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Abstract Since the Leibniz rule for integer-order
derivatives of the product of functions, which includes
a finite number of terms, is not true for fractional-
order (FO) derivatives of that, all sliding mode control
(SMC) methods introduced in the literature involved a
very limited class of FO nonlinear systems. This arti-
cle presents a solution for the unsolved problem of
SMCof a class of FO nonstrict-feedback nonlinear sys-
tems with uncertainties. Using the Leibniz rule for the
FO derivative of the product of two functions, which
includes an infinite number of terms, it is shown that
only one of these terms is needed to design a SMC
law. Using this point, an algorithm is given to design
the controller for reference tracking, that significantly
reduces the number of design parameters, compared
to the literature. Then, it is proved that the algorithm
has a closed-form solutionwhich presents a straightfor-
ward tool to the designer to obtain the controller. The
solution is applicable to the systems with a mixture
of integer-order and FO dynamics. Stability and finite-
time convergence of the offered control law are also
demonstrated. In the end, the availability of the sug-
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gested SMC is illustrated through a numerical example
arising from a real system.
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1 Introduction

Sliding mode control (SMC) is considered as one of
the most popular, applicable methodologies among
robust control design methods to deal with nonlinear
systems suffering from uncertainties and disturbances
[6]. On the other hand, with advances in FO calculus,
many real-world systems have been modeled or con-
trolled with FO differential equations to reach a bet-
ter performance, compared to integer-order differential
equations [17,25,35]. Therefore, over the past decade,
scholars examined the extension of the SMC design
method to FO nonlinear systems.

Many successful attempts weremade by researchers
on SMC for the trajectory tracking of FO nonlinear
systems. For instance, in [1], a chattering-free SMC
method was presented for FO nonlinear systems. The
SMC synchronization of FO chaotic systems was stud-
ied by [16]. In [3], the consensus tracking of FO multi-
agent systems was studied based on SMC. However,
these works considered FO nonlinear systems which
in their state-space equations the input appears in the
same equation as the output. In the cases where the
input and output variables are not in the same equation,
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due to dealing with FO derivatives the control design
becomes more challenging.

A huge number of works were published to study
the tracking control of FO nonlinear systems with the
input and the output state variable appearing in different
equations, and addressed a variety of issues bymeans of
various strategies including SMC method. For exam-
ple, an integral SMC design method was introduced
by [9] and a chattering-free one in [10]. An adaptive
observer-based control law via a backstepping scheme
was suggested in [28] for systemswith disturbances and
for large-scale systems with unknown parameters and
additive disturbances in [5]. In the work of [8], multi-
input systems were considered using SMC. The con-
sensus control of multi-agent systems subject to cou-
pling nonlinearities and actuator failures using adap-
tive control was studied by [7]. In [22], neuro-fuzzy
network systems were employed to deal with unknown
nonlinear terms, and dynamic surface control (DSC)
scheme was constructed to overcome the problem of
explosion of complexity caused by the traditional back-
stepping design. In the work of [23], adaptive neural
network tracking control with prescribed performance
demands was considered where a FO command filter
was adapted to remove the problem of explosion. In
[34], adaptive fuzzy decentralized control was utilized
to deal with unknown nonlinear functions and unmea-
surable states for large-scale systems. Event-triggered
adaptive tracking control strategy was applied by [13]
to deal with states constraints and dead-zone input. The
synchronization of two chaotic systems with distur-
bance using a fuzzy neural network model and adap-
tive SMC was considered by [27]. In the article of
[36], uncertain systems with multiple mismatched dis-
turbances was investigated using SMC. Systems with
input delay were tackled in [30] by using backstepping
DSC technology and neural network. Nevertheless, all
these works are applicable to a small class of FO non-
linear systems formed as

⎧
⎪⎨

⎪⎩

Dαi xi = gi xi+1; i = 1, 2, . . . , n − 1,

Dαn xn = fn + gnu,

y = x1,

(1)

where gi ∈ R is a constant for i = 1, 2, . . . , n − 1
(Dαi , xi , u, y, and fn represent the αi -th FO derivative
operator, state variable, input, output, and a function
of state variables, respectively, where αi ∈ R). In the

literature of FO nonlinear systems, this type of systems
are referred to as strict-feedback systems [22], while if
gi is a function of the time or state variables, they are
referred to as nonstrict-feedback systems [32].

The fundamental challenge in SMC of FO nonstrict-
feedback systems is that in the design process, where
the sliding surface is a function of the error between the
output and the reference input, FO derivative expres-
sions appear as Dαi+1 [gi xi+1]. In the case of αi+1 = 1,
using the Leibniz rule, Dαi+1 [gi xi+1] can be easily cal-
culated analytically, comprised of only two terms, and
therefore, the classic SMC can be utilized straightfor-
wardly. However, in the case where 0 < αi+1 < 1
holds, Dαi+1[gi xi+1], according to the Leibniz rule for
FO derivative operators, includes an infinite number
of terms, which makes the SMC law design challeng-
ing [20, 2 of Section 1.1]. Because of this challenge
few research works addressed SMC of FO nonstrict-
feedback systems. Only in [31], a SMCdesignwas pre-
sented for a class of these systems via designing sliding
surfaces for each equation of the state-space equations.
Besides SMC method, the tracking control of some
class of these systems was studied using adaptive con-
trol in [20], using adaptive fuzzy control in [29,32], and
using adaptive neural network in [18,26]. However, all
these works did not actually solve the aforementioned
challenge, but they used another technique to avoid fac-
ing the challenge. In these works, the control law was
obtained by designing one virtual input for each single
equation, of n equations in (1), in a backstepping recur-
sive design algorithm. Nonetheless, this methodology
leads to the complexity of the design procedure as well
as a large number of design parameters. The number
of design parameters dramatically increases with small
increase in the number of equations, n, which causes
the adjustment of the parameters for achieving a desired
tracking performance to be very cumbersome. More-
over, the methodologies presented in these works are
applicable to the systems with either integer-order or
FO dynamics, but not to the systems with a mixture of
integer-order and FO dynamics.

Regarding the above discussion, SMC of FO
nonstrict-feedback nonlinear systems using the Leibniz
rule is an unsolved problem.For a class of these systems
a solution is given in this article. For this goal, using the
Leibniz rule for the FO derivative, it is proved that only
one of the infinite terms resulting from Dαi+1[gi xi+1]
is needed to design a SMC law. On the foundation of
this point, an algorithm is introduced to design the con-
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troller for reference tracking. Afterwards, it is shown
that the algorithm has a closed-form solution which
presents a simple, straightforward tool to the designer
to obtain the controller. The solution has significantly
less design parameters than other approaches in the lit-
erature do, and also is applicable to the systems with
integer-order and/or FO dynamics. Stability and finite-
time convergence of the control law are also demon-
strated. Finally, the effectiveness of the offered SMC is
illustrated via a numerical example coming from a real
system.

The rest of the article is organized as follows. Sec-
tion2 introduces preliminaries. Section3 presents the
main results. A numerical example and conclusion are
given in Sects. 4 and 5, respectively.

2 Preliminaries

In this article, R denotes the set of real numbers, and
�α� stands for the smallest integerwhich is not less than
α for any α ∈ R. For an arbitrary function such as f (t)
its Laplace transform is shown by L{ f (t)} = F(s).
The expresions

∑k2
k=k1

fk and
∏k2

k=k1
fk are defined for

k1 ≤ k2. In case k1 > k2 holds, assume
∑k2

k=k1
fk = 0

and
∏k2

k=k1
fk = 1.

The Caputo definition, the most important in appli-
cations, is used for the FO derivatives throughout this
article. Suppose α ∈ R. According to [19, pp. 51,79],
the FO integral of an arbitrary function, namely f :
[t0,∞) → R, is defined as

t0D
−α
t f (t) � 1

Γ (α)

∫ t

t0
(t − τ)α−1 f (τ ) dτ , α > 0,

(2)

where Γ stands for the Gamma function. If there exists
the �α�-th order derivative of f (t), the Caputo FO
derivative of f (t) is defined as

t0D
α
t f (t) �

⎧
⎨

⎩

d�α� f(t)
dt�α� , α = �α� ≥ 0,

t0D
α−�α�
t

[
d�α� f(t)
dt�α�

]
, 0 < α 	= �α�.

t0D
α
t throughout this article represents the Caputo

integral and derivative operator of the α-th order on
[t0, t] for α < 0 and α ≥ 0, respectively.

Some properties of the Caputo FO derivative oper-
ator is mentioned in the following lemma, which will
be used for calculations in the next section.

Lemma 1 t0D
α
t whereα ∈ R is a linear operator [4, p.

58]. Moreover, for an arbitrary function such as f (t),
the relation t0D

α
t [t0D−α

t f (t)] = f (t) holds for α ≥ 0
[4, p. 53].

It is notable that for α1 ≥ 0 and α2 ≥ 0 the equation

t0D
α2
t [t0Dα1

t f (t)] = t0D
α1+α2
t f (t) does not hold gen-

erally for the Caputo derivative definition, while some
works [12] used this relation (see a counterexample in
[11]). The equation is valid in particular cases, namely,
when α1, α1 + α2 ∈ [l − 1, l] holds where l is a non-
negative integer [4, p. 56]. Therefore, the following
notations are introduced in order to be used later.

t0D
α j |αi
t f (t) �

⎧
⎨

⎩

f (t) , i > j,

t0D
αi
t f (t) , i = j,

t0D
α j
t

[
t0D

αi
t f (t)

]
, i < j.

t0D
αi+n |···|αi+1|αi
t f (t)

� t0D
αi+n
t

[· · · t0Dαi+1
t

[
t0D

αi
t f (t)

]]
.

Consider the incommensurate FOnonlinear systems
described as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0D
α′
p

t x ′
p(t) = f ′

p

(
t, X ′)

+ Δ′
p

(
t, X ′) , p = 1, 2, . . . , n′ − 1,

t0D
α′
n′

t x ′
n′(t) = f ′

n′
(
t, X ′)

+ g′
n′
(
t, X ′) u(t) + Δ′

n′
(
t, u(t) , X ′) ,

y(t) = cyx
′
q(t) , q ∈ {

1, 2, . . . , n′} ,

(3)

where 0 < α′
r ≤ 1 holds, x ′

r (t), u(t), and y(t) belong to
R, and are the state variable, input, and output, respec-
tively, X ′ � [x ′

1(t), x
′
2(t), . . . , x

′
n′(t)]T , 0 	= cy ∈ R is

a constant, Δ′
r represents unknown terms, and f ′

r and
g′
n′ are known functions where r = 1, 2, . . . , n′.
This article deals with those of systems in (3)

which, using the appropriate change of the subscripts
of x ′

1(t), α
′
1, x

′
2(t), α′

2, . . . , x
′
n′(t), α′

n′ and denoting
them with x1(t), α1, x2(t), α2, . . . , xn′(t), αn′ , can be
reformed as a class of FO nonstrict-feedback nonlinear
systems shown as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0D
αi
t xi (t)

=
⎧
⎨

⎩

f i+1
i (t, Xi+1) + Δi (t, X) , αi+1 = 1,
f ii (t, Xi ) + gii (t, Xi ) xi+1(t)
+Δi (t, X) , 0 < αi+1 < 1,

i = 1, 2, . . . , n − 1,

t0D
αn
t xn(t) = fn(t, X) + gn(t, X) u(t)

+ Δn(t, u(t) , X) ,

y(t) = cyx1(t) ,

(4a)

t0D
α j
t x j (t) = f ′

j (t, X)

+ Δ′
j (t, X) , j = n + 1, n + 2, . . . , n′, (4b)

forwhichAssumptions 1 and 2must bemet, and if there
are more than one choice, the one with the minimum
n is chosen, where Xk � [x1(t), x2(t), . . . , xk(t)]T
and X � [x1(t), x2(t), . . . , xn(t)]T . The known func-
tions f i+1

i , f ii , g
i
i : [t0,∞) × Ω → R are piece-

wise continuous in t ∈ [t0,∞), and their deriva-
tives exist and are bounded in X ∈ Ω ⊆ R

n for
i = 1, 2, . . . , n − 1. Moreover, the known functions
fn, gn, f ′

j : [t0,∞) × Ω → R are piecewise continu-
ous in t ∈ [t0,∞) and locally Lipschitz in X ∈ Ω ⊆
R
n where j = n+1, n+2, . . . , n′. In the literature, e.g.

[5,18,26,32], similar assumptions such as the smooth-
ness of f i+1

i , f ii , and g
i
i are requirements which imply

continuity and local libschitzness. Without loss of gen-
erality, assume the system has an equilibrium point at
the originwhich is included byΩ , and the subsystem in
(4b) isMittag-Leffler stable inΩ (this can be examined
with theorems presented by, e.g., [33] and [2]).Δk rep-
resents lumped disturbances for k = 1, 2, . . . , n which
will be determined as described in Remark 1 in the fol-
lowing. To avoid clutter, the following definitions are
used throughout the article for i = 1, 2, . . . , n − 1.

xi � xi (t) , u � u (t) , y � y (t) ,

f i+1
i � fi (t, Xi+1), f ii � fi (t, Xi ),

gii � gi (t, Xi ),Δi � Δi (t, X),

fn � fn(t, X), gn � gn(t, X),Δn � Δn(t, u, X).

The goal is to present a SMC design method for the
output of the system in (4) to track the desired reference
input, yd(t). The three following fundamental assump-
tions are considered concerning with the system in (4).

Assumption 1 gn 	= 0 and ρi 	= 0 hold in X ∈ Ω for
i = 1, 2, . . . , n − 1 where

ρi � ρi (t, Xi+1) �
{

∂ f i+1
i

∂xi+1
, αi+1 = 1,

gii , 0 < αi+1 < 1.
(5)

Assumption 2 Define

hΔ �
n∑

k=1

t0D
αn |···|αk+1
t

[

Δk

k−1∏

r=1

ρr

]

. (6)

Given γ ∈ (0, 1] and β ∈ (0,∞), it is assumed thatΔk

is sufficiently smooth and bounded for k = 1, 2, . . . , n
such that there is a known, finite cΔ which meets

|cyt0Dγ |β
t hΔ| ≤ cΔ. (7)

Assumption 3 It is assumed that yd(t) is sufficiently
smooth such that t0D

γ |β|αn |···|α2|α1
t yd(t) exists and is

bounded.

It is notable that the above assumptions are equiv-
alent to similar, conventional assumptions in the liter-
ature related to FO nonlinear systems; see, e.g., [31,
Assumption 2] and [8, Assumptions 1 and 3]. Assump-
tions 1-3 together avoid the singularity of the control
signal, as will be shown in the next section.

Remark 1 Δk in (4) represents lumped disturbances
including known internal disturbances, unknown exter-
nal disturbances, and unknown unmodeled dynamics
for k = 1, 2, . . . , n. To transform the state-space equa-
tions of a system from (3) to (4), those terms which
can not be considered as part of f k+1

k , f kk , or g
k
k can be

added toΔ′
k ; these terms are called here known internal

disturbances.Therefore,Δk is the summationofΔ′
k and

the terms added as internal disturbances. In this case,
Assumption 2 must be met by the new obtained Δk .

The stability definition used throughout this article is
the Mittag-Leffler stability [33]. The Lyapunov-based
conditions for the stability of the system in (4) is pre-
sented in the following lemma.

Lemma 2 [33] Let Xn0 � [x10, x20, . . . , xn0]T = 0
be an equilibrium point for the system in (4) and Ω ⊆
R
n be a domain containing the origin. Let V : [0,∞)×

Ω → R be a continuously differentiable function in
t ∈ [0,∞) and locally Lipschitz in X ∈ Ω such that
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b1‖X‖b4 ≤ V (t, X) ≤ b2‖X‖b4b5,

0D
γ
t V (t, X) ≤ −b3‖X‖b4b5,

where γ ∈ (0, 1], b1, b2, b3, b4, and b5 are arbitrary
positive constant and ||.|| denotes an arbitrary norm.
Then, Xn0 is asymptotically Mittag-Leffler stable.

The following lemma is helpful to check the condi-
tions in the previous lemma.

Lemma 3 [2] Let γ ∈ (0, 1] and x(t) ∈ R be a con-
tinuous and differentiable function. It follows that

1

2
t0D

γ
t x

2(t) ≤ x(t) t0D
γ
t x(t) .

The Leibniz rule for FO derivatives of the product
of two functions is stated as follows.

Lemma 4 [p. 59 of [4]] Let 0 < α < 1 hold, and
assume that f and g are analytic on (t0 − h, t0 + h).
Then,

t0D
α
t [ f (t) g(t)] = (t − t0)−α

Γ (1 − α)
f (t0) (g(t) − g(t0))

+
∞∑

k=0

(
α

k

)

t0D
α−k
t f (t) t0D

k
t g(t).

(8)

The following lemma will be used for the Laplace
transform.

Lemma 5 [p. 134 of [4]] AssumeL{ f (t)} = F(s) and
that f : [0,∞) → R is such that its Laplace transform
exists on [t̂,∞) with some t̂ ∈ R. Let α > 0. Then, for
t > max{0, t̂} we have
L {

0D
−α
t f (t)

} = 1

sα
F(s) , (9)

L {
0D

α
t f (t)

} = sαF(s) −
�α�∑

k=1

sα−k
[
f (k−1)(t)

]

t=0
.

(10)

3 Main results

In this section, first, an algorithm is given to design a
SMC law for the output of the system in (4) to track a
desired reference input. Then, a closed-form solution

for the algorithm outcome is presented which gives the
designer a user-friendly tool to obtain the controller.

The following two lemmas are needed to introduce
the design algorithm of SMC.

Lemma 6 Consider the parameters defined for the
system in (4). Assume hi1 � h1(t, Xi ) and hi2 �
h2(t,Δi , Xi ) are arbitrary differentiable functions
where i = 1, 2, . . . , n − 1. Then, it follows that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0D
αi+1
t

[
f i+1
i hi1 + hi2

]

= t0D
αi+1
t xi+1

∂ f i+1
i

∂xi+1
hi1 αi+1 = 1,

+
{

t0D
αi+1
t

[
f i+1
i hi1

]

−t0D
αi+1
t xi+1

∂ f i+1
i

∂xi+1
hi1

}

+ {
t0D

αi+1
t hi2

}
,

t0D
αi+1
t

[
xi+1gii h

i
1 + hi2

]

= t0D
αi+1
t xi+1gii h

i
1 0 < αi+1 < 1,

+
{

t0D
αi+1
t

[
xi+1gii h

i
1

]

−t0D
αi+1
t xi+1gii h

i
1

}

+ {
t0D

αi+1
t hi2

}
,

(11)

where the terms in the curly brackets, {.}, do not include
t0D

αi+1
t xi+1 and any derivative of xi+1.

Proof We notice that since hi1 and h
i
2 do not have xi+1,

t0D
αi+1
t hi1 and t0D

αi+1
t hi2 do not include t0D

αi+1
t xi+1.

For the case of αi+1 = 1, we have

t0D
αi+1
t

[
f i+1
i hi1 + hi2

]

=
i+1∑

k=1

t0D
αi+1
t xk

∂
[
f i+1
i hi1

]

∂xk
+

{

t0D
αi+1
t hi2

}

=
⎧
⎨

⎩

i∑

k=1

t0D
αi+1
t xk

∂
[
f i+1
i hi1

]

∂xk

⎫
⎬

⎭

+ t0D
αi+1
t xi+1

∂
[
f i+1
i hi1

]

∂xi+1
+

{

t0D
αi+1
t hi2

}
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

i∑

k=1

t0D
αi+1
t xk

∂
[
f i+1
i hi1

]

∂xk
+ t0D

αi+1
t xi+1

∂ f i+1
i

∂xi+1
hi1

︸ ︷︷ ︸

t0D
αi+1
t

[
f i+1
i hi1

]

−t0D
αi+1
t xi+1

∂ f i+1
i

∂xi+1
hi1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

+ t0D
αi+1
t xi+1

∂ f i+1
i

∂xi+1
hi1

+
{

t0D
αi+1
t hi2

}
. (12)

In (12), obviously since the last two terms in the curly
brackets cancel each other, the curly brackets do not
include t0D

αi+1
t xi+1 and any derivative of xi+1. For the

case of 0 < αi+1 < 1, using Lemma 1, we have

t0D
αi+1
t

[
xi+1g

i
i h

i
1 + hi2

]
= t0D

αi+1
t

[
xi+1g

i
i h

i
1

]

+
{

t0D
αi+1
t hi2

}
. (13)

Defining f (t) � xi+1, g(t) � gii h
i
1, and α � αi+1,

one can check that among the infinite terms on the
right side of (8) only the term t0D

αi+1
t xi+1gii h

i
1 includes

t0D
αi+1
t xi+1. Therefore, the first term on the right side

of (13) can be rewritten as
{

t0D
αi+1
t

[
xi+1g

i
i h

i
1

]
− t0D

αi+1
t xi+1g

i
i h

i
1

}

+t0D
αi+1
t xi+1g

i
i h

i
1,

where the terms in the curly brackets do not include

t0D
αi+1
t xi+1 and any derivative of xi+1 because the

term t0D
αi+1
t xi+1gii h

i
1 incorporated in

t0D
αi+1
t [xi+1gii h

i
1] cancels the second term in the curly

brackets. �
In designing a SMC law in Theorem 1, one will

see that we need to calculate t0D
αi+1
t [ f i+1

i hi1 + hi2] or
t0D

αi+1
t [xi+1gii h

i
1 + hi2], and then replace t0D

αi+1
t xi+1

with the system dynamics in (4a). However, according
to (8), t0D

αi+1
t [ f i+1

i hi1 + hi2] and t0D
αi+1
t [xi+1gii h

i
1 +

hi2] produce an infinite number of terms, among which
we do not know which terms include t0D

αi+1
t xi+1.

Lemma 6 reveals that only one term out of those infinite

terms depends on t0D
αi+1
t xi+1, and extracts that single

term outside of the curly brackets, as in (11).

Lemma 7 Assume L{ f (t)} = F(s) and that f :
[0,∞) → R is such that its Laplace transform exists
on [t̂,∞) with some t̂ ∈ R. Let 0 < αk ≤ 1 hold for
k = 1, 2, . . . , n. Then, for t > max{0, t̂} we have

L
[

0D
αn |···|α1
t f (t)

]
= s

∑n
r=1 αr F(s)

−
n∑

k=1

s
∑k

r=1 αr−1
[

0D
αn |···|αk+1
t f (t)

]

t=0
. (14)

Proof Using (10), one can write

L
[

0D
αn |···|α2|α1
t f (t)

]
= sα1L

[

0D
αn |···|α2
t f (t)

]

− sα1−1
[

0D
αn |···|α2
t f (t)

]

t=0

= sα1

[

sα2L
[

0D
αn |···|α3
t f (t)

]

− sα2−1
[

0D
αn |···|α3
t f (0)

]

t=0

]

− sα1−1
[

0D
αn |···|α2
t f (t)

]

t=0

= sα1+α2L
[

0D
αn |···|α3
t f (t)

]

− sα1+α2−1
[

0D
αn |···|α3
t f (0)

]

t=0

− sα1−1
[

0D
αn |···|α2
t f (t)

]

t=0
.

From the above equations, it is easy to derive (14). �
The following theorem offers an algorithm to design

a SMC law for the system in (4).

Theorem 1 Assume yd � yd(t) and e � e(t) =
y − yd are, respectively, the desired output (reference
input) and the tracking error for the system in (4) with
Assumptions 1, 2, and 3. Suppose γ ∈ (0, 1] and ks ∈
(0,∞) are arbitrary values. Define the sliding surface

S(t) � t0D
β|αn |···|α2|α1
t e +

m−1∑

l=0

cl t0D
lβ
m | lαnm |···| lα2m | lα1m
t e,

(15)

where m ∈ {1, 2, . . .} and β ∈ R are chosen in such a
way that
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β ≥ 0, (16)

β +
n∑

k=1

αk < 2m (17)

hold, and c0, c1, . . . , cm−1 ∈ R are also chosen in such
a way that all the roots of

rm +
m−1∑

l=0

clr
l = 0, (18)

denoted by rl for l = 1, 2, . . . ,m, satisfy the relation

|arg (rl)| >
π

2m

(

β +
n∑

k=1

αk

)

. (19)

Then, defining ueq � ueq(t) and ur � ur (t) as equiva-
lent and reaching inputs, respectively, the closed-loop
system is asymptotically stable with the control law

u = ueq + ur , (20)

where

ueq = − fn
gn

− μ

ρgn
−

t0D
−β|−γ
t

[
m−1∑

l=0
cl t0D

γ | lβm | lαnm |···| lα2m | lα1m
t e − t0D

γ |β|αn |···|α2|α1
t yd

]

cyρgn
, (21)

ur = t0D
−β|−γ
t

[−ks S(t) − cΔsign(S(t))
]

cyρgn
, (22)

and the functions ρ � ρ(t, X), μ � μ(t, X), and
hΔ � hΔ(t, X) are obtained as follows. Given i = 1,
replace t0D

αi
t xi from (4) and then apply t0D

αi+1
t using

(11). Therefore, one has

t0D
α1
t x1 =

{
f 21 + Δ1, α2 = 1,
f 11 + g11x2 + Δ1, 0 < α2 < 1,

⇒

t0D
α2|α1
t x1 =

{
t0D

α2
t

[
f 21 +Δ1

]
, α2=1,

t0D
α2
t

[
f 11 +g11x2+Δ1

]
,0<α2<1.

(23)

Employing (11), from (23) we get

t0D
α2|α1
t x1 = t0D

α2
t x2w

1
1 +

{
w1
2

}
(24)

where, according to Lemma 6,w1
1 andw1

2 are functions
that do not include t0D

α2
t x2. Similarly, given i = 2,

replace t0D
αi
t xi in (24) from (4) and then apply t0D

αi+1
t

using (11). Therefore, one has

t0D
α3|α2|α1
t x1

=
{
t0D

α3
t
[
f 32 + Δ2

]
w1
1 + {

w1
2

}
, α3=1,

t0D
α3
t
[
f 22 + g22x3 + Δ2

]
w1
1 + {

w1
2

}
, 0<α3<1,

⇒ t0D
α3|α2|α1
t x1 = t0D

α3
t x3w

2
1 +

{
w2
2

}

where w2
1 and w2

2 are functions that do not include

t0D
α3
t x3. Keeping performing these steps, the final

result for i = n − 1 will be formed as

t0D
αn |···|α2|α1
t x1 = ρ ( fn + gnu) + μ + hΔ, (25)

from which ρ, μ, and hΔ can be extracted, considering
that the terms includingΔ1,Δ2, . . . , Δn belong to hΔ.

Proof In the following, first, it is proved that the slid-
ing surface in (15) is stable. Then, it is shown that the
trajectory of e on the surface converges to the origin
asymptotically. For checking the stability of S(t), the
Lyapunov function

V (S) � 1

2
S2(t) (26)

is chosen. Using Lemma 3, one can write

t0D
γ
t V (S) ≤ S(t) t0D

γ
t S(t) . (27)
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Using e = y − yd and y = cyx1, from (15), it is con-
cluded that

t0D
γ
t S(t) =cyt0D

γ |β|αn |···|α2|α1
t x1 − t0D

γ |β|αn |···|α2|α1
t yd

+
m−1∑

l=0

cl t0D
γ | lβm | lαnm |···| lα2m | lα1m
t e. (28)

The goal of the n − 1 steps mentioned in the theorem,
using (11), is actually to develop the first term on the
right side of (28) and to replace t0D

αi+1
t xi+1, for i =

1, 2, . . . , n − 1, until a point where t0D
αn
t xn appears.

Therefore, it can be replaced using the dynamics of the
system in (4), and consequently u appears and can be
obtained such that S(t)t0D

γ
t S(t) < 0 holds. Regard-

ing (11), the terms resulting from applying t0D
αi+1
t to

its argument include a term which is the product of

t0D
αi+1
t xi+1 and another function that does not include

t0D
αi+1
t xi+1 plus an infinite number of other terms in

curly brackets that do not include t0D
αi+1
t xi+1, either.

That is, among these infinite terms resulting from a FO
derivative operator only one term is needed here. con-
sidering this point and performing the steps mentioned
in the theorem it is easy to infer that we expect to get

t0D
αn |···|α2|α1
t x1 = ρt0D

αn
t xn + μ + hn−1

Δ (29)

in step n − 1 where ρ and μ + hn−1
Δ do not include

t0D
αn
t xn and

hn−1
Δ � hΔ − ρΔn . (30)

Using the dynamics of the system in (4) we have

t0D
αn
t xn = fn + gnu + Δn . By replacing this in (29)

and using (30), one gets (25). Substituting (25) into
(28) yields

t0D
γ
t S(t) =cyt0D

γ |β
t [ρ ( fn + gnu) + μ + hΔ]

− t0D
γ |β|αn |···|α2|α1
t yd

+
m−1∑

l=0

cl t0D
γ | lβm | lαnm |···| lα2m | lα1m
t e. (31)

In view of Assumptions 1, 2 and 3, (20)–(22) are
nonsingular. Substituting (20)–(22) into (31), applying
some simplification using Lemma 1 and considering
(16) and γ ∈ (0, 1], gives

t0D
γ
t S(t) = −ks S(t) − cΔsign(S(t)) + cyt0D

γ |β
t hΔ.

(32)

Substituting (32) into (27) and utilizing (7) gives

t0D
γ
t V (S) ≤ − ks S

2(t)−cΔ |S(t)| + cyt0D
γ |β
t hΔS(t)

︸ ︷︷ ︸
non-positive

≤ − ks S
2(t) < 0. (33)

Therefore, based on Lemma 2, the sliding surface S(t)
is stable. In the following, it is shown that after the tra-
jectory of e reaches the surface at the reach time, t = tr ,
it converges to the origin asymptotically. Considering
S(tr ) = 0 and tacking the Laplace transform of (15)
using Lemma 7 gives

sβ+∑n
k=1 αk E(s)

+
m−1∑

l=0

cls
l
m (β+∑n

k=1 αk)E(s) − N (s, e(tr )) = 0 ⇒

E(s) = N (s, e(tr ))

sβ+∑n
k=1 αk +

m−1∑

l=0
cls

l
m (β+∑n

k=1 αk)

. (34)

where N (s, e(tr ) is a FO polynomial. According to [15,
pp. 19-22], E(s) in (34) is asymptotically stable if and
only if the roots of

λβ+∑n
k=1 αk +

m−1∑

l=0

clλ
l
m (β+∑n

k=1 αk) = 0 (35)

on the principal Riemann sheet, denoted by λl for
l = 1, 2, . . . ,m, satisfy the relation

|arg (λl)| >
π

2
,

which is equivalent to that the roots of (18) satisfy the

relation in (19) where r � λ
1
m (β+∑n

k=1 αk ). Moreover,
supposing that arg(θ) ∈ (−π, π] holds for a θ on the
complex plane, (17) guarantees that the area character-
ized in (19) is not null. Therefore, E(s) is stable and
the trajectory of e on it converges to the origin asymp-
totically. �
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In the following corollary, it is shown that the tra-
jectory of e reaches the sliding surface in finite time.

Corollary 1 Under the SMC designed in Theorem 1,
the trajectory of the error reaches the sliding surface
in finite time.

Proof From (33), it is deduced that there exists a finite,
positive constant such as cv > 0 such that

t0D
γ
t V (S) ≤ −cv. (36)

Considering t0 = 0, from (36) and (26), it is inferred
that there is a function such as hv(t) ≥ 0 such that

0.50D
γ
t S

2(t) = −cv − hv(t) . (37)

Taking the Laplace transform of (37) using (10), one
has

sγL
{
S2(t)

}
− sγ−1S2(0) = −cv

s
− Hv(s) ⇒

L
{
S2(t)

}
= S2(0)

s
− cv

sγ+1 − Hv(s)

sγ
. (38)

Regarding that L−1{1/sγ+1} = tγ /Γ (γ + 1) [15, p.
27] and also using (9), from (38) one gets

S2(t) = S2(0) − cvtγ

Γ (γ + 1)
− 0D

−γ
t hv(t) . (39)

Since hv(t) ≥ 0 holds, considering (2), we conclude
that 0D

−γ
t hv (t) ≥ 0 holds. Moreover, denoting the

reaching time with tr , S(tr ) = 0 holds. Hence, (39)
can result in

S2(0)− cvt
γ
r

Γ (γ + 1)
≥ 0 ⇒ tr ≤

(
S2(0) Γ (γ + 1)

cv

) 1
γ

.

Therefore, the reaching time, tr , is finite. �
Closed-form solutions for the functions ρ, μ, and

hΔ, used in the SMC law in (20)–(22), are obtained in
the following theorem.

Theorem 2 The functions ρ, μ, and hΔ, used in the
SMC law in (20)–(22) can be obtained with the rela-
tions

ρ =
n−1∏

i=1

ρi , (40)

μ =
n−1∑

i=1

t0D
αn |···|αi+2
t μi , (41)

and (6), where ρi was defined in (5), and

μi � μi (t, Xi+1) �
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0D
αi+1
t

[

f i+1
i

i−1∏

r=1
ρr

]

αi+1 = 1,

−t0D
αi+1
t xi+1

∂ f i+1
i

∂xi+1

i−1∏

r=1
ρr ,

t0D
αi+1
t

[

xi+1gii
i−1∏

r=1
ρr

]

0 < αi+1 < 1.

−t0D
αi+1
t xi+1gii

i−1∏

r=1
ρr

+t0D
αi+1
t f ii

i−1∏

r=1
ρr ,

Proof To prove this theorem, we follow the n−1 steps
mentioned in Theorem 1 to obtain t0D

αn |···|α2|α1
t as in

the form of (25). Using the dynamics of the system to
replace t0D

α1
t , we have

t0D
αn |···|α2|α1
t x1

= t0D
αn |···|α2
t

[
t0D

α1
t x1

]

= t0D
αn |···|α2
t

{
f 21 + Δ1, α2=1,
f 11 + g11x2 + Δ1, 0<α2<1.

(42)

By applying t0D
α2
t and t0D

α3
t to the expression in the

single curly bracket in (42), as steps 1 and 2, one will
obtain the relations in Boxes I and II, respectively.
Examining (43) and (44) in Boxes I and II, respec-
tively, one can discover the patterns based on which the
terms develop till appearing in step n−1. These terms,
in step k, include terms multiplied by t0D

αk+1
t xk+1

which reveal the pattern for ρ, terms appeared in
the curly brackets independent of Δ1,Δ2, . . . , Δk+1

which reveal the pattern forμ, and terms appeared in the
curly brackets depending on Δ1,Δ2, . . . , Δk+1 which
reveal the pattern for hn−1

Δ described in (30). Based on
the discovered patterns from (43) and (44), one expects
to obtain (29) in step n − 1 where ρ and μ will be in
the forms described in (40) and (41), respectively, and
hn−1

Δ will take form as
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Box I

t0D
α2|α1
t x1

=

{
t0D

α2
t f 21 + {

t0D
α2
t Δ1

}
, α2 = 1,

t0D
α2
t

[
f 11 + g11x2

] + {
t0D

α2
t Δ1

}
, 0 < α2 < 1,

=

⎧
⎪⎨

⎪⎩

t0D
α2
t x2

∂ f 21
∂x2

+
{

t0D
α2
t f 21 − t0D

α2
t x2

∂ f 21
∂x2

}

+ {
t0D

α2
t Δ1

}
, α2 = 1,

t0D
α2
t x2g11 + {

t0D
α2
t

[
x2g11

] − t0D
α2 x2g11

} + {
t0D

α2
t f 11

} + {
t0D

α2
t Δ1

}
, 0 < α2 < 1,

(43)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
f 32 + Δ2

] ∂ f 21
∂x2

+
{

t0D
α2
t f 21 − t0D

α2
t x2

∂ f 21
∂x2

}

+ {
t0D

α2
t Δ1

}
, α2 = 1, α3 = 1,

[
f 22 + g22x3 + Δ2

] ∂ f 21
∂x2

+
{

t0D
α2
t f 21 − t0D

α2
t x2

∂ f 21
∂x2

}

+ {
t0D

α2
t Δ1

}
, α2 = 1, 0 < α3 < 1,

[
f 32 + Δ2

]
g11 + {

t0D
α2
t

[
x2g11

] − t0D
α2
t x2g11

} + {
t0D

α2
t f 11

} + {
t0D

α2
t Δ1

}
, 0 < α2 < 1, α3 = 1,

[
f 22 + g22x3 + Δ2

]
g11 + {

t0D
α2
t

[
x2g11

] − t0D
α2
t x2g11

} + {
t0D

α2
t f 11

} + {
t0D

α2
t Δ1

}
, 0 < α2 < 1, 0 < α3 < 1.
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Box II

t0 D
α3 |α2 |α1
t x1

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0 D
α3
t

[

f 32
∂ f 21
∂x2

]

+
{

t0 D
α3
t

[

Δ2
∂ f 21
∂x2

]}

α2 = 1, α3 = 1,

+
{

t0 D
α3
t

[

t0 D
α2
t f 21 − t0 D

α2
t x2

∂ f 21
∂x2

]}

+
{

t0 D
α2+α3
t Δ1

}
,

t0 D
α3
t

[

x3g22
∂ f 21
∂x2

]

+
{

t0 D
α3
t

[

f 22
∂ f 21
∂x2

]}

+
{

t0 D
α3
t

[

Δ2
∂ f 21
∂x2

]}

α2 = 1, 0 < α3 < 1,

+
{

t0 D
α3
t

[

t0 D
α2
t f 21 − t0 D

α2
t x2

∂ f 21
∂x2

]}

+
{

t0 D
α2+α3
t Δ1

}
,

t0 D
α3
t

[
f 32 g

1
1

] + {
t0 D

α3
t

[
Δ2g11

]}
0 < α2 < 1, α3 = 1,

+ {
t0 D

α3
t

[
t0 D

α2
t

[
x2g11

] − t0 D
α2
t x2g11

]} +
{

t0 D
α2+α3
t f 11

}
+

{

t0 D
α2+α3
t Δ1

}
,

t0 D
α3
t

[
x3g22g

1
1

] + {
t0 D

α3
t

[
f 22 g

1
1

]} + {
t0 D

α3
t

[
Δ2g11

]}
0 < α2 < 1, 0 < α3 < 1,

+ {
t0 D

α3
t

[
t0 D

α2
t

[
x2g11

] − t0 D
α2
t x2g11

]} +
{

t0 D
α2+α3
t f 11

}
+

{

t0 D
α2+α3
t Δ1

}
,

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0 D
α3
t x3

∂ f 32
∂x3

∂ f 21
∂x2

+
{

t0 D
α3
t

[

f 32
∂ f 21
∂x2

]

− t0 D
α3
t x3

∂ f 32
∂x3

∂ f 21
∂x2

}

α2 = 1, α3 = 1,

+
{

t0 D
α3
t

[

Δ2
∂ f 21
∂x2

]}

+
{

t0 D
α3
t

[

t0 D
α2
t f 21 − t0 D

α2
t x2

∂ f 21
∂x2

]}

+
{

t0 D
α2+α3
t Δ1

}
,

t0 D
α3
t x3g22

∂ f 21
∂x2

+
{

t0 D
α3
t

[

x3g22
∂ f 21
∂x2

]

− t0 D
α3
t x3g22

∂ f 21
∂x2

}

+
{

t0 D
α3
t

[

f 22
∂ f 21
∂x2

]}

α2 = 1, 0 < α3 < 1,

+
{

t0 D
α3
t

[

Δ2
∂ f 21
∂x2

]}

+
{

t0 D
α3
t

[

t0 D
α2
t f 21 − t0 D

α2
t x2

∂ f 21
∂x2

]}

+
{

t0 D
α2+α3
t Δ1

}
,

t0 D
α3
t x3

∂ f 32
∂x3

g11 +
{

t0 D
α3
t

[
f 32 g

1
1

] − t0 D
α3
t x3

∂ f 32
∂x3

g11

}

+ {
t0 D

α3
t

[
Δ2g11

]}
0 < α2 < 1, α3 = 1,

+ {
t0 D

α3
t

[
t0 D

α2
t

[
x2g11

] − t0 D
α2
t x2g11

]} +
{

t0 D
α2+α3
t f 11

}
+

{

t0 D
α2+α3
t Δ1

}
,

t0 D
α3
t x3g22g

1
1 + {

t0 D
α3
t

[
x3g22g

1
1

] − t0 D
α3
t x3g22g

1
1

} + {
t0 D

α3
t

[
f 22 g

1
1

]}
0 < α2 < 1, 0 < α3 < 1,

+ {
t0 D

α3
t

[
Δ2g11

]} + {
t0 D

α3
t

[
t0 D

α2
t

[
x2g11

] − t0 D
α2
t x2g11

]} +
{

t0 D
α2+α3
t f 11

}
+

{

t0 D
α2+α3
t Δ1

}
,

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
f 43 + Δ3

] ∂ f 32
∂x3

∂ f 21
∂x2

+
{

t0 D
α3
t

[

f 32
∂ f 21
∂x2

]

− t0 D
α3
t x3

∂ f 32
∂x3

∂ f 21
∂x2

}

α2 = 1, α3 = 1, α4 = 1,

+
{

t0 D
α3
t

[

Δ2
∂ f 21
∂x2

]}

+
{

t0 D
α3
t

[

t0 D
α2
t f 21 − t0 D

α2
t x2

∂ f 21
∂x2

]}

+
{

t0 D
α2+α3
t Δ1

}
,

[
f 33 + g33 x4 + Δ3

] ∂ f 32
∂x3

∂ f 21
∂x2

+
{

t0 D
α3
t

[

f 32
∂ f 21
∂x2

]

− t0 D
α3
t x3

∂ f 32
∂x3

∂ f 21
∂x2

}

α2 = 1, α3 = 1, 0 < α4 < 1,

+
{

t0 D
α3
t

[

Δ2
∂ f 21
∂x2

]}

+
{

t0 D
α3
t

[

t0 D
α2
t f 21 − t0 D

α2
t x2

∂ f 21
∂x2

]}

+
{

t0 D
α2+α3
t Δ1

}
,

[
f 43 + Δ3

]
g22

∂ f 21
∂x2

+
{

t0 D
α3
t

[

x3g22
∂ f 21
∂x2

]

− t0 D
α3
t x3g22

∂ f 21
∂x2

}

+
{

t0 D
α3
t

[

f 22
∂ f 21
∂x2

]}

α2 = 1, 0 < α3 < 1, α4 = 1,

+
{

t0 D
α3
t

[

Δ2
∂ f 21
∂x2

]}

+
{

t0 D
α3
t

[

t0 D
α2
t f 21 − t0 D

α2
t x2

∂ f 21
∂x2

]}

+
{

t0 D
α2+α3
t Δ1

}
,

[
f 33 + g33 x4 + Δ3

]
g22

∂ f 21
∂x2

+
{

t0 D
α3
t

[

x3g22
∂ f 21
∂x2

]

− t0 D
α3
t x3g22

∂ f 21
∂x2

}

+
{

t0 D
α3
t

[

f 22
∂ f 21
∂x2

]}

α2 = 1, 0 < α3 < 1, 0 < α4 < 1,

+
{

t0 D
α3
t

[

Δ2
∂ f 21
∂x2

]}

+
{

t0 D
α3
t

[

t0 D
α2
t f 21 − t0 D

α2
t x2

∂ f 21
∂x2

]}

+
{

t0 D
α2+α3
t Δ1

}
,

[
f 43 + Δ3

] ∂ f 32
∂x3

g11 +
{

t0 D
α3
t

[
f 32 g

1
1

] − t0 D
α3
t x3

∂ f 32
∂x3

g11

}

+ {
t0 D

α3
t

[
Δ2g11

]}
0 < α2 < 1, α3 = 1, α4 = 1,

+ {
t0 D

α3
t

[
t0 D

α2
t

[
x2g11

] − t0 D
α2
t x2g11

]} +
{

t0 D
α2+α3
t f 11

}
+

{

t0 D
α2+α3
t Δ1

}
,

[
f 33 + g33 x4 + Δ3

] ∂ f 32
∂x3

g11 +
{

t0 D
α3
t

[
f 32 g

1
1

] − t0 D
α3
t x3

∂ f 32
∂x3

g11

}

+ {
t0 D

α3
t

[
Δ2g11

]}
0 < α2 < 1, α3 = 1, 0 < α4 < 1,

+ {
t0 D

α3
t

[
t0 D

α2
t

[
x2g11

] − t0 D
α2
t x2g11

]} +
{

t0 D
α2+α3
t f 11

}
+

{

t0 D
α2+α3
t Δ1

}
,

[
f 43 + Δ3

]
g22g

1
1 + {

t0 D
α3
t

[
x3g22g

1
1

] − t0 D
α3
t x3g22g

1
1

} + {
t0 D

α3
t

[
f 22 g

1
1

]}
0 < α2 < 1, 0 < α3 < 1, α4 = 1,

+ {
t0 D

α3
t

[
Δ2g11

]} + {
t0 D

α3
t

[
t0 D

α2
t

[
x2g11

] − t0 D
α2
t x2g11

]} +
{

t0 D
α2+α3
t f 11

}
+

{

t0 D
α2+α3
t Δ1

}
,

[
f 33 + g33 x4 + Δ3

]
g22g

1
1 + {

t0 D
α3
t

[
x3g22g

1
1

] − t0 D
α3
t x3g22g

1
1

} + {
t0 D

α3
t

[
f 22 g

1
1

]}
0 < α2 < 1, 0 < α3 < 1, 0 < α4 < 1.

+ {
t0 D

α3
t

[
Δ2g11

]} + {
t0 D

α3
t

[
t0 D

α2
t

[
x2g11

] − t0 D
α2
t x2g11

]} +
{

t0 D
α2+α3
t f 11

}
+

{

t0 D
α2+α3
t Δ1

}
,

(44)
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hn−1
Δ =

n−1∑

k=1

t0D
αn |···|αk+1
t

[

Δk

k−1∏

r=1

ρr

]

. (45)

By replacing (45) and t0D
αn
t xn , using the dynamics of

the system, in (29) one gets (25) where hΔ is obtained
with (6). �

The following remark gives some hints to select the
design parameters of the offered controller.

Remark 2 In Theorem 1, as for γ and β, choosing
γ = 1 and non-negative integers for β which lead
to integer-order operators reduces computational bur-
den compared to other values which lead to FO oper-
ators. Moreover, it is obvious that there are infinite
choices for the values of β and m for which (16) and
(17) hold. It is suggested that the values for β and m
be selected in such a way that β + ∑n

k=1 αk ≈ m
holds. This selection causes the FO polynomial in (35),
from which (18) is originated, to tend to an integer-
order polynomial whose dynamical behavior tuning is
more convenient via selecting appropriate values for
cl to place its roots at desired points. In the case of
α1 = α2 = · · · = αn = 1, the selections of β = 0 and
m = n are the most convenient. It follows that there is
no need for m to be selected larger than n.

With regard to Theorems 1 and 2 and Remark 2, the
following algorithm is suggested to obtain the param-
eters and the SMC law for the system in (4).

Design Algorithm:

1. Obtainρ,μ, and hΔ according to (40), (41), and (6).
2. Choose values for γ ∈ (0, 1], preferably γ = 1,

and ks ∈ (0,∞).
3. If α1 = α2 = · · · = αn = 1, select β = 0 and

m = n, and go to 5. Otherwise, go to the next step.
4. Choose values for β ≥ 0, preferably an integer,

and m ∈ {1, 2, . . . , n} such that (17) holds while
β + ∑n

k=1 αk is close to m as much as possible.
5. Calculate c0, c1, . . . , cm−1 such that the roots of

(18) satisfy (19). 6. Obtain S(t) and u according to
(15) and (20).

The SMC design method presented in this work is
based on designing one sliding surface in one step,
based on the presented closed-form solution, rather

than designing sliding surfaces and virtual inputs in
n steps. This increases the simplicity and applicability
of the method to large extend. The following remark
reveals these advantages compared to the state-of-the-
art.

Remark 3 A comparison between the SMC design
method suggested in this work for the FO nonstrict-
feedback nonlinear systems formed as (4) and the only
SMC design method in the literature offered for these
systems by the work of [31], as the state-of-the-art, is
presented as follows:

• The number of design parameters in this work, in
a worst-case scenario, is n + 4 (ks , γ , m, β, and
cl where l = 0, 1, . . . , n − 1), but that in [31],
excluding the design parameters used in the both
fuzzy system and adaptive laws, is 3n + 4 (ci , k1i ,
k2i , k, ξ , r , and q where i = 1, 2, . . . , n).

• In this work, since 0 < αi ≤ 1 holds for
i = 1, 2, . . . , n, it is applicable to the systems
of both commensurate and incommensurate orders
and also systems with a mixture of integer-order
and FO dynamics. However, in [31], since αi = α

for i = 1, 2, . . . , n and 0 < α < 1 hold, it is appli-
cable only to the systems of commensurate order
and systems with only FO dynamics.

• In this work, 0 < αi ≤ 1 holds for i = 1, 2, . . . , n.
Therefore, it is applicable to the systems with
derivatives of any order. However, the work of [31]
is applicable to the systems with 0 < α < 1 and
3/4 < α(1 + α), that is, only the systems with
0.83 ≤ α < 1.

Though this article focused merely on a new SMC
design method for FO nonstrict-feedback nonlinear
systems, issues such as saturation, fault, and estimation
of disturbances and uncertainties could be incorporated
into the presented design method with different tech-
niques introduced in the literature [26,31,36], which
could be further investigated by interested researchers.

4 Numerical example

In this section, the efficiency of the control law design
methodoffered in the last section is illustrated by apply-
ing it to amodel arising from a practical loudspeaker. In
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[24], the FO model of a loudspeaker was identified as

u(t) = Rei(t) + Bl(x)
dx(t)

dt
+ 0D

b
t

[
Lβ(x) i(t)

]
,

(46)

Bl(x) i(t) = Mt
d2x(t)

dt2
+ Rm

dx(t)

dt
+ η(x) 0D

a
t x(t)

+ K (x) x(t) − i2(t)

2

dLβ(x)

dx
, (47)

y(t) = x(t) , (48)

where the input voltage, u(t), and the cone displace-
ment, x(t), are the input and the output, respectively.
The superiority of thismodel over conventional integer-
order models was shown by the aforementioned work
both numerically and experimentally. As can be seen,
this model is a mixture of integer-order and FO deriva-
tives.While there is no SMC designmethod in the liter-
ature for such a model, in the following, a SMC law is
designed for this model using the theorems presented
in the last section. One can check that the model in
(46)–(48), after some manipulation, can be formulated
as (4) where

n = 4, α1 = a, α2 = 1 − a, α3 = 1,

α4 = b, cy = 1, j = ∅,

x1 = x(t) , x2 = 0D
a
t x(t) , x3 = dx(t) /dt,

x4 = Lβ(x) i(t) ,

f 11 = 0, g11 = 1,Δ1 = 0, f 32 = x3,Δ2 = 0,

f 33 = −K (x1)

Mt
x1 − η(x1)

Mt
x2 − Rm

Mt
x3,

g33 = Bl(x1)

Mt Lβ(x1)
,Δ3 = dLβ(x1)/dx1

2Mt L2
β(x1)

x24 ,

f4 = −Bl(x1) x3 − Re

Lβ(x1)
x4, g4 = 1,

whose the numerical values of the relevant parameters
are

a = 0.116, b = 0.890,

Re = 7.23, Mt = 0.582 × 10−3, Rm = 0.089,

Bl (x1) = − 0.4163x41 − 0.2567x31 − 0.3172x21
+ 0.0295x1 + 2.5479,

Lβ (x1) = 10−3(−0.0636x41 − 0.0113x31

− 0.0305x21 − 0.0735x1 + 0.5824),

K (x1) = 102(0.3561x41 − 0.1619x31

+ 0.6245x21 + 0.4177x1 + 1.9999),

η (x1) = 102(−0.8325x41 + 0.1665x31 + 1.3070x21
+ 2.2561x1 + 4.0854).

Note that f 33 , g
3
3, and Δ3 have been determined using

Remark 1. For a conventional loudspeaker, the param-
eters of Bl(x1), Lβ(x1), K (x1), and η(x1) are posi-
tive, and their derivatives exit and are bounded [14].
Therefore, f 11 , g

1
1, f

3
2 , f

3
3 , g

3
3, f4, and g4 are continu-

ous and locally Lipschitz. Considering that |x1| ≤ 0.5
mm holds in practice, this systemmeets Assumption 1.
Although no uncertainties was considered by [24] in
the fourth equation, assume

Δ4 = x1 cos (t) + 0.2 sin (200π t) .

Using Theorem 2, we have

ρ1 = ρ2 = 1, ρ3 = ρ = g33,

μ1 = μ2 = 0, μ3 = μ = 0D
α4
t

[
x4g

3
3

]

− 0D
α4
t x4g

3
3 + 0D

α4
t f 33 ,

hΔ = 0D
α4
t Δ3 + Δ4ρ3.

Regarding Remark 2 and Theorem 1, let γ = 1,
β = 0, and m = 3. Consider also ks = 500. More-
over, to place the roots of (18) at −5 × 103, one has
c0 = 1.25× 108, c1 = 7.5× 107, and c2 = 1.5× 104.
Further, let cΔ = 4.7×108 tomeet Assumption 2. Sup-
pose yd = 10−3[0.4 sin(100π t) + 0.2 sin(200π t) +
0.1 sin(400π t)]which satisfies Assumption 3. The cal-
culated parameters are substituted into the control law
described in (20)–(22), and the control law is applied
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Fig. 1 The output (blue solid line) and reference input (red
dashed line) of (46)–(48), in millimeter, using the SMC law
designed based on Theorems 1 and 2

to (46)–(48). The simulations are performed using the
Simulink ofMATLAB, and the FO derivative operators
are implemented using Toolkit [21]. The sampling time
rate and initial values are chosen as 96 kHz (a standard
rate in audio applications) and [−3 × 10−3, 0, 0, 0],
respectively. The output is obtained as displayed in
Fig. 1, where the blue solid line and the red dashed
line show the output and the reference input, respec-
tively. As can be seen, the output asymptotically tracks
the reference input. The tracking error and the sliding
surface have been also plotted in Figs. 2 and 3.

According to Remark 3, while the SMC design
method suggested here was applied to the system in
(46)–(48) easily, the one presented by [31] is not appli-
cable to this system because of three reasons: α1 	=
α2 	= α3 	= α4; α4 < 0.83; and α3 = 1. Moreover,
the number of design parameters in the method offered
here for this example is 7, but that in the method intro-
duced by [31] for a system with n = 4 is 16.

5 Conclusion

Unlike the Leibniz rule for integer-order derivatives
of the product of two functions which includes only
two terms, the rule for FO derivatives of that includes
an infinite number of terms. This challenge caused
the sliding mode control (SMC) design methods intro-
duced in the literature so far to be applicable to a very
limited class of FO nonlinear systems. In this article,
it was shown that only one of these infinite terms is

Fig. 2 Output tracking error

Fig. 3 Sliding surface, S(t)

needed to design a SMC law for a class of incommen-
surate FO nonstrict-feedback systems, and thereby, an
algorithm was offered to design a new SMC design
method which decreased the number of design param-
eters and increased the applicability of the method to
large extend, compared to the state-of-the-are. Stability
and finite-time convergence of the suggested method
was proved. Moreover, a closed-form solution was
presented for the algorithm which offers the designer
a simple tool to design the controller. The merit of
the presented design method was illustrated through
a numerical example.
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