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Tableau 6: Résultats avec la transformation des données par ACP



Figure 21: Variance des 14 composantes principales

Figure 22: Variance cumulée des composantes principales







Model Validation set
RMSE R2

SVM 0.011 0.83
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Abstract 

Pipelines failure often caused by corrosion may result in 
safety, environmental and economic issues. In this study, an 
unsupervised neural network, Self-Organizing Maps (SOM), 
is applied to create clusters representing the corrosion impact 
assessed with ultrasound periodic inspections. Based on this 
work, it is expected that the new insight into thickness data 
representation using unsupervised neural network will 
facilitate planning of corrosion mitigation activities through 
risk-based inspections of mining slurry pipelines. As a result, 
SOM led to the reduction of the variables in two-dimensional 
space nodes. Hierarchical ascending classification (HAC) was 
then used to classify these nodes regrouping thickness loss 
measurements. The proposed method by combining both SOM 
and HAC succeeded in detecting the extent of corrosion in a 
mining pipeline. 

Introduction 
Globally and domestically the long-term sustainability and 
viability of both the mining industry and its related 
communities are of the utmost importance. Improving 
environmental performance and mitigating environmental 
impacts of mining are critical to ensure the social health and 
welfare of associated communities. In regard to their safety, 
efficiency and low cost, pipelines are widely used in 
transporting large quantities of oil and gas, minerals or oil 
sands slurry over long distances (Okonkwo and Adel 2014). 
As such, pipelines are critical assets of our civil 
infrastructure. Pipelines may suffer from different types of 
defects such as corrosion, fatigue cracks, stress corrosion 
cracking (SCC), bacterial corrosion, slurry erosion-
corrosion, etc. (Raheem 2020). These defects, if not properly 
managed, may result in the asset failures including leak or 
rupture, which could lead to environmental hazards and very 
expensive downtime.  

The overall annual corrosion cost (direct and indirect) in 
Canada was estimated to be approximately $46.4 billion in 
2003 (Lou and al. 2003) which accounts for about 2.5% of 
the GDP. Furthermore, the impact study published by NACE 
International in 2016 estimated the global cost of corrosion 
to be $2.5 trillion, or 3.4% of the GDP by country (Koch and 
al. 2006). Most important was that it was demonstrated that 

15 to 35% of the cost of corrosion could be saved using 
currently available corrosion control technologies and 
practices.  
Corrosion is a very complex phenomenon based on the 
degradation of a material or its properties due to its reaction 
with the environment (Ahmad 2006). This degradation 
involves multiple factors (Chico and al. 2017), particles (Yin 
and al. 2020) and variables. It is a general understanding that 
facility piping should be inspected for in-service damage 
such as corrosion. Estimation of pipeline corrosion is 
fundamental to the analysis of pipeline reliability (Ossai 
2013). To do so, a methodology that compromises the 
American Petroleum Institute (API) Piping Inspection Code 
and the National Association of Corrosion Engineers 
(NACE) Direct Assessment Process is applied since 2005 
(Kowalski 2012). The corrosion of pipelines can be 
described as a systematic degradation of the pipeline wall 
due to the actions of operating parameters on the pipeline 
material (Ossai 2013). Most of the existing methods employ 
non-destructive evaluation techniques such as ultrasound 
testing (UT) waves to detect wall thickness loss and thus to 
predict the remaining asset life. For effective monitoring of 
pipeline reliability and remaining life prediction therefore, 
corrosion risk assessment is necessary. The advancement of 
technology such as the use of new data collection tools has 
allowed researchers to develop many methods to better 
understand the behavior of the collected data. In the field of 
corrosion, many methods have been used in recent years 
either to predict the corrosion rate (Nikoo and al. 2017, 
Cristos and al. 2021), or to cluster data (Hassan and al. 2021) 
in order to detect corrosion (loss of thickness in a pipeline 
for example).  Roy and al. (2022) use the Gradient Boosting 
Regressor to predict corrosion resistance in multi-principal 
element alloys. 

Among the machine learning and deep learning methods, 
depending on the available data, a supervised or 
unsupervised learning (Cristos and al. 2021) can be done. In 
the literature, these two methods have been used to model 
corrosion (Taffese and Sistonen 2016). Cristos and al. 
(2021) develop various models for predicting galvanized 
coated steel corrosion damage of metal structures exposed to 
weathering. They use Multivariate Adaptive Regression 



 

Splines (MARS) to complete data-processing and Self-
Organising Maps (SOM) (Kohonen 2013) including various 
layers (supersom) of both supervised and unsupervised 
learning to define the first-year corrosion loss of galvanized 
steel. A variant of SOM called Self-Organising Feature Map 
(SOFM) has been successfully used by Mohamed and al. 
(2015) as feature visualization tool for the purpose of 
selecting the most appropriate features produced by 
Magnetic Flux Leakage (MFL) in defect depth estimation of 
oil and gas pipelines. Later, Nikoo (2017) used SOFM to 
predict the corrosion current density in reinforced concrete. 
To prioritize inspection according to the permissible risk 
level involves the understanding of the consequences of 
failure of a component on a system and then predict the mean 
time for failure with numerical tools. Hatami and al (2016) 
consider temperature CO2 partial pressure, flow rate, and pH 
as inputs to study corrosion for oil pipelines using Support 
Vector Regression (SVR). Lunchun (2020) use machine 
learning method to simulate the marine atmospheric 
corrosion behavior of low-alloy steels. Abbas and al. (2018) 
applied the neural network method to the pipeline corrosion 
prediction. The prediction results were within the 95% 
confidence range, with the accuracy of ±3. Recently, Peng 
and al. (2020) proposed a new hybrid intelligent algorithm 
to predict the corrosion rate of the multiphase flow pipeline. 
The proposed model combines support vector regression 
(SVR), principal component analysis (PCA), and chaos 
particle swarm optimization (CPSO). Thus, PCA is utilized 
to reduce the data dimension and CPSO to optimize the 
hyperfine parameters in SVR.   

While recent corrosion studies focus on the prediction of 
the corrosion rate (thickness loss/year) in the presence of 
various operating conditions, the primary objective of this 
work is to combine SOM with Hierarchical Ascending 
Classification (HAC) to better visualize the corrosion impact 
assessed with ultrasound periodic inspections. This to render 
UT a more efficient cost-effective approach to corrosion risk 
assessment. In fact, the present study focuses on a single 
variable (pipeline thickness) which is measured on 125 
points of the pipeline representing sub-variables. SOM is 
used to aggregate the data obtained from the periodic 
nondestructive evaluation (NDE) of the pipeline, reduce the 
dimensionality to be able to represent these data on a space 
of dimension 2. Then, the unsupervised learning method 
HAC is used to create clusters at the nodes defined in the 
SOM. These nodes group the original data (rows 1-24 of the 
pipeline for each year) which are then grouped into clusters 
representing the corrosion level.  
 
 
 
 
 

Materials and Methods   

Data  
Data for this study were obtained from Agnico Eagle Mine 
Goldex. These are thickness measurements of a pipeline that 
is used to transport residue (pulp) from the concentrator to 
the Manitou Residue Park site owned by the MERN 
(Ministère de l’Énergie et des Ressources Naturelles). The 
pipeline is 23 km in total (14 km steel and 9 km HDPE). A 
yearly excavated 3m section of the pipeline has been used to 
assess the residual wall thickness by UT analysis since 2016. 
The measurements were made using an ultrasonic thickness 
gauge MMX-6 DL (Dakota Ultrasonics, USA). The gauge 
was primarily calibrated using a standard block at different 
thicknesses. To make the thickness measurements, the 
circumference of the pipeline section was subdivided into 24 
equidistant markers from which lines were drawn along the 
length of the pipeline. Marker points separated by 1 inch 
were marked along the 24 lines. Overall, 125 markers were 
marked on each line, ranging from 1 (start) to 125 (end) for 
a total of 3000 markers (125 x 24) on the pipeline surface for 
thickness measurements. Points 1 to 125 represent the 
variables and lines 1 to 24 are the observations. Indeed, all 
125 variables are thickness measurements. This work deals 
with the data collected from 2016 to 2019. 

Data Analysis  
Figure 1 shows the minimum thickness values measured for 
the different lines on the inspected pipeline. The dimensional 
control of the wall thickness is +15% to -12.5% of the 
nominal thickness, which is comprised between 7.3 and 5.6 
mm. The average nominal thickness is 6.25 mm. The 
minimum thickness value, which is the smallest of the 125 
values collected for a given line, is important for analyzing 
the severity of corrosion. Indeed, short-term and long-term 
corrosion rates are calculated between previous and actual 
inspections in accordance with API 570. Thus, the minimal 
value is used to assess the time to leak for a given pipeline. 
Although, all lines except L4, L5, L9, L10, L11 have 
minimum thickness values below the allowed limit (5.6 
mm), lines 18, 19 and 20 are more critical with minimum 
thickness values less than or equal to 4.4 mm. Hence, it will 
be expected for these lines to exhibit a short time to leak 
since there is a widely held belief that process is a simple 
one, where a pipeline corrodes to the point at which it can no 
longer withstand the applied internal and external forces, 
resulting in a main break. However, research has shown that 
the failure process is more complex than expected.  



 

 
Figure 1: Minimal thickness values distribution 

Figure 2 represents the whisker box of the pipeline thickness 
measurements in 2019. To study the distribution of thickness 
values on each line, the database is transposed to have rows 
(1 to 24) as columns and points 1 to 125 as rows 
(observations). Some lines will be chosen according to their 
minimum and average value to study their distribution. 
These are lines L4, L6, L15, L17, L19 and L20. Lines L4 
and L6 have average thicknesses equal to 5.9 mm and 
minimum thicknesses of 5.4 mm. The average thickness of 
lines 15 and 17 are around 5.7 mm and the minimum 
thicknesses are 4.8 mm. While the average thickness of lines 
19 and 20 are less than 5.6 mm and respectively equal to 5.5 
mm and 5.4 mm, the minimum thicknesses are less than or 
equal to 4.4 mm. Lines 4 and 6 have 50% of their value 
between 5.8 and 5.9 mm. The loss of the thickness is almost 
non-existent. Line 4 has 75% of its values above 5.9 mm 
(value above the minimum allowed). Similarly, line 6 has 
the same proportion of values above 5.8 mm. While, line 20 
has 50% of its values of thickness between 5.2 and 5.6 mm. 
Also, 75% of its values are less than or equal to the minimum 
allowed value indicating a high corrosion at this line. Line 
19 is somewhat identical to line 20, with 50% of the values 
between 5.4 and 5.6 mm. The thickness at lines 15 and 16 
remains normal with respectively 75% of the values between 
5.6 and 5.9 mm. 

After performing descriptive analyses of the pipeline data, 
machine learning models will be used to better understand 
the data and extract useful information. One of the 
unsupervised learning methods will be used along with other 
data mining methods. These are SOM and HAC. SOM is a 
neural method used to represent high-dimensional data into 
low-dimensional data. It is a powerful tool for data 
visualization and summarization. Like Principal Component 
Analysis (PCA), SOM allows for dimensionality reduction. 
It produces a mapping from the input space X to the reduced 
space Y (most common is a 2D network, creating Y a 2-
dimensional space). 
Pipelines fail due to factors that are operationally, 
structurally and environmentally induced. The operational 

factors are associated with the components of the fluid 
flowing through while the environmental factors deal with 
the electrochemical and mechanical interactions of the 
pipeline material and the immediate surroundings. 

 
Figure 2: Box plot thickness in 2019  

Figure 3 highlights the correlations that could be made 
between the annual average values of the pipeline operating 
conditions and the thickness average values of lines L2, L10, 
L20 and L16. A strong negative correlation was noted 
between parameters such as calculated residual TPH, 
pressure at Km0 and temperature at km 0 and thickness 
values at line 2. Similarly, the thickness at line 10 is 
correlated with Sag tonnage and temperature at km 0. 
Residue flow, solid residue percentage and calculated 
residue TPH are also negatively correlated with the 
thickness at line 16. However, the thickness at line 20 is 
positively correlated with the flotation pulp temperature. 
Although the observed correlations are indicative of the 
influence of operating conditions on the corrosion rate, the 
nature of the computed data (yearly averages) hinders the 
development of a corrosion predictive model.   

 
Figure 3: Correlation between process variables and pipe 
thicknesses 



 

In this study, SOM will be used to reduce the dimensionality 
of the data and make an easier representation by taking into 
account the different dimensions. Thus, with the graphical 
representation, it will be possible to highlight the similarities 
in the data based on the similar thickness measurements. 
Then, the extracted code vectors will allow a classification 
with HAC.  

SOM Algorithm  
The SOM (Kohonen, 2013) is an unsupervised learning 
method based on the idea of competitive learning. It is 
mostly used as a tool for visualization by mapping a high-
dimensional data onto a regular low-dimensional 
representation. The SOM algorithm is as follows (figure 5)  

a) Initialize the weights ࢐࢏࢝ randomly for each node 
with standardized values. Initialize the learning rate 
α SOM.  

b) Calculate the squared Euclidean distance between 
the input vector ࢏࢞ and the weight vector ࢐࢏࢝ for ࢎ࢚࢐ 
node on the SOM grid:  

a.   
where ࢔ is the amount of input vectors and ࢚ corresponds to 
iteration number.  

c) Find a winning node (BMU) with following 
condition:  

BMU=(࢐)ࡰ ࢏࢔࢏࢓ࢍ࢘ࢇ  

d) Adjust the weights of BMU and neighbourhood 
nodes in the given radius for all input vectors by 
updating new weights as follows:  

 ((࢚)࢐࢏࢝ − (࢚)࢏࢞)(࢚)ࢻ + (࢚)࢐࢏࢝ = (૚ + ࢚)࢐࢏࢝

  

 

Figure 4. SOM Algorithm (Kumar & Saini, 2020)  

Results  
The result of the SOM model is a mesh of 5 × 5 hexagonal 
neurons trained with the Kohonen algorithm. The mesh 
provides a good representation of the sample space. There 
are no very dense areas or empty cells; at least each cell 
contains an element. The resulting trained map contains all 
the data in a vector structure so that the training data falls on 
each of the neurons (Figure 5). 

 
Figure 5: Node count  

Figure 6 is the neighbour distance plot called Umatrix. The 
unified distance matrix (U-matrix) is a representation of 
SOM where the Euclidean distance between the codebook 
vectors of neighboring neurons is depicted in a range of 
colors. It shows the degree of similarity or difference 
between the samples through the distance between adjacent 
map units. At the same time, the distance between adjacent 
units can be indicated by the color gradient. Therefore, nodes 
that are close to each other are dark in color. It can be 
observed that they are concentrated at the right end of the 
map, the darker the color, the greater the loss of thickness. 
This suggests a good separation of groups in the topology.  
 

 

Figure 6: SOM Neighbour distance  



 

Figure 7 represents the heatmap of the variable P3 chosen at 
random to analyze its distribution. A heatmap shows the 
distribution of a variable in the SOM. The high value areas 
are colored in red and the low value areas in blue. The 
southwestern zone is a high value zone. The low value areas 
(corrosion phenomenon) are located in the northeast. By 
doing the analysis combined with figure 5, it appears that the 
high value areas contain more observations than the low 
value areas.  

 
Figure 7: Heatmaps: Areas for high values (red) and low 
values (blue) for each variable  

The third, fourth and fifth nodes each contain a sample with 
thickness values of about 6 mm and contain about 4 to 6 
observations (third and fourth nodes) and more than 10 
observations (fifth node). Therefore, the loss of the thickness 
is noticed on few lines. 

Cluster analysis from the map  
In order to classify the lines according to their loss of 
thickness, an HAC was performed after calculating the 
codebook vectors with the SOM. The classification will be 
done first on the nodes (25 in total). Each node contains 
observations (the lines delimited on the pipeline). The 
dendrogram (figure 8) suggests the repartition in 3 classes. 
In addition, other indices were calculated (kl, ch, Hartigan 
index, etc.) (Charrad and al 2014) and 3 clusters remains the 
best partition. Nodes V11, V16, V17, V21 and V22 are 
classified together in cluster 3. The first cluster contains 
many more nodes (13) compared to 7 for the second cluster. 
In figure 8, the nodes of the third cluster are located in the 
low value areas (blue color) which shows that this cluster 
contains the lines that were attacked by the corrosion 
phenomenon. Thus, the clusters can be categorized into high 
thickness loss (cluster 3), medium thickness loss (cluster 2) 
and very low thickness loss (cluster 1).  

Figure 9 represents the different clusters with the number 
of observations in each node. Note the low value nodes are 
shown in the northeast and have a total of 16 observations 
(the thickness loss lines between 2016 and 2019).  

 
Figure 8: Cluster dendrogram  

 
Figure 9: Representation of the clusters into the map  

Table 1 represents the distribution of lines according to 
clusters for 2019. Lines 18 to L21 are the lines most affected 
by the thickness loss phenomenon.  

Table 1 : Distribution of lines according to clusters for 2019 

Cluster  1  (No  
thickness loss)  

Cluster 2 
(Medium 
thickness  
loss)   

Cluster 3 
(Important loss of 
thickness)  

L1 ; L2 ; L13 ;  
L16 ; L17 ; L22 ;  
L23 ; L24  

L3 ; L4 ; L5 ;  
L6 ; L7; L8 ; L9 ;  
L10 ; L11 ; L12 ;  
L14 ; L15  

L18 ; L19 ; L20 ; 
L21  

 

 



 

Conclusion and future work  

In this paper, a new data representation is proposed to 
identify clusters representing corrosion levels in a pipeline 
based on ultrasound inspections. The neural method (SOM) 
is used to reduce the dimensionality and then represent the 
data in a smaller two-dimensional space. To identify the 
clusters, hierarchical ascending classification is applied on 
the nodes, resulting in three clusters representing the 
corrosion levels of the pipeline. This information is useful to 
pipeline corrosion experts who consistently plan corrosion 
mitigation activities through risk-based inspections. Future 
work will focus on the prediction of pipeline corrosion and 
failure rates by using in-line corrosion monitoring (ER and 
real-time erosion-corrosion probes) combine with models 
such as Random Forest, SVM, Multilayer Perceptrons or 
Convolutional Neural Networks will be used. 
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Abstract: The study of pipeline corrosion is crucial to prevent economic losses, environmental degradation and worker safety. In this 
study, several machine learning methods such as Recursive Feature Elimination (RFE), Principal Component Analysis (PCA), Gra-
dient Boosting Method (GBM), Support Vector Machine (SVM), Random Forest (RF), K Nearest Neighbors (KNN) and Multilayer 
Perceptron (MLP) were used to estimate the thickness loss of a slurry pipeline subjected to erosion corrosion. These different machine 
learning models were applied to the raw data (the set of variables), to the variables selected by RFE and to the variables selected by 
PCA (principal components) and a comparative analysis was carried out to find out the influence of the selection and transformation 
of the data on the performance of the models. The results show that the models perform better on the variables selected by RFE and 
that the best models are: RF, SVM, GBM with an average RMSE of 0.017. By modifying the hyperparameters, the SVM model becomes 
the best model with an RMSE of 0.011 and an R-squared of 0.83. 

Keywords: Corrosion, Pipeline, Mining, machine learning, recursive feature elimination, principal component analysis. 

1. Introduction
Slurry pumping technology is a well-established and favored method for transporting mineral concentrates 

through pipelines. These pipelines can be made from a variety of materials, including carbon steel, alloy steel, hardened 
steel, stainless steel, abrasion-resistant lined pipes, non-ferrous pipes, and HDPE, with the choice depending on the 
application, material being transported, and cost [1]. Despite the excellent safety record and favorable economics of 
long-distance slurry pipeline systems compared to traditional bulk transport systems, pipe abrasion and erosion loss 
remain a significant concern. While non-ferrous pipelines can extend the life of the transport system for mineral con-
centrates, carbon steel pipes are prone to internal corrosion, especially when dealing with abrasive or corrosive slurries. 
The pipeline structure and materials are continually being improved for various industries. For example, HDPE is ex-
tensively used for applications such as mine tailings due to its ultra-high molecular weight and resistance to abrasive-
ness, making it more durable than carbon steel pipes. In addition, non-ferrous materials are used to line the inside of 
steel pipes to protect against erosion and corrosion, and low wear resistance non-ferrous pipes such as polyurethane, 
polybutylene, PVC, PP, ABS, and fiberglass pipe with internal ceramic chips are also available for slurry transport. 

Despite the use of carbon steel pipes, the high wear conditions caused by the large quantities and abrasive nature 
of slurry can result in leaks or ruptures, leading to significant maintenance costs in the mining industry due to erosion 
corrosion, especially in long pipelines spanning hundreds of kilometers. Other industries, such as the oil and gas sector, 
have also reported erosion corrosion as one of the top five forms of damage mechanisms, posing challenges to machin-
ery and equipment with short lifecycles [2, 3]. Therefore, to mitigate these risks, it is crucial to implement pipeline 
integrity detection and monitoring, including an understanding of defect progression, condition-based maintenance, 
and lifecycle management [4]. 

Over the years, several non-destructive testing methods have emerged for inspecting pipelines while in use, in-
cluding ultrasonic inspection (UT), which uses high-frequency sound waves to identify defects on materials or their 
surfaces. UT is effective at detecting cracks, crevices, metal losses, and other discontinuities at varying depths within 
samples due to the reflection, diffraction, and transmission characteristics of ultrasonic sound [4, 5]. A bulk wave ultra-
sonic thickness measurement technique for corrosion monitoring can be used by temporarily or permanently coupling 
a transducer to the outer surface of a pipe, and the wall thickness of the pipe can be determined based on the time 
difference between transducer excitation and reception of the reflected wave from the back-wall surface. Traditional 
inspection and maintenance practices based solely on experience are no longer sufficient, and pipeline operators now 
require quantitatively risk-based methodologies. To reduce the economic impact of failures and minimize their impact 
on the environment, health, and safety, analytical tools have been developed over the years [6]. 



  

 

After the emergence of big data techniques, machine learning (ML) has demonstrated significant benefits in mod-
eling and data mining [7]. ML has been utilized in various corrosion-related issues, such as the modeling of CO2 corro-
sion [8], automated image analysis to detect corrosion [9], the modeling of corrosion defect growth in pipelines [10],  
material inspection [11], predicting corrosion rates in marine environments [12], determining the initiation time of em-
bedded steel corrosion in reinforced concrete [13], predicting electrochemical impedance spectra [14], characterizing the 
spatial distribution of pitting corrosion [15], and modeling pipeline aging [16]. A variety of machine learning techniques 
have been employed to predict the rate of corrosion or identify the areas most affected by corrosion [17]. According to 
Jinrui et al., they trained six machine learning models on ultrasonic testing data to forecast the degree of corrosion based 
on ultrasonic characteristics [18]. The findings suggest that, except for the linear model, machine learning models can 
accurately and robustly forecast the corrosion degree despite the interference of outlier amplitude and training set size. 
In their study, Julio et al. examine various statistical and probabilistic methods that have been utilized in the literature 
to investigate corrosion issues and their practical applications [19]. Meanwhile, Wei et al. utilize an artificial neural 
network to establish a relationship model between the corrosion potential of low alloy steel in Sanya seawater and its 
influencing factors, allowing them to visualize the impact of different alloy elements on corrosion potential [20]. To 
estimate the corrosion defect depth growth of aged pipelines, Chinedu adopts a data-driven machine learning approach, 
relying on techniques such as Principal Component Analysis (PCA), Particle Swarm Optimization (PSO), Feed-Forward 
Artificial Neural Network (FFANN), Gradient Boosting Machine (GBM), Random Forest (RF), and Deep Neural Net-
work (DNN), to estimate the growth of corrosion defect depth in aged pipelines [10]. Roy et al. use the Gradient Boosting 
Regressor to predict corrosion resistance in alloys with multiple principal elements [21], while Zhifeng et al. suggest 
using rough set and decision tree methods to analyze pipeline soil corrosion [22]. To model experimental data of time-
varying corrosion rates in mild steel specimens when corrosion inhibitors are added to the system at varying concen-
trations and dose schedules, Mohammadreza et al. perform regression with several ML algorithms, ultimately finding 
Random Forest to be the best option [23]. Lastly, Peng et al. propose a new hybrid intelligent algorithm that combines 
SVR, PCA, and CPSO to predict the corrosion rate of multiphase flow pipelines, utilizing PCA to reduce data dimen-
sionality and CPSO to optimize hyperfine parameters in SVR [24]. 

The literature review above highlights the increasing use of machine learning methods in the field of corrosion, 
which is attributed to the emergence of software solutions that reduce the need for extensive mathematical and statisti-
cal knowledge. However, the risk of obtaining false positive results in a "black box" automated process cannot be ig-
nored. The purpose of this paper is not to present a complete machine learning model for predicting corrosion erosion 
degradation in a slurry pipeline but rather to describe the methodology in detail to provide a corrosion assessment 
using machine learning as a starting point for the corrosion community. Full research papers often struggle to explain 
the essential aspects of machine learning tools suitable for a specific dataset, as much emphasis is placed on results and 
discussion. Therefore, this paper aims to explain every step and parameter needed to draw robust and trustworthy 
predictive models, including the effect of feature engineering methods like recursive feature elimination and principal 
component analysis, as well as data transformation. The data used in this publication was obtained from the periodic 
non-destructive evaluation of a pipeline, and five machine learning models were applied and compared, including RF, 
KNN, SVM, MLP, and GBM, on both unprocessed and feature-engineered data. Hyperparameter optimization using 
the grid search method improved the model's results and made it more robust. 

2. Materials and Methods
2.1 Ultrasonic monitoring

The issue of erosion corrosion in pipelines is significant in slurry pumping systems. To prevent risks and monitor 
structural health, corrosion models are constructed by quantitatively estimating the degradation. Conventionally, this 
involves placing coupons made of the same pipe material inside the pipe and measuring the resulting weight loss after 
exposure to the environment for a specified period [24]. However, this method is intrusive, costly, and time-consuming 
due to manual intervention. Alternatively, ultrasonic technology offers a non-intrusive way to monitor corrosion. An 
array of eight ultrasonic transducers with a diameter of 10 mm and a frequency of 5 MHz, smartPIMS distributed by 
Procon systems Canada, was used to monitor a section of a 12'' diameter, 24'' length pipeline in pulse-echo mode, as 
shown in Figure 1, for long-term monitoring since 2021. 



  

 

 
Figure 1: Ultrasonic transducers fixed at the pipe for continuous wall thickness monitoring. 

2.2 Data Collection
Data for this study were obtained from Agnico Eagle Mine Goldex. These data are physical measurements from a 

pipeline that is used to transport residue (pulp/slurry) from the concentrator to the Manitou Residue Park site owned 
by the MERN (Ministère de l’Énergie et des Ressources Naturelles) in Val-d’Or, Quebec. Data include pipeline wall 
thickness values and process parameters such as pulp temperature, pH, pressure, etc. from the various in-line probes. 
While thickness measurements were taken on a daily basis, process variables were collected every five minutes. Table 
1 lists the different variables and their descriptive statistics. 

 

Table 1: List of features. 

Minimum Maximum Mean Sd
Tonnage sag (t) 8.78 404.39 342.65 65.15 

Flotation pulp temperature (°C) 13.92 34.92 23.07 4.68 
Flotation pH 7.47 9.33 9.03 0.27 

Residue flow (m3/h) 18.54 495.97 437.59 90.22 
% solid residue 0.02 46.13 23.54 10.17 

TPH calculated residue 0.02 301.95 141.31 68.20 
Pressure at Km 0 (Psi) 624.61 3439.54 2209.96 618.89 

T° at Km 0 (°C) 3.76 30.86 16.25 5.70 
Flow rate (m3/h) (Thompson River) 30.00 381.19 207.72 110.66 

T° (Thompson River) (°C) 0.99 20.45 13.42 6.04 
Flow rate (m3/h) (sedimentation basin) 26.88 122.30 68.82 16.17 

T° (sedimentation basin) (°C) 2.71 21.55 9.58 5.71 
Flow rate (m3/h) (South Park) 0.04 369.80 168.89 95.23 

T° (South Park) (°C) 0.73 16.23 5.21 4.53 
Pipe wall thickness (mm) 5.75 6.01 5.84 0.03 

2.3 Feature Selection
In this study, the process of feature selection involved choosing important features that contribute significantly to 

thickness loss. To achieve this, the authors employed the Recursive Feature Elimination (RFE) technique [25] which 
involves building a model on the entire set of predictors and assigning an importance score to each predictor. Less 
important predictors are then eliminated, and the model is rebuilt with the remaining predictors, and importance scores 
are computed again [26]. RFE is particularly useful for certain models like the random forest, which the researchers 



  

 

used in their study of pipeline degradation data [27]. Along with RFE, the authors also used Principal Component 
Analysis (PCA) as a dimensionality reduction method to extract important information from the data and represent it 
as a set of new orthogonal variables called principal components [28]. Although PCA is not a variable selection method, 
it can be used to enhance model performance. The authors identified principal components that explained a significant 
proportion of the variance in the data set and used them as explanatory variables to compare models with the initial 
data. 
2.4 Machine Learning Models
2.4.1 K-Nearest Neighbors (KNN) 

The k-nearest neighbor method is a distance-based supervised learning method [29]. It is a method easily scalable 
and has few hyperparameters. It is used for classification and regression problems. The classification or prediction of a 
new value is based on the values of the nearest neighbors that are determined using a distance between those values. 
The k value represents the number of neighbors, if it is equal to 1, for a classification problem, the predicted class is the 
class of the nearest neighbor and for a regression problem, the predicted value is the value of the nearest neighbor. If k 
is greater than 1, the predicted value is the average of the values of k neighbors for a regression problem. One of the 
most important steps of the KNN algorithm is the determination of the neighbors which is done through a distance 
calculation. One of the most used distances and which is used in this paper is the Euclidean distance. Given two samples 
ܺ = ,ଵݔ} ,ଶݔ … … , ܻ ݀݊ܽ {௡ݔ = ,ଵݕ} ,ଶݕ … … }, the Euclidean distance is calculated as follows: 
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Determining the value of k is very important since a poor choice of k can lead to overfitting or underfitting. High devi-
ations with low bias are often characterized by lower k values. 
2.4.2 Random Forest (RF) 

Random forest is an ensemble learning method that consists of multiple decision trees. It was proposed by Tin 
Kam Ho in 1995 [30] and an extension was proposed by Leo Breiman and Adele Cutler in 2001 [31]. It is an algorithm 
that can be used for both classification and regression problems and has been rapidly adopted because of its flexibility. 
For a classification problem, the predicted class is the class predicted by most trees. For a regression problem, the pre-
dicted value, represented in the following equation, is the average of the values predicted by the different trees. 
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The learning process of the random forest model starts with bagging by sampling a training data set with replace-
ment, also called boostrap sampling, and k predictors for each tree. Then a decision tree is trained on each sample. 
Finally, the prediction of the random forest model is the average of the values predicted by each tree. 
2.4.3 Gradient Boosting Machine (GBM) 

Gradient Boosting is a popular machine learning technique applied to classification tasks, known for its robustness 
and high performance compared to decision trees and random forest algorithms in certain cases. The method improves 
the accuracy of predictions by iteratively combining multiple "weak learners," which are simple models, to produce a 
"strong learner" with superior performance. On the other hand, the Gradient Boosting Machine, developed by Fried-
man, was inspired by Gradient Boosting and is utilized for regression problems [32]. 

Let be a training sample (ݔ௜ , ݅ (௜ݕ = 1, … … ݊. We make the assumption that we have a set of base learners ℬ and 
our objective function can be expressed as a linear combination of these base learners, which is denoted ݊݅ܮ (ℬ). The set 
of learners, ℬ, is defined as ܤ = {ܾఛ(ݔ) ∈ ℝ} where ߬ ∈ Τ represents the parameters of the learners. To predict the out-
put for a given feature vector, x, we use an additive model represented by [33]: 

:(ݔ)݂ = ቌ ෍
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Where ܾఛ೘(ݔ) ∈ ℬ is a weak-learner and ߚ௠ is its corresponding additive coefficient. 



  

 

The objective of GBM is to derive an accurate approximation of the function ݂ that can effectively reduce the em-
pirical loss [33]: 

⋆ܮ = ݉݅݊
௙∈୪୧୬(ℬ)

  ൝ܮ(݂) ≔ ෍  
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Where ℓ(ݕ௜ ,  .is a measure of the data fidelity for the i-th sample for the loss function ℓ  (௜ݔ)݂
The objective of the GBM method, as a numerical optimization algorithm, is to minimize the loss function by find-

ing an additive model. The algorithm (as shown in Fig. 2) initializes the model with a first estimation, typically a deci-
sion tree, and aims to minimize the loss function. With each iteration, the algorithm calculates a model that best fits the 
residuals and adds it to the previous model to update the residuals. The algorithm stops after reaching the maximum 
number of iterations specified by the user. 

 
Figure 2: Algorithm Gradient Boosting Machine (GBM) [33]. 

2.4.4 Support Vector Machine 
Support Vector Machine (SVM) is a supervised machine learning model used for regression and classification 

problems. It was first developed by Vapnik and his colleagues [35, 36]. For regression problems, the name changes to 
Support Vector Regression (SVR). The principle is almost the same as for classification problems except that for regres-
sion problems the continuous variable must be predicted. The goal of the SVR algorithm is to find a hyperplane in an 
n-dimensional space that best fits the data. The hyperplane is the line that will help us predict the continuous value or 
the target value. The continuous function to be approximated can be written as in equation 5: 

ݕ = .ݓ ݔ + ܾ (5) 

• SVR Linear 
SVR formulates this function approximation problem as an optimization problem as presented in equations 6 and 

7: 
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Where ‖ݓଶ‖ indicates the size of the normal vector corresponding to the surface being approximated, the varia-
bles ߦ௜ ௜ߦ ݐ݁ 

∗ are responsible for determining the allowable number of points outside the tube, while C acts as a regular-
ization parameter that can be adjusted to give greater importance to minimizing either the error or the flatness of the 
solution in this problem involving multiple objectives. This information is cited from reference [37]. 

• Non-linear SVR 
In the nonlinear case (Fig. 3), kernel functions are used to transform the data to allow for linear separation as in 

equations 9 and 10. 
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Where ݔ)ܭ௜ ,  .is the kernel function (ݔ
 

                  
Figure 3: Non-Linear SVR. 

2.4.5 Multilayer Perceptron 
The MLP, a form of artificial neural network, is structured with multiple layers and operates through direct prop-

agation from the input to output layer. The number of neurons in each layer varies, with the last layer being designated 
as the output layer. In the multilayer back-propagation perceptron, adjacent layers are interconnected, with the strength 
of these connections being determined by a coefficient that influences the destination neuron's response. The backprop-
agation algorithm is used to calculate these coefficients, which are essential to the network's functionality. Figure 4 
shows a multilayer network. Each neuron ݅ receives a series of signals from neurons ݆ located at the previous layers. 
The operation of the illustrated network is governed by the following equation [38]. 
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(12) 

Where ௝݊ is the number of input neurons and ௝ܺ is the value of the signal transmitted by neuron ݆ of the previous 
layer. The ௜ܹ௝ represent the respective weights of the connections between the neurons ݆ of the previous layers and 
the neuron ݅ of the current layer. The parameters ௜ܾ, are bias values allowing a non-zero transfer function at the origin. 
The inputs ௝ܺ are weighted by the weights ௜ܹ௝. Once the input is provided, neuron i transforms it and produces an 
output. In this case, ܼ௜ and the output ௜ܱ, of a given neuron, are related by a transfer function of hyperbolic tangent 
form. 

௜ܱ = ݂(ܼ௜) =
1 − ݁ିଶ௓೔

1 + ݁ିଶ௓೔
 (13) 

 
Figure 4: Multilayer Perceptron [38]. 

The error made by the network at the output is calculated and then minimized. This is referred to as the error 
backpropagation method. The weights of the network ௜ܹ௝ are corrected to reduce the overall error ܧ. The gradient 
descent method is used to minimize the global error. It is represented by the equation 14: 

ܧ =
1
2 ෍  

௡ೖ

௞ୀଵ

(ܵ௞ − ܱ௞)ଶ 
(14) 

Where ܵ௞  represents the estimated value and ܱ௞ the observed value and ܧ the overall error. 
The steps of the error backpropagation algorithm are: 

1 Presentation of a training pattern to the network. 
2 Comparison of the network output with the target output. 
3 Computes the output error of each neuron in the network. 
4 Compute, for each neuron, the output value that would have been correct. 
5 Definition of the increase or decrease necessary to obtain this value (local error). 
6 Adjustment of the weight of each connection towards the lowest local error. 
7 Assigning a blame to all previous neurons. 
8 Repeat from step 4, on the previous neurons using the blame as error. 

3. Results and Discussion

3.1. Models with all features
The prediction of thickness loss has been studied several times in the literature using different types of features 

and models. The features most often found in the literature are the chemical characteristics of the pipeline such as CO2 
partial pressure, corrosion inhibitor type [23], sulfate ion concentration and chloride ion concentration [10]. In this study, 



  

 

other types of variables directly related to the pipeline (pH, residue flow, pressure, calculated residual TPH) and vari-
ables external to the pipeline such as flow rate and temperature of the rivers and sedimentation basin that feed the 
pipeline were collected. Different set of models with all the variables were performed on the training data. Both the 
coefficient of determination (R2) and Root-Mean-Square Error (RMSE) were employed for the model's predictive per-
formance evaluation. They were defined by the following equations [7]: 

ܴଶ = 1 − ∑ (௬೔ି௬ഢෞ)మ೙
೔సభ

∑ (௬೔ି௬ഢതതത)మ೙
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(16) 

where ݕ௜  , పഥݕ ݀݊ܽ పෝݕ   represent the measured value, the predicted value and the average value of the corrosion rate, 
respectively. During the training process, a cross-validation technique (i.e., 5-fold repeated cross-validation method) 
was utilized to avoid random errors as much as possible [38]. The models were trained on 80% of the data and the rest 
(20%) was used for validation.  

The results presented in Table 2 show slight differences in RMSE for the RF (0.017), GBM (0.018) and SVM (0.018) 
models. The KNN and MLP models perform less well with an RMSE of 0.02. The R2 of the MLP model is low compared 
to the other models, i.e. the explanatory variables explain less the variation of the thickness loss. Table 3 shows pairwise 
statistical significance scores. The table's lower diagonal displays p-values for the null hypothesis, indicating that the 
distributions are the same. Conversely, the upper diagonal shows the estimated difference between the distributions. It 
is evident from the table that there is no discernible difference between RF and GBM, and the differences between the 
distributions for RF, SVM, and KNN are minimal. The above results are those obtained with the training data. We will 
apply the validation data at the end when we have found the best model. 

Table 2: Result of the models with all variables. 

Training set 
Models RMSE R2

SVM 0.018 0.667 
GBM 0.018 0.672 

RF 0.017 0.715 
KNN 0.021 0.504 
MLP 0.026 0.182 

 
 

Table 3: Pairwise statistical significance scores. 

SVM KNN RF GBM
SVM   -0.003 0.001 0.001 
KNN 0.02   0.004 0.004 
RF 0.02 0.00   0.00 

GBM 1.00 0.01 1.00   

3.2. Models with feature selection
To enhance the model's performance, feature engineering is a crucial stage in modeling that involves selecting the 

most significant variables using various methods. According to [7] research, the Gradient Boosting Decision Tree 
(GBDT) method and Kendall correlation analysis were employed as feature engineering approaches. 

During the second stage of thickness loss data modeling, we employed the recursive feature elimination technique 
to enhance the model's effectiveness. This approach involves fitting a model and removing the weakest feature or fea-
tures until the designated number of features is achieved. The model implemented in this process is RF, which has a 
reliable built-in feature importance calculation mechanism. The purpose of this method is to eliminate any dependen-
cies and collinearity that could potentially exist in the model. Figure 5 illustrates the change in RMSE concerning the 
number of selected variables in our model. The optimal number of variables is 10: Tonnage sag, Pulp temperature 



  

 

Flotation, % solid residue, TPH calculated residue, Pressure at Km 0, T° at Km 0, T° (Thompson River), Flow rate (sed-
imentation basin), T° (sedimentation basin), Flow rate (South Park), T° (South Park) with an RMSE of 0.017. These 10 
variables were used to study the other models. The results (Table 4) show little variation in the performance metrics. 
The results of the significance test for the RF, SVM and GBM models show that there is no difference between these 
models. However, these models are better than KNN and MLP. MLP work better in situations where the sample size is 
very large which is not the case for our study. 

Table 4: Result models with feature selection. 

 Training set 
Models RMSE R2

SVM 0.016 0.735 
GBM 0.017 0.707 

RF 0.017 0.725 
KNN 0.027 0.274 
MLP 0.027 0.074 

 

 
Figure 5: Recursive Feature Elimination. 

3.2. Models wirh feature selection by PCA
Principal Component Analysis (PCA) is sometimes used as a method of feature engineering using as explanatory 

variables the principal components that explain the greatest variation. It is a method that sometimes gives excellent 
results [10]. We performed a PCA on our training data and selected the 8 Principal Components (PC) (figs. 6 and 7) that 
account for more than 95% of the variation in the data. These 8 principal components are then used as explanatory 
variables in our different models. The results (Table 5) vary slightly from those found previously. However, the KNN 
model performs better with the PCA transformation of the data. 

 
 
 
 
 



  

 

Tableau 5: Result models with feature selection by PCA. 

Training set 
Models RMSE R2

SVM 0.018 0.66 
GBM 0.02 0.51 

RF 0.019 0.61 
KNN 0.019 0.55 

 

Figure 6: Screenplot of 14 PCs. Figure 7: Cumulative variance plot.

3.2. Tuning hyperparameters
hyperparameter optimization [39,40] or tuning involves selecting an optimal set of hyperparameters for a learning 

algorithm that maximizes the model's performance and minimizes a pre-defined loss function to produce accurate re-
sults with fewer errors. Grid search, also known as parameter sweep, has traditionally been the preferred method for 
hyperparameter optimization, which involves an exhaustive search through a manually specified subset of the algo-
rithm's hyperparameter space. Grid search is guided by a performance metric, which is typically measured by cross-
validation on the training set [40,41]. For the SVM model, we aim to identify the optimal values for C and Gamma. C 
represents the cost of constraint violation and is the regularization term constant in the Lagrange formulation. A low 
value may cause the model to incorrectly classify some training data, while a high value may lead to overfitting, which 
results in an analysis that is too specific for the current data set and may not be suitable for future data. Gamma is the 
inverse of the influence radius of data samples chosen as support vectors. High values indicate a small radius of influ-
ence and small decision boundaries that do not consider relatively close data samples, leading to overfitting. Low values 
indicate a significant impact of distant data samples, causing the model to fail to capture the correct decision boundaries 
from the data set. For the RF model, we aim to find the optimal values of max_features and n_estimators. Max_features 
represents the maximum number of features that Random Forest can attempt in an individual tree, while n_estimators 
refers to the number of trees built before taking the maximum voting or averages of predictions. The best hyperparam-
eters for the RF model are max_features=2 and n_estimators=2500, resulting in an RMSE of 0.016 and an R2 of 0.73. 
Figure 8 illustrates the variation of RMSE as a function of max_features with n_estimators=2500. 

Hyperparameter optimization of the SVM model produces more interesting results. Fig. 9 shows the variation of 
the RMSE according to the hyperparameters.  We can clearly see that the smallest RMSE (better performing model) is 
at the point cost=5 and sigma=0.05. With these hyperparameters, the RMSE is estimated at 0.015 and the R2 at 0.76. These 
estimates are made on the training data.  

 



  

 

Figure 8: Hyperparameter tuning - Random Forest. Figure 9: Hyperparameter tuning – SVM. 

The SVM model appears to be the best model with a lower RMSE than found in most of the review. To investigate the performance 
of the model in new data, we use the validation data (20% of the data set) to predict thickness losses and estimate the RMSE. Table 6 
shows the estimation results of the SVM model on the validation data. The model predicts the thickness loss well with a low RMSE 
evaluated at 0.011 and R2 of 0.83. We can see in Fig 10, the small difference between the observed and predicted values of the thickness 
measurements by running the model on new data (validation data) with the best model (SVM) and the optimal hyperparameters 
C=5 and sigma=0.05. 

Table 6: Result on validation set. 

 
Figure 10: Pipeline wall thickness values: Observed vs. predicted. 

5. Conclusions
In the current situation, the majority of the internal pipeline wall is deteriorating due to both slurry erosion and 

corrosion, which result in the gradual removal of material from the surface due to the impact of solid particles sus-
pended in the liquid phase. As stated earlier, the intent of this paper was not to present the full machine learning model 
for predicting corrosion erosion degradation in a slurry pipeline, which will be done in a subsequent publication, but 
rather to take a unique opportunity to describe the methodology in detail as a walk-through corrosion assessment of 
slurry pipeline using machine learning. Explaining the essential aspects of machine learning tools suitable for a specific 
dataset is often difficult in a full research paper as much focus needs to be on results and discussion. Whilst the study 
combined several machine learning techniques to achieve better results, it was found that the SVM, RF and GBM models 
perform better on the initial data. On the other hand, the KNN model performs better on the principal component data. 
The change in hyperparameters was important in this analysis, as the SVM model went from an RMSE of 0.016 to 0.011, 

Model 
Validation set 

RMSE R2

SVM 0.011 0.83 



  

 

remaining the best model for predicting pipeline thickness loss. This information is useful to pipeline corrosion profes-
sionals who consistently plan corrosion mitigation activities through risk-based inspections. A limitation of this research 
is the limited amount of data. Future work will focus on continuously collecting large amounts of data to make more 
accurate predictions for different pipeline locations using machine learning models. 
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