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ABSTRACT Spot markets provide an interesting opportunity for profit maximization by energy trading
based on immediate decisions on participant bids. However, their short market-clearing time can affect
computational efficiency, search space, and reliability of price-energy allocation to bidding participants.
Accordingly, developing a prompt and effective decision-making process plays a vital role in smooth energy
delivery in these markets. This paper proposes an approach to alleviate the computational cost of the spot
market aggregator in order to decide price-energy bids. The proposed bidding model is developed for the
transactive energy systems, where the spot market aggregator utilizes the proposed method to maximize
profit by choosing participants’ demand-side bids. The proposedmethod can efficiently manage participants’
combined energy and price information and avoid a highly complicated search space. It takes advantage of
the multi-variable Taylor series approximation to create users’ individual cost functions. The approximated
cost functions lead to user-specific bids that expedite the spot market transaction while maintaining
aggregator profit. The resultant system is able to exercise profit maximization with high performance within
milliseconds. The efficiency of this scheme is also demonstrated through a comparative study by using the
particle swarm optimization method.

INDEX TERMS Transactive energy, spot markets, combinatorial auction, smart grids, computational
efficiency, demand response.

NOMENCLATURE
INDICES
i House index.
j Price point index.
k Time-step index.

PARAMETERS
qimax Maximum heating capacity.
x imin Minimum indoor temperature.
x imax Maximum indoor temperature.
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VARIABLES
δik+1 Preference of residential house.
πj Set of price points.
M Number of price points.
N Number of RAs.
qij Energy demand set.
qik+1 Energy demand.
uij Binary decision variable.

xext,ik+1 External temperature.
x ik Internal temperature.
x iref Reference temperature profile.
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FUNCTIONS
x̄i Average energy demand.
C(y) Original cost function.
Caprx Approximation of cost function.
U i
k+1 Utility function.

ABBREVIATIONS
ACO Ant Colony Optimization.
BESS Battery Energy Storage System.
CCA Conventional Combinatorial Auction.
CVaR Conditional Value at Risk.
DSO Distribution System Operator.
GA Genetic Algorithm.
HEMS House Energy Management System.
PHEVs Plug-in Hybrid Electric Vehicles.
PSO Particle Swarm Optimization.
QUBO Quadratic Unconstrained Binary Optimization.
RA Residential Agent.
TCL Thermostatically Controlled Loads.
UPA Uniform Price Auction.
WDP Winner Determination Process.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
The emergence of transactive energy systems is a key enabler
for substantial end-users’ participation in future local elec-
tricity markets. Under the smart grid paradigm, such frame-
works facilitate participants’ access to a variety of transactive
market mechanisms. These procedures aremainly established
by forward and spot electricity markets, popular for elec-
tricity trading [1]. In the former, the energy is procured for
future delivery to customers while in the latter, it is provided
for immediate usage [2]. Instant trades of a spot market are
made within a short duration from five to fifteen minutes
and normally take place before real-time energy exchange.
Accordingly, they can bring about opportunities for energy
providers, specifically aggregators, and consumers. In the
context of spot markets, aggregators can interact with cus-
tomers more frequently, thus boosting trading profits [1].
Besides, they can help users play a dynamic role by bidding
and taking advantage of the variation of real-time wholesale
energy price, which is not the case in schemes with typical
billing contracts. Consequently, customers can reduce their
costs in this type of energy market [3].

In the electricity market, most of the energy trading is
carried out through an auction-based approach [4], [5], where
the aggregator can trade by exploiting different strategies with
consumers in spot markets, including combinatorial double
auction [6] and single-sided auction [7]. In a combinatorial
double auction-based market, the aggregator determines a
winner based on the bids placed for desired items by multiple
buyers and the offers placed by the sellers to sell the items
[8]. This determination of the winner is popularly known as
the winner determination process (WDP). The combinatorial
single-sided auction is a double auction variant, consisting of
multiple buyers and only one seller or vice versa [8].

In the combinatorial single-sided auction, the aggregator
evaluates all possible bidding combinations placed by buy-
ers. As the number of buyers increases with the number of
bids, the possible combination increases significantly. Con-
sequently, theWDP becomes computationally costly because
the aggregator is unaware of the best possible bid to accept
from each consumer before evaluating all possible combi-
nations. Owing to the vast search space, the combinato-
rial auction suffers from high computational complexity [8].
The WDP of a combinatorial single-sided auction can be
represented by quadratic unconstrained binary optimization
(QUBO) [9] and 0-1 knapsack problem [10]. This problem is
difficult to solve due to the computational complexity [11].
The WDP of combinatorial auction is a well-known NP-hard
problem [8], [12], which is a arduous problem to solve in
the short time duration of five to fifteen minutes because the
aggregator needs to look in all search space before choosing
the possible combination of the bid. The spot market has
a short duration, between five to fifteen minutes, and takes
place before real-time energy exchange [13], [14]. Due to
such an operational limitation, the decision-making time is
vital to the aggregator of this electricity market [15], [16].

B. LITERATURE REVIEW
In recent years, different research works have been carried
out to improve the operation of spot markets by maximizing
the profit of their participants [20]. In [21], the authors studied
the energy allocation problem in spot market to maximize the
profit of different electric utilities considering participants’
bidding strategy. The authors in [22], proposed optimal port-
folio selection theory based approach for managing electric-
ity suppliers’ risks in spot market. However, their method
faced difficulties in accurately estimating probabilistic dis-
tributions of electricity market prices. A short-term decision-
making model based on the conditional value at risk (CVaR)
measure was proposed in [23] to deal with real-time electric-
ity retailers’ hourly bidding risk. They used Battery Energy
Storage System (BESS) to provide flexibility; however, the
suggested method did not address the associated bidding risk.

In [24], the bidding and offering framework was pre-
sented for a hybrid power plant comprised of photovoltaic,
wind, battery energy storage and compressed air energy stor-
age in intraday and day-ahead markets. They developed a
stochastic-interval framework based on a mathematical for-
mulation that considered uncertainties related to stochastic
and interval parameters. Besides, the intraday and day-ahead
dispatch model for profit maximization of an integrated
biomass-concentrated solar system was developed [25]Ṫhey
used CVaR to control risk over profit distribution, and Infor-
mation Gap Decision Theory (IGDT) was used to con-
sider solar-related uncertainty. The authors in [26] used
a CVaR-based trading strategy to maximize intraday and
day-ahead market profit. In [27], the strategy for energy
arbitrage of BESS in day-ahead and intraday markets is
presented. They controlled the risk of uncertainty in market
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TABLE 1. Similar elements of combinatorial auction process according to relevant literature.

prices by the proposed second-order stochastic dominance
constraint based on a fuzzy decision-making manner.

A stochastic resource planning scheme for Plug-in Hybrid
Electric Vehicles (PHEVs) charging was studied in [28],
which aimed at handling price uncertainties in a spot market.
Unfortunately, this strategy did not consider the impact of
PHEVs demand on the power system operation. The authors
in [29] utilized the Cournot game model to describe the
bidding of different generation companies. Although their
method optimized generation assets, it mainly focused on
market procedures on the generation side rather than the
end-user side. In addition, the study [30] was carried out
in the context of a distribution company for the optimal
solution for energy purchase in the Philippines wholesale
electricity spot market (WESM). Their procedure did not
consider how participants’ demand uncertainty affected the
distribution company. Likewise, the authors in [31] analyzed
the Italian spot market for resource allocation problems that
maximized the participated players’ profit; however, they did
not consider residential consumers. The comparative study
in [32] and [14] was carried out for the energy market
participation problem in the spot market context. The eco-
nomicmodels based on bidding and allocation problemswere
vastly studied in the literature for computing and resource
management [33]. Themulti-objective genetic algorithmwas
proposed in [34] for combinatorial reverse auction of renew-
able energy. Here, the computation time and accuracy results
were compared with the branch-and-bound heuristic method.
Moreover, in [35], the WDP was solved for the players with
energy demand in the combinatorial auction. The multistage
stochastic optimization model was proposed in [36] for the
combinatorial bid problem of different generation companies
in electricity spot markets.

Several attempts have been made to cope with the chal-
lenges of optimal resource allocation with minimal computa-
tion time [37]. In this context, a heuristic algorithm based on
the Lagrangian decomposition [37] was implemented on the
flexibility market for demand response action. Also, a com-
binatorial auction approach was developed in [18] for the
community that participated with the energy storage operator.
The energy storage operator in [18] solved the NP-hardWDP
by exploiting a fully polynomial-time approximation scheme
that maximized social welfare. The energy shared among
households through the XOR bid was solved by the hybrid
Particle Swarm Optimization-Genetic Algorithm (PSO-GA)
approach in [7] with a computational time ofmore than 2min-
utes for 30 houses. Unfortunately, the PSO-GA approach
becomes unsuitable for a significant number of houses in the
time slot of five to fifteen minutes [7].

In [6], the WDP for XOR bid in multiple microgrid trade
was solved by the meta-heuristic method for up to 30 bidders.
The double auction problem [6] can be reduced to a combina-
torial single-sided auction [7] by considering only one seller
with energy storage andmultiple household buyers participat-
ing with the auctioneer for trade. The authors [38] proposed
a method to find the Nash equilibrium via decomposition
of combinatorial optimization process using Walsh-Fourier
transform in electricity and natural gas markets. However,
with the increased number of participants, it becomes com-
putationally intensive. The hybrid genetic algorithm was pro-
posed in [17] for the demand management in a microgrid,
where the participants used XOR bids. However, the solution
got saturated for a large number of users [17]. The winner
determination problem for the combinatorial auction was
solved by ameta-heuristic approach like the hybrid ant colony
algorithm [39]. The authors in [40] proposed a hybrid Ant
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Colony Optimization (ACO) algorithm to solve the NP-hard
nature combinatorial auction problem at the expense of more
execution time. In [41], a heavy-head sampling strategy was
proposed with Imitation Learning (IL) to solve the WDP of
combinatorial auction. They proposed IL used with Rein-
forcement Learning (RL) to improve the evaluation process
of CA; however, it is prone to extended training time.

Likewise, the Improved Partheno-Genetic Algorithm
(IPGA) was proposed for the combinatorial auction. How-
ever, when the number of users increased by 50, the exe-
cution time increased substantially, which is not feasible in
very short-time spot markets [42]. The most exploited meta-
heuristic algorithm, the Particle Swarm Optimization (PSO),
with its many modifications was also reported to suffer from
the drawback of early convergence [43]. Despite its popu-
larity, PSO’s major shortcoming reported [44] is the need
for more computational time with no guarantee of a global
maximum point.

The above literature survey suggests that heuristic methods
are exploited to solve the WDP of the combinatorial auction
for short and days ahead market. The limitations identified
from the previous work are:

• Dependency on meta-heuristic methods for solving
combinatorial auction has no control over the number
of iterations to achieve the best solution.

• Increase in computational time with increasing partici-
pants exceeds the limitation of the time slot of the spot
market.

• The profit yield for the aggregator varies when solving
via meta-heuristic methods for the same time slot of the
spot market.

C. CONTRIBUTIONS AND ORGANIZATION
For the aforementioned reasons, this paper presents an
appealing approach to minimizing the computational time
and achieving optimal profit earnings in the spot market
context. Note that, the residential houses in the proposed
work fall into the combinatorial single-sided auction category
owing to the fact that many buyers need energy from one
seller. For the brevity of presentations, Table 1 compares
the proposed work with relevant literature on the elements
of the combinatorial auction. The main contributions are
summarized below:

• Computational time: A multi-variable Taylor series
approximation-based solution to theNP-hard problem of
WDP for combinatorial single-sided auction in the spot
market. That results in shorter computational time even
in the presence of an increased number of users.

• Near to global profit: Efficient energy allocation for dif-
ferent residential houses based on their bidding profiles
in the spot market. That enables the aggregator to earn
an optimal profit near the global profit point.

• Deterministic solution: The proposed methodology
helps the aggregator to achieve deterministic solution for
the profit in each time slot of the spot market.

The rest of the paper is organized as follows. Section II
discusses the model of the system. Section III formulates
and discusses the aggregator allocation process. Section IV
presents the simulation results. Finally, the paper is concluded
in Section V.

II. MODEL OF THE SYSTEM
We consider a community consisting of multiple residential
consumers and a spot market aggregator. The spot market
process consists of five to fifteen minutes slot and takes place
before the real-time energy consumption [19]. The spot mar-
ket aggregator’s objective is to maximize profits. Each resi-
dential consumer is equipped with an intelligent home energy
management system capable of controlling their flexible
loads. Also, these residential consumers are assumed to have
a reliable communication system, which allows for sending
and receiving information. Note that each residential con-
sumer has a different building model, and the preference for
comfort versus energy saving is different for each user in each
time slot.The Fig. 1 illustrates the interaction mechanism
between the transactive energy distribution grid’s demand-
side management agent and residential consumers in the
spot market context. Here, the residential consumer receives
first a set of price point information from the spot market
aggregator. Based on price points from spot market aggre-
gator, exogenous data, building model and their preference,
each residential consumer solves the convex optimization
problem against each price point to generate corresponding
energy demand. After solving against each price point, the
residential agent organizes and transfers their price-energy
bids to the spot market aggregator using bidding structure.
There are mainly two bidding structures commonly known as
single-bid and combinatorial bid structures. The bidding lan-
guage used in this work is exclusive OR (XOR), which falls
into the combinatorial-bid structure. The combinatorial-bid
structure differs from the single-bid structure since atomic
bid is the most common language to express in a single-bid
structure [45]. In a single-bid structure, the bidder can submit
only one pair of a bid using atomic bid language represented
by (π1, q1), where q1 is the energy demand for the next time
spot, and π1 corresponds the price the bidder wants to pay.
On the other hand, in a combinatorial-bid structure, there is
no restriction on the bidder to submit only one pair of the
bid (known as an atomic bid). Consequently, the bidder can
submit multiple atomic bids using OR or XOR language [46].
In OR bid language, participants can bid to receive more
than one item in an auction. If the participants submit the
bid using OR bid language, the spot market aggregator, after
solving WDP, can select more than one bid pair from the
bidders’ transmitted set. However, in XOR bid language, the
bidder can win at most one bid in an auction. In this work,
the residential consumer transmits the bid using XOR bid
language. That is because the market slot is of concise time
duration, and for the next time slot, the residential consumer
can consume only one of the transmitted energy demand
bidding pairs.
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FIGURE 1. Spot market aggregator decision process based on residential agents bids.

The spot market aggregator collects all residential agents’
bids before starting the combinatorial selection process.
Based on the collection of bids and the Distribution System
Operator (DSO) cost function parameter received at each time
slot, the spot market aggregator generates all unique pos-
sible combinations. Each possible combination is evaluated
for the corresponding profit that the aggregator can earn.
Consequently, the aggregator selects a unique price-energy
bid for each residential consumers from their transmit-
ted price-energy bidding vector, maximizing the aggregator
profit.

A. ASSUMPTIONS
The work of this paper is based on the following assumptions:

• The distribution grid infrastructure is constraint-free
and capable of providing energy to all connected res-
idential consumers as per the contracted maximum
energy capacity [47]. Also, a reliable communication
link across the system exists for transferring and receiv-
ing the information.

• For each time slot, the spot market aggregator receives
the cost function parameters from DSO and demand
bids from RAs only once before each time slot. The
parameters and bids remain the same for a particular
time slot of the spot market.

• The RAs transmit their energy demand against the price
points that are provided by the spot market aggregator.
The spotmarket aggregator will consider only those RAs
energy demand bids that are against its transmitted price
points.

B. AGGREGATOR AGENT
The aggregator agent transmits set of price points P :=
{πj, j = 1, . . . ,M} to a neighborhood composed of N resi-

dential agents for each fifteen minutes time slot before the
real-time energy exchange starts. The price vector P is same
for all residential agents. Let Qi := {qij, j = 1, . . . ,M} rep-
resents the set of energy bids transmit by the ith house from a
residential group of N buildings. Each element qij denotes the
energy consumption demand by each residential agent against
each price point in set P respectively. In general, there are two
types of bids: atomic bids and XOR combinatorial bids [48].
The atomic bid format uses a single pair of bid, where each ith

residential agent (RA) can transmit only a single pair (π1,qi1).
On the contrary, in the combinatorial bid format the RA can
submit multiple pairs of (πj,qij), where π1 is the price, and q

i
1

is the corresponding energy demand for the next time slot.
Interestingly, these multiple pairs in the combinatorial bid
format are combined by XOR-type logical bidding, which
is expressed as (π1, qi1)XOR . . . XOR (πM , q

i
M ) [46]. This

means that the spot market aggregator can only select one
pair from all the submitted XOR bids by the RAs, which can
significantly maximize the spot market aggregator’s profit.
Accordingly, the aggregation of energy y becomes the sum of
allocations for N participants in the spot market

y =
N∑
i=1

M∑
j=1

uijq
i
j, (1)

where for ith RA the uij is a decision variable taking binary
values. In each bid evaluation, uij takes the value 1 for a
specific jth bid inQi and 0 is assigned for rest of energy bids.
The WDP of XOR bids that can maximize the aggregator
profit is expressed by the following integer programming
problem [49]

Maximize
uij,∀i∈I ,∀j∈J

N∑
i=1

M∑
j=1

uijq
i
jπj − C (y)
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s.t.
M∑
j=1

uij = 1,

uij ∈ {0, 1}, (2)

where C(y) represents a non-linear cost function providing
the selected aggregated energy. Profit-maximizing optimiza-
tion problem is formulated as an index search problem that
looks between 0 and 1, trying to select the best binary decision
which corresponds to the index of XOR-type bids [50]. The
optimal allocation determination in (2) having quadratic cost
function is also known as quadratic unconstrained binary
optimization (QUBO) [51]. The aggregation of energy y is
the element wise function of the vector Qi, which makes the
terms qij non-separable in (1). As a consequence, the aggrega-
tor needs to select only one bid from the XOR-type bid set for
each residential consumer. Thus, this non-separable behavior
of terms qij contributes to the complexity in the spot market
aggregator optimization problem (2). Section III of this paper
contains the proposed approach to ameliorate the complexity
associated with the optimization problem containing non-
separable terms.

C. RESIDENTIAL AGENTS
The spot markets are the transactive energy markets in
which residential agents participate just before the real-time
energy exchange. Since this process takes place in concise
time duration, the transfer of demand bids and the allocated
price-energy pair just before every time slot is of prime
importance. As shown in Fig. 1, each RA is equipped with
an intelligent system HEMS, to facilitate its participation in
the transactive energy spot market. Besides, each RA also
consists of an electric heater controlled by a thermostat,
which helps them with the flexibility (cost vs comfort) in
the spot market. Demand-side bidding is widely used [52],
where each residential consumer sends price-energy demand
bidding points every fifteen minutes. These bidding points
are organized and transmitted in a non-increasing price point
manner. The HEMS uses thermostatically controlled loads
(TCL) to generate different energy demands against price
points; the detailed procedure of demand bids with TCL is
presented in [53].
The indoor temperature at the next time spot x ik+1, in a
residential house is given by [54]

x ik+1 = αx
ext,i
k+1 + γ x

i
k + βq

i
k+1, (3)

where the parameters α,β, and γ obtained through the ordi-
nary least square (OLS) represent the thermal characteristics
of a residential house. Outdoor temperature prediction for
next time spot is represented by xext,ik+1 and the current indoor
temperature is represented by x ik . The term qik+1 represents
the energy required for predicting x ik+1. Each RA has a
different preference for comfort and saving [53], [54]. This
difference in preference helps them to get flexibility in energy
consumption, which is given by

U i
k+1 = δ

i
k+1(x

i
k+1 − x

i
ref )

2, (4)

where x iref is the indoor temperature set point for the next
time spot. The U i

k+1 represents the utility of each residential
house achieved by consuming energy qik+1 depending on its
preference δik+1 that is comfort versus saving. The generated
energy demand encompassing the thermal model of a house
is given by [55]

Maximize
qik+1,∀i∈I ,∀j∈J

N∑
i=1

M∑
j=1

(U i
k+1 − πjq

i
k+1)

s.t. qik+1 ∈ [0, qimax],

x ik+1 ∈ [x imin, x
i
max]. (5)

Each RA participating in the spot market will receive up to
ten non-increasing different price points πj [18], [56], [57].
Based on the user preference, outdoor temperature, indoor
temperature and price points, the RAgenerates corresponding
energy demand qik+1. Then the RA transmits this price-energy
demand profile to the aggregator to maximize his utility
function mentioned in (5).

III. AGGREGATOR ALLOCATION PROCESS
In this section, first the problem related to the solving the
WDP in a combinatorial single-sided auction process is for-
malized. Then, the proposed approach to tackle the issue is
presented.

A. PROBLEM FORMULATION
The coupling effect in the non-linear cost function (2) poses
a limitation contributing to an increase in computational
complexity of the combinatorial single-sided auction WDP.
The first part

∑N
i=1

∑M
j=1 u

i
jq
i
jπj is the revenue term that

the aggregator will earn after selecting specific bid for each
house; this term is the linear sum after selecting unique pair
from each RA. The second term is the cost for allocating the
aggregate of selected energy demand. Here, there arises two
possibilities: (i) a linear case

∑N
i=1

∑M
j=1 u

i
jq
i
j ≤ Qmax , where

any given combination of aggregated energy is bounded
below the maximum energy Qmax of the power system and
(ii) a non-linear case C(

∑N
i=1

∑M
j=1 u

i
jq
i
j). Particularly, the

non-linear cost function is quadratic in nature for the Con-
ventional Combinatorial Auction (CCA) [55], [58], which is
formulated as

C(y) = ay2 + by+ c, (6)

where C(y) is the aggregator original quadratic cost function
for supplying the aggregated energy demand with the coef-
ficients a > 0 and b, c ≥ 0. This quadratic cost function
is popular because of its tractability in optimization pro-
cess [58]. The coupling effect of the houses is due to different
price-based energy demands in the original quadratic cost
function (6) that can be analyzed by expanding it. Alterna-
tively, (6) is recast as

C(y) = a
N∑
i=1

N∑
j=1

xixj + b
N∑
i=1

xi + c. (7)
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The terms xixj for i 6= j are non separable or coupling
terms, which represent the energy demand against different
prices. When N number of houses participates in the spot
market, there will be N coupling terms. The profit for the
aggregator is the difference between the revenue and cost.
The maximum profit in (2) can be achieved by searching rel-
evant combination of the term

∑N
i=1

∑M
j=1 u

i
jq
i
jπj that yields

maximum revenue and at the same time a combination of the
term C(

∑N
i=1

∑M
j=1 u

i
jq
i
j) that contributes to minimum cost.

Subsequently, the aggregator needs to evaluate the non-linear
quadratic cost function (6) in the second term of (2) for the
same energy terms as appearing in the first term. However,
the cost function is non-separable; as a result, the directional
optimization cannot be carried out. This makes the optimiza-
tion problem a NP-hard problem.

B. PROPOSED METHODOLOGY
In order to mitigate this issue, we propose an approxima-
tion of the non-linear quadratic cost function via exploiting
second-order multi-variable Taylor series approach. The gen-
eral form for the cost function (6) in multi-variable Taylor
series context is given by

Ct (y) ∼= C(ȳ)+
∂C(ȳ)
∂xi

(xi − x̄i)

+
∂C(ȳ)
∂y−i

(y−i − ȳ−i)

+
∂2C(ȳ)

∂x2i
(xi − x̄i)2

+
∂2C(ȳ)

∂y2
−i

(y−i − ȳ−i)2

+
∂2C(ȳ)
∂xj∂y−i

(xi − x̄i)(y−i − ȳ−i)

+Higher Order Terms, (8)

where ȳ represents the aggregated average of each RA trans-
mitted set Qi and C(ȳ) is the evaluation of ȳ along (6). The
xi depicts the particular house energy demand set and x̄i
represents the corresponding average energy demand given
by,

x̄i =

∑M
j=1 q

i
j

M
. (9)

Depending on the x̄i for each house, the individual cost
function will approximate the original cost function by the
evaluation point calculated by (9). The y−i = y− xi indicates
all remaining RAs energy demand and ȳ−i = ȳ − x̄i corre-
sponds to their average energy demand. Now, to overcome
the pernicious effect of the coupling term in (8), we omit the
second-order coupling term. As a result, (8) boils down to

Caprx.(y) ∼= C(ȳ)+
∂C(ȳ)
∂xi

(xi − x̄i)

+
∂C(ȳ)
∂y−i

(y−i − ȳ−i)

FIGURE 2. Comparison of original cost function with approximate Taylor
series function.

+
∂2C(ȳ)

∂x2i
(xi − x̄i)2

+
∂2C(ȳ)

∂y2
−i

(y−i − ȳ−i)2. (10)

Since the cost function (6) is quadratic in nature, the trun-
cated Taylor series approximation (10) of the cost function
is limited to second-order. The approach in (10) substantially
helps to achieve the separated terms in an additive manner.
Precisely, it allows the aggregator to solve the directional
optimization (2) and obtain a definite solution as opposed to
the heuristic optimization approaches in previous literature.

Utilizing (10), the aggregator calculates the optimal price
points allocation individually for each RA without the effect
of demand bidding points contributed by other RAs. The
proposed individual cost function (10) is independent of
the flexible loads that RAs utilize to generate the demand
bids, including thermal storage, thermostat control loads, and
electrical storage, along with others. Fig. 2 demonstrates the
comparison of the original cost function (blue-colored) and
the approximate cost function (red-colored) achieved via the
proposed approach. In addition, the difference between the
approximate and original cost function is shown in Fig. 3. The
positive errors in Fig. 3 are beneficial from the aggregator
viewpoint. That is due to the fact that the approximate cost
function in these cases always creates higher cost then actual
cost. On the other hand, the cases with negative errors prove
to be beneficial from the consumer view point since such
margins lead to bonuses for consumers.

1) COMBINATORIAL SINGLE-SIDED AUCTION
This paper adopts a combinatorial single-sided auction-based
market that hierarchically determines the optimal energy.
Notably, no negotiation takes place because it is a non-
iterative approach. The aggregator utilizes Algorithm 1 to
find the best price-energy combination for each RA to max-
imize the profit. In the combinatorial allocation process, the
aggregator will transmit price points to each residential con-
sumer before the next time slot.

Subsequently, each user will generate ten different
price-energy demand points based on each user’s objective
function. Then the users will transmit these demand bidding
points to the aggregator. On the aggregator side, after the
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FIGURE 3. Difference of approximate cost function from original cost
function.

Algorithm 1 Aggregator Bid Selection Based Energy
Allocation
Require:All RAs price-energy demand bidding points.
Step 1: Calculate the evaluation point (x̄i) for all participating RA
using (9);
for i = 1, 2, . . . ,N do

for j = 1, 2, . . . ,M do
Step 2: Obtain the individual cost for ith RA using (10);
Step 3: Get the utility for the ith RA using (uijq

i
jπj);

Step 4: Calculate the profit against each jth price point;

end
Step 5: Determine the winning bid for ith RA that yields maxi-
mum profit;

end
Step 6: Select specific (πj, qij) price-energy bid for each house;
Step 7: Allocate the energy to each RA based on step 6.

transmission of price points aggregator waits for each RA
to send their specific demand bidding points. The aggrega-
tor collects all the RA bidding points and then aggregates
the demand against each price point. Finally, the aggregator
checks all possible unique aggregated energy combinations
and chooses the best combination to maximize the profit.

The Step 5 in Algorithm 1 ensures that the spot market
aggregator only chooses the bid that gives maximum profit.
This is due to the fact that the aggregator wants to maxi-
mize its profit. Depending upon the number of price points
(denoted by M ) transmitted by the spot market aggregator,
the aggregator calculates the cost against each transmitted
energy demand bid point, with the help of cost function
approximation via the Taylor series approach. The aggre-
gator checks profit against each bid combination in Step 4.
Based on the profit against each energy bid combination, Step
5 guarantees to choose the bid that yields maximum profit,
which is the optimal solution for our work. The proposed
Algorithm 1 yields optimal solution by evaluating onlyM×N
combinations and earning profit closer to the CCA. On the
other hand, CCA considered to be a benchmark method for
providing an ideal solution for WDP [59] requires evaluat-
ing MN combinations to achieve the maximum aggregator’s
profit.
Remark: The combinatorial appraoch is capable of deliver-

ing unique price-energy point decision for each RA; whereas,

TABLE 2. Aggregator cost function coefficients.

the Uniform Price Auction (UPA) [60] decides same price
based decision and populates to all the RAs. Interestingly,
in UPA, while solving (2) the binary decision variable uij
takes the same value (u1j = u2j = . . . = uNj = 1) for the
jth price point of all the RAs. The aggregator sums up the
demand received from each RA with specific discrete price
point πj to calculate the utility πjqi. Subsequently, the cost for
energy allocation is calculated using (6). The energy demand
qij corresponding to price point πj, which yields maximum
profit is chosen as the decision point. Thus, this makes UPA
a special case of the combinatorial approach.

IV. SIMULATION RESULTS
In this section, the performance of the proposed approach
to solve the NP-Hard problem of the WDP is discussed in
detail. The time slot of fifteen minutes is considered for
the spot market simulations; the fifteen minutes of energy
demand data is acquired from the residential houses in a city
in Québec province of Canada. The parameters α,β, and γ
for the thermal model of the residential houses are obtained
from the experimental data recorded by Hydro-Québec. The
proposed approach is compared with CCA, UPA and PSO
for aggregator profit, energy allocation and computational
efficacy. Notably, the simulation studies for ‘CCA’ are limited
to up to seven RAs participating in the spot market due to
the computational resources. Table 2 contains the coefficient
values of the cost function (7) and Table 3 contains the
price points transmitted to each residential agent by spot
market aggregator. It is assumed that each RA submits the
corresponding price-energy demand points before the next
time slot. Based on the flexibility δ in (4), each house Hi
submits ten different price-energy demand points that consist
of {πj - qij} according to the RA objective function (5). It is
to be noted that the simulation results are generated using
Python on a computer with Intel Core i7 (2.00 GHz) and
32GB RAM.

A. PROFIT COMPARISON
Fig. 4 shows the profit earned by the aggregator after solving
the WDP using the proposed method, PSO, UPA and CCA
for a fifteen minutes time slot in one specific spot market
scenario. In UPA, the aggregator provided the same price
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TABLE 3. Prices from aggregator.

FIGURE 4. Aggregator side profit comparison.

FIGURE 5. Aggregator side profit difference compared to CCA.

point for all the participants, corresponding to the maximum
achievable profit. On the contrary, in the combinatorial auc-
tion, the aggregator provides individual energy allocation
price points to each RA. That is because the aggregator eval-
uates the profit against all possible combinations of energy
allocation and populates different price-energy allocations
for each user. It is clear from Fig. 4 that combinatorial auc-
tion (CCA and the proposed method) yields the maximum
profit in contrast to other techniques, which increases with
an increase in the number of participating houses Hi and
i = {1, 2, 3, .., 30}. However, the evaluation of CCA was
carried out only up to seven houses since it requires greater
computational time, which is not feasible in the real-time spot
markets. Furthermore, PSO (blue colored) suffered from an
envelope of the range as it is a meta-heuristic method with
uncertainty in every iteration. The difference in the profits
amongst the methods compared in this simulation study is
also embedded in Fig. 5.

B. ENERGY ALLOCATION COMPARISON
In terms of energy allocation, Fig. 6 displays the comparison
between all four methods for energy allocated to RAs par-
ticipating in the spot market energy auction. The proposed
method resulting from Algorithm 1 yields the best energy
allocation as the number of houses increases.

Fig. 7 displays the difference in the energy allocation of
three techniques with respect to the CCA. It can be observed
that the UPA trajectory (green-colored) diverges, while the

FIGURE 6. Aggregator side energy allocation comparison.

FIGURE 7. Aggregator side energy allocation difference compared to CCA.

FIGURE 8. Aggregator side computational time comparison.

difference between the proposed method (Red-colored) and
CCA is quite close to zero. Similarly, this difference is also
close to zero for PSO (blue-colored). Unfortunately, the PSO
method [7] despite being close to the proposed method, suf-
fers from high variance. That leads to unreliable results in the
energy allocation.

C. COMPUTATIONAL EFFICIENCY
Despite achieving higher profit and better energy allocation,
the major shortcoming of the conventional combinatorial
method is very high computational time that increases the
computational load and becomes infeasible. From MN , it is
clear that as the number of houses N increases, the variety
of possible allocation points increases exponentially. Conse-
quently, evaluating each aggregated energy point becomes
mandatory for maximum profit. This becomes impractical
with a higher number of participations in the transactive
energy spot market between five to fifteen minutes.

Fig. 8 depicts the computational time required by each
method compared to the increasing number of houses. Sur-
prisingly, when participants increase beyond six, CCA’s
computational time starts rising dramatically, which dis-
plays a poor computational algorithm. On the other hand,
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FIGURE 9. Aggregator decision process in spot market.

a reasonable computational time is clocked via the PSO algo-
rithm, but comparatively more than the proposed algorithm
and UPA.

Consider a case study of six houses Hi with i =
{1, 2, 3, 4, 5, 6} participating in the spot market. Let the num-
ber of houses N are six and the number of price points M
transmitted are ten, then based on MN there are 106 dif-
ferent possible choices for energy allocation (Fig. 9). The
magenta-colored curve represents the cost function (6).While
the red dots represent all the 106 different possible choices.
The blue dot shows the global maximum profit (22.20$) point
achieved through the CCA; whereas, the orange-colored dot
shows the profit (22.18$) point achieved via the proposed
method. Utilizing, the UPA and PSO approaches maximum
profit of 18.59$ and 19.21$ was achieved as shown via
black-colored and brown-colored dots, respectively.

The computational time required by the CCA for six
houses was seven seconds; surprisingly, when solved for
seven houses, the computational time increased drastically to
one minute and twenty seconds (Fig. 8). For more than seven
houses, it becomes impractical to solve because the computa-
tional time keeps on increasing with the number of houses as
depicted by black-colored trend in Fig. 8. On the other hand,
solving for a similar conditionwith the proposedAlgorithm 1,
the computational time was three milliseconds with optimal
profit yield nearer to the CCA. Thus, the proposed method
achieved superior efficacy in terms of computational time
as well as in achieving maximum profit and better energy
allocation for each RA in the transactive energy spot market.

V. CONCLUSION
A formal approach to solving the NP-hard problem of
the winner determination process in the combinatorial
single-sided auction for the transactions in the spot market
is presented in this paper.
• The proposed approach exploited the multi-variable
Taylor series to arrive at the personalized approximate
cost function for each residential agent, reducing the
search space in the spot market transaction.

• The simulation study was carried out for actual real-life
house data participating in the spot market. Simu-
lation results depict the superiority of the proposed
approach to achieving substantial improvements in the
computational time, earning approximately sixteen per-
cent more profit than the uniform price auction.

• The proposed system hinges on formal methodology
rather than a heuristic method. That resulted in definite
energy allocation for each residential agent.

The proposed approach is a general methodology for many
applications, including residential houses with flexible loads
or a group of communities with thermostatically controlled
loads to maximize the profit with the superior performance
of the aggregator in the real-time spot market energy transac-
tions. In future work employing the proposed method could
be of substantial interest to investigate the effect of propaga-
tion from spot to day-ahead market.
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