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Abstract: Material extrusion is a popular additive manufacturing technology due to its low cost, wide
market availability, ability to construct complex parts, safety, and cleanliness. However, optimizing
the process parameters to obtain the best possible mechanical properties has not been extensively
studied. This paper aims to develop ensemble learning-based models to predict the ultimate tensile
strength, Young’s modulus, and the strain at break of PLA and PLA-CF 3D-printed parts, using
printing temperature, printing speed, and layer thickness as process parameters. Additionally,
the study investigates the impact of process parameters and material selection on the mechanical
properties of the printed parts and uses genetic algorithms for multi-objective optimization according
to user specifications. The results indicate that process parameters and material selection significantly
influence the mechanical properties of the printed parts. The ensemble learning predictive models
yielded an R? value of 91.75% for ultimate tensile strength, 94.08% for Young’s modulus, and 88.54%
for strain at break. The genetic algorithm successfully identified optimal parameter values for the
desired mechanical properties. For optimal ultimate tensile strength, PLA-CF was used at 222.28 °C,
0.261 mm layer, 40.30 mm/s speed, yielding 41.129 MPa. For Young’s modulus: 4423.63 MPa, PLA-CF,
200.01 °C, 0.388 mm layer, 40.38 mm/s. For strain at break: 2.249%, PLA, 200.34 °C, 0.390 mm layer,
45.30 mm/s. Moreover, this work is the first to model the process—structure property relationships for
check for an additive manufacturing process and to use a multi-objective optimization approach for multiple
updates mechanical properties, utilizing ensemble learning-based algorithms and genetic algorithms.
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1. Introduction

Academic Editor: Tomasz Additive manufacturing, also known as 3D printing, is revolutionizing the manufac-

Lipiriski turing and prototyping industries by providing a simpler and more cost-effective product
Received: 11 October 2023 development process than traditional manufacturing techniques. Among various 3D print-
Revised: 29 October 2023 ing technologies, material extrusion, or fused filament fabrication (FFF), is the most widely
Accepted: 30 October 2023 used and rapidly growing technique [1,2]. Material extrusion was first introduced in 1989
Published: 3 November 2023 and patented by Scott Crump, the co-founder of Stratasys [3], who also introduced it to the

market as fused deposition modeling (FDM). Initially, this technology was also referred
to as fused filament fabrication (FFF), which gained popularity after the expiration of the
- Stratasys FDM patent [1].
The popularity of material extrusion can be attributed to its capability to print with
a wide range of materials, making it possible to build new technologies with various
characteristics. Additionally, its low cost, scalability, and wide market availability make it
an attractive option for researchers and industry professionals alike [4].
Attribution (CC BY) license (https:/ / However, research has shown that parts produced using traditional manufacturing
creativecommons.org/licenses /by / methods exhibit superior mechanical properties compared to those fabricated with material
140/). extrusion. This is because the parts are printed layer by layer, creating voids that generate
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internal stress when subjected to mechanical tests. To overcome this obstacle, researchers
worldwide are pursuing different strategies to optimize the mechanical properties of 3D-
printed parts by selecting the appropriate process parameters [5,6]. In summary, material
extrusion has significantly improved the product development process with its versatility
and cost-effectiveness. Despite its limitations in terms of mechanical properties, ongoing
research aims to overcome these challenges and further enhance the capabilities of this
innovative technology [4,5].

Several researchers have employed different approaches to investigate the optimiza-
tion of process—structure properties of 3D-printed polymers. Gebisa et al. [5] employed
a full factorial design experiment to study the effect of FFF process parameters on the
tensile properties of ULTEM 9085. They investigated five variables, including the contours
number, contour width, raster width, raster angle, and air gap, and found that raster angle
had the greatest influence on mechanical properties. Claver et al. [6] studied the effect of
layer height, infill density, and layer orientation on the tensile strength of polylactic acid
(PLA) and acrylonitrile butadiene styrene (ABS). They found that infill density significantly
impacted tensile strength, while layer height had little effect. Chokshi et al. [7] investigated
the effect of layer thickness, infill pattern, and contours number using PLA as the print-
ing material. Their study showed that layer thickness and contours number significantly
impact flexural strength. Othman et al. [8] studied the influence of layer thickness, infill
pattern, and contours number on the mechanical properties and showed that all three
process parameters studied have close contribution values on mechanical strengths. Infill
density has the highest influence on mechanical properties, followed by layer thickness.

To enhance the mechanical properties of polymers, researchers have developed com-
posites that combine polymers with reinforcing materials such as fibers, particles, or fillers.
Introducing these reinforcing materials allows the resulting composite material to exhibit
improved properties such as increased strength, stiffness, toughness, and wear resistance
compared to pure polymers. Several researchers have studied and compared the mechani-
cal performance of polymers and composites using various materials and techniques. Ning
etal. [9] evaluated the effects of carbon fibers on the mechanical properties of FFF-fabricated
parts made of ABS. They found that carbon fibers enhanced tensile strength and Young’s
modulus but reduced toughness, yield strength, and ductility. Love et al. [10] observed that
combining carbon fibers and polymers increased strength, stiffness, thermal conductivity,
and reduced distortion in FFF-fabricated parts. Perez et al. [11] investigated the effects of
reinforcing materials such as fibers and TiO; on the mechanical properties of 3D-printed
ABS matrix composites. They found that ABS reinforced with TiO; at a 5% weight ratio
showed the highest ultimate tensile strength. Aissa et al. [12] experimented with reinforced
polyamide (RPA) as the printing material and used printing speed, extrusion temperature,
and layer thickness as FFF process parameters. They found that extrusion temperature
and layer thickness had a more significant impact on tensile strength than printing speed.
Mushtagq et al. [13] used ABS as a printing material and focused on part properties like
flexural strength, tensile strength, surface roughness, print time, and energy consumption.
The process parameters were layer thickness, printing speed, and infill density. Using a full
central composite design, twenty specimens were tested. Layer thickness was shown to be
critical for achieving the optimum surface roughness and print time, while infill density
was critical for mechanical qualities. Zhang et al. [14] developed a data-driven predictive
modeling approach to understand the structure—property relationship of FFF-fabricated
continuous carbon fiber-reinforced polymers (CCFRP). The ensemble learning algorithm
combined eight base learners: multiple linear regression, least absolute shrinkage and
selection operator (lasso), multivariate adaptive regression splines (MARS), generalized
additive model (GAM), K-nearest neighbors (KNN), support vector machine (SVM), extra-
trees, and extreme gradient boosting (XGBoost). Their study concluded that the predictive
model accurately predicted the flexural strength of CCFRP specimens, with a minimum
RMSE of 9.87%, a minimum RE of 7.75%, and a maximum R? of 96.99%.
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The analyses of the previous investigations, summarized in Table 1, provide a presenta-
tion of an important study direction in the field of FFF, particularly with materials like PLA
and PLA-CFE. As previously stated, numerous researchers have conducted studies to better
understand the impact of various process factors on the mechanical properties of printed
parts. Several of these studies used the design of experiments, empirical methodologies,
or direct experimentation to identify these relationships. Although these methodologies
have produced useful insights, there appears to be a clear gap in these studies: a lack of
advanced prediction and optimization strategies. While traditional methods are rigorous,
they may fail to capture the complex interplay of several elements. Furthermore, it appears
that the current literature lacks an integrated approach that not only predicts results but
also optimizes parameters for ideal results. This identified gap emphasizes the potential
need for more integrated and advanced techniques in future research initiatives.

Table 1. Summary of the literature review.

Reference

Material Parameters Studied Major Findings

Gebisa et al. [5]

Claver et al. [6]

Chokshi et al. [7]

Othman et al. [8]

Ning et al. [9]

Love et al. [10]

Perez et al. [11]

Aissa et al. [12]

Mushtagq et al. [13]

Zhang et al. [14]

Contours number

Raster angle had the greatest

ULTEM 9085 Raster parameters influence on
Air gap mechanical properties.
Layer height Infill density highly impacted
PLA, ABS Infill density tensile strength; layer thickness
Layer orientation had a smaller effect.
PLA {“naf}i]ﬁrpt;iﬁess Layer thickness and contours
Contours number number impact flexural strength.
. Infill density, followed by layer
PLA }“naf}i]ﬁrpt;ﬁlzgess .thickness, have the highest
Contours number mﬂuenc.e on .
mechanical properties.
Carbon fibers enhanced tensile
ABS with carbon fibers ) strength and Young’s modulus

Polymers with carbon fibers

but reduced toughness and yield
strength.

Carbon fibers increased strength,
stiffness, thermal conductivity,
and reduced distortion in

FDM parts.

ABS reinforced with TiO, at a 5%

ABS with fibers and TiO, - weight ratio showed the highest
ultimate tensile strength.
Printing speed Ex.trusmn .temperature an.d layer
. thickness influenced tensile
RPA Extrusion temperature
. strength more than
Layer thickness -
printing speed.
Layer thickness has a critical
Layer thickness influence on achieving the
ABS Printing speed optimum surface roughness and
Infill density print time; infill density was
critical for mechanical qualities.
The predictive model accurately
CCFRP - determined the flexural strength

of CCFRP specimens.

In this context, we present a novel way to model the process—structure properties
interactions for the FFF process. The primary focus of this study is to use ensemble learning
algorithms to predict the mechanical properties of FFF-printed parts using PLA and PLA
with carbon fiber (PLA-CF) as the printing material. Additionally, the study aims to
understand the impact of process parameters on the mechanical properties of the parts
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2.1.1. Multiple Linear Regression

Multiple linear regression is a statistical method that enables the prediction of a target
variable based on the values of two or more explanatory variables [16]. This technique
builds upon linear regression and is sometimes referred to as multiple regression. In this
context, the variable to be predicted is designated as the dependent variable, while the
variables employed for prediction are called independent variables. The primary objective
of this algorithm is to establish a linear association between the independent variables (x)
and the dependent variable (y), as illustrated in Equation (1):

y=ﬁ0+ﬁ1x1+---+ﬁpxp (1)

where B is the value of y when the independent variables are equal to zero, and {B4, .. .,
By} are the estimated regression coefficients.

2.1.2. Decision Tree Regression

A decision tree is a method that employs a tree-like framework for constructing
regression models [17,18]. This approach progressively develops a corresponding decision
tree by dividing a dataset into increasingly smaller subsets. The decision tree consists of
three types of nodes. The root node serves as the starting point and represents the entire
data sample. Interior nodes symbolize the features of the dataset, with their branches
denoting the respective decisions. Lastly, leaf nodes signify the outcomes derived from
the model.

2.1.3. Least Absolute Shrinkage and Selection Operator (Lasso)

Lasso, a shrinkage method, applies constraints on the coefficients of the least squares
estimates [14]. The objective function for the lasso technique is illustrated in Equation (2):

2
J= Y (vi— Bo = X1 Br) + AL B @

where By and B; represent the coefficients for the least squares estimates, and A denotes
the tuning parameter that regulates the penalty effect on the estimation of coefficients.
The lasso offers an advantage over traditional least squares approaches as the penalty term
facilitates managing the trade-off between variance and bias.

2.1.4. Ridge Regression
Ridge regression, a linear regression variation, contains a regularization method to
avoid overfitting and deal with multicollinearity among predictor variables. It predicts the
dependent variable y based on the independent variables x1, x2, x3, . .., X, via the linear
relationship:
y=Bo+prx1+Baxa+ ...+ Bpxp +AY L B €)
where Bo, B; B2...,Bp are the coefficients estimated to minimize the residual sum of

squares plus the penalty term. The presence of the penalty term )LZIP:l p? distinguishes
ridge regression from ordinary linear regression; it penalizes large coefficients with a tuning
parameter A.

Ridge regression behaves exactly like normal linear regression when (A = 0). As A
increases, the model’s coefficients approach zero, simplifying the model. To assist the model
in predicting new data, the best value for A is commonly chosen through cross-validation.
Ridge regression performs better when the predictors are correlated, leading to more stable
predictions and preventing calculation issues.

2.2. Ensemble Learning Methods

Ensemble learning is a technique that combines multiple base learners to enhance
the final prediction [18]. Individual base models might exhibit suboptimal performance
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due to high variance or bias. However, when these base learners are connected, they form
a more robust learner, as their combination effectively reduces bias or variance, leading
to improved model performance. In this study, four distinct types of ensemble learning
techniques were employed.

2.2.1. Bagging and Boosting

The key distinction between bagging and boosting lies in their training methodolo-
gies. In bagging, the base models are trained concurrently, whereas boosting necessitates
sequential training of the base models [19].

The underlying principle of bagging ensemble learning is straightforward; it depends
on samples generated using the bootstrap statistical method, which is based on an original
dataset [18]. Given N bootstrap samples, each with a size of S (as shown in Equation (4)),
bagging proceeds accordingly:

1.1 1 2 2 2 N N N
{(rl,rz,...,rs>,<r1,r2,...,r5),...,(rl,rz,...,rs)} 4)

These samples are subsequently utilized to train multiple base models, as demon-
strated in Equation (5):
{m11m21-~-1mN}' (5)

In a regression scenario, as is the case in this study, the average of the predictions
from the base models is computed to generate a final prediction with reduced variance, as
depicted in Equation (6):

fng(x) = 5 Lo mitx) ©

In this study, the bagging method employed is random forest (RF), which utilizes
deep decision trees as weak learners fitted to bootstrap samples derived from an initial
dataset [20]. In RF, feature sampling also occurs, ensuring that each decision tree trains on
a random subset of features. Boosting shares similarities with bagging, as both techniques
use multiple base models to achieve a better-performing model [18].

The primary difference between the two is that boosting trains base models sequen-
tially, with each model focusing on the data poorly addressed by its predecessor. Upon
completing the process, a learner with reduced bias is obtained. The boosting methods
utilized in this study include gradient boosting and extreme gradient boosting (XGB).

Gradient boosting is an approach wherein the ensemble model is constructed as the
sum of weighted weak learners, as illustrated in Equation (7):

Frn () = Y0 e xmi(.) @)

This algorithm transforms the problem into a gradient descent-based one. During
each sequential iteration, a weak learner is fitted to the negative of the current fitting error
in relation to the existing ensemble model [19], as demonstrated in Equation (8):

fmi(.) = fmi1(.) —ci X Vg L(fmi1)(.) ®)

where L(.) represents the fitting error of the model, ¢; is the step size, and —V ¢, | L(fm;1)(.)
denotes the opposite of the current fitting error relative to the existing model.

Extreme gradient boosting (XGB) is constructed similarly as a sum of weighted weak
learners (refer to Equation (7)), where the first weak learner is trained on the entire input
data. Subsequent models are trained on the residuals to address the limitations of the
previous training, continuing until the stopping criterion is achieved [21].
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A critical aspect of developing a robust machine learning model is assessing its per-
formance. Various metrics are employed to evaluate the quality of the model. These per-
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Figure 3. Tensile specimen shape and dimensions.
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3.1. Choice of Material

PLA, or polylactic acid, is a biodegradable and bioactive polyester that is derived
from renewable resources, such as cornstarch, sugarcane, or cassava roots. It has become a
popular material for 3D printing due to its environmental friendliness, ease of printing, and
low toxicity. However, its mechanical properties are not as strong as some other materials,
such as ABS.

To improve the properties of PLA, researchers have turned to composite materials,
such as PLA-CFE. Carbon fiber is a strong and lightweight material that can be used to
reinforce plastic materials. PLA-CF is a composite material made by adding carbon fiber to
PLA. It has improved mechanical properties, such as strength and stiffness, compared to
pure PLA.

The use of bioplastics, such as PLA, is becoming increasingly important as concerns
about the environment and sustainability grow. Petroleum-based plastics, such as ABS,
are non-renewable and contribute to pollution and waste. The availability of these ma-
terials is also decreasing, making it necessary to find alternative materials that are more
sustainable. By using PLA and PLA-CF, this study contributes to the development of more
environmentally friendly 3D-printing materials.

3.2. Design of the Experiment

The optimization of the process—structure properties of materials is a crucial aspect of
3D printing. This study considered three key parameters for optimizing the 3D printing
process of PLA and PLA-CF: printing temperature, layer thickness, and printing speed.

Printing temperature refers to the temperature at which the material is extruded from
the printer nozzle. It is a critical parameter that can significantly impact the final mechanical
properties of the printed part. If the temperature is too low, the material may not bond well
between layers, leading to a weak and brittle part. On the other hand, if the temperature
is too high, the material may burn or degrade, affecting its structural integrity [30]. Layer
thickness refers to the thickness of each layer of material that is deposited on top of the
previous layer. This parameter affects the resolution and quality of the final printed part.
A thinner layer thickness results in higher resolution and smoother surface finish, but
it also increases printing time. A thicker layer thickness results in faster printing but
may compromise the quality and mechanical properties of the final part [31]. Printing
speed refers to the speed at which the printer moves the nozzle across the printing bed.
This parameter affects the overall printing time and the quality of the final part. A slower
printing speed allows for better adhesion between layers, resulting in a stronger part with
a better surface finish; however, it also increases printing time. A faster printing speed
reduces the printing time but may result in weaker parts with a lower-quality surface
finish [32].

Other parameters, such as the infill density and pattern, and bed temperature, can
also affect the final properties of the printed part. However, for this study, these parameters
were set as indicated in Table 2 and were not considered in the optimization process.

Table 2. Table of the fixed FFF process parameters and their description.

Factors

Description Value

Bed temperature (°C)
Infill density %

Infill pattern
Number of contours

Used to heat the build platform 60
The amount of material used in the inside of the print 100
The form or structure of the material within the component Lines
The number of contours surrounding the part 1

The full factorial design of the experiment involves testing all possible combinations
of the chosen parameter levels to determine their effect on the final properties of the
printed part. As depicted in Table 3, three levels were selected for each parameter: printing
temperature, layer thickness, and printing speed.
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Table 3. Table of the selected factors and their levels.

Factors Level 1 Level 2 Level 3
Printing temperature (°C) 200 215 230
Layer thickness (mm) 0.25 0.35 0.45
Printing speed (mm/s) 40 50 60

For printing temperature, the levels chosen were 200, 215, and 230 °C. These tempera-
tures were selected based on the melting point of the PLA and PLA-CF materials and their
recommended printing temperature range.

For layer thickness, the levels chosen were 0.25, 0.35, and 0.45 mm. This parameter
affects the resolution and quality of the final printed part, as well as printing time.

Finally, for printing speed, the levels chosen were 40, 50, and 60 mm/s. This pa-
rameter affects printing time and the overall quality of the printed part, as well as its
mechanical properties.

By applying a full factorial design of the experiment, this study can determine the
effect of each parameter and their interactions on the final properties of the printed parts.
This approach allows for the optimization of the printing process and the production of
high-quality parts with the desired mechanical properties.

The full factorial design of the experiment yielded 27 specimens for each material,
resulting in a total of 54 specimens for the study. Of these, 27 specimens were printed using
pure PLA, and the remaining 27 specimens were printed using PLA-CF. Each specimen
represents a unique combination of the chosen parameter levels, allowing for the determi-
nation of how each parameter affects the final mechanical properties of the printed part.
By testing multiple specimens for each material and parameter combination, the study can
determine the consistency and repeatability of the printing process and ensure that the
results are statistically significant.

Overall, the use of a full factorial design of the experiment and multiple specimens
allows for a comprehensive analysis of the 3D printing process and the properties of
the printed parts. This approach can help to optimize the printing process, improve the
quality of the final parts, and contribute to the development of more sustainable and
environmentally friendly 3D-printing materials.

3.3. Data Collection and Modeling

Tensile tests are a standard method for determining the mechanical properties of
materials, including their strength, stiffness, and ductility. In this study, the specimens
created using the full factorial design of the experiment were used for tensile tests to
evaluate the mechanical properties of PLA and PLA-CF.

The tensile tests were performed using a universal tensile material testing system MTS,
which is a commonly used equipment for material testing. The crosshead speed was set
to 2 mm/min, which is a typical speed for tensile tests on 3D-printed parts. The experi-
mental setup for the tensile test includes the MTS equipment, the specimen holder, and
the strain gauge for measuring the deformation of the specimen. After the tensile tests
were performed, the obtained data were manually preprocessed and stored in CSV files.
Preprocessing involves removing any outliers or errors in the data and ensuring that the
data is formatted correctly for analysis. The results of data collection and preprocessing
are shown in Table A1, which includes the tensile strength, modulus of elasticity, and
elongation at break for each specimen.

The tensile test results are used to evaluate the effect of the chosen parameters on the
mechanical properties of the printed parts. By analyzing the data and comparing the results
for different parameter combinations, the optimal printing parameters can be determined
for producing parts with the desired mechanical properties.

In this study, the collected data from tensile tests were used to train ensemble learning
models to predict the ultimate tensile strength, Young’s modulus, and strain at the break
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of the printed parts. The blending ensemble learning method was used, which combines
multiple weak learners to create a stronger, more accurate predictive model.

The weak learners employed were the bagging method random forest, the boosting
methods Xgboost and gradient boosting, and the regression models decision tree regressor,
the multiple linear regression, lasso, and ridge regression. The multiple linear regression
was used as the meta-learner, which combines the predictions of the weak learners to create
the final prediction.

To train and evaluate the ensemble learning models, the data was randomly split into
training data (70%), testing data (20%), and validation data (10%). The weak learners were
trained using the training data, and their predictions were combined to create the data on
which the meta-learner was trained. The prediction results of the validation set of the weak
learners were combined with the validation set to evaluate the model.

The results of the ensemble learning models (Table 4) showed a high accuracy in
predicting the mechanical properties of the printed parts. The R? score for the prediction of
ultimate tensile strength was 91.75%, the R? score for Young’s modulus was 94.08%, and
the R? score for strain at break was 88.54% (Figure 4). The RMSE values were also relatively
low, indicating that the models have a good predictive accuracy.

Table 4. Prediction accuracy of the blending methods.

Property Predicted R? (%) RMSE Mean of Actual Values
Ultimate tensile strength (o) (MPa) 91.75% 1.23 33.87
Young’s modulus (E) (MPa) 94.08% 278.00 3233.74
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3.4. Influence of the Features Studied on the Mechanical Properties of the Part

Table A1 provides data on the mechanical properties of the PLA and PLA-CF speci-
mens. There is a clear difference between the properties of the two materials, which con-
firms the effect of carbon fiber on PLA. The addition of carbon fiber improves the mechan-
ical properties of PLA, including its strength, stiffness, and toughness.

Figure 5 presents the behavior of runs 1, 10, 12, and 13 of PLA and PLA-CF. These
runs represent different combinations of the printing parameters and their effect on the
mechanical properties of the printed parts. The plots show the stress—strain curves for
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Figure 5. Tensile test behavior of PLA and PLA-CF parts.
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The declision tree regressor algorithm was used to study the importance of the features,
3.4.1. Featur& mportanee i i .
as it provides g%o Interpretability and the ability to output the importance of the features.
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affects the outcome, which can be used to evaluate the relative influence of the input fea-
tures on the mechanical properties of the printed parts.

The results presented in Table 5 show that the material had the greatest importance
on all the mechanical properties studied, which confirms the significant effect of carbon
fiber on the mechanical properties of PLA, which is supported by various studies. In fact,
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The results presented in Table 5 show that the material had the greatest importance
on all the mechanical properties studied, which confirms the significant effect of carbon
fiber on the mechanical properties of PLA, which is supported by various studies. In fact,
Ning et al. [9] deduced that the inclusion of carbon fibers into ABS significantly increased
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Table 5. Features importance for each mechanical property studied using a decision tree.
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Table 5. Features importance for each mechanical property studied using a decision tree.
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These findings can be used to optimize the printing process and improve the mechani-
cal properties of the printed parts. By selecting the appropriate material and optimizing the
printing temperature and layer thickness, it is possible to achieve the desired mechanical
properties for 3D-printed parts, contributing to the development of more sustainable and
environmentally friendly materials.

Moreover, thanks to the models created to predict the mechanical properties stud-
ied, 3D plots of the response surfaces of these properties are created in Figures A1-A6.
These plots can approve the study of the feature importance.

3.4.2. Analysis of the Response Surfaces

The response surfaces presented in Figures A1-A6 provide additional insights into
the influence of the printing parameters on the mechanical properties of the PLA and
PLA-CF specimens.

For PLA-CE, the response surfaces showed that the ultimate tensile strength decreases
with increasing layer thickness and printing speed. The printing temperature had a more
complex influence on the ultimate tensile strength, with the highest values observed
in a range of temperatures between 210 °C and 225 °C. Young’s modulus increased with
increasing layer thickness at high printing speeds and low temperatures. The strain at break
had its maximum values at a range of layer thicknesses between 0.375 mm and 0.425 mm,
and increased with increasing printing temperature and decreasing printing speed.

For PLA, the response surfaces showed that printing temperature had the highest
influence on the ultimate tensile strength, with an increase in strength observed with
increasing temperature. Layer thickness had a significant influence on Young’s modulus,
with an increase in modulus observed with increasing layer thickness. The increase in
printing speed also produced a higher Young’s modulus. The maximum values of strain
at break for PLA specimens appeared at a range of layer thicknesses between 0.375 mm
and 0.425 mm, a range of printing speed between 45 mm/s and 55 mm/s, and at low
temperatures.

These findings coincide with the studies of Othman et al. [8], who used PLA as the
printing material, and layer thickness and other process parameters to study their influence
on the mechanical properties of the printed parts, while Aissa et al. [12] used printing
temperature, layer thickness, printing speed, and reinforced polyamide as the printing
material. The findings also confirmed the importance of feature importance analysis,
presented in the previous section, and the need for optimizing the printing parameters to
achieve the desired mechanical properties.

3.5. Optimization of the Process Parameters

After the analysis presented in Section 3.4, it is concluded that the material used had
the most significant influence on the mechanical properties studied. Once the appropriate
material is selected, the choice of the process parameters depends on the desired mechanical
properties. Therefore, to optimize these relationships and find the optimal set of printing
parameters for a given material, a genetic algorithm was used.

3.5.1. Genetic Algorithm

The genetic algorithm (GA) is a population-based stochastic optimization algorithm
that was inspired by Charles Darwin’s theory of evolution. The GA algorithm begins by
creating an initial population of multiple solutions that represent the chromosomes of the
individuals. The fitness of each individual in the population is then evaluated by calculating
a fitness score [33]. Natural selection is applied by selecting the fittest individuals from the
population. Crossover and mutation are then applied to produce offspring that descend
from the fittest individuals.

The crossover operator takes two parents and produces two offspring by exchanging
parts of their chromosomes. The mutation operator introduces small random changes to
the offspring’s chromosomes to promote diversity in the population. These operators are
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used to produce a new population, and the process of selection, crossover, and mutation is
repeated until the termination criteria are achieved.

The use of GAs in 3D printing optimization has become increasingly popular in
recent years due to its ability to efficiently find the optimal set of printing paramelrs.

By using GAs, it is possible to search through a large parameter space and find the best
set of parameters that result in the desired mechanical properties of the printed parts.
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These weights determine the importance of each mechanical property in the optimization
process. The user can assign higher weights to the properties that are more critical to the
application of the printed part.

By using the fitness function in the genetic algorithm, it is possible to efficiently search
for the optimal set of process parameters that result in the desired mechanical properties of
the printed parts. This approach can significantly reduce the time and cost required to find
the optimal printing parameters for a given material and application
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Figure 8. The optimal solution for each iteration of the optimization process for the mechanical properties.

Figure 8. The optimal solution for each iteration of the optimization process for the mechanical
properties.

The results summarized in Table 6 show the optimal solutions for different mechan-
ical properties using fused filament fabrication (FFF) 3D printing with PLA-CF (polylactic
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The results summarized in Table 6 show the optimal solutions for different mechanical
properties using fused filament fabrication (FFF) 3D printing with PLA-CF (polylactic acid—
carbon fiber) and PLA (polylactic acid) materials. The optimal values and parameters for
each property are as follows:

1.  Ultimate tensile strength (UTS)—the optimum solution has a value of 41.129 MPa.

The optimal parameters for achieving this value are:

Printing temperature: 222.28 °C;
Layer thickness: 0.261 mm;
Printing speed: 40.03 mm/s;
Material: PLA-CF.

2. Young’s modulus—the optimal value is 4423.63 MPa, and the optimal parameters are:

Printing temperature: 200.01 °C;
Layer thickness: 0.388 mm;
Printing speed: 40.038 mm/s;
Material: PLA-CE.

Table 6. Solutions to the optimization process.

Mechanical Value Material Printing Temperature Layer Thickness Printing Speed
Property

Ultimate tensile strength 41.129 MPa PLA-CF 222.28 °C 0.261 mm 40.30 mm/s
Young’s modulus 4423.63 MPa PLA-CF 200.01 °C 0.388 mm 40.38 mm/s
Strain at break 2.249% PLA 200.34 °C 0.390 mm 45.30 mm/s

Note: In this case, the goal was to maximize Young’s modulus, which is unusual.
To search for the minimum, one could change the weight attributed to Young’s modulus in
the fitness function by changing its value to —1, for example.

3. Strain at break—the optimal solution has a value of 2.249%. The parameters for
achieving this value are:

Printing temperature: 200.34 °C;
Layer thickness: 0.39 mm;
Printing speed: 45.30 mm/s;
Material: PLA.

According to the literature, as the layer thickness increases, the ultimate tensile
strength decreases [33,34], which explains the low layer thickness value produced by
the GA method. Furthermore, Huynh et al. [35] demonstrated that increasing the tempera-
ture from 200 °C to 220 °C, using PLA as a printing material, greatly enhances the ultimate
tensile strength, which explains the printing temperature of 222.28 °C coming from the
ultimate tensile strength optimization.

These results are confirmed by the response surfaces presented in Figures A1-A6.
These figures demonstrate the relationships between the process parameters and the me-
chanical properties of the printed materials.

4. Conclusions and Prospects

This article presents a data-driven modeling approach to predict the ultimate tensile
strength (UTS), Young’s modulus, and strain at break of PLA and PLA-CF dog-bone specimens.
The specimens were manufactured according to ASTM D638-14 Type I and tested using a
universal tensile material testing system (MTS). The study investigated the influence of
material type and process parameters such as printing temperature, printing speed, and layer
thickness on the mechanical properties. A genetic algorithm was employed to optimize the
process parameters for specific conditions. Ensemble learning algorithms, including XGBoost,
gradient boosting regressor, random forest, decision tree, multiple linear regression, lasso, and
ridge regression, were used to predict the mechanical properties with high accuracy.
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This study has shown that PLA-CF specimens exhibit higher ultimate tensile strength
(UTS) and Young’s modulus compared to PLA specimens. For PLA-CF specimens, the
following trends were observed in relation to process parameters:

e UTS increases when layer thickness and printing speed decrease, with maximum
values at printing temperatures between 210 °C and 225 °C;

e  Young’s modulus increases with increasing layer thickness and printing speed and
decreasing printing temperature;

e  Strain at break increases with increasing printing temperature and decreasing printing
speed, with maximum values for layer thicknesses between 0.375 mm and 0.425 mm.

For PLA specimens, the following trends were observed:

e  Both UTS and Young’s modulus increase when all studied process parameters (printing
temperature, printing speed, and layer thickness) increase;

e  Strain at break increases when printing temperature decreases, with maximum values
for layer thicknesses between 0.375 mm and 0.425 mm, and printing speeds between
45 mm/s and 55 mm/s.

The genetic algorithm used in the study produced values of 41.129 MPa for UTS,
4423.63 MPa for Young’s modulus, and 2.249% for strain at break.

The study focused on the effect of printing materials (PLA and PLA-CF) and process
parameters (printing speed, printing temperature, and layer thickness) on the mechanical
properties of 3D printed parts. Future research aims to investigate the influence of additional
process parameters, such as infill density and bed temperature, on the mechanical properties
of 3D-printed parts, as well as to explore more materials to broaden the scope of the study.
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Appendix A

Table Al. The preprocessed collected data from the mechanical test.

Ultlm.ate Modulus Strain PLA- Ulhm.ate Young's Strain
PLA Tensile of Elasticit at Break CF Tensile Modulus at Break
Run Strength y Run Strength
(o) (E) (e) (o) (E) (€)
1 26.66 1746.67 1.79 1 33.61 3754.25 1.42
2 25.92 1744.65 1.84 2 34.17 3356.07 1.44
3 27.34 1505.78 2.00 3 34.44 3497.39 1.55
4 24.50 1543.07 1.95 4 37.93 4391.66 1.16
5 26.85 1202.43 2.31 5 38.14 4174.61 1.30
6 25.93 1482.00 1.96 6 37.61 4581.69 1.10
7 31.41 1812.83 2.08 7 35.85 4125.07 1.08
8 29.42 1891.01 1.89 8 35.74 4132.72 1.10
9 24.30 1258.48 2.18 9 31.13 3984.64 0.92
10 27.23 1556.10 1.96 10 39.60 3505.53 1.56
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Ultlm.ate Modulus Strain PLA- Ulhm.ate Young's Strain
PLA Tensile of Elasticit at Break CF Tensile Modulus at Break
Run Strength y Run Strength
(o) (B) (e) (o) (E) (e)
11 30.20 2143.89 1.97 11 37.34 3986.06 1.30
12 31.21 1629.61 2.06 12 37.39 3853.34 1.38
13 28.87 1809.15 1.92 13 38.53 4153.85 1.44
14 28.39 1762.37 1.94 14 36.99 4000.50 1.30
15 27.16 1617.90 2.024 15 36.31 4060.63 1.22
16 33.59 1801.88 2.15 16 35.57 3768.16 1.37
17 29.87 1756.94 1.83 17 35.88 3939.81 1.22
18 25.90 1625.23 1.717 18 34.43 4034.85 1.06
19 30.21 1895.71 2.054 19 31.40 3497.64 1.37
20 32.03 1755.01 2.39 20 34.65 4250.31 1.38
21 32.95 2094.29 1.90 21 34.88 3941.19 1.51
22 30.64 1958.45 1.82 22 35.05 3339.23 1.70
23 30.38 1881.98 1.80 23 34.24 3518.94 1.47
24 29.65 1922.06 1.79 24 34.53 3256.32 1.79
25 26.15 1897.19 1.45 25 32.76 3343.46 1.37
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