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Abstract Structural equation modeling involving latent interaction has garnered much attention

from researchers in many disciplines. Interestingly, Becher & Trowler (2001) described academics

as living in a tribe sharing a common set of practices and led by a stable elite. To provide an

overview of psychological and educational studies using the latent moderated structural equations

approach (LMS), we produced a scoping review from three databases (ERIC, PsychInfo, and Érudit)

and selected 78 articles. The goal of this study is to examine the nature and extent of practices re-

garding the use of the LMS method in order to recommend good practices. Our results show that

there are some discrepancies in the way researchers analyze data using LMS.
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Introduction

"Interaction effects are central to theory and practice in

the social sciences" (Marsh, Wen, Nagengast, & Hau, 2012,

p. 437). In fact, objects that interest scientists in these fields

are generally shaped by interrelated variables: "[social] re-

searchers that adopt a complex systems perspective have

argued that, rather than focusing on a single causal rela-

tionship at a time, we need to investigate how the interac-

tion or combination of different factors generates specific

outcomes" (Quintana, 2022). However, the ability to detect

moderation effects is often low, owing to the measurement

error in the observed variables (Aiken &West, 1991; Holm-

beck, 1997; Jose, 2013; Marsh et al., 2012). Therefore, us-

ing latent variablemoderation represents an efficient strat-

egy to increase the chances of detecting interaction effects

(Klein & Moosbrugger, 2000; Little, Bovaird, & Widaman,

2006; Marsh et al., 2012). Moreover, it provides an oppor-

tunity to evaluate the interaction between continuous la-

tent variables, which is not possible with multigroup in-

variance testing (Marsh et al., 2012).

To formally illustrate the concept of latent interaction

in structural equation modeling (SEM), suppose that four

items (X1 to X4) measure the exogenous latent variable

ξ1, two items (X5 and X6) measure the exogenous latent

variable ξ2, four items (X7 toX10) measure the exogenous

latent variable ξ3, and three items (Y1 to Y3) measure the
endogenous latent variable η. Figure 1 graphically illus-
trates this model.

For didactic purposes, we focus on the notation of the

structural model. Mathematically speaking, the relation-

ship between these manifest and latent variables takes the

form

η = α+ γ1ξ1 + γ2ξ2 + γ3ξ3 + γ4ξ1ξ3 + ζ (1)

where α is the intercept of the model, γ are the slopes
(known as factor loadings), η and ξ are the latent vari-
ables, and ζ is the error term. This study focuses on the
interaction ξ1ξ3. Therefore, γ4 is of great interest because
we aim to evaluate its significance, among other things. It

is also interesting to rewrite (1) after removing α, as fol-
lows:

η = (γ1 + γ4ξ3) ξ1 + γ2ξ2 + γ3ξ3 + ζ (2)

to understand that (γ1 + γ4ξ3) is clearly a "moderator
function" (Klein & Moosbrugger, 2000).

Interaction in Structural Equation Modeling

There are two general steps to assessing the interactions

in SEM. First, we need to estimate a SEM model without

interaction (called Model 0). The second step requires the
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Figure 1 Example of a structural model of a SEM

estimation of an SEM model with latent interaction (called

Model 1). To compute the added value of the interaction,

we must compare the information from these two mod-

els. Given that the numerical integration algorithm en-

sures that standard errors are robust but prevents the cal-

culation of fit indices (Kelava et al., 2011; Wang & Wang,

2012), the log-likelihood ratio test can be used to assess the

fit of the SEM model with the latent interaction (Klein &

Moosbrugger, 2000; Muthén, 2012). Mathematically,

D = −2
(
`(Model 0) − `(Model 1)

)
(3)

where ` stands for the log-likelihood, Model 0 is the more
restricted model. This test is asymptotically distributed as

χ2
and the degrees of freedom are calculated by subtract-

ing the number of free parameters in Model 0 from the

number of free parameters in Model 1. If D is significant,
it can be concluded that Model 0 results in a significant loss

of fit compared to Model 1.

Additionally, the variance explained by the interaction,

which also represents the effect size, is very useful. Ac-

cording to Harring, Weiss, and Li (2015): "(. . . ) effect size

associated with the interaction effect represents the addi-

tional variance that the interaction explains in η above and
beyond that which can be explained by the first-order ef-

fects." FollowingMaslowsky, Jager, and Hemken (2015), we

can useR2
to assess the additional variance from the inter-

action:

∆R2 = R2
Model1 −R2

Model0 (4)

where R2
for η in (1) and (2) can be defined as

[V ar (η) − V ar (ζ)] /V ar (η).
Finally, one can plot the interaction for interpretation

using different strategies. Examples are the pick-a-point

strategy (Rogosa, 1980) and Johnson and Neyman (1936)

plot technique. For more information about these tech-

niques, see Girard, Béland, Lemoyne, and Caron (2020).

Classification of Methods to Test Interaction
Several methods have been developed to compute interac-

tion effects in structural equation models (Kenny & Judd,

1984; Klein & Moosbrugger, 2000; Klein & Muthén, 2007;

Little et al., 2006; Marsh, Wen, & Hau, 2004; Marsh et al.,

2007; Moosbrugger, Schermelleh-Engel, Kelava, & Klein,

2009) and, over the years, have become increasingly acces-

sible and easier to use by researchers in the social science

field (Girard & Béland, 2017; Girard et al., 2020; Lorah &

Wong, 2018; Maslowsky et al., 2015). As depicted in Figure

2, these methods can be categorized into two approaches:

product indicator and distribution analytic (Marsh et al.,
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Figure 2 Overview of latent interaction methods in SEM and advantages of the LMS method.

2012).

In the product indicator approaches, the interaction

variable is a latent variable with indicators (manifest vari-

ables). These indicators are created by multiplying the

indicators of the latent variables that interact together.

Historically, the constrained approach was the most in-

fluential and was originally proposed by Kenny and Judd

(1984). However, this approach involves many restric-

tive assumptions that can lead to potential complications

(Kline, 2016). Consequently, other product indicator ap-

proaches have been developed: two-stage least squares

(2SLS; Bollen, 1996), the generalized appended product in-

dicator method (GAPI; Wall & Amemiya, 2001), orthogonal-

izing (Little et al., 2006), and partially constrained and un-

constrained (Marsh et al., 2004; Marsh et al., 2012). Among

thesemethods, the unconstrained approach presentsmany

advantages for applied researchers (Marsh et al., 2004,

2006): ease of implementation, elimination of complicated

constraints, efficacy with non-normal data, and the possi-

bility of using different statistical software (e.g., AMOS and

Mplus). Nonetheless, when using this approach, many pre-

cautions must be taken. First, the researcher must cre-

ate product indicators among several options: all possi-

ble products, matched-pair products, or one-pair product

(Marsh et al., 2004, 2006; Marsh et al., 2007; Y. Wu, Wen,

Marsh, & Hau, 2013). Second, prior to creating product

indicators, the double-mean centering strategy needs to

be applied to avoid using the mean structure (Lin, Wen,

Marsh, & Lin, 2010). Third, to obtain appropriate standard-

ized estimates for the significant moderating effects, an ad-

ditional mathematical transformation is required (Marsh

et al., 2012; Wen, Hau, & Marsh, 2008; Wen, Marsh, & Hau,

2010). Finally, only the sign of the interaction can be used

to interpret its meaning (Marsh et al., 2012). Although the

Aiken and West (1991) procedure is often used to decom-

pose the interaction effect in regression, it is not appropri-

ate for product indicator approaches because it is based

on the estimation of predicted effects for specific values of

the independent and moderating variables (Aiken & West,

1991). However, with the product indicator approaches,

the values of the independent variable and the moderator

do not define the "true" value of the interaction because it

is a different latent variable formed by its own indicators.

Consequently, the only way to interpret the interaction is

to interpret the sign (Marsh et al., 2012).

Distribution analytic approaches have been developed

to eliminate the necessity of forming product indicators

(Klein &Moosbrugger, 2000; Klein &Muthén, 2007). There-

fore, in these approaches, the interaction variable has no

indicators; it represents the product of two latent vari-

ables interacting together. Moreover, unlike previous ap-

proaches, they do not require linear constraints, and they

model the implied non-normality of the latent product

term (Kelava et al., 2011; Marsh et al., 2012). More pre-

cisely, the latent moderated structural equations (LMS)

method analyzes raw data using “an iterative ML estima-

tion procedure tailored for the type of non-normality in-

duced by interaction effects” (Klein & Moosbrugger, 2000,
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p. 473) and calculates the estimates using an expectation-

maximization (EM) algorithm adapted to the mixture den-

sity (Klein & Moosbrugger, 2000). Quasi-maximum likeli-

hood (QML) estimation represents a simpler version of the

LMSmethod that provides similar results (Klein &Muthén,

2007). However, even though some authors claim that the

QML method is implemented in Mplus (Kline, 2016; Lorah

& Wong, 2018), Mplus product support confirmed that it is

the LMS method that is used by this software (mm19).
Tutorials to apply the LMSmethod usingMplus are cur-

rently available in English (Maslowsky et al., 2015) and

French (Gucciardi, Stamatis, & Ntoumanis, 2017; Girard et

al., 2020). For users familiar with R, the "nlsem" package

allows for the estimation of latent interaction terms us-

ing both approaches (LMS and QML; Umbach, Naumann,

Brandt, & Kelava, 2017). However, its current implementa-

tion requires certain technical aspects of the user interface

that are not addressed here. Instead, this study focused on

the application of the LMS method given its many advan-

tages (e.g., availability in commercial software, no loss of

information, and the possibility of interpreting the inter-

action effect).

Aim of This Study

SEMmodels are used in a broad range of disciplines (Kline,

2016), but we can hypothesize that the methods of doing

things can differ among groups of researchers from differ-

ent fields. For this reason, (bt01) explained that academics
live in a type of tribe, where they share common sets of

practices and comprise a stable elite. These communities

are characterized by their own epistemic cultures (Knorr-

Cetina, 1999), which is probably true when people analyze

their data.

How do people in social science, especially those in psy-

chology and education, analyze their data? Fundamen-

tally, humans are very bad Homo statisticus (Kahneman,

2011). Further, it is well known that many researchers

in social science are not well trained in statistics and psy-

chometric, which is a common ground for errors (Sijtsma,

2015). Unsurprisingly, courses in quantitative methods are

not very popular among students of these disciplines (Cui,

Zhang, Guan, Zhao, & Si, 2019).

Is this difficult relationship between statistics and

psychometrics reflected by bad practices when the LMS

method is used by social scientists? Unfortunately, little is

known about how people work with this model in specific

social science disciplines, such as psychology and educa-

tion.

In this paper, we specifically study the use of the LMS

method, which has many advantages such as being avail-

able in commercial software (e.g., Mplus), interaction vari-

able without indicators (no loss of information), and the

possibility of interpretation of the interaction with the

Johnson–Neyman method or pick-a-point strategy. To our

knowledge, this is the first study to produce a scoping re-

view of latent interactions from a disciplinary point of

view. Our goal is to examine the nature and extent of prac-

tices regarding the use of the LMS method in social sci-

ence to formulate recommendations on good practices in

the light of our results.

Method

Given the possibility of applying the LMS method using

Mplus and its potential contribution to evaluating interac-

tions between latent variables, a scoping review allowed

the identification of studies in social science by applying

it, considering its availability. We followed Arksey and

O’Malley’s (2005) method, which consists of five steps: 1)

defining a research question, 2) identifying relevant stud-

ies, 3) selecting studies, 4) extracting data, and 5) synthe-

sizing results.

Defining a Research Question
To examine the nature and extent of practices regarding

the use of the LMS method in social science in order to rec-

ommend good practices, three exploratory research ques-

tions oriented this scoping review:

1. Who in the social science field uses the LMS method to

analyze latent interactions in their scientific studies?

2. What are the aims of these scientific studies?

3. How do researchers report their application of the LMS

method?

Identifying Relevant Studies
To develop an overview of social science studies using the

LMS method to evaluate latent interaction, we screened

three databases (ERIC, PsychInfo, and Érudit) in January

2021 for articles written between January 1st, 2006 and

December 31st, 2020. We selected these databases be-

cause ERIC is the largest online library of educational re-

search, PsychInfo is the largest library of psychological re-

search, and Érudit is the largest library of publications in

the French language in the fields of humanities, social sci-

ences, and letters. The keywords used for the research

were latent, interaction, moderated, structural, OR equa-

tion.

Selecting Studies
The inclusion criteria were as follows: 1) studies in the so-

cial sciences (mainly psychology and education), 2) analyz-

ing latent variable interactionwith the LMSmethod, and 3)

written in English or French. The exclusion criteria were

as follows: 1) studies outside social science fields and/or 2)

analyzing latent variable interaction without using LMS.
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Figure 3 Flow chart

This identification strategy enabled us to locate 673 ref-

erences, including 425 from PsycINFO, 184 from ERIC, and

64 from Érudit, including duplicates. The flowchart in Fig-

ure 3 shows the screening process used to identify eligible

studies.

The selected articles were transferred to EndNote to

identify duplicates. Once duplicates were filtered out, one

member of the research team read the titles and abstracts

to keep the most relevant articles based on our exclusion

criteria. In the case of uncertainty about relevance, the

full texts were screened for additional information. All se-

lected and rejected articles were also analyzed by a second

member of the research team. In case of uncertainty or

disagreement, a third member of the research team was

consulted. One member of the research team then read

the articles to retain the most relevant articles. After ap-

plying the inclusion and exclusion criteria, 78 articles were

retained.

Extracting Data
Relevant information for each article was collected and

transcribed into an extraction grid available on the jour-

nal’s web site to document the following aspects: 1) authors

and their university, 2) sample size for the analysis, 3) de-

pendent variable of the SEM model, 4) variables involved

in interaction, 5) variance explained by the interaction or

effect size, 6) statistical software, 7) fit of the SEMmodel, 8)

fit of the latent interaction, 9) interpretation and visualiza-

tion of the latent interaction, 10) general aim of the study,

11) results and elements of the interaction, and 12) infor-

mation about missing data.

Synthesizing Results
Data from the extraction grid were synthesized according

to each study question. To identify "who" used the LMS

method to analyze latent variable interaction in social sci-

ence, we used the first author’s university, department,

and country. Descriptive statistics were used to portray

the people behind the bodies of the articles under inves-
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Figure 4 Number of articles using LMS published by year among our body of texts

Table 1 Number of authors by article

Number of authors 1 2 3 4 5 6 7 8 12

Frequency 3 14 22 17 10 6 3 2 1

tigation. To identify "what" the topic of these SEM interac-

tionswas, we used the study samples andmorewhen avail-

able, such as the dependent variable in the SEM model,

variables involved in the interaction, aim of the study, and

results from the interaction. Finally, to explore "how" re-

searchers apply the LMS method and associate analysis

(Gucciardi et al., 2017; Girard et al., 2020), we used ex-

plained variance or effect size, significance of the inter-

action, statistical software, fit of the SEM model without

latent interaction, interpretation of the latent interaction,

and missing data treatment.

Results

Who?
Figure 4 shows the number of articles using LMS that have

been published each year since 2006.

We observe an upward trend, especially after 2013.

However, the number of articles involving latent variable

interactions (n = 78) has been limited since the publica-
tion of the LMSmethod (Klein &Moosbrugger, 2000). Next,

we extracted the number of authors per article.

Table 1 shows that 81% of the articles had between two

and five authors. In addition, the three largest producers

of latent interaction articles among our body of text were

as follows: 33% (26/78) of the first authors were affiliated

with an American university, 22% (17/78) with a German

university, and 9% (7/78) with a British university. As ex-

pected, most authors were affiliated with a department of

psychology or education, but some authors were affiliated

with fields such as agriculture and rural policy, business

and marketing, physiotherapy and exercise science, and

public health.

What?
Among all the studies, 81% (63/78) were classified in the

fields of psychology and education. We also found a few ar-

ticles in other fields, such as health, psychiatry and geron-

tology (10/78), criminology (2/78), sports (2/78), and mar-

keting (1/78). Among these articles, we were able to iden-

tify some common research objects. In the following, we

present the three most popular subjects based on the de-

pendent variable of the SEM model.

First, 13 studies used at least one dependent vari-

able related to constructs such as anxiety, depression, or

burnout. For example, Van Zalk and Tillfors (2017) exam-

ined whether corumination with online friends buffered

the link between social anxiety and depressive symptoms

over time. They considered depressive symptoms (η in
equation 1) influenced by social anxiety (ξ in equation 1)
and co-rumination (ξ in equation 1) and the interaction be-
tween these latent variables. (L. Wu, Zhang, Cheng, & Hu,

2018) predicted social anxiety using the interaction trait

between resilience and bullying victimization in their SEM

model. In the context of education, Hoferichter, Raufelder,

and Eid (2015) predicted test anxiety using many interac-

tions, such as representations of student–student relation-

ships and associations of achievement drive.

Another group of nine articles attempted to predict ed-

ucational achievement using interaction. Ning and Down-
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Table 2 Descriptive statistics about the sample of 78 articles

Min 1st Quantile Median Mean 3rd Quantile Max

155 334 583 4,761 1420 257,273

Figure 5 Boxplot of reported sample sizes (without the study with n = 257, 273)

ing (2012) predicted cumulative GPA using an interaction

between learning experience and motivation and an inter-

action between learning experience and self-regulation. In

one of their analyses, Trautwein et al. (2012) calculated an

interaction between expectancy and attainment to predict

Math and English achievement.

A cluster of seven articles was related to problematic

substance use (e.g., alcohol and cannabis) and eating dis-

orders. For example, Blanchard, Stevens, Cann, and Lit-

tlefield (2019) attempted to predict alcohol and cannabis

consumption and other related problems with an interac-

tion between reappraisal and protective behavioral strate-

gies. In addition, Maslowsky and Schulenberg (2013) stud-

ied the use of cigarettes, alcohol (including binge drinking),

and marijuana using an interaction term between conduct

problems and depressive symptoms. As a last example,

Martins et al. (2018) studied alcohol use and heavy drink-

ing using a SEMmodel with an interaction between execu-

tive functions and drinking motives.

How?
Table 2 and Figure 5 show the descriptive statistics of the

sample sizes reported in all the articles. The smallest sam-

ple isN = 155, and the largest isN = 257, 273, which ex-
plains the large difference between the median and mean.

Score reliability has generally been reported using

Cronbach’s alpha. Few authors have used McDonald’s

omega (e.g., Duan & Mu, 2018; Huard Pelletier, Girard, &

Lemoyne, 2020; Putwain, Wood, & Pekrun, 2020; Sandrin

et al., 2019), but none of them specified the nature of this

coefficient explicitly (e.g., computed from a EFA or CFA; use

of total omega or hierarchical omega; value of fit indices).

When estimating the SEM model without interaction,

more than 95% of the articles also mention fit indices (e.g.,

χ2
, CFI, TLI, RMSEA) in their articles. The article that did

not report this information only focused on latent interac-

tion (see Hammond, Sibley, & Overall, 2014).

As stated in the Introduction, when estimating the SEM

model without interaction, the log-likelihood ratio test can

be used to compare the relative fit of the structural model

excluding latent interaction and the structural model in-

cluding latent interactions. Out of our 78 articles, 53 clearly

reported using this test to assess the fit of the model with

the interaction, whereas the others did not report how they

managed the absence of fit indices to evaluate the quality

of the SEMmodel with the latent interaction about this test.

The ∆R2
was reported in 31% of articles (24/78). For

example, Bardach, Lüftenegger, Oczlon, Spiel, and Schober

(2019) explained an additional 2.3% of the variance by la-

tent interaction. This additional percentage of variance

was between 1% and 4% in Diestel and Schmidt (2010), 4%

in (Girard, St-Amand, & Chouinard, 2019), between 2% and

5% in Gucciardi et al. (2017), between 3% and 5% in Racine

and Martin (2016), and 11% in Barbaranelli et al. (2018).

From our body of text, 82% (64/78) offered a plot or

table to help interpret the interaction. Here, only a few

articles interpreted significant interactions with the John-

son–Neyman plots (see Huard Pelletier et al., 2020, for a

scarce example). Most studies (58/78) used the pick-a-point

strategy (Rogosa, 1980).

Finally, 60% (47/78) of our studies utilized full infor-

mationmaximum likelihood (FIML), an estimationmethod
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that can handle missing data. However, not all of these

studies formally discuss the treatment of missing data.

Among all articles, 26% (20/78) did not discuss (or remain

unclear) the treatment of missing data. According to Cham,

Reshetnyak, Rosenfeld, and Breitbart (2017), FIML works

well when the indicators aremissing completely at random

(MCAR) or missing at random (MAR) and are normally dis-

tributed. Only a few authors have investigated the type

of missing data. For example, Mohammad, Shapiro, Wain-

wright, and Carter (2015) used the Little test (Little, 1988).

In addition, two studies reported using listwise deletion,

three used multiple imputation, two used the EM algo-

rithm, one used mean imputation, and three had no miss-

ing data.

Discussion and conclusion

This article is a scoping review of studies focusing on

psychological and educational variables using the LMS

method to analyze latent interaction. After extracting arti-

cles from three social sciences databases (ERIC, PsychInfo,

and Érudit), 78 articles were selected. The body of the text

was analyzed to answer three questions: Who used the

LMS method to analyze their data? What research ques-

tions are addressed using the LMS method? How do re-

searchers apply and present the LMS method in their arti-

cles?

Despite the interest of scientists in education and psy-

chology in using LMS, the number of articles remains lim-

ited, according to our scoping review. In line with the first

two research questions, the results indicated that 64% of

the first authors of the analyzed articles were related to

American, German, and English universities, although all

were published in English.

In addition to the three groups of articles discussed in

the results, a wide variety of subjects can be analyzed us-

ing the LMS: worry about crime (Jackson, 2015), sport and

exercise behaviors (Huard Pelletier et al., 2020), creativity

(Silvia, Nusbaum, Berg, Martin, & O’Connor, 2009), sexism

(Hammond et al., 2014), right-wing authoritarism (Dallago,

Mirisola, & Roccato, 2012), and intention to drop out of uni-

versity (Bardach et al., 2019), etc. It is not surprising that

fields such as psychiatry, criminology, sports, and market-

ing have also used this method to analyze their data. This

diversity, even though not high in terms of the number of

articles, points to the versatility of the LMS method and

its relevance to a wide range of researchers. Therefore,

sharing best practices should be of interest in an increas-

ing number of studies in the near future.

In line with our third research question, we observed

some discrepancy in the way researchers analyze data us-

ing LMS in our 78 analyzed articles. Some have good prac-

tices, but others seem to omit important information. To

help researchers use the LMS method correctly, we pro-

pose a list of 10 recommended practices (see Table 3).

First, preparation of the data under investigation is es-

sential before analysis. Thus, the researcher needs to un-

derstand these data, and the distribution of variables must

be investigated. As Li et al. (1998) reminds us, "test statis-

tics such as standard errors and the chi-square goodness-

of-fit statistic for maximum likelihood estimation method

are not asymptotically correct in the presence of nonnor-

mality, and should be taken as rough guidelines" (p. 14).

In addition, it is important to investigate the score reliabil-

ity. If McDonald’s omega is used, it is important to explain

whether this coefficient is at least based on EFA or CFA and

the category of omega (Revelle & Condon, 2019).

If there are missing data, the researcher needs to study

whether they are MCAR, MAR, or not missing at random.

This step is important to ensure the effectiveness of data

treatment. Cham et al. (2017) show that FIML estimation

can handle missing data for LMS to produce unbiased pa-

rameter estimates. However, this result holds only if the

data are MCAR or MAR, which is also the case for multiple

imputation (van Buuren, 2012).

The next step involves estimating the SEM model with-

out interaction. Our body of texts shows that researchers

used fit indices such as χ2
, RMSEA, SRMR, CFI, and TLI as a

type of "quality measure". However, people should not be

blinded by their values: fit indices are imperfect (Peugh &

Feldon, 2020). According to Preacher (2006, p. 254):

The good fit of a hypothesized model to ob-

served data, although desirable, can result

from the model’s inherent ability to predict

data patterns and may have little to do with

its value as a scientific tool. Cherished mod-

els may have to be abandoned or replaced if

their past successes can be ascribed more to

[fitting propensity, FP] than to any insight they

lend into the process that actually generated

the data. Adopting a model selection perspec-

tive and explicitly considering FP can help re-

searchers avoid these problems.

After that, the estimated SEM model with the interac-

tion term follows and all the information to better under-

stand the marginal benefit of the significant interaction is

reported. The log-likelihood ratio test provides informa-

tion on the effects of the model with interactions. There-

fore, without this information, we cannot assess whether

the interaction improves the model, which is essential for

interpreting the results.

Finally, to improve the interpretation of the interaction

effect, a recent methodological exemplification (Girard et

al., 2020) suggested that the Johnson–Neyman plot had an

important benefit compared to the pick-a-point strategy,
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Table 3 Ten "must-do’s" in latent variable interaction using LMS

Preparation of the data
1. "Cleaning" and standardization of the data if necessary.

Understanding the data
2. Assessing and reporting information concisely about assumptions behind the SEM model (e.g., computation of

the skewness and kurtosis of the variables).

3. Arguing the psychometric properties of the scales.

4. Assessment of the missing data to see if they are MCAR, MAR, or MNAR.

Estimation of the SEM model without interaction (model 0)
5. Estimation and interpretation of the parameters for model 0.

6. Interpretation of the fit indices (χ2
,CFI, TLI, SRMR, RMSEA) and explained varianceR2

.

Estimation of the SEM model with interaction (model 1)
7. Estimation and interpretation of the parameters for model 1.

8. Computation and interpretation of the log-likelihood ratio test.

9. Computation and interpretation of∆R2
to assess the percentage of variance explained by the latent interaction.

10. Plot and interpret the interaction using the pick-a-point strategy or the Johnson-Neyman plot technique.

showing a confidence interval area for the significant in-

teraction. However, as seen in the present scoping review,

the pick-a-point strategy remains the most commonly used

strategy in scientific literature.

Limits
This scoping review has some limitations. First, it focused

mainly on psychology and education. Other disciplines,

such as sociology, economics, and political science, must

be surveyed more thoroughly using other databases. The

second limitation concerns the nature of the criteria under

investigation. Other choices could have included different

types of information, such as the measurement of the scale

under investigation.

Take away message
It is important to study how people in specific disciplines

analyze data to understand their strengths and weak-

nesses. For example, we have observed that articles in

psychology and education need to clarify the information

about data preparation before the analyses, as in the case

of the treatment of missing data and the reporting of the

size effect. However, information regarding the estimation

of the SEM model without interaction is generally satisfac-

tory.

This study is only the first step toward enhancing our

understanding of LMS practices from a disciplinary point

of view. The next step was to produce a systematic review

involving other disciplines. In addition, everyone knows

that English is the lingua franca of science. All 78 arti-

cles analyzed in this study were in English. Although we

only found two articles using latent interaction in French

(not used in this article because they were not relevant

for our purpose), it would be interesting to search for ar-

ticles about latent interaction in other languages because

many professionals and students are more inclined to read

in their own language to understand complex topics such

as LMS. As Oreskes (2019, p. 4) says, "In diversity there is

epistemic strength!"
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Lätsch, A. (2017). Do perceived helpfulness and competition in classroom contexts moderate or mediate the association

between perceived stress and socio-emotional strengths and difficulties from early to middle adolescence? Learning
and Individual Differences, 58, 31–40. doi:10.1016/j.lindif.2017.07.006
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