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Abstract— Gesture recognition using low-resolution 
instantaneous high-density surface electromyography (HD-
sEMG) images opens up new avenues for the development of more 
fluid and natural muscle-computer interfaces. However, the data 
variability between inter-session and inter-subject scenarios 
presents a great challenge. The existing approaches employed very 
large and complex deep ConvNet or 2SRNN-based domain 
adaptation methods to approximate the distribution shift caused 
by these inter-session and inter-subject data variability. Hence, 
these methods also require learning over millions of training 
parameters and a large pre-trained and target domain dataset in 
both the pre-training and adaptation stages. As a result, it makes 
high-end resource-bounded and computationally very expensive 
for deployment in real-time applications. To overcome this 
problem, we propose a lightweight All-ConvNet+TL model that 
leverages lightweight All-ConvNet and transfer learning (TL) for 
the enhancement of inter-session and inter-subject gesture 
recognition performance. The All-ConvNet+TL model consists 
solely of convolutional layers, a simple yet efficient framework for 
learning invariant and discriminative representations to address 
the distribution shifts caused by inter-session and inter-subject 
data variability. Experiments on four datasets demonstrate that 
our proposed methods outperform the most complex existing 
approaches by a large margin and achieve state-of-the-art results 
on inter-session and inter-subject scenarios and perform on par or 
competitively on intra-session gesture recognition. These 
performance gaps increase even more when a tiny amount (e.g., a 
single trial) of data is available on the target domain for 
adaptation. These outstanding experimental results provide 
evidence that the current state-of-the-art models may be 
overparameterized for sEMG-based inter-session and inter-
subject gesture recognition tasks.  

Index Terms— Transfer learning, domain adaptation, 
convolutional neural network, recurrent neural network, feature 
extraction, muscle-computer interface, surface electromyography, 
EMG, gesture recognition 

I. INTRODUCTION

ESTURE recognition based on surface electromyography 
(sEMG) signals has been a core technology for developing 

next-generation muscle-computer interfaces (MCIs). The major 
application domains of sEMG-based MCIs are non-intrusive 
control of active prosthesis [1], wheelchairs [2], exoskeletons 
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[3] or neurorehabilitation [4], neuromuscular diagnosis [5] and
providing interaction methods for video games [6], [7]. The
existing approaches for gesture recognition using sparse multi-
channel sEMG sensors and classical machine learning methods
– such as linear discriminant analysis (LDA) [8], support vector
machines (SVM) [9], hidden Markov model (HMM) [10] – on
windowed descriptive and discriminative time-domain,
frequency-domain and/or time-frequency-domain sEMG
feature space [11], [12-16]. However, these sparse multi-
channel sEMG-based methods are not suitable for real-world
applications due to their lack of robustness to electrode shift and 
positioning [17], [18]. In addition, malfunction to any of these
sparse-channel electrodes leads to retraining the entire MCI
system. Deep learning-based methods have recently been
exploited for gesture recognition using sparse multi-channel
sEMG [19-20], [31-32], [61], [68] but their performance is still
far from optimum [64].
To address this problem, designing and developing more
flexible, convenient, and comfortable high-density sEMG
(HD-sEMG) based myoelectric sensors and efficient pattern
recognition algorithms have been major research directions in
recent years [17-18], [21-30], [36]. However, the existing HD-
sEMG-based gesture recognition methods [17-18], [28], [30]
still rely on the windowed sEMG (e.g., range between 100 ms
and 300 ms [33], [34]), which demands finding an optimal
window length. The determination of an optimal window length 
represents a strong trade-off between classification accuracy
and controller delay, both of which increase with an increase in
window size.
To further address this problem, distinctive patterns within
instantaneous sEMG images were first discovered by Geng et
al. [21] and M.R. Islam et al. [22] to develop more fluid and
natural muscle-computer interfaces (MCIs). The instantaneous
values of HD-sEMG signals at each sampling instant were
arranged in a 2D grid in accordance with the electrode
positioning. Subsequently, this 2D grid was transformed into a
grayscale sEMG image. Therefore, an instantaneous sEMG
image represents a relative global measure of the physiological
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processes underlying neuromuscular activities at a given time. 
Consequently, gesture recognition is performed solely with the 
sEMG images spatially composed from HD-sEMG signals 
recorded at a specific instant.  
Motivated by these prior works, further studies have been 
conducted on this promising new research direction over the 
years [23-27], [29], [36]. However, the state-of-the-art methods 
[21], [23], [24] for sEMG-based gesture recognition either 
employed very complex deep and wide CNN or an ensemble of 
these complex networks for improved gesture recognition 
performance. Despite the significant performance boost 
achieved by these state-of-the-art models [21], [23], [24], the 
heavy computational and intensive memory cost hinders 
deploying them on resource-constrained embedded and mobile 
devices for real-time applications.  
In addition, the sEMG-based gesture recognition problem 
becomes more challenging in the operational conditions or an 
inter-session scenario, where the trained model is used to 
recognize muscular activities in a new recording session 
because sEMG signals are highly subject-specific. The 
distributions of the sEMG signals vary considerably even 
between recording sessions of the same subject within the same 
experimental setup. The acquired sEMG signals in a new 
recording session (target domain or task) differ from those 
obtained during the training session (source domain or task) 
because of electrode shifts, changes in arm posture, and slow 
time-dependent changes such as fatigue and electrode-skin 
contact impedance [1][26]. Inter-session is often referred to as 
inter-subject when the training and test data are acquired from 
different subjects. Moreover, it is always challenging to force 
the users to maintain a certain level of muscular contraction 
force in real-time applications. Therefore, the developed 
methods must also cope with the distribution shift occurred by 
this voluntary muscular contraction force level.  
To attenuate these distribution shifts between different sEMG 
recording sessions, the pre-trained models have been pre-
dominantly adopted by the existing approaches [26], [31], [32], 
and [57] to reduce the distribution shift by fine-tuning the 
sEMG data recorded in the different session (target domain or 
task). Fine-tuning updates the parameters of the pre-trained 
models to train to newly recorded sEMG data. Generally, the 
output layer of the pre-trained models is extended with 
randomly initialized weights. A small learning rate is used to 
fine-tune all the parameters from their original values to 
minimize the loss on the newly recorded sEMG data. Using 
appropriate hyper-parameters for training, the resulting fine-
tuned model often outperforms learning from a randomly 
initialized network [40].  
Generally, this pre-training and fine-tuning process can be 
considered a special case of domain adaptation when the source 
task and the target task are the same or transfer learning when 
the tasks are different. However, for sEMG-based gesture 
recognition scenarios, we reframed this problem as transfer 
learning when the sEMG data for training and inference are 
recorded at a different session. Fig. 1 illustrates the conceptual 
diagram of our proposed transfer-learning methods for 

sEMG-based gesture recognition.  
Transfer learning is typically performed by taking a standard 
architecture along with its pre-trained weights and then fine-
tuning the target task. However, the state-of-the-art methods 
[21], [23], [26], and [61] for sEMG-based gesture recognition 
employed very large and deep pre-trained models, therefore, 
containing millions of parameters which are designed to be 
trained with large-scale labeled sEMG datasets. The 
requirement of high-end computing resources and large-scale 
pre-trained datasets are also bounded by large and deep 
network structures [25]. As far as we are aware, there has been 
no research for sEMG-based gesture recognition studying the 
effects of transfer learning on the smaller, simpler, and 
lightweight CNN. This line of investigation is especially crucial 
in the sEMG-based gesture recognition because the pre-trained 
model is often deployed in real-time MCI applications such as 
assistive technology and physical rehabilitation where fine-
tuning in the target domain must be conducted in the data-

a) 

b) 

 
c) 

Fig. 1. A general conceptual diagram of the transfer learning method 
(a) Pre-trained model (b) Fine-tuned model and (c) Feature extraction 
process. sEMG images and labels used for adaptation are shown. 
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starved condition because of the difficulty of acquiring data 
from the amputees, elderly peoples, and patients, etc. Also, the 
large computationally expensive models might significantly 
impede mobile and on-device applications, where power 
consumption, data memory, and computational speed are 
constraints. To investigate the effects of transfer learning for 
sEMG-based gesture recognition, our research is motivated by 
the following research questions- does feature reuse takes place 
during fine-tuning or transfer learning? And if yes, where 
exactly is it in the network? 
Investigating feature reuse, we find out that some of the 
differences from transfer learning are due to the over-
parametrization of the state-of-the-art, more complex pre-
trained models rather than sophisticated feature reuse. 
Additionally, we discovered that a simple, lightweight model 
can outperform the more complex and computationally 
demanding state-of-the-art network architectures. We isolate 
where useful feature reuse occurs and outline the implications 
for more efficient lightweight model exploration. 
In this paper, we perform a fine-grained study on fine-tuning 
and transfer learning for sEMG-based gesture recognition. Our 
main contributions are: 
(1) We introduce All-ConvNet+TL model, which leverages the 

lightweight All-ConvNet and transfer learning to address 
the distribution shift in inter-session and inter-subject 
sEMG-based gesture recognition and evaluate it against the 
more complex state-of-the-art network architectures. Our 
proposed method leveraging lightweight All-ConvNet and 
transfer learning outperforms the state-of-the-art methods 
by a large margin, both when the data from a single trial or 
multiple trials are available for fine-tuning/adaptation. The 
outstanding inter-session and inter-subject gesture 
recognition performance achieved by the proposed 
lightweight models raises the question of whether the 
current state-of-the-art models are overparameterized for 
the sEMG-based gesture recognition problem.     

(2) Using further analysis and weight transfusion experiments, 
where we partially reuse pre-trained weights, we identify 
locations where meaningful feature reuse occurs and 
explore hybrid approaches to transfer learning. These 
approaches involve using a subset of pre-trained weights 
and redesigning other parts of the network to make them 
more lightweight.  

(3) We conducted more extensive experiments. A performance 
evaluation on CapgMyo and its four (4) publicly available 
HD-sEMG sub-datasets was performed on three different 
sEMG-based gesture recognition tasks: intra-session, inter-
session, and inter-subject scenarios. The results showed that 
our lightweight models outperformed the more complex 
state-of-the-art models on various tasks and datasets.   

The rest of the paper is structured as follows: Section II reviews 
current state-of-the-art methods for sEMG-based gesture 
recognition, Section III presents the proposed transfer learning 
framework, while Section IV presents the lightweight All-
ConvNet model architecture and its design principles. 
Section V introduces the proposed transfer learning design 

methodology by leveraging lightweight All-ConvNet (All-
ConvNet+TL). Section VI describes the experimental 
framework, and Section VII demonstrates the state-of-the-art 
results for inter-session and inter-subject gesture recognition 
and very competitive results for intra-session gesture 
recognition, obtained from experiments conducted on 
CapgMyo and its four (4) sub-datasets. Section VIII highlights 
the state-of-the-art performance achieved by the proposed All-
ConvNet+TL and discusses some important findings. Finally, 
Section IX provides some conclusive remarks. 

II. RELATED WORK 
In this section, we present an overview of current state-of-the 
art methods for sEMG-based gesture recognition. Many efforts 
have been devoted to proposing novel deep learning methods to 
enhance the accuracy of sEMG-based gesture recognition. 
Geng et al. [21] employed a deep convolutional neural network 
(CNN or ConvNet) to recognize hand gestures from the sEMG 
images and showed high recognition accuracy on publicly 
available benchmark HD-sEMG datasets [15], [17], [26]. M. R.  
Islam et al. [22] proposed to use Histogram of Oriented 
Gradients (HoG) as discriminative features and an SVM-based 
feature classification algorithm for high-density EMG images, 
achieving accurate classification of 8 gestures [11]. Motivated 
by [21] and [22], further studies have been conducted in recent 
years [23-27], [29], [36]. Wei et al. [23] proposed a two-stage 
convolutional neural network (CNN) with a multi-stream 
decomposition stage and a fusion stage to learn the correlation 
between certain muscles and specific gestures. The sEMG 
image is decomposed into different equally sized image patches 
based on the layout of the electrode arrays on muscles (e.g., 
each of eight 8×2 electrode arrays in the CapgMyo database 
[26] individually produces 8×2 equal-sized sEMG image 
patches). Then, each of these sEMG image patches is 
independently and in parallel passed through the convolution 
layers of a single-stream CNN [21], thereby forming a multi-
stream CNN. The learned features from all the single-stream 
CNNs that form a multi-stream CNN are aggregated and fed to 
a fusion network for gesture recognition. The reported results 
showed that multi-stream CNN outperformed single-stream 
CNN by a small margin. Hu et al. [24] proposed a combined 
CNN-RNN module to capture both spatial and temporal 
information of sEMG signals for gesture recognition. The 
recorded sEMG signals were decomposed into small 
subsegments using a sliding and overlapping windowing 
strategy. Each of these sEMG subsegments was converted into 
an sEMG image and simultaneously passed through a multi-
stream CNN built upon [21] for feature extraction. Given the 
input sequence of the extracted features corresponding to each 
of the sEMG subsegments, a long short-term memory (LSTM) 
network was learned individually for gesture recognition. Then, 
the features learned by each of these LSTMs corresponding to 
each of these sEMG subsegments were concatenated before 
being fed to a fully connected and SoftMax layer for gesture 
recognition. Experimental results indicate that a combined 
CNN-RNN module outperforms the stand-alone CNN and 
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RNN frameworks, respectively. Encouraged by [38], Chen et 
al. proposed to use of 3D convolution in the convolutional 
layers of CNNs for spatial and temporal representation of 
sEMG images [36]. The 3D convolution is attained by 
convolving a 3D kernel to the cube formed by stacking multiple 
adjacent sEMG image frames. The feature maps in the 
convolution layers of a 3D CNN are connected to multiple 
adjacent sEMG image frames in the previous layer. Hence, the 
spatiotemporal information is captured. However, multiple 3D 
convolutions with distinct kernels are required to apply at the 
same location of the input to learn representative features, 
which makes 3D CNN computationally expensive. For 
example, the exploited 3D CNN in [36] requires learning over 
˃30M (million) parameters when the length of the input cube is 
set to 10 (i.e., the cube is formed by stacking 10 consecutive 
sEMG image frames).  
However, current state-of-the-art methods [21], [23], [24] 
employed complex deep and wide CNNs or network ensembles 
for enhanced gesture recognition performance. For example, 
Geng et al. [21] exploited a DeepFace [35] like very large and 
deep CNN (dubbed as GengNet), which requires learning 
>5.63M (million) training parameters only during fine-tuning 
and pre-trained on a very large-scale labeled sEMG training 
datasets. The complexity of this model grows linearly as the 
input size is increased due to the use of an unshared weight 
strategy [27]. Wei et al. [23] used an ensemble of eight (8) 
single-stream GengNet at the decomposition stage only. Hu et 
al. [24], used a two-stage ensemble network in which an 
ensemble of multiple single-stream GengNet was used for 
spatial feature learning, resulting in multiple sequences of 1-D 
feature representation. Then, these 1-D feature sequences were 
passed to an ensemble of LSTM networks before a SoftMax 
layer recognized the targeted gesture. Hence, deploying these 
state-of-the-art models [21], [23], and [24] on embedded and 
mobile devices for real-time applications becomes 
cumbersome, despite achieving significant performance gains. 
Therefore, the demand for designing low-cost, lightweight 
networks is highly increasing for low-end resource-limited 
embedded and mobile devices. 
To overcome these problems, more recently, low-latency and 
parameter-efficient S-ConvNet [25] and All-ConvNet [27] have 
been introduced, targeting sEMG-based gesture recognition on 
low-end devices. S-ConvNet [25] was designed to learn sEMG 
image representation from scratch through random 
initialization. S-ConvNet consists of a network with 
convolution layers with the shared kernel, a fully connected 
layer with a small number of neurons, and an occasional 
dimensionality reduction performed by stridden CNN, 
demonstrating very competitive gesture recognition accuracy 
while needing to be learnt ≈  1/4𝑡𝑡ℎ learning parameters using 
a ≈  12 ×  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 compared to the more complex 
and high-end resource-bounded state-of-the-art [21]. A similar 
CNN architecture to that of S-ConvNet is used by Tam et al. 
[29] for a fully embedded adaptive real-time sEMG-based 
gesture recognition. Striving to find a simpler and more 
efficient lightweight network, in our recent work [27], a new 

architecture called All-ConvNet was introduced that consists 
solely of convolutional layers and is designed to be more 
efficient and less computationally intensive than the existing 
state-of-the-art models for sEMG-based gesture recognition. 
Comparing the performance of All-ConvNet to other state-of-
the-art models shows that it achieves competitive or state-of-
the-art performance on a current benchmark HD-sEMG dataset 
[26], while being significantly lighter, more efficient, and faster 
to train and evaluate. All-ConvNet was designed based on the 
finding of fact that if the sEMG image area covered by units in 
the topmost convolutional layer covers a portion of the image 
large enough to recognize its content (i.e., gesture class we 
want to recognize). This leads to predictions of sEMG image 
classes at different positions which can then simply be averaged 
over the whole image. Hence, the All-ConvNet becomes robust 
to translations and geometric distortions, which can be very 
effective in addressing the electrode shift and positioning 
problem in sEMG-based gesture recognition. 
Moreover, pre-trained models have been employed by [26], 
[31], [32], and [57] to mitigate distribution shifts by fine-tuning 
on the target domain or task for sEMG-based gesture 
recognition in inter-session and inter-subject scenarios. 
Currently, Du et al. [26] and Ketyko et al. [57] present state-of-
the-art solutions for sEMG-based gesture recognition in inter-
session and inter-subject scenarios. Du et al. [26] propose a 
multi-source extension to the classical adaptive batch 
normalization (AdaBN) technique [37], combined with their 
most complex deep and large CNN architecture [21]. They 
employ AdaBN with the hypothesis that the layer weights 
contain discriminative knowledge related to different hand 
gestures, while the statistics of the BatchNorm layer [55] 
represent discriminative knowledge from different recording 
sessions in inter-session or inter-subject scenarios [37]. The 
parameters of the pre-trained model's AdaBN [21] are updated 
using an unsupervised approach for adaptation in the target 
domain. However, a drawback of this solution arises when 
dealing with multiple sources (i.e., multiple subjects), as 
specific constraints and considerations must be imposed for 
each source during the pre-training phase of the model [57]. 
Ketyko et al. [57] proposed a 2-Stage recurrent neural networks 
(2SRNN), where a deep stacked RNN sequence classifier was 
used for pre-training on the source dataset. Then, the weights of 
the pre-trained deep-stacked RNN classifier were frozen. At the 
same time, a fully connected layer without a non-linear 
activation function was trained in a supervised manner on the 
target dataset for domain adaptation. More explicitly, the deep-
stacked RNN classifier was used as a feature extractor by 
freezing its weight in the domain adaptation stage. However, 
ConvNet is computationally more efficient and powerful in 
extracting discriminative features than RNN, even for 
classification tasks involving long sequences [58], [59]. Unlike 
these works, the proposed All-ConvNet+TL model capitalizes 
the inherent invariant properties of translations and geometric 
distortions in All-ConvNet and investigates the feasibility of 
applying transfer learning (TL) on the smaller, simpler, and 
lightweight All-ConvNet to address the distribution shift and 
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learn invariant, discriminative representations for efficient 
sEMG-based gesture recognition in inter-session and inter-
subject scenarios. 

III. THE PROPOSED TRANSFER LEARNING FRAMEWORK 
The proposed transfer learning framework for sEMG-based 
gesture recognition using instantaneous HD-sEMG images 
includes the following three major computational components: 
(i) a lightweight model development (ii) pre-training, and (iii) 
fine-tuning. A schematic diagram of the proposed transfer 
learning framework for sEMG-based gesture recognition is 
shown in Fig. 1. Firstly, we devised a lightweight All-ConvNet 
model. Secondly, the proposed lightweight All-ConvNet was 
pre-trained (e.g., Fig. 1a) using a large amount of gesture data 
acquired by HD-sEMG in a single session or over multiple 
sessions, which may also involve multiple gestures, trials, and 
subjects, respectively. Then, the pre-trained model was saved 
and deployed for subject-specific/personalized classifier 
development, as sEMG-based wearable devices are usually 
worn by a single user while executing a target task. Typically, 
input-side layers that play the role of feature extraction are 
copied from a pre-trained network and kept frozen or fine-tuned 
(e.g., Fig. 1b and 1c), in contrast, a top classifier for the target 
task is randomly initialized and then trained at a slow learning 
rate. Fine-tuning often outperforms training from scratch 
because the pre-trained model already has a great deal of 
muscular activity information. Potentially, the pre-trained 
network could be duplicated and fine-tuned for each new target 
task [40]. 

IV. MODEL DESCRIPTION – THE ALL-CONVOLUTIONAL 
NEURAL NETWORK (ALL-CONVNET) 

The current state-of-the-art methods [21], [23], [26], and [61] 
for sEMG-based gesture recognition use a large, deep ConvNet 
architecture similar to the one used in DeepFace [35]. This 
architecture is designed to be pre-trained on a large-scale 
labeled HD-sEMG training dataset and requires learning >5.63 
million (M) parameters only during fine-tuning. As a result, this 
large-scale pre-trained model becomes a high-end resource-
bounded and computationally very expensive to be practical for 
real-world MCI applications. Moreover, in their pre-trained 
ConvNet includes two locally connected (LCN) and three fully 
connected layers among the other convolutions and a G-way 
fully connected layer. However, the LCN layers used an 
unshared weight scheme [45] that makes their pre-trained 
ConvNet even computationally more demanding and very 
difficult to scale on the target domain task. For example, the 
learning parameters of [21] increase from ≈ 5.63M to ≈ 11M 
with a small enhancement of input HD-sEMG image size from 
16×8 to 16×16 due to the use of this unshared weight scheme 
[27]. Hence, a very large-scale labeled training dataset is 
required for learning these growing numbers of training 
parameters [35]. However, the LCN can be beneficial in the 
application domains where the feature’s precise location is 
dependent on the class labels. 
 Considering the above-mentioned fact, we investigated the 
following research questions in [27] : (i) Do we expect the 
devised networks model to produce a location/translation 

invariant feature representation? and (ii) Do we need a location-
dependent feature representation? Following our findings and 
building on other recent works that aim to find a simple network 
architecture, we proposed a lightweight All-ConvNet. This new 
architecture consists solely of convolutional layers. This simple 
yet effective framework could learn neuromuscular activity 
from scratch and yield competitive or even state-of-the-art 
performance using a ≈12×smaller dataset while reducing the 
learning parameters from ≈5.63M to only ≈460k than the more 
complex state-of-the-art for sEMG-based gesture recognition.  
The All-ConvNet architectural design was adopted based on the 
following principles and observations:  
(i) We hypothesized that different hand gestures produce 

distinct spatial intensity distributions that remain consistent 
across multiple trials of the same gesture and 
distinguishable among different gestures. However, we 
observed that the spatial intensity distributions for the same 
gesture are not locally invariant, and the precise feature’s 
location are independent of the class labels. Fig. 2 
demonstrates a sequence of HD-sEMG images derived from 
the same class, along with a correlation heatmap of HD-
sEMG distributions (images) sampled equidistantly in time 
(e.g., each 20 ms) which demonstrates that the distributions 
are independent of the class labels. CNN alone has a 
remarkable capability to exploit locally translational 
invariance features by utilizing local connectivity and 
weight-sharing strategies [45]. On the other hand, the LCN 
layer fails to model the relations of parameters in different 
locations. Hence, the LCN layers are ablated in designing 

      
a) 

 
b) 

Fig. 2 HD-sEMGs derived from the same muscular activity class (a) 
and correlation heatmap of HD-sEMG distributions (b) which 
demonstrates that the distributions are independent to the class labels.  
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our All-ConvNet models as the location of the features is 
not dependent on the class labels.  

(ii) Inspired by previous work [46], we leverage the fact that if 
the part of the instantaneous HD-sEMG image is covered by 
the units in the topmost convolution layers could be large 
enough to recognize its content (i.e., the gesture class, we 
want to recognize). Consequently, the fully connected 
layers can also be replaced by simple 1-by-1 convolutions. 
This allows us to predict HD-sEMG image classes at 
different positions, and we can then average these 
predictions across the entire image. Hence, the proposed 
All-ConvNet can be very effective in addressing the 
electrode shift and positioning problem for sEMG-based 
gesture recognition, where the entire sEMG data stream for 
a particular gesture may not necessarily be required for 
recognition. Lin et al. [47], initially introduced this 
approach, which acts as an additional regularization 
technique due to the significantly fewer parameters of a 1-
by-1 convolution in comparison to a fully connected and 
LCN layers. Overall, our architecture is thus reduced to 
consist only of convolutional layers with ELU non-
linearities [48], [63] and a global average pooling (GAP) + 
SoftMax layer to produce predictions over the entire 
instantaneous HD-sEMG image. A conceptual diagram of 
our proposed pre-trained All-ConvNet is shown in Fig. 1(a). 
Table I describes our proposed All-ConvNet architecture. 
The feature maps learned by the proposed All-ConvNet are 
presented in Fig. 3.  

We train our proposed All-ConvNet for a multi-class sEMG-
based gesture recognition task, which involves recognizing a 
specific muscular activity class using an instantaneous HD-
sEMG image. As described in Table I, in the proposed All-
ConvNet network, we consider using 1-by-1 convolution at the 
top to produce 8 or 12 outputs (depending on the number of 
distinct movements performed). These outputs were then 
averaged across all positions and fed into a G-way SoftMax 
layer (where G is the number of distinct hand gesture classes) 
which produces a distribution over the class labels. In order to 
estimate the class probabilities, we use the SoftMax function 
𝜎𝜎(∙) with  𝑦𝑦� (𝑗𝑗) representing the 𝑗𝑗th element of the 𝐺𝐺 dimensional 
output vector of the layer preceding the SoftMax layer, defined 
as below: 

 𝜎𝜎�𝑦𝑦�(𝑗𝑗)� = exp (𝑦𝑦� (𝑗𝑗))
∑ exp (𝑦𝑦�(𝐺𝐺))𝐺𝐺

 (1) 

The objective of this training is to maximize the probability of 
the correct gesture class. This is accomplished by minimizing 
the cross-entropy loss [49] for each training sample. When 𝑦𝑦 
represents the true label for a given input, the loss is computed 
as: 
 𝐿𝐿 =  −∑ 𝑦𝑦(𝑗𝑗)ln (σ(𝑗𝑗 𝑦𝑦�(𝑗𝑗)) (2) 
The loss is minimized over the parameters by computing the 
gradient of 𝐿𝐿 with respect to the parameters. These parameters 
are then updated using the state-of-the-art Adam (adaptive 
moment estimation) gradient descent-based optimization 
algorithm [50]. This algorithm provides fast and reliable 
learning convergence, unlike the stochastic gradient descent 
(SGD) optimization algorithm used in state-of-the-art pre-

trained networks for gesture recognition using instantaneous 
HD-sEMG image recognition. 
Once the network has been trained, an instantaneous HD-sEMG 
image is recognized as in the gesture class 𝐶𝐶 by simply 
propagating the input image forward and computing: 
 𝐶𝐶 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑗𝑗(𝑦𝑦�(𝑗𝑗)) (3) 

V. TRANSFER LEARNING BY LEVERAGING LIGHTWEIGHT 
ALL-CONVNET (ALL-CONVNET+TL) 
In this section, we introduce some notations and definitions 
used in our transfer learning framework as in [51]. We denote 
the source domain data as 𝐷𝐷𝑠𝑠 = �(𝑎𝑎𝑠𝑠1 ,𝑦𝑦𝑠𝑠1), … , �𝑎𝑎𝑠𝑠𝑛𝑛𝑆𝑆 ,𝑦𝑦𝑠𝑠𝑛𝑛𝑆𝑆  ��, 
where 𝑎𝑎𝑠𝑠𝑖𝑖 ∈ Χ𝑆𝑆 is the data instance and 𝑦𝑦𝑠𝑠𝑖𝑖 ∈ 𝑌𝑌𝑆𝑆 is the 
corresponding class label. In our sEMG-based gesture 
recognition example, 𝐷𝐷𝑠𝑠 can be a set of sEMG data of different 
gestures and their corresponding gesture class labels acquired 
by a single or multiple participants in a designated session. An 
objective function 𝑓𝑓𝑠𝑠(. ) can be learned using 𝐷𝐷𝑠𝑠 for the source 
task such that, 𝒯𝒯𝑠𝑠 = �𝑌𝑌𝑠𝑠, 𝑓𝑓𝑠𝑠�∑ 𝑤𝑤𝑆𝑆𝑖𝑖𝑋𝑋𝑆𝑆 + 𝑏𝑏𝑖𝑖 ��. Similarly, we 
denote the target domain data as 𝐷𝐷𝑇𝑇 =
�(𝑎𝑎𝑥𝑥1,𝑦𝑦𝑥𝑥1), … , �𝑎𝑎𝑥𝑥𝑛𝑛𝑇𝑇 ,𝑦𝑦𝑥𝑥𝑛𝑛𝑇𝑇 �� and 𝒯𝒯𝑇𝑇 = �𝑌𝑌𝑇𝑇 , 𝑓𝑓𝑇𝑇�∑ 𝑤𝑤𝑇𝑇𝑖𝑖𝑋𝑋𝑇𝑇 +𝑖𝑖

𝑏𝑏��, where, 𝑎𝑎𝑥𝑥𝑖𝑖 ∈ Χ𝑇𝑇  and 𝑦𝑦𝑥𝑥𝑖𝑖 ∈ 𝑌𝑌𝑇𝑇 are the sEMG data of 
different gestures and their corresponding class labels 
respectively acquired by a distinct subject/participant at a  
different session than 𝐷𝐷𝑠𝑠. In most cases, the target domain data 
for a distinct participant acquired at another session is much 
lower quantities than that of a source domain data, i.e.  0 ≤
𝑛𝑛𝑇𝑇 ≪ 𝑛𝑛𝑠𝑠. 

 
(a) 

(b) 
Fig. 3. A schematic illustration of feature maps obtained by 
All-ConvNet before and after dimensionality reduction. (a) Feature 
maps and b) Feature maps after dimensionality reduction. 

TABLE I THE ALL-CONVNET NETWORK MODEL FOR 
NEUROMUSCULAR ACTIVITY RECOGNITION. 

All-ConvNet 
Input 16×16 Gray-level Image 
3 × 3 Conv.64 ELU 
3 × 3 Conv.64 ELU 
3 × 3 Conv. 64 ELU with stride r =2 
3× 3 Conv. 128 ELU 
3× 3 Conv. 128 ELU 
3× 3 Conv. 128 ELU with stride r =2 
1×1 Conv. 128 ELU 
1×1 Conv. 8 ELU 
global averaging over 4×4 spatial dimensions 

G-way SoftMax 
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Now we define our proposed transfer learning problem as 
follows– Given a source domain 𝐷𝐷𝑠𝑠 and a learning task 𝒯𝒯𝑠𝑠 as 
well as a target domain 𝐷𝐷𝑇𝑇  and learning task 𝒯𝒯𝑇𝑇, the transfer 
learning aims to help improve the learning of the target 
predictive function 𝑓𝑓𝑇𝑇(. ) in 𝐷𝐷𝑇𝑇  using the knowledge in 𝐷𝐷𝑠𝑠 and 
𝒯𝒯𝑠𝑠 , where, 𝐷𝐷𝑠𝑠 ≠  𝐷𝐷𝑇𝑇  , and 𝒯𝒯𝑠𝑠 = 𝒯𝒯𝑇𝑇. In our sEMG-based gesture 
recognition problem, the source and target task are the same. 
However, the data distribution between the source and the 
target domain might be different i.e., 𝐷𝐷𝑠𝑠 ≠  𝐷𝐷𝑇𝑇  due to factors 
described in section I. 
To mitigate these distribution shifts on the sEMG-based gesture 
recognition problem, we apply the transfer learning to our 
proposed lightweight All-ConvNet [27] and termed it as 
All-ConvNet+TL. In our setting, All-ConvNet+TL has a set of 
shared parameters 𝜃𝜃𝑠𝑠 (e.g., all the convolutional layers in 
All-ConvNet) and task-specific parameters for previously 
learned gesture recognition tasks 𝜃𝜃0 (e.g., the output layer of 
All-ConvNet for gesture recognition and its corresponding 
weights), and the task-specific parameters are randomly 
initialized for new target tasks 𝜃𝜃𝑛𝑛 (e.g., gesture recognition in a 
new session). Considering 𝜃𝜃0 and 𝜃𝜃𝑛𝑛 as classifiers that operate 
on features parameterized by 𝜃𝜃𝑠𝑠. Drawing motivation from [40], 
[65-66], in this work, we adopt the following approaches to 
learning 𝜃𝜃𝑛𝑛 while taking advantage of previously learned 𝜃𝜃𝑠𝑠, 
which is illustrated in Fig. 1: 
(i) Fine-tuning – involves optimizing 𝜃𝜃𝑠𝑠 and 𝜃𝜃𝑛𝑛 for the new 

target task, while keeping 𝜃𝜃0 fixed (as shown in Fig.1b). To 
prevent large drift in 𝜃𝜃𝑠𝑠, a low learning rate is usually used. 
It is possible to duplicate the original network and fine-tune 
it for each new target task to create a set of specialized 
networks. 

(ii) Feature Extraction – 𝜃𝜃𝑠𝑠 and 𝜃𝜃0 remain fixed and 
unchanged, while the outputs of one or more layers are used 
as features for the new target task in training 𝜃𝜃𝑛𝑛 (as shown 
in Fig. 1c). 

The most popular methodology for transfer learning is to 
duplicate the pre-trained network (i.e., initialize from pre-
trained weights) and fine-tune (train) the entire network for 
each new target task [62]. However, fine-tuning degrades 
performance on previously learned tasks from the source 
dataset because the shared parameters change without receiving 
new guidance for the source-task-specific prediction 
parameters. In addition, duplicating and fine-tuning all the 
parameters of a pre-trained model may also require a 
substantial amount of target task dataset. On the other hand, 
feature extraction usually underperforms on the target dataset 
because the shared parameters often fail to effectively capture 
some discriminative information that is crucial for the target 
task. To address this problem and find out a good trade-off 
between fine-tuning and feature extraction, we focus on 
answering the following research questions – Does feature 
reuse take place during fine-tuning or transfer learning? And if 
yes, where exactly is it in the network? We first conducted a 
preliminary weight (or feature) transfusion experiment, where 
we partially reused pre-trained weights to determine and isolate 
the locations where meaningful feature reuse occurs. We 
 
1 The dataset is made publicly accessible from the following website: http://zju-
capg.org/research_en_electro_capgmyo.html). 

perform this via a weight transfusion experiment by transferring 
a contiguous set of some of the pre-trained weights, randomly 
initializing the rest of the network, and training on the target 
task. We have found out that meaningful feature reuse is 
restricted to the lowest few layers of the network and is 
supported by gesture recognition accuracy and convergence 
speed (see Appendix A for details). Following the results of 
these weight (or feature) transfusion experiments, the part of the 
𝜃𝜃𝑠𝑠 (i.e., the first three convolutional layers of All-ConvNet) 
were frozen and used as a feature extractor and only 𝜃𝜃𝑠𝑠 in the 
top convolutional layers were fine-tuned. Hence, the proposed 
network model allows the target task to leverage complex 
features learned from the source dataset and make these features 
more discriminative for the target task by fine-tuning the top 
convolutional layers. These transfusion results suggest we 
propose hybrid and more flexible approaches to transfer 
learning (see Appendix B).  

VI. EXPERIMENTAL SETUP 
We evaluated our proposed approach on CapgMyo1 dataset 
[26] for studying and quantifying the effects of transfer learning 
on the smaller, simpler, and lightweight CNN. The CapgMyo 
dataset was developed to provide a standard benchmark 
database (DB) to explore new possibilities for studying and the 
development of cutting-edge muscle-computer interfaces 
(MCIs). The CapgMyo dataset includes HD-sEMG data for 128 
channels (electrodes) acquired from 23 able-bodied subjects 
ranging in age from 23 to 26 years, which encompasses the 
majority of the gestures (finger movements) encountered in 
activities of daily living (see in Appendix C). The sampling rate 
is 1000 Hz. It comprised 3 sub-databases as follows: 
(a) DB-a: contains 8 isometric and isotonic hand gestures 

obtained from 18 of the 23 subjects. Each gesture was 
performed and held for 3 to 10 s. 

(b) DB-b: contains the same gesture set as in DB-a but was 
obtained from 10 of the 23 subjects. Each gesture in DB-b 
was performed and held for approximately 3 seconds. In 
addition, every subject in DB-b contributed to two separate 
recording sessions (DB-b Session 1 and DB-b Session 2), 
with an inter-recording interval greater than 7 (seven) days. 
Inevitably, the electrodes of the array were attached at 
slightly different positions at subsequent recording sessions.  

(c) DB-c: contains 12 hand gestures (basic movements of the 
fingers) obtained from 10 of the 23 subjects. Each gesture 
in DB-c was performed and held for approximately 3 s as in 
DB-b.   

From the viewpoint of MCI application scenarios, the sEMG-
based gesture recognition can be categorized into three (3) 
scenarios:  

A. intra-session, in which a classifier is trained on the part of 
the data recorded from the subjects during one session and 
evaluated on another part of the data recorded from the 
same session,  

B. inter-session, in which a classifier is trained on the data 
recorded from the subjects in one session and tested on the 
data recorded in another session, and  
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C. inter-subject, when a classifier is trained on the data from 

a group of subjects and tested on the data from an unseen 
subject. 

 
All three sub-databases (DB-a, DB-b, and DB-c) were used for 
intra-session performance evaluation. Inter-session recognition 
of hand gestures based on sEMG typically suffers from 
electrode shift and positioning. Therefore, DB-b was used for 
inter-session performance evaluation. Finally, both DB-b 
Session 2 and DB-c were used for inter-subject performance 
evaluation.  
For CapgMyo database, first, the power-line interferences were 
removed from the acquired HD-sEMG signals using a 2nd order 
Butterworth filter with a band-stop range between 45 and 
55 Hz. Then, the HD-sEMG signals were arranged in a 2-D grid 
according to their electrode positioning at each sampling 
instant. Afterward, this grid was transformed into an 
instantaneous sEMG image by linearly converting the values of 
sEMG signals from 𝑠𝑠𝑚𝑚 to color intensity as [−2.5𝑠𝑠𝑚𝑚, 2.5𝑠𝑠𝑚𝑚] 
to [0 255]. As a result, instantaneous grayscale sEMG images 
with a size of 16 × 8 matrices were obtained. To facilitate GAP, 
we enhance the input HD-sEMG image size from 16×8 to 
16×16 using horizontal mirroring. Unlike [21], this 
enhancement does not increase the learning parameters in the 
proposed All-ConvNet.   
For pre-training our proposed original model All-ConvNet, the 
following configurations were adopted as in [27], the 
connection weights for All-ConvNet network architecture were 
randomly initialized using Xavier initialization scheme [52], 
[53] and the network was trained using Adam optimization 
algorithm [50]. The momentum decay and scaling decay were 
initialized to 0.9 and 0.999, respectively. In contrast to SGD 
employed in [21], [23], and [26], Adam is an adaptive learning 
rate algorithm, therefore it requires less tuning of the learning 
rate hyperparameter. For all our experiments, the learning rate 
of 0.001 was initialized, and smaller batches of 256 randomly 
chosen samples from the training dataset were fed to the 
network during consecutive learning iterations. We set a 
maximum of 100 epochs for training our All-ConvNet model. 
However, to prevent overfitting, we applied early stopping [54], 
which interrupts the training process if no improvements in 
validation loss are observed for 5 consecutive epochs. Batch 
normalization [55] was applied after the input and before each 
non-linearity. To further regularize the network, Dropout [56] 
was applied to all layers with a probability of 25%. The 
All-ConvNet model was trained on a workstation with an 
Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz processor, 
32 GB RAM, and an NVIDIA RTX 2080 Ti GPU. Each epoch 
was completed in approximately 6 s for a test on intra-session 
gesture recognition. The average inference time per HD-sEMG 
sample is ≈0.0929 ms on the above-mentioned computational 
set up. We have also implemented the state-of-the-art network 
architecture [21] for a fair comparison with our proposed 
lightweight sEMG-based gesture recognition algorithm. 
However, we have adopted the same network initialization 
method, optimization algorithm, and training paradigm as 
illustrated in [21]. 
 

VII. EXPERIMENTAL RESULTS 

The sEMG-based gesture recognition methods in the literature 
have usually been investigated in intra-session scenarios [21], 
[23], [24], [36] and [61]. However, in this work, we evaluated 
the performance of our proposed sEMG-based gesture 
recognition algorithm by leveraging lightweight All-ConvNet 
and transfer learning in inter-session and inter-subject scenarios 
in addition to intra-session gesture recognition. In the following 
subsections, we evaluated the performance of our proposed 
lightweight gesture recognition algorithms. We compared them 
with the state-of-the-art, more complex methods in the above-
mentioned three different scenarios. 

A. Intra-Session Performance Evaluation 
 In this section, we evaluated the performance of sEMG-based 
gesture recognition in the intra-session scenario. In this 
scenario, usually, the data variation comes from the difference 
between the trials and repetitions of the hand/finger gestures 
performed by an individual. To mitigate this data variations or 
distribution time shift caused by the repetitions of the gestures 
in multiple trials in the same session, the state-of-the-art 
methods performed pre-training their proposed CNN using half 
of the training data from all the participated subjects (e.g., 18 in 
DB-a) in the data collection process. Then, the pre-trained 
model was fine-tuned using the training data from the target 
subject for the subject-specific classifier development. The 
major drawback of this approach [21] is that the same training 
data used for fine-tuning was also seen during pre-training. 
However, in [27], we argued that the proposed lightweight 
All-ConvNet trained from scratch using random initialization 
has the great ability to model these distribution shifts caused by 
the repetitions of hand gestures across multiple trials within the 
same session. In that setting, we proposed designing and 
developing a subject-specific individualized classifier using 
only the sEMG data available for an individual subject while 
executing a target task without pre-training. For example, in 
CapgMyo DB-a and DB-b, eight (8) isotonic and isometric 
hand gestures were performed by an individual subject. Each 
gesture was also trialed and recorded 10 times with a 1000 Hz 
sampling rate. Thus, an individual subject generates 
(8×10×1000 = 80,000) instantaneous sEMG images. In 
CapgMyo DB-c, an individual performed twelve (12) basic 
movements of the fingers, and hence it generates 
(12×10×1000 = 120,000) instantaneous sEMG images. For 
performance evaluation of the proposed subject-specific 
lightweight All-ConvNet, a leave-one-trial-out cross-validation 
was performed, in which each of the 10 trials was used in turn 
as the test set, and the proposed lightweight All-ConvNet was 
trained and validated using the remaining 9 trials. This entire 
paradigm of training and testing process is illustrated in Fig. 1a, 
which shows that only the trained model (without any feature 
reuse from the pre-trained model) is used for gesture 
recognition. It is noteworthy that, in [27], we conducted 
experiments only on the CapgMyo DB-a and reported and 
compared the results with the state-of-the-art for sEMG-based 
gesture recognition because the maximum number of subjects 
(18) participated in DB-a. However, in this work, we extended 
our experiments on the CapgMyo DB-b and DB-c, respectively. 
Table II presents the gesture recognition results for the 
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proposed lightweight All-ConvNet and compares them with the 
state-of-the-art methods.  
As can be seen in Table II, the proposed lightweight All-
ConvNet (with around 0.46 million learning parameters) 
consists of a stack of 3×3 convolutional layers with occasional 
subsampling by a stride of 2. It is trained from random 
initialization and outperformed the state-of-the-art, more 
complex GengNet [21], [23], [24], [26] and [61] on the 
CapgMyo DB-b Session 1 and Session 2 datasets, respectively, 
and performs comparably to the S-ConvNet [25]. Additionally, 
the lightweight All-ConvNet performs very competitively or on 
par with the GengNet [21] and S-ConvNet [25] on the 
CapgMyo DB-a and CapgMyo DB-c datasets, respectively. 
Fig. 4 (a)-(d) presents the sEMG-based instantaneous (or per-
frame) gesture recognition accuracies and their statistical 
significance obtained through leave-one-trial-out cross-
validation for ten different test trials for each of the participating 
subjects in CapgMyo DB-a, DB-b, and DB-c, respectively. The 
highest instantaneous (or per-frame) gesture recognition 
accuracies were 86.73% for DB-a, 81.95% and 83.36% for 
DB-b (Session 1 and Session 2, respectively), and 80.91% for 
DB-c. Which were obtained with the proposed lightweight 
All-ConvNet. The high per-frame gesture recognition 
accuracies and low standard deviation over multiple test trials 
and subjects in each of the four HD-sEMG datasets mentioned 
above reflect the high stability of the proposed lightweight 
All-ConvNet.  
In addition, based on a simple majority voting algorithm, we 
have obtained very good gesture recognition accuracies. Fig. 5 
(a)-(d) presents gesture recognition accuracy with different 
voting windows using lightweight All-ConvNet. The average 
gesture recognition accuracy of 94.56% and 95.99% were 
achieved by a simple majority voting with 32 and 64 
instantaneous images (or frames) for the above four (4) HD-
sEMG datasets.  
The higher gesture recognition accuracies of 98.02%, 97.52%, 
96.80%, and 95.76% (as shown in Table II and Fig. 5) can be 
obtained by the proposed lightweight All-ConvNet and a simple 
majority voting over the recognition result of 160 frames for 
DB-a, DB-b (Session 1 and Session 2) and DB-c, respectively.  
These outstanding results confirm that the proposed lightweight 
All-ConvNet is highly effective for learning all the invariances 
for low-resolution instantaneous HD-sEMG image recognition 
and hence seem to be enough to address the problem of 
employing high-end resource-bounded fine-tuned pre-trained 

networks for low-resolution instantaneous HD-sEMG image 
recognition. 
Table II also includes average run-time for training, validation 
and inference for an intra-subject test. For a fair run-time 
comparison, each of the compared models was trained for 100 
epochs on the same size of the input HD-sEMG image and early 
stopping [56] was applied while training all the compared 
models. The proposed lightweight All-ConvNet exhibits 

TABLE II. THE AVERAGE RECOGNITION ACCURACIES (%) OF 8 HAND 
GESTURES FOR CAPGMYO DB-A AND DB-B FOR 18 AND 10 
DIFFERENT SUBJECTS RESPECTIVELY AND 12 GESTURES FOR 10 
DIFFERENT SUBJECTS IN DB-C. THE NUMBERS ARE MAJORITY VOTED 
RESULTS USING 160 MS WINDOW (I.E., 160 FRAMES). PER-FRAME 
ACCURACIES ARE SHOWN IN PARENTHESIS. 

Model S-ConvNet 
[25] 

W.Geng et. 
al., [21] 

All-ConvNet 
(proposed) 

CapgMyo DB-a 98.36 (87.95) 98.48 (86.92) 98.02 (86.73) 
CapgMyo DB-b Session 1 97.87 (83.57) 97.04 (81.26) 97.52 (81.95) 
CapgMyo DB-b Session 2 97.05 (84.73) 96.26 (83.21) 96.80 (83.36) 
CapgMyo DB-c 95.80 (81.63) 96.36 (82.23) 95.76 (80.91) 
#Learning Parameters ≈ 2.09 𝑀𝑀 ≈ 5.63 𝑀𝑀 ≈ 𝟎𝟎.𝟒𝟒𝟒𝟒 𝑴𝑴 
Avg-run time (s) 191.29 804.66 224.33 
 

 
(a) CapgMyo DB-a. 

 

 
(b) CapgMyo DB-b (Session 1). 

 

 
(c) CapgMyo DB-b (Session 2). 

 

 
 (d) CapgMyo DB-c. 

Fig 4 The per-frame gesture recognition accuracy with our 
proposed lightweight All-ConvNet, a) the recognition accuracy of 
8 hand gestures for 18 different subjects on CapgMyo DB-a, b) and 
c) The gesture recognition accuracy of 8 hand gestures for 10 
different subjects on CapgMyo DB-b (Session 1) and DB-b 
(Session 2), respectively, and d) the gesture recognition accuracy 
of 12 hand gestures for 10 different subjects on CapgMyo DB-c. 
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superior run-time performance compared to the state-of-the-art 
methods. 

B. Inter-Session Performance Evaluation  
In this section, we evaluated the performance of sEMG-based 
gesture recognition in the inter-session scenario. In this 
scenario, there is still the intra-session variability discussed in 
the previous section, in addition to the extent of data variability, 
which comes from the differences between the recording 
sessions. The sensor placement may have some spatial shifts 
and/or rotations at each recording session. These differences in 
sensor placement and/or rotations may cause spatial shifts in the 
distributions of the sEMG sensor data. To address this spatial 
shift problem, currently [26] and [57] provide a state-of-the-art 
solution in the CapgMyo dataset. Du et al. [26] proposed a 
multi-source extension to classical AdaBN [37] for domain 
adaptation. However, when dealing with multiple sources (i.e., 
multiple subjects), specific constraints and considerations must 
be imposed for each source during the model's pre-training 
phase [57]. Ketyko et al. [57] introduced a 2-Stage recurrent 
neural network (2SRNN) involving pre-training a deep stacked 
RNN sequence classifier on the source dataset, freezing its 
weights, and simultaneously training a supervised fully 
connected layer without a non-linear activation function on the 
target dataset for domain adaptation. However, ConvNet is 
more powerful at extracting discriminative features than RNN, 
even for classification tasks of long sequences [58], [59]. 
In addition, it is noteworthy that the domain adaptation was 
conducted in unsupervised and semi-supervised settings [26]. 
However, very low gesture recognition accuracies were 
reported in [26] in both inter-session and inter-subject 
scenarios. On the other hand, [57] performed domain adaptation 
in supervised settings and demonstrated state-of-the-art results 
on the CapgMyo dataset. Therefore, for a fair comparison with 
the state-of-the-art, we performed domain adaptation in a 
supervised manner in all the compared methods. Moreover, it 
might be an interesting question why we chose to compare the 
performance of our proposed lightweight All-ConvNet+TL 
with the CNN models, proposed in [21] and [26]. To the best of 
our knowledge, the base CNN models proposed in [21] and [26] 
were also adapted in [23], [24], and [61], respectively, and 
reported state-of-the-art results on various sEMG-based gesture 
recognition tasks and datasets. 
Experiments conducted on inter-session and inter-subject 
settings; we have shown that our proposed lightweight 
All-ConvNet+TL leveraging transfer learning (illustrated in 
Section V) outperformed these above-mentioned state-of-the-
art solutions. We evaluated inter-session gesture recognition for 
CapgMyo DBb, in which the model was trained using data 
recorded from the first session and evaluated using data 
recorded from the second session. It is worth mentioning that 
without transfer learning or domain adaptation, the state-of-the-
art models, as well as our proposed models achieved less than 
or approximately 50% average gesture recognition accuracy on 
CapgMyo datasets in both inter-session and inter-subject 
scenarios. This level of recognition accuracy is not enough for 
a usable system (defined as <10% error [60]). Therefore, 
domain adaptation or transfer learning must be introduced to 
these (inter-session and inter-subject) settings for acceptable 

 
a) 

 
b) 

 
c) 

 
d) 

Fig 5 Surface EMG gesture recognition accuracy with different 
voting windows using the proposed lightweight All-ConvNet and 
compared with the state-of-the-art methods: a) the recognition 
accuracy of 8 hand gestures for 18 different subjects on CapgMyo 
DB-a, and the gesture recognition accuracy of 8 hand gestures for 
10 different subjects on CapgMyo for b) DB-b Session 1 and c) 
DB-b Session 2, and d) the recognition accuracy of 12 hand 
gestures for 10 different subjects on DB-c. 
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performance. However, the most significant question is how 
much training data is required for adaptation on the target 
domain to obtain a stable gesture recognition accuracy. To  
address this question, we limited the available training data to 
20% (T1), 40% (T2), 60% (T3), 80% (T4), and 100% (T5) of 
the total 5 trials used for domain adaptation (the remaining 5 
trials are kept for validation). For fair comparison and 
complying with the state-of-the-art, we ran our domain 
adaptation for 100 epochs. Table III presents the inter-session 
average gesture recognition accuracies (%) of 8 hand gestures 
for 10 different subjects respectively for CapgMyo DB-b and 
compared with the state-of-the-art methods.  
Our proposed lightweight All-ConvNet+TL leverages transfer 
learning to enhance inter-session gesture recognition, achieving 
an 11.11% improvement compared to 2SRNN [57] and a 6.43% 
improvement compared to GengNet [21][26] when all available 
5 trials are used for adaptation (as shown in Table III, column-
T5). We also compared our proposed lightweight All-
ConvNet+TL with the state-of-the-art GengNet [21][26] in a 
data-starved condition. The proposed lightweight All-
ConvNet+TL shows even more significant improvement over 
the state-of-the-art when a limited number of trials are available 
for adaptation, as seen in Table III, Columns- T1, T2, T3, and 
T4, respectively. For example, the proposed lightweight All-
ConvNet+TL achieved a 7.94% improvement over GengNet 
[21][26] when only 20% of the data (i.e., 1 trial) was available 
for adaptation (Table III, Column- T1). 

C. Inter-Subject Performance Evaluation 
In this section, we evaluated the performance of sEMG-based 
gesture recognition in the inter-subject scenario. In this 
scenario, the data variability comes from the variation in muscle 
physiology between different subjects. In this experiment, we 
evaluated the inter-subject recognition of 8 gestures using the 
second recording session of CapgMyo DB-b and the 
recognition of 12 gestures using CapgMyo DB-c. We 
performed a leave-one-subject-out cross-validation, in which 
each of the subjects was used in turn as the test subject, and a 
lightweight All-ConvNet was pre-trained using the data of the 
remaining subjects. Then, this pre-trained All-ConvNet model 
was deployed, and adaptation was made on the data from the 
odd numbers of trials of the test subjects by leveraging transfer 
learning or domain adaptation. Finally, the adapted model was 
evaluated and tested using the data from the even number of 
trials of the test subject. We limited the available training data 
to 20%, 40%, 60%, 80%, and 100% of the total 5 trials used for 
domain adaptation (the remaining 5 trials are kept for 
validation). Table IV presents the average recognition 
accuracies (%) of 8 and 12 hand gestures for CapgMyo DB-b 
and DB-c for 10 subjects, respectively. 
As can be seen from Table IV, our proposed lightweight All-
ConvNet+TL, by leveraging transfer learning, outperformed 
the state-of-the-art methods in the inter-subject scenario on both 
CapgMyo DB-b and CapgMyo DB-c datasets, respectively. Our 
proposed lightweight All-ConvNet+TL demonstrates an 
improvement of 5.04% and 6.17% compared to 2SRNN [57], 
and 3.58% and 1.85% compared to GengNet [21][26] on 
CapgMyo DB-b and CapgMyo DB-c datasets, respectively 
when all available 5 trials are used for adaptation (as shown in 

Table IV, column-T5 for both CapgMyo DB-b and CapgMyo 
DB-c). 
Similar to the inter-session scenario, we also compared our 
proposed lightweight All-ConvNet+TL in the inter-subject 
scenario with the state-of-the-art GengNet [21], [26] in a data-
starved condition. The proposed lightweight All-ConvNet+TL 
exhibits improvement over the state-of-the-art on CapgMyo 
DB-b and CapgMyo DB-c datasets when a limited number of 
trials are available for adaptation, as observed in Table IV, 
specifically in Columns T1, T2, T3, and T4, respectively. For 
example, when only 20% of the data (i.e., 1 trial) was available 
for adaptation, the proposed lightweight All-ConvNet+TL 
achieved a 3.53% and 1.07% improvement over GengNet [21], 
[26] on CapgMyo DB-b and CapgMyo DB-c, respectively 
(Table IV, Column- T1). 
We summarise the inter-session and inter-subject improvement 
results in Table V over the state-of-the-art methods. As 
indicated there, the performance of the proposed lightweight 
All-ConvNet+TL is superior in all cases. The improvement 
achieved by the lightweight All-ConvNet+TL leveraging 
transfer learning in inter-session and inter-subject scenarios, 
exceeds those obtained through alternative state-of-the-art 
domain adaptation approaches. 
Finally, we evaluate the performance of our proposed 
lightweight All-ConvNet+TL while freezing its maximum 
number of layers and use them as a feature extractor, and only 
the top convolutions layers are fine-tuned in the adaptation 
stage for inter-session and inter-subject gesture recognition. 
More explicitly, the first six (6) convolutional layers of the 
lightweight All-ConvNet+TL were frozen and used as a feature 
extractor. Only the top two convolutional layers with a few 
parameters were fine-tuned in the adaptation stage. Therefore, 

TABLE III. INTER-SESSION GESTURE RECOGNITION ACCURACIES ON 
CAPGMYO DB-B.   THE AVERAGE RECOGNITION ACCURACIES (%) OF 8 
HAND GESTURES FOR 10 DIFFERENT SUBJECTS RESPECTIVELY. THE 
NUMBERS ARE THE MAJORITY VOTED RESULTS USING 150 MS WINDOW 
(I.E., 150 FRAMES). 

Methods Number of available trials for adaptation 

   T1   T2    T3    T4  T5 
Du et. al. [21][26] 67.97 81.77 86.02 88.10 88.48 
2SRNN [57]  -  -  -  - 83.80 
All-ConvNet+TL 
(Proposed) 75.91 89.61 92.74 93.46 94.91 

 
TABLE IV. INTER-SUBJECT GESTURE RECOGNITION ACCURACIES. THE 
AVERAGE RECOGNITION ACCURACIES (%) OF 8 HAND GESTURES FOR 
CAPGMYO DB-B AND 12 HAND GESTURES FOR CAPGMYO DB-C FOR 10 
DIFFERENT SUBJECTS RESPECTIVELY. THE NUMBERS ARE THE MAJORITY 
VOTED RESULTS USING 150 MS WINDOW (I.E., 150 FRAMES). 

Methods 
CapgMyo DB-b 

Number of available trials for adaptation 
T1 T2 T3 T4 T5 

Du et. al. [21],[26] 71.81 86.52 88.66 90.32 91.36 
2SRNN [57] - - - - 89.90 
All-ConvNet+TL 
(Proposed) 75.34 89.42 92.09 93.83 94.94 

 CapgMyo DB-c 
Du et. al. [21],[26] 57.40 75.98 82.51 85.98 88.02 
2SRNN [57] - - - - 85.40 
All-ConvNet+TL 
(Proposed) 58.47 78.89 86.02 89.99 91.57 
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these experiments can be considered as a full feature extraction 
setting. The performance of these full feature extraction settings 
was compared with the more complex computationally 
expensive 2SRNN [57] method. A deep-stacked RNN classifier 
was also used as a feature extractor by freezing its weight in the 
domain adaptation stage. Table VI presents the inter-session 
and inter-subject average gesture recognition accuracies (%) of 
8 and 12 hand gestures for CapgMyo DB-b and DB-c for 10 
subjects, respectively. As can be seen from Table VI, our 
proposed lightweight All-ConvNet+TL clearly outperforms the 
2SRNN [57] in both inter-session and inter-subject gesture 
recognition accuracy. These experimental results indicate that 
the proposed lightweight All-ConvNet+TL is very effective for 
discriminative feature extraction for improved gesture 
recognition in both inter-session and inter-subject scenarios. 

VIII. DISCUSSION 
We address the problem of distribution shifts by adapting a 
lightweight model to new target domain tasks using a limited 
amount of data for sEMG-based inter-session and inter-subject 
gesture recognition. We propose All-ConvNet+TL leveraging 
lightweight All-ConvNet and transfer learning, which can be 
seen as a hybrid of feature extraction and fine-tuning, learning 
parameters that are discriminative for the new target task. We 
show the effectiveness of our method by conducting extensive 
experiments on CapgMyo and its four (4) publicly available 
HD-sEMG sub-datasets for three (3) different sEMG-based 
gesture recognition tasks, including intra-session, inter-session, 
and inter-subject scenarios. The results indicate that our 
proposed lightweight All-ConvNet and All-ConvNet+TL 
models outperform the more complex state-of-the-art models 
on various tasks and datasets.  
In intra-session scenarios, the proposed lightweight All-
ConvNet (size of only 0.46 M learning parameters), which 
consists of a network using nothing, but convolutions and 
subsampling outperformed the most complex state-of-the-art 
GengNet [21], [26] (size of 5.6M parameters) on CapgMyo 
DB-b (Session 1 and Session 2) dataset, respectively and 
performed on par with or very competitively on CapgMyo DB-
a and CapgMyo DB-c, respectively. The high intra-session 
gesture recognition accuracies of 98.02%, 97.52%, 96.80%, and 
95.76% were obtained by the proposed lightweight 
All-ConvNet using a simple majority voting over the 

recognition result of 160 instantaneous images (or frames) for 
DB-a, DB-b (Session 1 and Session 2) and DB-c, respectively. 
For gesture recognition in inter-session and inter-subject 
scenarios, we apply transfer learning to our proposed 
lightweight All-ConvNet. Our proposed method All-
ConvNet+TL leveraging the lightweight All-ConvNet and 
transfer learning outperforms the current state-of-the-art 
methods by a large margin, both when the data from single 
trials or multiple trials are available for fine-tuning and 
adaptation.  
We achieved state-of-the-art performance for inter-session and 
inter-subject scenarios. The inter-session gesture recognition 
accuracy reached 94.1% on CapgMyo DB-b, which is 
approximately 11.11% and 6.43% higher than the current state-
of-the-art [57] and [21][26], respectively.  
In addition, the inter-subject gesture recognition accuracy 
reached 94.94% and 91.57% on CapgMyo DB-b and DB-c, 
respectively, which is 5.04% and 6.17% higher than [57] and 
3.58% and 3.55% higher than the [21], [26] respectively. 
Moreover, the proposed lightweight models achieved state-of-
art performance under full feature extraction settings in both 
inter-session and inter-subject scenarios.  
These outstanding state-of-the-art inter-session and inter-
subject gesture recognition performance achieved by the 
proposed lightweight All-ConvNet+TL models by leveraging 
transfer learning validates that the proposed method is highly 
effective in learning invariant and discriminative 
representations to overcome the distribution shift caused by 
inter-session and inter-subject data variability. This potentially 
indicates that the current state-of-the-art models are 
overparameterized for the sEMG-based gesture recognition 
problem. 
Furthermore, the current most complex state-of-the-art models 
[21], [26], [57] are computationally expensive and require a 
huge memory space to store a massive number of parameters. 
Therefore, these models are usually unsuitable for deploying 
low-end, resource-constrained embedded and mobile devices 
for real-time MCI applications. Thanks to the proposed 
parameter-efficient All-ConvNet and All-ConvNet+TL, our 
model is much smaller and lightweight than these current state-
of-the-art methods for sEMG-based gesture recognition.   
Finally, the new experimental evidence of our proposed method 
about various sEMG-based gesture recognition tasks and its 
role will shed light on potential future directions for the 
community to move forward for more efficient lightweight 
model exploration. 

IX. CONCLUSION 
For real-time Muscle-Computer Interfaces, the sEMG-based 
gesture recognition must address the inter-session and inter-
subject distribution shifts. To address and overcome these 
distribution shifts, we investigate the effects of transfer learning 
and feature reuse on our proposed lightweight All-ConvNet. 
We discovered that the proposed lightweight All-ConvNet+TL, 
which leverages transfer learning in the inter-session and inter-
subject scenarios outperforms the most complex state-of-the-art 

TABLE V. INTER-SESSION AND INTER-SUBJECT IMPROVEMENT (%) 
RESULTS OBTAINED BY THE PROPOSED LIGHTWEIGHT 
ALL-CONVNET+TL LEVERAGING TRANSFER LEARNING. 

Methods Inter-session improvement Inter-subject improvement 
DB-b DB-b DB-c 

Du et. al. [21][26] 6.43 3.58 3.55 
2SRNN [57] 11.11 5.04 6.17 
 

TABLE VI. INTER-SESSION AND INTER-SUBJECT GESTURE 
RECOGNITION ACCURACIES (%) UNDER FULL FEATURE EXTRACTION 
SETTING. 

Methods Inter-session Inter-subject  
DB-b DB-b DB-c 

2SRNN [57] 83.80 89.90 85.40 
All-ConvNet+TL 
(Proposed) 91.93 91.56 85.56 
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domain adaptation methods by a large margin, both when the 
data from single trials or multiple trials are available for 
adaptation. The state-of-the-art performance proved that the 
proposed lightweight All-ConvNet+TL model is highly 
effective in learning invariant and discriminative 
representations for addressing distribution shifts in sEMG-
based inter-session and inter-subject gesture recognition. This 
raises the question and provides evidence of 
overparameterization of the most complex current state-of-the-
art models for sEMG-based gesture recognition tasks. We also 
find that significant feature reuse concentrated in lower layers 
and explored more flexible and hybrid transfer approaches, 
which retain transfer benefits and create new possibilities. In 
future work, we plan to deploy our proposed lightweight All-
ConvNet and All-ConvNet+TL model for sEMG-based real-
time adaptive and intuitive control of an active prosthesis. 

Appendix to “Surface EMG-Based Inter-Session/Inter-
Subject Gesture Recognition by Leveraging Lightweight All-
ConvNet and Transfer Learning.” 

A. Weight (or Feature) Transfusion Experiments 

In this section, we investigate to identify locations where 
exactly in the network meaningful feature reuse takes place 
during transfer learning by conducting a weight (or feature) 
transfusion experiment. We initialize our proposed lightweight 
All-ConvNet+TL with a contiguous subset of the layers using 
pre-trained weights (weight transfusion), and the rest of the 
network randomly, and train on the target inter-session gesture 
recognition task. More explicitly, we initialize only up to layer 
L with pretrained lightweight All-ConvNet+TL weights, and 
layer L+1 onwards randomly; then train only layers L+1 
onwards. Since, the weight transfusion process uses pre-trained 
weights, it can accelerate the training during fine-tuning of a 
network on the target task. Therefore, the learning speed was 
measured in terms of gesture recognition performance on 
various training epochs. Table VII presents the inter-session 
gesture recognition accuracy of a subject against various 
training epochs for different number of transfused weights. We 
show the learning speed and gesture recognition accuracy when 
transfusing from Conv1 (L-7, one layer) up to Conv8 (i.e., layer 
L-7 to layers L-full transfer). From the weight transfusion 
results, our proposed lightweight All-ConvNet+TL model 
perform quite stably over the different number of transfused 
weights. However, we observed that reusing the lowest layers 
(transfusing weights) leads to the greatest gain in learning speed 
and gesture recognition accuracy. For example, transfusing 
weights from layer L-7 (Conv1) up to layer L-5 (Conv3), we 
achieve ≈ 98% recognition accuracy after just 8 (eight) 
training epochs. 

B. Lightweight All-ConvNet Network Trimming 

These weight transfusion results (Appendix A) motivate us to 
explore hybrid approaches to transfer learning, thereby, we 
introduce network trimming which further optimizes the 
proposed lightweight All-ConvNet+TL by pruning the weights 

of the network. We consider reusing pre-trained weights up to 
Conv3 (i.e., weights of layers L-7 to layers L-5 showed in 
Table VII) and the weights of the top of the lightweight 
All-ConvNet (i.e., from layers Conv4 (L-4) to Conv7 (L-1)) 
was pruned by halves to be even more lightweight and 
initializing these layers randomly. Finally, this new 
Lightweight All-ConvNet-Slim model was trained or fine-
tuned on the target inter-session gesture recognition task. 
Table VIII presents the inter-session gesture recognition 
accuracy of a subject against various training epochs, which 
compares the performance of Lightweight All-ConvNet+TL vs 
Lightweight All-ConvNet-Slim model. The experimental 
results demonstrates that the lightweight All-ConvNet-Slim 
model can maintain the same or achieve higher performance 
with much smaller number of parameters. These results with 
variants of Lightweight  
All-ConvNet+TL model also highlight many new, rich and 
flexible ways to use transfer learning. The preprint version of 
this paper has been made publicly available in [67]. 

C. Gestures and the muscles involved in CapgMyo datasets 

Tables IX and X illustrate gestures and all the muscles involved 
in CapgMyo DB-a, DB-b and DB-c respectively [26].  

TABLE VIII. LEARNING (OR CONVERGENCE) SPEED USING VARIOUS 
TRAINING EPOCHS. TABLE SHOWS INTER-SESSION GESTURE 
RECOGNITION ACCURACIES (%) ON TEST SET. THE NUMBERS ARE 
MAJORITY VOTED RESULTS USING 150 MS WINDOW (I.E., 150 
FRAMES). PER-FRAME ACCURACIES ARE SHOWN IN PARENTHESIS. 

Model # learning 
parameters 

Training epochs 
8 16 24 32 

Lightweight  
All-ConvNet+TL 
(Proposed) 

≈ 0.46 𝑀𝑀 96.00 
(71.56) 

96.60 
(74.79) 

97.60 
(76.92) 

97.69 
(77.68) 

Lightweight  
All-ConvNet-Slim 
(Proposed)   

≈ 𝟎𝟎.𝟏𝟏𝟏𝟏 𝑴𝑴 91.92 
(68.98) 

96.90 
(73.70) 

98.28 
(75.98) 

98.50 
(77.47) 

  
 
 

TABLE VII. LEARNING (OR CONVERGENCE) SPEED USING VARIOUS 
TRAINING EPOCHS. TABLE SHOWS INTER-SESSION GESTURE 
RECOGNITION ACCURACIES (%) ON TEST SET. THE NUMBERS ARE 
MAJORITY VOTED RESULTS USING 150 MS WINDOW (I.E., 150 
FRAMES). PER-FRAME ACCURACIES ARE SHOWN IN PARENTHESIS. 

Weight 
transfusion 

(up to layers) 
Training epochs 

 8 16 32 46 64 100 
Full Transfer 

(L) 
70.90 

(64.56) 
81.74 

(67.84) 
83.20 

(68.35) 
83.08 

(68.33) 
83.21 

(68.47) 
83.60 

(68.52) 

L-1 87.42 
(72.28) 

88.21 
(73.53) 

90.14 
(74.43) 

90.01 
(74.55) 

89.85 
(74.94) 

90.39 
(75.13) 

L-2 90.24 
(76.35) 

93.60 
(78.17) 

93.94 
(79.62) 

94.22 
(80.08) 

94.50 
(80.47) 

94.18 
(81.36) 

L-3 95.01 
(79.48) 

95.96 
(81.53) 

96.42 
(83.23) 

96.71 
(83.22) 

96.99 
(83.97) 

98.28 
(84.67) 

L-4 96.10 
(81.87) 

97.71 
(82.59) 

98.21 
(85.10) 

97.92 
(86.17) 

97.96 
(86.37) 

98.59 
(87.06) 

L-5 97.96 
(83.14) 

98.40 
(84.888) 

99.12 
(87.00) 

99.12 
(86.99) 

99.28 
(87.86) 

99.35 
(88.30) 

L-6 98.34 
(82.93) 

97.76 
(85.48) 

99.26 
(87.24) 

98.85 
(87.56) 

99.27 
(87.79) 

99.25 
(88.68) 

L-7 98.10 
(83.33) 

98.74 
(84.34) 

98.93 
(86.08) 

99.41 
(87.22) 

99.32 
(88.04) 

99.32 
(88.21) 
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TABLE IX. GESTURES IN CAPGMYO DB-A AND DB-B (8 ISOTONIC 
AND ISOMETRIC HAND CONFIGURATIONS) 

 

1. Thumb up 
 
5. Abduction of all fingers 

 
2. Extension of index and 

middle, flexion of the 
others  

6. Fingers flexed together 
in fist 

 
3. Flexion of ring and little 

finger, extension of the 
others  

7. Pointing index 
 

4. Thumb opposing base of 
little finger 

 

8. Adduction of extended 
fingers 

 
 

TABLE X. GESTURES IN CAPGMYO DB-C (12 BASIC MOVEMENTS OF 
THE FINGERS) 

 

1. Index flexion 
 
5. Ring flexion 

 

9. Thumb 
adduction 

 

2 Index 
extension 

 

6. Ring 
extension 

 

10. Thumb 
abduction 

 

3. Middle 
flexion 

 

7. Little finger 
flexion 

 

11. Thumb 
flexion 

 
4. Middle 

extension 
 

8. Little finger 
extension 

 

12. Thumb 
extension 

 
 



15 
                   Paper ID #1570610272  

 
Annual International Conference of the IEEE Engineering in 
Medicine & Biology Society (EMBC), 2020, pp. 744-749. 

[26] Y. Du., W. Jin, W. Wei, Y. Hu and W Geng, "Surface EMG based 
inter-session gesture recognition enhanced by deep domain 
adaptation," Sensors, vol. 17, no. 3, 458, 2017. 

[27] M. R. Islam, D. Massicotte and W. Zhu, "All-ConvNet: A 
lightweight all CNN for neuromuscular activity recognition using 
instantaneous high-density surface EMG images", IEEE Int. 
Instrum. Meas. Technol. Conf., pp. 1-6, 2020. 

[28] F. Nougarou, A. Campeau-Lecours, R. Islam, D. Massicotte and 
B. Gosselin, "Muscle activity distribution features extracted from 
HDsEMG to perform forearm pattern recognition," 2018 IEEE 
Life Sciences Conference (LSC), Montreal, pp. 275-278, Oct. 
2018. 

[29] Tam, M. Boukadoum, A. Campeau-Lecours and B. Gosselin, "A 
fully embedded adaptive real-time hand gesture classifier 
leveraging HD-sEMG and deep learning", IEEE Trans. Biomed. 
Circuits Syst., vol. 14, no. 2, pp. 232-243, Apr. 2020. 

[30] F. Nougarou, A. Campeau-Lecours, D. Massicotte, M. 
Boukadoum, C. Gosselin, and B. Gosselin. "Pattern recognition 
based on HD-sEMG spatial features extraction for an efficient 
proportional control of a robotic arm." Biomedical Signal 
Processing and Control 53 (2019): 101550. 

[31] U. Côté-Allard et al., “Deep learning for electromyographic hand 
gesture signal classification using transfer learning,” IEEE 
Transactions on Neural Systems and Rehabilitation Engineering, 
vol. 27, no. 4, pp. 760-771, April 2019. 

[32] Y. Zou and L. Cheng, "A transfer learning model for gesture 
recognition based on the deep features extracted by CNN," IEEE 
Transactions on Artificial Intelligence, vol. 2, no. 5, pp. 447-458, 
Oct. 2021, doi: 10.1109/TAI.2021.3098253.  

[33] F. D. Farfan, J. C. Politti, and C. J. Felice, “Evaluation of EMG 
processing techniques using information theory,” Biomed. Eng. 
Online, vol. 9, no. 1, pp. 1–18, 2010. 

[34] A. Krasoulis, S. Vijayakumar, and K. Nazarpour, “Multi-grip 
classification-based prosthesis control with two EMG-IMU 
sensors,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 2, 
pp. 508–518, Feb. 2020. 

[35] Y. Taigman, M. Yang, M. Ranzato and L. Wolf, "DeepFace: 
closing the gap to human-level performance in face verification," 
2014 IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 1701-1708, 23-28 June 2014. 

[36] J. Chen, Jiangcheng, B. Sheng, G. Zhang, and G. Cao., “High-
density surface EMG-based gesture recognition using a 3D 
convolutional neural network,” Sensors 2020, vol 20, no. 4: 1201. 
https://doi.org/10.3390/s20041201 

[37] L. Yanghao., W. Naiyan, S. Jianping, L. Jiaying and H. Xiaodi, 
“Revisiting batch normalization for practical domain adaptation,” 
arXiv:1603.04779, 2016. 

[38] S. Ji, W. Xu, M. Yang and K. Yu, "3D Convolutional Neural 
Networks for Human Action Recognition," in IEEE Transactions 
on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 
221-231, Jan. 2013. 

[39] K. He, R. Girshick, and P. Dollar, “Rethinking imagenet pre-
training,” IEEE International Conference on Computer Vision 
(ICCV), Seoul, 2019, pp. 4917-4926. 

[40] Z. Li and D. Hoiem, "Learning without Forgetting," in IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 
40, no. 12, pp. 2935-2947, 1 Dec. 2018.  

[41] J. Ba and R. Caruana., “Do deep nets really need to be deep?,” in 
Advances in neural information processing systems (NIPS), pages 
2654–2662, 2014. 

[42] G. Hinton, O. Vinyals, and J. Dean., “Distilling the knowledge in 
a neural network,” arXiv preprint arXiv:1503.02531, 2015. 

[43] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and 
Y. Bengio, “Fitnets: hints for thin deep nets,” arXiv preprint 
arXiv:1412.6550, 2014. 

[44] W. Park, D. Kim, Y. Lu and M. Cho, "Relational Knowledge 
Distillation," 2019 IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR), 2019, pp. 3962-3971. 

[45] L. Pang, Y. Lan, J. Xu, J. Guo, and X. Cheng., "Locally smoothed 
neural networks," In Proceedings of Machine Learning Research, 
77:177–191, ACML 2017. 

[46] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. 
Riedmiller., “Striving for simplicity: the all convolutional net,” In 
ICLR, 2015. CoRR, abs/1412.6806 

[47] M. Lin, Q. Chen, and S. Yan, “Network in Network,” In ICLR: 
Conference Track, 10 pages, 2014. 

[48] D.-A. Clevert, T. Unterthiner, and S. Hochreiter., “Fast and 
accurate deep network learning by exponential linear units 
(elus),” arXiv preprint arXiv:1511.07289, 2015. 

[49] K. Janocha, and W. M. Czarnecki. "On loss functions for deep 
neural networks in classification," arXiv preprint 
arXiv:1702.05659, 2017.  

[50] D. P. Kingma and J. Ba, “Adam: A method for stochastic 
optimization,” arXiv preprint arXiv:1412.6980, 2014. 

[51] S. J. Pan and Q. Yang, "A survey on transfer learning," in IEEE 
Transactions on Knowledge and Data Engineering, vol. 22, no. 
10, pp. 1345-1359, Oct. 2010, doi: 10.1109/TKDE.2009.191. 

[52] X. Glorot and Y. Bengio., “Understanding the difficulty of 
training deep feedforward neural networks,” In AISTATS, 2010. 

[53] K. He, X. Zhang, S. Ren, and J. Sun., “Delving deep into 
rectifiers: surpassing human-level performance on imagenet 
classification,” In ICCV, 2015. 

[54] R. Caruana, S. Lawrence and C. Giles, “Overfitting in neural nets: 
backpropagation, conjugate gradient, and early stopping,” NIPS, 
2000. 

[55] S. Ioffe and C. Szegedy., “Batch normalization: accelerating deep 
network training by reducing internal covariate shift,” In ICML, 
2015.  

[56] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. 
Salakhutdinov, “Dropout: a simple way to prevent neural 
networks from overfitting,” Journal of Machine Learning 
Research, vol. 15, no. 1, pp.1929–1958, 2014. 

[57] I. Ketykó, F. Kovács and K. Z. Varga, “Domain adaptation for 
sEMG-based gesture recognition with recurrent neural 
networks,” arXiv:1901.06958 2019. 

[58] K-O Cho, H-J Jang, “Comparison of different input modalities 
and network structures for deep learning-based seizure 
detection,” Sci Rep 10, 122 (2020). 

[59] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language 
modeling with gated convolutional networks,” In Proceedings of 
the 34th International Conference on Machine Learning (ICML), 
vol. 70, pp. 933–941, 2017. 

[60] E. Scheme and K. Englehart, “Electromyogram pattern 
recognition for control of powered upper-limb prostheses: State 
of the art and challenges for clinical use,” J. Rehabil. Res. 
Develop., vol. 48, no. 6, pp. 643–59, 2011, doi: 
10.1682/jrrd.2010.09.0177, PMID: 21938652. 

[61] W. Wei, Q. Dai, Y. Wong, Y. Hu, M. Kankanhalli and W. Geng, 
“Surface-electromyography-based gesture recognition by multi-
view deep learning,” in IEEE Transactions on Biomedical 
Engineering, vol. 66, no. 10, pp. 2964-2973, Oct. 2019. 

[62] M. Raghu, C. Zhang, J. Kleinberg and S. Bengio, “Transfusion: 
understanding transfer learning for medical imaging”, 
Proceedings of the 33rd International Conference on Neural 
Information Processing Systems (NIPS), article no.: 301, Pages 
3347–3357, December 2019. 

[63] M. R. Islam, D. Massicotte, F. Nougarou, P. Massicotte and W-P 



16 
                   Paper ID #1570610272  

 
Zhu, “S-ConvNet: A shallow convolutional neural network 
architecture for neuromuscular activity recognition using 
instantaneous high-density surface EMG images,” arXiv preprint 
arXiv:1906.03381, 2019. 

[64]  R. N. Khushaba and K. Nazarpour, "Decoding HD-EMG Signals 
for Myoelectric Control - How Small Can the Analysis Window 
Size be?," in IEEE Robotics and Automation Letters, vol. 6, no. 
4, pp. 8569-8574, Oct. 2021, doi: 10.1109/LRA.2021.3111850. 

[65] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, 
and T. Darrell, “Decaf: A deep convolutional activation feature 
for generic visual recognition,” in International Conference in 
Machine Learning (ICML), 2014. 

[66] Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature 
hierarchies for accurate object detection and semantic 
segmentation,” in The IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), June 2014. 

[67] M. R. Islam, D. Massicotte, P. Massicotte and W-P Zhu, “Surface 
EMG-Based Inter-Session/Inter-Subject Gesture Recognition by 
Leveraging Lightweight All-ConvNet and Transfer Learning,” 
arXiv preprint, arXiv:2305.08014, 2023. 

[68] Y. Zou, L. Cheng, L. Han, Z. Li and L. Song, "Decoding 
Electromyographic Signal With Multiple Labels for Hand 
Gesture Recognition," in IEEE Signal Processing Letters, vol. 30, 
pp. 483-487, 2023. 

 


	I. Introduction
	II. Related work
	III. The Proposed Transfer Learning Framework
	IV. Model Description – The all-convolutional Neural Network (All-Convnet)
	V. Transfer learning by leveraging lightweight All-ConvNet (All-ConvNet+TL)
	VI. Experimental Setup



