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ABSTRACT Robust lane detection is imperative for the realization of intelligent transportation. Recently,
vision-based systems that employ deep convolution neural networks (CNNs) for lane detection have made
considerable progress. However, for better generalization under various road conditions learning-based
methods require excessive training data, which becomes non-trivial in challenging conditions such as
illumination variation, shadows, false lane lines, and worn lane markings, etc. In this paper, we propose
a light field (LF) based lane detection method that utilizes the additional angular information for improved
prediction and increased robustness. Two different LF representations are investigated to study the possibility
of maximum performance improvement and minimal additional computation cost and data labeling efforts.
Experimental results successfully demonstrate that the proposed approach improves the prediction of the
lane line point coordinates and is significantly robust against the aforementioned adverse conditions.

INDEX TERMS Lane detection, light field imaging, convolutional neural networks, intelligent

transportation.

I. INTRODUCTION

One of the major contributing factors of road traffic accidents
(RTAs) can be attributed to human error, which can be caused
by several factors, including but not limited to distractions,
fatigue, and misbehavior [1]. To improve driving safety and
minimize RTAs, ideally, human involvement needs to be min-
imized in road perception. For this purpose various advanced
driver assistance systems (ADAS) particularly lane departure
warning system (LDWS) and lane-keeping assistance sys-
tem (LKAS) [2], [3] are developed to facilitate lane detec-
tion which is an integral part of the overall environmental
perception.

The development of intelligent transportation, in gen-
eral, and self-driving vehicles, in particular, demands a high
level of accuracy and robustness for lane detection systems.
To achieve level 5 autonomy, as defined by the international
standard J3016 [4], the vehicles should be able to operate
out of the so-called operational design domain. Instead of
a carefully managed (usually urban) environment with lots
of dedicated lane markings or infrastructure, it should be
able to self-drive anywhere. Vehicles also must be able to
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detect road elements in all possible conditions. However,
the frequently encountered scenarios such as illumination
variations, shadows of trees and nearby vehicles covering the
road, the appearance of false lines, and partially visible lane
lines (due to occlusion and erosion over time) further increase
the complexity of lane detection. In recent years vision-based
lane detection systems are becoming increasingly popular.
Automotive enterprises, such as Mobileye, BMW, and Tesla
have developed their own vision-based lane detection and
lane-keeping systems motivated by the following compelling
factors: lane markings are painted on the road based on
human visual perception, the decrease in the cost of high-end
machine vision camera devices, and rapid advancements in
deep convolution neural networks (CNNs) for vision-related
tasks.

Deep CNNSs obtain relevant features through training using
multiple kernels layers. These kernels are updated as the
algorithm is fed labeled data, converging by numerical opti-
mization methods on the weights that best match the train-
ing data. However, conventional imaging data fails to fully
represent the complex real-world scene and fails to provide
sufficient information needed by deep CNNs models. These
learning-based methods, therefore, demand a drastic increase
in data, and more importantly, labeled data, in the case
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of supervised learning to outperform the conventional lane
detection methods [5]. Therefore, much of the progress in
deep learning, specifically in supervised deep-network learn-
ing, can be attributed to the availability of huge image datasets
such as ImageNet [6], ActivityNet [7], MS COCO [8].

Alternatively, computational imaging techniques extract
richer, perhaps more perceptually meaningful information of
the real-world scene with slight modification in the camera’s
sensors, optics, or illumination. Combining deep learning
models with computational imaging enables us to exploit the
full potential of image content, and therefore improve the
performance of these models, particularly for environmental
perception tasks.

In the field of computational imaging, light field (LF)
imaging, has enabled the acquisition of angular information
of the environment, in addition to spatial information in con-
ventional imaging, by separately recording the intensities of
light rays coming from different directions at each separate
pixel position [9], [10]. This additional angular information
can be a critical discriminatory factor for various classifica-
tion/detection tasks. For example, in the case of lane detec-
tion, the light reflected from one color lane line refracts at a
different angle by the lens compared to the light coming from
another color lane line or the dark road from the same depth.
These different angles of incidence, shown in Figure 1(c), are
recorded by a light field camera which serves as an effective
cue for lane detection.

Light field imaging systems can be implemented in a
variety of ways including, microlens array (MLA) based
cameras [10], [11], coded mask LF camera designs [12],
[13], and camera arrays [14], [15]. MLA-based LF cameras
are the most cost-effective option and, thereofore, adopted
in this paper for data acquisition. Light fields can be used
simply as perspective images or represented in different ways,
such as focused stacked image, epipolar plane image (EPI),
or disparity map extracted from these images.

In this paper,' we propose using light fields instead of the
regular 2D images to train the state-of-the-art deep learning
models for road lane detection aiming to improve the overall
prediction accuracy with a minimal training dataset. For this
purpose, we proposed two different representations of the
light field, a sequence of perspective images, and a disparity
map extracted from the light field as a replacement of one
of the color channels of a regular image. We have trained
two different network architecture designs to use these two
different representations. For sequence input of perspective
images we have used CNNs as a feature extractors and fed
the sequence features to an LSTM network to exploit the
angular relationship between these perspectives. Whereas,
for regular image with the disparity map we have utilized
pre-trained classification CNNs models and modified them
for regression.
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FIGURE 1. An illustration of MLA-based light field camera image
acquisition in comparison with conventional camera model.
(a) Conventional camera model. (b) MLA-based light field camera
capturing scene points at different depths. (c) MLA-based light field
camera capturing scene points at the same depth.

FIGURE 2. A decoded light field using Matlab’s light field toolbox [16],
along with a middle perspective image.

The major contributions of this paper are summarized as
follows:

1) Light fields are utilized for the first time in lane detec-
tion to improve the performance of existing state-of-
the-art lane detection methods with minimal training
data.
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2) A novel disparity cue originating only from the lane
line color and independent of the depth is proposed for
robust discrimination between different color lane lines
and the road.

3) A road lane light field dataset is provided for further
research on the use of LFs for lane detection.

The paper is organized as follows. Section II presents
related work on lane detection, particularly CNN-based
approaches for lane detection and recognition. In section III
we present the proposed light field road lane dataset.
We explain the application of light field to the lane detection
problem in Section IV. Light field representations used in
this paper for training deep learning models are presented
in section V. In section VI we detail the training process
and hyper-parameters. In sections VII and VIII we present
the experimental result and provide a detailed discussion and
future direction respectively. Finally, we conclude the paper
in section IX.

Il. RELATED WORK

Lane detection is an extensively studied topic and a vast
literature exists on addressing the limitations associated with
it. Different pre-processing steps such as noise reduction [17],
[18], and illumination invariance [19], [20], have shown
improvement in heuristic recognition-based lane detection.
Feature extraction also plays a critical role in the performance
of a lane detection algorithm. Some of the famous feature
extractors used for lane detection are Sobel [21], Canny [22],
and Hough transform [23].

The advent of convolution neural networks has revolu-
tionized the performance of machine vision tasks and CNNs
based methods have started to become the state-of-the-art.
The application of CNNs specific to lane detection problem
can be categorized into three types: image classification,
object detection, and semantic segmentation. In classification
methods, some prior information is utilized in the determi-
nation of lane positions, whereas in object detection style
methods coordinate regression is employed to determine the
feature points. Lane detection using semantic segmentation
simply performs pixel-level classification of the lane and
background pixels.

In [24] the CNN is combined with RANSAC for the first
time for lane detection problem. The role of a simple eight
layers CNN with three convolutional, two sub-sampling,
and three fully-connected layers, is to extract features
while RANSAC performed clustering. Deeplane [25] has
extended depth as compared to [24], and introduced the
additional normalization and dropout layers in their architec-
ture design to achieve an overall improvement in the perfor-
mance. A trend of increase in networks depth and width to
improve the prediction accuracy is followed by AlexNet [26],
GoogleNet [27], VGG [28], and Nasnet [29].

In [30] it is demonstrated that learning more than one task
such as classification and detection simultaneously improves
performance. State-of-the-art CNN-based detection methods
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YOLO [31], G-CNN [32], and SSD [33] also perform simul-
taneous learning and directly produce the class probability
and coordinate value and excludes the region proposal stage
altogether. EELane [34] jointly learned the lane and vehi-
cle detection, where a vehicle class has a five-point output
response, the first four represent the bounding box coordi-
nates and the fifth point indicate it’s depth, whereas for the
lane class the output response is a six dimension vector. The
first four dimensions are reserved for line segment endpoints
and the last two represent the distance of the endpoint from
the camera. In [35] lane detection is modeled as multiple
row-wise classifications, where a two-stage module expresses
features for classification. The first-stage layers jointly com-
press and model the horizontal components of all lanes, and
the second-stage layers separately model each lane marker
and directly output the lane marker vertices. In [36] affinity
fields based clustering technique is proposed. These affinity
fields (horizontal and vertical) enable unique lane instances
to be identified. In [37], it is hypothesized that because lanes
follow a regular pattern and are highly correlated, the global
information can be critical in obtaining their position and,
therefore, propose a novel anchor-based attention mechanism
that aggregates global information.

In VPGNet [38] lane detection is combined with road
marking recognition and the vanishing point, responsible for
guiding both tasks, contributed significantly to the perfor-
mance improvement. In [39] spatial and temporal dimensions
are jointly exploited by a lane detection network in three
steps; pre-processing CNN-based classification, regression,
and lane fitting. Inspired by point cloud instance segmen-
tation, [40] stacked hourglass network to predict key points
on traffic lines where each key point is distinguished into
an individual instance. CondLaneNet [41] propose row-wise
formulation for optimizing lane line shape. Additionally,
it utilizes the Recurrent Instance Module (RIM) to improve
the detection of dense and fork lines. In [42] a Cross Layer
Refinement Network (CLRNet) is proposed to utilize low-
and high-level features for lane detection. Initially, detection
is performed on high semantic features followed by refine-
ment on fine-detail features to improve the precision.

Semantic segmentation is another machine vision appli-
cation frequently applied for lane detection and recogni-
tion. In [43] an optical flow network used to determine the
key and non-key frames is combined with a semantic seg-
mentation network that performs key-frame segmentation.
This is followed by the density-based spatial clustering of
applications with noise (DBSCAN) to discriminate lanes and
finally a mapping method is used to map pixel coordinates
to camera coordinates. An encoder and decoder model is
adopted in [44], the decoder’s max-pooling layer index func-
tion is used to upsample the encoder through counter pooling
approach to achieve semantic segmentation

In [45] a semantic segmentation-inspired approach is used
to minimize computations in the decoder by using multiple
level features of the encoder and reduced pixel embedding
branches which ensures the effective utilization of these
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multilevel features, resulting in the overall improved pre-
diction precision. In [46] a joint monocular camera and
LIDAR-based semantic segmentation system is proposed for
road and lane marking detection. The joint system is cali-
brated and the LIDAR measurements are successfully used to
determine the distance of the segmented road edges and lane
markers from the video feed. In [47] the conventional layer-
by-layer convolutions are generalized to slice-wise convolu-
tion in feature maps. This allows message exchange between
pixels across rows and columns, which ensures better perfor-
mance for long continuous shape structures, e.g. road lane
lines.

All aforementioned learning-based methods, including the
state-of-the-art utilize different CNN models as backbone.
The proposed method also uses three different CNN architec-
tures, including the lowest performing Googlenet to medium
and best performing VGG-16, and Nasnet respectively, in an
object detection manner and performs coordinate regression
to predict the lane line points. Chromatic aberrations are used
as a disparity variation between the black road and colored
lane lines for the first time in lane detection. We introduced
disparity as an additional cue for better road and lane line
discrimination. The proposed cue has demonstrated signif-
icant performance improvement, especially in challenging
conditions such as illumination variations, shadows, and false
lines. Also, we have combined CNN with the LSTM to extract
the angular information from the sequences of perspective
images. Such an architecture has never been used to exploit
disparity in lane detection. The paper lay the foundation for
using LFS for lane detection problems and offer discrim-
inative features for better predictions. Two different ways,
LF color disparity, and LF LSTM are used to demonstrate
the superiority of LF representations. As CNN learns to
extract relevant features through training it can benefit any
CNN-based lane detection approaches ranging from classifi-
cation to semantic segmentation.

IIl. LIGHT FIELD ROAD LANE DATASET
This paper for the first time presents a light field road lane
detection (LFLD) dataset. The benchmark lane detection
datasets, such as CULane [47], Tusimple [48], and LLA-
MAS [49] consist of regular images and, therefore, only retain
the spatial information of complex real-world scenes. Unlike
these standard datasets, LFLD consists of light fields and
hence contains the angular information of the light rays in
addition to the spatial information. The additional informa-
tion carries robust features for classification/detection tasks.
LFLD dataset consists of 1000 light fields captured across
several roads in daylight conditions. It consists of 50 different
sequences, each containing 20 light fields captured along a
single road section. These sequences are densely sampled,
so the dataset can be beneficial for lane detection methods
that exploit temporal information (video-based lane detection
method) as well as spatial and angular information. One of
these sequences is shown in Figure 3, and some randomly
selected captures from multiple other sequences are given in
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Figures 4, 5, 6, and 8. Out of the total 1000 light fields 100 are
captured under challenging conditions such as, illumination
variations, false lane lines and strong shadows. The remaining
900 light fields are captured under normal conditions.

LFLD dataset is captured by the first generation commer-
cially available Lytro [50], light field camera. The captured
light fields are decoded to obtain a set of 11 x 11 perspective
images, each with the size 375 x 375 pixels, using Matlab’s
Light Field Toolbox v0.4 [16], as shown in Figure 2. The
dataset has been made public and is available on the link given
below.”

IV. LIGHT FIELD FOR IMPROVED LANE DETECTION

Light field imaging captures the angular information of
the light rays originating from a scene point. The MLA based
light field cameras, Figure 1(b & c), achieve this by placing
an MLA adjacent to the sensor that separately records at
different pixels the intensities of light rays passing through
different points (sub-apertures) of the main lens and con-
verging at the micro-lens in front of these pixels. However,
in conventional cameras, Figure 1(a), the incident light rays
converge directly at the sensor and are recorded, therefore,
losing the directional information.

Typically, the light rays reflected from scene points at
different depths arrive at the MLA with a different angle,
Figure 1(b). By tracing light rays back to the scene space, the
corresponding depth of these points can be calculated. Depth
estimation of all the captured points results in a map that
provides the depth variations among different objects in the
scene. This depth information is an additional discriminative
feature well utilized in classification problems such as face
recognition.

In case of the road lane detection, depth of the lane lines
on the road changes along with the road’s depth. Therefore,
the scene’s depth variation does not provide any valuable
information to improve the discrimination between different
lane lines and the road. However, color of the lane lines
is unique and significantly differs from the road’s color as
well. Light reflected from the unique color (wavelength) lane
line, and the road from the two different points at the same
depth passes from the main lens and refracts following the
refraction theorem. Therefore, the angle of incidence at MLA
of light rays originating from different color points despite
the same depth is still different, as shown in Figure 1(c).
This variation in incident angle cause disparity in multiple
perspective images acquired from the decoded light field.

In Figure 4, it can be seen that the disparity changes with
the change in color of the lane line. This disparity variation
provides an additional discrimination cue that can improve
the performance of lane detection methods. It is also worth
noticing that despite the change in depth along the road, the
disparity seems to be mostly constant. This could be due to
the fact that the black road is uniform and there is not enough
texture variation on the road for any matching algorithm to

2https ://github.com/LotfiZ/LFW_database
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FIGURE 3. Example sequence of the proposed LFLD dataset.

Input image

Disparity map

FIGURE 4. Sample light field middle perspective images from our road lane dataset and their corresponding disparity
maps. (Row 1) Sample road lane perspective images. (Row 2) Corresponding disparities maps.

detect. This significantly improves the effectiveness of the
proposed disparity cue, ensuring that disparity variation is
only caused by the presence of lane lines on the road.
Shades of the road trees and vehicles on the road usually
result in occlusion and illumination variation across the lane
lines. False lines can also appear on the road, for example,
shades of high tension wires along the road, as shown in
Figure 5. This causes the intensity variation along the lane
lines in the captured image and therefore limits their effec-
tiveness in providing sufficient discriminative features for
detection. However, the wavelength of the light reflected from
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a particular color line remains independent of the illumina-
tion variation and therefore the angular information remains
unaffected.

An EPI image can be extracted from a light field by
cross-sectioning correspondingly orientated perspectives. For
instance, gathering pixels by horizontally cross-sectioning
perspectives in horizontal direction results in horizontal
EPI. Similarly, vertical EPI can be formed through vertical
cross-sectioning of the vertically aligned perspectives. The
EPI representation of the light field, Figure 6, shows that
the angle of the incident light across a lane line remains
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FIGURE 6. An EPI-based illustration of light's incident angle under
illumination variations.
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unchanged irrespective of the illumination variation. The
additional angular information provides robustness against
illumination variations and false lines. Multiple viewpoints
help significantly in occlusion avoidance, and therefore, the
degradation in the overall performance of any lane detection
algorithm under these challenging conditions is minimal with
the light field as input data.

V. LIGHT FIELD REPRESENTATION

Light field can be represented in many ways including, per-
spective images, lenslet images, EPIs, and focus stacked
images. In this paper, we used light fields in two different
forms, a sequence of perspective images and a disparity map
estimated through the light field, to take advantage of addi-
tional angular information for improved lane detection. Other
light field representations, such as Lenslet, EPI, and focused
stacked image, can be considered by the future lane detection
methods that will incorporate LFs as their input.

A. PERSPECTIVE IMAGE REPRESENTATION
Lytro camera’s raw light field when decoded with the [16],
Matlab’s toolbox results in a regular grid of 11 x 11 per-
spective images which is referred to as its angular resolution
and each perspective has a spatial resolution of 375 x 375.
We have cropped and resized these perspective images to
match CNN’s input layer size. In order to exploit the angular
information among the perspective images, we used an LSTM
layer in our network shown in Figure 7, and detailed below.
An LSTM layer is composed of cells and each cell has
three inputs, an input feature vector, an input hidden state,
and a common cell state. Additionally, each cell has three
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gates: input, forget, and output gates. Upon the arrival of new
information, the network can forget the previous state and
update the current state. This structure enables learning long
short-term inter-view, angular relationships from the features
extracted through the sequence of perspective images.

The overall network architecture includes a convolutional
neural network, which is used as a feature extractor and
converts a sequence of perspective images into a sequence
of feature vectors, where each feature vector is obtained from
the last pooling layer of the network independently for each
input perspective image and then combined as a sequence.
The sequence of feature vectors is fed directly to a sequence
input layer with an input size corresponding to the feature
dimension of the feature vectors. An input sequence layer
is followed by an LSTM layer with 2000 hidden units and
a dropout layer afterwards. Finally, a fully connected layer
with an output size matching the number of responses and a
regression layer are connected.

B. DISPARITY MAP AS INPUT

The variation in the angle of incident light originating from
different color lane lines and roads can be represented in the
form of a disparity map. Therefore, it is possible to utilize
this angular information by directly providing a disparity
map as input to the CNN. Since the lane lines are the only
color variation on the road data, we assume that using the
correct RGB primaries would allow us to represent the color
information adequately. For example, only red and green
channels can represent a yellow line. However, only in case
of the white line, all three color channels are needed and,
therefore, the information from one color channel for one lane
line is traded for the additional information from disparity for
all road lines.

In our experiment, we used the Lytro desktop app>to esti-
mate disparity maps. The Lytro app allows the export of
gray-scale 16-bit normalized disparity maps from a given
LF image. Smoothing is applied to the disparity map by the
software with the help of human interaction for noise reduc-
tion. Since the entire LF is used in estimating the disparity
maps, it is expected to be robust to the matching errors in
comparison to the typical stereo systems. We have tested
two combinations: discarding a single color channel (blue)
of an RGB image and replacing it with the disparity map,
and converting an RGB image into gray-scale and replicating
the same information in two channels and using the disparity
map as the third channel, without changing the input layer to
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FIGURE 7. An illustration of network architecture designed for utilizing the inter-view angular information of the light field's perspective

image representation.

use pre-trained weights. Although this representation results
in the information trade-off, it allows us to avoid the extra
computation and network modification involved in the LSTM
based approach. However, this approach involves an addi-
tional pre-processing step of estimating the disparity map.
The proposed representation can be used with any existing
network for lane detection.

VI. TRAINING

We trained three different CNNs, namely GoogleNet, VGG-
16, and Nasnet. To demonstrate the robustness of the pro-
posed LF representation, we chose these networks which
reflect a wide range of performance variation in terms of
prediction accuracy on ImageNet [6] validation dataset.

These CNNs are classification networks and for the road
lane line points coordinate prediction, we modified them for
regression. For GoogleNet, we replaced the ‘loss3-classifier’,
‘prob’, ‘output’ layers with a fully connected (FC) layer with
20 responses, to match the coordinate of the lane line points
per image and in the end, we added a regression layer. For
VGG-16 we removed the fully connected, ‘prob’, ‘output’
layers and added an FC and regression layer. For Nasnet,
we removed the final prediction layers and the classification
layer and introduced an additional FC and regression layer.

These CNNs are pre-trained on ImageNet dataset and
transfer learning is performed to adapt and fine-tune
pre-trained GoogleNet, VGG-16, and Nasnet for the lane
detection problem. For the sequence of perspective images,
Pre-trained CNN is used for feature extraction on our road
data and LSTM network pre-trained on hmdb [51], data is
fined tuned for the lane detection problem. Our road lane
dataset, which is captured across different cities, consists of
1000 light fields, out of which 70 % are used for training and
the remaining 30% is kept for testing.

The simulations show that the network’s predictions are
robust under different training hyper-parameters configura-
tions. Various combinations of the learning rate, optimizer,
and batch size are tested but the variations in performance are
negligible. The batch size turned out to be the most influential

3 http://lightfield-forum.com/lytro/lytro-archive/
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hyper-parameter in terms of performance improvement for
both the networks described above. Increasing the batch size
improved the performance and the maximum batch size sup-
ported due to memory limitations is 32.

Among different configurations, the following set of
hyperparameters resulted in the best performance and, there-
fore, adopted in this work. The initial learning rate is set to
3e-4 with a learning rate drop of 0.1 and a learning rate drop
period of 20. Although the choice of optimizer has shown a
marginal effect on the overall performance, adam optimizer
has slightly improved the prediction and hence selected in
our training. The batch size is set to 32 and the training is
performed for 40 epochs.

A. EVALUATION METRICS

1) RMSE

Evaluation of the regression model’s performance can best be
described in terms of error values. For this purpose, we cal-
culated the commonly used root mean square error metric
(RMSE) [52] and [53]. The following equation presents the
formula to calculate RMSE.

N .
Y (Actual; — Predicted;)?
RMSEz\/Z’_l( ctual; redicted;) ’ )

Nimages

where Predicted; represents the predicted lane line point
coordinates value in pixels units, and Actual; is the ground
truth value for the same point coordinates. In practice, Actual
and Predicted values are given as two-dimensional vectors
with x and y coordinates of the selected points on the lane
lines. So the smaller RMSE will indicate that the predicted
lane line is closer to the ground truth than a predicted line
with a large RMSE.

2) LIoU

We have also used Line IoU loss [42], where possible, for the
evaluation of the proposed disparity-based LF representation.
Each point xf in the predicted lane is first extended into a
line segment with a radius e. Then IoU, which is the ratio of
intersection over union between two line segments, is calcu-
lated between the extended line segment and its ground truth,
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J

FIGURE 8. Visualization of the predicted lane lines on a subset of dataset. (Row 1 & 2) Examples of accurately

y.

predicted lanes. Row 3) Examples of poorly predicted lane lines.

as given below:

diO min(xf +e, xf +e)— max(xf —e, xf —e)
fol = ¥~ max(l + e xf +e)—min( — e, xf —e)’
i i L] i i)

@

where xlp —e, xlp +e are the extended points of xlp s xl-q —e, xlfl +e
are the corresponding ground truth points. Note that dl.o can
be negative, which can make it feasible to optimize in case of
non-overlapping line segments. Then LIoU can be considered
as the combination of infinite line points. To simplify the
expression and make it easy to compute, we transform it into
a discrete form,

N @]
N 4.
LloU = ZI;—IM A3)
2t 4
Then, the LIoU loss is defined as:
Lo =1—LloU “4)

where —1 < LIoU < 1, when two lines overlay perfectly,
then LIoU = 1, LIoU converges to -1 when two lines are far
away.

3) ACCURACY

Accuracy is another commonly adopted metric for the eval-
uation of a lane detection model [54], [55]. We applied
accuracy for the performance evaluation of the proposed
disparity-based LF representation using state-of-the-art lane
detection methods. The formula for accuracy estimation is
given below.

chip Ceiip
CclipSclip

&)

Accuracy =

where Cjip, Scijp are the number of correctly predicted lane
line points and the number of ground truth lane line points,
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respectively. A predicted lane is considered correct if more
than 85 % of predicted lane line points are within 20 pixels
of the corresponding ground truth points.

VIl. EXPERIMENTAL RESULTS

This section presents the results of the proposed light
field-based lane detection technique. We have evaluated the
proposed technique quantitatively and qualitatively by using
the evaluation metrics detailed in subsection VI-A, and plot-
ting the predicted lane lines compared to the ground truth
for visual inspection. We chose only the conventional RGB
image to plot for simplification of representation; the lane
lines predicted using different light field representations and
2D images against the ground truth.

In Figure 8, it can be seen that in both good and poor
quality predictions, the LF-based lane detections are overall
closer to the ground truth as compared to the regular image-
based predictions. However, in this small subset presented
in Figure 8, it is unclear that a particular LF representation
performs better than the others.

In Figure 9, a quantitative comparison of the different
LF representations and regular images (middle perspective
image of the decoded LF) is presented. It can be seen in
Figure 9, that any LF representation outperforms the regular
image-based lane detection by a significant margin. Within
different LF representations, a sequence of input perspective
images has shown slight improvement over the others. Never-
theless, the sequence-based input requires modification in the
network architecture and involves additional computations;
however, no additional labeling is required.

The LF perspective image representation, however, does
not benefit solely from the increased number of images. The
most critical factor is the angular information (Disparity)
between these perspectives. In Figure 10, it can be seen
that once the angular information between the perspective
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FIGURE 9. Performance comparison of different LF representations and
conventional images on testing and training datasets using googlenet.
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FIGURE 10. Performance analysis by increasing the number of
perspective images in the input sequence of the LSTM network.

images is learned by the network, increasing the number
of views makes negligible improvement in the performance.
We have noticed that up to eight perspective images are
sufficient to adequately present the angular information in our
case. The impact of viewpoint selection is not considered in
this study and will be part of future work along with other
possible compact representations. Currently, the horizontal
perspective images from the middle row of the decoded light
field, Figure 2, are selected. To increase the views points,
as presented in Figure 10, the rows on top and underneath
the middle row of the decoded light field are added.

The robustness of the proposed light field-based lane detec-
tion method in the challenging conditions is evident from
Figure 11. In our experiments, the following conditions:
illumination variation, shadow, and false lines, highlighted
in Figure 5, constitute the challenging dataset. Under these
special conditions, the spatial information gets degraded,
resulting in performance deterioration of the methods that
rely only on the spatial information of the scene. The LF
representations provide additional angular information inde-
pendent of the illumination variations. Multiple views are
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FIGURE 11. Comparison of proposed LF representations and regular
images on a challenging test dataset.

effective in the case of occlusions, and the disparity pro-
vides better discrimination against false lines. For the results
presented in Figure 11, the network is trained on a regular
condition training dataset of 700 images, and only testing is
performed on the challenging dataset of 100 samples. It can
be seen in Figure 11, that the challenging conditions dataset
despite being % in size, results in overall higher RMSE as
compared to the testing performed on a regular condition
dataset presented in Figure 9.

In Table 1, we compare the performance of the LF repre-
sentations and regular images on two different test datasets.
The proposed LF representation (LF Disparity Gray, LF Dis-
parity Color, LF LSTM 2 x 8) outperforms the regular
image data by 14%, 15%, and 18% under normal conditions;
however, the difference in performance grows to 20%, 18%,
and 26% in challenging conditions. The difference in perfor-
mance is expected to increase three times given two different
conditions have the same number of test samples.

In Figure 12, we demonstrate that a CNN model designed
for lane detection can benefit primarily from using LFs during
training. It can be seen that a network trained on regular
images needs additional 200 images to achieve comparable
performance to the network trained using LFs. The difference
could be more significant if the network is trained from
scratch instead of fine-tuning a pre-trained network. This
performance improvement with lesser data can benefit scarce
data-set and avoid additional labeling costs.

Several deep CNN architectures designed for image classi-
fication exist in the literature. Many design choices influence
the performance of these CNN models, for example, the
number of trainable parameters, Depth, and width of archi-
tecture [56]. To demonstrate the robustness of the proposed
method across different CNN architectures, which consti-
tute a significant part of most state-of-the-art lane detection
methods and is used as a feature extractor in novel learning-
based methods. We have compared the performance of LF
representation with the regular images on two other CNN
architecture, namely the VGG-16, and Nasnet presented in
Figure 13 and 14.
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TABLE 1. Quantitative performance comparison of the proposed LF representation and the regular image approach for lane detection.

Input data Test rmse
Epochs
1 10 20 30 40 Avg.
LF Disparity Gray Test | 580.1897 | 157.1864 | 161.9565 | 158.8658 | 154.1153 | 242.4627
LF Disparity Color Test | 580.1895 | 150.4955 | 155.5348 | 155.7526 | 152.0849 | 238.8115
LF LSTM 2x8 Test 572.3088 | 150.3050 | 149.1151 | 147.7085 | 148.1758 | 233.5226
Regular Image Test 582.0514 | 178.5948 | 189.8213 | 185.3534 | 179.5123 | 263.0666
Challenging conditions
LF Disparity Gray Test | 603.0599 | 203.4266 | 196.0821 | 200.5210 | 188.9750 | 278.4129
LF Disparity Color Test | 603.0569 | 197.9583 | 217.7106 | 203.9217 | 194.1931 | 283.3681
LF LSTM 2x8 Test 595.0994 | 179.6736 | 177.2515 | 177.8729 | 176.5384 | 261.2872
Regular Image Test 604.9989 | 196.1004 | 233.1878 | 247.1022 | 237.4779 | 303.7734
250 T 550 T T
A\ I
I Regular images 500 \\ ;Z;j;ﬁ::i;oﬁ;;m
\

200

150 r

RMSE

100 r

50

500

600
Training images
FIGURE 12. Performance comparison on reduced number of training
images. Network trained on least number of LFs has comparable
performance to the network trained on maximum number of regular
images.

700

The performance gap between the VGG-16 and GoogleNet
is marginal; Nasnet, in combination with LSTM trained on
the LF data, achieves significant performance improvement.
However, for Nasnet, the gap between regular image and
disparity-based LF representation reduces only to 6.3 % as
Nasnet shows improvement in performance over GoogleNet
and VGG-16 for the regular image dataset. As we used the
transfer learning technique to fine-tune the pre-trained mod-
els, the networks are biased towards the regular image dataset
due to the limited size of LF training data. Since LSTM allows
us to maintain the regular RGB image representation and use
multiple perspective images to exploit the angular informa-
tion, it avoids the network’s bias. Increasing the data set size
for fine-tuning could further increase the performance gap
between the disparity-based LF representation and regular
image dataset even for complex networks like Nasnet.

Although the three networks are widely different in their
design approach, it can be seen that the proposed LF rep-
resentation in general out perform the regular image based
approach. Therefore, the proposed light field-based road lane
representation can benefit any existing lane detection method
and possibly a new lane detection method such as combining
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FIGURE 13. Robust evaluation of the proposed LF approach and

performance comparisons with traditional image-based technique on a

different (VGG-16) CNN architecture.
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FIGURE 14. Robust evaluation of the proposed LF approach and
performance comparisons with traditional image-based technique on
another (Nasnet) CNN architecture.

CNN with LSTM or any other network architecture that can
exploit the angular information.

In Table 2, we compared the performance of the pro-
posed light field disparity representation with regular images
on state-of-the-art methods. The proposed LF representa-
tion performs better than the traditional images on lane
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TABLE 2. Comparison of the proposed LF disparity representation with regular images on state of the art lane detection methods.

Method Backbone | Pre-trained ImageNet [6] | Fine-tuning Accuracy | LIOU loss
CLRNet [42] [2022] ResNetl8 | v LFLD (regular images) | 54.3% 0.249
CLRNet [42] [2022] ResNetl8 | v LFLD (LF disparity) 56.6% 0.194
LaneATT [37] [2021] | ResNetl8 | v LFLD (regular images) | 44.7 -

Lane ATT [37] [2021] | ResNetl8 | v LFLD (LF disparity) 46.5 -

detection methods explicitly designed for convectional
images. It should also be noted that the backbone networks
are pre-trained on Imagenet [6], which consists of millions
of regular images and, therefore, are biased towards conven-
tional images. The performance gap is expected to increase
further with the addition of more training samples in the
LFLD dataset during the fine-tuning of the state-of-the-
art methods. Additionally, it can be seen in Table 1 and
Figure 14, that LF perspective image representation, when
used with LSTM, supersedes the LF disparity representa-
tion by a significant margin. Therefore, it can be concluded
that LF representations not only benefit state-of-the-art lane
detection methods but are also worth investigating new meth-
ods explicitly designed for exploiting the angular information
in addition to spatial information of the scene.

VIIl. DISCUSSION AND FUTURE WORK

This paper proposes a spatio-angular learning framework for
light field lane detection. In the perspective image-based LF
representation approach, an LSTM network, that takes as
input a sequence of GoogleNet CNN features extracted for
each perspective independently, is used to learn the inter-
view, angular information present in multiple perspective
images of a light field. It can be seen in Figure 10, that
increasing the perspective images in the input sequence above
eight viewpoints has minimal effect on lane line coordinate
prediction. However, it should be noted that the perspective
images are selected along the horizontal axis (excluding the
corner viewpoints to avoid vignetting effect) of the decoded
light field. Along the vertical axis, only up to 4 adjacent
viewpoints to the middle perspectives are utilized in input
sequences with more than eight viewpoints case to limit
the excessive additional computational cost. In the future,
we plan to investigate the effective selection of horizontal
and vertical perspectives to further exploit the additional
information about the inter-view angular relation, without
significantly increasing the computational cost.

LF is utilized in a simple pre-processing step for disparity
(the proposed cue for improved lane detection) estimation
to avoid any modifications and extensions of the existing
CNN-based lane detection networks. A trade-off between
the color information and the proposed angular information
exists in this approach. Since the road data is not color
intensive and the only color variations are lane lines, careful
selection of the RGB color primaries can represent most of
the scene’s color information. In Figure 9, it can be seen
that the performance gap between disparity map-based and
sequence of perspective image-based LF representation is
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marginal. However, in adverse conditions, Figure 11, the
difference in the performance of the two representations is
obvious.

Light field can be represented in several ways, includ-
ing EPI, focus-stacked image, set of perspective image,
and lenslet image. In these different LF representations, the
angular information can be extracted by either existing lane
detection methods or new methods that could be developed
specifically for a particular representation. We would like
to investigate lenslet and EPI LF representations and their
application to lane detection problems in future work.

Another direction for the extension of this work that we
will consider in the future is adopting an appropriate lens
for the light field imaging system, which can maximize the
refractive index variation for the increased disparity between
different color lane lines. The refractive index of typical
transparent materials, such as the glass in lenses, is inversely
related to the wavelength passing through it. Glass lenses
bend different color light rays at different angles. For exam-
ple, blue rays bend more than red rays. With a simple lens,
red light focuses behind green light, and blue light focuses
in front of green light. This phenomenon is called chromatic
aberration (CA), which results in poor color registration.

Lens manufacture usually accounts for the chromatic aber-
rations in many lenses to achieve a single point of focus for
each wavelength. Chromatic aberrations still occur for faster
lenses, especially when capturing high contrast areas such as
our road dataset with color lines on dark background. In the
future, we would like to use a high depression lens or some
low-quality lens that does not account for CAs, to increase
further the disparity between lane lines and improve predic-
tion accuracy.

IX. CONCLUSION

The paper presents a LF-based lane detection method for
improved prediction accuracy. The proposed method lever-
age the additional angular information recorded by the light
fields, specifically in challenging conditions such as illumi-
nation variation, shadows, false lane lines, and occlusion.
Both LF representations presented in this paper show signif-
icant performance improvement compared to the traditional
image-based lane detection approach. Although LF perspec-
tive image representation has some advantage over the other
LF representation in terms of RMSE, it incurs additional
computational cost and involves network design changes.
The proposed approach improves lane detection by provid-
ing additional features that CNNs extract through learning.
It can enhance any lane detection method that includes CNN
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as a feature extractor as well as the non-learning-based
approaches with careful consideration towards the hand-
crafted features.
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