .
δik Thermal discomfort

factor of ith house.
x isp Set-point temperature

profile of ith house.

Functions

Rt Reward function at episode t .
Ât Advantage at episode t .
LF Load factor of the aggregated

energy consumption profile.
Pr Aggregator’s income sacrifice ratio.
TC(ui,Thk ) Thermal comfort function.

Abbreviations

DR Demand Response.
DRA Demand Response Aggregator.
RL Reinforcement Learning.
ToU Time-of-Use.
DB-ToU Discount Based Time-of-Use.
MDP Markov Decision Process.
PPO Proximal Policy Optimization.
ESH Electric Space Heating.

I. INTRODUCTION
The rapid increase in energy needs and associated green-
house gas emissions has created significant challenges to
traditional power systems. This issue can be relieved by the
promise of smart grids that bring about a modern power
system with efficient alternatives regarding the energy tran-
sition concept [1]. In the context of the smart grid, Demand

Response (DR) is favored as an effective mechanism to mit-
igate peak demand by utilizing communication technologies
and advanced metering infrastructures. DR programs employ
price and incentive signals to change end-users’ consump-
tion patterns, provide stability, balance energy resources,
and bring economic efficiency to grid stakeholders [2], [3].
DR programs devise various pricing strategies for alleviating
daily peak load. These schemes aim to shift energy con-
sumption from on-peak to off-peak hours. The main idea
is to define higher price rates for on-peak hours so that
users shift their load in order to avoid extra electricity bills.
However, users’ response can result in generating new peaks
since it increases energy demand during off-peak hours [4].
This issue can result from DR methods based on tradi-
tional flat-rate electricity tariffs. Accordingly, other pricing
strategies have been proposed to provide alternatives to for-
mer policies. These techniques generally offer price-based
DR programs in which utilities or aggregators are in charge
of recommended policies considering the historical behav-
ior of end-users’ load profiles [5]. They include Real-Time
Pricing (RTP), Time-of-Use (ToU) pricing, and Critical Peak
Pricing (CPP), where RTP and ToU are the most commonly
used means [6]. RTP is a scheme in which the electricity price
varies over short periods, normally hourly, with regard to the
real-time production cost. On the other hand, ToU pricing is
a tariff in which constant electricity prices are considered for
lengthy time intervals, typically hours of the day or days of
the week [7]. The latter is normally preferred by both grid
operators and customers, and, thus, has been the main focus
of the relevant literature [4].

A. RELATED WORK
Research works have explored DR programs from different
aspects to reveal their potential benefits. They have carried
out various studies on optimal pricing strategies to overcome
the challenges related to price quantification and time blocks
definition [6]. Particularly, different approaches have been
proposed in the literature to deal with optimal price pol-
icy generation. From one side, decentralized methods have
been considered to address this matter. Authors in [8] have
developed a coordination method based on a dynamic pricing
strategy to reduce the residential bill and aggregated peak
load in a day-ahead market. In [9], the authors have pro-
posed a ToU pricing strategy and an incentive-based energy
management technique by means of genetic optimization and
rolling-horizon algorithms. They have employed this frame-
work to decrease the electricity bill and increase the use of
renewable energy. The authors in [10] have applied dynamic
pricing to a day-ahead decentralized coordination problem.
Their strategy has been aimed at reducing the electricity bill
through energy sharing and appliance scheduling. In [11],
the authors have developed a proximal decomposition-based
dynamic pricing method to minimize the square Euclidean
distance between instantaneous and average energy demand.
In addition, they have exploited a sharing-the-cost mecha-
nism while preserving the privacy of users.
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Although decentralized pricing methods can improve the
operational performance of electrical grids, they require
a reliable communication system. Accordingly, centralized
approaches to demand-side services are promoted. Centraliz-
ing pricing tariffs not only alleviate the impact of communica-
tion failures but also provide economically efficient solutions.
In this context, agents can use inexpensive computing equip-
ment to process simple control signals (policies), offered
by a DR Aggregator (DRA) [12]. Centralized strategies for
generating optimal price policies have been carried out in
the literature based on three main algorithmic mechanisms
comprising game theory, constrained optimization, and Rein-
forcement Learning (RL). The game theory is one of the
most utilized approaches for this purpose. The authors in [7]
have employed a cooperative game theory to model ToU pric-
ing. In [13], a trilayer Stackelberg game has been exploited
to determine optimal ToU tariffs for a typical community
microgrid with prosumers. In [14], the authors have proposed
a scalable, hierarchical, transactional approach to integrate
batteries andmodel-free control mechanisms. They have used
the Stackelberg game to model negotiations between the dis-
tribution system operator and a load aggregator responsible
for efficient coordination and aggregation of a large number
of buildings with flexible energy demand. The authors in [15]
have utilized the same theory to characterize the transactive
price signal of a DRA based on the Nash equilibrium of the
transactive energy in a non-cooperative game. It is worth
mentioning that the Stackelberg leadership model is a pop-
ular type of game that has been widely used for ToU-based
DR studies.
In addition to the game theory, the problem of trans-

active policy generation has been tackled by optimization
methods. In [16], a profit maximization algorithm has been
proposed to accomplish optimal prices for an electric util-
ity under market constraints. The optimal solution has been
adopted for a hybrid model of customers’ demand according
to their response to generated price signals. In [17], con-
sumers have been categorized into low and high energy users.
Consequently, a bi-level optimization problem has been
implemented to realize a fair pricing system. This mecha-
nism has been intended to deal with the possibility of unfair
billing to customers with low energy demand through the
DR decision-making procedure. In this regard, it has carried
out an individual billing strategy for every detected homoge-
neous consumer. The same issue has been encountered by the
authors in [18] and [19]. In order to avoid imposing an unfair
penalty, the former has developed a personalized real-time
pricing structure while the latter has employed a load-based
clustering manner. As a result, these works have attempted to
meet users’ desires while maintaining a reliable power sup-
ply during peak demand. Nevertheless, they have undergone
notable computational costs due to processing multiple price
policies, which can hinder real-time applications.
A fruitful application of the above methods needs

customers to provide specific information such as initial
consumption and satisfaction rate to handle the inherent

uncertainty of DR programs. Therefore, the previous studies
have assumed that users’ information is accessible in order
to generate optimal price policies. However, such reliance
upon customers can jeopardize their privacy and cause them
to lose interest in generated price policies. Conversely, it can
create opportunities for hiding information and interacting
in a dishonest manner, which can, in turn, reduce the per-
formance of DR programs. This matter can be specifically
exemplified by the proposed methods in [20], [21], and [22].
In [20], the authors have developed an optimal ToU pricing
strategy in which consumers’ price elasticity must be known.
In [21], the authors have practiced a similar procedure in
which customers’ demand properties related to energy con-
version and storage devices are required. In [22], the authors
have executed a minimization problem in which the objec-
tive function must be provided by the model of responsive
loads. The challenges caused by users’ excessive involvement
have stimulated the development of pricing strategies that
reduce the need for their information. In [23], the authors
have proposed a pricing scheme with minimal communica-
tion requirements based on a non-cooperative scenario. They
have proved the existence of a Nash equilibrium to achieve
peak demand reduction for heterogeneous players with min-
imum interactions. Nevertheless, their proposed approach
requires customers to report their total energy consumption
within every game period. Subsequently, their solution to the
problem can be significantly affected by the accuracy and
truthfulness of the provided information. Besides, they have
not clearly defined the objectives of the service provider for
generating price signals, which can affect the scalability of
their method.
Recently, the RL method has become a viable option for

DR exercises due to its ability to deal with both information
limitations and load uncertainties. In fact, this machine learn-
ing technique is known for its capability to solve problems
with hidden information. In [24] and [25], RL methods have
been utilized to manage household load scheduling. In [2],
a deep RL approach has been implemented to obtain optimal
incentive policies through an incentive-based DR program.
Likewise, the authors in [26] have applied deep RL meth-
ods in continuous action domains for load frequency control
against renewable energy uncertainties. In [27], the authors
have constructed an RL-based decision-making system to
assist end-users with selecting the most beneficial ToU tar-
iffs and monthly rates and, consequently, minimizing their
electricity and dissatisfaction costs. Different applications
of RL algorithms in power and energy systems can be studied
in [28]. Particularly, RL techniques have been used to attain
optimal transactive policies in price-based DR programs.
The authors in [3] and [29] have employed the Q-Learning
algorithm, as a model-free RL, for RTP schemes. While
both studies have aimed to minimize the customer cost, the
former has considered the aggregator profit, and the latter has
dealt with the utility cost. They have exploited information
about user dissatisfaction because of demand reduction to
determine the RTP policy. However, their methods involve

54020 VOLUME 10, 2022



A. Fraija et al.: Discount-Based ToU Electricity Pricing Strategy for DR With Minimum Information Using RL

running thousands of episodes to reach a convergence point,
which makes real-world implementations difficult. In [30],
the authors have developed a Monte-Carlo RL technique
to optimize retail prices in local micro-grids for a distribu-
tion system operator while protecting end-user privacy. Their
method has allowed for minimizing the peak-to-average ratio
and maximizing the profit by selling energy. Additionally,
their RL approach can handle the intractability of the problem
under a great deal of uncertainty. However, it eliminates the
negotiation process since it assumes that consumer agents are
reactive. This assumption rules out the fact that the agents
can be proactive and explore other strategies to optimize
their consumption. In addition, it affects the scalability of
their proposed RL-based method for relevant applications.
Besides, they have not elaborated on the convergence time as
a critical factor in implementing RL methods while reporting
the results. Indeed, the above restrictions necessitate further
investigations into the price policy generation procedure of
DR programs.

B. MOTIVATION AND CONTRIBUTION
Inspired by the previous works, this paper seeks to overcome
practical difficulties in achieving optimal price policies. From
one side, it deals with the possibility of mistakenly penalizing
users within the price generation process through a compu-
tationally efficient mechanism. From the other side, it han-
dles the concerns related to users’ privacy and interaction
with the aggregator by completely avoiding the utilization
of their information. In fact, overlooking these issues can
violate customers’ satisfaction and decline their participation
in DR programs. As a result, this study makes the following
contributions.
1) It proposes a DRA that is able to avoid penalizing users

by generating Discount Based ToU (DB-ToU) tariffs.
The proposed DRA takes advantage of discounts as an
incentive for residential users to exploit their demand
flexibility and, consequently, flatten their aggregated
power consumption.

2) It develops a procedure that can generate near-to-
optimal price policies with no access to end-user
internal information. The designed DRA is able to
learn customers’ behavior towards energy usage only
by utilizing their response to transactive policies and
handling uncertainties related to the lack of domestic
information, which varies from user to user.

3) It constructs a multi-agent environment with ensured
convergence by combining an RL method on the
aggregator side with an optimization problem on
the customer side. Most importantly, the suggested
DRA adopts a pre-training strategy that remarkably
decreases the convergence time of the RL algorithm
and improves its online performance.

The rest of the paper is organized as follows: Section II
presents the methodology for formulating the proposed DRA.
Section III provides the results and discussion, followed by
concluding remarks in Section IV.

II. METHODOLOGY
In a residential distribution grid, operated by automated
agents, a DRA is in charge of managing the load flexibility
of a group of residences [31]. It provides transactive policies
to motivate customers to change their energy consumption
and consequently improves the quality of the aggregated load
profile. The proposed mechanism targets a group of residen-
tial buildings, equipped with energy-intensive controllable
loads. Fig. 1 illustrates the methodology for the proposed
DR program. In this procedure, the aggregator agent is run-
ning a day-ahead pricing scheme. It communicates price
signals to residential agents in order to decrease peak load
according to their response. To be specific, it offers price
discounts during different hours of the day to manage the
aggregated demand. At the end of the day, the DRA amasses
consumption profiles, calculates rewards, and generates the
next policy. In the following, the reinforcement learning
method and the reward mechanism for the DRA and residen-
tial agents are detailed.

FIGURE 1. Automatic energy management under the price-based DR
program.

A. REINFORCEMENT LEARNING
The targeted scenario considers a multi-agent system that is
composed of a set of residential agents and a DRA agent.
The aggregator agent is an RL agent that executes a trial-error
process to learn from an environment as part of aDRprogram.
Generally, this agent chooses actions according to a given
state and receives rewards through interacting with the envi-
ronment [32]. The interaction between the aggregator agent
and the environment is represented as a Markov Decision
Process (MDP) and is characterized by
1) State, st , that presents the hourly average of the aggre-

gated energy consumption,
2) Action, at , that explains the established ToU price

policy,
3) Reward, R, that predicts the DRA profit according to a

chosen action through Ras = E[Rt+1|st = s, at = a].
4) And the discount factor, γ ∈ [0, 1], that defines

the importance of the future rewards for the current
decisions. Higher values of γ expresses that future
rewards have a higher impact on the decision making
process.
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It should be noted that an MDP is an extension of Markov
chain in which the future state, st+1 depends only on the
current state, st and the current action, at . Given the com-
ponent γ , it is possible to calculate the ‘return’, Gt , as the
future discounted reward. In fact, the task of the RL agent is
to collect as many high rewards as possible. Accordingly, the
discount factor, γ , is used to realize a bounded reward, Gt ,
in terms of Rt + γRt+1 + γ 2Rt+2 + γ 3Rt+3 + · · · and avoid
an unboundedness problem due to a growing sum (infinite
case).
The aggregator agent learns the policy, π , by interact-

ing with the environment. This policy fully describes the
behavior of the agent and represents a distribution over
the pricing actions considering the states [35]. Afterward,
the state value function of MDP, Vπ (s), is determined as the
expected return given the starting state and the policy. Addi-
tionally, the state-action value function, Qπ (s, a), represents
the expected return, starting from the state s, taking the action
a, and following the policy π [24]. The optimal policy, π∗,
results in the optimal state value function, V ∗(s). In fact, this
function is obtained when the optimal policy is selected by
the RL agent [36]. TheMDP is solved when the optimal value
function is found since it represents the maximum reward for
the state s that can be obtained from the system. Similarly,
the optimal state-action value function, Q∗(s, a), is realized
when the optimal policy is chosen by the RL agent in the state
s to have the action a [37]. Q∗(s, a) represents the maximum
reward that can be obtained from the state s and the action a.
The proposed approach employs the Proximal Policy Opti-

mization (PPO) as a policy gradient method. The PPO algo-
rithm is used to optimize the policy πθ (a, s) based on the
policy parameter θ . This technique defines a reward function,
J (θ ), that depends on πθ (a, s) and is maximized with respect
to θ [32]. PPO is an algorithm with data efficiency and reli-
able performance, similar to advanced policy gradient meth-
ods such as Trust-Region Policy Optimisation (TRPO). These
methods try to stabilize agent training by avoiding big policy
alterations (updates on θ ) per state. However, PPO is a less
complex design that takes advantage of first-order techniques
instead of complex second-order schemes or hard constraints
like KL-divergence [38], [39]. The Algorithm 1 represents
the PPO technique for which the objective function, J (θ ),
is formulated by,

J (θ ) = Êt [min(rt (θ )Ât , clip(rt (θ ), 1− ε, 1+ ε)Ât )] (1)

where
• θ is the policy parameter,
• Êt is the expectation over episode t ,
• rt (θ ) is the probability ratio between new and old poli-
cies as πθ (at |st ) / πθold (at |st ),

• Ât is the estimated advantage at episode t as −V (st ) +
γRt + · · · + γM−t+1RM−1 + γM−tV (sM ) where M is
the batch size,

• And ε is the hyperparameter for clipping. This parameter
avoids large deviations in the updated θ considering θold
by clipping the ratio at the interval [1− ε, 1+ ε] [40].

Algorithm 1 PPO Algorithm
Input: initial policy parameters θ0, clipping threshold ε,
batch sizeM .
for t = 0, 1, 2, . . . do

Define the normalized action at . (Price policy defined by
the aggregator agent)
Get the normalized state st . (Residential agents’
response)
Calculate the reward Rt .
Collect the set of partial trajectories {(st , at ,Rt , st + 1)}
on policy πt = π (θt ).
Estimate advantage Ât .
if t mod M = 0 then

Compute policy update

θt+1 = argmax
θ

M∑
j=0

J (θ )

via stochastic gradient ascent with Adam [33].
end

end

B. DEMAND RESPONSE AGGREGATOR
The DRA is in charge of defining the price policy that is
applied for the next 24 hours. Each episode, t , starts with
sending the price policy and waiting for the response of
the residential agents in terms of power demand. The RL
aggregator performs an initial offline training by exploiting
the information of a specific day. Subsequently, the trained
agent is deployed to provide the transactive price signal for
the following days. As a result, the DRA learns to carry out
near to optimal pricing policies for a given set of houses by
using aggregated energy demand data. In this regard, the state

st ∈ S in the MDP can be defined as st = {µ1
t , µ

2
t , . . . , µ

24
t }

where µht =
ūh

max
h∈{1,...,24}

{ūh}
is the normalized average of

the aggregated consumption ūh at hour h. The agent selects
a normalized action at ∈ A as at = {α1t , α

2
t , . . . , α

24
t }.

Considering that ξ is the initial price policy, applied to the
power grid, and λht is the price, decided by the DRA for
the next hour, the price value at each hour, h, of the day is
calculated using αht through,

λht = ξα
h
t (2)

Accordingly, a price constraint based on (3) is established
by the DR program.

0 ≤ αht ≤ 1 ∀h ∈ {1, 2, . . . , 24} (3)

This restriction maintains a generated transactive policy
lower than the initial tariff, ξ , by constraining the action
space of DRA. As a result, it provides residential agents with
λht ≤ ξ . Finally, the reward function considers two main
objectives, intended by the agent to maximize. They con-
sist of improving the aggregated load profile quality and

54022 VOLUME 10, 2022



A. Fraija et al.: Discount-Based ToU Electricity Pricing Strategy for DR With Minimum Information Using RL

achieving the optimal DB-ToU tariff with lower aggrega-
tor’s income sacrifice. The former is aimed at load factor
correction in peak reduction, which is the inverse of the
peak-to-average ratio. Considering u = {u1, u2, . . . , uN } as
the overall discretized energy consumption profile, the load
factor can be calculated through,

LF =
1
N

∑N
k=1 uk

maxk{u}
(4)

Besides, the latter is sought by offering price discounts
to the houses for shifting their loads without sacrificing the
aggregator’s income. To be specific, the aggregator agent
defines the optimal policy by comparing DB-ToU and con-
stant bills together. Being u0,k the energy consumption when
the price is ξ , this comparison is performed by quantifying
the aggregator sacrifice based on the ratio between both bills,
computed through,

Pr =

∑N
k=1 ukλk

ξ
∑N

k=1 u0,k
(5)

According to (4) and (5), the agent reward function at the
episode t can be explained by,

Rt = ωLFt + (1− ω)Prt (6)

where ω is a weighting factor that allows a trade-off between
the aforementioned objectives. The aggregator agent tries to
maximize the return by using the proposed reward function.
This non-linear objective function balances load factor and
total revenue as two conflicting terms. The RL approach
enables the utilization of the proposed reward function in (6)
since it is not a differentiable operation that can be opti-
mized through gradient-based methods. Generally, RL meth-
ods facilitate executing non-differentiable reward functions
on the aggregator side. It should be highlighted that this
advantage increases the versatility of the recommended DRA
for actual implementations.
On the other hand, the price constraint (3) established by

the proposed DB-ToU scheme, always provides participants
with benefit. Users are never penalized since they receive the
initial price without any discount in the worst scenario. This,
in turn, boosts customers’ motivation for participating in DR
program. In addition, the proposed reward function uses the
initial energy consumption u0 = {u0,1, u0,2, . . . , u0,N } from
the constant tariff exercise. This practice provides the aggre-
gator with prior knowledge about users’ energy consumption
preferences and helps provide useful information about the
price responsive behavior of the residential agents.

C. RESIDENTIAL ENVIRONMENT
A case study of residential houses, located in Quebec,
Canada, during winter is considered in this work. Buildings
in the Quebec region represent a specific example of energy
consumption. Due to long cold climates, they consume a
massive amount of heating energy, which is mainly supplied
by electricity. In this district, Electric Space Heating (ESH)

systems account for more than 60% of energy consump-
tion [41]. In this case study, the residential environment is
composed of 20 agents. The residential agents are capable
of controlling their ESH demand by employing a Model
Predictive Control (MPC). To be specific, the MPC is applied
to thermal models of houses in order to estimate their indoor
temperature on a daily basis [42]. The decision-making pro-
cess of this model is executed based on the maximization of
users’ SocialWelfare Function. Accordingly, an optimal deci-
sion is made by satisfying individual participants’ comfort,
which is maintaining the temperature setpoint (the reference)
while minimizing the energy cost. Therefore, they can take
advantage of the price discounts, offered by the DRA. In fact,
ESH systems, as thermal loads, can provide residential agents
with energy flexibility to modify their demand under the DR
program. The total energy consumption of the residential
agent i at the time-step k is,

uik = ui,Thk + ui,NCk (7)

where ui,Thk and ui,NCk are the energy demand of the thermal
and other loads (assumed to be non-controllable), respec-
tively. The dynamic thermal response of the houses is
described by the state-space representation model to avoid
high computational complexity [43]. For the same agent, i,
this linear model computes the future value of indoor tem-
perature, x ik+1, depending on the current amounts of indoor
temperature, x ik , outdoor temperature, wik , and ESH demand,
ui,Thk , based on,

x ik+1 = Ax ik + Bw
i
k + Cu

i,Th
k (8)

where A is the state matrix while B and C are the input
matrices associated with the weather and heating sources,
respectively. The residential agent controls the thermal loads
to minimize the cost of energy consumption considering
occupants’ desires. Thermal comfort desires are used to for-
mulate the concave utility function through [44],

TC(ui,Thk ) = −δik (x
i
sp − x

i
k )

2 (9)

where for the agent i in (8), x isp presents the set-point temper-

ature profile, x ik represents the internal temperature profile,
and δik is the discomfort factor. This latter element charac-
terizes users’ willingness to sacrifice their thermal comfort
in order to reduce the bill. To be specific, it defines periods
of the day within which the comfort level varies between
high and low boundary conditions. In order to perform a
realistic scenario, the values of δik are determined according
to the comfort preferences in the Quebec residential sector,
presented in [45].
Since the residential agents solve their optimization prob-

lem in a selfish way, they do not cooperate with each other.
Dealing with the individuals who attempt to maximize their
own profit can expose the proposed approach to the prisoner’s
dilemma. In order to address this issue, a proximal decom-
position approach is established by penalizing the residen-
tial agents’ demand modification based on the regularization
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parameter τ . The penalization is applied to the difference
between the current energy consumption at episode t and
its previous amount at episode t − 1. Considering the utility
function in (9), the individual welfare can be expressed by,

W =
N∑
k=1

TC(ui,Thk )− λkuik − τ (u
i
t,k − u

i
t−1,k )

2 (10)

The goal of residential agents is to maximize their individ-
ual welfare. As a result, the dual problem of the agents’ cost
function can be formulated through,

Minimize
ui={uik }

T
k=1

N∑
k=1

δk (x isp − x
i
k )

2
+ λkuik + τ (u

i
t,k − u

i
t−1,k )

2

subject to Eqnarray(8)

x ik ∈ [x imin, x
i
max]

ui,Thk ∈ [0, ui,Thmax]

uik = ui,Thk + ui,NCk (11)

where the parameters x imin and x
i
max are the lower and upper

bounds of the allowed internal temperature, respectively,
and ui,Thmax is the heating system capacity within time slot k .
It should be noted that the temperature bounds are set by
the user for the thermostat. The equation (11) is a convex
optimization problem that is solved by using Disciplined
Convex Programming (DCP). The optimal solution is cal-
culated by means of the Embedded Conic Solver (ECOS)
through the Python-embedded modeling language for convex
optimization, CVXPY.

III. RESULTS AND DISCUSSION
A. REINFORCEMENT LEARNING ENVIRONMENT
PREPARATION
The reinforcement learning environment is composed of a
set of twenty residential houses. The electric heating system
information of these houses is obtained from a previous study,
conducted by the authors for the case of Quebec in [46]. This
information that comprises simulated ESH demand, as well
as internal and external temperatures, is used to create the
thermal dynamic response model of the houses, described
by (8). For this purpose, the parameters of the state space
representation of each house are estimated by means of the
Ridge regression technique [47]. Additionally, a data genera-
tion process is used to create the non-controllable appliances’
load based on the same study [46]. This process employs
the power consumption distribution of these devices, cap-
tured from actual data of eight houses in Quebec during
winter, to generate their demand through a sampling pro-
cedure. Subsequently, the ESH and non-controllable loads
are added to construct the overall power profile of each
house. Finally, the user preference and set-point tempera-
ture profiles of the houses are acquired from [45], in which
the author has investigated these features in Quebec house-
holds. The above practice provides the twenty houses with

FIGURE 2. Aggregated energy consumption behavior of twenty residential
agents in correlation with outside temperature on a typical winter day.

different electricity consumption patterns, which is perti-
nent to the Quebec region. Fig. 2 exemplifies the aggre-
gated energy consumption behavior of heating and uncon-
trollable demand in twenty houses for a typical day in
winter 2018.
The operation of residential agents in the RL environment

is carried out by OpenAI Gym as a toolkit for exploring
RL algorithms. In this environment, the aggregator agent
starts the pre-training phase on a randomly chosen day.
Accordingly, the aggregator learns the optimal DB-ToU price
policy for the selected day by applying PPO while taking into
account the reward function, presented in (6). Afterwards,
it defines theDB-ToU tariff for the next 24 hours andwaits for
the residential agents’ response. Subsequently, the suggested
policy is improved upon receiving the feedback in terms of
aggregated energy consumption profile for the next following
episode. The simulation starts with a conventional pricing
scheme where the energy cost is ξ = 10 /kWh and the DRA
offers a discount price tariff every day, as an incentive for
the residential agents. Fig. 3 presents a schematic diagram of
the interaction between RL agents that has been developed

FIGURE 3. The RL environment developed using Gym toolkit.

54024 VOLUME 10, 2022



A. Fraija et al.: Discount-Based ToU Electricity Pricing Strategy for DR With Minimum Information Using RL

by Gym. The results of the simulation process are discussed
within the following subsections.

B. OFFLINE TRAINING RESULTS
The pre-training phase, explained above, is processed in an
offline manner. In the first step of the offline training, the
aggregator agent intends to determine a near-to-optimal price
policy for the initial day. The learning phase starts by select-
ing poor actions due to the lack of knowledge. However,
the reward increases at each iteration as the agent gradually
gains experience. This primary aim is accomplished after
1000 episodes as demonstrated in Fig. 4. The RL convergence
under all scenarios, illustrated in this figure, demonstrates
that the proposed RL-based DRA can deal with the lack of
information and define the near-to-optimal ToU price policies
by utilizing only the DR. In fact, it is capable to deal with
uncertainties related to the absence of households’ internal
information, for example, comfort preferences and energy
flexibility potentials. Besides, it can be observed that the
choice of τ is important for an optimal application of the
designed structure since it affects the convergence point.
Its higher values can notably restrict the changes in energy
consumption and avoid improving the load factor. On the
other hand, its lower amounts can bring about opportunistic
residential agents and challenge sensible convergence of the
results.

FIGURE 4. Rewards achieved by the aggregator agent within
1000 episodes of the offline training phase for different amounts of τ .

Afterward, the aggregator agent is used to generate the
DB-ToU tariff for the same (initial) day, as shown in Fig. 5.
As it can be seen, the generated policy, presented by the dark-
red line, is able to mitigate energy consumption peaks and
improve load factor. This implies the aggregator’s capability
to learn the DR of the residential agents. In addition, it can be
observed that the recommended policy can successfully avoid
any erroneous penalty to users since it maintains the energy
price under the initial flat tariff while minimizing the reduc-
tion in the aggregator’s income. In addition, Fig. 6 shows the
difference between indoor and set-point temperatures of the
house during 24 hours under the DB-ToU tariff. It can be
observed that the thermal comfort of residential agents is not

FIGURE 5. Aggregated energy consumption under the ToU tariff resulted
from the offline learning process.

FIGURE 6. Indoor temperature deviation from set-point (temperature
difference) under the DB-ToU tariff according to thermal comfort
preferences of the residential agents.

highly affected although the aggregated energy consumption
profile is significantly altered. Particularly, the generated tar-
iff can efficiently manage the aggregated demand by exploit-
ing energy flexibility potentials, characterized by customer
thermal comfort needs. Such management results in higher
deviations from set-point temperature (notable difference)
during periods with lower comfort levels while maintaining
customer preferences over time with higher comfort rates
(close to zero difference).
Moreover, a comparative study is conducted to evaluate

the performance of the proposed PPO approach in the offline
training phase. For this purpose, the Deep Deterministic Pol-
icy Gradient (DDPG) and the Advantage Actor-Critic (A2C)
as popular RL methods as well as a coordination technique
are considered. The comparison results with the RL algo-
rithms are presented in Fig. 7. It can be seen that PPO out-
performs other techniques by higher and faster convergence.
The inadequacy of DDPG can be attributed to the complexity
of managing the DB-ToU tariffs across 24 hours. On the other
side, A2C that starts with an inferior performance is able to
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FIGURE 7. Performance comparison between different RL algorithms.

FIGURE 8. Comparison results between the proposed PPO and a
coordination-based method through the offline training phase based on
the load factor rate and electricity bill for different values of τ .

converge to a solution better than DDPG. Moreover, Fig. 8
illustrates the PPO outcomes in terms of the load factor rate
and electricity bill for different amounts of τ compared to a
coordination method, discussed in [11]. This scheme, used
to coordinate residential houses, is based on non-cooperative
game theory and a proximal decomposition algorithm.

The proximal decomposition approach utilizes a billing
mechanism proportional to aggregated demand in order to
define the price policy regarding the coordination task. It can
be seen in Fig. 7 (a) that the proposed PPO performs better
only for the lower values of τ considering the load factor
results. Nevertheless, it realizes a lower reduction in the
aggregator’s income for all values of τ as shown in Fig. 7 (b).
The DRA can achieve such a low reduction, although the
near-to-optimal tariff is based on discounts. On the other
hand, a larger income reduction based on the proximal
decomposition method evidence that the monetary sacrifice
in a DR program can be high if it is not controlled.

C. ONLINE PERFORMANCE
Subsequently, the aggregator agent, prepared by the offline
learning procedure, is deployed for consecutive days in order
to evaluate its online performance. Different external temper-
ature profiles, selected randomly from the database, are used
for the evaluation. The performance comparison between
scenarios with and without the aggregator agent pre-training
is presented in Fig. 9. It can be recognized that the proposed
pre-training system, applied to a single day, can significantly
improve the efficiency of the PPO algorithm. It has reduced
the convergence period from more than 1000 to a couple
of days. This remarkable improvement is achieved by real-
izing a trade-off between choosing exploratory actions and
exploiting optimal ones, defined by the aggregator agent
during offline training. This strategy allows to deal with the
convergence-time problem of the RL mechanisms and facili-
tates the future implementation of the proposed DR program.

FIGURE 9. The proposed PPO performance with and without utilizing the
pre-training process.

IV. CONCLUSION
This work has developed a data-driven based DRA for
generating near-to-optimal DB-ToU tariffs. The proposed
approach offers a DR service where the aggregator agent
determines price policies based on discounts, captured by
minimal information exchange with end-user agents. The
suggested design reduces infrastructural needs for communi-
cation and maintains customer agents’ privacy within reliable
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interactions. The method has recommended an RL algorithm
for constructing a promising DR system. Additionally, it has
carried out an offline training phase that notably improves the
performance of the aggregator agent in realizing a trade-off
between load factor and total revenue as two contrary objec-
tives. As a notable achievement, this practice has avoided the
time-consuming convergence of the RL and, in turn, enabled
an online implementation. A comparative study with two
common RL techniques and a proximal decomposition-based
coordination scheme demonstrates the efficiency of the pro-
posed DR system. Particularly, the comparison manifests the
superior performance of the recommended structure through
high and fast convergence rates. Future work focuses on DR
studies about heterogeneous residential agents with regard to
real-world applications.
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3.2 Price generator function

3.2.1 Background

With the multi-agent system established, it is clear which are the minimum

requirements for the different market players to ensure convergence of the price policy

generation process. Now, a dynamic pricing mechanism will be developed to enhance the

exploitation of the flexibility potentials from the demand side, as a more detailed price

policy will be established in the day-ahead market. The idea is to determine a price policy

considering supply constraints where the DSO will define a specific objective for the DRA

regarding capacity limitations, while the DRA will achieve its goals considering market

price constraints in the price policy generation process.

The main objective of this phase is to derive a dynamic pricing mechanism to offer

a capacity limitation service to the DSO. Capacity services in a pricing context are

usually offered through bidding mechanisms, leading to high computational costs and an

over-reliance on customer information. In addition, there exists a lack of consideration of

price limits in the literature, which could significantly impact the optimization processes

of the existing approaches. This will make transitioning to a smart grid context difficult

due to current regulatory and tariff structures, particularly for residential customers.

For this purpose, a dynamic price generator function is proposed, considering supply

and market constraints in a game theoretic scenario implementing a coordination loop.

With this function, the DRA will be able to maintain the DSO’s capacity needs. In

response, the DSO will pay an incentive to the DRA for maintaining capacity limits,

and the DRA will try to maximize its welfare, considering both the profit from selling

the electricity to the customers and the DSO’s incentive. Furthermore, implementing
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this price generator function results in a parameterization of the price policy, reducing

computational complexity. Then, the DRA will utilize an RL technique to set the

parameters of this function along the coordination loop, considering not only the DSO’s

need but also the possible deviation of the customers’ consumption profile from their

stipulated consumption plans to avoid the overruns of the capacity limit.

3.2.2 Methodology

The DSO interacts with a DRA agent in order to manage the load flexibility of a group

of residences. The DSO communicates the target capacity limit and offers an incentive to

the DRA based on a quadratic power generation cost function. This incentive is determined

based on the reduction of the power generation cost due to the peak shaving reduction.

Then, the DRA utilizes the proposed price generator function in an iterative coordination

loop at the beginning of the day. The DRA initially communicates a constant price profile

and waits for residential agents’ response. With this aggregated profile, the DRA calculates

the next price policy using the price generation function until the agreement is reached.

The combination of this price generator function in the developed multi-agent system,

with the coordination loop, creates a tendency that makes the maximum consumption

peak lie within a neighborhood centered at the capacity limit established by the DSO with

a radius that depends on the users’ elasticity level. With this behavior, the following steps

were followed:

1. The evaluation of the proposed price generator function regarding peak-shaving

reduction.

2. A performance comparison of the proposed price generator function with an

approximated piece-wise linear function in terms of overruns of the capacity limit
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and flexibility exploitation.

3. An RL technique comparison between the selected PPO mechanism and the popular

A2C method.

4. The evaluation of the RL-based DRA to deal with customers’ consumption

deviations while maximizing its welfare.

The reinforcement learning environment is composed of a set of twenty residential

houses. The residential agents are considered as in the first approach using the same

strategies to build the thermal models and construct the overall power profile for each

house.

3.2.3 Outcomes

This work provides a price generator function to parameterize the dynamic pricing

policy generation process. This function demonstrates higher and more controller

exploitation of the demand side flexibility potential, enabling the offering of a capacity

service for the DSO. Furthermore, it considers existing market regulations in the

generation of the dynamic pricing rates, ensuring the implementation of this mechanism

in realistic energy market contexts.

Simulations are carried out to evaluate the performance of the proposed RL-based

strategy. This mechanism was able to exploit residential agents’ flexibility to maximize

DRA’s profit while adjusting the parameters of the price generator function. The

implementation of the RL method demonstrates that the proposed DRA can deal with

agents’ deviations from their consumption plans, while at the same time, the utilization of

the price generator function was improved, as the DRA’s profits were increased by more

than 30%. Regarding RL mechanism selection, the adopted PPO method converged to a
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solution that provides higher rewards for the DRA than the well-known A2C method.
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This paper presents a Reinforcement Learning (RL) approach to a price-based Demand Response (DR) program. 
The proposed framework manages a dynamic pricing scheme considering constraints from the supply and market 
side. Under these constraints, a DR Aggregator (DRA) is designed that takes advantage of a price generator 
function to establish a desirable power capacity through a coordination loop. Subsequently, a multi-agent system 
is suggested to exploit the flexibility potential of the residential sector to modify consumption patterns utilizing 
the relevant price policy. Specifically, electrical space heaters as flexible loads are employed to cope with the 
created policy by reducing energy costs while maintaining customers’ comfort preferences. In addition, the 
developed mechanism is capable of dealing with deviations from the optimal consumption plan determined by 
residential agents at the beginning of the day. The DRA applies an RL method to handle such occurrences 
while maximizing its profits by adjusting the parameters of the price generator function at each iteration. 
A comparative study is also carried out for the proposed price-based DR and the RL-based DRA. The results 
demonstrate the efficiency of the suggested DR program to offer a power capacity that can maximize the profit 
of the aggregator and meet the needs of residential agents while preserving the constraints of the system.

1. Introduction

Demand-side management plays a key role in optimizing end-users’ 
demand in smart grids. This idea facilitates power system operation 
through different services, including the liberalization of electricity 
markets, real-time balance of demand and supply, the improvement of 
load control strategies, the reduction of energy consumption, and the in-
tegration of decentralized energy resources [1]. Accordingly, it assists 
the smart grid with the self-optimization concept (distributed optimiza-
tion) that promotes more continuous and sophisticated demand-side 
participation. Particularly, Demand Response (DR) programs, as an im-
portant facet of demand-side management, enable the management of 
various controllable and programmable loads in the residential sector, 
such as thermostatic devices, plug-in electric vehicles, and smart ap-
pliances [2]. This energy flexibility program leads to the realization of 
smart distribution grids where residential customers participate in grid 
operation as active players [3].

* Corresponding author.
E-mail address: alejandro.jose.fraija.ochoa@uqtr.ca (A. Fraija).

The DR programs have been developed to mitigate peak load by 
changing consumption patterns in response to price or incentive signals 
[4,5]. Monetary incentives influence clients to modify their load profiles 
without significantly compromising their comfort preferences [6]. From 
a realistic standpoint, peak demand management is crucial to power 
system reliability regarding the designed capacity of the grid. From a 
financial perspective, such a service is pivotal to electricity generators 
that must operate with higher costs during peak periods to manage the 
additional usage [7]. Therefore, the reduction of peak load through im-
plementing DR programs is a key strategy that offers benefits for both 
the demand and supply sides.

An effective DR program can be realized through capturing demand 
flexibility at its full potential. Accordingly, the DR Aggregator (DRA) 
has emerged as a commercial entity to explore such an opportunity by 
negotiating agreements between consumers and market [8]. This medi-
ator recruits customers and directly contacts clients using information 
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Nomenclature

Acronyms

DR Demand Response
DRA Demand Response Aggregator
DSO Distribution System Operator
ESH Electric Space Heating
MDP Markov Decision Process
PAR Peak-to-Average Ratio
PPO Proximal Policy Optimization
RL Reinforcement Learning

Functions

𝐴̂𝑡 Advantage at episode 𝑡
𝜓(⋅) Power generation cost reduction function
𝜉(⋅) DRA welfare function
𝑔(⋅) Thermal model
𝑅𝑡 Reward function at episode 𝑡
𝑈 (𝑢𝑖𝑘) Thermal comfort function

Indices

𝑖 House index
𝑘 Time-step index

𝑡 Iteration index

Parameters

𝛼 Rate of price change
𝜋𝑚𝑎𝑥 Upper price limit
𝜋𝑚𝑖𝑛 Lower price limit
𝑀 Capacity limit

Variables

𝛿𝑖𝑘 Thermal discomfort factor of 𝑖𝑡ℎ house
𝜂 Capacity limit reduction
𝑢̂𝑖𝑘 Actual energy consumption of 𝑖𝑡ℎ house at time-step 𝑘
𝜇ℎ𝑡 Normalized aggregated consumption
𝑎𝑡 Action at episode 𝑡
𝑠𝑡 State at episode 𝑡
𝑢𝑖𝑘 Energy consumption reported of 𝑖𝑡ℎ house at time-step 𝑘
𝑥𝑖𝑘 Indoor temperature of 𝑖𝑡ℎ house at time-step 𝑘
𝑥𝑜𝑢𝑡𝑘 Outdoor temperature at time-step 𝑘
𝑥𝑖𝑐𝑜𝑚𝑓 Set-point temperature profile of 𝑖𝑡ℎ house
𝑦𝑘 Aggregated energy consumption time-step 𝑘

and communication technologies [9]. As a result, it collects load flex-
ibility and offers it as a service to the Distribution System Operator 
(DSO). Congestion management, power quality improvement, and grid 
capacity expansion are critical exercises performed by the DSO based 
on this flexibility [10,3].

Specifically in the residential sector, an important source of flexibil-
ity is the thermal loads [11]. In countries with harsh winters, residential 
thermal loads are among the major energy-expensive appliances. For 
instance, in Quebec, Electric Space Heating (ESH) systems account for 
about 60% of household energy consumption [12]. These appliances 
can cause a significant increase in power demand during peak load 
and, at the same time, represent a critical factor in the user’s electric-
ity bill. Because of this, smart programmable thermostats are widely 
employed to manage the problems, from the user’s point of view, of re-
ducing their electricity bills. Alternatively, these controllable devices 
release the opportunity to capture the flexibility potentials of these 
loads, which can be capitalized by the DRA, enabling new possibilities 
for both the demand side and the DRA that can be exploited through 
the implementation of DR programs [13].

One of the key elements in the correct implementation of DR pro-
grams in the residential sector, is the optimal generation of price-based 
policies [14]. The main goal of these mechanisms is to exploit the flex-
ibility potential from the demand side to deal with the problem of 
consumption peaks. However, there exist some challenges for the DRA 
in implementing these mechanisms at the residential level, starting with 
significant privacy concerns [15], resulting in affecting the optimality 
of DR policies due to the uncertainty that comes from the lack of in-
formation provided by the user, like users’ thermal comfort preferences 
[16]. Moreover, if the problem is analyzed from the grid perspective, 
performing this exercise without considering the needs of the network 
can generate imbalances in the system, as shown in [17]. In addition, 
existing market regulations establish limits for the sale of energy, which 
makes most of the studies that do not consider restrictions on price gen-
eration unsuitable for retailers such as DRAs [18]. This is evidence of 
the need to continue exploring these types of scenarios to avoid a my-
opic generation of pricing tariffs that end up affecting the grid stability 
or in unprofitable strategies for the DRA.

In this regard, this research study addresses optimizing thermal en-
ergy usage among a group of residential customers considering a DRA 
despite supply and market constraints. It tackles this issue by introduc-

ing a price generator function that utilizes the aggregated consumption 
profile as the only source of information to generate price policies. 
Furthermore, the function takes into account the existing market reg-
ulations to establish restrictions in a dynamic pricing approach, and 
allows the translation of a target capacity limit into a dynamic pric-
ing policy through a coordination process. As a result, this mechanism 
proves its capabilities at exploiting residential flexibility in a controlled 
manner, and reducing power generation costs while simultaneously in-
creasing the profit for the DRA. To set the function parameters that 
optimize the generation of price-based policies through the coordina-
tion loop, a reinforcement learning (RL) mechanism is used to deal with 
the lack of information regarding the users’ objectives. The RL mecha-
nism is implemented for two reasons, first, it allows dealing with the 
complex environment with incomplete information on the DR program, 
and second, it will handle the users’ deviations in the execution of the 
consumption plans to guarantee the respect of the capacity limit stipu-
lated by the DSO.

1.1. Related works

Price-based DR programs are formulated to deal with the challenges 
of defining prices/rates for different time blocks in an optimal manner, 
especially in day-ahead markets [19]. In fact, the idea of offering fixed 
prices to residential customers for long periods in order to maintain the 
balance of the power grid as a complex real-time system can yield ineffi-
cient performances [20]. In this regard, the implementation of dynamic 
pricing schemes is suggested that can provide an efficient utilization of 
generation capacity. These strategies encourage users to change their 
consumption patterns without modifying generators’ costly operation 
[21]. Nevertheless, acquiring an optimal pricing design is difficult due 
to inherent uncertainties in DR programs related to customers’ dynamic 
load consumption and price-responsive behavior. For instance, the au-
thors in [22,23] have addressed this situation by developing optimal 
dynamic pricing mechanisms that allow a trade-off between consumers 
and the utility. Their method has roots in the two most popular practices 
in price-based DR programs. The first performs optimization problems 
that rely on an extensive exchange of specific information [22,24,25]. 
Subsequently, in many cases, they can affect the privacy and participa-
tion interests of customers. The second implements iterative processes 
commonly based on game theoretical frameworks [23,26,27]. The over-
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reliance of these procedures on users can give them opportunities to 
game the system. In response to these issues, in [28,29], the authors 
have proposed non-cooperative approaches to reduce the peak of ag-
gregated energy consumption profile. A similar strategy that shares 
the power consumption cost between users has been suggested by the 
authors in [29]. However, these solutions suffer from the lack of con-
straints on price generators that can result in either unwanted penalties 
against users or barriers to implementing constrained markets.

On the other hand, the emergence of DRA in the implementation 
of DR services has allowed different approaches to be explored. The 
interactions between these entities and households have also enabled 
the development of markets with capacity constraints. As an exam-
ple, the authors in [30] took advantage of this interaction to impose 
capacity constraints, in which they propose a strategy for construct-
ing a bidding curve for capacity increments. In this regard, in [31] a 
market-clearing mechanism was developed for offering a capacity lim-
itation service. This work investigates at what costs aggregators can 
offer capacity constraints, and how these can reduce the DSO’s net-
work operating cost. These bidding mechanisms have a good response 
in capacity-constrained flexibility markets. However, the need for intru-
sive approaches to the construction of aggregators’ bidding models can 
be a disadvantage in their implementation. Moreover, the additional 
workload for DSOs to submit or clear bids in these markets remains a 
major obstacle to their implementation. In this regard, authors in [32]
proposed a mathematical framework for a dynamic pricing mechanism 
in an energy community to enable the provision of capacity limita-
tion services to the DSO. They highlight the importance of extending 
the portfolio of local flexibility resources to thermostatically controlled 
loads. However, no price limits have been taken into account, and the 
suggestion of a bi-level optimization may result in privacy issues from 
the demand side.

Recently, researchers have focused their efforts on utilizing Rein-
forcement Learning (RL) methods in order to solve the existing issues. 
Particularly, an RL agent can handle system uncertainties without any 
prior knowledge [33]. The approach of the authors in [34,35] relies on 
employing the RL technique for an optimization problem with a com-
bined objective function to meet the desires of both consumers and the 
aggregator in a real-time context. However, such a manner of formu-
lating users’ preferences raises privacy issues since it requires access to 
their dissatisfaction information during the price policy generation pro-
cess. In a previous study, the authors have addressed this obstacle by 
developing a learning procedure only based on the aggregated load to 
define RL actions, and thus, alleviated privacy concerns [36,37]. The 
related research also considered price constraints determined by the 
market to improve either the Peak-to-Average ratio (PAR) or the Load 
Factor. Although there are significant achievements in terms of flatten-
ing the energy consumption curve by means of RL techniques, there is 
no clear link between peak reduction and system balance. This high-
lights the need to explore a different approach that allows for utilizing 
end-users flexibility in a controlled way based on the maximum con-
sumption expected by the DSO. Such consideration brings about an 
optimal means to facilitate maintaining the power grid’s reliability.

1.2. Motivation and contribution

The main objective of this paper is to derive a dynamic pricing 
mechanism to provide a capacity limitation service considering the es-
tablished energy market regulations. For brevity of the presentation, 
Table 1 compares the differences between the existing methods and the 
proposed model, demonstrating the lack of consideration of price limits 
in the literature, which could significantly impact the optimization pro-
cesses. In addition, capacity services in a pricing context are usually of-
fered through bidding mechanisms, which leads to high computational 
costs and an over-reliance on the information provided by customers. 
These points are a further barrier to DR program implementations [18]
related to current regulatory and tariff structures, particularly for resi-

dential customers. Moreover, one of the remaining fundamental issues 
is pricing in a demand response scenario of the power market by re-
specting both the capacity and operational costs of responding.

To overcome the aforementioned issue and develop a dynamic pric-
ing mechanism, we introduce a price generator function for the DRA 
by considering power capacity and market constraints. Each residential 
user independently determines its best response strategy to minimize 
energy costs and maximize profit. The proposed DRA uses the price 
generator function in a game theoretic scenario to coordinate customer 
responses. The proposed method takes advantage of RL techniques to 
estimate the price generator function parameters and a proximal de-
composition algorithm as a regularizer on the customers’ side. The 
regularization allows us to ensure the convergence of the proposed 
multi-agent system. Accordingly, this work contributes,

1. A price-based DR program centred on proposing a price-generating 
function for the DRA agents that considers the market price restric-
tions. This work identifies a sigmoid function that, combined with 
the regularization of users’ DR based on proximal decomposition in 
a coordination loop, allows the reduction of local peaks according 
to the stipulated capacity limits.

2. An RL method to determine the parameters of the price generator 
function during the coordination loop. These parameters assist in 
maximizing the DRA’s profit while respecting DSO’s service needs. 
The PPO algorithm is used to overcome the lack of user information 
in the process of optimizing pricing policies.

3. An RL-based DRA agent that considers the deviations from con-
sumers from their stipulated consumption plans. This agent can 
characterize users’ variations to avoid significant impacts on the 
power constraints of the system while improving the DRA’s profit. 
The data-driven mechanism makes it possible to characterize the 
uncertainty of user deviations during the execution of consump-
tion plans.

The rest of the paper is organized as follows: Section 2 presents the 
methodology for the developed framework. Section 3 covers the val-
idation setup. The results are discussed in Section 4, followed by the 
conclusion in Section 5.

2. DR mechanism and problem formulation

In a residential distribution grid, operated by automated agents, 
DSO interacts with a DRA agent in order to manage load flexibility of 
a group of residences. The DRA provides monetary incentives by man-
aging the price policy. In response, the customers change their energy 
consumption patterns that helps avoid network congestion and ensure 
the system reliability. Indeed, this constitutes a mechanism in which 
customers communicate their consumption plan with the DRA in re-
sponse to a stipulated price profile. Although the DRA does not know 
consumers’ preferences in this structure, it can adapt the price pro-
file according to their propositions. In this regard, Fig. 1 illustrates the 
structure of the proposed price-based DR mechanism. In the designed 
framework, the DRA runs the day-ahead planning of a set of residential 
agents. It communicates to them price signals in a coordination loop 
and induces them to react. Through this interaction, the DRA seeks to 
decrease the aggregate peak demand by regulating customers’ power 
profiles. Specifically, the DRA defines a constant price profile and waits 
for the users’ response. Upon receiving the feedback, the DRA adapts 
the price profile and waits for the residential agents’ new consumption 
plan until reaching an agreement.

2.1. Price generator function

In order to define the DRA’s price profile, a price generator func-
tion is formulated considering 𝜋𝑚𝑖𝑛 and 𝜋𝑚𝑎𝑥 as the market’s minimum 
and maximum price constraints accepted for the DR mechanism. This 
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Fig. 1. Automatic price-based DR sequence.

Fig. 2. Market and power constraints in terms of power generation cost func-
tion.

consideration is important as it restricts the implementation of many ex-
isting mechanisms that do not consider these price constraints in their 
algorithms. Then, the following price generator function allows enti-
ties like DRAs to compete in this type of market, where optimizing 
their profits becomes an important challenge. Moreover, the genera-
tor function considers a capacity limitation factor 𝑀 established by the 
system. This factor is defined by the DSO based on the power genera-
tor cost function of the energy provider (see Fig. 2). This means that 
the DSO may define a value for 𝑀 when the power grid operation is 
compromised. Aspects such as maintenance reduction or operating cost 
reduction, would determine the 𝑀 value based on physical system con-
straints (such as maximum transformer capacity) or maximum desired 
node capacity (for reducing system losses), respectively. Accordingly, 
we propose the following price generator function,

𝜋𝑘(𝑦𝑘) = 𝜋𝑚𝑖𝑛 +
𝜋𝑚𝑎𝑥 − 𝜋𝑚𝑖𝑛

1 + exp
(−𝑦𝑘 +𝑀

𝛼

) , (1)

where 𝑦𝑘 represents the aggregate consumption at time stamp 𝑘 ∈
{1, … , 𝑁}. This value corresponds to the sum of individual household 
energy consumption, i.e. 𝑦𝑘 =

∑𝐻
𝑖=1 𝑢

𝑖
𝑘, where 𝐻 represents the num-

Fig. 3. Proposed price generator function.

ber of houses, and 𝑢𝑖𝑘 is the energy consumption of the 𝑖
th house at the 

time stamp 𝑘. Lastly, 𝛼 is a positive parameter that controls the rate 
of price change. To properly determine this value, exploration must be 
conducted by the DRA agent due to the lack of existing information 
linked to the relationship between the users’ elasticity and flexibility.

The proposed price generator function, 𝜋𝑘(𝑦𝑘), has some particular 
properties that make it suitable for reducing aggregate load peaks of 
the aggregated demand profile. In fact, the developed function estab-
lishes a direct correlation between consumption and price at every time 
slot. This means that prices increase or decrease in the same way that 
aggregate consumption does.

Furthermore, the function has an inflection point at 𝑀 that allows 
for a division into two convex regions, as shown in Fig. 3. Since users 
participate with their best responses, their energy payments either de-
crease or remain unchanged while reducing their consumption peaks. 
As a result, consumers try to avoid the high price region. This tendency 
makes max𝑘(𝑦𝑘) lie within a neighborhood centred at 𝑀 with a radius 
of 𝑟 depending on the users’ elasticity level.

2.2. DRA agent

In the described scenario, the DRA takes into account the prevail-
ing market regulations that impose restrictions on energy unit selling 
prices. Additionally, the proposed approach aims to mitigate consump-
tion peaks considering the defined objectives set by the DSO regarding 
capacity constraints. These limitations are accounted for in the design 
of the price generator function. Consequently, the DRA endeavors to 
maximize its profit by avoiding exceeding the stipulated capacity limit, 
utilizing the feedback obtained from the interaction with the residential 
agents.
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This interaction between the set of residential agents and the DRA is 
modeled as a multiple-follower and one-leader Stackelberg game. In this 
model, the leader seeks to optimize its usefulness which depends on the 
profit from the electricity supply to customers and the cost of exceed-
ing the power constraints of the system. The energy cost related to the 
provider can be modeled by the quadratic function 𝐶(𝑦𝑘) = 𝑎𝑦2𝑘+𝑏𝑦𝑘+𝑐
that has been widely used in the literature [29,40]. For this analysis, we 
define 𝑎 = 𝜋𝑚𝑎𝑥∕𝑀 and 𝑏 = 𝑐 = 0, considering the break-even point be-
tween the cost function and the revenue produced by 𝜋𝑚𝑎𝑥. The profit 
depends on the price policy established by the DRA in (1), while the 
cost is indirectly controlled through interactions between the followers 
and the leader. The DSO determines the DRA reward 𝜓 based on the 
cost reduction concerning the initial aggregated consumption plan, i.e.,

𝜓 =
𝑁∑
𝑘=1

𝐶(𝑦0,𝑘) −
𝑁∑
𝑘=1

𝐶(𝑦𝑘) (2)

Therefore, considering 𝝅 = {𝜋1, … , 𝜋𝑁} as the price policy for the 
next interaction, the DRA benefit can be explained by the difference 
between its income and the cost of exceeding the power constraint,

𝜉(𝝅) =𝑤1

( 𝑁∑
𝑘=1

𝑦𝑘𝜋𝑘 +𝜓

)
−𝑤2( max

𝑘=1,…,𝑁
𝑦𝑘 −𝑀), (3)

where 𝑤1 and 𝑤2 are weighting factors to balance these two terms. 
In this case, each one of these factors is defined first by the inverse 
of the unweighted historical average of each term to guarantee a nor-
malized result; thereafter, these values are slightly modified to give 
more importance to the cost per overrun. This function (3) is difficult to 
optimize since it is not convex; thus, it cannot be treated by the classi-
cal gradient-based optimization methods. Moreover, the deviation from 
the consumption plan by the residential agents during the DR practice 
evidences the need for an algorithm with the ability to handle such un-
certainty. Consequently, the RL method is implemented to deal with the 
intractability of the DRA price generation problem. RL algorithms have 
strong exploration capabilities that enable them to interact continuously 
with an unknown environment and constantly update the agents’ expe-
rience towards an optimal decision [41]. Despite the drawback linked 
to the training time of RL algorithms, they offer the benefit of address-
ing nonlinearities within optimization problems, as outlined in [42]. 
This study illustrates how RL methods have been utilized to overcome 
the necessity of acquiring the dynamics of nonlinear systems for imple-
menting optimal control strategies. The aforementioned demonstrates 
that employing the RL approach enables the optimization of the DRA’s 
pricing strategy within the intended scenario.

2.2.1. An overview of the RL
RL algorithms are based on an agent interacting with an unknown 

environment and performing actions to extract useful information. 
Through these interactions, the agent attempts to maximize its reward 
by realizing a trade-off between exploring new actions and exploiting 
those that seem optimal [43]. This process starts by observing the state 
of the environment. The RL agent acts and receives an immediate re-
ward and the resulting new state from the environment. This is because, 
during the iterative process of interactions between the RL agent and 
the environment, the action affects the environment causing a change 
in its state according to a given probability [44].

When starting the iterative process, the RL agent is unaware of the 
link between the action performed in a given state with the reward 
and the new state received as a response from the environment. In fact, 
the agent learns this knowledge by continuously interacting with the 
environment. The acquired comprehension is used by the agent to max-
imize not only the immediate reward but also the expectation of the 
future ones. It can be deduced that an RL algorithm is a trial-and-error 
approach that looks to optimize a decision-making process.

2.2.2. RL representation of a dynamic pricing mechanism under capacity 
constraints

The targeted scenario considers a multi-agent system composed of a 
set of residential agents and an RL-based DRA. The interactions between 
the residential environment and the RL agent are modeled by a Markov 
Decision Process. This decision-making formalism allows modeling an 
environment as a set of states where the states of the environment are 
Markovian, and actions can be performed to control the system’s state 
for maximizing some performance criteria. This can be used to learn 
sequential decision-making processes by mapping states onto actions 
in such a way that the expected outcome will produce the intended 
effect. These mapping strategies are called policies in this theory. Thus, 
the Markov Decision Process framework enables the gradual learning of 
optimal policies through consecutive trials, applying different methods 
developed in the literature [45]. According to the aforementioned, the 
model is represented by a tuple ⟨𝑆, 𝐴, 𝑃 , 𝑅, 𝛾⟩, where 𝑆 and 𝐴 are the 
sets of states and actions, respectively. 𝑃 presents the state transition 
probability, 𝑅 is a reward function, and 𝛾 stands for a discount factor 
[46].

The RL-based DRA defines the action 𝑎𝑡 ∈ 𝐴 at each step according 
to the state 𝑠𝑡 ∈ 𝑆 . 𝑠𝑡 = {𝜇𝑡,1, 𝜇𝑡,2, … , 𝜇𝑡,𝑁} is the normalized aggregate 
consumption profile, where 𝜇𝑡,𝑘 =

𝑦𝑘
max

𝑘∈{1,…,𝑁}
{𝑦𝑘}

. The action 𝑎𝑡 modi-

fies the price generator function to maximize the reward of DRA within 
the coordination loop. In this regard, 𝑎𝑡 = {𝜂, 𝛼} where 𝜂 is a parameter 
established to allow the DRA to transform the price generator function 
for dealing with residential agents’ deviations. As a result, the price gen-
erator function, 𝜋̇𝑘(.), utilized by the DRA and the reward function, 𝑅𝑡, 
defined for our RL set-up, can be described through (4) and (5), respec-
tively.

𝜋̇𝑘(𝑦𝑘, 𝜂, 𝛼) = 𝜋𝑚𝑖𝑛 +
𝜋𝑚𝑎𝑥 − 𝜋𝑚𝑖𝑛

1 + exp
(−𝑦𝑘 +𝑀 − 𝜂

𝛼

) (4)

𝑅𝑡 = 𝜉(𝝅̇) (5)

The DRA agent determines actions that maximize its cumulative 
reward 𝐺𝑡 =

∑
𝑗 𝛾

𝑗−1𝑅𝑗 as the return over a number of steps named 
episode. In this case, an episode is equal to the coordination loop be-
tween the DRA and residential agents.

2.2.3. Proximal policy optimization (PPO) method
The implemented RL algorithm is based on the PPO technique. This 

policy gradient means is used to optimize the policy 𝜙𝜃(𝑎𝑡, 𝑠𝑡) based 
on the parameter 𝜃. The policy describes the agent’s behavior as a rule 
to decide the action in a given state. This technique tries to stabilize 
the training process of the RL agent by avoiding parameter updates 
that can produce a high policy alteration in a single step. Additionally, 
it attempts to keep old and new policies as closely as possible, ensur-
ing reward enhancement and stability during the process [47]. For this 
purpose, the PPO scheme maximizes an objective function, 𝐽 (𝜃), with 
respect to 𝜃, i.e.

𝐽 (𝜃) = 𝔼̂𝑡[min(𝑟𝑡(𝜃)𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃),1 − 𝜖,1 + 𝜖)𝐴̂𝑡)], (6)

where 𝐸̂𝑡 is the expectation over episode 𝑡, 𝑟𝑡(𝜃) presents the proba-
bility ratio between the new and old policies in terms of 𝜙𝜃(𝑎𝑡|𝑠𝑡) ∕
𝜙𝜃𝑜𝑙𝑑 (𝑎𝑡|𝑠𝑡). The PPO method uses 𝐴̂𝑡 = −𝑉 (𝑠𝑡) +𝛾𝑅𝑡+⋯ +𝛾𝑇−𝑡+1𝑅𝑇−1+
𝛾𝑇−𝑡𝑉 (𝑠𝑇 ) as the estimated advantage at episode 𝑡, where 𝑇 is the batch 
size. This advantage function measures the performance of a selected 
action given the current state. Finally, 𝜖 is the hyperparameter for clip-
ping. This parameter avoids large deviations in the 𝜃 updating process 
by setting the ratio in the interval [1 − 𝜖, 1 + 𝜖] [48]. The Algorithm 1
in Appendix A represents the utilized PPO technique for the targeted 
scenario.
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2.3. Automated DR for residential agents

It is assumed that each residential agent is equipped with a home 
energy management system (HEMS), which enables flexible demand. In 
this practice, flexible load refers to heating systems controlled by smart 
thermostats based on end-users’ comfort. The possibility to modify the 
thermal load provides the flexibility required for residential agents’ par-
ticipation in the DR program. On the other hand, fixed load refers to 
other household appliances operating without the same strategy.

Subsequently, the heating consumption can be computed by maxi-
mizing the individual welfare, expressed by,

Maximize
u𝑖={𝑢𝑖𝑘}

𝑁
𝑘=1

𝐽 (u𝑖)

subject to 𝑥𝑖𝑘+1 = 𝑔(𝑥
𝑖
𝑘, 𝑥

out
𝑘 , 𝑢𝑖ℎ,𝑘),

𝑥𝑖𝑘 ∈ [𝑥𝑖min, 𝑥
𝑖
max],

𝑢𝑖𝑘 ∈ [0, 𝑢𝑖max],

𝑢𝑖𝑘 = 𝑢
𝑖
ℎ,𝑘 + 𝑢

𝑖
𝑎,𝑘,

(7)

where the vector u𝑖 = {𝑢𝑖1, ⋯ , 𝑢𝑖𝑁} is the consumption plan of the 𝑖th

house. The variables 𝑥𝑖𝑘 and 𝑥
out
𝑘 are the indoor and outdoor tempera-

tures. 𝑢𝑖ℎ,𝑘 stands for the heating energy consumption. The total energy 
consumption of the 𝑖th house at the time 𝑘 accounts for the aggrega-
tion of thermal and fixed loads, 𝑢𝑖𝑘 = 𝑢

𝑖
ℎ,𝑘 + 𝑢

𝑖
𝑎,𝑘. The thermal model of 

the house, 𝑔(⋅), is a discrete linear model described in [49]. The setting 
of this model, based on real data, is presented in Section 3. The param-
eters 𝑥𝑖min and 𝑥

𝑖
max are the minimum and maximum allowed internal 

temperatures set by the user. The objective function, 𝐽 (u𝑖), is defined 
as,

𝐽 (u𝑖) =
𝑁∑
𝑘=1

𝑈 (𝑢𝑖𝑘) − 𝜋𝑘𝑢
𝑖
𝑘, (8)

where 𝜋𝑘 represents the energy price at 𝑘 and 𝑈 (𝑢𝑖𝑘) is the utility func-
tion of the customer, which in this case is the thermal comfort, i.e., the 
goal of the user is to maintain its comfort needs while reducing its bill.

According to the literature, several methods for modeling user com-
fort have been proposed as presented in [50]. These models are based 
on ISO and ASHRAE standards to determine which are more interest-
ing [51]. Based on this, the Fanger model is a very common analysis, 
that utilizes the characteristic numbers Predicted Mean Vote (PMV) and 
Predicted Percentage of Dissatisfied (PPD) to determine the thermal 
comfort of occupants, [52]. However, implementing these strategies im-
plies using a larger number of variables, needing the utilization of more 
complex thermal models. This would result in a significant increase in 
algorithmic complexity. For this reason, without losing generality, a 
linear thermal model is implemented, which is computationally less de-
manding. The model 𝑔(⋅) for the thermal dynamics of the house, based 
on the indoor temperature 𝑥𝑖𝑘, the outdoor temperature 𝑥

out
𝑘 and the 

thermal consumption 𝑢𝑖ℎ,𝑘 is defined as follows, where 𝜷
𝑖 = [𝛽𝑖1, 𝛽

𝑖
2, 𝛽

𝑖
3]

are the state transition coefficients:

𝑥𝑖𝑘+1 = 𝑔(𝑥
𝑖
𝑘, 𝑥

out
𝑘 , 𝑢𝑖ℎ,𝑘) = 𝛽

𝑖
1𝑥
𝑖
𝑘 + 𝛽

𝑖
2𝑥

out
𝑘 + 𝛽𝑖3𝑢

𝑖
ℎ,𝑘. (9)

Then, the residential agents aim to minimize their thermal com-
fort dissatisfaction, i.e., the difference between the desired and indoor 
temperature has to be minimized [53]. With this in mind, since the res-
idential agent uses the thermal load as flexible demand, this function 
is determined based on thermal comfort parameters consisting of 𝑥𝑖

comf
as the set-point temperature and 𝛿𝑖𝑘 as the comfort weight factor. This 
element represents users’ ability to sacrifice comfort to reduce the bill. 
According to [49,54], the thermal comfort can be modeled with the 
following quadratic utility function,

𝑈 (𝑢𝑖𝑘) = −𝛿𝑖𝑘(𝑥
𝑖
comf − 𝑥

𝑖
𝑘)

2, (10)

where 𝛿𝑘 can take two values from the set {0, 𝛿max}. In the case of 
𝛿𝑘 = 𝛿max, occupants are interested in reaching their comfortable tem-
perature set-point. Indeed, the parameter 𝛿max advertises the price 
elasticity of the heating energy. This strategy maximizes the flexibil-
ity of the residential agent without compromising its thermal comfort 
constraints. For instance, the agent can freely modify the internal tem-
perature under 𝛿𝑘 = 0 while respecting the constrain 𝑥𝑖𝑘 ∈ [𝑥𝑖min, 𝑥

𝑖
max].

Since the residential agents are simultaneously solving their opti-
mization problem in a selfish way, it is necessary to regularize their 
optimization problems. According to theorem 3 in [29], this regular-
ized plan of the houses combined with the non-negative users’ payments 
granted by the price generator function guarantees the existence of a 
Nash equilibrium in the proposed DR mechanism. The proximal decom-
position can perform the regularization as a distributed algorithm [55]. 
In this regard, a regularization parameter, 𝜏 , is utilized to penalize the 
difference between consecutive defined consumption plans, i.e., penal-
ize significant variations between episodes 𝑡 and 𝑡 − 1 [37]. As a result, 
the dual optimization problem to minimize the residential agents’ cost 
function can be defined by (11).

Minimize
u𝑖={𝑢𝑖𝑘}

𝑁
𝑘=1

𝑁∑
𝑘=1

𝛿𝑖𝑘(𝑥
𝑖
comf − 𝑥

𝑖
𝑘)

2 + 𝜋𝑘𝑢𝑖𝑘 + 𝜏(𝑢
𝑖
𝑡,𝑘 − 𝑢

𝑖
𝑡−1,𝑘)

2

subject to 𝑥𝑖𝑘+1 = 𝑔(𝑥
𝑖
𝑘, 𝑥

out
𝑘 , 𝑢𝑖ℎ,𝑘),

𝑥𝑖𝑘 ∈ [𝑥𝑖min, 𝑥
𝑖
max],

𝑢𝑖𝑘 ∈ [0, 𝑢𝑖max],

𝑢𝑖𝑘 = 𝑢
𝑖
ℎ,𝑘 + 𝑢

𝑖
𝑎,𝑘.

(11)

Although all customers intend to report and consume the optimal 
demand, which minimizes their costs, deviations can appear during run 
time. Such deviations indicate that users consumed 𝑑𝑘 times their re-
ported plan, i.e., 𝑢̂𝑘 = 𝑑𝑘𝑢𝑘 at each time stamp [56]. In order to model 
the occurrence of such deviations, 𝑑𝑘 can be expressed as a random 
variable that follows a Log-normal distribution with parameters 𝜇 = 𝑒, 
and 𝜎 = 0.05.

3. Validation setup

In this section, the proposed DR mechanism is validated through nu-
merical analyses. The experimental data used for constructing the ther-
mal models is described. The validation procedure aims to investigate 
the ability of residential agents to modify their standard consumption 
patterns by exploiting their flexibility potential in response to the price 
profile.

This work uses real-world data to construct thermal models and gen-
erate stochastic load profiles for a set of residential buildings. The data 
is related to 11 single-family detached houses, located in the city of 
Trois-Rivieres, Quebec, Canada. The houses are equipped with electri-
cal baseboards and thermostats for temperature control. The acquisition 
system records indoor temperature, electrical heating power consump-
tion, and outdoor temperature. The collected data spans four winter 
months, from January to April 2018. Fig. 4 depicts the conditional den-
sity of the power consumption and the difference between the indoor 
and outdoor temperatures. The measurements have 15-minute sampling 
intervals. The data allows for constructing linear thermal models of 
targeted houses. The ridge regression is utilized to determine the co-
efficients 𝜷𝑖 = [𝛽𝑖1, 𝛽

𝑖
2, 𝛽

𝑖
3] for the linear model [57],

𝑥𝑖𝑘+1 = 𝑔(𝑥
𝑖
𝑘, 𝑥

out
𝑘 , 𝑢𝑖ℎ,𝑘) (12)

In addition, the power consumption of energy-extensive appliances 
other than electric baseboards is considered. This process aims to gen-
erate a stochastic aggregate load profile of non-flexible residential ap-
pliances [58]. This profile is added to the simulated heating demand. 
Fig. 5 shows the conditional mean and 95% confidence interval of the 
weekly load profile for a single house. The data presented is utilized to 
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Fig. 4. Distribution of the ESH power consumption and the outdoor temperature 
for one house in Trois-Rivieres, Quebec.

Fig. 5. Average weekly power profile from 8 real houses (space heating load is 
not included).

obtain the distributions needed to introduce realistic uncertainties for 
the HEMS optimization simulation process. It should be noted that sta-
tistical information from a previous study on temperature preferences 
in residential buildings is utilized to derive sensible comfort desires for 
the simulation [59].

For the 𝑖th house, the comfortable temperature, 𝑥𝑖
comf

, is drawn from 
a discrete distribution as the highest set-point. The generated value 
is used to compute the household utility function through (10). In 
this study, the discrete set accounts for four different set-point values 
obtained by discretizing an empirical distribution over set-point tem-
peratures in Quebec dwellings [59]. The possible values of 𝑥𝑖

comf
are 

[20, 21, 22, 23] in degree Celsius [C], and their corresponding proba-
bilities, 𝑃 (𝑥sp), are [0.1, 0.3, 0.5, 0.1]. Besides, the value of the mini-
mum allowed temperature for the same house is generated through 
𝑥𝑖min = 𝑥

𝑖
comf

−𝑥𝑖
sb
, where 𝑥𝑖

sb
is the set-back value. This quantity is taken 

randomly from the set {1, 2, 3, 4} with 𝑃 (𝑥𝑖
sb
) = [0.1, 0.3, 0.4, 0.2], calcu-

lated by the same manner used for 𝑥𝑖
comf

[59]. Finally, the value of the 
parameter 𝛿max, required by the utility function (10), is assumed to be 
extracted from a log-normal distribution with the expectation, 𝔼(𝛿max), 
and variance, 𝑉 𝑎𝑟(𝛿max), equal to 5 and 1, respectively.

4. Results

This section provides the simulation results of the proposed DR 
mechanism by performing the analysis in three steps. First, validation of 
the consumption behavior of the residential agents is carried out with-

Fig. 6. One-day aggregated power demand without DR.

out the DR mechanisms. Then, the effectiveness of the proposed price 
generator function for different capacity limits is examined. Finally, the 
PPO-based RL technique is used to optimize the parameters of the price 
generator function within the coordination loop to deal with the devia-
tions of the residential agents and maximize the DRA’s profits.

4.1. The scenario without DR

Fig. 6 shows the aggregated consumption profile of a set of 11 sim-
ulated buildings during a cold day. The consumption behavior in the 
figure demonstrates that the models developed are in accordance with 
the expected power consumption pattern in Quebec’s residential sector. 
Each residential agent performs a model predictive control, meaning 
they tend to anticipate comfort needs considering the price profile. 
Therefore, agents will perform actions such as preheating the house 
before the setpoint temperature changes to 𝑥𝑖

comf
. From Fig. 6 it can be 

observed that in the absence of a management mechanism, high peak 
loads have occurred during morning and evening hours.

4.2. Coordination loop

The performance of the proposed price-based demand response 
strategy is evaluated utilizing the price generator function proposed in 
(1). Here, a constrained market is considered, where 𝜋𝑚𝑖𝑛 = 0.05$∕𝑘𝑊 ℎ
and 𝜋𝑚𝑎𝑥 = 0.20$∕𝑘𝑊 ℎ. The DRA agent starts the coordination loop by 
establishing a flat price profile. Once aggregating the received response 
of the users’ consumption plan, the DRA agent uses the proposed price 
generator function (1) to establish the new price policy. This process is 
performed 10 times before reaching the agreement in the multi-agent 
system. Fig. 7 shows the results obtained for the capacity constraints 
𝑀 = 90, 80, 70𝑘𝑊 for an 𝛼 = 5. The Figure presents the step-by-step 
interaction between the DRA and the resistive agents. To be more pre-
cise, each graph shows the aggregated profiles starting from the users’ 
consumption plan before the DR program’s implementation and end-
ing with the consumption profile of the agreement reached. The former 
is represented in each graph as a red time series and the latter as a 
blue time series. These results demonstrate that the proposed method 
allows the translation of a pricing policy into a desired maximum ca-
pacity value in a restricted market. Moreover, it can be observed that 
for higher values of 𝑀 , residential agents can keep their peak consump-
tion further away from the capacity constraint to exploit further the low 
price region of the price-generating function. However, as 𝑀 decreases, 
this difference is reduced because the users’ flexibility starts hitting the 
limit.

4.3. RL for optimizing DRA pricing strategy

Finally, we evaluate the performance of the proposed PPO-based RL 
approach in defining the parameters of the price generator function (4)
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Fig. 7. Performance analysis of the coordination method for different𝑀 values.

during the coordination loop. For this case, the capacity constraint will 
be established as 𝑀 = 75𝑘𝑊 . The RL-based DRA agent seeks to maxi-
mize its profit from electricity sales by setting the function’s parameters. 
However, it must also deal with the problem of users’ deviations from 
the consumption plan during its execution. Users try to follow the con-
sumption plan from the agreement as this is the one that maximizes 
their profit. However, this consumption may deviate from the plan due 
to possible changes in their activities. Therefore, the DRA agent must 
be prepared against these changes to avoid being penalized by the DSO. 
Each RL episode is represented by a coordination loop, which will stop 
according to criteria based on the change in the percentage of power 
generation cost reduction with respect to the initial cost and the change 
in the PAR from one iteration to another. In this case, the coordination 
will stop when the cost change is less than 0.01%, and the PAR change 
is less than 0.01. According to the analyses conducted, the proposed cri-
teria are usually met after ten iterations. To better illustrate this, Fig. 8
presents the convergence curve of the coordination loop.

Fig. 9 presents the average curves resulting from the learning pro-
cess of the DRA agent. The blue curve shows the progression in episodes 
of the average reward, based on function (5), in red the improvement 
in PAR at the end of each coordination loop of each episode, and finally 
in green the aggregator’s profit for selling energy using the pricing pol-
icy of the agreement. It can be seen that after 600 episodes, the agent 
improves the reward obtained at the end of the day. In addition, the 
figure shows how the agent improves its profit per sale of electricity by 
35%. At the same time, it offers a reduction of the PAR, demonstrating 
the performance improvement of the proposed RL method.

Fig. 10 presents a coordination loop between the DRA agent and 
the residential agents after learning. It can be observed that the im-
plementation of the RL method in the parameter setting of the price 
generator function enables the DRA agent to utilize the flexibility po-
tential on the residential agent side to improve the aggregate power 
consumption profile in comparison to the results obtained in Fig. 7. A 
remarkable point is the amount of electricity consumption shifted from 

Fig. 8. Power generation cost percentage and PAR curves during coordination 
loop.

the peaks to the valley. This type of behavior is due to the nature of 
the controllable load of the residential agents. In houses with electric 
space heating systems exposed to winter temperatures, the set-point 
profiles have a significant incidence on initial consumption peaks. For 
the control mechanisms, these values are used to determine the ther-
mal preference profiles of residential users. This means that for higher 
set-point periods, the residential agent assumes that a greater need for 
thermal comfort is requested. Therefore, during lower values, these pe-
riods are used to give the residential agent the freedom to control the 
indoor temperature freely. This means that internally, the house must 
be preheated to a higher temperature than the higher set-point so that 
the need for heating is reduced during peak consumption. Because of 
this preheating, a greater increase in consumption during the valley is 
likely to be found to meet thermal comfort needs during the peaks.



Smart Energy 14 (2024) 100139

10

A. Fraija, N. Henao, K. Agbossou et al.

Fig. 9. Analysis of DRA agent performance during the learning process.

Fig. 10. Coordination loop after RL learning process with𝑀 = 75𝑘𝑊 .

Fig. 11. Analysis of average capacity constraint overruns.

In terms of deviation, Fig. 11 The Figure presents the results re-
lated to the difference between the established capacity limit and the 
maximum peak consumption of the users after the execution of their 
consumption plan. For this purpose, the final calculation of the reward 
function is performed after the execution of the consumption plans, i.e., 
the calculation of the reward is made using the consumption profile 
𝑢̂𝑘. Considering those deviations in the plan, the blue curve represents 
the average spread of the differences between the maximum peak con-
sumption during the 24 hours and the capacity limit. In addition, the 
red curve indicates the occurrence of exceeding this limit, measured in 
a number of timesteps encountered in excess of the 𝑀 limit. These re-
sults illustrate that the DRA agent maintains a trend in decreasing the 
average occurrence of exceeding the capacity constraint. In addition, 
the figure also shows that the agent decreases the power difference be-

Fig. 12. Difference between actual aggregate consumption and the consumption 
plan of the agreement under the established price profile.

tween the constraint and the consumption peak throughout the learning 
process. Finally, Fig. 12 presents the profile of the aggregate consump-
tion plan and pricing policy stipulated in the agreement, and the actual 
aggregate consumption of the houses after the 600 episodes. The pro-
posed method demonstrates the effectiveness of the proposed strategy 
in dealing with uncertainty arising from deviations from the consump-
tion plan of residential agents. As it is represented, the DRA even tries 
to accept a slight deviation from the consumption plan of the agreement 
in order to use these deviations to its advantage in the execution. This 
in order to obtain a higher profit from the sale of energy. However, this 
type of behavior could be avoided by adjusting the values of 𝑤1 and 𝑤2
in equation (3).

4.4. Performance comparison

To determine the effectiveness of the selected approach, a perfor-
mance comparison was made for both the proposed price generator 
function and the implemented RL mechanism. First, we compare the 
price function (4) with a standard piece-wise linear function. This new 
function was constructed based on the derivative of our sigmoid func-
tion to ensure an approximate shape between them. Another winter 
day was selected randomly to verify the performance of the proposed 
generator in exploiting the flexibility potential of a set of residential 
customers. Fig. 13 provides a performance comparison within the coor-
dination loop, for 𝑀 = 70𝑘𝑊 . The results illustrate that the proposed 
sigmoid function (1) is able to exploit, in a superior manner, the flexi-
bility potentials of the residential agents, considering the same environ-
mental conditions. This can be noticed by comparing overruns of the 
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Fig. 13. Performance analysis of different price generator functions.

Fig. 14. Comparative performance of our PPO mechanism with A2C and DDPG.

capacity limitation 𝑀 . For instance, in terms of the number of over-
runs, the sigmoid function outperforms the piece-wise linear function 
by achieving 41% fewer overruns at the end of the coordination loop. 
Furthermore, the power consumption over 𝑀 is higher in the piece-
wise linear function by 75%, evidencing the significant differences in 
terms of flexibility exploitation.

Taking into account the performance of the RL algorithm, the se-
lected PPO mechanism was compared with the popular Advantage-
Actor-critic (A2C) and Deep Deterministic Policy Gradient (DDPG) 
methods. Fig. 14 provides the curves of the progression in iterations 
of the average reward, based on function (5). The results demonstrate 
that the selected approach provides better efficiency in dealing with the 
uncertainty of the scenario encountered. According to this Figure, the 
PPO and A2C algorithms are able to obtain better results than DDPG. 
Furthermore, the PPO mechanism converges to a solution that provides 
a reward 38% higher than the A2C method, meaning that by imple-
menting the PPO algorithm, the DRA agent will be able to capitalize 
its effort in terms of higher profits from energy selling and DSO reward 
received.

Finally, to better illustrate the performance of the proposed method, 
a last comparison is performed, taking into account the uncertainty in 
the behavior of residential users. Fig. 15 provides a comparative result 
after the training process during 20 days of the winter season. It is 
possible to verify that the average results are almost the same in terms 
of DRA’s profit from energy sales. However, considering overruns of 
the capacity limit, there exists a significant difference as in the case 
without the uncertainty, the average cumulative daily power over the 
limit is 0.05𝑘𝑊 , but in the case where the deviations are considered, 
the accumulated power is around 4𝑘𝑊 . This can translate to a better 

Fig. 15. Performance analysis related to the consideration of users’ deviations 
from consumption plans.

exploitation of the DSO’s reward and a higher DRA’s profit when this 
uncertainty is not considered.

5. Discussions and future prospects

The optimal generation of pricing policies has been a critical aspect 
in implementing price-based DR programs. Moreover, the consideration 
of existing regulations would be an important issue in the implementa-
tion of these programs. These regulations define limits on price sales 
per energy unit, creating new constraints for the optimization problems 
existing in the literature and affecting the optimality of their solutions. 
Another key aspect is the goal of these DR mechanisms in the residen-
tial sector. Their goal is to exploit their flexibility potential to reduce 
consumption peaks. However, implementing such strategies can result 
in imbalances and losses in the power grid if the system’s real needs are 
not considered [57]. In this regard, some studies have been conducted 
in the literature considering pricing policies where capacity limits are 
established [32], especially in the presence of electric vehicles [60]. 
However, integrating these capacity limitations, taking into account 
other sources of flexibility from the residential sector, needs to be fur-
ther explored. This is an important point as Smart Energy Systems are 
focused on merging the electricity, heating, and transport sectors with 
storage options to foster the adaptability required for accommodating 
significant amounts of fluctuating renewable energy [61]. This clearly 
expresses the need for integrating electric heating systems with new 
flexibility sources like battery electric vehicles in the same capacity-
constrained scenario. Therefore, the aforementioned highlights the im-
portance of developing new strategies, such as the one presented in 
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this paper, to facilitate the future integration of heating systems with 
emerging technologies in residential smart energy systems.

The traditional fixed-rate pricing schemes have been widely imple-
mented around the world. However, the increase in price volatility has 
made the retailers migrate to more dynamic pricing strategies like Time-
of-Use programs. This means that we are at a stage where hourly rates 
are becoming a standard, and therefore, it is expected that the rate time 
resolution will soon drop by 15 minutes, as is the case in Europe. [32]. 
For this reason, it is necessary to develop dynamic pricing mechanisms, 
such as the one presented in this paper, to allow the management and 
optimization of residential consumption in these evolving scenarios. In 
particular, the consideration of the energy consumption of the heating 
sector in this type of scheme facilitates the intended energy transition 
and contributes to limiting the need for new infrastructures, as shown 
in [62].

In this sense, it is important to define strategies that allow users to 
coordinate through these pricing policies. This represents a great ben-
efit for entities such as the DSO, as presented in [29]. In this paper, 
the authors propose a dynamic pricing mechanism that significantly 
reduces consumption peaks. This is achieved through a coordination 
loop in which pricing policies proportional to the aggregate consump-
tion profile are used, allowing users’ privacy to be respected. However, 
price limits are not considered for generating the policies, hindering 
the possibility of their implementation under the existing regulations 
in the energy markets. This can also lead to significant decreases in 
energy sales profits, as shown in [37]. For this reason, the approach 
proposed in this work considered the utilization of a dynamic price 
generator function by a DRA to improve the ideas presented in [29]. 
This function performs a monotonic transformation of the aggregate 
consumption profile, taking into account price constraints and capacity 
limits, allowing the achievement of a reduction in peak consumption in 
a more controllable manner. As a result, the way in which user flexibil-
ity is managed enables the opportunity to offer capacity services to the 
DSO, and highlights the benefits of exploiting the flexibility potentials 
of heating systems for the system.

The performance of this function is compared with a piece-wise lin-
ear function, demonstrating how the proposed sigmoid-based function 
provides better management of the residential flexibility by accomplish-
ing significant results in terms of capacity overruns. However, it is not 
an easy task to determine the correct parameter settings of this func-
tion, as any information from the demand side is known by the DRA. 
Moreover, users can deviate from their stipulated consumption plans 
during run time due to external variables or unexpected events that 
may affect non-controllable load consumption. For this reason, a Deep-
RL mechanism is proposed to handle the uncertainties related to the 
lack of this information. The results evidence that the RL-based DRA 
is able to set the parameters of the proposed price generator function 
properly in order to guarantee the capacity limit and price constraints 
while maximizing its profit for selling energy. This significant achieve-
ment can contribute to the smart energy system transition by reducing 
the electricity demand consciously, which indirectly influences power 
generation. To illustrate, this could mean a reduction of biomass con-
sumption, increasing the feasibility of carrying out energy transition 
strategies such as the one presented in [63].

In order to improve the obtained results, further considerations must 
be taken into account. For instance, the integration of energy storage 
systems may be very beneficial, as these systems can help with the ab-
sorption of energy consumption deviations from the demand side. This 
can allow a better performance of the mechanism proposed in terms of 
players’ profits and increase flexibility opportunities within smart en-
ergy systems. Furthermore, the integration of electric vehicles must be 
prospectively evaluated to analyze the effect of capacity limitations for 
electric vehicle charging on the management of the heating sector. The 
implementation of the proposed DR program, based on dynamic pric-
ing, should be carried out to evaluate the effect on demand response 
under the management of these two different types of loads.

6. Conclusions

In this paper, a price-based DR program is proposed that incor-
porates power capacity and market constraints to coordinate a set of 
residential agents. For this purpose, a price generator function is pro-
posed, considering existing market regulations that limit energy sales 
prices. This function allows translating the maximum desirable capac-
ity into a pricing policy through a coordination loop in a Stackelberg 
game-theoretic framework, obtaining a mechanism that allows exploit-
ing residential flexibility in a more controlled way. The price generator 
function performance is demonstrated through a comparison against a 
linear piece-wise function, evidencing 41% fewer overrun and a power 
consumption over the capacity limit 75% lower at the end of the coor-
dination loop. Furthermore, an RL-based DRA agent utilizes this price 
generator to define pricing policies that maximize its profit in the con-
strained proposed scenario, where the DRA needs to deal with devia-
tions from users’ stipulated consumption plans. The proposed strategy 
was able to exploit residential agents’ flexibility, adjusting the parame-
ters of the price generator function within the coordination loop. More-
over, the proposed approach evidences the viability of exploiting the 
flexibility potentials of electric space heating systems from the residen-
tial sector, in such scenarios where capacity limitations are required 
from the DSO. The simulation results demonstrated that the proposed 
DR strategy improved DRA’s profits by 35% while dealing with residen-
tial agents’ deviations. The comparative study displayed the superiority 
of the proposed price-based DR program and the adopted PPO-based RL 
technique converging to a solution that provides a reward 38% higher 
for the DRA than the well-known A2C and DDPG methods.
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Appendix A. PPO algorithm

Procedure for the implementation of the proposed dynamic pricing 
mechanism based on PPO.
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Algorithm 1: PPO algorithm.
DSO communicates the desirable capacity limit 𝑀 .
The DRA asks residential agents for their stipulated consumption plan 
under a constant price.
DRA determines the initial state 𝑠0 .
for 𝑡 = 0, 1, 2, ... do

Define the action 𝑎𝑡 = {𝜂, 𝛼}. (Transformation of Price function (4)
defined by the aggregator agent)
Each Residential agent solves its own optimization problem 
expressed in (11).
Get the normalized state 𝑠𝑡 . (Aggregated residential agents’ response)
Calculate rewards-to-go 𝑅𝑡 based on (5).
Collect the set of partial trajectories {(𝑠𝑡, 𝑎𝑡, 𝑅𝑡, 𝑠𝑡 + 1)} on policy 
𝜙𝑡 = 𝜙𝜃𝑡 (𝑎𝑡, 𝑠𝑡).
Estimate advantage 𝐴̂𝑡 .
if 𝑡 mod 𝑇 = 0 then

Compute policy update by means of (6):

𝜃𝑡+1 = argmax
𝜃

𝑇∑
𝑗=0

𝐽 (𝜃)

via stochastic gradient ascent with Adam [48].
end

end
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3.3 Multi-aggregator system

3.3.1 Background

With the multi-agent environment set for the interactions between a DRA and a set

of houses and the definition of a price generator function for parameterizing the dynamic

price mechanism, it is now time to evaluate this policy generation from the system point of

view. As was mentioned before, individual solutions from different DRAs do not guarantee

that an optimal good solution will be achieved. This work delves deeper into dynamic

pricing with multiple DRAs based on multi-agent reinforcement learning (MARL), as

each aggregator will continue interacting with their own set of houses.

As one of our goals, this approach ensures customers’ privacy while they generate

optimal responses that minimize their costs and maximize their benefits. However, to make

the DRAs coordinate, it is necessary to implement a fair reward allocation mechanism

from the upper level, according to their contributions to the system’s objective. This is

where Shapley value (SV), a concept from cooperative game theory, comes into play.

Each DRA will receive a reward from the DSO based on its contribution to the global

objective through SV calculation. The integration of SV provides a fair and mathematically

grounded framework for distributing the benefit of cooperating among the DRA agents.

Furthermore, this work also demonstrates that the assessment of rewards based on

their marginal impact on the overall system expedites the performance of the MARL

architecture, improving the agents’ understanding of the impact of their actions on the

environment [67].
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3.3.2 Methodology

To evaluate the mechanism, building the MARL environment considering the

multi-aggregator system is necessary. Based on the previous development of this thesis,

a set of DRAs is established, each one interacting with a set of houses with different

cardinality. Furthermore, each customer will have their comfort preferences, affecting their

response to the transactive signals generated by the DRA. As a result, each aggregator must

learn their strategies in a decentralize-training-decentralize-execution (DTDE) MARL

architecture [68].

Each DRA agent will use the price generator function to offer discounts to incentivize

customers to modify their consumption patterns. At the beginning of the day, a

coordination loop is performed between each DRA and its set of customers until an

agreement is reached. The results of this interaction will establish the dynamic price

tariff and the consumption plan for the customers during the following 24 hours. At the

end of the day, the DSO will determine the marginal contribution in accomplishing the

global objective of the system to each DRA, and based on this, the aggregators’ rewards

are defined. Figure 3.2, provides a representation of the interaction between the different

system players.

The simulation is performed considering the environmental condition of a winter

day in Quebec. The decision-making process for each aggregator will be defined by

implementing the Independent PPO (IPPO) MARL mechanism. Then, a performance

analysis is conducted by applying the IPPO method with and without the SV-based

reward-sharing mechanism.
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Figure 3.2 Multi-agent system interaction.

3.3.3 Outcomes

This work proposes a cooperative price-based demand response mechanism for a

multi-aggregator system based on MARL and an SV-based reward-sharing mechanism.

As the DRAs establish dynamic pricing discounts in an iterative process, the customers

can adapt their consumption profiles to gain advantages of these discounts. This strategy

creates a win-win approach, as the residential users can exploit the flexibility of their

controllable loads to reduce their bills, while the DRAs can offer this flexibility to the

DSO to reduce the system’s aggregated peak demand. By means of the MARL strategy,
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the DRAs make a trade-off between reducing their profit by offering discounts to the

houses for exploiting their flexibility potential and the reward that the DSO offers them

for the effort made. The results presented demonstrate a significant PAR reduction in

the total power demand. Furthermore, the importance of implementing the SV-based

reward-sharing mechanism is shown in terms of improving the solution optimization and

reducing the IPPO convergence time. This is because the use of the calculation of the

marginal contribution of each aggregator agent helps to deal with the major problem of

MARL techniques, which is the non-stationarity of the environment.
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Abstract

Demand response (DR) plays an essential role in power system management.
To facilitate the implementation of these techniques, many aggregators have
appeared in response as new mediating entities in the electricity market.
These actors exploit the technologies to engage customers in DR programs,
offering grid services like load scheduling. However, the growing number of
aggregators has become a new challenge, making it difficult for utilities to
manage the load scheduling problem. This paper presents a multi-agent re-
inforcement Learning (MARL) approach to a price-based DR program for
multiple aggregators. A dynamic pricing scheme based on discounts is pro-
posed to encourage residential customers to change their consumption pat-
terns. This strategy is based on a cooperative framework for a set of DR
Aggregators (DRAs). The DRAs take advantage of a reward offered by a
Distribution System Operator (DSO) for performing a peak-shaving over the
total system aggregated demand. Furthermore, a Shapley-Value-based re-
ward sharing mechanism is implemented to fairly determine the individual
contribution and calculate the individual reward for each DRA. Simulation
results verify the merits of the proposed model for a multi-aggregator sys-
tem, improving DRAs’ pricing strategies considering the overall objectives
of the system. Consumption peaks were managed by reducing the Peak-to-
Average Ratio (PAR) by 15%, and the MARL mechanism’s performance was
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improved in terms of reward function maximization and convergence time,
the latter being reduced by 29%.

Keywords: Demand response, demand response aggregator, dynamic
pricing, multi-agent reinforcement learning, Shapley-value.

1. Introduction

The ever-growing demand for electricity and rapid electrification across
economic sectors (leading to an increase in daily and seasonal energy peaks),
combined with the problem of limited energy resources, awakens the impor-
tance of optimizing energy consumption. The immediate problem lies in tra-
ditional centralized approaches, which need to be enhanced to improve their
ability to optimize energy demand and exploit the flexibility potentials of
energy consumers. These centralized perspectives fall short of capturing the
intricate dynamics of the complex and diverse power grid ecosystem and man-
aging the evolving complexity of grid flexibility [1]. Consequently, the smart
grid paradigm emerges, bringing with it the opportunity to facilitate the im-
plementation of demand response (DR) programs, which are considered a
viable option for managing energy demand by providing energy consumers
a more active role [2]. These programs look for efficient solutions for mini-
mizing generation costs, managing high demand peaks, reducing emissions,
and improving the reliability of generation, transmission, and distribution
systems [3]. They offer monetary incentives to induce changes in users’ con-
sumption patterns. The financial stimuli provide participants payments for
reducing their consumption during periods of high demand or using time-
varying price profiles to incentivize consumers to move their consumption to
low-demand periods where lower prices are established [4].

In this context, a third-party entity is proposed called DR aggregator
(DRA), which seeks to exploit the capacities of residential customers by im-
plementing DR programs [5]. According to the literature, the role of DRAs is
to group different agents in a power system to act as a single entity when par-
ticipating in power system markets or selling services to the system operator.
The management of users’ flexibility potentials enables DRAs to participate
on their behalf in the electricity market, where DRAs can identify flexi-
bility potentials, automate their activation, and sell flexibility in electricity
markets. Finally, DRAs can provide solutions to stabilize the revenues of

2



Nomenclature

Acronyms

DR Demand Response

DRA Demand Response Aggregator

DSO Distribution System Operator

EHS Electric Heating System

IPPO Independent Proximal Policy Optimiza-
tion

MARL Multi-Agent Reinforcement Learning

MG Markov Game

PAR Peak-to-Average Ratio

RL Reinforcement Learning

SV Shapley Value

Functions

λ(·) DSO reward in terms of PAR reduction

Ât Advantage at episode t

Λ(·) DRA welfare function

πk(·) Price generator function

φn(·) Marginal contribution based on SV cal-
culation

f(·) Thermal model

PAR(·) Peak-to-average ratio function

Rn,t Reward function at episode t for nth

DRA

U(·) Thermal comfort function

v(·) Characteristic function for coalition val-
uation

Z(·) Objective function for IPPO algorithm

Indices

j House index

k Time-step index

n DRA index

t Iteration index

Parameters

α Rate of price change

λmax Maximum reward from DSO

π0 Initial constant price

πmin Lower price limit

M Power value on inflexion point

Variables

Y t System aggregated consumption at
episode t

yn,t Aggregated consumption at episode t
for nth DRA

δjk Thermal discomfort factor of jth house

πn
k Price tariff defined by nth DRA at time-

step k

an,t Action at episode t for nth DRA

C Coalition of DRAs

on,t Individual observation at episode t for
nth DRA

sn,t State at episode t for nth DRA based on
system state and individual observation

St System state at episode t

uj
k Energy consumption reported of jth

house at time-step k

xj
k Indoor temperature of jth house at

time-step k

xout
k Outdoor temperature at time-step k

xj
sp Set-point temperature profile of jth

house

yk Aggregated energy consumption time-
step k

market participants and bundle various services in the energy markets [6].
This, however, implies the need to determine monetary policies to maximize
the DRAs’ profit while offering a benefit to the users, leading the way to a
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new challenge [7]. For this reason, the policy generation problem has been
addressed in the literature for different types of DR programs, from incentive-
based to price-based [8]. Although the proposed approaches have made it
possible to identify strategies for generating DRA’s policies, as the number
of aggregators increases, the challenge grows for utility companies to achieve
load scheduling and produce reference signals for each of them [9].

In price-based DR programs, dynamic pricing has become one of the most
influential and prominent strategies to encourage consumers to modify their
consumption. However, defining an optimal policy to influence customers
conveniently becomes challenging due to some uncertainties of load manage-
ment. These uncertainties are related to the energy demand for each user,
changing peak periods, and changes in the number of users and their prefer-
ences [10], [11]. From the DRA perspective, there is also a need to propose
policies guaranteeing aspects such as respect for user privacy throughout the
strategy generation process [12]. This translates into increased uncertainty
due to the significant lack of information in the decision-making process.
As a result, reinforcement learning (RL) approaches have proven to be a
valuable solution for dealing with the inherent uncertainties in different ap-
plications in DR context [13]. Nevertheless, when solving the price policy
generation problem for a single DRA, it is not possible to guarantee that the
individual solutions will lead to the best solution for the system. And, on the
other hand, successfully implementing dynamic pricing with multiple DRAs
requires a comprehensive evaluation and allocation of rewards among partici-
pating agents. This is where Shapley value (SV), a concept from cooperative
game theory, comes into play [14].

SV is a classical mechanism from cooperative game theory, enabling the
division of the total payoff so that each player receives a fair payment [15].
This method evaluates the marginal contribution of each player to the sys-
tem and defines a uniquely equitable assignment of rewards, performing as
a metric to measure the individual effort of each player [16]. As the main
issue of the MARL mechanisms is that the actions performed by all agents
influence the state transition, their interactions create a non-stationary envi-
ronment from a single agent’s view [17]. The proposed strategy demonstrates
that combining SV to determine the DRAs’ individual contribution alleviates
the non-stationarity problem in the MARL-based multi-aggregator system,
improving the obtained results during the training phase.
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1.1. Related works
The definition of optimal dynamic pricing mechanism in DR programs

is a relevant research topic that has been studied, and some solutions have
been proposed. Its goal is to encourage users to change their consumption
patterns to avoid generators’ costly operation [18]. However, the definition
of optimal price policies is a difficult task due to a lack of information on user
preferences, price-responsive behavior linked to consumer flexibility, and the
constantly changing energy load and energy generation of customers [19].

To address this problem, some authors have explored mechanisms to op-
timize the dynamic price policy generation decision-making process. For in-
stance, the works done in [20] propose an optimization problem considering
the stochasticity of renewable energy resources. In fact, the implementa-
tion of strategies where the objective function of each player is embedded in
one optimization problem is one of the approaches followed in the literature
[21, 22]. The problem with these approaches relies on affecting customers’
privacy, negatively impacting user interest in participating in the DR pro-
gram. To avoid this, authors have considered implementing game theoretical
frameworks, in which the mechanisms seek to leverage their iterative process
to reach an agreement and generate a price policy [23, 24, 25]. The prob-
lem is that the convergence process depends on the information customers
provide. Therefore, this approach allows customers to cheat on the system
to gain advantages, resulting in new challenges linked to the need to deter-
mine customers’ trustworthy levels [26]. Considering these limitations, RL
approaches have emerged as a valuable option to deal with problems related
to the optimal price policy generation process. For instance, in [27], a Q-
learning method was adopted to decide the retail electricity price, considering
service provider and customers profit, without requiring the full knowledge
of the system dynamics and uncertainties. In [28], a deep Q network strat-
egy was followed to build a dynamic subsidy price generation framework for
a load aggregator avoiding the significant dependence on incorporating user
feedback in its control loop.

System operators may be unable to take on the additional effort of de-
veloping personalized price profiles for residents while determining their con-
sumption patterns and preferences. This is due to the transaction costs
and operational complexity that the system operator would otherwise have
to bear when interacting with numerous individual buildings [29]. This is
where DRA effectively facilitates customer participation by working in a
more customer-oriented manner [30]. Particularly, multi-aggregator systems
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have only been addressed in a few works by implementing multi-agent sys-
tems. Authors in [9] implemented a hierarchical alternating direction method
of multipliers (H-ADMM) to determine load following signals for multiple
aggregators. In this mechanism, they assume aggregators have direct load
control for individual devices, affecting customers’ privacy and comfort. In
[31], a bargaining-based cooperative game is proposed to solve irreconcilable
incentive pricing strategies for multi-aggregators, where, again, the results
depend on the excessive reliance on the users.

Considering RL approaches for determining dynamic pricing rates and
multi-agent systems for multi-aggregator structures makes the MARL con-
cept come into play. MARL has been gaining popularity in different smart
grid scenarios, as it is presented in [32], due to its ability to deal with the
inherent uncertainties of DR programs. These uncertainties can affect con-
ventional approaches’ performance, making them unsuitable for real-world
implementations. In [33], active voltage control is proposed, based on Dec-
POMDP, to enable real-world applications of MARL algorithms in power
systems. Authors in [34] implemented a MARL approach to controlling a
complex system of production resources, battery storage, electricity self-
supply, and short-term market trading. In [35], authors demonstrate the
value of MARL mechanism, which can quickly optimize thermostatically
controlled loads performance by applying collaborative multi-agent decision-
making processes. In [36], an incentive-based DR program is considered
based on MARL, which looks to maintain the capacity limits of the grid to
prevent grid congestion by financially incentivizing residential consumers to
reduce their energy consumption. In pricing strategies, authors in [37] de-
veloped a real-time pricing mechanism based on MARL where an RL-based
grid agent defines a buy price to a set of RL-based prosumer agents. How-
ever, these previous approaches have not considered fairness in the reward
allocation process for each RL-based agent. Proposing MARL as a pricing
approach for multi-aggregator systems makes determining a fair incentive
allocation strategy necessary. In [38], authors demonstrated that combin-
ing the DR programs with SV helps retailers assure profitability and also
enhances user participation. Authors in [39, 40] utilize SV to fairly divide
the profit among microgrids and houses according to their efforts. These
significant achievements presented in the literature highlight the potential
of exploring the implementation of SV in a MARL-based multi-aggregator
context for optimizing the exploitation of end-users flexibility.
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1.2. Motivation and contributions

Table 1: Comparison of state-of-the-art works.

Ref DR Mechanism Solution
Method

Multiple
aggrega-
tors

Price policy
optimiza-
tion

Reward
sharing
mechanism

[18] Dynamic pricing Price responsive
modeling

✗ ✓ ✗

[19] Dynamic pricing Bi-level, meta-
heuristic

✗ ✓ ✗

[20] Real-time pricing Stochastic opti-
mization

✗ ✓ ✗

[21] Dynamic pricing Multi-objective
optimization

✗ ✓ ✗

[22] Time-of-Use Multi-objective
optimization

✗ ✓ ✗

[23] Dynamic pricing Game-theoretic
model

✗ ✓ ✗

[24, 25] Time-of-Use Game-theoretic
model

✗ ✓ ✗

[27, 28] Dynamic pricing RL ✗ ✓ ✗

[9] Load following
signals

H-ADMM ✓ ✗ ✗

[28] Diverse compen-
sation price

Game-theoretic
model

✓ ✓ ✗

[36] Incentive-based MARL ✗ ✗ ✗

[37] Dynamic pricing MARL ✗ ✓ ✗

Proposed
work

Dynamic pricing MARL ✓ ✓ ✓

This article delves deeper into dynamic pricing with multiple DRAs,
where each DRA will determine price signals offering discounts based on
customer responses in a cooperative game framework. The proposed mecha-
nism incorporates a decentralized decision-making process, where each DRA
aims to use its individual aggregated consumption profile as the only source
of information to optimize the price policy generation process. However, for
this purpose, it is necessary to face the uncertainties that appear in such
a complex environment with incomplete information. Therefore, the imple-
mentation of an RL-based approach is proposed, that allows dealing with this
type of scenario, in order to set the parameters of a dynamic price generator
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function. This enables the optimization of the tariff generation process, ac-
cording to a global target set by the DSO. Accordingly, a mechanism based on
MARL and SV-based reward-sharing mechanisms is described. The proposed
cooperative MARL architecture harnesses the principles of game theory and
RL to enable autonomous agents to learn and adapt to their environment.
This approach ensures customers’ privacy throughout the process of gener-
ating their optimal responses that minimize their costs and maximize their
benefits. Each DRA will receive a reward from the Distribution System Op-
erator (DSO) based on its individual contribution to peak shaving through
the SV calculation. Integrating SV will provide a fair framework for dis-
tributing the benefits of cooperation among agents by assigning rewards to
each agent’s contribution and evaluating their marginal impact on the over-
all system. For brevity of the presentation, Table 1 compares the differences
between the existing methods and the proposed model. Accordingly, this
work contributes,

1. A cooperative price-based DR program for a set of DRA agents that
cooperate to achieve better results in line with the DSO’s objectives
regarding peak shaving.

2. A cooperative MARL architecture to determine dynamic pricing strate-
gies over the course of a coordination loop. The resulting price policies
maximize the individual DRA’s profit while providing gains to users.

3. A mechanism to fairly distribute the total gain of RL-based DRA agents
through an SV-based reward-sharing mechanism. The calculation of
its marginal contribution also speeds up the convergence process of the
MARL algorithm.

The rest of the paper is organized as follows: Section II summarizes
the methodology for the developed MARL framework. The case study is
discussed in Section III, followed by the conclusion in Section IV.

2. DR mechanism and problem formulation

DSOs are expected to explore the distribution-level flexibility potential
for tackling grid problems, making reducing the system’s peak power one of
its goals. For this reason, the DSO interacts with a group of DRA agents
who will manage the flexibility of different groups of houses. As presented
in Figure 1, the DSO rewards each DRA for contributing to the peak shav-
ing objective in a day-ahead scheme. In response, the DRA stipulates price
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Figure 1: Automatic DR sequence for the multi-aggregator system.

policies through a coordination loop, where the DRA acts as a leader of the
group of residential agents that respond with a consumption plan until an
agreement is reached. The dynamic price policies based on discounts induce
customers to modify their consumption patterns, while the DRA performs
a trade-off between the profit of selling energy to residential customers and
the DSO’s monetary incentive for peak shaving. The coordination loop is
performed at the beginning of the day, and once the agreement is reached,
the price profile is established, and residential customers are committed to
following their consumption plans during the day according to the contract
defined with the DRA. At the end of the day, DSO verifies the improvement
of the consumption demand and the contribution of each DRA by means of
the SV-based reward-sharing mechanism to determine their rewards. Figure
2, provides a representation of the interaction between the different actors
of the proposed scenario. As seen in Figures 1 and 2, the only information
that each DRA uses to define the pricing policy is the consumption profile
reported by each customer. This guarantees respect for users’ privacy but
generates a high complexity in the policy optimization process due to the
lack of information. It is for this reason that a MARL approach is proposed
below. Finally, Even though there is no information exchange between the
different DRAs, there exists an interdependence between them, as the action
performed by each aggregator significantly impacts the performance or be-
havior of others, due to their individual contributions to the collective goal,
ending in the need to cooperate [41].

9



DRA 1 DRA N

Price Policy

Aggregated 
Demand response

⋯

DSO

Reward 
Sharing

Price Policy

⋯ ⋯

Aggregated 
Demand response

Demand responseDemand response

Figure 2: Interaction between market participants in the DR program.

2.1. DRA Agents

From the upper level, the DRAs communicate their aggregated consump-
tion plans to the DSO before implementing a dynamic pricing mechanism,
i.e., with a constant price π0. It is assumed that all players communicate
truthful information in this first interaction since the analysis of the effect
of perverse players is out of the scope of this work. With this information,
the DSO establishes a reward λ for the DRAs that depends on the peak
shaving of the load profile. For this, the DSO utilizes the peak-to-average
ratio (PAR), which is used to measure the effectiveness of the demand-side
management algorithms [42]. The DSO considers the overall PAR ratio as a
mechanism to determine the reduction of the overall peak demand. Dividing
a one-day period in K timestamps, the calculation of this ratio is performed
over the total aggregated load demand Y = {Y1, ..., YK}, as follows:

PAR(Y ) =
maxk{Y }
1
K

∑K
k=1 Yk

(1)

At the bottom level, each DRA interacts with its group of residential
agents as retailers in a Stackelberg game. As a leader, each DRA seeks to
optimize its profits that depend on its individual income from selling the
energy to the set of customers. However, in order to gain the advantage of
the reward offered by the DSO, the DRA defines discounts during the day
to incentivize users to change their consumption patterns. The utilization
of these discounts will guarantee a reduction of the customers’ bills, with
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respect to their normal consumption when an initial constant price π0 is
established. In this way, each DRA benefits from the coordination loop,
using the aggregated consumption plan of the houses y = {y1, ..., yK} as the
only source of information as a privacy-preserving approach. To ensure the
generation of price profiles considering the upper limit as the constant price
π0 and the lower limit linked to the least price value to be offered by each
DRA, the aggregator applies a monotonic transformation of y based on the
logistic function to determine π = {π1, ..., πK} as follows:

πk(yk) = πmin +
π0 − πmin

1 + exp

(−yk +M

α

) (2)

Where πmin is the minimum price that each DRA is willing to offer to its
customers, α is a parameter to control the price rate of change, and M is
the power value where the inflection point of the function is set. According
to [43], this function provides a better approach for exploiting the flexibility
potentials from the residential sector in a more controllable way, when it is
utilized in a coordination loop with a regularization of the residential agents’
response. Translating the M value as the target for maximum power con-
sumption of the daily profile. The monotonic transformation will allow as
well the parameterization of the pricing policy to reduce the complexity of
calculation in its generation, ensuring the generation of higher price values
when consumption is higher and lower price values during lower consumption
periods. Once the new price profile is generated, it is communicated to the
customers, which will replay with a new plan until an agreement is reached.
Therefore, the benefit of each DRA can be explained by the trade-off between
the profit from selling the energy to its customers and the reward received
from the DSO from contributing to the peak shaving objective,

argmax
π

Λ(π) = ω1λ[PAR(Y )] + ω2

K∑

k=1

πkyk (3)

Where ω1 and ω2 are weighting factors to balance these two terms, and
λ(·) is the DSO’s function to calculate the reward in terms of PAR. As the
proposed approach does not consider a convex PAR-related metric, this ob-
jective function cannot be treated with the classical gradient-based optimiza-
tion approaches, as the PAR function itself of the total aggregated system
consumption is not convex. Moreover, as the reward λ depends on the ag-
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gregated performance of the DRAs, it is necessary to determine a fairness
strategy to determine the reward for each aggregator in terms of its marginal
contribution. Consequently, the MARL architecture is implemented to deal
with the intractability of the DRAs’ objective function for optimizing the
dynamic pricing decision-making process. Furthermore, an SV calculation
is implemented to determine the marginal contribution of each DRA in the
proposed scenario.

2.2. Cooperative MARL method for multi-aggregator system

Overview of MARL. RL algorithms are machine learning techniques based
on a trial-and-error process for sequential decision-making problems. In a
single-agent RL mechanism, an agent interacts with an unknown environment
by executing actions to extract useful information, and the environment re-
sponds with an immediate reward to evaluate the selected action. The agent
aims to maximize its reward by realizing a trade-off between exploring new
actions and exploiting those who seem optimal. Moving to MARL, new re-
lationships appear between agents in the same environment that compete or
cooperate between them to maximize their rewards, as presented in Figure
3. As a result, agents’ rewards are influenced by states and actions per-
formed by the other RL agents. Mathematically speaking, in single-agent
RL approaches, the interactions between the environment and the agent are
modeled by a Markov Decision Process (MDP). In the case of MARL, these
interactions are based on a Markov game (MG), a combination of MDP and
game theory [44].

Markov Game formulation. The proposed scenario considers a multi-agent
system composed of RL-based DRAs, each interacting with their own resi-
dential customer group. To explore the generation of dynamic pricing strate-
gies, the interactions between the residential agents and the RL agents are
modeled by a finite MG. Therefore, the components required are: N agents
corresponding to N DRAs. A shared state set S and the collection of agents’
private observation sets {O1,...,N}. The action sets {A1,...,N} and individual
reward sets {R1,...,N}. And a set of state transition functions {P1,...,N}.
Considering the state 0 of the system as the aggregation of the users’ con-
sumption plan when all the DRAs establish a constant price. The proposed
scenario defines an episode for the MARL mechanism as the coordination
loop between DRAs and residential agents, where each step comprises the
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Figure 3: Multi-agent interaction with the same environment.

definition of a price signal from the DRAs with its associated DR. The MG
components are stated as follows:

1. System state and MG observations : The system state St is described
by the aggregated power consumption profile of the system Y normal-
ized concerning the maximum power consumption maxk Y

0 presented
in the consumption plan of the user when initial constant prices are
established. Similarly, the individual private observation for agent n is
defined as on,t, described by the aggregated power consumption profile
of its customers yn normalized to the maximum initial power consump-
tion maxk y

n,0.

2. MG Actions : For each agent n the action an,t = {M,α, πmin} modifies
its price generator function presented in Eq. (2), where M values can
go from the initial aggregated average consumption 1

K

∑K
k=1 y

0
k to the

maximum consumption maxk{y0}.
3. Reward functions : Finally the reward function for the n agent is Rn,t.

To avoid an improper calculation of rewards for each DRA, it is necessary
to utilize a fair strategy to calculate the individual contribution of each DRA
on the system peak shaving. This strategy will modify the reward functions
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of the MG, improving the agents’ understanding of the impact of their actions
on the environment [45]. The explanation of the fair strategy based on SV
and the final agents’ reward function is explained below.

Shapley-Value based reward sharing mechanism. The DSO seeks to determine
rewards fairly for the DRAs, according to the objective established by him,
and the marginal contribution of each DRA. For this purpose, a total reward
function is defined to determine the total reward that DSO will distribute
between DRAs. This reward function is inversely proportional to the PAR
of the system aggregated load profile. The utilized function λ(·) is based on
the same proposed by [40], as follows:

λ[PAR(Y )] =
1

1 + ec1(PAR(Y )−c2)
λmax (4)

c1 and c2 are function parameters defined by the DSO to adjust the reward
function shape, and λmax is the maximum reward for PAR reduction. All of
them are determined during the negotiation between the DSO and the system
operator. The reward λmax is based on a proportion of the operational and
generation cost reduction.

By creating a grand coalition, the DRAs collaborate looking for maxi-
mizing individual and system objectives. As the contribution of each player
might be different, it is necessary to measure each DRA’s contribution to the
peak shaving achievement for determining the allocation of the total payoff.
Whit N DRAs and a function v that maps subsets of DRAs to the real num-
bers. The amount that a DRA n receives in the given coalitional (v,C) game
is,

φn(v) =
∑

C⊆C\{n}

|C|!(N − |C| − 1)!

N !
(v(C ∪ n)− v(C)) (5)

where C represents the set of all possible coalitions, C is a subset of
C, | · | determines the cardinality of the given set, and v(C) represents the
valuation for the coalition C. The sums is done over all coalition subsets
not containing the DRA n. The contribution of each DRA n is calculated
for all C based on the expression v(C ∪ n) − v(C), and then the average of
these contributions is calculated to determine the fair allocation of its reward.
Finally, the characteristic function is designed as:
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v(C) =
||yC,0 − yC,t||22
||Y 0 − Y t||22

(6)

yC,0 represents the aggregated profile for the coalition C in state 0, i.e,
for the constant price, and yC,t is the aggregated profile after the implemen-
tation of the dynamic pricing mechanism. Likewise, Y 0 and Y t present the
aggregated profiles of the system.

Independent Proximal policy optimization (IPPO) method. As the customers
are different for each DRA, the actions needed during each coordination pro-
cess are different. It means that each RL-based DRA must learn its own best
strategies independently. For this purpose, an Independent Proximal Policy
Optimization (IPPO) technique is proposed. According to [46], empirical
studies have shown that IPPO can offer excellent performances, close to or
even better than the MARL techniques based on centralized training with
decentralized execution, in several benchmarks. This algorithm is a cooper-
ative MARL strategy where each RL agent learns independently using PPO.
PPO is a practical and effective policy gradient algorithm derived from Trust
Region Policy Optimization (TRPO), that replaces a trust region constraint
with a simpler clip trick. The algorithm uses a parameter θ to optimize a
policy ϕθ(a

t, ot). In RL theory, this policy describes the agent’s behavior
in deciding the action that must be performed in a given state. Using the
clip trick, this technique stabilizes the training process by avoiding high pol-
icy alterations during the parameter updating process. This trick attempts
to keep old and new policies closer, resulting in reward enhancement and
stability [47]. The parameter updating of θ is achieved by maximizing the
objective function,

Z(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)] (7)

where Êt is the expectation over episode t, rt(θ) presents the probability
ratio between the new and old policies in terms of ϕθ(a

t, st)/ϕθold(a
t, st). ϵ is

the hyperparameter for clipping to avoid large deviations in the θ updating
process. And Ât is the advantage estimation to measure the performance of
the selected action given the current state, using the RL value function V (st),
the discount factor γ and the batch size T , and is calculated as follows:

Ât = −V (st) + γRt + · · ·+ γT−t+1RT−1 + γT−tV (sT ) (8)
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st and Rt are the state and the reward on episode t for each RL agent,
respectively. Being the system state St the only shared information between
the DRA agents, for the proposed scenario, the state sn,t for the DRA n will
be established as the Cartesian product St × on,t between the system state
and its individual observation, i.e., sn,t = {St, on,t}. Furthermore, combining
the equations (3) and (5), the individual reward at state st for agent n can
be finally stated as follows:

Rn,t = ω1φ
n,t(v)λ[PAR(Y t)] + ω2

N∑

k=1

πn
k (a

n,t)yn,tk (9)

The Algorithm 1 represents the utilized IPPO technique.

2.3. Automated DR for residential agents

For the case of the residential agent, it is assumed that each of them
is equipped with a home energy management system (HEMS). The HEMS
deals with controllable and non-controllable loads to modify the consump-
tion plan by scheduling the consumption of the flexible ones. In this case,
the controllable load refers to electric heating systems (EHS) controlled by
smart thermostats, and the non-controllable loads are the other household
appliances. Based on end-users comfort, the HEMS can modify the heating
consumption to provide the flexibility required for residential agents to gain
an advantage from the discounts offered by the dynamic pricing mechanism.
Subsequently, the individual welfare maximization for each user j, can be
expressed by,

Maximize
uj={uj

k}Kk=1

K∑

k=1

(U(uj
h,k)− πn

ku
j
k)

subject to xj
k+1 = f(xj

k, x
out
k , uj

h,k,w
j)

xj
k ∈ [xj

min, x
j
max]

uj
k ∈ [0, uj

max]

uj
k = uj

h,k + uj
fix,k

(10)

where the vector uj = {uj
1, · · · , uj

K} represents the consumption plan of
the jth house, considering the aggregation of thermal and fixed loads, uj

k =
uj
h,k + uj

fix,k. As the residential agent interacts with the DRA n, πn
k is the

dynamic tariff this aggregator defines at timestamp k. The parameters xj
min
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Algorithm 1: IPPO algorithm

For each DRA agent n:
DRA asks residential agents for their stipulated consumption plan
under the initial constant price π0, and defines on,0.
DRA communicates the aggregated plan to the DSO, which returns
the system aggregated profile state S0 for defining the initial state
sn,0 = {S0} × {on,0}
for t = 0, 1, 2, ... do

Define the action an,t = {Mn, αn}. (Price function
transformation defined by DRA n).
Calculate the pricing profiles based on (2) using an,t and send
them to the residential agents.
Residential agents solve their optimization problems according to
(13)
DRA communicates to the DSO its aggregated consumption plan
and defines its individual observation on,t.
DSO calculates its individual contribution φn,t(v) with
Shapley-Value, based on equations (5) and (6).
DSO communicates the reward calculated based on (4), and the
system aggregated profile St.
Get the normalized state sn,t{St} × {on,t}. (cartesian product
between the system state and its individual observation).
Calculate rewards Rn,t.
Collect the set of partial trajectories {(sn,t, an,t, Rn,t, sn,t+1)} on
policy ϕn,t = ϕθn,t(an,t, sn,t).
Estimate advantage Ân,t.
if t mod T = 0 then

Compute policy update

θn,t+1 = argmax
θ

T∑

j=0

Z(θ)

via stochastic gradient ascent with Adam [48].
end

end
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and xj
max are the lower and upper bounds for the allowed internal temper-

ature according to users thermal preferences, respectively, and uj
max is the

maximum heating system capacity in time slot k. f(·) is a linear model for
describing the dynamic thermal response of the house. This model depends
on the indoor temperature xj

k, the outdoor temperature xout
k , the heating

power consumption uj
h,k and the matrix coefficients wi. According to [49, 50]

this model can be expressed as:

xj
k+1 = f(xj

k, x
out
k , uj

h,k,w
j) (11)

= wj
1x

j
k + wj

2x
out
k + wj

3u
j
h,k.

The first term in equation 10 refers to the customer’s utility function; the
second term is the customer’s cost expressed by the bill to pay. The utility
function U(uj

k) models the thermal user’s thermal comfort and is determined
by the set-point temperature xj

sp and δjk, the comfort weight factor represent-

ing the user’s elasticity. δjk explains how much users are willing to sacrifice
their comfort to reduce the bill. According to [51], the residential thermal
comfort function can be modeled through,

U(uj
h,k) = −δjk(x

j
sp − xj

k)
2, (12)

The residential agents receive the price policy from the DRA simultane-
ously and selfishly solve their optimization problems. In order to make them
coordinate through the coordination loop, it is necessary to regularize their
decision-making process. The proposed regularization strategy is based on
proximal decomposition as a distributed algorithm [52]. For this, a regular-
ization parameter, τ , is utilized to penalize differences between consecutive
defined consumption plans through the coordination loop, i.e., penalize signif-
icant variations between episodes t and t−1 [53]. Thus, the dual optimization
problem residential agents’ cost function can be defined by (13).
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Minimize
uj={uj

k}Kk=1

K∑

k=1

δjk(x
j
sp − xj

k)
2 + πn

ku
j
k + τ(uj,t

k − uj,t−1
k )2

subject to xj
k+1 = f(xj

k, x
out
k , uj

h,k,w
j)

xj
k ∈ [xj

min, x
j
max]

uj
k ∈ [0, uj

max]

uj
k = uj

h,k + uj
fix,k

(13)

3. Results and Discussion

This section provides the simulation results of the proposed MARL-based
DR mechanism. First, a validation of the residential consumption behavior
model is carried out. Then, the training process results are examined through
the learning process of the best parameters selection for the price function
during the coordination loop and the results in peak-shaving of the IPPO-
based RL technique combined with the SV-based reward-sharing mechanism.
Finally, the importance of the SV is presented, and how it improves the
performance of the proposed MARL technique.

Residential agents behavior. The system environment for validating the pro-
posed technique comprises 11 residential agents. We collected data from
11 single-family detached houses in Trois-Rivieres, Quebec, Canada, during
a winter period (from January to April 2018), with a 15-minute sampling
interval. The houses are equipped with electrical baseboards and control-
lable thermostats for temperature control. Using the real-world data, we
constructed the thermal models for all the residential agents, considering the
recorded indoor temperatures, the electrical heating power consumption, and
the outdoor temperature. And a ridge regression mechanism was applied to
determine the matrix coefficients wj needed in equation (11). Furthermore,
statistical information from a previous study conducted in [54] is utilized to
randomly generate the set-point values xj

sp from the set {20, 21, 22, 23} in

degree Celsius [C]. The different levels of users’ thermal elasticity δjk for the
utility functions can be extracted from a log-normal distribution with the
expectation, E(δmax) = 5, and variance, V ar(δmax) = 1. Finally, with the
historical power consumption of energy-extensive appliances other than elec-
tric boards, an aggregate load profile of non-controllable loads is generated
and added to the simulated heating consumption.
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Figure 4: Aggregate energy demand when exposed to a winter outdoor temperature
profile.

Figure 4 shows the aggregated consumption behavior of the residential
users exposed to a temperature profile of a winter day. The behavior shown
in the Figure demonstrates that the developed residential models follow the
expected power consumption pattern of Quebec’s residential sector. It is
important to note that each residential agent performs a model predictive
control to perform actions such as preheating the house to avoid high-price
regions, respecting comfort needs, and set-point temperature changes.

MARL for optimizing DRA dynamic pricing strategy. The MARL environ-
ment is developed using the OpenAI Gym API. The 11 developed residential
agents are distributed between three DRAs in this environment. One DRA
with three customers and the other two with four. The price limits at the
aggregator level are π0 = 15¢/kWh and πmin can be established by the DRAs
within the interval [5, 15] in ¢/kWh. These values will be used to build the
price generator function. At the DSO level, the reward function (4) will uti-
lize the parameters c1 = 20 and c2 = 1.42. These parameters come from the
PAR-based form of the function proposed by [40]. Finally, as it is important
to balance the terms of each DRA’s reward function (9) and it is not an
easy task to determine the grid cost reduction for a peak shaving achieved,
λmax = 1 representing the 100% of a given reward, and ω1 = 1 as well. On
the other hand, for each DRA n, ω2 =

∑N
k=1 π

n
k (a

n,0)yn,0k to normalize the
second term of the rewards function with respect to the initial DRA revenue
with the constant price π0. These values are fixed for all iterations in this
case study.
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The proposed MARL approach starts with a learning process during 1000
episodes. Each episode comprises a coordination loop that stops after a max-
imum of 10 iterations between each aggregator and its customers or when
the changes in consumption plans from one iteration to another are less than
10%. Figure 5 provides the IPPO algorithm’s performance during train-
ing, presenting the aggregate reward of the different RL agents. The DRAs
initially select poor actions for the parameter setting of the price function
through the coordination loop. By exploiting the experience they gradually
gain, the DRAs finally start improving their decision-making process, achiev-
ing higher rewards and cooperating better to decrease the PAR for the system
aggregated load profile. After 500 episodes, the algorithm converges, and the
system is ready for validation. More specifically, Figure 6 evidence how each
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aggregator maximizes its own reward function during the training process by
individually improving their decision-making rules. This Figure evidences
how each agent realizes that offering price discounts to the end-users allows
the capitalization of the DSO’s reward.

Figure 7 shows the performance in peak reduction of the dynamic pric-
ing mechanism for the proposed multi-aggregator system. These results
demonstrate that implementing a MARL mechanism combined with SV-
based reward-sharing mechanism calculation can significantly reduce peak
load in a cooperative scenario. In fact, it is also possible to verify the achieve-
ment of PAR reduction, reducing the system aggregated profile’s PAR from
1.9 to 1.61. Figure 8 provides an insight into the role of each DRA in achiev-
ing the peak-shaving presented of the system aggregated consumption pro-
file. The figure demonstrates how the coordination loop can reduce the peaks
utilizing dynamic price profiles when the DRA determines the optimized pa-
rameters for the price generator function for each iteration.
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Figure 7: Peak reduction after learning process.

Shapley-Value-based reward-sharing mechanism. Finally, to analyze the im-
portance of combining the IPPO algorithm with the SV-based reward-sharing
mechanism, in Figure 9, a performance comparison is presented. A compar-
ative study is conducted by implementing the same IPPO technique without
utilizing the SV calculation, i.e., dividing the DSO’s reward evenly between
the three DRAs. In this, it is possible to verify that the fair reward-sharing
mechanism improves the convergence performance of the MARL technique
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(a) Coordination loop for DRA agent 1 with four houses.
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(b) Coordination loop DRA agent 2 with four houses.
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(c) Coordination loop DRA agent 3 with three houses.

Figure 8: DRAs’ coordination loops after training.
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in terms of the convergence time, which is reduced by 29%, representing 290
episodes less for training. Calculating the marginal contributions for each
DRA provides the RL agents with a better understanding of the impact of
their actions on the system. This extra information helps deal with the non-
stationarity problem of MARL techniques, resulting in a faster and more
optimized solution.
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Figure 9: MARL performance with and without the SV-based reward-sharing mechanism.

Performance comparison. The proposed MARL-based mechanism is finally
compared with a proximal decomposition approach proposed by the authors
in [55]. This mechanism is applied by each DRA applying a billing mecha-
nism proportional to the consumption plan during ten iterations. Further-
more, this mechanism is adapted to respect the price limits established in
the proposed scenario for a more fair comparison. Table 2 provides the ob-
tained results. This information demonstrates that the proximal decomposi-
tion approach can provide a higher aggregators’ income from selling energy.
However, the proposed MARL-based mechanism provides better results re-
garding PAR reduction, representing a DSO’s reward 50% higher than the
reward obtained with the proximal decomposition approach. This highlights
the ability of the proposed model to make different aggregators cooperate in
order to achieve an overall system objective.
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DRA 1 DRA 2 DRA 3

IPPO
Income 74.6$ 62.2$ 55.05
PAR 1.42 1.44 1.75

DSO’s reward 73.1%

Proximal
decomposition

Income 91.6$ 80.9$ 66.1$
PAR 1.91 1.87 1.67

DSO’s reward 19.8%

Table 2: Performance comparison between the proposed MARL-based mechanism and a
proximal decomposition approach.

4. Conclusions

In this paper, a cooperative price-based demand response mechanism
for a multi-aggregator system, based on multi-agent reinforcement learning
(MARL) and a Shapley-Value-based reward sharing mechanism is proposed.
This work utilized an IPPO-based MARL architecture for a set of demand
response aggregator (DRA) agents to exploit the flexibility potential of res-
idential customers. The DRAs establish dynamic pricing discounts in an it-
erative process, where DRAs communicate their price profiles and customers
adapt in accordance with their consumption plan. In this win-win approach,
the residential users leverage the flexibility of their controllable loads to re-
duce their bills, while the DRAs exploit this flexibility to reduce the system
aggregated peak demand. This flexibility allows the DRAs to have access to
the rewards offered by the DSO for peak reduction. The results presented
demonstrate a significant PAR reduction in the total power demand from 1.9
to 1.61. Furthermore, the importance of implementing the SV-based reward-
sharing mechanism is shown, improving the optimization of the solution and
reducing the convergence time by 29%. Further, the proposed approach will
be analyzed in terms of future application by analyzing the performance of
strategies to pre-train the MARL mechanism in a historical day and then
evaluate the algorithm in out-of-sample days. In addition, the consideration
of users’ deviations from consumption plans will be explored.
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Chapter 4 - Discussion and future opportunities

4.1 Introduction

This section extensively discusses the work carried out, the limitations and difficulties,

and future opportunities based on the studies conducted for every targeted element.

Accordingly, the following sections attempt to describe the statement of each problem

as they remain open for future consideration. Each of these future opportunities will

be categorized according to the energy market’s perspective and the demand side’s

perspective in the smart grid context.

4.2 Work summary

• The analyses performed in this thesis have enabled the generation of price-based

transactive policies for implementing DR programs considering a third-party entity

called DRA. For this purpose, a Multi-agent system was built to reproduce the

interaction between a set of houses and an aggregator. These interactions were

constructed considering rational residential agents capable of reacting in an optimal

manner to different economic incentives offered by the DRA. With this system

development, the DRA exploits the interactions with the set of residential agents

to characterize their price-responsive behavior. However, the main concern in this

thesis is how to deal with the different sources of uncertainties related to DR

program implementations and the consideration of the customers’ privacy through

the tariff generation process. For this reason, RL techniques were suggested as a

valuable solution for dealing with uncertainty. The studies carried out during this

work allowed us to determine that the DRA can use the DR as the only source of

information needed as long as the rational response of the users is regularized in the

multi-agent system. This regularization avoids the prisoner’s dilemma in the system
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and guarantees the existence of a convergence point for the generation of pricing

policies, considering the maximization of the DRA’s profit.

• Once the necessary conditions have been identified to guarantee convergence in

the interaction between the DRA and the residential agents, the next stage seeks to

establish a price generator function. This function aims to consider the operational

cost of the system and provide a voltage service for the DSO. This work proposes

the use of a dynamic pricing function based on a sigmoid function in a coordination

loop that allows offering a voltage capacity service to the DSO while taking into

account the existing market regulations. This means that by using this function,

it is possible to perform peak shaving in a controlled manner. At the same time,

the function facilitates the implementation of the DR program during the smart

grid transition process by considering the regulations of energy selling prices in the

residential context. Finally, this approach reduces the calculation complexity by the

DRA since this agent will have to define the optimized parameters for the pricing

function instead of defining all the price values for each time step.

• The last stage of this work focuses on analyzing the definition of pricing policies

considering a group of DRAs in a multi-aggregator system. In this process,

the DSO offers a reward based on a global objective of the system, and a

cooperative mechanism is established among the DRAs. This approach allows

each aggregator to maximize its own profit while maximizing the overall system

objective. For this case a MARL mechanism is proposed, which allows to take

advantage of the conditions established in the first part of the work to guarantee

the convergence of each group, as well as of the function proposed in the second

stage to reduce the computational complexity of the method. In addition, a fair

Shapley-value-based reward-sharing mechanism is proposed, which allows for
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dealing with the non-stationarity problem of MARL algorithms and improves the

performance of aggregators in defining pricing policies.

4.3 Limitations and difficulties

4.3.1 Residential Thermal model

One of the major limitations in the simulation process of the proposed scenario is

centered on the thermal models of the houses. For our case, a linear model was proposed

in order to reduce the algorithmic complexity of the mechanism and to facilitate the

simulation process. However, the training times of the aggregators were quite high, which

hindered the analytical studies. For this reason, it was not possible to conduct studies

with more residential agents, especially for the multi-aggregator systems. In this specific

case, the computational resources were often unable to carry out the calculation process

to generate the consumption plans of the residential agents.

4.3.2 Day-to-day transition in the residential model

As presented in this thesis, generating aggregators’ pricing policies is linked to the

user’s consumption response. This means that the models’ response has an important

impact on the convergence points of the proposed mechanisms. In this sense, one of the

limitations of the proposed residential model is the lack of consideration of the day-to-day

transition. Therefore, it is usual that each residential agent underestimates the consumption

needed at the beginning and the end of each day. However, dealing with this problem is

not so simple since it is necessary to define which mechanisms and information each

residential agent should use in order to better estimate these transitions. Moreover, this

consideration may further increase the computational complexity of the models.
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4.3.3 Simulation environment

During the development of this thesis, different simulation tools were used to

carry out the analyses shown. In particular, the simulations were performed using an

object-based programming language called Python, which allowed the exploitation of

existing resources, such as the Gym API [69] and the TensorForce library [70]. The former

is a library developed by openAI that allows the creation of RL environments to develop

and compare these algorithms by providing a standard API to communicate between RL

agents and environments, and the latter is an open-source deep RL framework, provided

with different algorithms that can be tested in the Gym API. Despite the good performance

of these tools and the use of high-power hardware, the sequential simulation generated a

high computational cost due to the computation time of the residential thermal models.

This highlights the need for the development of strategies that allow the realization of

distributed computation.

4.4 Recommendations

4.4.1 Energy market perspective

Since mitigating consumption peaks was our primary objective, using day-ahead

markets was a more suitable option for the project, as these markets facilitate the

generation of consumption plans for residential agents, avoiding the implementation

of predictive models for pricing tariffs. However, as was presented in one of this

thesis studies, customers can deviate from their stipulated consumption plans due to the

uncertainties related to uncontrollable real-life events (receiving a visit from a friend,

a sick user who must stay home, damage to the home, etc.). From this point of view,

it is possible to consider the implementation of spot market strategies to alleviate the
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impact of these undesirable events, not only from the demand side but also from the

supply side, which can face different operational grid problems. This means that the

proposed day-ahead strategies can be combined with spot market mechanisms to enhance

the performance of the DR programs throughout the execution of the day-based planned

decisions.

Considering the end-users as market players, it is assumed in this work that users are

interested in participating in the DR mechanism offered by the DRA. Thus, it would be

an opportunity to conduct a study about the consumers’ willingness to participate in the

offered DR program, creating a competitive scenario between DRAs. This consideration

will create a more realistic market interaction, where the aggregators’ welfare will consider

the monetary incentive to attract more customers’ attention while considering the supply

side’s reward for exploiting the demand-side flexibility.

From the point of view of the DSO as a market player, in this work, we assumed

that this player has a contract with the DRAs, offering monetary incentives for reducing

the consumption peaks. In order to fairly distribute these rewards, a reward-sharing

mechanism based on Shapley-value calculation is proposed. However, it is important to

note that the combinatorial calculation on which it is based may become a new challenge

for a large number of DRAs. It is for this reason that it is recommended to perform

an analysis based on approximation mechanisms for the calculation of the marginal

contributions of DRAs. On the other hand, in the proposed approach, it is assumed that

the users participating in the program are connected to the same node of the power

distribution network. However, once the topology of the power grid is considered, as

well as customer positioning, it will be noticed that even if the PAR of the aggregated

profile is improved, the grid stability can be compromised, as presented in [71]. Therefore,
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it is encouraged to address the relevance of integrating more in-depth power system

analyses, taking into account aspects like power losses and congestion. The presented

ideas evidence the need to perform further studies of determining DSO’s reward allocation

strategies in DR program applications considering the calculation complexity and the

power grid architecture, which, consequently, must be examined under the integration of

grid simulators.

4.4.2 Demand side perspective

From the demand side perspective, the residential agents developed in this work were

able to react to different price signals. These agents can manage their controllable loads

to determine the optimal strategies for decreasing their bills while respecting end-users’

comfort preferences. The resulting decision was communicated to the DRAs, which was

used as input for the determination of the following transactive policy, as well as for the

characterization of their price-responsive behavior.

As the price-responsive behavior of the customers is linked to their level of flexibility,

this one can be defined from two different aspects. The first one is the elasticity of the

end-users, which refers to how much they are willing to sacrifice their comfort to reduce

their bill. This is important as a fully inelastic user will never change its consumption

pattern for any monetary incentive. It would be interesting to analyze the impact of

these users on the performance of the implemented DR mechanism. The second aspect

comprises the controllable load that the users can use to gain advantage of the economic

incentive. In this work, the only controllable load considered was the space heating system,

representing a big portion of the residential demand during winter in Quebec’s context.

However, other sources of flexibility can be considered to evaluate the performance of the

described mechanisms. For instance, it would be possible to consider the management of
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the charging cycle of electric vehicles, the integration of thermal storage systems, or even

the consideration of heat pumps instead of electric baseboards.

Regarding the controllable load considered in this work, a linear thermal model was

utilized to describe the houses’ thermal dynamics based on the users’ thermal preferences.

While this state-space model can reduce significantly the computational complexity of the

modelization process, it only captures approximately the dynamics of the real system. It

would be interesting to analyze the effect of considering more elaborate models that can

consider the heat transfer through windows and doors and even the effect of the occupancy

considering the human body as another source of heat.

Another important point is the role of the end-user in the system. In this work, the

customers participating in the DR programs are consumers equipped with the intelligence

to react rationally to economic stimulus. However, one of the important points in the smart

grid concept is the emergence of prosumers, who can be consumers and producers of

energy on the grid. These entities can add more dynamics to the power system as they

can buy and sell energy if needed, as well as provide higher levels of flexibility to the

power system. The definition of transaction policies in this context is a key opportunity

for future studies. It provides a proper path to achieve one of the main objectives of the

smart grid concept, which is the appropriate integration of distributed energy resources

into the power grid.



Chapter 5 - Conclusions

5.1 Conclusions

One of the most crucial challenges for energy grid management is the reduction of the

consumption peaks. For this reason, DR programs have appeared as a viable solution to

mitigate this problem, giving the end-users a more active role in the system. This work has

been focused on generating tools for the entity called DRA to define optimized transactive

policies to perform a better operation of DR programs. In addition, some considerations

have been added to this objective, which includes respect for users’ privacy, the integration

of the needs of the network, and the coordination of the DRAs during the transaction

policy generation process. For the achievement of this objective, three important studies

have been conducted as presented below:

1. In the first part of this essay, we have proposed a multi-agent system for the

interactions between the DRAs and the residential agents. The conditions to

guarantee convergence of a price-based DR program are established, with a DRA

agent defining the price policies and a set of residential agents reacting in an

optimal manner with the implementation of a regularized mechanism to ensure

coordination. We developed a data-driven DRA for generating price policies

based on discounts with minimal information exchange with end-user agents.

The developed mechanism reduces the infrastructure needs for communication

and maintains customer agents’ privacy while avoiding dishonest reporting

opportunities. An offline training phase has been proposed to improve the

aggregator agent’s performance in maximizing its reward. Finally, for this first

approach, the time-consuming convergence of the RL was avoided, enabling

the possibility of online implementation. For future works, incentive-based DR
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programs can be explored from the aggregator’s side, as well as the analysis of

different sources of flexibility on the customer’s side.

2. The second approach considers the power generation cost and the system’s

constraints in the transaction policy generation process. In this case, a price-based

demand response strategy incorporating power capacity and market constraints

to coordinate a set of residential agents is constructed. For this purpose, a price

generation function is proposed to parameterize the price policy generation and

enable a capacity service for the DSO while respecting existing market regulations.

This work develops an RL-based DRA agent to exploit the electric heating system’s

potential for reducing the aggregated peak load of residential houses. A dataset

of 11 houses with real-world data from Quebec’s winter season is exploited

to construct thermal models. The suggested approach effectively harnessed the

flexibility of residential agents to optimize the profit of the DRA by fine-tuning

the parameters of the price generation function throughout the coordination loop.

The simulation outcomes revealed that the proposed DR strategy is able to

address deviations in agents’ consumption plans, leading to a substantial increase

in DRA’s profits. The comparative analysis highlighted the superiority of the

proposed price-driven DR scheme and the employed PPO-based RL demand

response aggregator. It converged to a solution that yielded a higher reward than

the well-established A2C method. Furthermore, there is potential for exploring

additional sources of flexibility and the integration of prosumers within the

proposed DR program in future research.

3. Finally, a cooperative price-based demand response mechanism for a

multi-aggregator system, based on multi-agent reinforcement learning and a

Shapley-Value-based reward sharing mechanism, is proposed. This work utilized
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an IPPO-based MARL architecture for a set of demand response aggregator (DRA)

agents to exploit the flexibility potential of residential customers. Utilizing the

proposed price generator function, the DRAs establish dynamic pricing discounts

in an iterative process, where DRAs elaborate pricing structures, influencing

customers to adjust their consumption plans accordingly. In this mutually

beneficial strategy, residential users harness the adaptability of their manageable

loads to decrease their bills. At the same time, DRAs capitalize on this adaptability

to reduce the overall peak demand on the system. This adaptability empowers

DRAs to access the incentives offered by the DSO for reducing peak demand.

The findings reveal a substantial reduction in PAR for total power demand.

Moreover, implementing the SV-based reward-sharing mechanism is demonstrated

to enhance the solution’s efficiency and reduce convergence time, dealing with the

non-stationarity problem of MARL architectures. For future analysis, the suggested

approach can be studied considering the positioning of users and aggregators in

the power grid, for further evaluation of the stability of the system.

The above conclusions finalize the studies performed through this study related to the

generation of price policies for implementing price-based DR programs. The future of

this work is promising because it addresses a problem that is getting closer and closer

to the existing power grids. The development paths of DR programs will depend on the

production trends of the different technologies that will lead to the massive implementation

of transactive energy.
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[29] O. Erdinç, A. Taşcikaraoğlu, N. G. Paterakis, and J. P. S. Catalão, “Novel incentive
mechanism for end-users enrolled in dlc-based demand response programs within
stochastic planning context,” IEEE Transactions on Industrial Electronics, vol. 66,
no. 2, pp. 1476–1487, 2019.

[30] H. Aalami, M. P. Moghaddam, and G. Yousefi, “Demand response modeling
considering interruptible/curtailable loads and capacity market programs,” Applied
Energy, vol. 87, no. 1, pp. 243–250, 2010. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S030626190900244X

[31] J. Saebi, H. Taheri, J. Mohammadi, and S. S. Nayer, “Demand bidding/buyback
modeling and its impact on market clearing price,” in 2010 IEEE International
Energy Conference, 2010, pp. 791–796.

[32] R. Tyagi and J. W. Black, “Emergency demand response for distribution system
contingencies,” in IEEE PES T&D 2010, 2010, pp. 1–4.

[33] V. Venizelou, N. Philippou, M. Hadjipanayi, G. Makrides, V. Efthymiou, and
G. E. Georghiou, “Development of a novel time-of-use tariff algorithm for
residential prosumer price-based demand side management,” Energy, vol. 142, pp.
633–646, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0360544217317735



112

[34] S. Datchanamoorthy, S. Kumar, Y. Ozturk, and G. Lee, “Optimal time-of-use pricing
for residential load control,” in 2011 IEEE International Conference on Smart Grid
Communications (SmartGridComm), 2011, pp. 375–380.

[35] X. Zhang, “Optimal scheduling of critical peak pricing considering wind
commitment,” IEEE Transactions on Sustainable Energy, vol. 5, no. 2, pp. 637–645,
2014.

[36] R. Yu, W. Yang, and S. Rahardja, “A statistical demand-price model with its
application in optimal real-time price,” IEEE Transactions on Smart Grid, vol. 3,
no. 4, pp. 1734–1742, 2012.

[37] J. Ikäheimo, C. Evens, and S. Kärkkäinen, “Der aggregator business: the finnish
case,” Technical Research Centre of Finland (VTT): Espoo, Finland, 2010.

[38] N. Mahmoudi, E. Heydarian-Forushani, M. Shafie-khah, T. K. Saha, M. H. Golshan,
and P. Siano, “A bottom-up approach for demand response aggregators’ participation
in electricity markets,” Electric Power Systems Research, vol. 143, pp. 121–129,
2017.

[39] “Study on the effective integration of distributed energy
resources for providing flexibility to the electricity system,”
Apr 2015. [Online]. Available: https://energy.ec.europa.eu/publications/
study-effective-integration-distributed-energy-resources-providing-flexibility-electricity-system_
en

[40] M. S. Bakare, A. Abdulkarim, M. Zeeshan, and A. N. Shuaibu, “A comprehensive
overview on demand side energy management towards smart grids: challenges,
solutions, and future direction,” Energy Informatics, vol. 6, no. 1, p. 4, 2023.

[41] F. Pallonetto, M. De Rosa, F. D’Ettorre, and D. P. Finn, “On the assessment
and control optimisation of demand response programs in residential buildings,”
Renewable and Sustainable Energy Reviews, vol. 127, p. 109861, 2020.

[42] B. Celik, R. Roche, D. Bouquain, and A. Miraoui, “Coordinated home energy
management in community microgrids with energy sharing among smart homes,”
in ELECTRIMACS 2017, 2017, pp. 1–6.

[43] ——, “Coordinated energy management using agents in neighborhood areas with
res and storage,” in 2016 IEEE International Energy Conference (ENERGYCON).
IEEE, 2016, pp. 1–6.

[44] ——, “Decentralized neighborhood energy management with coordinated smart
home energy sharing,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp.
6387–6397, 2017.

[45] H. K. Nguyen, J. B. Song, and Z. Han, “Distributed demand side management
with energy storage in smart grid,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 12, pp. 3346–3357, 2014.



113

[46] A. Khalid, N. Javaid, A. Mateen, M. Ilahi, T. Saba, and A. Rehman, “Enhanced
time-of-use electricity price rate using game theory,” Electronics, vol. 8, no. 1, p. 48,
2019.

[47] H. Qiu, W. Gu, L. Wang, G. Pan, Y. Xu, and Z. Wu, “Trilayer stackelberg game
approach for robustly power management in community grids,” IEEE Transactions
on Industrial Informatics, vol. 17, no. 6, pp. 4073–4083, 2020.

[48] K. Amasyali, Y. Chen, B. Telsang, M. Olama, and S. M. Djouadi, “Hierarchical
model-free transactional control of building loads to support grid services,” IEEE
Access, vol. 8, pp. 219 367–219 377, 2020.

[49] C. Feng, Z. Li, M. Shahidehpour, F. Wen, and Q. Li, “Stackelberg game based
transactive pricing for optimal demand response in power distribution systems,”
International Journal of Electrical Power & Energy Systems, vol. 118, p. 105764,
2020.

[50] G. Tsaousoglou, N. Efthymiopoulos, P. Makris, and E. V. Arigos, “Personalized
real time pricing for efficient and fair demand response in energy cooperatives and
highly competitive flexibility markets,” Journal of Modern Power Systems and Clean
Energy, vol. 7, no. 1, pp. 151–162, 2019.

[51] H. T. Javed, M. O. Beg, H. Mujtaba, H. Majeed, and M. Asim, “Fairness in real-time
energy pricing for smart grid using unsupervised learning,” The Computer Journal,
vol. 62, no. 3, pp. 414–429, 2019.

[52] N. Zhao, B. Wang, and M. Wang, “A model for multi-energy demand response with
its application in optimal tou price,” Energies, vol. 12, no. 6, p. 994, 2019.

[53] E. Dehnavi and H. Abdi, “Optimal pricing in time of use demand response
by integrating with dynamic economic dispatch problem,” Energy, vol. 109,
pp. 1086–1094, 2016. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S036054421630576X

[54] R. Lu and S. H. Hong, “Incentive-based demand response for smart grid with
reinforcement learning and deep neural network,” Applied energy, vol. 236, pp.
937–949, 2019.

[55] B. J. Claessens, P. Vrancx, and F. Ruelens, “Convolutional neural networks
for automatic state-time feature extraction in reinforcement learning applied to
residential load control,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp.
3259–3269, 2016.

[56] H.-M. Chung, S. Maharjan, Y. Zhang, and F. Eliassen, “Distributed deep
reinforcement learning for intelligent load scheduling in residential smart grids,”
IEEE Transactions on Industrial Informatics, vol. 17, no. 4, pp. 2752–2763, 2020.

[57] R. Lu, S. H. Hong, and X. Zhang, “A dynamic pricing demand response algorithm
for smart grid: Reinforcement learning approach,” Applied Energy, vol. 220, pp.
220–230, 2018.



114

[58] D. Cao, W. Hu, J. Zhao, G. Zhang, B. Zhang, Z. Liu, Z. Chen, and F. Blaabjerg,
“Reinforcement learning and its applications in modern power and energy systems:
A review,” Journal of modern power systems and clean energy, vol. 8, no. 6, pp.
1029–1042, 2020.

[59] M. A. Khan, A. M. Saleh, M. Waseem, and I. A. Sajjad, “Artificial intelligence
enabled demand response: Prospects and challenges in smart grid environment,”
IEEE Access, vol. 11, pp. 1477–1505, 2023.

[60] X. Zhang, D. Biagioni, P. Graf, and J. King, “Cooperative load scheduling for
multiple aggregators using hierarchical admm,” in 2020 IEEE Power & Energy
Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2020, pp.
1–5.

[61] S. Zheng, Y. Sun, B. Li, B. Qi, K. Shi, Y. Li, and Y. Du, “Bargaining-based
cooperative game among multi-aggregators with overlapping consumers in
incentive-based demand response,” IET Generation, Transmission & Distribution,
vol. 14, no. 6, pp. 1077–1090, 2020.

[62] H. Taherian, M. R. Aghaebrahimi, L. Baringo, and S. R. Goldani, “Optimal dynamic
pricing for an electricity retailer in the price-responsive environment of smart grid,”
International Journal of Electrical Power & Energy Systems, vol. 130, p. 107004,
2021.

[63] K. Aurangzeb, S. Aslam, S. M. Mohsin, and M. Alhussein, “A fair pricing
mechanism in smart grids for low energy consumption users,” IEEE Access, vol. 9,
pp. 22 035–22 044, 2021.

[64] L. D. Collins and R. H. Middleton, “Distributed demand peak reduction with
non-cooperative players and minimal communication,” IEEE Transactions on Smart
Grid, vol. 10, no. 1, pp. 153–162, 2017.

[65] N. Henao, M. Fournier, and S. Kelouwani, “Characterizing smart thermostats
operation in residential zoned heating systems and its impact on energy saving
metrics,” in Proceedings of eSim 2018, the 10th conference of IBPSA-Canada, 2018,
pp. 17–25.

[66] Z. Li, Z. Tian, J. Wang, and W. M. Wang, “Extraction of affective responses from
customer reviews: an opinion mining and machine learning approach,” International
Journal of Computer Integrated Manufacturing, vol. 33, no. 7, pp. 670–685, 2020.

[67] P. Atrazhev and P. Musilek, “It’s all about reward: Contrasting joint rewards
and individual reward in centralized learning decentralized execution algorithms,”
Systems, vol. 11, no. 4, p. 180, 2023.

[68] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning: a survey,”
Artificial Intelligence Review, pp. 1–49, 2022.

[69] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.



115

[70] A. Kuhnle, M. Schaarschmidt, and K. Fricke, “Tensorforce: a tensorflow
library for applied reinforcement learning,” 2017. [Online]. Available: https:
//tensorforce.readthedocs.io/en/latest/

[71] J. Dominguez, A. Parrado-Duque, O. D. Montoya, N. Henao, J. Campillo, and
K. Agbossou, “Techno-economic feasibility of a trust and grid-aware coordination
scheme,” in 2023 IEEE Texas Power and Energy Conference (TPEC), 2023, pp. 1–5.



Appendix A - Résumé

A.1 Introduction

Actuellement, les différents défis environnementaux ont fait ressortir la nécessité de

développer différentes stratégies pour surmonter les problèmes climatiques. En ce sens,

les systèmes électriques ont rapidement évolué en raison du mode de fonctionnement

des systèmes d’énergie électrique basés sur la production [1].En termes de limitations

économiques et de considérations environnementales, la mise en œuvre traditionnelle de

grands générateurs centralisés au sein d’un monopole est considérée comme non optimale

et non soutenable [2].

Par exemple, selon le rapport 2021 d’Hydro-Québec, près de 40% de la consommation

d’énergie de la province de Québec est demandée par le secteur résidentiel [4]. De plus,

l’exposition à de longues périodes hivernales fait en sorte que la consommation des charges

thermiques représente plus de 70% de la consommation résidentielle, tel qu’il est présenté

dans la figure A.1 [3]. Pour cette raison, bien que les données montrent que la production

d’énergie est suffisante pour répondre aux besoins des utilisateurs du réseau, il est possible

que certains jours de la période hivernale, la demande de consommation dépasse la production

pendant les heures de pointe [5].

Compte tenu de ce qui précède, l’idée de poursuivre avec un système de transaction à

sens unique est devenue un concept obsolète. Cependant, l’intégration des technologies de

l’information et de la communication comme l’internet des objets a permis de développer

un nouveau concept appelé resaue intelligent (SG). Ce concept vise à utiliser ces technologies

pour réaliser d’importantes économies d’énergie et améliorer la gestion du réseau électrique

[8]. La prise en compte du rôle des utilisateurs dans la gestion de l’énergie, connue sous
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FIGURE A.1 – Consommation d’énergie au Québec en 2021, [3].

le nom de réponse à la demande (DR), est un élément important de la mise en œuvre

du concept de SG. La DR est une modification de la consommation d’électricité par les

clients par rapport à leur comportement de consommation normal. Il s’agit d’une réponse

aux variations du prix de l’électricité ou à un paiement incitatif conçu par l’opérateur.

L’idée est de réduire la consommation d’électricité lorsque les prix du marché de gros

sont élevés ou lorsque la fiabilité du système est menacée [7].

Afin d’obtenir un comportement adéquat du réseau, une nouvelle entité appelée agrégateur

DR (DRA) a été proposée. Sur le marché de l’électricité, un DRA est considéré comme un

médiateur entre les acteurs du marché de l’électricité et les prosommateurs et consommateurs

d’électricité. Ces agrégateurs proposent aux clients des contrats qui leur permettent de

participer directement au marché de gros tout en fournissant aux opérateurs des services

qui améliorent la fiabilité du réseau [12]. Ils exploitent les possibilités de flexibilité en

gérant la consommation d’énergie résidentiel pendant les périodes critiques de la journée.

Cela permet au DRA de capitaliser sur ces opportunités et participer sur les marchés de

gros de l’électricité [10].
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La participation de différents acteurs à l’échange d’informations et à l’optimisation

distribuée permet de les considérer comme des agents déployés dans un environnement

multi-agents, capables de négocier, de coordonner ou de coopérer en fonction des ressources

qu’ils offrent ou dont ils ont besoin [13]. En conséquence, les agents peuvent atteindre

l’équilibre du système en résolvant leurs problèmes d’optimisation individuels. Cette incroyable

interaction, appelée énergie transactionnelle, est possible grâce à la communication bidirectionnelle

du nouveau réseau. Cela crée un besoin supplémentaire de développement de nouvelles

méthodologies innovantes pour surmonter les nouveaux défis liés à la nouvelle gestion de

la consommation d’électricité [14]. Conformément au cadre présenté, la problématique de

ce travail de recherche sera décrite ci-dessous.

A.2 Problématique de thèse

La nature humaine est l’un des principaux problèmes affectant la conception des marchés

de DR. L’analyse du comportement des grands consommateurs d’énergie montre qu’ils

réagissent de manière rationnelle en cherchant à maximiser leurs profits. Cependant, les

petits consommateurs, tels que les utilisateurs résidentiels, ne font pas preuve de la même

rationalité. En effet, les préférences de ces utilisateurs sont très différentes et, dans de

nombreux cas, la minimisation de leur facture n’est pas forcément dans leur intérêt [2].

En outre, les auteurs de [15] ont mené une étude sur l’élasticité des prix des maisons,

montrant qu’il n’existe pas de relation linéaire entre le changement de consommation et

le changement de prix. Pour cette raison, la génération de politiques de prix optimisées

reste un défi pour les programmes de DR afin d’exploiter le potentiel de flexibilité des

utilisateurs [16].

Par conséquent, le DRA est chargée de surmonter ces problèmes afin de détecter de
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manière optimale les opportunités de flexibilité et d’en tirer parti. Il est donc nécessaire de

développer des outils pour cet entité qui permettront définir des politiques transactionnelles

optimisées afin d’atténuer les pics de consommation du secteur résidentiel [11]. Ces politiques

devraient être adaptées grâce à la caractérisation des utilisateurs résidentiels qui interagiront

avec le DRA. En conséquence, plusieurs défis se posent qui peuvent affecter la génération

de ces politiques transactionnelles comme suit:

— Les problèmes d’incertitude dus à l’observabilité partielle des programmes de DR

ont donné lieu à des considérations excessives concernant l’accès aux informations

des utilisateurs pour l’élaboration d’une politique optimisée [17]. Ainsi, la génération

de politiques de prix transactionnelles optimisées tout en évitant les impacts sur la

vie privée des clients reste un défi.

— Le manque d’informations de la part des utilisateurs affecterait la convergence

des méthodes mises en œuvre. En outre, la caractérisation du comportement du

consommateur en réponse au prix devient un processus lent. Le défi consistant à

assurer la convergence à un point proche de l’optimal tout en réduisant le temps de

convergence est important pour garantir la viabilité des futures stratégies de prise

de décision dans la génération de la politique de prix.

— Les besoins des fournisseurs peuvent être différents car ils peuvent être affectés non

seulement par des aspects économiques mais aussi par les contraintes physiques

du système. La grande majorité des études considèrent l’écrêtement des pointes

comme une solution suffisante pour améliorer les performances du réseau. Cependant,

ces stratégies prennent rarement en compte ces besoins réels, ce qui peut avoir un

impact négatif sur l’optimisation économique des décisions du DRA.

— Enfin, il est nécessaire de prendre en compte l’augmentation de la complexité

du système à mesure que le nombre de ces agrégateurs augmente. En plus, les
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agrégateurs qui font partie de différentes entreprises doivent coopérer pour atteindre

des objectifs globaux tout en maximisant leur rentabilité. Cela démontre la nécessité

de développer des modèles coopératifs dans le processus de mise en œuvre des

programmes de réduction de la consommation d’énergie.

A.3 Objectifs et contributions

En réponse aux problèmes présentés, ce projet a pour objectif de proposer des stratégies

pour générer des politiques transactionnelles optimisées basées sur des agents intelligents,

anticipant le comportement individuel et collectif des consommateurs d’énergie résidentiels.

Les trois objectifs spécifiques suivants sont définis comme suit:

1. Générer des mécanismes permettant au DRA de définir des politiques transactionnelles

optimisées en évitant les impacts sur la vie privée des clients et en augmentant

l’intérêt des utilisateurs à participer au programme de DR.

2. Proposition de stratégies pour la génération de politiques transactionnelles optimisées

basées sur les prix, intégrant les contraintes du marché et du système.

3. Développer un système multi-agents pour établir une méthode coopérative pour un

ensemble de DRAs afin d’atteindre un objectif global du système tout en maximisant

leurs propres profits.

La réalisation de ces objectifs se traduira par l’accomplissement des trois contributions

principales suivantes :

1. La proposition d’une méthode permettant au DRA de générer des politiques transactionnelles

optimisées pour les clients résidentiels en utilisant leur réponse aux politiques de

prix et en traitant les incertitudes liées au manque d’informations domestiques.
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2. La proposition de stratégies pour la génération de politiques transactionnelles optimisées

basées sur les prix, intégrant les contraintes du marché et du système.

3. La proposition d’un système multi-agents coopératif, qui permettra à la gestion

d’un ensemble de DRAs d’atteindre un objectif global du système tout en maximisant

leurs profits.

En choisissant cette approche, de nouveaux défis apparaissent liés au manque d’informations

disponibles pour la génération de politiques transactionnelles. C’est pourquoi, tout au long

de cette thèse, nous cherchons à répondre à différents aspects, tels que :

— L’information minimale requise pour garantir la génération de politiques de tarification

proche de l’optimal.

— Les conditions du système pour assurer la convergence ou l’équilibre de Nash.

— Le temps de convergence des algorithmes proposés et la proposition de méthodes

pour les réduire (si nécessaire).

— La mise en œuvre de mécanismes de récompense équitables dans les approches

coopératives de DRAs.

A.4 Méthodologie

Afin de traiter le problème évoqué, une approche basée sur des mécanismes pilotés par

les données est proposée. Cette approche exploite l’interaction entre l’agent DRA et les

agents résidentiels pour la génération de politiques transactionnelles. En ce sens, il s’agit

d’une approche en trois étapes. La première consiste en une recherche bibliographique

considérant le problème proposé pour comprendre et maîtriser les notions liées au domaine

d’intérêt. Ceci sera fait en même temps que les modèles d’agents résidentiels sont développés
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afin qu’ils puissent interagir avec les agents DRA. Dans un deuxième temps, les limites

et les difficultés des approches existantes seront analysées en tenant compte des exigences

du problème traité. Cela permettra d’obtenir comme produit final une proposition qui

fournit une solution appropriée au problème de recherche. Enfin, dans la troisième phase,

la performance des propositions sera validée par des simulations et des mises en œuvre.

Une illustration résumant la méthodologie suivie est présentée dans la figure A.2.

Définition du problème 
de recherche

Étude de l’état de l’art

Identification des 
limites, des contraintes 

et des difficultés

Développement de 
modèles résidentiels

Évaluation de la 
performance de méthodes 

proposées

Proposition d’une ou 
plusieurs méthodes pour 
la résolution du problème

FIGURE A.2 – Méthodologie de recherche suivi.

Ainsi, pour atteindre les objectifs de ce projet de thèse, en suivant l’approche en trois

étapes proposée, les activités suivantes seront réalisées : Tout d’abord, nous développerons

des modèles pour les charges contrôlables que les agents résidentiels pourront utiliser

comme source de flexibilité. Ensuite, un modèle comportemental sera construit pour ces

agents, et un mécanisme de contrôle sera défini en utilisant les charges contrôlables pour

obtenir un comportement réactif aux stimuli (politiques transactionnelles, météo, etc.).

Enfin, nous analyserons comment le DRA peut définir des politiques transactionnelles

optimisées en fonction de la réponse de la consommation d’un ensemble donné d’agents
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résidentiels. Le DRA caractérisera le comportement réactif des utilisateurs finaux en apprenant

de leurs interactions.

A.4.1 Hypothèses de recherche

Les hypothèses de recherche suivantes seront prises en compte lors de l’élaboration des

mécanismes proposés pour atteindre les objectifs du problème de recherche décrit:

— On suppose que le mécanisme de coordination est suffisamment rapide pour ne

pas interférer avec le temps d’exécution du programme de DR. Cela signifie que la

politique transactionnelle sera définie à temps pour que les clients puissent ajuster

leurs plans de consommation pour la prochaine période financière.

— Dans le système de communication, on suppose que l’agent agrégateur envoie

équitablement la même information à tous les agents résidentiels. En outre, le

marché fonctionne de telle manière qu’il ne permet pas l’échange d’informations

entre ces derniers, dans le but d’abuser de ces informations supplémentaires pour

augmenter leur propre profit.

— Enfin, il est important de souligner l’hypothèse adoptée de la rationalité économique

du consommateur, qui est à la base de la mise en œuvre des programmes de DR. En

outre, il est supposé que les agents résidentiels sont capables de réagir de manière

optimale, conformément à la rationalité du consommateur.

A.5 Description de résultats publiés

Les résultats de la méthodologie proposée pour atteindre les objectifs de ce projet de

recherche ont été séparés en trois publications. Tout d’abord, un mécanisme de tarification

est développé pour évaluer l’architecture du système multi-agents afin de garantir la convergence,
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puis une fonction de génération de prix est proposée pour paramétrer la génération de

la politique de prix en tenant compte des contraintes du marché et de la fourniture, et

une architecture multi-agrégateurs est établie en utilisant l’architecture multi-agents et la

fonction de génération de prix proposées. Le statut de publication des articles présentés

ci-dessous est le suivant :

1. Le premier article a été publié dans IEEE Access le 17 mai 2022.

2. Le deuxième a été publié dans Smart Energy d’Elsevier le 27 mars 2024.

3. Enfin, le troisième manuscrit a été soumis à Sustainable Energy, Grids and Networks

d’Elsevier le 9 avril 2024, et est actuellement en cours de révision.

A.5.1 Architecture multi-agents pour la génération de politiques

transactionnelles

Contexte:

Dans cette première partie, nous examinons le problème du développement d’un système

multi-agents pour l’interaction entre les agents résidentiels et un agent du DRA en tant

qu’acteurs du marché. L’interaction entre ces entités permettra au DRA de rechercher

l’optimisation au cours du processus de génération de la politique de prix. Il faut donc

construire des agents résidentiels automatisés pour garantir des réponses rationnelles aux

actions des agents du DRA. Dans le cas de l’agent du DRA, la seule source d’information

pour lui sera le DR afin de respecter la vie privée des clients.

Le programme DR mis en place par le DRA sera une stratégie de tarification de l’électricité

basée sur des rabais. Cet agent offrira des rabais à différentes heures de la journée afin

d’encourager les utilisateurs à modifier leurs habitudes de consommation. Le processus de
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prise de décision est réalisé en appliquant une technique apprentissage par renforcement

(RL) profonde pour traiter les différentes sources d’incertitude dues au manque d’informations

du côté de la demande. l’agent DRA essaiera de maximiser le facteur de charge (inverse

du PAR) tout en minimisant la réduction de son profit pendant le processus de rabais.

Pour l’agent résidentiel, un modèle thermique est construit pour les systèmes de chauffage.

Ce modèle permettra d’utiliser le chauffage comme source de flexibilité pour les utilisateurs.

L’agent résidentielle déterminera son plan de consommation en réponse à la politique

de prix en résolvant un problème d’optimisation. L’objectif de l’agent résidentiel est de

minimiser sa facture tout en maintenant le confort thermique des clients. Enfin, un mécanisme

de régularisation de la réponse de l’agent résidentiel est appliqué pour garantir la convergence

du système multi-agents.

Méthodologie:

L’environnement RL est composé d’un ensemble de vingt maisons résidentielles. Un

travail antérieur est utiliser pour déterminer les préférences thermiques des clients [65].

En exploitant les données historiques collectées, les paramètres du modèle thermique

sont estimés à l’aide d’un mécanisme de régression rigide [66]. Enfin, un processus de

génération de données statistiques est utilisé pour les charges non contrôlables.

Une fois que les agents résidentiels sont prêts à répondre aux signaux de prix, une

journée historique est sélectionnée pour l’entraînement hors ligne du DRA basé sur le

RL. Les analyses suivantes ont été effectuées pour garantir la meilleure performance du

programme de DR basé sur les prix proposé :

1. Comparaison des performances de différentes techniques Deep RL pour sélectionner

le PPO comme mécanisme cible pour la mise en œuvre du programme de DR.
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2. Analyse de la convergence du système multi-agents basée sur la sélection du paramètre

de régularisation pour les agents résidentiels.

3. Une étude comparative entre l’approche proposée basée sur RL et un mécanisme de

décomposition proximale tiré de la littérature en termes d’amélioration du facteur

de charge et de profit du DRA.

Après avoir effectué ces évaluations hors ligne, les performances du processus décisionnel

du DRA ont été évaluées en ligne pendant plusieurs jours consécutifs.

Résultats:

L’approche présentée a développé un DRA basé sur des données pour générer des tarifs

horaires ToU proches de l’optimum. Cette conception permet de réduire les besoins en

infrastructures de communication et de préserver la vie privée des agents de clientèle dans

le cadre d’interactions fiables.

En termes de mise en œuvre, cette étude a recommandé un algorithme RL pour construire

un système DR prometteur. En outre, l’approche proposée fournit une stratégie de phase

d’entraînement hors ligne pour traiter la convergence des techniques RL. Cette proposition

a permis de réduire le temps de convergence de plus de 1000 jours à moins de 20 jours.

Les résultats obtenus ont été comparés à deux techniques RL courantes. Le mécanisme

RL proposé montre des performances supérieures en terme de taux de convergence. Un

schéma de coordination est également comparé, où le DRA basé sur le RL peut obtenir

une réduction plus faible de son profit, bien que le tarif optimisé soit basé sur des rabais.

D’autre part, une réduction plus importante des revenus de la méthode de coordination

montre que le sacrifice monétaire dans un programme de DR peut être élevé s’il n’est pas

contrôlé. Ces résultats soulignent l’efficacité du mécanisme proposé.
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A.5.2 Fonction générateur de prix

Contexte:

Désormais, un mécanisme de tarification dynamique sera développé pour améliorer

l’exploitation des potentiels de flexibilité du côté de la demande, puisqu’une politique

de prix plus détaillée sera établie sur le marché day-ahead. L’idée est de déterminer une

politique de prix tenant compte des contraintes de la fourniture, en ce qui concerne les

limitations de capacité, tandis que le DRA atteindra ses objectifs en tenant compte des

contraintes de prix du marché dans le processus de génération de la politique.

L’objectif principal de cette phase est de dériver un mécanisme de tarification dynamique

pour offrir un service de limitation de capacité au DSO. Les services de capacité dans

un contexte de tarification sont généralement offerts par le biais de mécanismes d’appel

d’offres, ce qui entraîne des coûts de calcul élevés et une dépendance excessive à l’égard

des informations sur les clients. En outre, la littérature ne prend pas en compte les limites

de prix du marché existant, ce qui pourrait créer un impact significatif sur les processus

d’optimisation des approches existantes.

Pour cela, une fonction générateur de prix dynamique est proposée, prenant en compte

les contraintes de la fourniture et du marché dans un scénario de théorie des jeux mettant

en œuvre une boucle de coordination. Grâce à cette fonction, le DRA sera en mesure

de maintenir les besoins en capacité du DSO. En réponse, le DSO paiera une incitation

au DRA. Le DRA essaiera de maximiser son utilité, en tenant compte le bénéfice de

la vente de l’électricité aux clients et de l’incitation du DSO. Ensuite, le DRA utilisera

une technique RL pour définir les paramètres de cette fonction tout à long de la boucle

de coordination, en tenant compte non seulement des besoins du DSO, mais aussi de
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la déviation possible du profil de consommation des clients par rapport à leurs plans de

consommation stipulés.

Méthodologie:

Le DSO communique la limite de capacité désiré et offre une incitation au DRA sur

la base d’une fonction de coût de production d’électricité quadratique. Cette incitation

est déterminée sur la base de la réduction du coût de production d’électricité due à la

réduction de l’écrêtement des pointes. Ensuite, le DRA utilise la fonction de génération de

prix proposée dans une boucle de coordination itérative au début de la journée. Le DRA

communique d’abord un profil de prix constant et attend la réponse des agents résidentiels.

Avec ce profil agrégé, le DRA calcule la politique de prix suivante en utilisant la fonction

de génération de prix jusqu’à ce qu’un accord soit atteint.

La combinaison de cette fonction de génération de prix dans le système multi-agents

développé, avec la boucle de coordination, crée une tendance qui fait que la pointe de

consommation maximale se situe dans un voisinage centré sur la limite de capacité établie

par le DSO avec un rayon qui dépend du niveau d’élasticité des utilisateurs. Avec ce

comportement, les étapes suivantes ont été suivies:

1. L’évaluation de la fonction génératrice de prix proposée en ce qui concerne la

réduction de l’écrêtement des pointes.

2. Comparaison des performances de la fonction génératrice de prix proposée avec

une fonction linéaire par morceaux en termes de dépassement de la limite de capacité

et d’exploitation de la flexibilité.

3. Comparaison de la technique RL entre le mécanisme PPO sélectionné et la méthode

A2C populaire.
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4. Évaluation de la méthode pour gérer les écarts de consommation des clients tout en

maximisant son utilité.

Résultats:

Ce travail fournit une fonction de génération de prix pour paramétrer le processus

de génération de la politique de tarification dynamique. Cette fonction démontre une

exploitation plus élevée et contrôlé du potentiel de flexibilité de la demande, permettant

l’offre d’un service de capacité pour le DSO. En outre, elle prend en compte les régulations

existantes du marché dans la génération des taux de tarification dynamique, garantissant

la mise en œuvre de ce mécanisme dans des contextes réalistes du marché de l’énergie.

Des simulations sont effectuées pour évaluer les performances de la stratégie proposée,

basée sur le RL. La mise en œuvre de la méthode proposé démontre que le DRA peut

gérer les écarts des agents par rapport à leurs plans de consommation, tout en améliorant

l’utilisation de la fonction génératrice de prix, puisque les bénéfices du DRA ont augmenté

de plus de 30%. En ce qui concerne la sélection du mécanisme RL, la méthode PPO

adoptée a convergé vers une solution qui fournit des récompenses plus élevées pour le

DRA.

A.5.3 Système multiagrégateur

A.5.4 Contexte:

Avec l’environnement multi-agents défini pour les interactions entre un DRA et un

ensemble de maisons et la définition d’une fonction génératrice de prix pour paramétrer

le mécanisme de prix dynamique, il est maintenant temps d’évaluer cette génération de

politique du point de vue du système. Les solutions individuelles des différents DRA
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ne garantissent pas l’obtention d’une bonne solution optimisée. Ce travail approfondit la

question de la tarification dynamique avec plusieurs DRA sur la base de l’apprentissage

par renforcement multi-agents (MARL), étant donné que chaque agrégateur continuera à

interagir avec son propre ensemble de maisons.

Pour que les DRAs se coordonnent, il est nécessaire de mettre en œuvre un mécanisme

d’attribution de récompenses équitables, en fonction de leurs contributions à l’objectif du

système. C’est là que la valeur de Shapley (VS), un concept issu de la théorie des jeux

coopératifs, entre en scène. Chaque DRA recevra une récompense du DSO en fonction

de sa contribution à l’objectif global par le biais du calcul du SV. L’intégration de cette

stratégie fournit un cadre équitable pour la répartition des avantages liés à la coopération

entre les agents DRA. En outre, ces travaux démontrent également que l’évaluation des

récompenses en fonction de leur impact marginal sur le système global accélère les performances

de l’architecture MARL et aide à traité le problème de non-stationnarité de ces algorithmes

[67].

Méthodologie:

Pour évaluer le mécanisme, il est nécessaire de construire l’environnement MARL en

tenant compte du système multi-agrégateur. Sur la base du développement précédent de

cette thèse, un ensemble de DRA est établi, chacun interagissant avec un ensemble de

maisons avec une cardinalité différente. En outre, chaque client aura ses préférences en

matière de confort, ce qui influencera sa réponse aux signaux transactionnels générés par

chaque DRA. Par conséquent, chaque agrégateur doit apprendre ses stratégies dans une

architecture MARL décentralisée (DTDE) [68].

Chaque agent DRA utilisera la fonction de prix pour offrir des réductions afin d’inciter
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les clients à modifier leurs habitudes de consommation. Les résultats de cette interaction

établiront le tarif dynamique et le plan de consommation des clients pour les 24 heures

suivantes. À la fin de la journée, le DSO déterminera la contribution marginale à la réalisation

de l’objectif global du système pour chaque DRA, et c’est sur cette base que les récompenses

des agrégateurs seront définies.

Résultats:

Ce travail propose un mécanisme coopératif de réponse à la demande pour un système

multi-agrégateur basé sur MARL et un mécanisme de partage des récompenses sur la base

de SV. Comme les DRA établissent des réductions de prix dynamiques dans un processus

itératif, les clients peuvent adapter leurs profils de consommation pour bénéficier de ces

réductions. Cette stratégie crée une approche gagnant-gagnant, car les utilisateurs résidentiels

peuvent exploiter la flexibilité de leurs charges contrôlables pour réduire leurs factures,

tandis que les DRA peuvent offrir cette flexibilité au DSO pour réduire la demande de

pointe agrégée du système. Au moyen de la stratégie MARL, les DRA font un compromis

entre la réduction de leur profit en offrant des réductions aux maisons pour exploiter leur

potentiel de flexibilité et la récompense que le DSO leur offre pour l’effort réalisé. Les

résultats présentés démontrent une réduction significative de la point totale de consommation.

En outre, l’importance de la mise en œuvre du mécanisme de partage des récompenses

basé sur SV est démontrée en termes d’amélioration de l’optimisation de la solution et de

réduction du temps de convergence de la méthode.

A.6 Conclusions

Ce travail s’est concentré sur la création d’outils permettant à l’entité appelée DRA

de définir des politiques transactionnelles optimisées afin d’améliorer le fonctionnement
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des programmes de DR. En outre, certaines considérations ont été ajoutées à cet objectif,

notamment le respect de la vie privée des utilisateurs, l’intégration des besoins du réseau et

la coordination des DRAs au cours du processus de génération de la politique transactionnelle.

Pour atteindre cet objectif, trois études de recherche ont été abordées à savoir i) Le système

multi-agents pour les interactions entre les DRAs et les agents résidentiels, ii) les contraintes

du système et du marché dans le processus de génération de la politique transactionnelle et

iii) les mécanismes de coopération pour un système à agrégateurs multiples. Les approches

proposées ont été décrites dans trois publications sous forme d’articles scientifiques.


