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ABSTRACT Order picker routing refers to the process of collecting a set of products with the minimum
travel time. Recently, a new generation of Automated Guided Vehicles (AGVs) has been developed to
assist human order pickers in order to minimize their travel time. These vehicles are using battery as
energy source. However, the routing energy efficiency aspect of these systems remains unexplored. Yet any
improvement in power consumption will ultimately reduce the DOD (depth of discharge) of the battery and
increase its lifespan. For example, in many real AGV applications incorporating the effect of load mass has
been neglected, although its importance. In most studies, the methodology proposed for the order picking
routing problem does not allow neither the integration of the mass of each Stock Keeping Unit (SKU)
nor the calculation of associated energy costs. Those studies are generally limited to ensure that all the
items requested by an order are picked up with minimum travel time/distance. In this paper, an Energy
Efficient Order Picking Routing algorithm named EE-OPR is proposed to realize an efficient AGV tour with
an acceptable trade-off between energy preservation and travel time minimization. The proposed approach
takes into account the mass of loads and its accumulation throughout the pick tour since it intensifies the
rolling resistance losses on flat ground, especially at lower speeds. In this regard, an optimization method
by means of dynamic states graph is developed. This method is applied to different warehouse layouts. The
performance of the suggested algorithm is evaluated by comparing it with an approach minimizing only
travel time consumption. Results show that the optimized tours, offered by EE-OPR are effective and robust,
with an 18% average saving on the total cost of picking tour.

INDEX TERMS Case picking, dynamic shortest path problem, energy efficient routing, load weights, order
picking problem, pick support AGV (PS-AGV).

I. INTRODUCTION
With the rise of customization, the rapid growth of
e-commerce, and labor shortage, the level of automation
in warehouses and Distribution Centers (DCs) tends to
increase in order to meet market requirements [1]. Picking the
orders in some warehouses and DCs is done by Automated
Guided Vehicles (AGVs) to minimize the pickers’ unpro-
ductive walking time and improve the picking efficiency
and ergonomics in picker-to-parts setup. These systems are
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referred to as Pick Support Autonomous Guided Vehicles
(PS-AGVs), AGV-assisted order picking systems, or simply
Autonomous Mobile Robots (AMRs) [2]. An example of
such systems is implemented by Fetch Robotics to optimize
Case Picking [3]. Some of the existing research works focus
on the economic aspects of PS-AGVs application. These
works aim to study and provide PS-AGVs solutions that help
in the business growth, match their solutions’ operations and
deliver a significant return on investment (ROI) [4], [5]. For
instance, a crucial factor that is often overlooked in the litera-
ture and should be taken into account when using PS-AGVs is
the energy cost of the vehicle exploitation as well as the cost
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of battery maintenance and its exchange, especially when the
battery is dead. This factor is critical for the adoption ofAGVs
and in particular, for the improvement of the deployment
cost of this technology. In addition, the energy available on
battery constraint is generally a limiting factor for the range
and length of an AGV deployment [6]. Moreover, since an
AGV uses several batteries throughout its life, the total cost
of these batteries is significant [7].

Material handling consumes a notable amount of energy
in warehouses [8]. Although electrification and green ware-
housing are receiving increasing attention due to environ-
mental awareness [9], [10], additional efforts in terms of
operational decisions should be considered. The number of
operational decisions related to PS-AGV routing per day can
notably influence the amount of required energy, particularly
when AGVs are used in pallets or cases picking. These types
of AGVs are known as order picking trucks or upgraded tradi-
tional forklifts [5]. It should be noted that forklifts are known
as the most energy-consuming material handling equipment
used in warehouses [11].

In order to enhance the energy efficiency of an AGV, its
energy requirements for order picking must be studied. The
process of collecting a set of products with the minimum cost
is called Order Picking Problem (OPP), Picker Routing Prob-
lem (PRP), or picking problem for short [12]. This problem
is the most challenging concern related to warehousing oper-
ations since it takes about 50% to 75% of the total operating
cost associatedwith labor and time [13], [14].Most of the cur-
rent research works aim to optimize the routing time/distance
of the order picking tour [2], [15] while ignoring the energetic
aspect. However, for a better choice, it is essential to under-
stand and adequately quantify the required energy of different
possible paths to improve the order picking routing efficiency.
In addition to the distance traveled and the time spent, the
energy consumption of an AGV depends on many factors,
such as its speed, weight, and the transported cargo quantity.
Hence, the higher the payload weighs, the more power an
AGV requires [16].

Therefore, it is crucial to take into account the different
weights of requested items when planning a picking tour.
It is also important to note that warehouses and DCs man-
age a large assortment of Stock Keeping Units (SKUs) (in
terms of size and weight) on variable schedules [1], [17].
Often, PS-AGV has to deal daily with different quantities
and heavy and bulky loads of a wide variety of items with
varying requirements. However, they are not limited to this
kind of item [5]. In addition, the positions of the products
may change in the DC or may be replaced by a different
product. This variation of the type of items and their masses
has an impact on the required energy to complete a pick-
ing tour. In the case of an unexpected increase in the pick-
ing tour due to the growth in mass, the recharge time has
to be updated to avoid aggressive discharge and extend the
battery lifespan. In this work, the importance of having a
precise estimation of the vehicle energy consumption con-
sidering cargo weights is highlighted to make better routing
decisions.

Therefore, improving the energy efficiency of AGVs
extends their productive operating time between recharging
stops (autonomy). This energy improvement can also increase
the number of picked items per day, resulting in short-term
savings because the cost of electricity has decreased and also
due to the autonomy of AGVs. Moreover, any improvement
that reduces power consumption results in the reduction of the
DOD of the battery and thus improves its lifespan [18], [19].
In addition, these improvements help with long-term savings
by reducing the cost of maintenance and (or) battery change
and the number of robots required on the floor, providing
better autonomy per vehicle.

Considering the increased interest in the concept of green
warehousing and its respective potential for energy saving,
the main focus of this work is to answer the following ques-
tion: Given an order sheet, start, and endpoints, how can we
optimize the AGV’s routing energy and time cost in order
to collect all the requested items from different listed posi-
tions in the warehouse while minimizing energy and time
simultaneously? It should be noted that in some settings,
the energy-saving path can be longer than the travel-time
saving. If a slightly longer trip can save energy, it could be
interesting for long-term savings, especially for a large ware-
house. Therefore, it is interesting to reach a trade-off between
time and energy savings. Besides, it is required to specify
whether time has high priority in a particular context, like
having toomany requirements in specific periods. Hence, this
paper is concerned with the routing problem of an AGV in a
bi-dimensional way to manage time and energy requirements
for order picking movement in warehouses.

The rest of the paper is organized as follows. Section II
provides the literature review. The methodology is explained
in Section III. Section IV presents the empirical results and
SectionV discusses the benefits and the limitations of the pro-
posed approach. Concluding remarks and some suggestions
for future research directions are provided in Section VI.

II. LITERATURE REVIEW
A. PS-AGV ROUTING
1) ORDER PICKING PROBLEM DEFINITION
The single PS-AGV routing problem deals with the determi-
nation of the path which has to be traveled by the PS-AGV in
order to collect a set of items requested by internal or exter-
nal customers, in a distribution warehouse. This well-known
problem is referred to as Order Picking Problem (OPP) in
rectangular warehouses. Exact and heuristic methods have
been widely utilized to deal with OPP in the literature. OPP
is represented as a special case of the classical Traveling
Salesman Problem (TSP), where the salesman is the AGV,
and cities are items to collect [20]. This framework is about
Steiner TSP (STSP) as not all cities are required but some
of them (given the specific layout and location of items in a
particular structure) [21]. The STSP is described by a directed
graph G = (V , E) where V is a set of vertices and E is a set
of edges. In this graph,P ⊆ V represents the required vertices
andV\P depicts Steiner points. A Steiner tour ofG is a closed
walk that visits each vertex of P at least once. Therefore, there
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are two differences between a Steiner tour and a traveling
salesman tour. The first difference is that in a Steiner tour, the
Steiner points do not have to be visited. The second difference
is that a Steiner tour may contain some vertices more than
once [22]. In the classical STSP, the goal is to minimize the
length of a Steiner tour in the digraphG. In our study instead,
we aim to find the Steiner tour minimizing energy and time
consumption.

2) ROUTING POLICIES FOR ORDER PICKING OPERATIONS
In 1983, Ratliff and Rosenthal (RR) [23] presented a
polynomial-time solution for an exact order picking strat-
egy in a single-block warehouse. The method proposed
by RR was extended by Roodbergen and De Koster for a
two-block warehouse [24]. Subsequently, Löffler et al. and
Masae et al. [15], [25] dealt with order picking problems
with arbitrary starting and ending points by applying the
concepts of RR. A new solution to the routing problem was
suggested by Scholz et al. [26] based on new mathematical
formulations in order to take into account the specificity of
the warehouse layout. Their formulation has a main con-
straint that consists of imposing the picking of one unit on
the first pass over a required vertex. However, if the energy
consumption is considered, that constraint can result in a
sub-optimal solution. Pansart et al. [12] present two exact
algorithms for OPP. In the first algorithm, they demonstrate
that the problem can be solved optimally with Mixed Inte-
ger Linear Programming (MILP) using a sparse formulation
strengthened by pre-processing and valid inequalities. The
problem is seen as a STSP and the authors used a compact
single-commodity flow formulation which has been proposed
by Letchford et al. [27]. Thus, the picker has to deposit a
unit of items each time he picks one (flow principle). It is
important to mention here that the direction of traversal is
crucial in this setting yet the post-processing step to find the
picking tour sequence from the resulting tour sub-graph is
not detailed. In their second algorithm, Pansart et al. [12]
proposed a dynamic programming approach extending RR
known algorithms from two cross-aisles to any number of
cross-aisles to deal with real-life applications. Nevertheless,
this method cannot accommodate side constraints such as
flow directions and precedence. References [12], [28] Also,
heuristics methods have been proposed in the literature for
the same purpose: traversal (or S-shape), largest- gap, return,
midpoint, and composite [29], [30]. Heuristics are mainly
used for solving OPP since the optimal route may seem illog-
ical to a human operator [31]. However, in the case of a
semi-autonomous or completely autonomous system where
the robot is the leader, it is no longer a problem. Koster
and Poort [32] present a practical comparison between exact
algorithms and heuristics by comparing the S-shape method
with dynamic programming. In the S-shape strategy, aisles
are fully traveled if there are products to pick, otherwise,
aisles are skipped. For example, when the picker starts from
the lower-left corner of the warehouse (depot) and enters and
leaves aisles from different sides (front and rear), it returns
to the depot after finishing picking resulting in an S-shape

route. Koster and Poort conclude that despite the ease of use
of the S-shape strategy, the optimal algorithms bring bet-
ter savings in travel time. This result motivates the use of
exact algorithms. For more details, Masae et al. [33] present
a systematic literature review about order picker routing in
warehouses.

Note that the S-shape routing is the most used method in
PS-AGV systems. This method is near-optimal when there is
an excessive pick density [14]. Löffler et al. [15] extend the
RR algorithm for the problem of picking single order with
given start and end locations. They also present an adaptation
of the S-shape and gap strategies to fit with AGV-assisted
order picking where start and end points could be differ-
ent and are not limited to the depot location. However, this
method, as well as other heuristics, are less suited to accom-
modate side constraints such as the energy consumption and
the mass of the transported load.

It is important to mention that the main and common focus
of the aforementioned studies is the travel time and/or dis-
tance. However, neither energy consumption nor the effect
of masses on energy consumption have been considered and
investigated.

B. AGV ENERGY PERFORMANCE
Due to environmental concerns, much research has been
conducted on the energy performance of autonomous mate-
rial handling vehicles in order to manage the greening pro-
cess in factories and warehouses [34]. Some researchers
have focused on the development of decision support tools
for the selection of the type of material handling vehicles
(such as Liquefied petroleum gas, diesel, or electric) in order
to minimize the environmental impact of warehouse activ-
ities [35], [36]. Other research directions aimed to assess
the factors that influence the energy needs of AGVs and to
model these needs [37], [38]. Some researchers focused on
charging optimization [39], [40] while others on improving
the energy efficiency of mobile robots through motion plan-
ning and control [41], [42], [43], [44]. Finally, another inter-
esting research works aim to improve the energy efficiency
through routing decisions. Since the main goal of our work
is to solve the order picking routing problem of an AGV
in warehouses and DCs in an energy efficient way, we start
by presenting some research studies that consider the min-
imization of energy consumption for the resolution of the
OPP. Then, we present some other related works that focus
mainly on energy efficient routing in the context of order
picking.

1) ENERGY EFFICIENT ROUTING: RELATED WORKS
In the context of flexible manufacturing, Barak et al. [45]
proposed an approach to modeling operation scheduling,
machine allocation, and AGV scheduling while minimiz-
ing energy consumption. In particular, they used an adapted
multi-objective particle swarm optimization method that
takes into account both distance and load. Zhang et al. [46]
proposed a path planning for a single-load AGV in a fac-
tory that efficiently uses energy. Some other research works
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consider energy efficiency for Robotic Mobile Fulfillment
Systems (RMFS), such as Li et al. [47], Xu et al. [48],
and Zhou and Zhu [49]. Unlike the picker-to-part system,
in RMFS, it is the items that move and not the workers in the
factory. The RMFS is typically arranged in a grid with storage
zones of inventory pods, picking stations, and replenishment
stations. Robots lift and carry square shelving units called
inventory pods with items from storage locations to replen-
ishment or picking stations. Under such a setting, the workers
can fill or pick items from inventory pods. The researchworks
described above, consider the routing energy efficiency of
different types of AGVs, some of which consider the effect of
the mass. However, these works deal with problems different
from ours.

In addition, in the transport field, PS-AGV routing is
strongly related to the vehicle routing problem along with the
pickup and delivery problems. In particular, PS-AGV routing
can be considered as a generalization of the TSP. The classical
vehicle routing problem consists of finding the best route
defined for rather a fleet to reduce transport costs. Continue
within the framework of green logistics, some studies have
been carried out to reduce the consumption of energy for
the vehicle routing problem. For example, a novel load-based
cost objective for energy minimizing vehicle routing problem
is proposed by Kara et al. [50]. The problem is presented as
Capacitated Vehicle Routing Problem (CVRP) and defined
using integer linear programming formulations for the deliv-
ery and collection cases.

2) ENERGY EFFICIENT ROUTING FOR ORDER PICKING
As mentioned in Section II-A2, the goal of most of the
approaches related to OPP in the literature is to reduce the
travel time and/or distance while overlooking the environ-
mental performance of the warehouse [35], [51]. However,
there are some studies that attempt to find a trade-off between
travel time and energy consumption minimization in order to
optimize order picking routing. For instance, Ene et al. [52]
developed a genetic algorithm for order picking problem
in warehouses. This algorithm aims to minimize the ser-
vice time as well as energy consumption via order batch-
ing and picking routing optimization. The authors proved by
examples the significant energy saving when applying their
approach. However, their work is based only on the vertical
and horizontal speed and the traveled distance of the forklift
to estimate energy consumption. Also, they assume a con-
stant energy consumption per unit time, overlooking load
and resistance forces in their calculation. Rojanapitoon and
Teeravaraprug [53] introduced a new mathematical model
for picker routing that minimizes the travel time and energy
consumption given a variation of the level of traffic in a rect-
angular warehouse. Their mathematical model is then used
on computer simulation software which has been presented
in a previous work [54]. They compare their results with the
time-staged model, and they validate them by the brute-force
search strategy. Compared to the method that optimizes time,
the authors reported that their proposed model optimizes both
time and energy and saves up to 17% energy. However, they

excluded the possibility of picking up the requested item on
the second pass (if there is any) and overlooked the direc-
tion of travel in the construction of a complete picking tour
which can lead to sub-optimal solutions. Lee et al. [55] devel-
oped an integrated dynamic algorithm as a solution to the
electric forklift routing problem w.r.t battery charging con-
straints. That is, the algorithm considers the electric fork-
lift’s picking/put-away routes and battery charging schedules
along with the number of electric forklifts. In addition to that,
their algorithm takes into account the consumption of elec-
tricity in the warehouse. Also, Makris et al. [56] addressed
theOPP from an energy efficiency point of view. They present
a TSP-based routing algorithm in order to achieve a trade-off
between travel time and energy consumption of order picking
in the warehouse. The authors, however, exclude the weight
from their energy consumption evaluation. Similarly, most of
the research works do not consider mass as a critical factor
for vehicle routing decisions, especially when considering the
energy saving. Elbert and Müller [57] investigate the impact
of transported item weight on the velocity of the order picker
and travel time in a manual picker-to-parts order picking.
In their work, they focus on the problem of storage assign-
ment and propose newweight class-based storage assignment
policies to reduce travel time.

Therefore, two important points are overlooked in the
aforementioned research studies, which are considered in this
study. We discuss these two points in what follows. First,
in the majority of research papers related to the resolution
of the OPP, the applied constraints in the mathematical for-
mulation either force the solution to pass only once on each
required picking location or to take the products from the
order on the first pass. These formulations lead to an optimal
or near-optimal result which minimizes the travel time of
order picking tour. However, considering the energy gain in
the optimization formulation was not considered. This gain
can be obtained by passing through a required point without
picking up the load (so as not to drag it) and by picking it up
on the way back to save energy. Figure 1a shows an example
of considering the energy gain by not lifting the required item
in the first pass. In this illustration, we suppose a bidirectional
graph with a set of vertices X , Y , Z and a set of edges (X ,Y ),
(Y ,Z ). The wavy arrows represent the shortest paths between
two nodes. The OPP here attempts to start from point X ,
to visit points Y and Z , and then to return to point X with min-
imal cost. In this example, the resulting shortest path requires
the passage twice on the same node Y . Solution 1 does not
consider the energy gain and hence carries the load in Y all the
way from Y to Z , and then from Z to Y . However, Solution 2,
which takes into consideration the energy gain, first picks the
load in Z , and on the way back, it picks the load in Y . Second,
most of the discussed works focus on the search of an optimal
sub-tour and take the construction of a full tour for granted.
Nevertheless, a change of direction of the same sub-tour can
bring an energy gain if the loss of energy linked to the move-
ment of heavy objects is delayed. Figure 1b gives an example
of saving energy by changing the direction. We assume in
this figure a different bidirectional graph with three vertices
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FIGURE 1. Concept of considering energy as well as time for picking
loads in a warehouse. (a) illustrates an example of considering energy
gain by not lifting the required item in the first pass (applied by Solution
2) while Solution 1 does not. (b) shows an example of saving energy by
changing the direction by which the items are picked up. Solution 2 takes
into account this saving while Solution 1 does not (B is heavier than C).

A, B, C , and three edges (A,B), (B,C) and, (C,A). Here, the
OPP attempts to start from point A, picks up the loads from
points B and C and returns back to point Awith minimal cost.
According to this example, the load in B is heavier than C .
Solution 1 does not consider the change of direction and
therefore, it first picks the heavier load and carries it all the
way to C and goes back to A. However, Solution 2 first picks
the lighter load in C . Then, it picks the heavier one in B and
goes back to A. This change of direction can lead to energy
savings.

Hence, the main contribution of this work is to tackle these
two not-well-studied points in the literature. Thus, in our
approach called Energy Efficient Order Picking Routing
(EE-OPR), we consider time, energy, and mass in the plan-
ning decision in order to achieve an efficient order picking
tour for an autonomous material handling vehicle. Moreover,
unlike classical RR-based approacheswhich aremainly based
on the particular structure of rectangular parallel-aisle ware-
houses for creating the subproblems of a dynamic program,
the proposed approach can be used for other warehouses
with different arrangements and layouts. In fact, in order
to solve the OPP while simultaneously minimizing time
and energy, a dynamic program is developed. This program
considers the problem as an eco-energetic STSP and trans-
forms it into a shortest path problem (SPP) by creating an
acyclic dynamic state graph and performing a graph search
process.

III. METHODOLOGY
In this section, we present the methodology we followed for
EE-OPR.

FIGURE 2. Layout of the warehouse and graph representation.

A. WAREHOUSE LAYOUT REPRESENTATION
A conventional single-block parallel-aisle warehouse with
single depot is considered as the classic configuration. Such a
warehouse consists of g vertical aisles and 2 horizontal cross-
aisles. Figure 2 presents an example of this casewith six aisles
and two cross-aisles. Aisles contain products on both sides,
while cross-aisles make intersections throughwhich the AGV
can navigate. The warehouse structure can be described by
the graph G0(V0,A0), where V0 = {v0, . . . , vk} is a set of k
vertices (yellow and blue circles in Figure 2a) and A0 presents
a set of arcs denoting connections between vertices. In order
to facilitate the selection of pick-list elements from their loca-
tions, the main set of vertices V0 is divided into two sub-
sets, denoted by VI and VL . VI defines intersections vertices
in cross-aisles (blue circles in Figure 2). VL stands for other
vertices, which account for possible picking locations (yellow
circles in Figure 2a). An order given by a pick-list can be
specified by another set VP ⊆ VL with carnality p ≥ 1. This
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subset contains vertices associated with p cases, which are
described by their SKU and location in the warehouse (pink
vertices in Figure 2b). This pick-list contains the order lines
of a single customer (pick-by-order) or multiple customers
(pick-by-batch). In the rest of the article, we use the term
‘case’ to present the total number of items or batches that
are picked at the same pick location. In addition, we desig-
nate these cases by the vertex located in the corresponding
position. For example, the picking location of the case i is
expressed by vi. Furthermore, the masses of the cases are
given by the set Y = {m1, . . . ,mp} in which each element
mi represents the mass related to the case i, in kilogram (kg).
Also, m0 denotes the mass of an AGV without load.

The OPP is considered as an eco-energetic STSP that is
stated in a directed graph, G(V ,A). Figure 2b presents an
example of this graph with 16 vertices from which 6 are
required. G(V ,A) is a sub-graph of G0(V0,A0), shown in
Figure 2a, and contains only relevant locations. These loca-
tions account for Steiner, VI , and pick-list, Vp, vertices and
are represented by the set V = {v0, ..., vn}. Consequently,
the set A presents the arcs that connect adjacent vertices.
The weight of each arc corresponds to the Euclidean distance
cost, dij, between the ith and the jth vertices, connected by an
arc. Accordingly, the picking routing problem can be deter-
mined as optimizing the AGV tour to collect all products in
the pick-list by minimizing its time and energy consump-
tion while traveling from initial to target position (depot or
other predefined positions). The optimal tour also takes into
account the mass of pick-list elements.

It can be noticed that the objective is to find an
eco-energetic tour not necessarily a Hamiltonian one given
that it is an eco-energetic Steiner TSP problem. This allows
vertices and edges to be traversed more than once, if desired.
In order to achieve this target, a new scheme is proposed
that is applicable to any warehouse layout. EE-OPR is
based on the creation of dynamic states through the bit-
Masking method [58]. Additionally, it takes advantage of
the dynamized Dijkstra algorithm for the graph search [59].
EE-OPR considers the energy consumption of the AGV and
the effect of the transported cargo weight.

B. ASSUMPTIONS
In this section, we list the assumptions considered in
EE-OPR.
• Only the energy consumption of the AGV travel move-
ment is considered. The time and energy waste for pick-
ing stops can be assumed to be constant or negligible.
Moreover, depending on the type of the robot, if it has
to lift itself cases, the energy loss due to this work is not
taken into account in the mathematical modeling. This
is because the energy demand to overcome the gravity
of the cases is almost the same and does not affect the
routing decision.

• The minimization of the total travel time is equivalent to
the minimization of the total tour length, given that the
vehicle can move uniformly (constant speed (V ) in both
coordinates axis). Therefore, the energy consumption

caused by the process of acceleration and deceleration
is not considered.

• The definition of the pick-list is done beforehand so that
the energy onboard is sufficient to finish the tour and that
the volume and the mass of the cases do not exceed the
AGV’s capacity Q.

• The mass of all SKUs is available and by knowing the
quantity required in each pick location, the mass of each
case can be computed.

• The order picker continues to pick up all required items
at the same storage location when the AGV stops for
picking.

• The aisles are wide enough to allow two-way travel of
AGVs. This assumption can be modified for parallel
closed-end picking aisles by simplymodifying the graph
edgeswith unidirectional arcs representing the aisles and
bidirectional arcs for edges of cross aisles.

• The depot location is displayed in the lower left-corner
of the warehouse for simplicity. However, this assump-
tion can easily be changed for any layout.

• A single AGV is considered in this case study. This can
be easily extended to accommodate multiple AGVs.

• We assume that the robot can pass more than once on the
same vertex during a picking tour.

C. DYNAMIC GRAPH CREATION
STSP is a combinatorial optimization process that can be
formulated as a shortest path problem [58]. The solution to
this problem is a path with the minimum cost that starts from
the initial position with zero load and ends at the final position
with all requested loads. EE-OPR is based on the dynamic
creation of a state graph incrementally. Therefore, a new
graph G′(V ′,A′), called state graph, is created in addition
to the spatial graph G(V ,A). The set V ′ represents vertices
states and the set A′ defines arcs between two successive
states. G′(V ′,A′) is weighted by a cost function considering
the previous state and direct transition costs. This function
determines the cost of time and energy that is required to
travel the distance dij with a load m. Besides, the resolution
of the shortest path problem is processed by means of the
Bellman principle. These notions are detailed inwhat follows.

1) STATE VERTEX DEFINITION
As a particular case of TSP, the STSP can use the philosophy
of bitmask arrangement emphasizing that each data is repre-
sented by a binary digit (0 or 1) with a particular permutation
(bitmask) [58]. Let p vertices be the elements of a pick-list.
For this list, the tuple ai = (a0 a1 . . . ap) with p binary digits
is created with the same order. This tuple defines the cases
that have been picked at a certain time. It presents them by the
binary value 1 at their corresponding location. For instance,
ai = (0 1 . . . 0) shows that the second case of the pick-list
has been picked by the robot. As a result, ai = (1 1 . . . 1)
signifies that all cases have been lifted. The total number of
arrangements for ai is 2p. Since the problem is presented in
an incomplete network graph and only a subset of ‘visiting
vertices’ [22] is covered by the tour, the vertex information
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is also required to formulate the picking problem. In fact, the
robot can be positioned in any vertex vi ∈ V (required or not)
and transport 0 to p cases. Subsequently, spatial and temporal
information is paired and referred to as states. A state is rep-
resented as a tuple sk = (vi, aj) in which vi presents the vertex
and aj expresses the arrangement. The spatial complexity
of the state representation is n2p, where n is the cardinality
of V . Generally, the overall execution time of a TSP based
on the bitmask Dynamic Programming (DP) with n cities to
visit is O(n2 ∗ 2n) [58]. Therefore, the resolution of Steiner
TSP using DP bitmask is O(n2 ∗ 2p). Nevertheless, the time
complexity of our work can decrease considering the sparsity
of the warehouse graph and the particularity of the Steiner
points. This advantage can be realized by EE-OPR which is
capable of creating only necessary states and edges.

FIGURE 3. Explanatory example of the creation of states.

From this perspective, the targeted case can be presented in
terms of a shortest path problem where sstart = (vstart , astart )
and starget = (vtarget , atarget ) are starting and ending states,
respectively. For these states, vstart , and vtarget stand for start-
ing and ending vertices. In addition, astart = (a1, a2, . . . , ap)
where ai = 0 ∀i ∈ {1, ..., p} and atarget = (a1, a2, . . . , ap)
where ai = 1 ∀i ∈ {1, ..., p} define starting arrangement
and target arrangement, respectively. In the rest of the paper,
we will refer to starting arrangement and target arrangement
as ‘empty arrangement’ and ‘full arrangement’, respectively.
Figure 3 simply illustrates the state creation process. In this
Figure, the main graph includes 4 vertices namely: A, B, C ,
and D, where B and D are required. Given A as a starting
and ending point at the same time and P = {B,D} as a
pick-list, the starting and target states can be expressed as
(A, 00) and (A, 11), respectively. In order to avoid creating
all possible states, a new Directed Acyclic Graph (DAG), G′,
is considered. This dynamic graph is initiated by the start-
state vertex. Afterward, it is expanded by state vertices and
transition arcs based on the spatial graph G, the exploration,
and the current load arrangement.

2) TRANSITION ARC DEFINITION
During the picking turn, the robot can move between vertices
transporting 0 to p cases. This movement corresponds to a

transition between two states that is represented by an arc
a ∈ A′. The adjacency matrix n2p × n2p can be used to
define possible transitions over the entire states. However,
this matrix includes impossible transitions and unattainable
states. These unacceptable circumstances are:
• loading more than one item at the same time,
• decreasing load in the tour,
• turning on a bit in the arrangement (zero→ one) when
its corresponding vertex does not exist in the pick-list,

• activating a bit in the arrangement (zero→ one) when
its position does not relate to that of the vertex in the
pick-list.

Consequently, EE-OPR is employed to generate the states
and arcs of G′ in a dynamic way. Additionally, the edge
relaxation technique is used to update the paths associated
with the existing states. The generation process is done during
traversing the spatial graph G (the exploration phase).

3) STATE VERTICES AND TRANSITION ARCS CREATION
According to the above discussion, a state can be presented by
several attributes consisting of name (vi, a), vertex v, arrange-
ment a, mass m, predecessor statei−1, and cost c (related to
travelling from the starting vertex). The exploration phase
involves the creation of states and transition arcs while pass-
ing through the graph G. At each step, a transition between
two states is realized by a change of position (vertex) and an
update of the arrangement (if possible). The vertex change
can occur just between two adjacent vertices, vi, vj ∈ V :
(vivj) ∈ A. Besides, changing the arrangement (state of loads)
follows certain logic and there are two alternatives, described
below.
• a1: the arrangement remains the same (Not carrying vj).
• a2: the arrangement is updated by turning on the bit
corresponding to vj (carrying vj) (see Figure 4).

By pairing the arrangements a1 and a2 with a neighbor ver-
tex, two possible states can be created based on the following.
• (vj, a1): This state expresses the AGV movement to the
next vertex vj with the same load.

• (vj, a2): This state designates an AGV motion towards
the next vertex vj, with its current load and picking load
vj.

If vj belongs to the pick-list, both possibilities are allowed.
Otherwise, only the first case is permitted. Note that only one
bit can change at every arrangement update.

Figure 5 illustrates an example of the creation of successor
states for the state (A, 00) in the graph of Figure 3. It can
be deduced that the neighbor B is an item on the pick-list
since both possibilities are demonstrated. The choices are
explained by a tuple in which the digit related to the neigh-
bor vertex can be 0 (state1) or 1 (state2). In this figure,
the ‘arrangement update’ refers to the masking process,
described in Figure 4.

The state creation procedure is described in algorithm 1
and algorithm 2. The first algorithm involves the function
CreateState1. It takes as input the current state (its vertex
u, arrangement a, mass m, and current cost J∗) as well as
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FIGURE 4. Applying a mask to turn on the bit corresponding to the
requested vertex.

the neighbor spatial vertex v ∈ V . As output, it generates a
tuple state1 = (v, a) that pairs the successor vertex v and the
same arrangement and mass and the cumulative cost to move
from the current state to state1 using transitionCost function
defined in the next subsection. Furthermore, the predecessor
attribute is set to the current state.

Algorithm 1: CreateState1 (s∗, v)
u← s∗.vertex; m← s∗.mass; a← s∗.arr; J∗← s∗.cost;
d ← dist(u, v)
c← J∗ + Transition_cost(d,m)
s1.vertex ← v
s1.arrangement ← a
s1.name← (v, a)
s1.cost ← c
s1.mass← m
s1.predecessor ← s∗

Return s1

The second algorithm involves the function CreateState2
which takes the same input information plus the pick-list. The
determination of y, the position/index of v in the pick-list is
required. Then, a mask is applied to the current arrangement
to give a new arrangement a2. This mask is a binary number
composed of p bits set all to zero except the y− th bit which is
set to one. a2 is then paired to the successor vertex v to create
state2 = (v, a2). In addition, a new mass m2 is calculated
which is the sum of the current mass and the mass associated
with the vertex v. The cost of state2 is calculated using the
current cost J∗ and the transitionCost function. This latter
utilizes the current vertex u, the successor vertex v, and m2.
These two functions are used in the main EE-OPR algorithm.

4) COST OF THE TRANSITION IN TERMS OF TIME AND
ENERGY
By defining vertices states and transition edges, a new states
graph G′(V ′,A′) is created. This graph (which is a DAG)
starts from starting vertex sstart = (vstart , astart ) and branches
out state vertices connected by transition arcs. The graph is
weighted according to the criterion to be minimized (time
only, energy only or both time and energy). We will call the
methods that solve the OPP considering only the travel time,
Travel Time Minimization (TTM) and those that consider

Algorithm 2: CreateState2 ( s∗, v,Vp)

u← s∗.vertex; m← s∗.mass; a← s∗.arr; J∗← s∗.cost;
d ← dist(u, v)
y← VP.index(v)
a2← aORMask(y))
m2← m+M (y))
c2← J∗ + Transition_cost(d,m2)
s2.vertex ← v
s2.arrangement ← a2
s2.name← (v, a2)
s2.cost ← c2
s2.mass← m2
s2.predecessor ← s∗

Return s2

FIGURE 5. Two alternatives to carry or not a case in a required vertex:
Create both state1 and state2.

only the energy, Energy Consumption Minimization (ECM).
Let us define the model of the time required to move from
state i to state j (tij) as follows:

tij = d(i.vertex j.vertex)/V (1)

The computational function of the energy demand to move
from state i to state j (eij) is defined based on the vehi-
cle’s longitudinal dynamics when moving along any arc (ij)

FIGURE 6. Dynamic states graph G′ .
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represented by:

FT = MV̇ +
1
2
ρACx (V − vw)2

+M gµ cos(θ )+Mg sin(θ) (2)

where FT ,M ,V , ρ,A,Cx , vw, g, µ and θ stand for the trac-
tion force at wheels, the vehicle total mass, the speed, the
air density, the active aerodynamic surface of the vehicle,
the drag coefficient, the wind speed, the gravity constant,
the rolling resistance and the ground slop, respectively. Since
most warehouses have flat ground, we have considered θ as
null [46]. In addition, the wind speed in a warehouse can
be neglected. Furthermore, since the vehicle is similar when
moving along arcs, the aerodynamic force 1

2ρACx (V − vw)
2

is similar on every arc. Moreover, the acceleration is limited
to avoid sudden motion, jerk and tip over. Therefore, consid-
ering that AGV’s velocity is constant, friction is the major
external force applied to the AGV in an indoor context which
is given by:

F̂T = Mgµ (3)

Assume that: MR
i and ML

i are the total masses of the AGV
when it reaches vertex i.vertex and it leaves it, respectively.
The total mass in kg, includes its own mass m0, the carrying
SKUs (cases), and the picker mass (if it is driven to travel).
For instance, if the case (load) in i.vertex is picked when
the AGV reaches this vertex; ML

i = MR
i + M [yi] (current

mass plus the mass of the case in position yi of the pick-list).
Otherwise, themass remains the same;ML

i = MR
i . Therefore,

the mass when leaving starting state ML
sstart is m0. Hence, the

mechanical energy in translation from state i to j (eij) is given
by F̂T multiplied by the distance between the position of i and
the position of j as follows:

eij = (ML
i gµ)d(i.vertex j.vertex) (4)

It is important to mention that minimizing only eij (like
ECMs) can lead to longer and more time-consuming tours
than the shortest ones (given by TTMs). For instance, let’s
assume a directed graph Cn with 4 vertices A,C,D, and E
and 5 weighed edges (AC, 6), (AD, 10), (CD, 8), and (ED, 6).
The OPP consists of starting from A, picking C and D and
then going to E . Assume that the masses m0 of the AGV, mc
(in C) and mD (in D) are: 100kg, 80kg, and 1kg, respectively,
and assume that ε = µg:
• A path that consumes the minimum amount of time is
: P1 = {(AC), (CD), (DE)} with a length of 20m and
requiring 312.6 J to execute the order picking tour (E1 =
ε[dACm0 + dCD(m0 + mC )+ dDE (m0 + mC + mD)]).

• A path that consumes the minimum amount of energy
is: P2 = {(AD), (DC), (CE)} with a length of 24m and
requiring 289.4 J to execute the order picking tour (E2 =
ε[dADm0 + dDC (m0 + mD)+ dCE (m0 + mD + mC )]).

Thus, it is clear that P2 overcomes P1 in terms of energy.
However, P2 consumes more time than P1. It is therefore
important to take into account the two criteria (time and
energy) in order to reach a good trade-off between them and

this is what EE-OPR aims for. Since tij and eij have different
units, let us define cij, the total cost in dollars to move from i
to j, as follows:

cij = ct (tij)+ ce(eij) (5)

where ct and ce are two coefficients representing the time cost
in dollar per second and the energy cost in dollar per joule,
respectively.These two coefficients define the importance of
each criterion. For example, in case of a large number of
orders in a warehouse, the time factor is crucial and thus, it is
recommended to increase the cost in dollars.

Algorithm 3: EE-OPR
initialization: set sstart
sstart .mass← M0;
cost[sstart ]← 0;
pred[sstart ]← undefined
Q← [(0, sstart )]
while Q is not empty do

s∗← Extract-Min(Q)
u← s∗.vertex;
a← s∗.arrangement;
for all v ∈ 0+u do

if v == starget .vertex a 6= starget .arrangement
then

continue
end
S1← CreateState1(s∗, v)
if S1 ∈ Q then

Relax(s∗, S1)
else

Q.insert(S1)
end
cost[S1] = S1.cost
pred [S1] = S1.pred
if v ∈ VP then

S2← CreateState2(s∗, v)
if S2 ∈ Q then

Relax (s∗, S2)
else

Q.insert(S2)
end
cost[S2] = S2.cost
pred [S2] = S2.pred

end
end

end

D. GRAPH SEARCH PROBLEM
In addition to the construction of the states graph, the cost
associated to each state is updated following Bellman’s
Principle of Optimality [60]. This technique is inspired by
dynamized Dijkstra’s algorithm [61] which is considered as a
dynamic programming successive approximation procedure.
Considering the graph G′(V ′,A′), each arc (i, j) ∈ A′ is
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weighted by cij ∈ R≥0. Suppose that sstart , starget ∈ V ′ are the
source and the destination vertices, respectively.We define by
X a directed path of a sequence of vertices vi such that: X =
〈v′1, . . . , v

′
m〉, where v

′

1 = sstart , v′m = starget , (vk , vk+1) ∈ A′,
∀k ∈ {1, . . . ,m − 1}. c(X ) is the path’s cost that is, the sum
of arcs’ costs in X ; c(X ) =

∑m−1
i=1 cv,v+1. Obviously, the state

vertices which constitute the resulting path are visited at most
once. We specify that we are talking about state vertices and
not the spatial vertices belonging to V . This means that we
can pass twice on a vertex but with different arrangements.

Given the fact that eco-energetic STSP is seen as a problem
of the shortest path between the state sstart and the state starget ,
the following standard integer programming formulation is
presented [62] (shortest path here designates optimal cost’s
path):

Minimize
∑

(i,j)∈A′
(ct (tij)+ ce(eij))xij (6)

subject to:
∑
j∈0+i

xij −
∑
j∈0−i

xji = (7)


1 if i = sstart
0 if i 6= sstart , starget
−1 if i = starget

(8)

xij ∈ {0, 1}, ∀(i, j) ∈ A′ (9)

where i and j denote states vertices, 0+i and 0−i designate
the sets of successor and predecessor vertices, respectively,
xij represents the decision variable defining whether arc (ij)
is part of the shortest path or not. It takes the value 1 in the first
case and 0, otherwise. Constraints (1) and (4) specify that for
each vertex that belongs to the shortest path, different from
the start state and target state, must have the same number of
incoming and outcoming arcs. In order to solve the presented
eco-energetic STSP, EE-OPR is proposed. It follows the fol-
lowing steps: Create a queue of priorityQ and initialize it with
the start state with a cost of 0. While this latter is not empty,
select the state with minimal cost, consider it as a current
state and delete it from the priority queue. Then, define its
composition (which vertex (u) and arrangement (a) it is com-
posed of). Explore the vertex (u) by determining the neighbor-
ing vertices. These vertices will be used to create state1 and
state2, and to add them to the queue if they don’t already
exist. Otherwise, check if the current computed cost can be
decreased (optimized) by going to the next state through the
current state. This is described by the RELAX function 4.
In parallel, the cost list and the pred list are created to save the
added states with their costs and predecessors, respectively.
An update of these costs and predecessors can be done using
the RELAX function which tries to minimize the cost of the
paths. The final cost of the target state represents the optimal
cost of the picking tour. In addition, the (pred list) allows to
trace the optimal path from the target states arriving to the
start state. Note that EE-OPR prevents movement to the target
vertex without having retrieved all the items in the pick-list.
This is done during the exploration phase by the prohibition
of the creation of states and transitions when the neighboring

vertex is the target vertex but the arrangement is different
from the ‘full arrangement’ (see the first if statement in the
algorithm).

Therefore, if the target vertex is different from the start ver-
tex, the only state that uses this vertex is the state target (the
total number of possible states is thus less than (n−1)2p+1.
Otherwise, if the depot position represents both the starting
point and the ending point, the two possible states in this
position are the states having the ‘empty arrangement’ (at the
start) or the ‘full arrangement’ (at the end). The total number
of possible states is (n − 1)2p + 2. Consequently, only arcs
leaving the start state and arcs entering the destination state
are kept. Moreover, in case a neighboring vertex v of a current
vertex u belongs to the pick-list and the current arrangement
is already a2 (the bit corresponding to v in the arrangement
is equal to one). In this case, state2 is equal to state1. Hence,
only state1 is added.

Algorithm 4: RELAX (s∗,st)
m← s∗.mass;
d ← dist(s∗.vertex, st.vertex)
w(s∗, st)← s∗.cost + Transition_cost(d,m)
if st.cost > s∗.cost + w(s∗, st) then

st.cost ← s∗.cost + w(s∗, st)
end

Now, we will discuss the time complexity of EE-OPR.
As the priority queueQ is represented as a binary heap, where
operations are performed in O(log(q)) time (where q is the
size of Q), the time complexity of EE-OPR is measured as
follows. The time taken for each extract-min operation is
O(log|V ′|). Moreover, iterating over all vertices’ neighbors
and updating their dist values is executed a total of O(|V ′|)
times and each vertex priority update takes O(log|V ′|) time.
Consequently, the total computational cost of both calcula-
tions takes O(|V ′| × log|V ′|) time [63].
As a result, the overall time complexity of EE-OPR is

O(|V ′| × log|V ′|). Given that the maximum number of states
that can be created is less than n2p, then the overall time
complexity of EE-OPR is O(n2p × log(n2p)).

IV. EMPIRICAL STUDIES
A. WAREHOUSE LAYOUT
As shown in Figure 7, we assume a single block ware-
house with g aisles, for each of which l horizontal picking
positions are considered. This warehouse graph is chosen
for the evaluation of our proposed method as it is the
most common structure studied in the literature. However,
we note that EE-OPR can be adopted to any other warehouse
configuration.

B. COMPUTATIONAL RESULTS
In this section, we explain how the simulations are performed.
The implementation is done using an Intel Xeon W-2102
computer with 128 GB DDR4 RAM and we used Python as
a programming language.
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FIGURE 7. The warehouse layout considered for the case studies.

The effectiveness of EE-OPR is evaluated and compared
with a method that we call Travel TimeMinimizing approach
(TTM). TTMproposed by Letchford et al. [27] is an approach
that aims to only minimize the travel time of selection tours.
It is based on a compact single-commodity flow formula-
tion. TTM is also used by Pansart et al. [12] for solving a
mixed-integer linear program. The latter uses only time cri-
terion tij in its objective function (z∗ = min

∑
(i,j)∈A(tijxij)).

This technique is used to generate the shortest pickup tour
for each instance. Moreover, in order to compare it with EE-
OPR, the sum of the cost of each arc of the tour sequence
resulting from the two methods is computed using the cij
function 5, giving the cost in dollars of executing each path
(since TTM does not use cij as cost function, the cost in dol-
lars of TTM resulting tours is calculated after performing the
TTM using cij). It is important to mention that TTM can not
integrate the energy consumption since eij is a function ofML

i
which is not defined by TTM according to its formulation.
On the other hand, TTM reflects all exact algorithms that aim
to optimize time or distance without considering the energy
aspect through dynamic programming formulation that is
not suitable for adding additional constraints [12]. More
specifically, to evaluate the performance of our approach,
we consider random demand scenarios with uniform demand
distribution throughout the warehouse with random storage
policies. This assessment is realized through the variation
of:
• the size of the pick-list,
• the required pick locations in the warehouse (pick-list),
• the masses of items to be picked up in different positions
and,

• the shape of the warehouse.
As shown in Figure 7, the simulations are generated for
four different configurations: Layout 1= (40 × 50), Lay-
out 2= (25 × 80), Layout 3= (20 × 100), and Layout
4= (10×200). The distances between the aisles and the pick
locations are 4 meters and 1 meter, respectively for all the set-
ups. The choice of the warehouse shape is inspired by [31].
Each structure is explored under five scenarios with different
pick-list sizes namely, 8, 10, 12, 14, and 16, respectively. For

every scenario, 100 picking tours are simulated with arbitrary
locations and masses in order to provide reliable statistical
analysis. For each tour, a selection list of cases is chosen at
random using a uniform distribution. In practice, cases can
represent batches that group several orders in a pick-list to
be separated in the packing station [31]. Cases in a selected
list have various masses that are also generated at random
between 10 kg andMmax kg (maximumvehicle capacity). The
sum of the masses of the pick-list items should not exceed the
maximum vehicle capacity as follows:

msi,j ∼ Unif(10,Mmax) (10)

where s, i, j represent the scenario, instance (picking tour),
and pick-up location, respectively. The simulation performed
in the present work is carried out for anAGVwith amaximum
speed of 1.2 m/s, a weight of 1600 Kg, and a maximum
supported load of 1200 kg.

Figure 8 presents the results of the comparative study of
our approach and the TTM method based on the mean and
variance of the cost of each case. As shown in Figure 8,
EE-OPR overcomes TTM in all the twenty settings (four
layouts each of which having five different scenarios). In par-
ticular, the effectiveness of EE-OPR increases by moving
towards the fifth scenario for all layouts when compared to
TTM. In other words, we note a lower increase in cost as the
size of the pick-list increases. Figure 8 shows an increase in
the difference between the mean values of the tour cost in
the scenarios of each layout. Such a result is achieved due to
the EE-OPR ability to minimize the energy, which tends to
increase for larger pick-lists with higher possibility of mass
accumulation. Moreover, we observe a lower variance of the
routing cost in EE-OPR by comparison to TTM, especially
for scenarios 4 and 5 (with higher number of items). Thus,
EE-OPR is less sensitive to variations in pick-list location
and mass. Hence, the results prove that minimizing energy
and time simultaneously can effectively decrease the cost of
a picking tour.

We also notice that there are situations where TTM and our
approach lead to the exact same result. This is logical and it
is explained by the fact that our focus is on the effect of mass
on energy consumption and routing decision making. Thus,
if the mass variation of the items is low or zero, minimizing
the energy consumed amounts to minimizing the distance
covered. On the other hand, if the situation of passing over a
position twice is not present and the direction of the traversal
tour is luckily the same, the advantage given by our approach
is no longer valid.

To better illustrate how our approach overcomes TTM,
an example of an order picking problem of a simple graph
is used (Figure 9). The graph is composed of 20 vertices
of which 4 are required. These required vertices represent
the pick-list vertices and are represented in red circles in the
graphs. The required vertices are 18, 19, 15, and 16 which
have the masses 100, 10, 70, and 20, respectively.

To solve this picking problem, TTM (Figure 9,a) and
EE-OPR (Figure 9,b) are applied. The resulting tours of
each method are plotted in the figure using red arrows. Note

108842 VOLUME 10, 2022



E. Mejri et al.: Energy Efficient Order Picking Routing for a Pick Support Automated Guided Vehicle (Ps-AGV)

FIGURE 8. Comparison of the cost of the resulting routes after applying TTM and EE-OPR approaches. Four different
layouts are used, each including five scenarios.

FIGURE 9. Comparison of the cost of resulting routes of TTM approach and EE-OPR approach.

that the segments constituting the path obtained by both
approaches are exactly the same. In other words, the result-
ing paths of both approaches are similar in terms of dis-
tance traveled and also the shape of the red paths. However,
the application of the approaches differs in the direction

of the trajectory as well as the order of picking the items at
the required positions.

Let vi be the position of vertex v and let vi ∼> vj be the
shortest path between two vertices vi and vj and we assume
that an AGV starts from a position v0, picks the loads at the
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required positions (red circles) then goes back to v0. Thus,
applying EE-OPR leads to the following result:

v0(load = 0 kg) ∼> v16(load = 0+ 20 kg)

∼> v19(load = 20+ 10 kg)

∼> v18(load = 20+ 10+ 100 kg)

∼> v15(load = 20+ 10+ 100+ 70 kg)

∼> v0(load = 200 kg)

Now applying TTM leads to the following result:

v0( load = 0 kg) ∼> v15( load = 0+ 70 kg)

∼> v18(load = 70+ 100 kg)

∼> v19( load = 70+ 100+ 10 kg)

∼> v16(load = 70+ 100+ 10+ 20 kg)

∼> v0(load = 200 kg)

As shown in the results and by contrast to EE-OPR, TTM
drags unnecessary masses longer because of path direction.
Furthermore, EE-OPR allows the vehicle to pass through one
required position without the obligation of picking up the
item(s) on the first pass. For instance, unlike TTM, EE-OPR
passes through vertex 18 without collecting the load (so as
not to drag it). Afterwards, it moves to vertex 19 to collect
its corresponding load and then returns back to vertex 18 to
collect its load. In other words, the items located in vertex
18 are not picked on the first pass but on the second. It is
also observed, in this example, that the path resulting from
EE-OPR is different from that given by TTM (direction and
time of items withdrawal) but with the same length/duration
(shorted path). Moreover, EE-OPR resulting path has the
same energy demand given by ECM (with the lowest energy
consumption). It is important to note that this situation (EE-
OPR selects a path that is both the most energy efficient and
the shortest) is very common, especially when the size of the
pick-list is small.

Consequently, applying EE-OPR leads to a 25% of reduc-
tion in total cost in dollars of the pickup tour by comparison to
TTM. Now, this gain in terms of cost can be more significant
when the shortest path between the vertices v18 and v19 is
worth kilometres (in large area warehouses).

Hence, EE-OPR minimizes energy loss associated with
moving heavy objects. In fact, if possible, it delays the pickup
of a certain item in order to reduce the distance to be covered
with this item and therefore reduces the cumulative amount
of the next load while respecting the travel time constraint.

V. DISCUSSION
Applying our approach led to an average of 18% saving in the
total picking-tour cost. However, the number of pick loca-
tions to visit in a single picking tour is assumed to be less
than 18, respecting the capacity of calculation. This implies
that the number of stops can be up to 18 in a picking tour,
but the quantity of required items in each location can vary
according to orders’ batching. Order batching is a technique
for grouping a set of orders into batches [64]. We keep the

improvement of the limited number of 18 stops in a tour for
future research.

However, this limitation is irrelevant for warehouses of
heavy and bulky items.1 That is, in such warehouses, items
like large consumer electronics, carpets, or any other heavy
items cannot be carried by the picker all the way back to
the depot. Consequently, in these warehouses, the size of the
pick-list is often small making the limitation of our approach
w.r.t. the number of stops in a picking tour irrelevant.

It is important to note here that we assume that a single
vehicle is used in the case study, which can be updated to
accommodate multiple order pickers. We also assume that
there are no obstacles on the travel path, thus enabling unin-
terrupted travel.

Note that the amount of the cost reduction achieved by
our approach depends on many factors, such as the storage
assignment policy, the type and the layout of the warehouse,
the type and the weight of products, the size of the AGV, etc.

It is also important to mention that the routing, storage
strategy, batching, zoning, and order release mode are com-
ponents of the policy level which is highly dependent on the
strategic level. In other words, the strategic level represents
the system characteristics such as command cycle, mech-
anization level, warehouse dimensionality, and information
availability [13].

Therefore, the efficiency of our routing algorithm depends
on these characteristics. On the other hand, the computational
efficiency of our algorithm depends on the locations to be vis-
ited (i.e., whether these locations are close, far or Scattered),
which affects the speed of finding the target state.

Moreover, our approach can be used for different ware-
house layouts with arbitrary starting and ending points of
a tour. It suffices to define a Steiner graph containing the
possible passage segments (arcs and vertices), the starting
point (vs), the ending point (vt ), and the required points (pick-
list). Then the starting state will be (vs, as) and the target state
will be (vt , at ). Such that as and at are ‘empty arrangement’
and ‘full arrangement’, respectively.

On the other hand, given that the definition of the picking
problem in this study offers the possibility of a bidirectional
movement of the AGVs in an aisle, EE-OPR can be suitable
for low and medium throughput DCs. As if necessary, a con-
gestion problem in the aisles may arise. However, a unidi-
rectional movement may be required by simply changing the
graph warehouse representation.

VI. CONCLUSION
Warehouses might represent a real threat to the environment
as they might contribute to the rise of greenhouse gas emis-
sions in supply chains. Consequently, many recent research
works have been established to encourage the deployment of
green and sustainable warehousing.

As typical material handling equipment in modern ware-
houses and distribution centers, the energy consumption of

1PS-AGVs are often applied for heavy and bulky items. However,
PS-AGVs picking is not bound to heavy and bulky goods. PS-AGVs can
also be applied to support pickers in a zoning and batching environment. [5].
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PS-AGVs represents a major part of the warehouse’s total
energywaste. However, current research related to order pick-
ing routing focuses mainly on travel distance and time opti-
mization, while energy aspect is rarely considered. However,
in many situations, energy is as important as time, especially
during a period of low demand. An effective way to reduce
the consumption of AGVs is to improve their operational effi-
ciency and routing. In this study, an eco energetic routing for
an PS-AGV was established. The approach called EE-OPR
allows the robot to start from its depot to collect the items
of orders from different locations in the storage area and to
transport them to a defined position (the depot, packing sta-
tion, or other defined target) while minimizing travel time and
energy consumption simultaneously.We focus specifically on
the effect of the mass transported for the decision-making
of the order picking route to improve the AGV’s energy
efficiency without impacting the operating time. Moreover,
unlike the RR-based methods, widely used in the literature,
which are mainly based on the rectangular configuration
of the warehouse (possible movements in a parallel aisles
warehouse) to create their dynamic program, the EE-OPR
is suitable for any type of warehouse layout. It is based on
the dynamic creation of a state graph taking into account
the energy demands of the vehicles and the weight of the
transported cargo.

The solution to this problem is a path with the minimum
cost that starts from the initial position with zero load and
ends at the final position with all requested loads. First,
an exploration phase is involved. It consists of the creation
of states and transition arcs while passing through the spatial
graph representing the warehouse. These states incorporate
the information of (a) the position of the AGV in the ware-
house (vertex of location) and (b) the mass of loads trans-
ported in each step with details of the items already picked.
Besides, transition arcs are defined according to the possibil-
ity of picking up a neighboring vertex’s item and are added
based on the original graph of the warehouse. These arcs
are weighted by a cost function based on the previous state
and the AGV’s energy consumption model having among the
main factors the mass transported. In parallel, graph search
phase is proceeded for the resolution of the shortest path
problem using the Bellman principle.

Results obtained through different simulations indicate
that EE-OPR always leads to better results compared to the
approach based only on the minimization of travel time with
an average gain of 18%. In the medium and long-term run,
the potential for energy-saving gains can be achieved. Such
gains can be the decrease in the cost of electricity, increasing
the operational time of AGVs, and reducing the cost of main-
tenance or replacement of the battery. The change of storage
strategy as well as batching strategy have, definitely, an effect
on the gain that EE-OPR can provide by comparison to TTM.
This effect can be studied in future research.
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