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RÉSUMÉ 

Le paysage a une influence notable sur la couverture neigeuse et l'hydrologie dans les 

régions dominées par la neige. Cela a été bien documenté dans des paysages comme 

les Prairies canadiennes, les régions de la Cordillère et l'Arctique. Cependant, 

relativement peu de publications ont été faites sur la variabilité de la couverture 

neigeuse et les interactions météorologiques et climatiques de la neige dans des régions 

comme le Québec, dans l'est du Canada, qui a un climat et des caractéristiques 

physiographiques différents (c'est-à-dire un climat continental humide avec des 

paysages agro-forestiers dans les basses terres du Saint-Laurent et des paysages 

forestiers boréaux dans le bouclier canadien) par rapport aux régions où la plupart des 

études sur la couverture neigeuse ont été réalisées. Ces différences dans le climat et les 

caractéristiques physiographiques suggèrent que les conclusions d'autres régions 

peuvent ne pas être facilement transférables à cette région, indiquant la nécessité 

d'études supplémentaires pour mieux comprendre la dynamique de la couverture 

neigeuse dans l'est du Canada. La connaissance de la dynamique de la couverture 

neigeuse dans cette région est cruciale, en raison des implications profondes qu'elle a 

pour la région, y compris son rôle vital dans la régulation de l'afflux de réservoirs pour 

l'hydroélectricité et son influence sur la probabilité d'inondations au printemps. 

Dans ce contexte, cette thèse vise à combler cette lacune de connaissances en explorant 

comment l'hétérogénéité du paysage module la couverture neigeuse à l'échelle 

microscopique (<100 m) dans le sud du Québec, à l'est du Canada, en combinant des 

mesures de lidar à haute résolution et des mesures détaillées de météorologie et de flux 

d'énergie. Représentant le paysage typique, la distribution spatiale des profondeurs de 

neige dans deux sites agro-forestiers dans les basses terres du fleuve Saint-Laurent et 

un site forestier boréal sur le bouclier canadien ont été surveillés par détection et 
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télémétrie de la lumière des véhicules aériens sans pilote (UAV lidar). En vue d'utiliser 

le UAV lidar pour observer les profondeurs de neige pour la première fois dans cette 

région, cette étude a évalué l'exactitude des profondeurs de neige dérivées du UAV 

lidar dans les environnements agro-forestiers par rapport au site forestier boréal et a 

fourni des recommandations pour les futures applications. En utilisant les données 

dérivées du UAV lidar, les effets topographiques et végétaux sur l'accumulation de 

neige sur chaque site ont été analysés avec des modèles de forêt aléatoire. Une nouvelle 

méthode d'interpolation a également été introduite pour résoudre les effets de sous-

échantillonnage sur les profondeurs de neige interpolées finales par des techniques de 

télédétection aérienne dans les environnements conifères. En se concentrant sur les 

environnements agro-forestiers largement peu étudiés, la partition d'énergie entre les 

champs forestiers et ouverts a été caractérisée par une approche basée sur des mesures, 

en particulier en tenant compte de la neige soufflée et de la sublimation. 

Les résultats de cette étude démontrent l'utilisation prometteuse de la télédétection lidar 

par drone pour surveiller les surfaces terrestres et enneigées sous une couverture 

végétale variable avec une précision raisonnable à des échelles plus fines. Les résultats 

mettent en évidence les différences de comportement de l'enneigement et des processus 

associés induits par le paysage et fournissent une identification et un classement utiles 

des variables/processus qui influencent la variabilité de la profondeur de neige entre et 

au sein des paysages agro-forestiers et boréaux. Par exemple, les résultats de l'analyse 

de régression suggèrent que la topographie sous-jacente (y compris la micro-

topographie et les caractéristiques topographiques importantes telles que les canaux) et 

la redistribution du vent de la neige le long des lisières forestières sont les principales 

variables/processus régissant la variabilité de la profondeur de neige dans les paysages 

agro-forestiers, par rapport à l'influence dominante de la variabilité spatiale de la 

structure forestière sur les profondeurs de neige dans le paysage boréal. Ces résultats 

seront bénéfiques pour le développement et l'application de modèles physiquement 

basés pour des estimations précises de la dynamique du manteau neigeux dans de tels 
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environnements. De plus, les profondeurs de neige estimées à l'aide du nouvel 

algorithme d'interpolation sur le site forestier boréal montrent que cette méthode 

d'interpolation qui combine l'interpolation spatiale et intègre les tendances 

systématiques dans l'accumulation de neige à l'échelle du paysage, de la canopée par 

rapport aux lacunes et à l'intra-canopée peut résoudre la variabilité à petite échelle et 

réduire ainsi la probable surestimation des profondeurs de neige sous la canopée par 

les données aéroportées. En outre, les flux d'énergie entre les zones ouvertes, forestières 

et lacunaires dans le paysage agroforestier ont montré des différences considérables 

dans les flux d'énergie entre les sites, avec la radiation nette dominant le bilan 

énergétique de la surface enneigée. L'analyse a montré une plus grande influence de la 

radiation à ondes longues sur la variabilité du bilan d'énergie pendant la période 

d'accumulation, tandis que les flux de chaleur latente et l'absorption de la radiation 

solaire dominent pendant la fonte du manteau neigeux. L'influence de la neige soufflée 

sur le bilan d'énergie dans la zone ouverte balayée par le vent a également été observée 

grâce aux effets de rétroaction négatifs pendant la période d'accumulation. Les 

différentes conditions de manteau neigeux et de bilan d'énergie entre les zones ouvertes 

et forestières des paysages agro-forestiers mises en évidence dans cette étude 

pourraient avoir d'importantes implications pour les modèles d'infiltration de la fonte 

des neiges et pour l'hydrologie à l'échelle du bassin versant. Cette recherche apporte 

une contribution importante à la connaissance de la dynamique de la couverture 

neigeuse induite par le paysage dans ces environnements, ce qui sera utile pour la 

prévision des crues, la gestion de l'eau et les pratiques de gestion des terres. 

Mots-clés : Lidar UAV; variabilité de la profondeur de neige; environnements agro-

forestiers; environnements boréaux; sous-échantillonnage sous la canopée; 

partitionnement de l'énergie; transport de neige par le vent 

 



ABSTRACT 

Landscape has a notable influence on snow cover and hydrology in snow-dominated 

regions. This has been well documented in the landscapes like Canadian prairies, 

Cordillera regions, and the Arctic. However, relatively little has been published about 

snow cover variability and snow-meteorological and snow-climate interactions in 

regions like Québec, eastern Canada, which has different climate and physiographic 

settings (i.e., humid continental climate with agro-forested landscapes in the St. 

Lawrence lowlands and boreal forested landscapes in the Canadian Shield) compared 

to regions where most of the snow cover studies have been performed. These 

differences in climate and physiographic settings suggest that findings from other 

regions may not be easily transferable to this region, underscoring the need for further 

studies to better understand the dynamics of snow cover in eastern Canada. The 

knowledge of snow cover dynamics in this region is crucial due to the profound 

implications it has for the region, including its vital role in regulating reservoir inflow 

for hydroelectricity and its influence on the likelihood of spring floods.  

In this context, this thesis aims to bridge this knowledge gap by exploring how 

landscape heterogeneity modulates the snow cover at the microscale (< 100 m) level in 

southern Québec, eastern Canada by combining high-resolution lidar and detailed 

meteorological and energy flux measurements. Representing the typical landscape, the 

spatial distribution of snow depths in two agro-forested sites in the St. Lawrence river 

lowlands and one boreal forested site on the Canadian Shield were monitored by 

Unmanned Aerial Vehicle Light Detection and Ranging (UAV lidar). In view of 

utilizing UAV lidar to monitor snow depths for the first time in this region, this study 

evaluated the accuracy of UAV lidar-derived snow depths in agro-forested 

environments compared to the boreal forested site and provided recommendations for 



xxi 

future applications. Utilizing the UAV lidar-derived data, topographic and vegetation 

effects on snow accumulation at each site were analyzed with random forest models. 

A new interpolation method was also introduced to resolve the effects of under-

sampling on final interpolated snow depths by airborne remote sensing techniques in 

coniferous environments. Focusing on largely understudied agro-forested 

environments, energy partitioning of forested versus open fields was characterized by 

a measurement-based approach, while particularly considering blowing snow and 

sublimation. 

The results of this study demonstrate the promising use of UAV lidar to monitor ground 

and snow surfaces under varying vegetation covers with reasonable accuracy at finer 

scales. Results highlight the difference in snowpack behaviors and associated processes 

induced by the landscape and provide a useful identification and ranking of 

variables/processes that are influencing snow depth variability between and within 

agro-forested and boreal landscapes. For instance, results from the regression analysis 

suggest that the underlying topography (including the microtopography and prominent 

topographical features such as canals) and the wind-redistribution of snow along forest 

edges are the prime variables/processes governing the snow depth variability in agro-

forested landscapes compared to the dominant influence of spatial variability of forest 

structure on snow depths in the boreal landscape. These findings will be beneficial for 

the development and application of physically-based models for accurate estimates of 

snowpack dynamics in such environments. Moreover, the snow depths estimated using 

the new interpolation algorithm in the boreal forested site show that this interpolation 

method that combines spatial interpolation and incorporates systematic trends in snow 

accumulation at the landscape, canopy versus gaps, and intra-canopy scales can resolve 

the small-scale variability and thereby reduce the likely overestimation of snow depths 

under the canopy by airborne data. Furthermore, energy fluxes between open, forest, 

and gap areas in the agro-forested landscape showed considerable differences in energy 

fluxes between the sites, with net radiation dominating the snow surface energy balance. 
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Analysis showed the greater influence of longwave radiation on the variability of the 

energy balance during the accumulation period, while latent heat fluxes and solar 

radiation absorption dominance during snowpack melting. The influence of blowing 

snow on the energy budget in the wind-swept open area was also observed through 

negative feedback effects during the accumulation season. The different snowpack and 

energy balance conditions between the open and forested patches of agro-forested 

landscapes highlighted in this study could have important implications for snowmelt 

infiltration patterns and resulting catchment-scale hydrology. This research provides 

an important contribution to the knowledge of landscape-induced snow cover dynamics 

in these environments which will be useful in flood forecasting, water management, 

and land management practices. 

Keywords: UAV lidar; snow depth variability; agro-forested environments; boreal 

environments; under-sampling under-canopy; energy partitioning; blowing snow 

 
 



INTRODUCTION 

Motivation and Relevance 

In cold climate regions, snow cover represents a major part of the terrestrial water 

storage during the winter season and produces a significant spring runoff with the onset 

of snowmelt. In addition, being a strong insulator, the snow cover protects the soil from 

extreme air temperature variations by substantially reducing the frost depth in soils 

compared to bare surfaces. Moreover, due to its high reflectivity and insulation 

properties, the interaction of snow cover with the atmosphere dramatically alters the 

energy exchange between the surface and the atmosphere (Brown, 2011). All these 

aspects shape snow accumulation and ablation into a significant variable in the 

hydrological processes of cold regions. Snow accumulation and the timing, intensity, 

and duration of snowmelt are deeply dependent on meteorological and physiographic 

variables such as regional climate, elevation, presence or absence of vegetation, and 

forest structure (Golding and Swanson, 1986; Elder et al., 1998; Pomeroy et al., 1998a; 

Varhola et al., 2010a; Roth and Nolin, 2017; Zheng et al., 2018; Koutantou et al., 2022). 

For instance, an increase in snow accumulation is reported with increasing elevation 

due to adiabatic cooling and orographic enhancement of precipitation while a reduced 

spring snowmelt flooding is observed due to different melting rates along the elevation 

gradients (Pomeroy et al., 1998a; Jost et al., 2007; Grünewald et al., 2014; Shaw et al., 

2020). Higher snow accumulation on northerly slopes in the northern hemisphere is 

documented due to reduced melting rates associated with reduced incoming solar 

radiation and the opposite is observed in the southern hemisphere, i.e., higher snow 

depths and reduced melt rates on southerly slopes (Baños et al., 2011; Hopkinson et al., 

2012a; Revuelto et al., 2016; Schirmer and Pomeroy, 2020; Shaw et al., 2020). In 
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general, shallower snow depths were observed on steeper slopes depending on 

exposure to wind and radiation (Golding and Swanson, 1986; Shaw et al., 2020). 

Evaluating snowpack conditions in forested regions is particularly important as the 

snowmelt-dominated, forested watersheds contribute approximately 60 % of the global 

freshwater runoff (Moeser et al., 2015). Moreover, the spatial arrangement of different 

forest stands and forest versus open/agricultural areas play a significant role in altering 

the spatial distribution of the snow cover and thereby the regional hydrology (Winkler 

et al., 2005; Aygün et al., 2020). For instance, in the province of Québec, Canada where 

the second-largest maxima of snow accumulation in North America is reported (Brown 

et al., 2003), forest covers about 50 % of its land area (Government of Canada, 2018) 

while in the southern part of the province, in the St-Lawrence lowlands and 

Appalachian piedmont, forests are intertwined with mosaics of agricultural fields (i.e., 

agro-forested landscape). Differential snow accumulation and melt patterns in these 

landscape units are expected to have a greater influence on regional hydrology (Aygün 

et al., 2020; Aygün et al., 2022). 

Generally, compared to open areas, forest cover reduces the incoming shortwave 

radiation, increases longwave radiation, dampens wind speed, and hence reduces 

turbulent heat transfers within the canopy (Prévost et al., 1991; Pomeroy and Gray, 

1994; Tarboton, 1994; Pomeroy and Dion, 1996; Pomeroy and Granger, 1997; 

Pomeroy et al., 1998a; Pomeroy et al., 1998b; Helgason and Pomeroy, 2012). In turn, 

the snowpack dynamics within a forest differ from that in an open area. Depending on 

the canopy density, forested areas reportedly accumulate less snow than adjacent open 

areas due to canopy interception and sublimation losses and undergo slower snowmelt 

rates due to shading by the canopy in dry climates while the melt appears faster in a 

humid climate, due to increased longwave radiation with higher canopy density, a 

phenomenon known as the radiative paradox (Golding and Swanson, 1986; Pomeroy 

and Granger, 1997; Hopkinson et al., 2004; Varhola et al., 2010a; Lundquist et al., 
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2013; Roth and Nolin, 2017; Zheng et al., 2018). In addition, forests can also influence 

differential snow accumulation by preferential deposition of wind-blown snow along 

the forest edges (Essery et al., 2009; Currier and Lundquist, 2018). Several authors 

reported substantial differences in snow accumulation and melt patterns in forest 

clearings or gaps compared to adjacent forests and open areas (e.g., Winkler et al., 2005; 

Musselman et al., 2008; Revuelto et al., 2015; Roth and Nolin, 2017; Mazzotti et al., 

2019). Small gaps (~2–5 times the tree height diameter) are often still sheltered by trees 

and accumulate more snow due to reduced exposure to wind, while large gaps are 

exposed to wind erosion that eventually reduces the overall snow accumulation 

(Golding and Swanson, 1986; Pomeroy and Gray, 1994; Pomeroy et al., 2002; Woods 

et al., 2006; Pomeroy et al., 2012; Broxton et al., 2015; Conway et al., 2018). Snow 

accumulation and ablation also differ significantly between different forest stands with 

distinct structural differences, due to the impact of forest structure on the energy 

balance, dominated by radiative heat fluxes (Winkler et al., 2005). Accumulation and 

ablation rates generally decline with increasing canopy density and leaf area (Pomeroy 

et al., 2002). Within a forest stand, snow accumulation increases with increased 

distance from the tree stem due to reduced interception, whereas the melt rate decreases 

due to the reduced influence of longwave radiation emitted by the tree canopy 

(Pomeroy and Dion, 1996; Musselman et al., 2008; Revuelto et al., 2015; Zheng et al., 

2019). Accounting for this snow depth variability and the knowledge of energy 

exchanges between snow, atmosphere, and the ground is important when estimating 

snowmelt dynamics of the snowpack in these environments (Liston and Elder, 2006; 

Trujillo et al., 2007; Varhola et al., 2010a; Clark et al., 2011; Mas et al., 2018). 

Given the importance of accounting for the spatial variability of the snow cover, the 

most frequently utilized techniques to observe snowpack variations are in-situ 

observations and/or remote sensing techniques. The traditional, ground-based, and 

mostly manual process of monitoring snow depths is expensive, labor-intensive, time-

consuming, potentially dangerous, and can also disturb the snowpack and influence 
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subsequent measurements (Deems et al., 2013). Even when available, and despite its 

accuracy, point measurements may not be representative of a larger area (Dong, 2018). 

Nevertheless, a number of studies in the literature used point scale measurements of 

snow depth and density to statistically model spatial variability of snow depth and snow 

water equivalent, SWE (Elder et al., 1991; Elder et al., 1998; Brown et al., 2018). 

However, during the past several decades, remote sensing has become a powerful and 

efficient approach for monitoring snowpacks in areas located in remote and 

inaccessible environments. A variety of airborne (manned and unmanned) and 

terrestrial remote sensing techniques using satellite, radar, laser (lidar, light detection 

and ranging), and photogrammetry data have been developed ever since (Dong, 2018). 

Among these techniques, laser scanning and photogrammetry are prominent for their 

ability to capture high-resolution micro (< 100 m) and mesoscale (100 m–10 km) 

variability (Deems et al., 2013). Compared to traditional photogrammetric approaches, 

topographic data from lidar feature lower systematic and stochastic uncertainties due 

to its ability to accurately map in cast shadows and to better cope with low contrast 

surfaces such as fresh snow (Eitel et al., 2016; Harder et al., 2020). Lidar data sets from 

airborne platforms are increasingly used to estimate snow depth by differencing snow-

covered and snow-free elevation products (Hopkinson et al., 2004; Deems et al., 2006; 

Trujillo et al., 2007; Baños et al., 2011; Hopkinson et al., 2012a; Hopkinson et al., 

2012b; Deems et al., 2013; Harpold et al., 2014; Kirchner et al., 2014; Eitel et al., 2016; 

Zheng et al., 2016; Zheng et al., 2018). Due to the strong penetration ability of lidar 

through the forest canopy, this technology is efficient for detecting the snow cover 

under the canopy and deriving forest metrics such as LAI (leaf area index), canopy 

cover, gap fraction, etc., which play a significant role in shaping snow dynamics in 

forested environments  (Morsdorf et al., 2006; Richardson et al., 2009; Varhola et al., 

2010b; Varhola et al., 2012; Fieber et al., 2014; Qin et al., 2017; Currier and Lundquist, 

2018; Zheng et al., 2018; Mazzotti et al., 2019; Harder et al., 2020; Jacobs et al., 2021). 

However, the density of ground return lidar points in forested environments depends 



5 

on the canopy type and architecture, laser spot size, laser pulse rate, scan angle of the 

laser sensor, flying height, and flying speed. For example, higher pulse rates provide 

more laser shots, while smaller scan angles and a lower flight altitude increase the 

probability of canopy penetration (Hyyppä et al., 2005; Wallace et al., 2012; Deems et 

al., 2013). Under-sampling of snow depths under dense canopies by airborne lidar 

surveys is reported by many authors (e.g., Varhola et al., 2010b; Hopkinson et al., 

2012b; Harpold et al., 2014; Tinkham et al., 2014; Broxton et al., 2015; Zheng et al., 

2016; Mazzotti et al., 2019; Zheng et al., 2019; Jacobs et al., 2021; Koutantou et al., 

2022). Addressing this under-sampling under dense canopies and consequent effects 

on snow depth interpolations is still a growing area of research (Tinkham et al., 2014; 

Zheng et al., 2016; Koutantou et al., 2022). Nevertheless, validation of the snow depth 

products from remote sensing techniques with in-situ measurements shows that the 

lidar technique gives promising results in capturing accurate snow depths. 

Given the importance of understanding energy exchanges between snow, the 

atmosphere, and the ground, many of the snow physics models developed for 

hydrological applications are in fact based on energy budget estimation. These models 

have undergone significant improvements since their early developments, with the 

addition of new parameterizations for turbulent energy transfer (Andreas et al., 2010), 

blowing snow (Pomeroy et al., 1993; Liston et al., 2007; Pomeroy et al., 2007), and 

snow metamorphism (Lehning et al., 2002). However, despite these advances, 

snowmelt models do not consistently produce acceptable results in all environments, 

which is partly due to the inability to robustly simulate the snowpack processes and 

snow-atmosphere-ground interactions (Rutter et al., 2009). However, there is potential 

to improve the accuracy of these models through the availability of calibration data. By 

reducing the parameter uncertainty and thereby offsetting model deficiencies, 

calibration data can help improve the snowmelt model performances (Essery et al., 

2009). This highlights the importance of having detailed meteorological and/or energy 

flux measurements in different environments. 
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Despite the notable influence of landscape on snow cover and hydrology (Whitfield 

and Cannon, 2000), relatively little has been published about snow cover variability 

and snow-meteorological and snow-climate interactions in regions such as Québec 

compared to Canadian prairies (e.g., Pomeroy and Gray, 1994; Helgason and Pomeroy, 

2012; Harder et al., 2016; Harder et al., 2018; Harder et al., 2020) and Cordillera 

regions (e.g., Hopkinson et al., 2012b; Roth and Nolin, 2019; Harder et al., 2020; 

Schirmer and Pomeroy, 2020). It is partly due to the lack of detailed and simultaneous 

micrometeorological and snow observations (Brown, 2010; Sena et al., 2017; Sena et 

al., 2019; Aygün et al., 2020). Sena et al. (2019) noted that while the existing snow 

survey network in Québec is adequate to model the spatial variability of SWE at a 

regional scale (10 km x 10 km), it is inadequate at the local scale (300 m x 300 m) due 

to the reduced and uneven number of stations. To date, compared to extensive manual 

sampling or ground-based sensors (e.g., existing snow survey network in Québec (Sena 

et al., 2019) and snow surveys in Montmorency experimental watershed (Parajuli et al., 

2021; Royer et al., 2021; Bouchard et al., 2022)), limited use of remote sensing 

techniques (Brown and Goodison, 1996; Chokmani et al., 2005; Chokmani et al., 2013; 

Valence et al., 2022) is reported in snow depths/SWE monitoring in Québec. Sena et 

al. (2017) emphasized that remote sensing approaches still require improvements in the 

province of Québec. Moreover, the lack of field studies simultaneously measuring 

snow mass and energy balance in open and forest patches hampers the holistic 

understanding of snowpack dynamics and makes it difficult to validate the modeling 

efforts in the region (Brown, 2010; Sena et al., 2017; Aygün et al., 2020; Paquotte and 

Baraer, 2021). As such, much uncertainty still exists about the micro and mesoscale 

spatial variability of snow cover and associated snow-meteorological interactions in 

Québec. 

Moreover, compared to climate and physiographic settings in which most snow cover 

studies have been performed (e.g., fully-humid continental climate in prairies, mild-

wet climate in Cordillera’s coast), southern Québec is characterized by a humid 
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continental climate with agro-forested landscapes in the St. Lawrence lowlands and 

boreal forested landscapes in the Canadian Shield (Québec Ministry of Forests, 

Wildlife, and Parks (MFFP)). These differences in climate and physiographic settings 

suggest that findings from other regions may not be easily transferable to this region, 

underscoring the need for further studies to better understand the dynamics of snow 

cover in southern Québec. The knowledge of snow cover dynamics in this region is 

crucial due to the profound implications it has for the region, including its vital role in 

regulating reservoir inflow for hydroelectricity (Hydro‑Québec, 2023) and its influence 

on the likelihood of spring floods- e.g., 2017 and 2019 spring floods- (Teufel et al., 

2019; Turcotte et al., 2019; Zahmatkesh et al., 2019).  

The main objective of this thesis is to bridge this knowledge gap by exploring how 

landscape heterogeneity modulates the snow cover at the microscale (< 100 m) level in 

southern Québec, eastern Canada by combining high-resolution lidar and detailed 

meteorological and energy flux measurements. 
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Research Objectives, Scope and Importance 

This research seeks to examine and better understand how the snow cover responds to 

meteorological forcing and how landscape heterogeneity modulates the snow 

distribution. Two paired forested (deciduous and mixed) and agricultural sites (Sainte-

Marthe and Saint-Maurice) and one boreal forested site (Forêt Montmorency) were 

selected as study sites representing the typical landscape of southern Québec. Sainte-

Marthe and Saint-Maurice are located in the St. Lawrence river lowlands where its 

fertile soil makes it an ideal environment for intensive farming practices. Mosaics of 

agricultural and forested areas, which are referred to as agro-forested landscapes (Jobin 

et al., 2014; Aygün et al., 2020), are very common in this part of the province of Québec. 

Forêt Montmorency is a boreal forest farther north on the Canadian Shield. Forest gaps 

associated with clear-cutting and regeneration practices are common in this area. 

In view of utilizing UAV lidar to monitor snow depths for the first time in this region, 

this study first aims to evaluate the accuracy of UAV lidar-derived snow depths in the 

agro-forested environments compared to boreal forested site and provide 

recommendations for future applications. Then, we seek to assess the small-scale 

spatial variability of snow depths between and within these different landscapes by 

UAV lidar data and discuss the landscape impacts on the snow depths. Next, we aim 

to introduce an interpolation algorithm to resolve the effects of under-sampling on final 

interpolated snow depths by airborne remote sensing techniques in coniferous 

environments. Finally, we seek to characterize the energy fluxes of forested versus 

open fields in the agro-forested landscape, particularly considering blowing snow and 

sublimation, which are largely understudied in southern Québec. Since there are a 

limited number of studies that have focused on agro-forested environments compared 

to boreal forested environments to date, it is expected that the findings of this project 

would make an important contribution to the knowledge of snow cover dynamics in 

such environments. 
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The following specific objectives were formulated to pursue the aforementioned 

purpose of the study.  

Objective 1: Investigate how accurate the lidar-derived snow depths are in open versus 

forested environments with different canopy covers. 

Despite the growing interest in the use of UAV lidar scanning for snow depth 

monitoring, there is still a need for evaluating the accuracy of UAV lidar data and lidar-

derived snow depths in different land covers compared to those obtained by ALS. 

Previously, Harder et al. (2020) evaluated the UAV lidar-derived snow depth 

accuracies in mountain and prairie environments in western Canada, and Jacobs et al. 

(2021) in mixed-hardwood-forest and open-field land covers in the eastern USA. There 

has been no application of UAVs in agro-forested environments such as in eastern 

Canada. This objective aims to answer the following questions: 

1-a) How does the accuracy of snow depths vary between open and forested 

environments? 

It is hypothesized that the accuracy of snow depths will be higher in open areas 

compared to forested areas due to likely disturbances for lidar measurements by the 

canopy. It is expected higher accuracy in snow depths in deciduous forests than in 

coniferous forests due to the abundance of leafless deciduous trees in winter. 

1-b) How can the accuracy of lidar-based snow depth measurements be improved? 

It is hypothesized that a well-formulated flight plan and careful boresight calibration 

will improve the accuracy of the lidar data by reducing navigational errors and 

boresight errors. It is also thought that an application of a strip alignment method will 

improve accuracy by reducing misalignment between lidar flight strips. 
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Objective 2: Characterize the small-scale variability of snow depth between and within 

the forested and open environments using lidar-derived data. 

Spatial variability of snow depth at small scales depends on topography, 

microtopography, vegetation type, and vegetation density (Varhola et al., 2010a; 

Koutantou et al., 2022). Snow spatial variability also occurs on more than one scale 

due to different processes acting over multiple scales (Deems et al., 2006; Clark et al., 

2011). Thus, snow accumulation patterns and scaling behavior vary in different 

environments (e.g., open versus forested). However, little has been published about 

how terrain and vegetation characteristics influence snow heterogeneity in different 

landscapes, especially in agro-forested environments, by using UAV lidar. This 

objective aims to answer the following questions: 

2-a) How does snow accumulation vary between and within forested and open 

environments? 

It is hypothesized that more snow accumulation in deciduous forest stands than in 

coniferous forests due to the absence of leaves in winter. It is also expected that 

deciduous forest stands to have a more homogeneous snow depth distribution than in 

coniferous forests, where snow accumulation will be highly heterogeneous, notably 

due to snow accumulation increasing away from tree stems due to the reduction of 

interception and sublimation losses (Pomeroy and Dion, 1996). Deciduous forests are 

expected to have higher snow accumulation than the adjacent open field due to small 

canopy interception losses and wind sheltering inside the forest. On the other hand, 

coniferous forests are expected to accumulate less snow compared to open fields due 

to canopy snow storage losses. It is assumed that the forest gaps and forest edges will 

account for higher snow accumulation than the adjacent forest or open fields due to the 

reduction of wind speed, interception losses, and absence of snow erosion compared to 

open fields. 
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2-b) What are the relationships between snow depth, topography, and vegetation 

structure? 

It is hypothesized that the effect of elevation on snow accumulation is absent in 

relatively flat areas such as Sainte-Marthe and Saint-Maurice, whereas the opposite 

occurs in areas that have more pronounced topography (e.g., Montmorency). 

Vegetation structure is expected to be the prime driver of the spatial variability of snow 

depths in absence of the elevation effect in relatively flat sites. It is also expected 

microtopography to influence snow depth patterns at small scales. Snow accumulation 

is expected to increase with decreasing vegetation densities due to fewer interception 

losses. 

Objective 3: Develop an interpolation method to resolve the effects of under-sampling 

under the canopy in coniferous environments by UAV lidar. 

Under-sampling of snow depth by ALS and UAV lidar methods in presence of dense 

canopies such as coniferous stands is well documented (Tinkham et al., 2014; Zheng 

et al., 2019). Consequently, this under-sampling causes overestimation in interpolated 

snow depth in such environments (Tinkham et al., 2014; Zheng et al., 2016). Thus, 

there is a need for a more sophisticated gap-filling algorithm to resolve intra-canopy 

snow depth variability and thereby avoid likely overestimation of under-sampled 

under-canopy snow depths. This objective aims to answer the following question: 

3-a) How does the distance between sampled and unsampled points affect the snow 

depth estimates? 

It is hypothesized that the accuracy of snow depth estimates in unsampled locations 

will be degraded with the increasing distance between sampled and unsampled points. 
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It is also expected that accounting for systematic trends within the canopy helps 

interpolate sparse lidar snow depth points. 

Objective 4: Analyze snow energy partitioning between forested and open 

environments. 

The lack of field studies simultaneously measuring snow mass and energy balance in 

open and forest areas hinder our ability to validate modeling efforts and limit our ability 

to develop a comprehensive understanding of snowpack dynamics in agro-forested 

landscapes (Brown, 2010; Sena et al., 2017; Paquotte and Baraer, 2021). Moreover, 

blowing snow flux measurements and their influence on the snowpack mass and energy 

budget are largely understudied in agro-forested, temperate environments. This 

objective aims to answer the following questions: 

4-a) How do the snow energy fluxes vary between forested and open environments? 

It is hypothesized an increase of net incoming longwave radiation to the snow surface 

due to the longwave emittance by trees and a decrease in shortwave radiation due to 

partial shading from the canopy in forests. Since the canopy dampens the wind speeds, 

turbulent fluxes are expected to play a lesser role in the surface energy balance below 

the canopy. In larger open fields where an adequate fetch length is available for the 

development of higher winds, turbulent fluxes are expected to dominate the energy 

budget whereas, in smaller openings, net radiation is expected to be dominant. 

However, in spring, when longer daylight is available, net radiation is expected to 

dominate in both environments. Although, shading by trees and reduced turbulent 

fluxes in forests expect to cause slower melt rates under the canopy compared to open 

fields. 
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4-b) How important are the sublimation energy losses from snow surfaces and blowing 

snow transport in these environments? 

High sublimation (latent heat) energy losses are hypothesized in large open areas where 

higher winds are prevalent compared to forested areas. However, it is expected that 

snow surface sublimation to be reduced during blowing snow events due to the 

increased moisture content in the air layer above the snowpack from the sublimation 

of blowing snow particles. 

Thesis Outline 

This dissertation consists of four main chapters related to each objective defined in the 

section “Research Objectives, Scope, and Importance”. 

CHAPTER I aims to achieve the 1st objective of the dissertation by employing UAV 

lidar surveys with a Geo-MMS UAV lidar system (Geodetics, 2019) in Sainte-Marthe, 

Sainte-Maurice agro-forested sites, and Montmorency coniferous forested site and 

assessing the accuracy of the point clouds and subsequent snow depth products. The 

effect of boresight calibration on the collected data was first investigated. Then, an 

automatic strip alignment algorithm implemented in BayesStripAlign (Bayesmap 

Solutions, 2020) was tested on lidar data to assess whether it can improve upon the 

manual boresight calibration procedure. We used several ground control points (some 

manmade, some permanent structures) to evaluate the absolute accuracy of lidar point 

clouds. Strip alignment and a repeated survey were used to evaluate the inter-strip 

accuracy and relative accuracy of overlapping point clouds (e.g., winter and summer), 

respectively. Then, the accuracy of the snow depths was assessed relative to manual 

snow depth measurements at the sites. Differences in accuracies in open versus forested 

and deciduous versus coniferous forests, sources of uncertainties, and 

recommendations to improve accuracies were explored and discussed.  
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CHAPTER II seeks to accomplish the 2nd objective of the dissertation by exploring the 

spatial variability of the snow depths derived by UAV lidar in CHAPTER I in the 

aforementioned sites. A random forest model (Breiman, 2001) was applied to snow 

depth, topographic variables, vegetation descriptors, and forest edge matrices derived 

from lidar data to investigate the effect of these variables on the spatial variability of 

snow depth at each site. The scaling behavior of snow depths was explored by semi-

variogram analysis (Webster and Oliver, 2007). This chapter provides a comprehensive 

analysis of inter (agro-forested versus coniferous) and intra (open versus forest) site 

variability of snow depths. 

CHAPTER III intends to accomplish 3rd objective of the dissertation. To achieve this 

objective the processed lidar data in Montmorency in CHAPTER I was used. 

Development of the interpolation method consisted of tree segmentation, canopy 

delineation, taking into account systematic trends such as landscape trend, under-

canopy versus forest gap snow depth trend, and intra-canopy trend, and implementing 

spatial interpolation techniques on the residuals of these trends. As such, four 

interpolation methods were employed by combining landscape trend, under-canopy 

versus forest gap trend, intra-canopy trend, and spatial interpolation techniques. The 

performance of interpolation methods was evaluated by cross-validation while 

progressively increasing the distance between sampled and unsampled points. Based 

on the results, this chapter provides recommendations on the use of tested interpolation 

methods depending on the distance between sampled and unsampled points (i.e., point 

density).  

CHAPTER IV is associated with the 4th objective of the dissertation. Automatic 

weather station measurements from an open agricultural area, a mixed wood forest 

(mostly deciduous), and a forest clearing in Sainte-Marthe were used to estimate energy 

budget components for the 2020–2021 winter in this chapter. Raw measurements were 

visually inspected, and missing, and/or suspected erroneous values were screened, 
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inventoried, and gap-filled accordingly prior to computing energy fluxes. The energy 

balance for snowpacks in three sites was calculated using the energy balance equation 

developed by Anderson (1976). This chapter compares measurement-based snow 

energy partitioning between open ground, forest, and forest clearing and discusses the 

influence of blowing snow on the energy budget in open areas based on blowing snow 

measurements.  
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Abstract 

This study assesses the performance of UAV lidar system in measuring high-resolution 

snow depths in agro-forested landscapes in southern Québec, Canada. We used 

manmade, mobile ground control points in summer and winter surveys to assess the 

absolute vertical accuracy of the point cloud. Relative accuracy was determined by a 

repeat flight over one survey block. Estimated absolute and relative errors were within 

the expected accuracy of the lidar (~5 and ~7 cm, respectively). The validation of lidar-

derived snow depths with ground-based measurements showed a good agreement, 

however with higher uncertainties observed in forested areas compared with open 

areas. A strip alignment procedure was used to attempt the correction of misalignment 

between overlapping flight strips. However, the significant improvement of inter-strip 

relative accuracy brought by this technique was at the cost of the absolute accuracy of 

the entire point cloud. This phenomenon was further confirmed by the degraded 

performance of the strip-aligned snow depths compared with ground-based 

measurements. This study shows that boresight calibrated point clouds without strip 

alignment are deemed to be adequate to provide centimeter-level accurate snow depth 

maps with UAV lidar. Moreover, this study provides some of the earliest snow depth 

mapping results in agro-forested landscapes based on UAV lidar. 

Keywords: UAV lidar; boresight calibration; strip alignment; agro-forested landscapes; 

ground control points 
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 Introduction 

One of the key features of snow accumulation is the spatial variability of the snow 

cover. At a broader scale, quantifying the spatial distribution of snow depth is vital to 

address the current behavior and the future of the cryosphere (Barnett et al., 2005). At 

the watershed or smaller scales, accounting for the spatial variability of snow depth is 

crucial to estimate the amount and timing of spring runoff (Clark et al., 2011). Rapid 

changes in the amount, extent, timing, and duration of the snow cover in cold regions 

with changing climatic conditions—mainly in response to warming temperatures and 

rain-on-snow events (NSIDC, 2019; Sturm et al., 2017)—call for a better knowledge 

of the quantification of snow distribution (Aygün et al., 2020a). 

Given the importance of accounting for the spatial variability of the snow cover, the 

most frequently utilized techniques to observe snowpack variations are in situ 

observations and/or remote sensing. The traditional, ground-based, and mostly manual 

process of monitoring snow characteristics is expensive, extremely labor-intensive, 

time-consuming, and potentially dangerous. Additionally, it can disturb the snowpack 

and influence subsequent measurements (Deems et al., 2013). Even when available, 

and despite its accuracy, point measurements may not be representative of a larger area 

(Dong, 2018). Nevertheless, during the past several decades, remote sensing techniques 

that surmounted most of the aforementioned drawbacks have become a powerful and 

efficient approach for monitoring snowpack in remote environments. A variety of 

airborne and terrestrial remote sensing techniques developed using satellite, radar, laser 

(lidar: Light detection and ranging), and photogrammetry data have been extensively 

used in a variety of cryospheric studies (Dong, 2018; Tsai et al., 2019). Among these 

techniques, airborne (manned and unmanned) laser scanning has become increasingly 

popular due to its ability to capture high-resolution micro (<100 m) and mesoscale (100 

m–10 km) variability, as well as to detect snow cover/ground under canopy due to its 

strong penetration ability (Currier and Lundquist, 2018; Deems et al., 2013; Harder et 
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al., 2020; Harpold et al., 2014; Hopkinson et al., 2012b; Hopkinson et al., 2004; Jacobs 

et al., 2021; Mazzotti et al., 2019; Morsdorf et al., 2006; Zheng et al., 2016; Zheng et 

al., 2018). In recent years, there has been a growing interest in the use of unmanned 

aerial vehicle (UAV) laser scanning for small scale high-resolution mapping, due to its 

potential to deliver dense and high-quality point clouds with minimal occlusion in 

forested areas compared with airborne laser scanning (ALS) (Broxton et al., 2015; 

Currier and Lundquist, 2018; Glira et al., 2016; Harder et al., 2020; Mazzotti et al., 

2019; Michele et al., 2016; Painter et al., 2016; Pajares, 2015). Snow depths from lidar 

data are commonly estimated by differencing snow-covered and snow-free elevation 

products (Deems et al., 2006; Deems et al., 2013; Hopkinson et al., 2012a; Hopkinson 

et al., 2012b; Hopkinson et al., 2004; Kirchner et al., 2014; Trujillo et al., 2007). 

Usually, ground-based manual measurements are used as ground truth data to validate 

the lidar-derived snow depth products (Deems et al., 2013; Dong, 2018). However, as 

with any other measuring technique, UAV laser scanning is not exempt from errors. 

In general, the UAV lidar system comprises three instruments: A laser device, an 

inertial measurement unit (IMU) that continuously records platform orientation, and 

high precision airborne global positioning system (GNSS, global navigation satellite 

system), which records the three-dimensional position of the platform (Deems et al., 

2013; Li et al., 2019). Moreover, the system requires a GNSS base station installed at 

a known location and in the vicinity of the airborne platform (preferably within 50 km), 

which operates simultaneously to differentially correct, and thus improve the precision 

of the airborne GNSS data (Gatziolis and Andersen, 2008). Error sources of UAV lidar 

mapping can broadly be classified into boresight errors, navigational errors, terrain-

induced errors, vegetation-induced errors, and post-processing errors (Deems et al., 

2013; Pilarska et al., 2016). Boresight errors occur due to offset and angular differences 

between the lidar and IMU origins. The origin difference vector is called boresight shift 

or lever-arm offset, and the three angles between the lidar and IMU axes are called 

boresight angles (Geodetics, 2019a; Pilarska et al., 2016). UAV lidar systems are more 
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prone to boresight angular errors, due to their lower sensor installation precision and 

stability than lidars used onboard manned aircrafts (Li et al., 2019; Zhang et al., 2019). 

Precise calibration of lever-arm offsets and boresight angles can reduce the boresight 

errors (Li et al., 2019; Ravi et al., 2018). While lever-arm offsets can usually be 

accurately measured after system assembling or from drawings (Li et al., 2019), 

boresight angle errors should be calibrated manually (Geodetics, 2019a) or using 

automated methods (De Oliveira Junior and Dos Santos, 2019; Li et al., 2019; Ravi et 

al., 2018; Zhang et al., 2019). 

Errors associated with GNSS and IMU can result in navigational errors. These 

navigational errors can be minimized with IMU calibration, as well as GNSS accuracy 

enhancements methods, such as differential global positioning system (DGPS), real-

time kinematic (RTK), precise point positioning (PPP) or post-processing kinematic 

(PPK) (Deems et al., 2013). Another method to reduce random errors caused by GNSS 

and IMU is the strip adjustment, which fundamentally decreases the discrepancies 

between flight strips. The strip adjustment (or strip alignment) technique has proven to 

be very successful with ALS data (Glira et al., 2015; Kumari et al., 2011), and 

implementing it on UAV data remains an active area of research (Chen et al., 2021; 

Glira et al., 2016). One of the reasons that this technique is not (yet) very popular 

among UAV users is that the readily available strip adjustment algorithms require raw 

data of the laser scanner, which is often not accessible for most end-users through the 

UAV lidar system (Glira et al., 2016; Zhang et al., 2019). 

Terrain-induced errors are mostly positional errors that occur due to complex terrain 

and steep terrain slopes. Flight planning can help in reducing these terrain-induced 

errors to some extent by minimizing oblique incident laser shots on steep slopes 

(Deems et al., 2013). The presence of canopy and/or sub-canopy can reduce the number 

of laser shots reaching the ground or snowpack surface, and thus result in observation 

gaps. The density of ground return lidar points depends on the canopy type and 
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architecture, laser spot size, laser pulse rate, scan angle, flying height, and flying speed, 

i.e., higher pulse rates provide more laser shots, while smaller scan angles and a lower 

flight altitude increase the probability of canopy penetration (Deems et al., 2013; 

Hyyppä et al., 2005; Wallace et al., 2012). Therefore, a proper flight planning can 

minimize errors to some degree. Post-processing errors are predominantly caused by 

misclassification of the raw point cloud (misclassifying the terrain points as non-terrain 

and/or vice versa). Point cloud classification algorithms are often highly automated. As 

a result, the magnitude of error depends on the type of filter used, local terrain geometry, 

the height and type of vegetation, the presence of manmade structures, such as 

buildings, and the accuracy of the measured elevation (Deems et al., 2013; Evans and 

Hudak, 2007; Yilmaz et al., 2018). 

Moreover, there is a lack of studies evaluating the accuracy of UAV lidar point data 

and lidar-derived snow depth maps with and without different vegetation covers. To 

our knowledge, two studies estimated the UAV-based lidar snow depth measurement 

accuracy to date (Harder et al., 2020; Jacobs et al., 2021). Harder et al. (2020) compared 

snow depth estimates between UAV lidar versus structure-from-motion (SfM) 

technique using manual snow depth measurements in mountain and prairie 

environments in western Canada. Jacobs et al. (2021) explored the capability of UAV 

lidar to estimate shallow snow depths in mixed-hardwood-forest and open-field land 

covers in the eastern USA through the comparison of simultaneous field-based snow 

depth measurements. Both studies showcased the ability of UAV lidar to effectively 

quantify the small scale snow depth variability.  

The overall motivation for this work is to understand and assess the performance of 

UAV lidar system in measuring high-resolution snow depths in agro-forested 

landscapes. Moreover, to our knowledge, this study is the first of its kind that utilized 

the UAV laser scanning technique to measure small scale snow depth variability in 

southern Québec, Canada, which houses distinct land use patterns of alternating 
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agricultural fields and forest patches. These mosaics of forests and agricultural fields 

are referred to as agro-forested landscapes in southern Québec (Aygün et al., 2020b; 

Jobin et al., 2014). In addition to boresight calibration, a strip alignment method was 

applied to the data to test whether it can improve the accuracy of data by partly 

correcting high-frequency IMU errors (random errors). First, this paper discusses the 

data collection and processing workflow, including the sources of errors and the 

refinement methods implemented in this study. Then, an assessment of the absolute 

and relative accuracy of the lidar data, an evaluation of the accuracy of snow depth 

maps with manual measurements in the open field versus forested environments, and 

an investigation of the applicability of strip alignment with UAV lidar data are 

presented. 

 Materials and Methods 

 Study Sites 

Three sites that represent the main land use and cover patterns in southern Québec were 

selected to test the ability of UAV lidar to measure snow depths in open and vegetated 

areas (Figure 1.1). Sainte-Marthe (45.4°N, 74.2°W) is a paired agricultural and dense 

deciduous forested site (Paquotte and Baraer, 2021), where the forested area comprises 

sugar maple (Acer saccharum), red maple (Acer rubrum) with no or sparse understory, 

and a small conifer plantation to the Southwest. Saint-Maurice (46.4°N, 72.5°W) is a 

paired agricultural and high to moderate dense mixed forested site, and the forested 

area comprises poplar (Populus x canadensis), red maple (Acer rubrum), white pine 

(Pinus strobus), and balsam fir (Abies balsamea) with sparse understory. The forested 

areas in these sites overlie undulating glacial till sediments that are often associated 

with rougher microtopography, whereas the agricultural fields are associated with 

flatter glaciomarine or fluvioglacial sediments (Québec Ministry of Forests, Wildlife, 

and Parks (MFFP), Québec Research and Development Institute for the Agri-
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Environment (IRDA), and La Financière Agricole du Québec (FADQ)). The main crop 

type in the agricultural areas of these two agro-forested sites is soya. Irrigation canals 

and streams that flow through these open agricultural areas form distinct terrain 

characteristics in the exposed agricultural fields. Forêt Montmorency (hereafter 

Montmorency; 47.3°N, 71.1°W) is a site with dense boreal forest interspersed with 

large gaps. The dominant tree types in this site are balsam fir (Abies balsamea), black 

spruce (Picea mariana), and white spruce (Picea glauca) with no understory. Adjacent 

to the forest is an open area hosting the NEIGE-FM snow research station, which hosts 

a variety of precipitation gauges and snowpack measuring sensors, and is part of the 

World Meteorological Organization’s (WMO) Global Cryosphere Watch (GCW) 

surface network (Royer et al., 2021). Montmorency has a combination of glacial till 

and fluvioglacial soil types. Table 1.1 outlines the physiographic and climatic 

conditions at each site. Climatic data presented here were based on the climate averages 

(1981–2010) from the Environment and Climate Change Canada (2021) 

meteorological stations closest to each site (station climate ID 7016470, 7017585, and 

7042388 for Sainte-Marthe, Saint-Maurice, and Montmorency, respectively). Land use 

datasets were obtained from the MFFP. For interpretation purposes, open agricultural 

areas in Sainte-Marthe and Saint-Maurice and the small open area in Montmorency 

(NEIGE-FM site) are referred to as “field” hereafter. 
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Figure 1.1. Overview of the study sites with lidar survey extents. (a) Sainte-Marthe; 
(b) Saint-Maurice; and (c) Montmorency. Manual measurement and ground control 
point (GCP) locations are also shown. (Manual measurements in Saint-Maurice could 
not be retrieved due to a probe malfunctioning, thus they are not shown). Contour 
intervals deliberately differed between sites for interpretation purposes. 

Table 1.1. Site characteristics and field campaign details. 

 Sainte-Marthe Saint-Maurice Montmorency 
Elevation range, m 70–78 46–50 670–700 
MAAT, °C 6.0  4.7 0.5 
Total precipitation, mm 1000 1063 1600 
Snowfall/Total 
Precipitation, % 15 16 40 

Winter season November–March November–March October–April 
Lidar extent, km2 0.22 0.25 0.12 
Snow-off flight date 11 May 2020 02 May 2020 13 June 2019 
Snow-on flight date 12 March 2020 11 March 2020 29 March 2019 
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Average snow depth, m 0.32 0.60 1.40 
Number of manual 
measurements 56 - a 43 

MAAT: Mean annual air temperature; a: Manual snow depth measurements could not 
be retrieved due to a probe malfunctioning. 

 Data Acquisition 

Field campaigns were carried out in summer for the snow-free surface and in winter 

for the snow-covered surface with UAV lidar (Table 1.1) in 2019 and 2020. 

Simultaneous manual snow depth measurements were taken on the same day of the 

winter–UAV lidar flights to later validate the UAV-derived snow depths. Winter 

surveys were targeted to capture near-peak snow accumulation. Figure 1.2 depicts the 

site conditions during snow-off and snow-on surveys. 
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Figure 1.2. (a) Sainte-Marthe site during summer survey and (b) during winter survey; 
(c) presence of basal ice layer in Sainte-Marthe field; (d) Saint-Maurice site during 
summer survey and (e) during winter survey; (f) Montmorency site during summer 
survey and (g) during winter survey; (h) local snow accumulation in a forest gap in 
Montmorency boreal forest. 

 Lidar System 

A Geo-MMS lidar mapping payload mounted onto a DJI M600 Pro UAV platform was 

used for the surveys (Figure 1.3). This Geo-MMS UAV lidar system is manufactured 

by Geodetics Inc., San Diego, USA and is comprised of a Velodyne VLP-16 lidar 

sensor coupled to a real-time, dual-antenna GNSS aided inertial navigation system 

(INS). The INS, called Geo-iNAV, is comprised of a tactical MG364 Quartz Micro 
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Electro Mechanical (MEMS) IMU, a high performance dual-core processor, a data 

recorder, and two dual-frequency GNSS receivers. The VLP-16 sensor uses 16 infra-

red lasers (wavelength of 905 nm) each pulsating at 18.08 kHz and retrieves 

measurements up to 600,000 points/s in dual return mode, with a 3 cm precision at 50 

m above ground level (AGL) (VelodyneLiDAR, 2018). The Geo-iNAV INS provides 

positional accuracy of 5 cm in horizontal and 10 cm in vertical dimensions with a 0.1 

and 0.3° accuracy in roll/pitch and heading, respectively (Geodetics, 2018). Based on 

the manufacturer specifications, the Geo-MMS can meet a ±5 cm (RMS, root mean 

square) accuracy of the point cloud. The UgCS flight control software (2019) 

developed by SPH Engineering, Latvia was used to generate terrain-following flight 

paths with respect to an underlying shuttle radar topography mission digital elevation 

model (SRTM DEM). Flight parameters were optimized to reduce overall INS errors 

and maximize the mapping efficiency in the forested areas. Maximum flight time with 

one battery set was conservatively limited to 15 min. Depending on the extent of the 

surveying area, our flight plans included multiple return flight paths with two or three 

battery exchanges. Flight parameters used for the surveys are outlined in Table 1.2. 

 

Figure 1.3. UAV lidar system. 
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Table 1.2. Flight parameters. 

Flying speed 3 m/s 
Flight altitude 40 m AGL 
Lidar RPM 1200 
Field of view 145° 
Distance between parallel flight lines 64 m 
Ground overlap 20% 
Point density 603 points/m2 

 Ground Control Points (GCPs) 

GCPs were used to assess the absolute accuracy of lidar data (in the vertical dimension, 

z) in all three survey areas. In the Montmorency site, two permanent structures were 

utilized as GCPs, whereas at other sites, in the absence of static structures, two types 

of temporary targets, circular-shaped elevated (1 m diameter) ones, and square-shaped 

flat (0.5 x 0.5 m) ones (Figure 1.4) were employed. Elevated targets were used in both 

winter and summer surveys, while flat targets were only used in summer surveys. 

Locations of the GCPs are shown in Figure 1.1. Geographical coordinates of the GCPs 

were measured using PPK surveys. Each target was surveyed at 1 Hz for 5 min using 

a FOIF A30 GNSS receiver. Each static survey was post-processed relative to another 

A30 base receiver deployed at each site. Figure 1.2d,f shows the deployment of A30 

base stations in Saint-Maurice and Montmorency. Nominal horizontal and vertical 

accuracies of the PPK surveys were 3 and 3.5 mm, respectively. 
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Figure 1.4. Manmade GCPs: (a) Elevated and (b) flat. Photos were taken after the lidar 
surveys with FOIF A30 GNSS receiver on the target surface. 

 Ground Validation Surveys 

To assess the lidar-derived spatially distributed snow depth retrievals, we used ground-

based manual snow depth measurements taken simultaneously with the lidar flight 

(Table 1.1). Snow depth transects were taken in a manner that effectively samples the 

different vegetation types and pronounced topographical characteristics at the 

respective sites (Figure 1.1). Snow depths were measured using a Magna probe (Sturm 

and Holmgren, 2018) in Sainte-Marthe and Saint-Maurice and a snow tube in 

Montmorency. The Magna probe automatically measures and stores the snow depth in 

a data logger. Unfortunately, the snow depth measurements at Saint-Maurice were lost 

due to a probe malfunctioning, which prevented the data recording. At each location, 

five measurements were taken and averaged to achieve more representative snow 

depths. Measurements were taken as one point in the center, and four points 1 m away 

from the center in a diagonal cross shape. The geographical coordinates of the center 

measurement were obtained using RTK surveys relative to a FOIF A30 base receiver 

deployed at each site (Figure 1.2d,f). Nominal horizontal and vertical accuracies of the 

rover points relative to the base in RTK mode are 8 and 15 mm. RTK signal can be 

degraded in forested areas due to the multipath error (Valbuena et al., 2010). Therefore, 
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positional accuracy was expected to be lower than the nominal accuracy in forested 

areas, especially in Montmorency. 

 Data Processing 

Figure 1.5 presents the workflow developed to produce snow depth from lidar data. 

 

Figure 1.5. Data processing workflow of lidar data. Each box shows the software used 
(bold) with the corresponding end product. 
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 GNSS Data Processing 

Post-processing of GNSS data was carried out in EZSurv software (Effigis, 2019). Base 

station locations varied between flights. The base station of the first survey in Sainte-

Marthe was geo-referenced to the closest available geodetic marker (Ministry of 

Energy and Natural Resources, 2020). Due to the unavailability of geodetic markers in 

the vicinity of the other two sites, the processing of base stations of the first surveys 

(summer or winter, no matter which one was conducted first, see Table 1.1) was carried 

out using the PPP option in EZSurv. Since the location of the GNSS base station 

changed on the second survey, we used three permanent structures—reference post—

(light post, two logger boxes of weather instrument) in the vicinity of the three sites as 

reference points to co-register the two lidar surveys conducted in summer and winter. 

In summary, the GNSS data processing of the snow-off and snow-on surveys involved 

two steps: 

(1) First survey: PPP of the base, then PPK of the reference post, drone, and GCPs; 

(2) Second survey: PPK of the reference post, calculate the coordinates of the new 

base using the positional shift of the reference post relative to the first survey, 

PPK of the drone, and GCPs using the corrected base coordinates. 

Manual snow depth measurements were processed as RTK and registered to the 

reference post. The standard deviation of PPP computed and further processed base 

stations was consistently lower than 0.01 m. The uncertainty of RTK manual snow 

depth survey points varied among sites and their respective land cover (field and forest). 

Horizontal standard deviation in Sainte-Marthe forest ranged between 0.327–3.091 m 

with RTK float solutions (low quality and less confident) and 0.003–0.081 m with RTK 

fixed solutions in the field. The higher range of values in the forest implies the higher 

uncertainty of GNSS measurements in the forest. In Montmorency, the average 
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horizontal RTK accuracy was 0.008 m. Horizontal standard deviation in Montmorency 

forest ranged between 0.002–0.034 m and 0.002–0.007 m in the field, both with RTK 

fixed solutions. Nevertheless, the uncertainty of RTK solutions in Montmorency forest 

could be significantly higher than the values indicated here due to the multipath effect 

(Hopkinson et al., 2004; Valbuena et al., 2010).  

 Raw Lidar Data Processing 

A geo-referenced lidar point cloud requires post-processing of IMU and GNSS data. 

First, high-frequency raw trajectory data (x,y,z, heading, pitch, roll) from the Geo-

iNAV INS was post-processed in the Geodetics proprietary software LiDARTool 

(Geodetics, 2019b) with PPK correction. The PPK option regenerates a significantly 

more accurate trajectory file by correcting the onboard GNSS data with the GNSS base 

station data (Geodetics, 2019b). Then, this post-processed trajectory file was merged 

with the raw laser data to produce a geo-referenced x,y,z point cloud. To reduce the 

noise level of lidar data, the outer beams of the VLP-16 lidar, where the noise level is 

highest (Geodetics, 2019b), were discarded from processing (i.e., only the laser beams 

between ±8° from the full ±15° vertical field of view were used in processing). The 

outlier removal tool in LiDAR360 (GreenValley-International, 2020) removed the 

remaining low and high noisy data present in lidar data (Figure 1.5). 

 Boresight Calibration 

As depicted in Figure 1.5, while lidar direct geo-referencing with post-processed 

trajectory and GNSS data is quite precise in the position and orientation of each point 

cloud, it can be prone to errors if the alignment of the laser sensor to the INS is not 

precisely known. Quite often, the manufacturer’s calibrated boresight shift and angles 

of the laser frame to the platform body frame can be slightly offset upon reassembling 

of the laser sensor on the Geo-iNAV system. This problem can be solved by a boresight 
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calibration. Once calibrated, these values remain constant as long as the lidar sensor 

payload is not disassembled (Geodetics, 2019b). For this purpose, we first manually 

and precisely measured the lever arm distances between the laser sensor and IMU 

center. To find the boresight angles, the manufacturer recommends a manual 

adjustment with a trial-and-error procedure (Geodetics, 2019b). To achieve this, test 

flights were carried out in the University of Québec at Trois-Rivières premises in April 

2019 by flying the Geo-MMS system in different directions over a flat roof and an 

inclined surface to calibrate the boresight angles (Figure 1.6a). Processing and 

visualization of the data collected by the system were carried out in Geodetics 

LiDARTool and LiDAR360, respectively. The test flights were conducted with the 

nominal boresight angles (90, 0, −90° in roll, pitch, heading) and the misalignment 

between flight strips was analyzed in all three rotational axes. Calibration of the 

boresight angles was initiated with the heading angle. Two opposite direction strips 

covering the roof edges were selected, plotted together, and the top view alignment was 

checked. Since the roof edges seem to be misaligned (Figure 1.6b), the nominal heading 

angle was increased in a small step of 1° (90, 0, −91° in roll, pitch, heading) and the 

flight strips were re-processed in LiDARTool. Then, the re-processed flight strips were 

checked to inspect the impact of the angle change along the roof edges from a top view 

of the roof. Generally, if two flight strips become more aligned/converged compared 

with nominal values and if there was still room for convergence, the heading angle was 

increased in small steps in the same direction (e.g., −92°), otherwise, the angle was 

increased in the opposite direction (e.g., −89°). Then, the step size was progressively 

narrowed (e.g., down to 0.1°) when the two strips started converging. This process was 

continued until a good alignment between flight strips along the heading was achieved 

(Figure 1.6c). Once the heading angle was calibrated, and by maintaining the calibrated 

heading angle, the same procedure was followed to calibrate the pitch and roll angles 

by checking the misalignment of adjacent flight strips over the inclined surface in the 

side view in LiDAR360 (Figure 1.6d,e). The calibrated boresight angles obtained from 

this procedure for our system were 90.1, 0.28, and −90.6° in roll, pitch, and heading, 
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respectively. Figure 1.6c,e illustrates the noteworthy improvement of the alignment of 

the flight strips after boresight calibration. Then, these boresight angle values were 

used to process data collected from all the flights in this study. 

 

Figure 1.6. An example plot of the boresight calibration procedure. (a) 3D view of the 
calibration site, lidar point cloud is colorized by elevation (roof structure and inclined 
surface are demarcated in red squares with relevant letters); (b) top view of the roof 
structure for nominal boresight angles and (c) for calibrated boresight angles; (d) cross-
section view of the inclined surface for nominal boresight angles and (e) for calibrated 
boresight angles. Points scanned from different strips have different colors (red, blue, 
yellow, and green). 

 Strip Alignment 

We tested an automatic strip alignment algorithm implemented in BayesStripAlign 

2.17 software developed by BayesMap solutions, USA, (2020) to assess whether it can 
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improve upon the manual boresight calibration procedure. The strip alignment 

algorithm in BayesStripAlign registers overlapping lidar flight strips and uses relative 

displacement calculated between those overlapping strips to correct both relative and 

absolute geometric errors. The goal of the process is to have the smallest possible 

absolute corrections, while achieving the maximum relative accuracy. The algorithm 

uses a spatially adaptive approach to address time-dependent effects, such as drifts and 

oscillations (i.e., high-frequency IMU drifts and oscillations), which cannot be 

corrected with a classical sensor calibration, and thus effectively reduces the 

discrepancies between flight strips. Within the algorithm, systematic effects are 

absorbed by the x and y lever arms, boresight angles, and internal distortion corrections. 

The high-frequency components of the random walk IMU noise are mainly treated by 

high-frequency drift corrections. After testing the algorithm with different 

combinations of aforementioned parameters on the flight strips, the best alignment of 

overlapping flight strips was found for the automated calibration and correction of the 

y lever arm, boresight angles, and use of a rigorous model to capture internal distortions 

and with 5 s intervals for high-frequency drift corrections. This combination of 

parameters found for our dataset was reviewed and verified by the software developer. 

BayesStripAlign allows for the control of the absolute accuracy of corrected point 

cloud using GCP information. The version used in this study includes the automatic 

detection of GCPs based on local terrain roughness and the calculation of bias using 

interpolated and gridded lidar data. Each point at GCP locations is weighed using 

inverse terrain roughness before the absolute accuracy statistics are computed. 

Unfortunately, the automatic detection of GCPs based on this roughness method did 

not work well with the elevated GCPs used, and thus this option was excluded from 

the analysis. 
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 Bare Surface Points Classification 

Snow depth mapping requires a classification of the point clouds into the bare surface, 

ground (from summer survey) or snow (from winter survey). We used the multiscale 

curvature classification (MCC) algorithm (Evans and Hudak, 2007) implemented in 

the commercial Global Mapper software (2020) to classify bare surface points. The 

Global Mapper lidar module identifies possible ground points by employing a 

morphological filter prior to the application of the MCC algorithm. The morphological 

filter uses three user-defined parameters of the maximum height difference, expected 

terrain slope, and maximum building width. MCC uses two user-defined parameters, 

bin size and minimum height difference from the local mean. Parameters of the 

algorithm were adjusted according to the vertical spread of the flight strips over open 

terrain, the local slope of the terrain and streams, and the presence/absence of buildings. 

A bin size of 0.5 m, a minimum height difference of 0.2 m, a maximum height 

difference of 10 m, expected terrain slope of 10° in Sainte-Marthe and Saint-Maurice 

sites and 20° in Montmorency, and a maximum building width of 10 m were found as 

the optimum parameters for the sites in both seasons. To classify the bare surface points 

of streams and visible snowbanks, the algorithm was implemented by selecting these 

areas manually and adjusting the abovementioned parameters to 0.5 m, 0.35–0.45 m, 

10 m, 40–70°, and 10 m, respectively. Following a careful inspection of the classified 

bare surface points, some misclassified points in forested areas were manually 

reclassified as bare surface. 

 Snow Depth Maps 

Snow depth rasters were produced by differencing winter and summer DEMs. DEMs 

were generated by aggregating bare surface points at each site to a grid resolution of 

1.4 m using the binning method in Global Mapper. This method takes the average of 

the bare surface points that fall inside a grid cell, rather than interpolating. Observation 
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gaps in the point cloud were assigned as no data (i.e., no interpolation method was used 

to fill the gaps in the DEMs). With the high point density obtained from UAV lidar, 

this method would ensure that the generated DEMs were of reasonable representations 

of the true ground/snow surfaces. The grid resolution of 1.4 m was selected based on 

the manual sampling strategy outlined in Section 1.2.2.3 (i.e., five measurements at 

each sampling location represented a 1.4 × 1.4 m (√12 + 12) grid cell) and aimed at 

minimizing the effect of GNSS positional errors on manual measurements. As final 

filtering, spurious negative snow depths were set to zero as they are physically 

impossible and needed to be filtered out (Hopkinson et al., 2012a). Negative snow 

depths were found along the access roads, stream banks, and forested areas. Negative 

snow depths along access roads could be due to the snow clearing operations in winter. 

Compressed grasses or shrubs due to snow, and/or misclassification errors, and local 

changes in topography could be the reason for negative snow depths along stream 

banks and in forests. However, all these values are rather small in magnitude, 

accounting for a small portion of the total area (<0.1%) sampled and had a negligible 

effect on our snow depth statistics. DEMs and snow depth maps derived before 

applying the strip alignment (i.e., rasters derived after manual boresight calibration 

only) are denoted as “BSC” and those derived after applying the strip alignment are 

denoted as “SA”. 

 Data Analysis 

We assessed the accuracy of UAV lidar in terms of absolute and relative accuracies in 

the vertical direction (z). The absolute accuracy was determined by comparing the 

GNSS elevation of the GCPs with those obtained from the lidar data. The relative 

accuracy between the overlapping flight strips was obtained as a direct output from 

BayesStripAlign. In addition, one repeat summer flight was conducted on the same day 

in Sainte-Marthe and used to further assess the spatial distribution of relative errors of 
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the lidar data. The relative accuracy statistics were calculated for the DEM created by 

differencing the two repeat summer DEMs. The manual snow depth measurements 

were finally used to validate the lidar-derived snow depth maps. The lidar-derived 

snow depth error was estimated by comparing each manual measurement to its 

corresponding 1.4 m grid cell snow depth. The locations of the GCPs and manual 

measurements are indicated in Figure 1.1. The error metrics employed to assess 

accuracies, include the mean (bias), standard deviation (sd), and root mean square error 

(RMSE). 

 Results 

 Accuracy Assessment of Lidar Point Cloud 

 Absolute Accuracy of Lidar Data 

Absolute error statistics calculated for the lidar point cloud are presented in Figure 1.7. 

Generally, SA shows an inferior performance, with higher RMSE values than BSC. All 

BSC results show that the RMSE values are closer to the nominal accuracy of the lidar 

system (0.05 m), while the majority of the SA RMSE values are higher. 

With the BSC method, winter surveys consistently show a lower RMSE, bias, and sd 

than summer surveys in both Sainte-Marthe and Montmorency. In contrast, the 

absolute accuracy was slightly better in summer than winter at Saint-Maurice. With the 

exception of Montmorency, the other two sites generally exhibit a small bias compared 

with the spread (sd) for both seasons with the BSC method. The SA method exhibits a 

different pattern: The winter RMSE, bias, and sd are higher at Saint-Maurice and 

Montmorency than in summer, while Sainte-Marthe shows an opposite tendency. On 

the other hand, the SA method appears to consistently increase the bias of the BSC data. 
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Moreover, it seems to decrease the summer sd of the BSC data, but increase it in winter, 

except in Sainte-Marthe. 

 

Figure 1.7. Absolute error statistics of lidar point clouds. Plots are segmented by site 
(rows), data processing method (columns), and error statistics (colors). The grey 
dashed line is the expected accuracy of the lidar system. n denotes the number of GCPs. 
BSC: Boresight calibrated point cloud; SA: Boresight + strip-aligned point cloud. (Bias 
was calculated as lidar-derived DEM elevation − GNSS elevation at GCPs). 

 Relative Accuracy of Lidar Data 

The relative RMSE error is a combination of errors from two co-registered point clouds 

at the same location. The expected uncorrelated relative error for lidar data is 

approximately 7 cm (√52 + 52). As seen from Figure 1.8, SA significantly improved the 

inter-strip relative accuracy of the BSC data. For example, the large biases in Sainte-

Marthe summer and Montmorency winter BSC data were notably reduced after the 
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application of SA. All SA statistics are closer to zero, and well below the nominal error 

of lidar data. 

 

Figure 1.8. Relative error statistics between overlapping flight strips. 

Repeat flight statistics provide an insight into the probable error values we could expect 

in snow depth maps, as shown in Figure 1.9. Accuracy statistics show that relative 

errors are larger (Figure 1.9a) and more variable (Figure 1.9b) in the forested area 

compared with the field area. SA appears to consistently increase the BSC bias, while 

decreasing the BSC sd, partly in line with the inter-strip relative statistics found in 

Figure 1.8. The estimated RMSE values for the two processing methods in all 

landscape units are well below the nominal error (Figure 1.9a). 
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Figure 1.9. (a) Relative error statistics from repeat flights in field, forest, and the 
combined landscape for the two point cloud processing methods; (b) relative error 
distribution in field, forest, and the combined landscape of the BSC data. 

 Accuracy Assessment of Snow Depth Maps 

 Lidar-Derived Snow Depth Maps 

Snow depth maps were produced for four cases corresponding with the BSC and SA 

methods and their bias-corrected versions (BSC_BC and SA_BC; BC: Bias-corrected). 

The bias-corrected DEMs were produced by directly subtracting the bias estimated 

from the absolute accuracy assessment (Figure 1.7) to each winter and summer DEM 

before deriving the snow depth map. Figure 1.10 shows the snow depth maps derived 

from UAV lidar data. The overall snow depth patterns among the different processing 

methods did not significantly differ, thus only the maps from the BSC processing 

method are shown here. 

The highest snow depths are found at the colder and more humid Montmorency site, 

specifically in forest gaps (Figure 1.10: Number 4). Higher snow accumulation in 

streams (Figure 1.10: Number 1) and along the forest edges (Figure 1.10: Number 2) 

is apparent at the two agro-forested sites. Access roads in Sainte-Marthe and 

Montmorency (Figure 1.10: Number 3) are snow-free due to snow clearing operations. 
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Figure 1.10. UAV lidar-derived snow depth maps. (a) Sainte-Marthe; (b) Saint-
Maurice; and (c) Montmorency. Features 1 to 4 are discussed in the text. 

 Snow Depth Validation 

The validation of UAV lidar-derived snow depths with manually sampled ground 

measurements is shown as boxplots in Figure 1.11. The boxplots illustrate the 

discrepancy between the lidar and manual snow depths in the field and forest at each 

site for the four processing methods, BSC, BSC_BC, SA, and SA_BC. 

As seen in Figure 1.11, boxplots of the Sainte-Marthe field, forest, and Montmorency 

field show on average a consistent overestimation (positive bias) of lidar snow depths, 

whereas in Montmorency forest, lidar snow depths seem to be mostly underestimated 

for all methods. Owing to their different characteristics, field and forest areas in the 

two sites show contrasting behaviors in terms of lidar snow depth accuracy. In Sainte-
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Marthe, field snow depths consistently show a higher error dispersion (RMSE = 0.16–

0.22 m) than the adjacent deciduous forest (RMSE = 0.079–0.12 m). On the other hand, 

the small open field in Montmorency exhibits a smaller and less dispersed error (RMSE 

= 0.043–0.17 m) than the adjacent boreal forest (RMSE = 0.19–0.22 m). The influence 

of vegetation type is apparent in Figure 1.11, where the leaf-less deciduous forest in 

Sainte-Marthe has a smaller RMSE (0.079–0.12 m) compared with evergreen 

coniferous trees of Montmorency (0.19–0.22 m). 

Sainte-Marthe BSC and BSC_BC show a similar performance in both field and forest 

(Figure 1.11 a,b). This suggests that the small bias of ≤1 cm in each DEM (Figure 1.7) 

does not contribute significantly to errors in the final snow depth map. Compared with 

BSC, SA displays higher RMSE and bias in both field and forest at this site. Despite 

the slightly better RMSE and bias values of the SA_BC method in comparison with 

SA, its performance remains inferior to the BSC and BSC_BC methods. In contrast 

with Sainte-Marthe, BSC_BC shows a lower RMSE and bias in Montmorency field, 

but a higher RMSE and bias in Montmorency forest, compared with BSC. However, 

similar to Sainte-Marthe, SA results in a substantial increase in RMSE and bias in the 

field, but only a minor change in the forest. SA_BC statistics are better than SA in the 

field, but are still higher than the BSC_BC method. Moreover, the SA_BC method in 

Montmorency forest shows the highest RMSE and bias among all cases. 
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Figure 1.11. Distribution of the differences between lidar and manual snow depth for 
the different point cloud processing methods. (a) Sainte-Marthe field; (b) Sainte-
Marthe forest; (c) Montmorency field; and (d) Montmorency forest. BSC: Boresight 
calibrated point cloud; SA: Boresight + strip-aligned point cloud; BSC_BC: Bias-
corrected BSC data; SA_BC: Bias-corrected SA data. Outliers are indicated by “+” 
symbol in boxplots. 

 Discussion 

As previously mentioned, error sources in lidar mapping can stem from boresight errors, 

navigational errors, terrain-induced errors, vegetation-induced errors, and post-

processing errors (Deems et al., 2013; Pilarska et al., 2016). In this study, boresight 

errors were minimized by a careful boresight calibration. Furthermore, navigational 

errors posed by the system were minimized by implementing fine alignment (IMU 

calibration by maneuvering the Geo-MMS through several turns at different velocities 

prior to the system entering the scanning area (Geodetics, 2019a)), deploying a base 

station at each site, and using the PPK post-processing technique to correct the Geo-

MMS positions. The elevation ranges were small at all sites, as were the slopes (mean 

grid slopes are 3, 2, and 7° in Sainte-Marthe, Saint-Maurice, and Montmorency, 

respectively). Therefore, terrain-induced errors are assumed to be minimum. Flight 

parameters, such as flight height, lidar rotational speed (RPM), overlap, and scan angle 

were optimized to obtain maximum penetration and minimum occlusion of lidar in the 
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forested area, and thus mitigating errors posed by vegetation. Extensive manual 

inspection was conducted after each ground point classification to identify any 

misclassification errors and correct them when necessary. In addition, there could be 

errors in lidar-derived snow depth products due to changes in microtopography 

between snow-off and snow-on surveys. For instance, changes of the soil surface due 

to freezing, possible plowing in agricultural fields, compression of vegetation by snow, 

and state of understory vegetation could cause spurious and/or negative lidar snow 

depths (Harder et al., 2020; Jacobs et al., 2021). Since our snow-off surveys were 

carried out shortly after the last snowfall with leaf-off deciduous canopy and sub-

canopy conditions, and before the growing season begins, it is expected to have 

minimal changes to the soil surface and minimum effects from vegetation to ground 

retrievals (Evans et al., 2009; Hopkinson et al., 2004). A good agreement with the lidar-

derived snow depths with manually sampled ground measurements in this study 

implies that these errors, if present, were small overall. Our results demonstrate that 

while there are still errors in UAV lidar, as with any measuring technique, they are 

within the expected system accuracy and consistent. 

 Comparison of Lidar Point Cloud Accuracy to Previous Studies 

Similar to the findings of Harder et al. (2020), our BSC absolute accuracy statistics 

(Figure 1.7) generally show a better performance in winter. In contrast, SA absolute 

accuracy statistics showed an inferior performance in winter (except in Sainte-Marthe), 

most probably due to reduced micro topographical contrasts in the winter point clouds 

that are used by the strip aligning algorithm to match strip segments. The number of 

GCPs may also have impacted the accuracy assessment. For example, the use of only 

two GCPs in Montmorency might not be sufficient to assess the notably high bias 

observed in Montmorency. Despite this, all BSC results show RMSE values closer to 

the nominal error of the lidar system (0.05 m), which implies that the collected data 

were of acceptable accuracy. As expected, SA substantially reduced elevation (z) 
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discrepancies between flight strips. This implies that the application of strip alignment 

effectively helped in rectifying the misalignment between corresponding segments of 

overlapping BSC strips. However, the results suggest that this significant improvement 

in relative accuracy brought by SA was at the cost of the absolute accuracy of lidar 

data. 

Relative error statistics in Figure 1.9 show that the errors are generally higher and more 

variable in the forest than in the field area. Lidar data are expected to be more prone to 

errors in the forest depending on the canopy cover density, the presence of sub-canopy 

cover, and the lidar ability to penetrate through canopy gaps and reach the ground/snow 

surface. This observation is analogous to previous studies (Harder et al., 2020; Jacobs 

et al., 2021), which observed a higher RMSE in the presence of vegetation compared 

with open areas in their studies. Moreover, Jacobs et al. (2021) noted that reduced lidar 

returns combined with sampling issues contributed to the higher uncertainty of snow 

depths in the forest compared with open areas in their study. 

 Sources of Uncertainty in Lidar-Derived Snow Depths 

In general, the snow depth validation error statistics (Figure 1.11) exhibited higher 

values than the probable errors estimated from the relative accuracies (Figure 1.9) 

across all sites. These higher errors can be explained by site characteristics. 

 Sainte-Marthe Snow Depths 

The higher and more variable snow depth RMSE in the Sainte-Marthe field compared 

with the adjacent deciduous forest can be explained by the deep, narrow canals/streams 

in the field (Figures 1.1 and 1.10) and the presence of basal ice layers in the snowpack. 

The notable positive bias in lidar-derived snow depths indicates an overestimation of 

snow depths by UAV lidar, mostly in the field, as shown by the distinctive higher lidar 
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snow depths for measurements in the area shaded in brown color in Figure 1.12 

(measurement ID 1–31 and 51–56). In contrast, Jacobs et al. (2021) and Harder et al. 

(2020) reported slightly low (negative) biases of lidar snow depths compared with 

manual soundings in a field by UAV lidar in Durham, the United States and Alberta 

and Saskatchewan, Canada respectively (however, these authors have not reported a 

presence of basal ice layer in their study sites). As both summer and winter DEMs in 

this study have biases less than 1 cm, which causes minimal systematic bias in the final 

snow depth maps, this remaining bias of the lidar snow depths can be attributed to the 

presence of the ice layers. We observed a 2–10 cm thick ice layer at the base of the 

snowpack in the field during manual measurements (Figure 1.2c), which limited the 

ability of the probe to reach the soil surface. Therefore, in these cases, the lidar 

measurements are in fact deemed to be more accurate than the manual soundings. As 

well, as can be observed from Figure 1.10, snow depths in the streams are twice as deep 

as the adjacent terrain since snow drifting fills the canals. At locations where the central 

snow depth manual measurement was directly inside the streams, the average of the 

five manual measurements was significantly higher or lower than the average lidar 

snow depths (refer to the range of snow depths at ID 2, 4, 6, 8, 10 in Figure 1.12), 

which reflected in higher outlier values (i.e., indicated as “+” in boxplots) of field 

boxplots in Figure 1.11a. This is thought to be the main reason for the high variability 

of errors in the field. 
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Figure 1.12. Variability of manual and lidar snow depth measurements in Sainte-
Marthe. Error bars represent the minimum and maximum snow depth values of the five 
manual measurements taken at each sampling location and blue dots denote the average 
value of the five measurements. Measurements in the field (ID 1–31 and 51–56) and 
the forest (ID 32–50) are demarcated by brown and green colored shadings, 
respectively. 

 Montmorency Snow Depths 

Similar to Sainte-Marthe, Montmorency field lidar snow depths show a positive bias. 

This could also be due to the presence of an ice layer and the snow tube’s limited 

penetration ability (Jacobs et al., 2021). Compared with the field, forest lidar snow 

depth biases are only slightly greater (Sainte-Marthe) and lower (Montmorency) than 

from the manual soundings in both sites. This contrasts with previous findings from 

UAV lidar in the forest (Harder et al., 2020; Jacobs et al., 2021; Proulx et al., 2022), 

where they observed a notable underestimation (negative bias) of lidar snow depths 

than from the manual measurements compared with the open field. In their studies, the 

causes of these differences were partially attributed to the snow probe’s ability to 

penetrate the soil and vegetation, e.g., Jacobs et al. (2021) and Proulx et al. (2022) 

suggested that the overprobing by the Magna probe into the thick leaf litter layer 

present in the forest might have caused the higher average Magna probe snow depths 



49 

than lidar snow depths. Compared with Sainte-Marthe, Montmorency’s snow depth 

validation in the coniferous forest does not show a large bias, but a larger dispersion 

(sd) which increases the RMSE. This larger variation (sd) is attributed to be mainly 

associated with positional errors caused by multipath effects that are reportedly 

occurring in areas with thick canopy cover (Hopkinson et al., 2012b; Hyyppä et al., 

2005; Valbuena et al., 2010). Apart from the errors propagated from individual DEMs, 

misclassification errors in forested areas, and small branches that are compressed by 

snow can also cause errors in lidar snow depths. However, the higher RMSE in 

Montmorency has a comparatively smaller impact due to the deeper snowpack 

observed at the site, i.e., the relative RMSE error (RMSE/mean snow depth) in 

Montmorency (0.068–0.135) is much lower than the relative error (0.321–0.420) in 

Sainte-Marthe where the snowpack is shallower. 

 Comparison of Lidar Snow Depth Accuracy to Previous Studies 

When the strip alignment is not used, the UAV lidar system is able to capture snow 

depths with a RMSE< 0.16 m in an open environment (including a basal ice layer) and 

a RMSE< 0.19 m in forests with different canopy covers. This is comparable with 

previous efforts with UAV lidar (0.09–0.17 m from open to coniferous environment) 

(Harder et al., 2020; Jacobs et al., 2021) and airborne lidar (0.09–0.35 m from open to 

coniferous environment) (Broxton et al., 2019; Harpold et al., 2014; Hopkinson et al., 

2004; Painter et al., 2016; Tinkham et al., 2014; Zheng et al., 2016). Therefore, despite 

potential inaccuracies within the coniferous forested area, our results show that UAV 

lidar can be an efficient technique to capture high-resolution, on-demand snow maps 

within complex agro-forested landscapes. 
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 Use of GCPs in UAV Lidar 

While authors as Harder et al. (2020) have suggested that the low bias of UAV lidar 

errors, without incorporating GCPs, would remove the need of deploying GCPs at the 

site, we believe that at least a few GCPs are required in natural environments, such as 

Sainte-Marthe and Saint-Maurice, where distinct manmade structures, such as 

buildings and roof structures are not present to control for systematic biases in repeat 

flights. In these environments, GCPs would ensure an absolute check of the lidar 

dataset and provide a quantitative assessment of the bias, and thus would help in 

correcting the bias of the data. Csanyi and Toth (2007) also highlighted the importance 

of using well-defined lidar-specific GCPs for applications with high accuracy 

requirements (e.g., survey-grade mapping). They showed that using specifically 

designed lidar targets (1 m radius circular-shaped elevated targets) could improve the 

lidar flight strip accuracies. Furthermore, they mentioned that in the absence of three-

dimensional ground information, such as buildings and roof structures at site, the 

information from mobile lidar specific ground control targets can be used in or after 

the strip adjustment process to correct the remaining absolute errors in the corrected 

strips. 

 Use of Strip Alignment for UAV Lidar 

Our results showed that while the SA algorithm improved the relative accuracy of the 

point clouds, its ultimate impact was to degrade the snow depth validation compared 

with the simple BSC method, even after bias correction. This observation was 

consistent in both field and forested areas, and at all sites. Possible reasons for this 

inferior performance can be attributed to the limitations of the algorithm used. The 

software version did not support the elevated GCPs used in this study, and thus did not 

use the GCP information during strip alignment, which led to degrading the absolute 

errors of the point cloud. It is not surprising that the SA exacerbated errors in winter, 
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as there were fewer or no microtopographic features for the strip aligning algorithm to 

match the point cloud segments reliably in winter. Therefore, our results indicate that 

the SA implemented in this study is not suitable for similar UAV lidar applications, 

especially for monitoring snow depths. The main reason for using BayesStripAlign was 

for its ability to directly use the las and trajectory files rather than raw data from the 

laser scanner (Glira et al., 2016), which is not currently retrievable from the Geo-MMS 

system. However, our results could be used to improve the BayesStripAlign SA 

algorithm for further UAV applications in snow-covered landscapes. 

 Conclusions 

This study demonstrated the ability of UAV lidar to measure snow depth variability 

under varying vegetation covers with reasonable accuracy. However, the observation 

gaps in ground returns in the coniferous forest imply that, despite the higher point 

density returned by the UAV lidar compared with ALS, airborne remote sensing 

techniques alone are not able to retrieve a comprehensive snow depth distribution 

pattern under a coniferous canopy. A combination of UAV lidar and ground-based 

manual measurement (or under and above canopy UAV lidar as demonstrated by 

Hyyppä et al. (2020)) might be beneficial to obtain more representative and extensive 

snow depths in coniferous environments. 

The results showed that the strip alignment approach we used was not suitable for UAV 

lidar, since it degraded the absolute accuracy of the point clouds. The dataset would 

potentially benefit from a strip alignment algorithm that incorporates GCPs in the 

alignment procedure and/or uses that information in a 3D (x,y,z) adjustment of the 

point cloud. 

Nevertheless, it can be concluded from the results that a careful boresight calibration 

can provide centimeter-level accuracy of lidar data without SA enhancement. 
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Therefore, boresight calibration should receive paramount attention in the data 

processing workflow. Moreover, a well-formulated flight plan plays a critical role in 

reducing system errors. Utilizing two or more turning maneuvers allows for better 

tuning of the IMU. Furthermore, flying at a lower altitude and slower speed reduces 

the impact of uncertainty in the boresight angles. Flight planning should also address 

weather conditions, for instance, flying the Geo-MMS in windy conditions (wind 

speeds higher than 8 m/s according to specifications) would degrade the sensor 

accuracies. The deployment of GCPs ensures an absolute check of data in the absence 

of distinct structures visible from airborne sensors. Importantly, a successful ground 

point classification is critical to the final accuracy of the snow depth maps. A manual 

inspection of the geo-referenced point cloud is advisable following automatic 

classification, preferably with geo-tagged imagery if available. 

The methodological framework presented in this paper provides a valuable 

contribution to the UAV lidar accuracy assessments for snow research, which is 

reproducible in similar environments. 
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Abstract 

Accurate knowledge of snow depth distributions in forested regions is crucial for 

applications in hydrology and ecology. In such a context, understanding and assessing 

the effect of vegetation and topographic conditions on snow depth variability is 

required. In this study, the spatial distribution of snow depth in two agro-forested sites 

and one coniferous site in eastern Canada was analyzed for topographic and vegetation 

effects on snow accumulation. Spatially distributed snow depths were derived by 

unmanned aerial vehicle light detection and ranging (UAV lidar) surveys conducted in 

2019 and 2020. Distinct patterns of snow accumulation and erosion in open areas 

(fields) versus adjacent forested areas were observed in lidar-derived snow depth maps 

at all sites. Omnidirectional semi-variogram analysis of snow depths showed the 

existence of a scale break distance of less than 10 m in the forested area at all three 

sites, whereas open areas showed comparatively larger scale break distances (i.e., 11–

14 m). The effect of vegetation and topographic variables on the spatial variability in 

snow depths at each site was investigated with random forest models. Results show 

that the underlying topography and the wind redistribution of snow along forest edges 

govern the snow depth variability at agro-forested sites, while forest structure 

variability dominates snow depth variability in the coniferous environment. These 

results highlight the importance of including and better representing these processes in 

physically based models for accurate estimates of snowpack dynamics. 
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 Introduction 

Knowledge of spring snowpack conditions is essential to accurately estimate water 

availability and flood peaks following the onset of melt (Hopkinson et al., 2004). Many 

studies showed that addressing the spatial distribution of snow depth prior to melting 

is more important than spatial differences in melt behavior when estimating snowmelt 

dynamics of the snowpack (e.g., Schirmer and Lehning, 2011; Egli et al., 2012). 

Evaluating snowpack conditions in forested regions is particularly crucial as the forest 

cover significantly modifies snow accumulation and ablation processes due to canopy 

interception and changes energy balance processes within the canopy. These changes 

produce a marked effect on downstream hydrographs (Roth and Nolin, 2017). In 

addition, forests can also influence differential snow accumulation by preferential 

deposition of wind-blown snow along the forest edges (Essery et al., 2009; Currier and 

Lundquist, 2018). 

Spatial variability of the snow cover is mainly controlled by topography, vegetation 

type, and vegetation density (Golding and Swanson, 1986; Jost et al., 2007; Varhola et 

al., 2010a; Koutantou et al., 2022). With the advent of remote sensing techniques, 

airborne (piloted and unpiloted) laser (lidar: light detection and ranging) scanning 

techniques have been extensively used to monitor snowpacks due to their strong 

penetration ability through the canopy to detect underlying snow cover/ground 

(Hopkinson et al., 2004; Morsdorf et al., 2006; Hopkinson et al., 2012b; Deems et al., 

2013; Harpold et al., 2014; Zheng et al., 2016; Currier and Lundquist, 2018; Zheng et 

al., 2018; Mazzotti et al., 2019; Harder et al., 2020; Jacobs et al., 2021). Lidar scanning 

also typically allows capturing micro variability and allows producing high resolution 

(<10 m) snow depth/cover maps (e.g., Deems et al., 2013; Harder et al., 2020; 

Koutantou et al., 2021; Dharmadasa et al., 2022). 



62 

Snow spatial variability can occur on more than one scale due to different processes 

acting over multiple scales (Deems et al., 2006; Clark et al., 2011). Several studies 

emphasized a multiscale behavior of snow depths with two distinct regions (scales) 

separated by a scale break at a location varying from meters to tens of meters, with a 

more strongly spatially correlated snow depth structure before the scale break (Deems 

et al., 2006; Fassnacht and Deems, 2006; Trujillo et al., 2007; Deems et al., 2008; 

Trujillo et al., 2009; Mott et al., 2011; Schirmer and Lehning, 2011; Helfricht et al., 

2014; Clemenzi et al., 2018; Mendoza et al., 2020a; Mendoza et al., 2020b). In turn, 

this suggests the existence of different combinations of processes controlling the snow 

accumulation, and distribution over these two distinct scales. For instance, these studies 

emphasized that canopy interception causes a short scale break distance in forested 

areas (9–12 m) where the effect of wind redistribution is minimal (Deems et al., 2006; 

Trujillo et al., 2007). Comparatively longer distances (15–65 m) were reported in 

tundra regions and explained by the interaction of wind, vegetation, and terrain 

roughness (Trujillo et al., 2009), while shorter distances (6 m and 20 m) in non-

vegetated areas are explained by the interaction of the wind with terrain roughness in 

sheltered and exposed mountain slopes, respectively (Mott et al., 2011; Schirmer and 

Lehning, 2011). The estimation of this scale break location is important when choosing 

the horizontal resolution required for remotely sensed or in situ data collection efforts, 

and model scales in order to represent the snowpack variability at different scales. 

In addition to the scaling properties of snow distribution, the relationship between snow 

depth, topography, and forest structure is also an important aspect for 

understanding/assessing small-scale snow heterogeneity in forested environments. The 

need to quantify these complex relationships has inspired the development of numerous 

empirical models (e.g., Anderton et al., 2004; Winkler et al., 2005; Grünewald et al., 

2013) and process-based models (e.g., Hedstrom and Pomeroy, 1998; Liston and Elder, 

2006; Mazzotti et al., 2020a; Mazzotti et al., 2020b). While process-based models are 

applicable to a wide range of conditions, they do require an extensive amount of input 
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data. Contrarily, empirical models are useful in establishing a general relationship 

between the variables and provide a first-order estimate of their effects on snow 

processes. However, they do not explicitly account for governing processes, and thus 

may not make accurate predictions under specific conditions (Varhola et al., 2010a). 

Nevertheless, the use and effectiveness of empirical models like multiple linear 

regressions (MLR) (Jost et al., 2007; Lehning et al., 2011; Grünewald et al., 2013; 

Revuelto et al., 2014; Zheng et al., 2016; Zheng et al., 2018) and binary regression trees 

(BRT) (Elder et al., 1995; Elder et al., 1998; Winstral et al., 2002; Anderton et al., 2004; 

Molotch et al., 2005; Baños et al., 2011; Revuelto et al., 2014) to relate snow 

depth/SWE patterns with terrain and land cover predictors is well documented. 

Compared to linear methods, tree-based methods have the ability to describe more 

complex and nonlinear relationships between snow depth and landscape variables 

(Erxleben et al., 2002; Veatch et al., 2009; Bair et al., 2018). In recent years, random 

forest (RF) models, an ensemble machine learning algorithm that combines several 

randomized decision trees and aggregates their predictions, have gained popularity in 

water science and hydrological applications (Tyralis et al., 2019). The use of the 

ensemble bagging approach in RF models reduces overfitting, which is a well-known 

issue with traditional decision trees, and provides more accurate and unbiased error 

estimates (Breiman, 2001). As yet, there is only a handful of studies that used RF 

models to estimate snow depths/SWE (Bair et al., 2018; Yang et al., 2020) other than 

those that used RF algorithm to quantify the relative importance of predictor variables 

(Zheng et al., 2016) or to predict spatially distributed lidar vertical errors (Tinkham et 

al., 2014). 

To our knowledge, to date, there are only a few previous studies that estimated snow 

depths by unpiloted aerial vehicle (UAV) based lidar (Harder et al., 2020; Cho et al., 

2021; Jacobs et al., 2021; Koutantou et al., 2021; Dharmadasa et al., 2022). None of 

them explicitly examined how terrain and vegetation characteristics influence snow 

heterogeneity in different landscapes. From previous studies, Koutantou et al. (2022) 
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used UAV lidar data on two opposing slopes with a heterogeneous forest cover at a 

high spatio-temporal scale to show the effect of canopy structure and solar radiation on 

snow dynamics, excluding the effect of microtopography. The main objective of this 

paper is to study the small-scale spatial variability of snow depth by UAV lidar and 

investigate the terrain (including the effect of microtopography) and vegetation 

controls on this snow depth heterogeneity in an agro-forested and a boreal landscape. 

The study sites are based in southern Québec, Canada, where forests intertwined with 

mosaics of open agricultural fields in low-lying lands (agro-forested landscapes) play 

a significant role in altering the spatial distribution of the snow cover (Aygün et al., 

2020). Much uncertainty still exists about the micro and meso scale spatial variability 

of snow cover and associated hydrological processes in these landscapes, partly due to 

lack of detailed and simultaneous micrometeorological and snowpack observations 

(Brown, 2010; Sena et al., 2017; Valence et al., 2022). To our knowledge, there has 

been no application of UAV laser scanning to investigate the small-scale snow cover 

heterogeneity in this type of landscape. This study will specifically explore: (1) how 

the snow accumulation and its scaling characteristics vary between and within forested 

and open environments, and (2) the relationship between snow depth, topography, and 

forest structure in different sites. Motivated by previous works (Currier and Lundquist, 

2018; Mazzotti et al., 2019), we specifically investigate how the forest edges modulate 

the accumulation patterns in agro-forested environments. Given the relatively flat 

topography in these environments, we hypothesize that preferential accumulation along 

forest edges may represent a significant factor of spatial variability in snow depth. 

 Data and Methods  

 Study Sites  

Small-scale snow depth heterogeneity was investigated at three selected sites that 

represent the typical landscape in southern Québec (Figure 2.1). Sainte-Marthe and 
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Saint-Maurice are agro-forested sites located in the St. Lawrence River lowlands. 

Irrigation canals and streams flowing through the open agricultural areas are very 

common in these agro-forested landscapes. The main crop type in the agricultural areas 

is soya. The forested area in Sainte-Marthe consists of a dense deciduous forest with 

sugar maple (Acer saccharum), red maple (Acer rubrum), and a small conifer plantation 

to the southwest. Saint-Maurice has a high to moderate dense mixed forest with poplar 

(Populus x canadensis), red maple, white pine (Pinus strobus), and balsam fir (Abies 

balsamea) being the dominant tree species. Forêt Montmorency (hereafter 

Montmorency) is a dense boreal forest with balsam fir, black spruce (Picea mariana), 

and white spruce (Picea glauca) tree species farther north on the Canadian Shield. 

Forest gaps associated with clear-cutting and regeneration practices are common in this 

area. Adjacent to the forest is an open area hosting the NEIGE-FM snow research 

station, which hosts a variety of precipitation gauges and snowpack measuring sensors, 

and is part of the World Meteorological Organization’s (WMO) station network (Royer 

et al., 2021). Table 2.1 summarizes the physiographic and climatic conditions at each 

site. Land use information presented in Figure1 was obtained from the Québec Ministry 

of Forests, Wildlife, and Parks (MFFP). For interpretation purposes, open agricultural 

areas in Sainte-Marthe and Saint-Maurice and the small open area in Montmorency 

(NEIGE-FM site) are referred to as “field” herein. 
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Figure 2.1. Overview of the study sites with lidar survey extents. Field and forest areas 
within each lidar extent are delineated with brown and green colors, respectively. (a) 
Sainte-Marthe, (b) Saint-Maurice and (c) Montmorency. Contour intervals 
intentionally differ between sites for better readability. (Adapted from Dharmadasa et 
al. (2022)) 

Table 2.1. Site characteristics and lidar data collection information (Adapted from 
Dharmadasa et al. (2022)) 

 Sainte-Marthe Saint-Maurice Montmorency 
Elevation range, m 70–78 46–50 670–700 
MAAT, °C 6.0  4.7 0.5 
Total precipitation, 
mm/yr 

1000 1063 1600 

Snowfall/Total 
Precipitation, % 

15 16 40 

Winter season November–
March 

November–
March 

October–April 

Lidar survey extent, km2 0.22 0.25 0.12 
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Forest area/Total area, % 40 40 92 
Forest type Deciduous Mixed Boreal 
Mean canopy density, % >80 60–80  60–80 
Snow-on flight date 12 March 2020 11 March 2020 29 March 2019 
Snow-off flight date 11 May 2020 02 May 2020 13 June 2019 

MAAT= mean annual air temperature. Climatic data presented here were based on the 
climate averages (1981–2010) at the nearest Environment and Climate Change Canada 
(2021b) meteorological stations to the sites (Station climate ID 7016470, 7017585, and 
7042388 for Sainte-Marthe, Saint-Maurice, and Montmorency). None of the snow-on 
flights were conducted right after a storm. 
 
Although the lidar data acquisition years are different between agro-forested sites and 

boreal forest due to logistical reasons, the study years are representative of the long-

term climatological conditions at the sites (Supplement Figure S2.1), and hence 

allowed us for inter-site comparison of snow depths. 

 Data Processing  

All lidar surveys were performed with a GeoMMS system mounted onto a DJI M600 

Pro UAV platform. The GeoMMS system is comprised of a Velodyne VLP-16 lidar 

sensor, a real-time dual-antenna global navigation satellite system (GNSS) aided 

inertial navigation system (INS) for precise heading, and a tactical MG364 inertial 

measurement unit (IMU). The nominal accuracy of the point cloud provided by 

GeoMMS is ±5 cm (RMS, root mean square) (Geodetics, 2018) whereas the nominal 

uncorrelated relative error of two lidar point clouds is approximately ±7 cm (√52 + 52). 

Flight paths for the surveys were prepared in UgCS flight control software (Sph-

Engineering, 2019) and the flight parameters were optimized to reduce overall INS 

errors and maximize the mapping efficiency in the forested areas. Table 2.2 outlines 

the flight parameters and equipment settings used in surveys. 

Raw lidar data sets collected from the flights were post-processed in Geodetics 

LiDARTool (Geodetics, 2019) with post-processing kinematic (PPK) correction. The 
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PPK option regenerated a significantly more accurate trajectory file by combining the 

onboard GNSS data with GNSS base station data. Then, this post-processed trajectory 

file was merged with the raw laser data to produce a geo-referenced x,y,z point cloud. 

Noise removal was applied next. We also employed a trial-and-error, manual boresight 

calibration method to correct for boresight errors in the data, as recommended by the 

manufacturer (Geodetics, 2019). The final post-processed point clouds have a vertical 

absolute accuracy range of 3–6 cm and a relative accuracy range of 4–6 cm 

(Dharmadasa et al., 2022). 

To classify the bare surface points, we used the multiscale curvature algorithm (Evans 

and Hudak, 2007) implemented in the commercial Global Mapper software (Blue 

Marble Geographics, 2020). Parameters of the algorithm were adjusted according to 

the vertical spread of the flight strips over open terrain, the local slope of the terrain 

and canals/streams, and the presence/absence of buildings. The reader is referred to 

Dharmadasa et al. (2022) for a comprehensive overview of the UAV lidar system and 

post-processing of raw data. 

Table 2.2. Flight parameters and equipment settings 

Flight parameters  Equipment settings 
Flying speed 3 m s-1 Wavelength 905 nm 
Flight altitude 40 m AGL Laser pulse repetition 

rate 
18.08 kHz 

Field of view 
(horizontal) 

145º Field of view (vertical) ±15º 

Distance between 
parallel flight lines  

64 m Laser RPM 1200 

Ground overlap 20 % Return type Dual 
Point density 603 points m-2   
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 Snow Depth Maps 

Snow depth maps were obtained by differencing winter (snow-on) and summer (snow-

off) digital elevation models (DEMs) generated from bare surface points at each site. 

Bare surface points were aggregated to a grid resolution of 1.4 m using the binning 

method in Global Mapper (Blue Marble Geographics, 2020). This grid resolution was 

selected based on the manual snow depth sampling strategy used by Dharmadasa et al. 

(2022) to validate the snow depth maps and aimed to minimize the effect of positional 

errors of the manual measurements made with GNSS. The manual sampling strategy 

consisted of five snow depth measurements taken at each sampling location in a 

diagonal cross shape at 1 m apart, and the average of these five measurements 

represents a 1.4x1.4 m (√12 + 12) grid cell. As final filtering, spurious negative snow 

depths were set to zero, as they are physically inconsistent and need to be filtered 

(Hopkinson et al., 2012a). Negative snow depths accounted for a very small portion of 

the total area (<0.1 %) sampled and had a negligible effect on the statistics derived 

from the snow depth maps. The validation of UAV lidar snow depths with manual 

measurements showed a RMSE of 0.079–0.160 m in the deciduous forested 

environment, and 0.096–0.190 m in the coniferous forested environment (Dharmadasa 

et al., 2022), which is comparable to previous efforts with UAV lidar (Harder et al., 

2016; Jacobs et al., 2021) and airborne lidar (Harpold et al., 2014; Painter et al., 2016). 

More details about the snow depth validation can be found in Dharmadasa et al. (2022). 

 Terrain Metrics 

To typify the terrain characteristics, we derived four variables from the summer DEM, 

i.e., elevation (Elevation), slope (Slope), aspect (Aspect), and topographic wind 

sheltering index (TWSI) at 1.4 m resolution (Supplement Figure S2.2–S2.4). 

Topographic variables other than elevation need to be considered when studying areas 

that encompass a small elevation range (Zheng et al., 2016), such as our sites. Elevation 
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was obtained directly from the DEM, while Slope and Aspect were derived using 

ArcGIS 10.2 software. Slope was calculated as the first derivative of the DEM, while 

Aspect was derived in two orthogonal components, i.e., west-east (Aspect_WE) and 

south-north (Aspect_SN) exposures. Aspect_WE (west-negative, east-positive) and 

Aspect_SN (south-negative, north-positive) were calculated directly as the sine and 

cosine of the aspect, respectively. The TWSI was produced using the RSAGA package 

in CRAN. This variable considers the sheltering effects of the local topography in the 

dominant wind direction. Several studies showed that TWSI is a good measure to 

characterize sheltering and exposure of the local terrain providing a reasonable 

representation of the local wind field and thus the redistribution of snow by wind 

(Winstral et al., 2002; Winstral and Marks, 2002; Plattner et al., 2004; Molotch et al., 

2005). Negative TWSI values correspond to terrain exposure and positive values to 

sheltering from the wind. TWSI is similar to the Sx parameter used by Revuelto et al. 

(2014), but the TWSI is calculated based on prescribed dominant wind directions, in 

contrast to the eight directions used by them. Dominant wind directions were extracted 

from hourly wind data for the study period considered (winter season in each study 

year as indicated in Table 2.1) at each site (Figure 2.2). Wind data was collected from 

an automatic weather station located 1.4 km away from the Sainte-Marthe site and the 

closest Environment Canada wind measuring stations at the other sites. The closest 

station to Saint-Maurice (climate ID 7018561) was 19 km away from the site and 0.25 

km away from the Montmorency site (climate ID 7042395) (ECCC, 2021a). 
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Figure 2.2. Winter period wind rose plots of the sites. (a) Sainte-Marthe, (b) Saint-
Maurice and (c) Montmorency 

 Vegetation Descriptors  

Vegetation-related variables were rasterized from the classified winter point cloud in 

LiDAR360 (Greenvalley-International, 2020). The forestry module of LiDAR360 

contains tools that allow users to calculate essential forest metrics and accurately 

extract individual tree parameters like crown diameter, crown area, and tree diameter 

by breast height from airborne lidar data. In this study, the leaf area index (LAI), canopy 

cover (CC), and gap fraction (GF) were estimated at 1.4 m resolution for the forest 

cover higher than 2 m (Supplement Figure S2.2–S2.4). A 2 m height threshold was 

selected as canopies >2 m has been shown to have a strong influence on snow 

accumulation (Varhola et al., 2010b; Zheng et al., 2016; Zheng et al., 2019). The 

function used to calculate LAI is based on the Beer-Lambert law (Richardson et al., 

2009). The estimated LAI is contingent on the average scan angle, GF, and extinction 

coefficient. GF, the amount of open area within the canopy which is not blocked by 

branches or foliage, is calculated as the total number of ground points to the total 

number of lidar points within a grid cell. CC, which is defined as the percentage of 

vertical projection of forest canopy to the forest land area (Jennings et al., 1999), is 
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calculated as the total number of vegetation returns to total returns (Morsdorf et al., 

2006), (CC = 1 – GF). Refer to Richardson et al. (2009) and Morsdorf et al. (2006) for 

the equations used by LiDAR360 to estimate the forest metrics. In addition, canopy 

height (CH) was derived by subtracting the DEM from the digital surface model (DSM). 

 Site Variable 

A binary variable, Site representing forested (1), and field (0) pixels was derived to 

investigate systematic effects, if any, of land cover that was not captured by vegetation 

or terrain metrics (Supplement Figure S2.2–S2.4). This variable was derived by 

manually mapping field and forested area boundaries at each site (as indicated in Figure 

2.1) in ArcGIS 10.2 software. After delineating forest and field boundaries, the area 

inside the forest boundary was assigned a value of 1, and the area inside the field 

boundary was assigned a value of 0. 

 Forest Edge Descriptors  

We investigated forest edge effects on snow accumulation using an approach inspired 

from Currier and Lundquist (2018) and Mazzotti et al. (2019) using Matlab software. 

Analogous to their analyses, we added directionality to forest edges to examine if 

preferential snow accumulation occurred windward or leeward of forest edges due to 

snow redistribution by wind or reduced ablation due to shading from the forest. Pixels 

were first classified as north-facing (NFE) when they were within a maximum search 

distance dmax northward of the forest edge. Forest edges (the boundary between field 

and forest areas) were extracted from the Site variable. Based on previous results by 

Currier and Lundquist (2018), dmax was set to 2H, where H is the typical tree height 

derived from the canopy height model at each site. The 2H distance reflects the typical 

shading of the ground by the canopy. H is 15 m in Sainte-Marthe, 20 m in Saint-

Maurice, and 12 m in Montmorency. A tolerance of ±45° was used for the search 



73 

direction for NFE. Pixels were further classified as windward (WFE) and leeward (LFE) 

when they were within a maximum search distance of the forest edge in the dominant 

wind direction. A range of search directions was used to constrain the dominant wind 

directions at each site, based on wind roses (Figure 2.2). Two dominant wind cones, 

270±15°, and 50±15° were used in Sainte-Marthe, and one dominant wind cone in 

Saint-Maurice (210±15°) and Montmorency (310±15°). dmax was initially varied 

between 6–10H for pixels in open terrain based on Currier and Lundquist (2018), which 

represents the typical length scale of preferential snow accumulation at the forest edge. 

After a few trials, a final value of 10H was retained, which showed the highest 

correlation with snow depth. Moreover, the 10H distance at each site (150 m, 200 m, 

and 120 m in Sainte-Marthe, Saint-Maurice, and Montmorency respectively) 

encompassed the preferential snow accumulation seen along the forest edges on the 

lidar-derived snow depth maps. A maximum search distance of 1H was used for pixels 

within the forest in order to detect if preferential accumulation from blowing snow 

penetrated the forest. This value was chosen based on visual observations in the field, 

which suggested limited penetration of blowing snow inside the forest. Figure 2.3 

shows a schematic illustration of the forest edge parameters described. 

 

Figure 2.3. Graphical illustration of forest edges and respective maximum search 
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distances, dmax. 10H indicates the maximum search distance in the open field from the 
forest edge in windward and leeward direction, 1H indicates the maximum search 
distance in the forest from the forest edge in the windward and leeward direction, and 
2H indicates the maximum search distance northward of the forest edge, for shading 
effects. 

A new index of proximity to the forest edge, FE, was calculated by scaling the distance 

between each pixel and the forest edge (d) by the maximum search distance, dmax: 

 𝐹𝐸 =  
𝑑𝑚𝑎𝑥−𝑑

𝑑𝑚𝑎𝑥
      Equation 2.1 

FE (either NFE, WFE, or LFE, depending on the initial classification) is equal to one 

when a pixel is situated on the forest edge and equal to zero when it is located at, or 

beyond the maximum search distance dmax. The novelty of this approach is to derive a 

continuous predictor of forest edge proximity while considering the dominant wind 

direction, as opposed to the simpler binary classification introduced by Currier and 

Lundquist (2018). Maps of the forest edge descriptors for each site can be found in 

supplement Figure S2.2–S2.4.  

 Data Analysis 

Data analysis was primarily focused on assessing the small-scale snow depth 

heterogeneity at the selected sites. Lidar-derived snow depth data were analyzed for 

inter (agro-forested versus coniferous) and intra (field versus forest) site variability. 

First, the scale dependence of snow depth variability was explored using semi-

variogram analysis. Then, the site-specific topographic and vegetation control on the 

snow depth spatial heterogeneity was examined with RF regression models. All the 

statistical analyses were performed in R software.  
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 Spatial Correlation Analysis 

To analyze the small-scale spatial variability of the snow depth map in each study site, 

omnidirectional semi-variograms were used. Semi-variogram analysis allows 

constraining the dominant scales of snow depth variability and to compare them 

between land cover types and sites. Canals/streams were discarded from the snow depth 

maps for this analysis to ensure stationarity of the surface. i.e., snow depths in 

canals/streams would have a unidirectional spatial correlation which could alter the 

relationship of the overall terrain by introducing biases. In addition, omnidirectional 

semi-variograms of snow depth were compared with those obtained from bare earth 

topography in the field and topography+vegetation surface (DSM, bare earth 

topography+trees) in the forest to investigate the influence of topography and 

vegetation interactions on snow depth. Moreover, directional semi-variograms of snow 

depth were also computed to establish possible influences of dominant wind directions 

on snow depth variability at each site.  

The semi-variogram 𝛾(𝑟) is expressed as:  

 𝛾(𝑟𝑘) =
1

2𝑁(𝑟𝑘)
∑ {𝑧𝑖 − 𝑧𝑗}

2
(𝑖,𝑗)∈𝑁(𝑟𝑘)    Equation 2.2 

Where 𝑟 is the lag distance of bin k, 𝑁(𝑟𝑘) is the total number of pairs of points in the 

kth bin and 𝑧𝑖  and 𝑧𝑗 are the snow depth values at two different point locations i and j  

(Webster and Oliver, 2007). 

Half of the maximum point pairs distance (Sun et al., 2006) was taken as the maximum 

lag distance for the semi-variogram calculations with 50 log-width bins. Log-width 

distance bins provide equal bin widths when semi-variograms are transformed to log-

log scale, and help resolve the semi-variogram at short length scales by allowing greater 

bin density at shorter lag distance compared to linear-width bins (Deems et al., 2006).  
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In the case of scale invariance, the semi-variogram can be described by a power law: 
 
 𝛾(𝑟) = 𝑎𝑟𝑏     Equation 2.3 

Where a and b are coefficients selected to minimize the squared residuals.  

To identify scale breaks in semi-variograms, the following steps were implemented 

following a similar approach suggested by Mendoza et al. (2020a).  

• First, a change point analysis was conducted on the semi-variograms in log-log 

space using the ecp package in R (James and Matteson, 2014) to identify 

possible break points, which allows delineating sections of the semi-variogram 

with similar trends. 

• Then, linear least square regression models were fitted in log-log space for each 

cluster of points identified in step 1.  

• Finally, we checked whether the changes in the slopes of the log-log linear 

models were larger than 20 % and that the 95 % confidence limits of the slopes 

did not overlap, and verified that the R2 was greater than 0.9. If all these 

conditions were fulfilled, the existence of a scale break was confirmed.  

 Random Forest Model 

To investigate the effect of vegetation and topographic variables on the spatial 

variability of snow depth, we applied RF regression models on rasters derived from 

lidar data. Generally, in a RF model, two-thirds of the sample data (in-bag) are used to 

train the model, while the remaining one-third (out-of-bag, OOB) is used to estimate 

how well the trained model performs. This in-bag and OOB sampling procedure is akin 

to the much used k-fold cross-validation approach (Probst and Boulesteix, 2017; 

Tyralis et al., 2019). As such, model performance statistics (mean square error, MSE 
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and variance explained) are derived from the OOB predictions, which give an 

independent error assessment of the model (Breiman, 2001). The RF algorithm also 

calculates the predictor importance (importance of a variable), by estimating how much 

the prediction error increases when OOB data for the respective variable is permuted 

while all others are left unchanged (Liaw and Wiener, 2002). i.e., how much the 

prediction error increases (or decreases) when the variable of interest is removed 

(included) from the RF model. 

The RF analyses were conducted in R with grid resolutions of 1.4 m at all sites. Data 

were not separated into discrete training and test sets so that we would not create an 

artificial bias by data splitting. As such, all data were inputted into the RF model and 

the error metrics were calculated on the OOB samples as described above. As a 

precautionary measure, we excluded collinear variables prior to building the RF models 

using the variance inflation factor (VIF) function in R. This was done mainly because 

our objective was to investigate the relative contribution of different variables to snow 

depth variability in forest versus the field, rather than deriving a model with maximum 

predictive capacity. While RF can handle collinearity in a predictive mode, collinearity 

makes it difficult to separately evaluate the predictive power (variable importance) of 

the predictors (Bair et al., 2018). The number of trees in the ensemble (ntree) and the 

number of variables at each node (mtry) were tuned before training each RF model. 

We used the following procedure to identify the potential predictors of RF models at 

each site. Elevation was discarded from the analysis since the elevation range at all 

sites was too small (Table 2.1) to produce any meaningful local orographic effect on 

precipitation, or adiabatic effects on air temperature, (e.g., Mazzotti et al. (2019)), and 

could mask other local topographic effects on accumulation related to slope, aspect and 

terrain roughness (wind sheltering), due to collinearity. In addition, irrespective of the 

variable type, collinear variables were identified and discarded prior to building the RF 

models at all sites. As such, the topographical variables Slope, Aspect_WE, Aspect_SN, 



78 

and TWSI were used at all sites. However, the vegetation descriptors (LAI, CC, GF, 

and CH) were strongly intercorrelated (with correlation coefficient, r of 0.82–1.00) and 

hence could not be used together in a predictive model, at least not without 

compromising the interpretation of variable importance in the RF model. Therefore, 

LAI was selected as the most representative forest structure indicator in the RF analysis 

as, it has been shown to be a strong predictor of snow accumulation in forests 

(Hedstrom and Pomeroy, 1998; Pomeroy et al., 1998; Broxton et al., 2015; Lendzioch 

et al., 2016). Moreover, a sensitivity analysis showed that the choice of forest structure 

descriptor has a negligible impact on the performance (R2) of RF models (Supplement 

Table S2.1). The selection of the windward and leeward forest edge descriptors (WFE 

and LFE) was guided by the landscape setting at each site. In Sainte-Marthe, both WFE 

and LFE have large extents (Supplement Figure S2.2) but are collinear due to the two 

dominant and opposed wind directions. Including both variables in the RF model would 

thus compromise the interpretation of the variable importance. Hence, we opted to use 

the WFE only in the final RF analysis. In Saint-Maurice, LFE has only a few pixels 

(Supplement Figure S2.3) and was hence omitted. In Montmorency, LFE seemingly 

has more influence on snow depth variability with its larger extent than the WFE 

(Supplement Figure S2.4). This is also more logical as the open areas in Montmorency 

constitute a large gap within an overall forested environment, so deposition is expected 

leeward of the forest edge with little remobilization (erosion) within the gap. NFE was 

used at all sites to see the effect of forest edge shading on the snow depth variability. 

The RF model results were first examined for the relative importance of predictor 

variables (variable importance), which has proven to be useful for evaluating the 

relative contribution of input variables (Tyralis et al., 2019). Then, the partial 

relationships of the predictors with snow depth were examined and presented. Partial 

dependence functions are typically used to help interpret models produced by machine 

learning models such as RF (Jerome, 2001). It is a better alternative to variable 

dependence. Each partial plot was generated by integrating out the effects of all 
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variables beside the covariate of interest. Partial dependence data in each plot were 

constructed by selecting points evenly spaced along the distribution of the variable of 

interest. This subsampling helps to cut down computational time substantially. We used 

the default subsampling of 51 points in our analysis. The performance of RF models in 

terms of OOB statistics was compared between the different land cover types and sites. 

Additionally, we discuss RF model performances compared to traditional MLR models.  

 Results  

 General Snow Accumulation Patterns 

Figure 2.4 depicts the snow depth maps derived from UAV lidar data at the study sites. 

Montmorency shows the highest overall snow accumulation. Higher snow 

accumulation in canals/streams (area 1 in Figure 2.4a, b) and along the forest edge (area 

2 in Figure 2.4a, b) is evident in Sainte-Marthe and Saint-Maurice, whereas in 

Montmorency, forest gaps (area 4 in Figure 2.4c) seem to accumulate more snow. The 

highest snow depth in Montmorency corresponds to localized, artificial snow piles 

adjacent to the main road as observed during the field campaign (area 5 in Figure 2.4c). 

Concentric snow accumulation patterns around the double fence precipitation gauges 

are also noticeable in Montmorency snow depth map (area 6 in Figure 2.4c). Compared 

to the other two sites, the Montmorency snow depth map comprises more data gaps in 

the forested area. Paved roads in Sainte-Marthe (area 3 in Figure 2.4a) and 

Montmorency (area 3 in Figure 2.4c) and the area surrounding the small house (area 7 

in Figure 2.4a) in the forest at Sainte-Marthe appear snow-free due to the snow clearing 

operations, as confirmed in field campaigns. Snow clearing in the proximity of the 

house in Sainte-Marthe accounts for a significant portion of zero and/or small snow 

depths (Figure 2.4d) and biases the mean snow depth in the forest. When this portion 

is discarded, the mean snow depth in the forest increases from 0.250 to 0.275 m. In 

Sainte-Marthe, the mean snow depth in the field area is higher than that in the adjacent 
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forested area (Figure 2.4d), whereas, at the other two sites, mean snow depths in the 

field and forest are similar considering the measurement error of the lidar system 

(Figure 2.4e, f). A nonparametric Wilcoxon rank-sum test (Wilcoxon, 1945) was 

applied to test whether snow depths within forested and field areas were statistically 

different from each other. To remove spatial autocorrelation, snow depths were 

subsampled every 20 m (larger than the scale break distances found by semi-variogram 

analysis, Figure 2.5). The results confirmed that snow depth in the Sainte-Marthe field 

was statistically greater than that in the forest and in the other two sites differences 

were not statistically significant. 

Snow depths in Sainte-Marthe are lower on average (mean forest = 0.250 m; mean field 

= 0.374 m) than in Saint-Maurice (mean forest = 0.591 m; mean field = 0.600 m). The 

snow depth is more variable in the forest (higher coefficient of variation, CV) than in 

the field in Sainte-Marthe and Montmorency, which is not the case in Saint-Maurice, 

where the coefficient of variation in the field is slightly larger than in the forest.  
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Figure 2.4. UAV-lidar-derived snow depth maps (grid size 1.4 m) and histograms of 
snow depth distribution. (a, d) Sainte-Marthe map with snow surveying date and 
histogram; (b, e) Saint-Maurice map with snow surveying date and histogram; (c, f) 
Montmorency map with snow surveying date and histogram. Field and forest areas are 
demarcated with brown and green colors in snow depth maps respectively. Histograms 
are derived according to these boundaries. Features 1 to 7 are discussed in the text. 

 Spatial Correlation Analysis 

Omnidirectional semi-variograms of snow depth, bare earth topography, and 

topography+vegetation surface at the study sites are shown on a log-log scale in Figure 

2.5. Semi-variograms were discretely developed for field and forested areas to assess 

the effect of land cover on the snow depth variability. Overall, forested areas show 

more variable (higher semi-variance values) snow depths than field snow depths at all 

sites. Snow depths seem to be more variable in coniferous forests than in deciduous 

and mixed forests. Snow depth in forested areas at all three sites shows a typical multi-
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scaling behavior, where the semi-variance between neighboring snow depths increases 

rapidly up to a scale break located at distances less than 10 m (Figure 2.5a, b and c), 

followed by a slower increase thereafter. Similarly, field snow depths exhibit multi-

scaling behavior with comparatively larger scale break distances, with Montmorency 

showing two scale break distances (Figure 2.5a, b and c). Topography+vegetation 

surfaces show the highest semi-variance with scale break distances similar to forest 

snow depths (Figure 2.5d, e and f). Sainte-Marthe bare earth topography does not 

exhibit a distinct scale break (Figure 2.5d). In contrast, the bare earth topography at the 

other two sites shows multi-scaling behavior with scale break distances larger than 10 

m (Figure 2.5e, f). 

 

Figure 2.5. Omnidirectional semi-variogram for the field and forested areas for (a) 
Sainte-Marthe snow depth, (b) Saint-Maurice snow depth, (c) Montmorency snow 
depth, (d) Sainte-Marthe bare earth topography and topography+vegetation, (e) Saint-
Maurice bare earth topography and topography+vegetation and (f) Montmorency bare 
earth topography and topography+vegetation. In the figure, Topo denotes bare earth 
topography and Topo+veg denotes topography+vegetation surface. Vertical lines 
indicate the dominant scale breaks, and trend lines represent significant (p<0.05) log-
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log linear models with R2 > 0.9 (see methods).  

Figure 2.6 shows directional semi-variograms of snow depth derived for field and 

forested areas at each site. Sainte-Marthe field snow depths show an isotropic behavior 

(Figure 2.6a) whereas Sainte-Marthe forest shows an anisotropic behavior along the 

west-east direction (Figure 2.6d). In contrast, both Saint-Maurice field and forest snow 

depths show distinct anisotropic behaviors. Saint-Maurice field snow depths show a 

narrow anisotropic pattern along northwest-southeast and a broad anisotropic pattern 

along southwest-northeast directions (Figure 2.6b) whereas forest snow depths show 

an anisotropic pattern along the southwest-northeast direction (Figure 2.6e). Neither 

field nor forest snow depths in Montmorency show strong anisotropic behavior (Figure 

2.6c, f). 
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Figure 2.6. Directional semi-variogram of snow depth in (a) Sainte-Marthe field, (b) 
Saint-Maurice field, (c) Montmorency field, (d) Sainte-Marthe forest, (e) Saint-
Maurice forest and (f) Montmorency forest 

 Random Forest Analysis 

 Relative Importance of Topography and Vegetation on Snow Depth 
Variability  

The relative importance of predictor variables in Figure 2.7 summarizes the relative 

contribution of the different topographic, vegetation, and forest edge effects on snow 

depth spatial variability at each site. i.e., how much the prediction error decreases if the 

variable at interest is included in the RF model compared to when it is excluded. Within 

the full domain (field+forest), windward forest edge proximity (WFE) has the strongest 

influence on snow depth variability in both Sainte-Marthe (0.99) and Saint-Maurice 

(0.97), and the north-facing forest edge proximity (NFE) has the least influence (0.30 

and 0.23). However, topographic wind sheltering (TWSI) exerts an equally strong 

impact on snow depth as WFE in Sainte-Marthe (0.99) compared to that in Saint-

Maurice (0.70). In Montmorency, LAI and NFE have the highest (0.99) and least (0.07) 

impacts, respectively, on snow depth variability for the full domain. The importance of 

variables somewhat changes when forests and fields are modelled independently, 

implying different dominant factors/processes acting in each environment. For instance, 

in Sainte-Marthe, the TWSI dominates (0.74) snow depth variability in the forest, 

followed by LAI (0.36), WFE (0.36), and Slope (0.31). In Sainte-Marthe field, WFE 

(0.94), TWSI (0.87), and Slope (0.62) are the most important variables. In Saint-

Maurice WFE (0.33), TWSI (0.25), and LAI (0.21) have the highest influence on snow 

depth variability within the forest, whereas in the adjacent field WFE (0.99), TWSI 

(0.64), and Slope (0.39) predominate. In Montmorency, the importance of LAI (0.97), 

TWSI (0.41), and Slope (0.25) is higher for snow depths within the coniferous forest 
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with gaps whereas the snow depths in the small field are mostly influenced by LFE 

(0.27), TWSI (0.23), and Slope (0.18).  

 
Figure 2.7. Relative importance of variables (scaled between 0 and 1) in predicting 
snow depths. (a) Sainte-Marthe, (b) Saint-Maurice and (c) Montmorency  

 Partial Relationships of Predictor Variables with Snow Depth 

As seen in Figure 2.8, all variables exhibit mostly nonlinear relationships with snow 

depth across all sites. Spearman rank correlation coefficients (ρ) were used to quantify 

the strength of the partial relationships and reported in the graphs. A positive ρ indicates 

an increasing monotonic trend and a negative ρ indicates a decreasing one. Note that 

the positive LAI values in field areas correspond to a few isolated LAI pixels along the 

forest edges, the boundary between field and forest. In general, at all sites and despite 

the magnitude of the correlation, the two slope aspect variables (Aspect_WE and 

Aspect_SN) as well as forest shading represented by the north-facing forest edge 

proximity (NFE) have the least effect on snow depth variability (i.e., a relatively flat 

partial relationship on Figure 2.8). Moreover, all the relationships between landscape 

descriptors and snow depth for the overall domain in Montmorency (field+forest, blue 

curves on Figure 2.8c), except NFE, are governed by the respective variable behavior 

in the forest, probably due to the large extent of forest at this site.  
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With regards to topographical control, all sites show increasing snow depths with 

increasing slopes in the field, forest, and field+forest (positive ρ values in Figure 2.8a, 

b, and c). The general relationship of snow depth with TWSI suggests that increased 

topographic sheltering from the wind (increasing TWSI values), leads to enhanced 

snow accumulation. At the two agro-forested sites (Figure 2.8a, b), the greatest 

contribution to the overall field+forest TWSI-snow depth relation comes from field 

snow depths.  

As for the influence of vegetation, there is a decrease in snow depths in response to 

increasing LAI at all sites, although the relation is comparatively weak (ρ = –0.65) in 

the Sainte-Marthe forest. Snow depth at the two agro-forested sites shows a general 

increase in response to increasing distance towards the windward forest edge (WFE), 

except within the Saint-Maurice forest. An increase of snow depth with WFE in Sainte-

Marthe forest indicates more snow at the edge and decreasing inward the forest, which 

reflects blowing snow penetration from the field inside the forest. The increase in snow 

depth with WFE within the Sainte-Maurice forest for WFE > ~0.8 could also reflect the 

limited penetration of blowing snow from the field inside the forest. In Montmorency, 

the field snow depth shows a non-linear relation with LFE, probably due to the 

influence of instrumentation at the NEIGE-FM site while forest snow depths show a 

decrease in accumulation inward the forest.  
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Figure 2.8. Partial relationship of landscape predictor variables with snow depth. (a) 
Sainte-Marthe, (b) Saint-Maurice and (c) Montmorency. Predictor variables are 
presented by rows and sites by columns.   
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 Performance of RF Models at Each Site  

Figure 2.9 displays the RF model estimates versus observed snow depth with 

corresponding OOB statistics for each site. Statistics are presented individually for the 

field, forest, and full domain (field+forest). Among the three sites, Sainte-Marthe RF 

model generally performs better with an OOB R2 of 0.66 and RMSE of 0.083 m, and 

Montmorency shows the weakest performance with an R2 of 0.30 and RMSE of 0.261 

m. All field models perform comparatively better with higher R2 and lower RMSEs 

values than the corresponding forest models. 

 
Figure 2.9. RF model performance against observed snow depths. (a) Sainte-Marthe, 
(b) Saint-Maurice and (c) Montmorency. The stippled line depicts the 1:1 relationship. 

Table 2.3 shows the performance of RF models compared to MLR models using the 

same predictor variables. All RF models show better performances with higher R2 and 

lower RMSE values than the corresponding MLR models. 
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Table 2.3. Comparison of RF and MLR model performances of study sites 

 R2 RMSE 
RF Field Forest Field+Forest Field Forest Field+Forest 
Sainte-Marthe 0.78 0.29 0.66 0.07 0.10 0.08 
Saint-Maurice 0.60 0.17 0.46 0.08 0.10 0.09 
Montmorency 0.57 0.29 0.30 0.18 0.27 0.26 
MLR 
Sainte-Marthe 0.18 0.04 0.21 0.12 0.12 0.13 
Saint-Maurice 0.32 0.08 0.17 0.10 0.10 0.11 
Montmorency 0.02 0.13 0.12 0.26 0.30 0.29 

 

 Discussion  

 Spatial Variability of Forest versus Field Snow Depths  

Snow depths in Figure 2.4 show remarkable microtopographic variability across all 

sites. Our results in Sainte-Marthe underpin the previous finding that forested areas 

accumulate less snow than the adjacent open areas due to canopy interception and 

sublimation losses and sheltering from wind (Pomeroy and Granger, 1997; Hopkinson 

et al., 2004; Varhola et al., 2010a; Zheng et al., 2018; Hojatimalekshah et al., 2021). 

But the other two sites show on average a similar amount of snow accumulation in the 

field and forest. The dense coniferous canopy cover in Montmorency prevented laser 

shots from reaching the ground at some locations and consequently resulted in data 

gaps in the snow depth map (Figure 2.4c). The snow depth patterns in the coniferous 

site thus appear to be dominated by canopy closure, i.e., forest clearings have higher 

snow depths than adjacent canopies. Such patterns have been previously reported by 

both ALS and UAV lidar studies in western alpine/pre-alpine environments with 

different climates (Hopkinson et al., 2004; Zheng et al., 2016; Mazzotti et al., 2019; 

Jacobs et al., 2021). Several authors also highlighted that under-sampling of snow 

depths under the canopy could lead to an overestimation of the overall amount of snow 
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in the forest when gaps (forest clearings) are prevalent, such as in Montmorency 

(Harpold et al., 2014; Zheng et al., 2016). This is because the lidar coverage can be 

biased towards the gaps, which accumulate more snow than under the canopy, hence 

the spatially-averaged snow depth is also biased.  

At the agro-forested sites, the comparatively higher snow depths observed in the open 

field compared to the adjacent forest patches are in contrast to what Aygün et al. (2020) 

observed in similar environments in southern Québec. They measured a lower snow 

accumulation in exposed agricultural fields (excluding the canals and the forest edge) 

compared to the adjacent deciduous and mixed forests. Our results show that the higher 

snow depths at the two agro-forested sites principally correspond to canals and streams 

in the field and the forest edge, which trap the snow blown from the open field with 

greater fetches. Hence canals/streams and forest edges constitute the main structuring 

elements of snow spatial variability at these sites. However, if canals and forest edge 

snow depths are discarded, the agro-forested snow depth maps illustrate a somewhat 

similar phenomena to Aygün et al. (2020), where snow depths in the exposed field are 

slightly lower than those in the forest. In Saint-Maurice, clusters of high snow depth 

values in the central area of the field in Figure 2.4b could be due to local redeposition 

of snow by the wind in the microtopography, or larger-scale topographic effects. This 

could not be verified as unfortunately, the manual measurements in Saint-Maurice 

could not be retrieved due to a probe malfunctioning (Dharmadasa et al., 2022). Yet, 

the TWSI map (Supplement Figure S2.3) suggests that microtopographic wind 

sheltering could be the reason for the local snow deposition closer to the forest edge. 

The probable cause for the other larger high snow depth clusters between the two 

streams in the field could not be explained from the available predictors. They could 

be explained by the influence of the narrow riparian strips of bushes and shrubs 

surrounding the canals on blowing snow redistribution. Ultimately, as canopy 

interception and losses in deciduous and mixed forests are expected to be small 

(Hopkinson et al., 2012b; Aygün et al., 2020), the amount of differential snow depths 
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between the open field and forest would mostly depend on the amount of erosion in the 

field, and perhaps snowmelt losses in the open field prior to peak snow accumulation.  

Moreover, the snow depth maps suggest that the redistribution of eroded snow in fields 

along the forest edges is a prime process in agro-forested landscapes. 

 Scaling Characteristics of Forest versus Field Snow Depths 

 Omnidirectional Semi-Variograms Analysis 

Omnidirectional semi-variogram analyses revealed distinct scaling behaviors in forest 

versus field snow depths (Figure 2.5). Our results suggest a more variable (high semi-

variance values) and more spatially continuous (larger scale break distance) snowpack 

in the Montmorency boreal forest compared to the temperate forest sites. The snowpack 

in the mixed forest at Saint-Maurice was less variable and more spatially continuous 

than that in the Sainte-Marthe deciduous forest. Compared to forested areas, the 

snowpack in field areas was less variable and more spatially continuous. We found the 

shortest scale break distance of 4.4 m for the dense deciduous forest in Sainte-Marthe, 

an intermediate distance of 5 m for the moderately dense mixed forest in Saint-Maurice, 

and a value of 6.5 m for the dense coniferous forest interspersed with gaps in 

Montmorency. Several studies reported scale break distances of 4 m for a shrub-

dominated sparsely distributed subalpine site (Mendoza et al., 2020b), 7–9 m for high 

to moderately dense coniferous forests (Trujillo et al., 2007; Trujillo et al., 2009), 12 

m for a moderately dense deciduous forest (Trujillo et al., 2007; Trujillo et al., 2009), 

15.5 m for a dense coniferous forest with open meadows (Deems et al., 2006; Fassnacht 

and Deems, 2006), and 16.5 m for a sparse coniferous forest (Deems et al., 2006; 

Fassnacht and Deems, 2006). Our values are rather smaller than those reported by 

previous studies, except Mendoza et al. (2020b). This could be due to structural 

characteristics of the forests such as canopy density and size of open areas (gaps). It is 

also plausible that the dense point cloud provided by UAV (~150–600 points m-2: 
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Zhang et al., 2019; Harder et al., 2020; Jacobs et al., 2021; Dharmadasa et al., 2022) 

was able to resolve spatially distributed snow depth patterns at finer scales than that 

permitted by previous ALS surveys, which had typical point densities of ~8–16 points 

m-2 (Kirchner et al., 2014; Broxton et al., 2015; Broxton et al., 2019; Currier et al., 

2019). However, similar to the findings reported by Deems et al. (2006) and Trujillo et 

al. (2007) our topography+vegetation surface data show scale break distances at the 

same order of magnitude as the forest snow depths at all sites. This indicates that the 

variability of vegetation (trees) governs the pattern of snow deposition and distribution 

within the forest (Deems et al., 2006). 

The relatively higher scale break distance in Montmorency forest snow depth could be 

due to the prevailing large gaps in the forest as a result of silvicultural practices and the 

higher efficient canopy interception of conifers. Coniferous trees have a substantial 

impact on snow depths as they intercept snow efficiently and unload it around the 

crown (Zheng et al., 2019). Thus, a longer correlation length (at least the diameter of a 

tree crown) is expected as well as greater variability of snow depth in coniferous 

environments compared to the more random deciduous tree structures which have 

reduced and more transient snow storage (Mendoza et al., 2020b). Leafless deciduous 

trees aid faster unloading of snow through branches as opposed to unloading around 

the crown in conifers and thus would result in a smaller correlation length in snow 

depth. 

The difference in scale break distances in field snow depths compared to bare earth 

topography indicates that the bare ground surface in field areas was certainly altered 

by the snow accumulation. In Sainte-Marthe, snow accumulation increases the 

roughness of the bare ground whereas, in Saint-Maurice, snow accumulation results in 

a smooth surface compared to the ground underneath. i.e., interactions of snow with 

bare ground in Sainte-Marthe field change the scale invariance behavior to multi-

scaling, and in Saint-Maurice, these interactions smooth the surface and resulted in a 
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larger scale break distance than that of the bare ground. However, the larger scale break 

distance and gentler slope of the Sainte-Marthe field semi-variogram (Figure 2.5a) 

compared to Saint-Maurice (Figure 2.5b) suggests that the snowpack in Sainte-Marthe 

field is still smoother and more spatially continuous than that of Saint-Maurice. This 

interpretation is supported by the snow depth map in Figure 2.4a, which shows a 

smooth snow depth pattern that is only disrupted by preferential accumulation within 

irrigation canals/streams. In Montmorency field, rather than interactions of snow with 

bare ground, the meteorological station network appears to modify the snow 

accumulation and distribution patterns and resulted in different multi-scaling behavior 

than the bare ground. In general, large scale break distances (11–14 m) compared to 

forested areas were found in field snow depths at all sites except the short, first scale 

break distance (5.8 m) in Montmorency. With the absence of vegetation in the field in 

winter and its high exposure to wind at the two agro-forested sites (Figure 2.2a, b), 

these values are of similar magnitude to those reported for wind-exposed slopes in 

alpine environments (13.8–20.5 m) by Schirmer and Lehning (2011), Mott et al. (2011), 

Mendoza et al. (2020a), and Mendoza et al. (2020b). In the Montmorency field, mostly 

sheltered from the wind, the short and large-scale break distances could be due to the 

influence of preferential snow accumulation near the meteorological equipment (e.g., 

concentric snow accumulations patterns around the two double-fenced precipitation 

gauges in Figure 2.4c). 

Generally, the scale break distances found in this study suggest that the scale selected 

for modeling or sampling in similar environments should be well below these values, 

in order to fully resolve the small-scale variability of the snow depth. 

 Directional Semi-Variograms Analysis 

Sainte-Marthe field snow depths did not show any directionality, most probably as a 

result of the interactions of snow with two dominant and opposed wind directions. In 
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contrast, Saint-Maurice field snow depths showed anisotropic behaviors along and 

perpendicular to the dominant wind direction. Narrow anisotropic patterns 

perpendicular to the dominant wind direction are due to the snow accumulation 

alongside canals. Even though the canals were discarded in semi-variogram analysis, 

as seen from Figure 2.4b, preferential snow accumulation is still significant from the 

canal margins up to a few meters into the field. Broader anisotropic patterns along the 

dominant wind direction are due to the influence of wind. This directionality is also 

shown in the snow depth map in Figure 2.4b, where the change of snow depth values 

along the direction perpendicular (northwest-southeast) to the dominant wind direction 

is more drastic than the change of snow depths along the dominant wind direction 

towards the forest. However, forest snow depths at both agro-forested sites show 

anisotropic behavior, although not very strong, parallel to dominant wind directions. 

This indicates an influence of blowing snow on the snow distribution patterns in the 

forest, and hence a possible penetration of blowing snow from field to forest. The 

isotropic behavior in the Montmorency field and forest, on the other hand, is not 

surprising given that the site is sheltered from the dominant winds (Figure 2.2c). 

 Relationship of Snow Depth to Topographic and Vegetation 
Characteristics 

 At the Agro-Forested Sites 

At the two agro-forested sites, field snow depth variability is governed by preferential 

snow accumulation in canals/streams and the microtopography of the local terrain, as 

seen by the high relative importance factor of TWSI in Figure 2.7a, b, i.e., adding the 

TWSI reduces model errors significantly. As such, the highest wind sheltering values 

were found in canals/streams which accumulated more snow (Figure 2.4 and 

Supplement Figure S2.2, S2.3). Within the forested areas, the influence of forest 

structure (LAI) was not as strong as expected; instead, the influence of 
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microtopography appeared to be mostly governing the snow depth variability. The 

lower influence of LAI at these sites probably reflects the abundance of leafless trees 

in winter, which reduce interception losses and concurrent spatial snowpack variability. 

Moreover, the microtopography of these landscapes is closely related to the surficial 

geology of the sites. Preserved forested patches in the St. Lawrence River lowlands 

often correspond to less favorable soil conditions, such as glacial till and/or bedrock 

outcrops and associated rougher microtopography. Conversely, agricultural fields are 

developed on glaciomarine or fluvioglacial sediments that are flatter in nature and also 

leveled by machinery (MFFP, Québec Research and Development Institute for the 

Agri-Environment (IRDA) and La Financière Agricole du Québec (FADQ)). Under 

limited wind transport, the rougher microtopography in forests creates a directional 

bias that promotes lateral transport of snow particles (bounce/ roll/ ejection) and 

therefore enhances the smoothing of the snow surface (Filhol and Sturm, 2019) which 

dominates the snow heterogeneity within the forest. The absence of apparent 

preferential snow accumulation on different slope orientations in agricultural fields 

suggests a smoothening of the topography by the snow cover due to wind redistribution 

in the field. The more rugged microtopography of the forested soil on the other hand 

seems to be preserved and to influence the snow cover through differential radiation 

loading, resulting in more snow accumulations on northerly slopes in the forest 

compared to that in the field (Figure 2.8a, b). 

At the landscape scale (field+forest), WFE has the highest relative importance (Figure 

2.7a, b); including WFE decreases the prediction error of the RF model by a factor of 

0.97–0.99 (97–99 %) compared to a model excluding WFE. Thus, the agro-forested 

sites are dominated by blowing snow accumulation along the forest edges. This effect 

is well visible on the lidar-derived snow depth maps too (Figure 2.4a, b). 

Comparatively high wind speeds and more constrained dominant wind directions 

(Figure 2.2a, b) at these sites create favorable conditions for preferential deposition of 

blowing snow at the forest edge due to the large expanses of open terrain upwind of 
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the windward forest edges. Preferential snow deposition by wind-induced snow drifting 

along the forest edge has been previously reported in alpine environments by Veatch 

et al. (2009), Essery et al. (2009), Broxton et al. (2015), and Currier and Lundquist 

(2018). However, there seems to be only limited penetration of blowing snow inside 

the forest in windward directions (WFE forest points in Figure 2.8a, b and Figure 2.6d, 

e).  

Shading by the forest edge seemingly does not have a significant influence on the snow 

depth variability at these sites during the accumulation season. Shading effects would 

however probably have some influence on snow depth patterns during the melting 

season (Hojatimalekshah et al., 2021). The spatial heterogeneity of snow depths and 

associated processes challenge distributed snow modeling using hydrologic response 

units (HRUs) in agro-forested landscapes (Aygün et al., 2020), where HRUs are 

classified as field and forest patches but disregard boundary effects. Aygün et al., (2020) 

modelled (Nash–Sutcliffe efficiency of 0.57 over 23-year simulation of SWE) blowing 

snow transport in fields and the preferential accumulation in canals and streams, and 

assumed that once these were filled, any further blown snow accumulated in the forest. 

Our results confirm the preferential accumulation in field canals and streams but 

suggest that further blown snow first preferentially accumulates at the forest edge, 

which should eventually be represented as distinct HRUs in distributed hydrological 

models of agro-forested landscapes. 

 At the Boreal Forested Site 

The findings in agro-forested sites are in contrast with the boreal forested environment, 

where forest structure (LAI) predominates on the variability of snow depth (Figure 2.7 

and Figure 2.8). The small field appears to have fewer microtopographic features and 

is mostly sheltered from the most frequent winds coming from the northwest direction 

(Figure 2.2c). The relatively greater positive TWSI values at this site compared to agro-
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forested sites imply more rugged microtopography and a larger degree of wind 

sheltering in the forested terrain (Figure 2.8c and Supplement Figure S2.4). However, 

since wind is mostly impeded by the coniferous trees, the TWSI-snow depth 

relationship in the forest suggests that the snow displacement is driven by small-scale 

bounce/ejection/roll mechanisms, and preferential snow deposition is driven by 

immobilizing mechanisms such as adhesion, cohesion, and physical interlocking of 

snow particles (Filhol and Sturm, 2019) and unloading of snow by the canopy (Zheng 

et al., 2019). The lesser importance of TWSI (0.41 compared to 0.97 of LAI, the 

dominant predictor, Figure 2.7) as snow depth predictor in the coniferous forest 

compared to deciduous (TWSI = 0.74, the dominant predictor) and mixed (TWSI of 

0.25 compared to 0.33 of WFE, the dominant predictor) forests, and the more or less 

constant snow depth values at higher TWSI values (Figure 2.8c) suggest that 

microtopography has a more restricted influence on deeper snowpack at this site 

compared to the shallower snowpack at the agro-forested sites. In other words, in the 

absence of wind, increasing snow depths reduce/inhibit surface undulations and 

promote more spatially continuous snow cover (Filhol and Sturm, 2019). The spatial 

arrangement of the trees may have a larger control on snow depths in the boreal forest, 

i.e., forest gaps in the coniferous forest with various slopes and aspects creating 

pronounced and distinct snow depth variabilities inside the forest (Woods et al., 2006). 

For instance, in Montmorency, superimposed TWSI and LAI maps (Supplement Figure 

S2.4) show that the high snow depth values associated with TWSI values of 10–12 

(Figure 2.8c) are associated with a forest gap that likely prevents snow interception and 

accumulates more snow. Our results support the findings of previous studies that the 

snow depth distribution in coniferous environments is mainly governed by the canopy 

characteristics such as structure, distribution, and type of vegetation (Winkler et al., 

2005; López-Moreno and Latron, 2008; Varhola et al., 2010a; Zheng et al., 2018; Safa 

et al., 2021; Koutantou et al., 2022). Our findings however show that the 

microtopography, even under wind-sheltered conditions in the forest, still explains 
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some of the spatial variability in snow depths, although not as prominent as canopy 

characteristics. 

 Comparison of RF Model Performances 

 Comparison between the Sites 

Our RF model showed variable performances, with overall OOB R2 of 0.30–0.66 

(Figure 2.9). All sites have different climates. The higher performance at Sainte-Marthe 

could be due to a combination of different factors. Early snowmelt due to frequent rain-

on-snow events in this region (Paquotte and Baraer, 2021) might have contributed to a 

more structured snowpack in the Sainte-Marthe forest and hence improved the 

prediction of snow depth compared to the other agro-forested Saint-Maurice site. The 

high R2 values in fields at all sites (0.78 in Sainte-Marthe, 0.60 in Saint-Maurice, and 

0.57 in Montmorency) indicate that the models captured the most relevant processes 

through the predictor variables considered. In contrast, Saint-Maurice forest had the 

worst performance (0.17). This could be due to underlying processes/variables not 

considered in our model, possibly associated with the canopy structure of the mixed 

forest. Moreover, the reduced sampling under coniferous trees due to limited lidar 

penetration could also have affected grid-scale snow depth and resulting relationships 

with landscape metrics in the Montmorency forest. 

 Comparison with Previous Studies  

The previous studies that used RF models to estimate snow depths/SWE (Bair et al., 

2018; Yang et al., 2020) were mainly focused on mountainous watersheds with large 

elevation gradients and with less or no vegetation and reported average Nash–Sutcliffe 

efficiencies as high as ~0.7 and RMSEs of 44–73 mm, where the major part of this 

variance was explained by elevation. Safa et al. (2021) developed site-specific RF 
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models to predict snow-covered areas using vegetation density, average incoming 

shortwave, and longwave radiation, total precipitation, and average air temperature and 

reported mean absolute errors of 0.05–0.12 m in mixed coniferous sites. In addition, 

the abundance of studies that employed MLR (Jost et al., 2007; Lehning et al., 2011; 

Grünewald et al., 2013; Revuelto et al., 2014; Fujihara et al., 2017) and BRT (Winstral 

et al., 2002; Anderton et al., 2004; Molotch et al., 2005; Revuelto et al., 2014) in alpine 

environments with rocky outcrops and pasture or no vegetation also reported R2 of 

0.25–0.91 where a substantial portion of the snow depth variability was explained by 

terrain parameters, mostly elevation. However, model performances are shown to be 

degraded with the presence of forests. Studies conducted in forested terrain with 

relatively small elevation ranges reported R2 of 0.25–0.51 by MLR (Zheng et al., 2016; 

Zheng et al., 2018) and BRT (Erxleben et al., 2002; Veatch et al., 2009; Baños et al., 

2011). Musselman et al. (2008) proved that including detailed vegetation information 

like micro-scale vegetation-induced solar radiation, distance to the canopy, and tree 

bole could improve BRT performance to 0.68 in a forested area. Compared to previous 

works in forested terrain, we believe our model fits (overall R2 of 0.30–0.66) are in a 

reasonable range. 

 Comparison to MLR Models  

The relatively good success of MLR in previous studies to study landscape control on 

snow accumulation is mostly attributed to elevational controls on snow accumulation, 

i.e., orographic enhancement of precipitation gradient and adiabatic cooling which 

promotes higher snowfall fraction and reduced ablation at higher elevations. However, 

in low elevation landscapes, more complex relationships are expected between snow 

depths, vegetation, and topography, which would likely be poorly captured by linear 

relationships. As shown in Table 2.3, our RF models show a significant improvement 

with higher R2 and lower RMSE values compared to MLR models at all sites. Since 

the MLR models at each site were developed using the same predictors described in 
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section 2.2.3.2., this suggests the deficiency of MLR models in capturing the 

underlying processes at these sites. Figure 2.8 shows that almost all variables have a 

nonlinear relationship with snow depth, which linear models are unable to capture. Our 

RF results thus highlight the importance of considering this nonlinearity in statistical 

models, as RF notably allows capturing nonlinear relationships between snow 

accumulation and landscape variables, while protecting against the typical overfitting 

of single decision trees. 

 Note on Potential Variables/Predictors in Similar Landscapes 

One particularity of our sites (also related to the scale of the analysis) is the negligible 

elevation range. Many studies conducted in mountainous environments have shown the 

preponderant influence of elevation on the distribution of snow cover. While the 

elevation range becomes important over a larger extent on the Canadian shield 

(Montmorency-type physiography), the low elevation St. Lawrence lowlands (Sainte-

Marthe and Saint-Maurice) remain mostly flat, and local topography (terrain 

roughness), land cover and land use are expected to control the spatial distribution of 

the snow cover. As confirmed by our results, in agro-forested land covers, wind-related 

forest edge effects will also have a substantial impact on snow deposition, and 

distribution patterns. 

 Limitations of the Study 

This study provides insight into the scaling properties of the snowpack and the effect 

of different topographic, vegetation, and forest edge characteristics on snow depth 

variability in open versus forested areas with different canopy covers. However, there 

are potential limitations with some of the methods presented in this study. For instance, 

despite our efforts to incorporate processes/variables influencing the spatial 

distribution of snow depths with available data, the comparatively lower performance 
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of RF models in Saint-Maurice and Montmorency indicates that there could still be 

some processes/variables that were unable to accounted for (e.g., soil parameters, 

snowpack state, and meteorological variables). Another limitation comes from the 

unexplained snow depth variability that is within the UAV lidar system detection limit. 

Especially in Montmorency, there were observation gaps by UAV lidar due to the thick 

canopy cover that eventually affected the accuracy of snow depth and ground surfaces 

rasters and derived landscape descriptors (e.g., slope, LAI, etc.). The problem of under-

sampling of snow depth under canopies and associated effects on interpolation and 

spatial-averaging of snow depths has been long identified but is still not fully resolved. 

The dominant predictors identified in this study might also depend on the timing of the 

survey date (e.g., near peak snow accumulation versus early and mid-winter, or during 

the melt period). Hence, repeat surveys with UAV lidar to track the temporal evolution 

of the snowpack would be required to fully address this question in the future. However, 

the analysis presented here is thought to largely reflect the typical conditions at the sites 

and to portray key differences between agro-forested and boreal landscapes. The 

similar key processes identified at the two agro-forested sites suggest that findings at 

these sites could be extrapolated to similar environments. In absence of large-scale 

ALS surveys over snow in Québec as done, for example in the Sierra Nevada, USA 

(e.g., Zheng et al. (2019)), UAV lidar meanwhile provides opportunities to map snow 

depths and test hypotheses regarding the spatial variability of snow depths. While the 

statistical framework used in this study does not allow a full understanding of the 

driving processes, it provides a useful identification and ranking of the predictors 

associated with such processes, such as forest edge effects, forest structure, and 

microtopography and offers guidance for the development and application of process-

based models in these environments. 
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 Conclusions 

In this study, including wind-related forest edge effects in agro-forested sites and 

incorporating canopy characteristics in the coniferous site increased the statistical 

prediction accuracy of snow depth spatial variability by more than 90 % compared to 

when these predictors are discarded from the RF model. This implies the importance 

of including and better representing these processes in physically-based models. Taken 

together, our results suggest that in agro-forested landscapes of the St. Lawrence valley, 

geomorphological assemblages drive the differential snow accumulation between field 

and forested areas, i.e., rugged glacial deposits with preserved forests favor more snow 

accumulation whereas flat glaciomarine sediments in the exposed fields promote snow 

erosion. The blowing snow redistributed from the fields gets trapped in canals/streams 

and accumulates along the forest edges, accounting for the highest local snow depths 

in these landscapes. Furthermore, within deciduous/mixed forests, it is rather the 

underlying topography and/or the forest edges that govern the snow depth variability, 

while within the coniferous environment, it is the forest structure variability. These 

processes are not fully represented in process-based models. For instance, models like 

CRHM (Pomeroy et al., 2007), and SnowModel (Liston and Sturm, 1998) prescribe a 

single, typical LAI for land cover classes. This ignores the variability within stands 

which could compromise larger scale estimates of snowpacks. The recent development 

of hyper-resolution process-based models does account for fine scale canopy structure 

(Mazzotti et al., 2020a; Mazzotti et al., 2020b), yet representing microtopographic 

characteristics like terrain roughness is still problematic. Our results suggest that snow 

redistribution at forest edges, spatial variability of forest structure, and better 

representation of microtopography and prominent topographical features such as canals 

are important processes/variables that should be taken into account in process-based 

models. This highlights the advantage of using high resolution data to characterize 

small-scale processes and therefore explicitly resolve snow depth variability.  
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In addition, since the selected sites are representative of typical agro-forested and 

boreal landscapes in southern Québec, the findings of this study could be 

applied/extrapolated to similar landscapes in the region and any similar environments 

where similar processes operate. 
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Supporting Information 

 
Figure S2.1. Long-term snowfall/total precipitation, average temperature, and wind 
rose plots at (a) Sainte-Marthe, (b) Saint-Maurice and (c) Montmorency. Stripped bars 
indicate total precipitation and solid color bars indicate snowfall. Long-term snowfall, 
total precipitation and average temperatures were derived from climate normal 
(averages for 1981–2010) for the same ECCC stations used in Table 2.1. Then they 
were plotted with snowfall/total precipitation and average temperature values of the 
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study hydrological years (Oct-Sept) to place them in a climatological context. The 
long-term wind rose plots were derived from the nearest available wind stations to the 
sites for 2010–2020 (Station climate ID 7016470, 7018561, and 7042395 for Sainte-
Marthe, Saint-Maurice, and Montmorency) 

 

 
Figure S2.2. Sainte-Marthe snow depth and predictor variables maps. The elevation is 
presented as ellipsoidal height. 
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Figure S2.3. Saint-Maurice snow depth and predictor variables maps. The elevation is 
presented as ellipsoidal height. 
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Figure S2.4. Montmorency snow depth and predictor variables maps. The elevation is 
presented as ellipsoidal height. 

Table S2.1. RF model R2 for different vegetation descriptors  

 Sainte-Marthe Saint-Maurice Montmorency 

 Field+
Forest Forest Field Field+

Forest Forest Field Field+
Forest Forest Field 

LAI 0.659 0.291 0.778 0.459 0.168 0.602 0.303 0.290 0.560 

CC 0.659 0.292 0.778 0.459 0.167 0.602 0.304 0.294 0.562 

CH 0.672 0.287 0.799 0.498 0.155 0.664 0.369 0.365 0.589 

GF 0.659 0.290 0.777 0.459 0.166 0.602 0.304 0.292 0.563 
Note: sensitivity of different vegetation descriptors was tested by keeping the other 
variables in RF models unchanged. 
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Abstract 

Obtaining accurate snow depth estimates under dense canopies using airborne lidar 

(light detection and ranging) techniques is challenging due to the under-sampling of 

ground and snow surfaces. Existing interpolation techniques do not adequately address 

this problem and they often result in an overestimation of under-canopy snow depths. 

To address this issue, we introduce and evaluate a new interpolation method that 

incorporates intra-canopy snow depth variability to provide more accurate estimations 

at unsampled locations. Four interpolation methods were tested, considering systematic 

trends (landscape trend, canopy vs. gap trend, and intra-canopy trend) along with 

spatial interpolation of the residuals. Our results show that spatial interpolation 

methods without consideration of trends are sufficient to capture and reconstruct the 

small-scale variability of snow depths below a point separation distance of 1 m, (i.e., 

ground surface point density > 1 pt m-2). However, beyond a point separation distance 

of 2.5–3 m (point density < 0.33–0.40 pt m-2), spatial interpolation based on proximity 

alone becomes unreliable because point separation becomes larger than the snow depth 

spatial correlation scale. Within these limiting distances, the method that incorporates 

trends along with spatial interpolation techniques can resolve the small-scale variability 

and thereby reduce the likely overestimation of snow depths under the canopy. 

Key words: UAV-lidar; under-sampling; interpolation; systematic trends 
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 Introduction 

Airborne (both piloted and unpiloted) lidar (light detection and ranging) scanning has 

been increasingly used in recent years to monitor snowpacks in forested environments 

due to its strong penetration ability through the forest canopy to detect underlying snow 

cover and ground  (Hopkinson et al., 2004; Morsdorf et al., 2006; Hopkinson et al., 

2012b; Deems et al., 2013; Harpold et al., 2014; Zheng et al., 2016; Currier and 

Lundquist, 2018; Zheng et al., 2018; Mazzotti et al., 2019; Harder et al., 2020; Jacobs 

et al., 2021; Dharmadasa et al., 2022; Koutantou et al., 2022; Dharmadasa et al., 2023). 

In forested environments, ground returns point density depends on forest cover type, 

understory vegetation, laser spot size, laser pulse rate, and the scan angle of the laser 

sensor (Deems et al., 2013). As such, dense canopies, especially snow-laden conifer 

canopies, pose challenges for under-canopy snow depth detection by reflecting and 

attenuating larger amounts of lidar pulses and thereby preventing laser shots from 

reaching the ground/snow surface (Varhola et al., 2010; Hopkinson et al., 2012b; 

Harpold et al., 2014; Tinkham et al., 2014; Broxton et al., 2015; Zheng et al., 2016; 

Mazzotti et al., 2019; Zheng et al., 2019; Jacobs et al., 2021; Koutantou et al., 2022; 

Dharmadasa et al., 2023). Consequently, this under-sampling of snow under canopies 

introduces errors upon averaging or interpolating snow depth points to a different 

resolution (Tinkham et al., 2014; Zheng et al., 2016). Since forest openings (gaps) 

generally accumulate more snow than under canopies and have higher lidar point 

densities (Hopkinson et al., 2012a; Broxton et al., 2015; Revuelto et al., 2015; 

Hojatimalekshah et al., 2021), aggregating or interpolating point snow depths can 

results in an overestimation bias in the resulting averaged snow depth map (Tinkham 

et al., 2014; Zheng et al., 2016).  For example, in a dense mixed-conifer forest in the 

southern Sierra Nevada, Zheng et al. (2016) found that 28 % of the area had no lidar 

returns, which resulted in at least a 10 cm overestimation error in average snow depth 

for the whole area when using snow depths in the open area as estimates of under-

canopy snow depths. In addition, along with the influence of coniferous tree canopy 
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interception, sublimation, longwave emittance, and unloading of snow from the canopy 

lead to relatively lower snow depths closer to the tree trunk and a gradual increase in 

snow depth up to a distance coinciding with the canopy crown (Pomeroy and Dion, 

1996; Musselman et al., 2008; Revuelto et al., 2015; Zheng et al., 2019), resulting in 

significant, but somewhat predictable, intra-canopy variability of snow depths in 

coniferous forests. Existing interpolation techniques such as inverse distance weighting 

(Burrough, 1986; Guo et al., 2010; Michele et al., 2016), geostatistical methods (Isaaks 

and Srivastava, 1989; Guo et al., 2010; Mazzotti et al., 2019; Koutantou et al., 2022), 

regression and tree-based methods (Winstral et al., 2002; Jost et al., 2007; López-

Moreno et al., 2010; Lehning et al., 2011; Revuelto et al., 2014; Zheng et al., 2018), or 

a combination of these methods (Erxleben et al., 2002) do not fully address the 

aforementioned caveats. Koutantou et al. (2022) emphasized the need for a more 

sophisticated gap-filling algorithm to avoid likely overestimation of under-sampled 

under-canopy snow depths. In this study, we address and explore the problem of biased 

snow depth distributions due to under-canopy under-sampling in coniferous 

environments, and introduce and evaluate a new interpolation method that incorporates 

the intra-canopy snow depth variability and thus providing more accurate estimations 

at unsampled locations. This method seeks to decompose and model the overall lidar 

snow depth variability into systematic components (landscape trend, preferential 

accumulation in gaps, intra-canopy variability) and remaining stochastic variability, for 

an optimal interpolation of lidar snow depths in coniferous forests and more accurate 

landscape-wide snow depth distribution estimates. To determine the optimal method, 

four methods were assessed, which combined the systematic trends and spatial 

interpolation of residuals. 

 Study Area 

The study site, Forêt Montmorency (hereafter Montmorency) is a dense boreal forest 

with a mean canopy density of 60–80 %, located north on the Canadian Shield (47.3 °N, 
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71.1 °W) in southern Québec, eastern Canada (Figure 3.1). Dominant tree species of 

the site are balsam fir (Abies balsamea), black spruce (Picea mariana), and white 

spruce (Picea glauca). One of the characteristics of the area is forest gaps associated 

with clear-cutting and regeneration practices (Québec Ministry of Forests, Wildlife, 

and Parks (MFFP)). Lidar data acquisition of the site was conducted in summer 2019 

for the snow-off surface (13 June 2019) and winter for the snow-on surface (29 March 

2019) with a GeoMMS system mounted onto a DJI M600 Pro UAV platform. A 100 x 

100 m representative area (Figure 3.1) from the broader survey conducted in 

Montmorency by Dharmadasa et al. (2022) was used in this study. More details on data 

acquisition and equipment specifications are described in Dharmadasa et al. (2022). As 

observed in the field campaign, the sparse mixed forest area in Figure 3.1 is mostly 

composed of forest gaps. 
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Figure 3.1. Montmorency site showing the 100x100 study area (demarcated in red) 
and lidar snow depth of the study area at 0.1 m resolution (see Methods). 

 Methods 

The post-processed and classified lidar point clouds obtained from Dharmadasa et al. 

(2022) were used to produce a digital elevation model (DEM) of snow depths and for 

further analyses in this study. A detailed presentation of lidar point cloud processing is 

given by Dharmadasa et al. (2022). The workflow presented in Figure 3.2 depicts the 

sequence of steps utilized in this study, incorporating both the methods developed 

specifically for this study and those adapted from Dharmadasa et al. (2022). 
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Figure 3.2. Workflow adopted for the study. Each box shows the software used (bold) 
with the corresponding end product. 1 adapted from Dharmadasa et al. (2022). 2 
developed for this study. 

 Producing Snow Depth Map 

Snow depth maps were produced at 0.1 m grid resolution (Figure 3.1), following the 

same procedure described in Dharmadasa et al. (2022) and Dharmadasa et al. (2023), 

to account for the variability of snow depth within the canopy. i.e., bare surface points 

were aggregated to a grid resolution of 0.1 m using the binning method in Global 

Mapper (Blue Marble Geographics, 2020). Rather than interpolating, this method uses 

the average of the bare surface points within a grid cell, hence preserving the 

observation gaps in the data.  
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 Segmenting Individual Trees  

We developed a canopy height model (CHM) at 0.5 m resolution and identified the tree 

tops in the winter point cloud normalized by bare surface point elevations in the R 

package lidR (Roussel et al., 2020; Roussel et al., 2022). A local maximum was 

detected to identify tree tops using flexible window sizes ranging from 3–5 m. We used 

the region-growing algorithm developed by Dalponte and Coomes (2016) for tree 

segmentation on our data. Figure 3.3 shows the tree tops and tree polygons (canopy 

crowns) identified by the tree segmentation algorithm. Note that, at times, for a cluster 

of trees with interlocking crowns, only a single tree top was identified. This is still 

acceptable for the purpose of our study, as confirmed during the field works, these 

clusters of trees act as a single unit when accumulating snow underneath the canopy. 

Zheng et al. (2018) also found that the canopy surrounding within a few meters of a 

tree have a stronger effect on the snow accumulation on the ground when the trees are 

clustered together versus a single tree. After the segmentation of individual trees, all 

snow depth points within the tree polygons were defined as “under-canopy”, whereas 

the snow depth points outside the tree polygons were defined as “forest gaps”. A similar 

approach for tree segmentation was previously used by Hojatimalekshah et al. (2021) 

on terrestrial laser scanning data collected across Grand Mesa, Colorado, USA.  
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Figure 3.3. Results of tree segmentation. (a) tree tops plotted as crosses (+) over the 

canopy height model (CHM); (b) tree polygons identified for each tree top 

 Snow Depth Interpolation Methods 

We implemented four different interpolation methods on snow depth points. The 

methods differed in which of the systematic trends (landscape trend, canopy vs. gap 

trend, and intra-canopy trend) were considered, or not, during the interpolation process. 

Method 1 only considered the landscape trend of the snow depths; method 2 considered 

the landscape trend and the canopy vs. gap trend; Method 3 considered the landscape 

trend and the intra-canopy trend in snow depths; finally, method 4 considered all 

systematic trends (landscape trend, canopy vs. gap trend and intra-canopy trend). For 

each method, the systematic trends were modelled and removed, and the residuals were 

spatially interpolated using either local-inverse distance weighting (IDW) or the 

geostatistical ordinary kriging (OK) method. With IDW, the weight of each point is 

inversely proportional to the distance between the samples (Burrough, 1986). With OK, 
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a semi-variogram that summarizes the spatial structure of the snow depth points is used 

to calculate the weighting factor that corresponds to each point to estimate snow depth 

at unsampled locations (Isaaks and Srivastava, 1989). Both methods were tested 

separately for the interpolation of residuals. In addition, spatial interpolation of raw 

snow depths using OK and IDW approaches was used as a benchmark to show the 

effect of including systematic trends. All analyses were done in R 4.0.2. Figure 3.4 

summaries the methods interrelations. 

 

Figure 3.4. Schematic illustration of the interpolation methods. 
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 Method 1 

In method 1, we first removed the landscape trend in snow depth points by fitting a 

second-order polynomial trend surface using the spatial package in R (Venables and 

Ripley, 2002). Then, the snow depth residuals (raw snow depth – landscape trend: 

‘residual 1’ on Figure 3.4) were spatially interpolated using OK and IDW. The 

landscape trend is then added back to the interpolated residuals to obtain the estimated 

snow depths in unsampled areas. 

 Method 2 

In method 2, the detrended snow depth data from method 1 (residual 1) was used to 

calculate the canopy vs. gap trend. For this, the average snow depth under-canopy and 

within forest gaps were calculated and subtracted from residual 1, yielding the 2nd-level 

residuals (‘residual 2’ in Figure 3.4). This operation thus removes the potentially 

systematic positive bias in gaps relative to canopies. Then, the 2nd-level residuals were 

spatially interpolated with OK and IDW. The landscape trend and the canopy vs. gap 

trends are then added back to the interpolated residuals to obtain the estimated snow 

depths in unsampled areas. 

 Method 3  

In method 3, the detrended snow depth data from method 1 (residual 1) was used to 

determine the intra-canopy snow depth patterns. A number of studies reported 

increasing snow depths with increased distance from tree stems toward the tree canopy 

(Musselman et al., 2008; Revuelto et al., 2015; Zheng et al., 2019). As such, the 

correlation between snow depth under the canopy and the scaled distance from the tree 

stem was investigated. For each snow depth point located within a canopy, the distance 

from the tree stem location (as identified by tree tops) to the snow depth point was 
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calculated and then scaled by the total distance from the tree stem to the tree canopy 

edge.  A scaled distance was used to account for the different tree canopy sizes. Then, 

a second-order polynomial function was fitted to snow depth residual 1 and 

corresponding scaled distances (Figure 3.5) to estimate the intra-canopy trend. Since 

the point density tended to increase from the tree stem towards the canopy edges, the 

polynomial model was weighed according to point density over the scaled distance. 

The point density was estimated with a gaussian kernel window with a 0.1 scaled 

distance bandwidth (standard deviation = 0.1). An interaction term with tree height was 

included, to account for the different intra-canopy trends with tree sizes (Figure 3.5). 

The fitted polynomial function showed an adjusted R2 of 0.70. Finally, the intra-canopy 

trend was removed from residual 1, and the residuals from the intra-canopy trend 

(‘residual 3’ in Figure 3.4) were spatially interpolated using OK and IDW (Figure 3.4).  

 
Figure 3.5. Variation of snow depth residual 1 with scaled distance. Points are colored 
by the tree height. 
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 Method 4 

Method 4 removed both the landscape trend and the canopy vs. gap trend (yielding the 

2nd order residuals in Figure 3.4). The polynomial model described in method 3 was 

then fitted on the 2nd order residuals to obtain the intra-canopy trend (Figure 3.4). The 

fitted polynomial function showed an adjusted R2 of 0.7. Subtracting the intra-canopy 

trend from residual 2 yielded the 4th-level residuals (‘residual 4’ in Figure 3.4), which 

were then spatially interpolated using OK and IDW. 

 Cross-validation of the Interpolation Methods 

Cross-validation was used to estimate the prediction performance of the respective 

interpolation methods. One-hundred random snow depth points were used as test points. 

To investigate the effect of the distance between the sampled and unsampled points on 

the prediction (i.e., the effect of the local point density on the quality of the 

interpolation), all the surrounding training (sampled) points within a distance D to each 

of the test (unsampled) points were removed from the training set, and then the snow 

depth at the test points was estimated from the remaining training points (Figure 3.6). 

D was varied from 0 to 5 m, with a 0.5 interval. The whole procedure was repeated 20 

times to reduce the sampling uncertainty. The root mean squared error (RMSE), bias, 

and correlation coefficient were used as validation statistics and reported as a function 

of the mean distance between the unsampled (test) points and the three closest training 

points. The validation statistics for the four interpolation methods described above and 

the same methods without imposing spatial interpolation (i.e., only estimating snow 

depths with trends) were compared with the benchmark method (spatial interpolation 

of raw snow depths using OK and IDW approaches) to investigate the effect of 

incorporating trends in snow depth estimates. 
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Figure 3.6. Illustration of the cross validation scheme. Selected test points (blue) are 
chosen randomly and training points within a separation distance (D) are eliminated to 
investigate the impact of lidar sampling density on the interpolation performance.  

 Results and Discussion  

 Interpolated Snow Depth Maps  

Figure 3.7 shows the interpolated snow depth obtained by the different methods. Snow 

depth maps derived from the OK (top row) method show negligible to no visible 

difference to the corresponding IDW (mid row) snow depth estimates. Snow depth 

patterns obtained by the four interpolated methods are overall similar, but fine scale 

differences are apparent (Figure 3.7a–d and e–h). For instance, the area west of the 

large gap is covered by a dense canopy (Figure 3.3) and consequently shows more 

observation gaps due to few lidar returns in this area (Figure 3.1). The snow depths 

interpolated by method 1 in this area display smoothed spatial variability, notably 

between under-canopy and forest gaps (Figure 3.7a, e). Consideration of the measured 

canopy vs. gap snow depth trend in method 2 shows some disruptions in the previously 

smoothed snow depth variability in this area, i.e., snow depth differences under-canopy 

and forest gaps (Figure 3.7b, f). Compared to methods 1 and 2, the consideration of 
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intra-canopy snow depth trend in methods 3 and 4 shows clear differences in snow 

depths under-canopy and forest gaps and variability of snow depth under the canopy 

(Figure 3.7c, d, g, h). Methods 3 and 4 do not exhibit any visual difference between 

snow depth maps, implying that it is rather the intra-canopy trend that causes 

differential snow depths between under-canopy and forest gaps.  

Snow depth differences between methods illustrate the relative effect of the different 

interpolation methods (Figure 3.7 -bottom row). Since both OK and IDW yielded 

similar snow depth maps, differences are only shown using OK approach. Negligible 

differences in snow depths between method 1 and the benchmark method (Figure 3.7i) 

indicate that the landscape trend is not pronounced in the data. Large snow depth 

differences between methods 2 and 1 (Figure 3.7j) show the substantial impact of 

including canopy vs. gap snow depth trend. Figure 3.7k shows comparatively large 

differences in snow depths between methods 3 and 1 and adding the intra-canopy trend 

on residual 1 tends to smooth the sharper gap vs canopy pattern introduced by method 

2. It further suggests that method 1 overestimates snow depths at some locations 

(negative values in Figure 3.7k) and underestimates (positive values in Figure 3.7k) at 

others compared to method 3. Similar patterns are observed in Figure 3.7l, which shows 

the effect of adding the intra-canopy trend on residual 2. Snow depth patterns within 

the canopy are also visible in both figures (Figure 3.7k, l). 
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Figure 3.7. Interpolated snow depth products (a) method 1 with OK, (b) method 2 with 
OK, (c) method 3 with OK, (d) method 4 with OK, (e) method 1 with IDW, (f) method 
2 with IDW, (g) method 3 with IDW, (h) method 4 with IDW, (i) method 1 with OK – 
benchmark, (j) method 2 with OK – method 1 with OK, (k) method 3 with OK – method 
1 with OK, and (l) method 4 with OK – method 2 with OK 

The different interpolation methods resulted in different snow depth distributions over 

the study area (Figure 3.8). Only the results from OK are shown in Figure 3.8 as both 

OK and IDW approaches produced similar snow depths. Density distributions for the 

IDW are included in Supplement Figure S3.1. 

The higher snow depth observed in forest gaps compared to under-canopy in Figure 

3.8 corroborates results found in previous studies (Musselman et al., 2008; Revuelto et 

al., 2015; Uhlmann et al., 2018; Mazzotti et al., 2019). This difference becomes more 
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evident once the snow depths are interpolated, as the snow depth distributions below 

the canopy become more skewed towards smaller values. The snow depth distribution 

using the raw (not interpolated) data appears to be biased by the higher snow depths in 

forest gaps. This is not surprising due to the over-sampling and under-sampling of snow 

depths in forest gaps and under-canopy, respectively (see snow depth map in Figure 

3.1). All the interpolated methods implemented here seem to rectify this issue. 

Moreover, the similar distributions of snow depths in forest gaps obtained by all the 

interpolation methods indicate that these have the least effect in the forest gaps, where 

the point density is highest, than in the forest. In canopies, benchmark (spatial 

interpolation of raw snow depths using OK), methods 1 and 2 show noisier and tighter 

(less variable) distributions, whereas methods 3 and 4 show similar, smoother, and 

wider (more variable) distributions. These results show that estimating area-wide snow 

depth distributions and their summary statistics from sparse lidar snow depths in 

forested areas entails a significant error and interpolation is necessary to eliminate the 

bias due to canopy under-sampling. 

 

Figure 3.8. Probability density distributions of snow depths interpolated by OK for (a) 
full domain, (b) under-canopy, and (c) forest gaps. The density distributions were 
computed using a gaussian kernel with a standard deviation of 0.01. The Raw 
distributions correspond to snow depths not interpolated. 
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 Cross-validation  

Of all the methods with spatial interpolation (trends + spatial interpolation of residuals; 

column one in Figure 3.9), method 1 shows the lowest interpolation performance with 

higher RMSE, bias, and lower correlation coefficient. Moreover, method 1 exhibits 

negligible differences with the benchmark method in which spatial interpolation 

techniques were directly applied to the raw data (black vs pink graphs in Figure 3.9a, 

c, e). This suggests an absence of pronounced landscape trend in the study area; hence, 

removing or not the trend does not have a substantial effect on interpolation.  However, 

in larger areas and/or with more pronounced elevation ranges where orographic and 

lapse rate gradients start to impact snow accumulation, the landscape trend would be 

expected to be important and would need to be considered. Among the four methods, 

method 4 shows the highest performance with lower RMSE, bias, and higher 

correlation coefficient. Methods 3 and 2 scored second and third in terms of RMSE and 

correlation coefficient, though showing similar biases (Figure 3.9c). The OK and IDW 

spatial interpolation techniques generally yield similar accuracies in snow depth 

estimates among all methods. All methods show degrading accuracies with increasing 

distance between unsampled and sampled snow depth points. 

Column two in Figure 3.9 shows the prediction error when using only the systematic 

trends, without spatial interpolation of residuals, and allows seeing the effect of 

incorporating trends within the interpolation methods. Similar to the methods with 

spatial interpolation (Figure 3.9, column one), methods 1 and 4 show the lowest and 

highest performances respectively, while methods 3 and 2 show intermediate 

performances. However, the noticeable bias reported in method 3 (which ignores the 

canopy vs. gap trend) in Figure 3.9d indicates that consideration of average under-

canopy and forest gap snow depth difference might be more important when spatial 

interpolation is not used. In general, column two shows that incorporating trends within 
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the interpolation methods slows the degradation of the prediction accuracy with 

increasing distance between unsampled and sampled points. 

 
Figure 3.9. Error statistics with the distance between unsampled and sampled points 
(a, b) RMSE (c, d) bias, and (e, f) correlation coefficient. Panels in the first column 
show the effect with spatial interpolation and the second column is without spatial 
interpolation, i.e., only considering trends. In the first column, methods with OK are 
shown as solid lines whereas methods with IDW are represented by stippled lines. 
Benchmark indicates spatial interpolation of raw snow depths with OK and IDW. 
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Figure 3.9 also provides an indication of two limiting distances within which these 

interpolation methods can be used. As observed from the first column, up to ~1 m of 

distance all methods show similar and comparatively better performances compared to 

when the inter-point separation distances increase by > 1m. This suggests that when 

the distance between unsampled and sampled points is < 1 m, (i.e., ground surface point 

density is > 1 pt m-2) spatial interpolation techniques like OK and IDW have sufficient 

information to resolve and reconstruct small-scale snow depth patterns. This is in 

agreement with the threshold ground surface point density found by Guo et al. (2010) 

and Zheng et al. (2019) for airborne lidar surveys in order to generate high-accuracy 

DEMs and to capture the tree well snow surfaces. Similar to Guo et al. (2010), we 

found an RMSE of less than 0.15 m for interpolated snow depths when ground surface 

point density is larger than 1 pt m-2. However, Zheng et al. (2019) emphasized that the 

effect of point density is more significant in densely forested areas like Montmorency 

than in more sparsely forested areas, as with moderate forest density, the under-

sampling under the canopy and over-sampling in forest gaps can offset the 

overestimation and underestimation of snow depths. Above 1 m, the performance of 

the different methods is no longer similar and starts degrading at a slower rate than that 

below 1 m. Column one shows that past 1 m, incorporating trends slows the degradation 

of accuracies with increasing inter-point distances, and canopy vs. gap and intra-

canopy trends (method 2, 3, and 4) significantly improve the interpolation 

performances compared to benchmark. This highlights the necessity of modeling trends 

past this distance. This also suggests that these trends are not well sampled past a 

separation distance of 1 m and hence not adequately represented by OK/IDW 

approaches. 

A comparison of the two columns in Figure 3.9 suggests another limiting distance at 

~2.5–3 m. After this distance, the interpolation of trend residuals with OK/IDW (Figure 

3.9 a, c, e) degrades the performance compared to using the trends alone for prediction 

(Figure 3.9 b, d, f). This is particularly evident in the RMSE and correlation coefficient 
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plots. This suggests that when the distance between sampled and unsampled points is 

larger than 2.5–3 m (point density of 0.33–0.40 pts m-2), the points are too separated to 

inform each other, i.e., to provide meaningful interpolation. The resulting interpolated 

snow depth fields thus sustain high uncertainties. As such, when the ground surface 

point density is lower, the modelled systematic trends (landscape, canopy vs. gap, and 

intra-canopy) would provide more accurate gap-filled snow depth maps than using 

spatial interpolation methods. This limiting distance of 2.5–3 m is in the same order of 

magnitude as the maximum canopy radii (7 m) found in Montmorency, and half of the 

scale break distance (4.5 m in bare earth topography+trees and 6.5 m in snow depth) 

found for Montmorency by Dharmadasa et al. (2023). Therefore, when the distance 

between sampled and unsampled points is larger than this threshold, we risk 

interpolating data points with no spatial correlation (i.e., points within and outside the 

canopy), hence degrading the accuracy of gap-filling. Especially beneath the canopy, 

intra-canopy trends help preserving the variability of snow depths when ground point 

density is lower.  

 Conclusions  

Given the typical under-sampling of lidar ground surface points under the canopy, our 

results suggest that the spatial interpolation method that incorporates systematic trends 

in snow accumulation at the landscape, canopy vs. gaps, and intra-canopy scales yield 

significant improvements for gap-filling when the distance between sampled and 

unsampled lidar snow depth points is larger than 1 m (ground point density of < 1 pt 

m-2). Beyond a point separation distance of 2.5–3 m (point density < 0.33–0.40 pt m-2), 

the point separation becomes larger than the snow depth spatial correlation scale, and 

spatial interpolation based on proximity alone becomes useless. Below a separation 

distance of 1 m, (i.e., ground surface point density > 1 pt m-2), spatial interpolation 

methods without consideration of trends are sufficient to capture and reconstruct the 

small-scale variability of snow depths. This suggests that consideration of the trends 
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only becomes useful for areas with a ground surface point density of < 1 pt m-2. Within 

these limiting distances, consideration of trends along with spatial interpolation 

techniques can resolve the small-scale variability and thereby reduce the likely 

overestimation of snow depths under the canopy. In this context, within the prescribed 

range, method 4 yields the best performance followed by methods 3, 2, and 1, 

respectively. 

The proposed interpolation method in this study can be easily applied to any area 

subjected to fine-tuning of window size for tree top identification. However, it is worth 

noting that running the R script (Supplement) on a standard computer can be somewhat 

computationally intensive. For instance, on a Core i7 computer equipped with 32 Gb 

RAM and a 3.2 GHz processor, the R script (Supplement) took approximately 1.5 hr 

to execute (excluding the cross-validation part) for a 100x100 m area. In contrast, on a 

Core i7 computer with 64 Gb RAM and a 3.6 GHz processor, the same took 0.7 hr to 

complete. Therefore, we expect that the computational demand of the method will be 

lower when implemented on a high-performance computing system. 
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Supporting Information 

 
Figure S3.1. Kernel density estimates of snow depths by IDW in (a) full domain, (b) 
under-canopy, and (c) forest gaps 

Code 
start_time <- Sys.time() 
library(raster) 
library(sf)  
library(lidR) 
library(spatial) 
library(proj4) 
library(sp) 
library(foreach) 
library(doParallel) 
library(proxy) 
library(units) 
library(gstat) 
library(ggplot2) 
library(Metrics) 
library(beepr) 
library(pracma) 
 
#----------------------------------------input------------------------------------------------------- 
setwd() # set directory 
SD=raster("/SD.tif") # snow depth raster 
Las = readLAS("/Las.las") # las file 
Area= shapefile("/Area.shp") # shape file of area of interest  
#----------------------------------------------------------------------------------------------------- 
 
nlas2 <- normalize_height(Las, knnidw()) # normalize las file with ground points 
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hist(filter_ground(nlas2)$Z,  main = "", xlab = "Elevation") # check if ground points 
are zero in normalized point cloud 
chm_2 <- rasterize_canopy(nlas2, 0.5, p2r(subcircle = 0), pkg = "raster") # create chm 
using normalized point cloud 
 
f2 <- function(x) {                # function for flexible window size  
  y <- 2.6 * (-(exp(-0.08*(x-2)) - 1)) + 3          
  y[x < 3] <- 4                                   
  y[x > 12] <- 5 
  return(y) 
} 
# identify tree tops 
ttops <- locate_trees(nlas2, lmf(f2))  
plot(chm_2, col = height.colors(50));   
plot(sf::st_geometry(ttops), add = TRUE, pch = 3) 
 
# segment point cloud to individual trees  
algo1 <- dalponte2016(chm_2, ttops, max_cr = 12)   
las_seg <- segment_trees(nlas2, algo1) 
plot(las_seg, bg = "white", size = 4, color = "treeID") # visualize trees 
 
# delineate tree polygons (canopies) 
crowns1 <- crown_metrics(las_seg, func = NULL, attribute = "treeID", geom = 
"concave")  
plot(crowns1, col = pastel.colors(200)) 
 
# merge tree tops and canopies in to one data frame 
crowns1.df= as.data.frame(crowns1) 
ttops.df= as.data.frame(ttops) 
c.ttops.df= merge(crowns1.df, ttops.df, by.x= "treeID",by.y= "treeID" ) 
c.ttops.df= cbind(c.ttops.df, st_coordinates(c.ttops.df$geometry.y)) 
co.treexy.sf = st_as_sf(c.ttops.df, coords = c("X","Y")) # coordinates of tree xy as sf 
co.treexy.df = as.data.frame(co.treexy.sf[,c(1,6)]) 
c.ttops.df= merge(c.ttops.df, co.treexy.df, by.x= "treeID",by.y= "treeID" ) 
rm(co.treexy.df) 
c.ttops.df= c.ttops.df[,-c(3,4,9)] 
colnames(c.ttops.df)<- c("treeID", "crown_polygon", "tree_x", "tree_y", "tree_H", 
"tree_xy") 
st_crs(c.ttops.df$tree_xy)<- 32619 # assign coordinate system projection to tree xy 
column  
c.ttops.sf= sf::st_as_sf(c.ttops.df) 
 
# landscape trend---------------------------------------------- 
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SD.df = as.data.frame(SD) # convert SD raster to dataframe 
co = xyFromCell(SD,1:ncell(SD)) # extract x,y coordinates 
co.df = as.data.frame(co) 
SD.df = cbind(co.df,SD.df) 
colnames(SD.df) <- (c("cellx","celly","Raw_SD")) 
# trend fitting 
ind = !is.na(SD.df$Raw_SD)  #logical index for non NA rows 
fit_poly = surf.ls(2, SD.df$cellx[ind],SD.df$celly[ind],SD.df$Raw_SD[ind]) 
# predict over all xy 
sd.pred = predict(fit_poly,SD.df$cellx,SD.df$celly)  
SD.df$trend =  sd.pred 
SD.df$residual1 = SD.df$Raw_SD - SD.df$trend 
rm(sd.pred,SD_detrend,SD_trend,SD_trend_allxy) 
co.sf = st_as_sf(co.df, coords = c("x","y")) # set SD coordinates as simple feature 
SD.df = cbind(SD.df, co.sf)  
rm(co.sf) 
colnames(SD.df) <- (c("cellx","celly","Raw_SD","trend","residual1","xy")) 
 
# under canopy vs gap snow depth trend ------------------------------- 
r<- raster(ncol=ncol(SD),nrow=nrow(SD)) 
extent(r)= extent(SD) 
rp<- rasterize(crowns1, r) 
co_rp = xyFromCell(rp,1:ncell(rp)) 
rp.df = as.data.frame(rp) 
rp.df= cbind(co_rp, rp.df) 
rm(co_rp) 
gapind = is.na(rp.df$treeID) 
canopyind = !gapind 
rp.df$canopy_gap[gapind] = 0 
rp.df$canopy_gap[canopyind] = 1 
SD.df = base::cbind(SD.df,dplyr::select(rp.df,treeID,canopy_gap)) 
rm(rp.df) 
hist((SD.df$Raw_SD[SD.df$canopy_gap==1]), freq=F) #under canopy 
hist((SD.df$Raw_SD[SD.df$canopy_gap==0]), freq=F) #gap 
 
# intra-canopy trend ------------------------------------------------ 
SD.df = merge.data.frame(SD.df, c.ttops.df, by.x="treeID", by.y = "treeID", all.x = T) 
rm(c.ttops.df) 
st_crs (SD.df$xy) <- 32619  
# distance from tree trunk to SD point 
SD.df$sd_tree = sqrt((SD.df$cellx - SD.df$tree_x)^2+(SD.df$celly - SD.df$tree_y)^2) 
 
# distance from SD point to canopy 
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cores = detectCores() 
cl <- makeCluster(cores[1]-1) #not to overload your computer 
registerDoParallel(cl) 
nosnow_ind = is.na(SD.df$Raw_SD) 
snow_ind = !nosnow_ind 
D = foreach(i = 1: 
nrow(SD.df), .combine=rbind, .packages=c('sf','proxy','units')) %dopar% { 
if (SD.df$canopy_gap[i]==1){ 
  x = st_geometry(obj = SD.df$crown_polygon[i])  # extract polygon 
  x = st_cast(x, to = 'LINESTRING') 
  D1 = st_distance(x, y = SD.df$xy[i], which = 'Euclidean') # distance between SD 
point and polygon 
  } else { 
    D1 = NA 
  } 
  D = D1 
} 
stopCluster(cl) 
SD.df$sd_crown = D[,1] 
rm(D) 
 
# total distance from tree trunk to canopy 
SD.df$tree_crown = SD.df$sd_tree + SD.df$sd_crown 
# scaled distance 
# distance from tree to SD/total distance from tree to crown 
SD.df$scaled.dis = SD.df$sd_tree/ SD.df$tree_crown  
 
# remove under canopy vs gap trend 
canopy_avg = mean(SD.df$residual1[SD.df$canopy_gap==1], na.rm=T) 
gap_avg = mean(SD.df$residual1[SD.df$canopy_gap==0], na.rm=T) 
canopyind = SD.df$canopy_gap==1 
gapind = SD.df$canopy_gap==0 
SD.df$c.g.avg[canopyind] = canopy_avg 
SD.df$residual2[canopyind] = SD.df$residual1[canopyind] - canopy_avg 
SD.df$c.g.avg[gapind] = gap_avg 
SD.df$residual2[gapind] = SD.df$residual1[gapind] - gap_avg 
 
# intra-canopy trend fitting 
SD.df_na = na.omit(SD.df) # for fitting purposes 
dx = density(SD.df_na$scaled.dis, bw = 0.1) # bin point density in 0.1 m moving 
window 
dy = approx(dx$x,dx$y,xout=SD.df_na$scaled.dis) # returns x,y  coordinates;  
# quadratic model fitting 
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fit_poly2int_res2 = lm(residual2 ~ scaled.dis  
                  + I(scaled.dis^2) 
                  + tree_H 
                  + tree_H:scaled.dis, 
                  weight = 1/(dy$y),   # assign a weight according to point density  
                  data = SD.df_na) 
summary(fit_poly2int_res2) 
 
# predict snow depth below canopies 
notreeind = is.na(SD.df$tree_H) 
treeind = !notreeind 
SD.df$canopy.trend.res2[treeind] = predict(fit_poly2int_res2,SD.df[treeind,]) 
SD.df$residual4[treeind] = SD.df$residual2[treeind]-SD.df$canopy.trend.res2[treeind] 
SD.df$canopy.trend.res2[notreeind] = NA 
SD.df$residual4[notreeind] = SD.df$residual2[notreeind] 
 
# calculate variograms and interpolate residuals with OK & IDW-------------------- 
SD.df2 = SD.df 
SD.sf0 = st_as_sf(SD.df2, coords = c("cellx", "celly"), crs = 32619) %>%  
  cbind(st_coordinates(.)) # Convert to (Painter et al.) because that is the best way to 
store spatial points 
SD.sf = SD.sf0[!is.na(SD.sf0$Raw_SD),] # remove SD NAs  
# variogram on residual 4 
SD.sf_res4_vario <- automap::autofitVariogram(residual4~X+Y, as(SD.sf, 
"Spatial"))$var_model # find the fitted variogram model to data 
# create a raster/grid as same size as SD raster for interpolation 
r0<- raster(ncol=ncol(SD),nrow=nrow(SD)) # create a raster of the same size as SD  
extent(r0)= extent(SD) 
crs(r0) <- 32619 
SD_grid <- rasterToPoints(r0, spatial = TRUE) # Convert raster to spatial pixel to work 
with gstat 
gridded(SD_grid) <- TRUE 
SD_grid <- as(SD_grid, "SpatialPixels") 
 
# Ordinary Kriging 
SD_OK_res4 <- krige( 
  residual4~1,                       
  as(SD.sf, "Spatial"),  
  SD_grid,               
  nmax =8,                
  model = SD.sf_res4_vario    
) 
# IDW 
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SD_idw_res4 <- gstat::idw(       
  residual4~1,                 
  as(SD.sf, "Spatial"),  
  nmax=8, 
  SD_grid,   
)  
SD_OK_res4.r = raster(SD_OK_res4)  
SD_idw_res4.r = raster(SD_idw_res4) 
masked_SD_OK_res4 = mask(SD_OK_res4.r, Area) # mask rasters, making data 
outside area to NA 
masked_SD_idw_res4 = mask(SD_idw_res4.r, Area) 
 
# add OK to main dataframe 
SD_OK.df0 = as.data.frame(masked_SD_OK_res4) # convert to dataframe 
co.ok=xyFromCell(masked_SD_OK_res4,1:ncell(masked_SD_OK_res4))  
SD_OK.df = cbind(as.data.frame(co.ok), SD_OK.df0) 
colnames(SD_OK.df) <- (c("cellx","celly","var1.pred")) 
SD.df1 = merge.data.frame(SD.df, SD_OK.df , by.x=c("cellx","celly"), by.y = 
c("cellx","celly"), all.x = T) # merge sd, canopy_gap, tree coordinates with crown 
polygon 
names(SD.df1)[names(SD.df1) == 'var1.pred'] <- 'OK_res4' 
# add IDW to main dataframe 
SD_idw.df0 = as.data.frame(masked_SD_idw_res4) 
co.idw=xyFromCell(masked_SD_idw_res4,1:ncell(masked_SD_idw_res4))  
SD_idw.df = cbind(as.data.frame(co.idw), SD_idw.df0) 
colnames(SD_idw.df) <- (c("cellx","celly","var1.pred")) 
SD.df2 = merge.data.frame(SD.df1, SD_idw.df , by.x=c("cellx","celly"), by.y = 
c("cellx","celly"), all.x = T) # merge sd, canopy_gap, tree coordinates with crown 
polygon 
names(SD.df2)[names(SD.df2) == 'var1.pred'] <- 'IDW_res4' 
 
# get the final snow depths ----------------------------------- 
# ******************  reminder *************************** 
# residual4 = SD - landscape trend - canopy vs gap - intra-canopy trend  
 
# points with snow: do not interpolate 
snowind = !is.na(SD.df2$Raw_SD) 
SD.df2$test4_OK[snowind] = SD.df2$Raw_SD[snowind] 
SD.df2$test4_IDW[snowind] = SD.df2$Raw_SD[snowind] 
# points below canopy 
canind = is.na(SD.df2$Raw_SD) & SD.df2$canopy_gap==1 
SD.df2$test4_OK[canind] = SD.df2$trend[canind] + SD.df2$c.g.avg[canind] + 
SD.df2$canopy.trend.res2[canind] + SD.df2$OK_res4[canind] 
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SD.df2$test4_IDW[canind] = SD.df2$trend[canind] + SD.df2$ c.g.avg[canind] + 
SD.df2$canopy.trend.res2[canind] + SD.df2$IDW_res4[canind] 
# points in gaps 
gapind = is.na(SD.df2$Raw_SD) & SD.df2$canopy_gap==0 
SD.df2$test4_OK[gapind] = SD.df2$trend[gapind] + SD.df2$ c.g.avg[gapind] + 
SD.df2$OK_res4[gapind] 
SD.df2$test4_IDW[gapind] = SD.df2$trend[gapind] + SD.df2$ c.g.avg[gapind] + 
SD.df2$IDW_res4[gapind] 
 
# set negative values to zero 
negok4= which(SD.df2$test4_OK<0) 
negidw4= which(SD.df2$test4_IDW<0) 
SD.df2$test4_OK[negok4]=0 
SD.df2$test4_IDW[negidw4]=0 
 
# plot interpolated DEMs 
test4_OK = cbind.data.frame(SD.df2$cellx, SD.df2$celly, SD.df2$test4_OK) 
test4_OK_r = rasterFromXYZ(test4_OK, crs = '+proj=utm +zone=19 
+datum=WGS84') 
plot(test4_OK_r, main="Test4_OK") 
test4_IDW = cbind.data.frame(SD.df2$cellx, SD.df2$celly, SD.df2$test4_IDW) 
test4_IDW_r = rasterFromXYZ(test4_IDW, crs = '+proj=utm +zone=19 
+datum=WGS84') 
plot(test4_IDW_r, main="Test4_IDW") 
 
end_time <- Sys.time() 
end_time - start_time 
 
#------------------------ cross validation --------------------------------------------------------- 
SD.cv = dplyr::select(SD.df2,cellx,celly,Raw_SD,canopy_gap,tree_H,scaled.dis)  # all 
that is needed to calibrate the interpolation models 
SD.cv = SD.cv[!is.na(SD.cv$Raw_SD),] # remove all rows with no snow depth 
SD.cv.sf = st_as_sf(SD.cv, coords = c("cellx", "celly"), crs = 32619) %>%  
   cbind(st_coordinates(.)) # Convert to (Painter et al.) because that is the best way to 
store spatial points 
 
RMSE <- function(observed, predicted) { 
  sqrt(mean((predicted - observed)^2, na.rm=TRUE)) 
} 
 
# parameters for density-based CV: 
sampdist = seq(0,5,by=0.5) 
sampdensity = 1/sampdist^2  # in pts/m2 
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samprop = sampdist[1]/sampdist 
nsnow = sum(!is.na(SD.df$Raw_SD)) 
sampn = round(nsnow*samprop) 
n = length(sampdist) 
 
variables = 5+5+4+1+1  # 5 OK test,  5 IDW tests, 4 no interp test + 1 distance + n 
train... 
nrep = 20 # number of random sampling iterations... increasing it = more computing 
time! 
someData <- rep(NaN, n*variables*nrep) 
rmseCV <- array(someData,c(n,variables,nrep)) 
biasCV <- array(someData,c(n,variables,nrep)) 
corCV <- array(someData,c(n,variables,nrep)) 
 
# CV loop: 
for (i in 1:n) { 
  for (j in 1:nrep) { 
    # option for density-based CV: 
    testcases = sample(seq(1,nsnow, by=1),100)  # 100 pts for validation  
    traincases = !(seq(1,nsnow,by=1) %in% testcases) # the rest for training, indexing 
TRUE for cases not selected as testcases 
    train <- SD.cv.sf[traincases,] 
    test <- SD.cv.sf [testcases,] 
    # 
    # calculate closed distance to snow point 
    D2 = st_distance(train,test, which = "Euclidean") 
    D2ind = D2<set_units(sampdist[i],m)  
    keepind = !apply(D2ind,1,any)  
    train = train[keepind,] # remove close points 
    D2 = D2[keepind,] 
    sortdist = apply(D2,2,sort)  
    mindist = apply(sortdist[1:3,],2,mean) # mean distance from test point to three 
closest training points  
  
    #--train-- 
    fit_poly = surf.ls(2, train$X,train$Y,train$Raw_SD)  
    train$trend = predict(fit_poly,train$X,train$Y)  
    gapind = train$canopy_gap==0 
    canopyind = train$canopy_gap==1 
    train$res1 = resid(fit_poly) 
    gapavg = mean(train$res1[gapind],na.rm = T) 
    canopyavg = mean(train$res1[canopyind],na.rm = T) 
    train$res2[gapind] = train$res1[gapind] - gapavg 
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    train$res2[canopyind] = train$res1[canopyind] - canopyavg  
     
    # fit intra canopy trends over res 2 train period 
    dx = density(train$scaled.dis[!is.na(train$scaled.dis)], bw = 0.1) 
    dy = approx(dx$x,dx$y,xout=train$scaled.dis) 
     
    fit_poly2int_res2 = lm(res2 ~ scaled.dis  
                           + I(scaled.dis^2) 
                           + tree_H 
                           + tree_H:scaled.dis, 
                           weight = 1/(dy$y), 
                           data = train) 
    summary(fit_poly2int_res2) 
   
    train$canopytrend_res2[canopyind] = predict(fit_poly2int_res2,train[canopyind,]) 
    train$canopytrend_res2[gapind] = NA 
    train$res4[canopyind] = train$res2[canopyind] - train$canopytrend_res2[canopyind]  
    train$res4[gapind] = train$res2[gapind]  
     
    #--test-- 
    gapind = test$canopy_gap==0 
    canopyind = test$canopy_gap==1 
    test$trend = predict(fit_poly,test$X,test$Y) 
    test$canopytrend_res2[canopyind] = predict(fit_poly2int_res2,test[canopyind,]) 
    test$canopytrend_res2[gapind] = NA  
       
    # interpolation of training residuals to test period:` 
    train.sf = st_as_sf(train, coords = c("X", "Y"), crs = 32619) %>%  
      cbind(st_coordinates(.)) 
    test.sf = st_as_sf(test, coords = c("X", "Y"), crs = 32619) %>%  
      cbind(st_coordinates(.)) 
     
    # OK-on res4 (** variogram must be re-estimated on train period)) 
    vario_res4_train <- automap::autofitVariogram(res4~X+Y, as(train.sf, 
"Spatial"))$var_model  
    m <- gstat(formula=res4~1, locations=train.sf, model=vario_res4_train, nmax=8) 
    p1 <- predict(m, newdata=test.sf, debug.level=0)$var1.pred 
    #IDW- on res4 
    m <- gstat(formula=res4~1, locations=train.sf,  set = list(idp=2), nmax=8) 
    p2 <- predict(m, newdata=test.sf, debug.level=0)$var1.pred 
     
    # --------------final snow depth predictions 
    #final snow depths WITH RESIDUALS 
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    test$test4_OK[canopyind] = test$trend[canopyind]  + canopyavg + 
test$canopytrend_res2[canopyind] + p1[canopyind] # residual4 = SD - trend - 
canopygap - canopy trend 
    test$test4_OK[gapind] = test$trend[gapind]  + gapavg + p1[gapind] 
     
    test$test4_IDW[canopyind] = test$trend[canopyind]  + canopyavg + 
test$canopytrend_res2[canopyind] + p2[canopyind] 
    test$test4_IDW[gapind] = test$trend[gapind]  + gapavg + p2[gapind] 
     
    # final snow depths WITHOUT RESIDUALS 
    test$test4_nores[canopyind] = test$trend[canopyind]  + canopyavg + 
test$canopytrend_res2[canopyind]   
    test$test4_nores[gapind] = test$trend[gapind]  + gapavg 
    
  # put negative snow depths to zero 
    negok4= which(test$test4_OK<0) 
    negidw4= which(test$test4_IDW<0) 
    test$test4_OK[negok4]=0 
    test$test4_IDW[negidw4]=0 
    negnores4= which(test$test4_nores<0) 
    test$test4_nores[negnores4]=0 
     
    #----- global stats------ 
    rmseCV[i,1,j] <- RMSE(test$Raw_SD, test$test4_OK) 
    rmseCV[i,2,j] <- RMSE(test$Raw_SD, test$test4_IDW) 
    rmseCV[i,3,j] <- RMSE(test$Raw_SD, test$test4_nores) 
    rmseCV[i,4,j] <- mean(mindist)  
    rmseCV[i,5,j] <- sum(keepind) 
   
    biasCV[i,1,j] <- bias(test$Raw_SD, test$test4_OK) 
    biasCV[i,2,j] <- bias(test$Raw_SD, test$test4_IDW) 
    biasCV[i,3,j] <- bias(test$Raw_SD, test$test4_nores) 
    biasCV[i,4,j] <- mean(mindist) 
    biasCV[i,5,j] <- sum(keepind) 
 
    corCV[i,1,j] <- cor(test$Raw_SD, test$test4_OK) 
    corCV[i,2,j] <- cor(test$Raw_SD, test$test4_IDW) 
    corCV[i,3,j] <- cor(test$Raw_SD, test$test4_nores)  
    corCV[i,4,j] <- mean(mindist) 
    corCV[i,5,j] <- sum(keepind) 
   }     
  disp(i) 
  beepr::beep() 
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  } 
 
rmseCV = drop(rmseCV)  # in case nrep is set to 1! 
biasCV = drop(biasCV) # 1:11, 1:16, 1:20 arrey  
corCV = drop(corCV)  
 
columnnames =   c("test4_OK","test4_IDW","test4_nores","meandist","Ntrain") 
# average over nrep 
if (length(size(rmseCV))==3) 
  rmseCV = apply(rmseCV, c(1,2), mean, na.rm=T) # 1:11, 1:16 matrix 
  biasCV = apply(biasCV, c(1,2), mean, na.rm=T) 
  corCV  = apply(corCV, c(1,2), mean, na.rm=T) 
 
rmseCV <- as.data.frame(rmseCV) 
colnames(rmseCV) <- columnnames 
biasCV <- as.data.frame(biasCV) 
colnames(biasCV) <- columnnames 
corCV <- as.data.frame(corCV) 
colnames(corCV) <- columnnames 
 
# for plotting-------------- 
sortind = sort(rmseCV$meandist, index.return = T)  # sort by mean distance for plotting 
sortind = sortind$ix  
rmseCV = rmseCV[sortind,] 
biasCV = biasCV[sortind,] 
corCV = corCV[sortind,] 
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Highlights 

• We used measurements to explore energy exchanges in an agro-forested 

snowpack. 

• Differences in energy fluxes between open, forest, and gap areas were 

significant. 

• Longwave radiation had a greater influence on energy balance during 

accumulation. 

• Latent heat fluxes and solar radiation absorption dominated snowpack melting. 

• Blowing snow influenced the energy budget through negative feedback effects. 

Abstract 

A lack of field studies measuring snow mass and energy balance in open and forest 

patches hinders the holistic understanding of snowpack dynamics and makes it difficult 

to validate modeling efforts in agro-forested environments. In such context, this study 

explores the energy exchanges within snowpacks in an agro-forested environment in 

eastern Canada, with a focus on measuring energy fluxes and assessing temporal 

variability and meteorological controls on the snowpack. The results showed that there 

are considerable differences in energy fluxes between open, forest, and gap areas, with 

net radiation dominating the snow surface energy balance. During the accumulation 

period, longwave radiation had a greater influence on the variability of the energy 

balance, while during the ablation period, latent heat fluxes and solar radiation 

absorption dominated the variability of the energy balance and snowpack melting. 

Blowing snow also influenced the energy budget in the open area through negative 
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feedback effects. Despite the negative feedback effects, results showed that the 

decreased air stability in response to the reduced temperature gradient between the 

atmosphere and snowpack counterbalanced the reduced vapor pressure gradient and 

resulted in slightly increased latent heat (sublimation) losses from the snowpack during 

blowing snow. This shows that the feedback of blowing snow on snowpack sublimation 

is contingent on the choice of stability function in the bulk aerodynamic method. 

Furthermore, our analysis showed reduced influxes of sensible heat and longwave 

radiation to the snowpack in response to the blowing snow cooling feedback on the 

atmosphere. These results emphasize the significant role of blowing snow for the 

energy exchanges in large wind-exposed open areas in humid continental agro-forested 

landscapes. Furthermore, the different snowpack and energy balance conditions 

between the open and forested patches of agro-forested landscapes highlighted in this 

study could have important implications for snowmelt infiltration patterns and resulting 

catchment-scale hydrology. 

Keywords: Snow energy budget; agro-forested environment; blowing snow



 Introduction 

Snow cover is an integral component of the climate system in cold climate regions. It 

represents a major part of the terrestrial water storage during the winter season and 

produces a significant spring runoff with the onset of snowmelt. Snow accumulation 

and the timing, intensity, and duration of snowmelt depend on meteorological and 

physiographic variables such as regional climate, elevation, vegetation 

presence/absence, and forest structure (Elder et al., 1998; Golding and Swanson, 1986; 

Pomeroy et al., 1998a; Roth and Nolin, 2017; Zheng et al., 2018). Snowpack energy 

budget is a key element to understand the spatial and temporal evolution of snowpack 

in different climatic and physiographic settings. For instance, compared to open areas, 

forest cover reduces the incoming shortwave radiation, increases longwave radiation, 

dampens wind speed, and hence reduces turbulent heat transfers within the canopy 

(Helgason and Pomeroy, 2012a; Pomeroy and Dion, 1996; Pomeroy and Granger, 1997; 

Pomeroy and Gray, 1994; Pomeroy et al., 1998a; Pomeroy et al., 1998b; Prévost et al., 

1991; Tarboton, 1994). In turn, the snowpack dynamics within a forest differ from that 

in an open area. A significant amount of literature reported reduced snow accumulation 

in forested areas compared to adjacent open areas due to canopy interception and 

sublimation losses and slower snowmelt rates in spring due to shading by the canopy, 

or, in a humid climate, faster snowmelt due to increased longwave radiation with higher 

canopy density- the ‘radiative paradox’ (Hojatimalekshah et al., 2021; Hopkinson et 

al., 2004; Lundquist et al., 2013; Pomeroy and Granger, 1997; Varhola et al., 2010; 

Zheng et al., 2018). Snow accumulation and melt also differ significantly between 

different forest stands with distinct structural differences, due to the impact of forest 

structure on the energy balance, dominated by radiative heat fluxes (Winkler et al., 

2005). Accumulation and melt rates generally decline with increasing canopy density 

and leaf area (Pomeroy et al., 2002). For example, larger canopy interception and losses 

in coniferous forests result in less snow on the ground than that in deciduous and mixed 

forests (Aygün et al., 2020; Hopkinson et al., 2012). Open areas on the other hand are 
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generally characterized by large fetch distances and high wind speeds that promote 

erosion of the snow cover by increased blowing snow fluxes and sublimation losses 

(Pomeroy and Gray, 1994). High wind speeds also significantly increase turbulent 

energy exchanges in open areas which eventually increase snow sublimation (Roth and 

Nolin, 2017). The importance of blowing snow fluxes in shaping the open terrain snow 

cover and its ultimate influence on the magnitude and timing of snowmelt has been 

well documented (Essery and Pomeroy, 2004; Liston et al., 2007; Mott et al., 2018; 

Pomeroy and Gray, 1994; Pomeroy et al., 1998a; Prasad et al., 2001). For example, in 

the Canadian prairies, 8–19 % of annual snowfall is removed by blowing snow fluxes 

(by saltation and suspension), and 15–40 % or more of annual snowfall is lost through 

blowing snow sublimation (Pomeroy and Gray, 1995; Pomeroy et al., 1993). Several 

authors reported substantial differences in snow accumulation and melt in forest 

clearings or gaps compared to adjacent forests and open areas (e.g., Broxton et al., 2015; 

Conway et al., 2018; Golding and Swanson, 1986; Pomeroy et al., 2012; Pomeroy and 

Gray, 1994; Pomeroy et al., 2002; Swanson, 1988; Troendle and Leaf, 1980; Woods et 

al., 2006). Collectively, they demonstrate that small gaps (~2–5 times the tree height 

diameter) are often still sheltered by trees, while large gaps are exposed to wind erosion 

that eventually reduces the overall snow accumulation. 

The knowledge on energy exchanges between the snowpack, atmosphere, and the 

ground is important for the prediction of snowmelt rates in hydrological applications 

(Mas et al., 2018), determination of land surface-atmosphere interactions for climate 

modeling and weather forecasting (Pomeroy et al., 1998a), and prediction of avalanche 

hazards (Brun et al., 1989). Indeed, many of the snow physics models developed for 

such applications are based on energy budget estimation. Since their early 

developments, these models have been greatly improved with the addition of new 

parameterizations for turbulent energy transfer (Andreas et al., 2010), blowing snow 

(Liston et al., 2007; Pomeroy et al., 2007; Pomeroy et al., 1993), and snow 

metamorphism (Lehning et al., 2002). However, despite these advances, in a snowmelt 
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model intercomparison project, Rutter et al. (2009) reported that snowmelt models do 

not consistently produce acceptable results in all environments. This is partly due to 

the inability to robustly simulate the snowpack processes and snow-atmosphere-ground 

interactions (Rutter et al., 2009). However, the availability of calibration data could 

solve a major portion of this issue by reducing the parameter uncertainty and thereby 

offsetting model deficiencies (Essery et al., 2009). This highlights the importance of 

having detailed meteorological and/or energy flux measurements in different 

environments. 

The snowpack energy exchanges in different environments are well documented in 

large open areas like the Canadian prairies (Harder et al., 2018; Harder et al., 2017; 

Pomeroy and Gray, 1994; Pomeroy et al., 1993; Pomeroy et al., 1998a) and Arctic 

(Boike et al., 2003; Lackner et al., 2022; Liston and Sturm, 1998; Price and Dunne, 

1976), forested environments (Barry et al., 1990; Lundquist et al., 2013; Pomeroy and 

Granger, 1997; Prévost et al., 1991), and mountainous regions (Bair et al., 2018; 

Helgason and Pomeroy, 2012b; Hoelzle et al., 2022; Kuipers Munneke et al., 2009; 

Mott et al., 2011b; Mott et al., 2017; Roth and Nolin, 2017). Collectively, these studies 

show marked differences in snow mass and energy fluxes in different environments 

depending on vegetation and topographical settings, which in turn have a substantial 

effect on snowmelt and regional hydrology. On the other hand, agro-forested 

catchments, which are composed of alternate patches of open lands (mostly agricultural) 

and forest, have been little studied. Snow-affected agro-forested landscapes 

characterize much of eastern Canada (Jobin et al., 2014), but also part of the Midwest 

and northeastern USA (Gootman and Hubbart, 2021; Jacobs et al., 2021), and northern 

Europe (Luomaranta et al., 2019). Differences in snow mass and energy balance within 

agro-forested environments would be expected to exert a significant influence on 

regional hydrology (Aygün et al., 2020; Aygün et al., 2022). However, the lack of field 

studies simultaneously measuring snow mass and energy balance in open and forest 

patches hampers the holistic understanding of snowpack dynamics and makes it 
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difficult to validate the modeling efforts in these agro-forested landscapes (Aygün et 

al., 2020; Brown, 2010; Paquotte and Baraer, 2021; Sena et al., 2017). Therefore, the 

objective of this study is to simultaneously measure and estimate energy fluxes and 

assess the temporal variability and meteorological controls on snow energy transfer 

between open ground, forest, and forest clearing (gap) within an agro-forested 

environment in eastern Canada. We also measure blowing snow fluxes and investigate 

their influence on the energy budget, which is largely understudied in agro-forested, 

humid continental climates. In view of the lack of observational studies, our study is 

expected to provide a baseline for energy partitioning in agro-forested landscapes using 

a measurement-based approach that would benefit future modeling applications.  

 Study Sites and Measurements 

The study was conducted at three sites within the experimental watershed of Sainte-

Marthe in southern Québec, eastern Canada (Figure 4.1). The watershed has an extent 

of 9 km2 with a mixed wood forest in the upper catchment and agricultural areas 

downstream. The climate of the region is characterized by a sub-humid continental 

climate (Paquotte and Baraer, 2021; Valence et al., 2022). Automatic weather station 

(AWS) measurements from three contrasted sites were used in this study: (i) an “open” 

site located in an open agricultural area (45.40°N, 74.31°W), (ii) a “forest” site in the 

mixed wood forest (mostly deciduous, 45.43°N, 74.28°W), and (iii) a “gap” site in a 

clearing zone of approximately 20x30 m in the mixed wood forest area (45.42°N, 

74.28°W). Although the open station is located a little outside the watershed boundary 

due to logistical reasons, it shares the same climatic conditions. Also, the proximity of 

the sites and their similar topographic settings (flat, within an elevation range of 69–

110 m asl (above sea level)), allow isolating the effect of land use on the snow energy 

and mass balance. The gap station is in operation since 2016 and the open and forest 

stations are operational since December 2019. Figure 4.1 shows the study locations and 

Table 4.1 outlines the details of the individual measurements at each site. 
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Figure 4.1. Study site locations in the Sainte-Marthe watershed a) open, b) gap, and c) 
forest 

Table 4.1. List of instruments used and their characteristics at the three different sites  

Parameters Sensors Manufactu
rer 

Range  Accuracy Station 

Shortwave 
and 
longwave 
radiation 

Pyranometer 
and 
pyrgeometer 
(CNR4) 

Kipp & 
Zonen 

0.3–2.8 µm,  
4.5–42 µm 

±10 % a,  
±10 % a  

Open 
Gap 
Forest 

Air 
Temperature 
and relative 
humidity 

HMP155A 
probe 

Vaisala –80–60 °C, 
0–100 % 

±0.5 °C, 
±1.5 %  

Open 

Platinum 
thermocouple 
HygroClip 
(HC-S3L) 

Rotronic 
Instrument 
Corp  

–40–60 °C, 
0–100 % 

±0.6 °C, 
±1.5 %  

Gap 

WS700-UMB Lufft –50–60 °C, 
0–100 % 

±0.2 °C, 
±2 %  

Forest 
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Atmospheric 
pressure 

Barometer 
(CS106)  

Vaisala 500–1100 
hPa 

±1.5 hPa Open 

Barometer 
(CS106)  

Vaisala 500–1100 
hPa 

±1.5 hPa Gap 

WS700-UMB Lufft 300–1200 
hPa 

±0.5 hPa Forest 

Wind speed 
and wind 
direction 

Anemometer 
(5103-L) 

R. M. 
Young 

0–100 m s-1, 
0–360 ° 

±0.3 m s-1, 
±3 ° 

Open 

Anemometer 
(5103-L) 

R. M. 
Young 

0–100 m s-1, 
0–360 ° 

±0.3 m s-1, 
±3 ° 

Gap 

WS700-UMB Lufft 0–100 m s-1, 
0–360 ° 

±0.3 m s-1, 
< 3 ° 

Forest 

Precipitation WS700-UMB Lufft 0.3–5 mm 
drop size 

±2 %  Gap 

0–200 mm h-

1 intensity 

  

Snow depth Sonic 
telemetry 
sensor 
(SR50A) 

Campbell 
Scientific  

0.5–10 m ±1 cm  Open 
Gap 
Forest 

Snow and 
ground 
temperatures 

Temperature 
probes (107) 

Campbell 
Scientific 

–35–50 °C ±0.2 °C Open 
Gap 
Forest 

Soil moisture 
(volumetric 
water 
content) 

Reflectometer 
(CS-655) 

Campbell 
Scientific  

0–100 % ±1 or ± 
3 %  

Open 
Gap 

Blowing 
snow 

FlowCapt IAV 
Technolog
ies 

0–250 g m-2 
s-1 

±5 % Open 

a : accuracy for daily totals. 
 
All data were recorded at hourly intervals using a CR3000 data logger (Campbell 

Scientific) in the open, at hourly intervals using a CR1000 data logger in the forest, and 

at 15 min intervals using a CR1000 data logger in the gap. Temperatures within the 

snowpack were measured from 0 to +30 cm at a 10 cm interval. Ground temperatures 

were measured at depths from 0 to –60 cm at a 10 cm interval and ground volumetric 

water content was measured from 0 to –40 cm at the same interval. Ground temperature 

and soil moisture sensors in the forest malfunctioned soon after their deployment. With 



165 

the proximity of the forest site to the gap site, ground temperature measurements from 

the gap station were therefore used for the analysis in the forest. Snow water equivalent 

(SWE) was only measured at the gap station at 6 hr intervals using a passive gamma 

SWE sensor (CS725, accuracy of ±15 mm). Two Hydroinnova SWE sensors 

(Hydroinnova, 2019) installed in the open and forest were found to be not functioning 

well, and hence were not considered in the analysis. The precipitation radar sensor was 

installed at a height of 10 m above the ground. SR50 sensors were installed at 2 m, 2 

m, and 1.5 m height above the ground in open, forest, and gap station respectively. 

Installation height of wind sensors from ground surface are 2.4 m, 2.5 m, and 1.5 m in 

open, forest, and gap station respectively. 

The open site is equipped with two second-generation FlowCapt acoustic sensors to 

measure hourly blowing snow fluxes vertically integrated between 0–1 m and 1–2 m 

above the ground surface (Chritin et al., 1999; Cierco et al., 2007; IAV Technologies, 

2019; Trouvilliez et al., 2015). A number of studies in the Swiss and French Alps 

(Lehning and Fierz, 2008; Naaim-Bouvet et al., 2010; Trouvilliez et al., 2015; Vionnet 

et al., 2018), the Indian Himalayas and Central Asia (Das et al., 2012; Zhang et al., 

2022), the Arctic region (Jaedicke, 2001), and in Antarctica (Amory, 2020; Trouvilliez 

et al., 2014) have demonstrated the capability of the FlowCapt sensor to detect blowing 

snow. However, the accuracy of the FlowCapt sensor for quantitatively measuring the 

blowing snow fluxes has been debated in the literature (Cierco et al., 2007; Lehning 

and Fierz, 2008; Naaim-Bouvet et al., 2010; Trouvilliez et al., 2015). The second-

generation sensor (used in this study) has significant improvements (Trouvilliez et al., 

2015) overcoming many drawbacks of its first-generation counterpart (Cierco et al., 

2007). Trouvilliez et al. (2015) found that the sensor still underestimates the snow 

fluxes quantities compared to a snow particle counter S7 sensor during a winter season 

in the French Alps, particularly during concurrent snowfall. However, they also 

showed its promising capability as a blowing snow event detector. Several other 

authors highlight the usefulness of the second-generation FlowCapt as a good aeolian 
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snow transport event detector with a high level of confidence, together with its 

robustness to withstand hostile weather conditions for prolonged periods (e.g., polar 

environments), and its low power consumption (Amory, 2020; Trouvilliez et al., 2014). 

 Methods 

The snowpack behavior at the three sites was examined from December 2020–April 

2021 by computing the energy exchange components. Prior to calculating the energy 

budget components, all the raw measurements were visually inspected, and missing, 

and/or suspected erroneous values were screened, inventoried, and gap-filled 

accordingly. Then, at the open and forest stations hourly measurements were directly 

used for the energy flux calculations. At the gap station, all data recorded in 15-minute 

time steps were aggregated to hourly data for the energy flux calculations.  

 Data Quality Control and Preprocessing 

No data gaps were identified for the open and gap stations for the study period. Twenty 

isolated missing values were identified for the WS700-UMB measurements at the 

forest station and were filled with linear interpolation. Isolated snow depth outliers 

were deleted and corrected manually with measurements from neighboring time steps. 

Specific processing for the other meteorological variables and radiation fluxes are 

described in subsequent sections. 

 Solar Radiation Correction  

Negative incoming and outgoing shortwave radiations during the night were set to zero. 

Corrections were made for snow covering and shading the upward-looking 

pyranometer sensor, specifically at the forest station where low winds were less 

efficient to clear the snow on the sensors. These periods were identified by available 
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time-lapse photos and high albedo during daytime (>0.9). In such situations, the 

incoming radiation data were corrected by using an albedo for fresh snow (∝𝑟𝑎𝑤= 0.85; 

Oke (1987)) and multiplying it by the outgoing radiation (e.g., Conway et al., 2018; 

Hoelzle et al., 2022). However, this correction only accounted for a smaller portion of 

the study period, i.e., 0.05 % of hourly measurements in the forest. 

Additionally, solar radiation data were corrected for patchy snowpack conditions at the 

beginning and end of the study periods at all sites by considering the snow cover 

fraction within the sensor footprint (Essery et al., 2013). The snow cover fraction (SCF) 

was approximated as: 

 
𝑑0 was taken as 0.1 m in all sites. This value was decided by plotting daily raw albedo 

versus snow depth, which showed that albedo was influenced by exposed soil below 

0.1 m of snow depth (Supplement Figure S4.1). The raw snow albedo (∝𝑟𝑎𝑤) was then 

corrected using the snow cover fraction. 

   
∝𝑐𝑜𝑟𝑟=

∝𝑟𝑎𝑤− (1 − 𝑆𝐶𝐹)  ∝𝑠𝑜𝑖𝑙

𝑆𝐶𝐹
 

  Equation 4.2 

 
Where soil albedo (∝𝑠𝑜𝑖𝑙) was set to 0.15 based on snow-free observations in the fall. 

Then, the outgoing shortwave radiation was corrected by multiplying the incoming 

shortwave radiation by the corrected albedo (∝𝑐𝑜𝑟𝑟). 

This correction was applied for 49, 46, and 34 days from the total of 135 days in the 

open, forest, and gap respectively. 

   
𝑆𝐶𝐹 = min (1,

 𝑠𝑛𝑜𝑤 𝑑𝑒𝑝𝑡ℎ

𝑑0
) 

    Equation 4.1 
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 Longwave Radiation Correction 

In terms of correcting outgoing longwave radiation for snow cover fraction, a 

maximum value of 316 W m-2 was imposed on outgoing longwave radiation to avoid 

the bias from warmer snow-free soil in the sensor footprint (e.g., melting snow surface 

with a patchy snowpack). This maximum value was obtained by calculating outgoing 

longwave radiation (𝑄𝐿𝑊𝑜𝑢𝑡) for a snow surface temperature, 𝑇𝑠, of 273.15 K (0 °C) 

using Equation 4.3 (Dewalle and Rango, 2008). 

 𝑄𝐿𝑊𝑜𝑢𝑡 =  𝜀𝜎 𝑇𝑠
4 + (1 − 𝜀)𝑄𝐿𝑊𝑖𝑛     Equation 4.3 

Where the emissivity 𝜀 is taken as 0.98 (Anderson, 1976), 𝜎 is the Stefan-Boltzmann 

constant (5.67x10-8 W m-2 K-4), and 𝑄𝐿𝑊𝑖𝑛 is the incoming longwave radiation. 

The heater/ventilator unit in CNR4 sensor prevents the formation and deposition of 

dew and frost on the pyrgeometer and pyrgeometer window, hence the errors due to 

dew and frost for radiation measurements are expected to be negligible. Snow covering 

the sensor only accounted for a smaller portion for the study period (see solar radiation 

correction), hence incoming longwave radiations were not corrected for those periods. 

 Local Precipitation Data Preparation  

In a recent study at the gap station, Paquotte and Baraer (2021) used precipitation data 

from the Pierre-Elliott-Trudeau station (YUL), situated 40 km east of the study site 

(Environment and Climate Change Canada, 2021) reasoning that it is situated in the 

same precipitation corridor as Sainte-Marthe, and in a similar physiographic context. 

The authors used the data from November 2018 to April 2019, before the deployment 

of the WS700-UMB sensor at the site. We compared the total cumulative precipitation 

of the WS700-UMB with YUL for the 2020–2021 winter season which showed that 

they are in the same order of magnitude (Supplement Figure S4.2). Therefore, the local 
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precipitation data from the WS700-UMB measurements at the gap station was used for 

all three sites in this study. However, since the automatic separation of the precipitation 

into rainfall and snowfall by the WS700-UMB sensor appeared to be erroneous, the 

precipitation phase separation was done by adopting a 2 °C temperature threshold 

based on the mean winter relative humidity of 90 % during the precipitation events at 

the site (Jennings et al., 2018b). 

 Local Wind Data Preparation 

No outlier wind speed values were found during the initial quality control process in 

all sites. A minimum wind speed threshold of 0.3 m s-1 was imposed at all sites to avoid 

suppressing turbulent fluxes completely at low wind speeds (Conway and Cullen, 2013; 

Martin and Lejeune, 1998). 

 Calculation of Mean Snowpack Temperature  

The mean snowpack temperature was obtained by averaging the four thermistor 

measurements within the snowpack when the snow depth was higher than 35 cm. When 

snow depth was below 35 cm, only the thermistors located 5 cm or more below the 

snow surface were used for averaging, in order to avoid direct solar radiation effects 

on thermistors. 

 Calculation of Specific Humidity 

The specific humidity, q, was calculated from the relative humidity measurements at 

each site (Armstrong and Brun, 2008). 

  𝑞 =  0.622 𝑅𝐻 𝜌𝑤 (𝜌𝑎 − 𝜌𝑤)⁄  
 

    Equation 4.4 
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Where 𝑅𝐻 is the relative humidity as a factor, 𝜌𝑤 is the density of water vapor (kg m-

3), and 𝜌𝑎 is the density of air (kg m-3). 

 Calculation of Surface Energy Balance 

The energy balance for the snowpack was calculated at an hourly time step, using 

Equation 4.5 (adapted from Dewalle and Rango (2008)). 

 
𝑄𝑀 +

𝑑𝑈

𝑑𝑡
=  𝑄𝑆𝑊 + 𝑄𝐿𝑊 + 𝑄𝑆 + 𝑄𝐿 + 𝑄𝑅 + 𝑄𝑆𝐹 + 𝑄𝐺  

 

    Equation 4.5 

Where 𝑈 is the internal energy of the snowpack, 𝑄𝑆𝑊 is the net shortwave radiation 

heat flux, 𝑄𝐿𝑊 is the net longwave radiation heat flux, 𝑄𝑆 is the sensible heat flux, and 

𝑄𝐿 is the latent heat flux caused by evaporation, sublimation, or condensation. 𝑄𝑅 is 

the sensible and latent heat flux associated with rain-on-snow events, 𝑄𝑆𝐹  is the 

sensible heat associated with solid precipitation (snowfall), 𝑄𝐺 is the heat exchange at 

the snow-ground interface, and 𝑄𝑀 is the heat available for melt. All fluxes on the right 

side of the energy balance equation, except  𝑄𝑆  and 𝑄𝐿  were derived from the raw 

measurements collected at the respective weather station at each site. 𝑄𝑀 +
𝑑𝑈

𝑑𝑡
 was 

solved as the residual of the other energy fluxes as depicted in Equation 4.5. All energy 

terms are expressed in W m-2 and are positive when received by the snowpack and 

negative when lost by the snowpack. The analysis was calculated from December 2020 

to April 2021. All energy fluxes were calculated at hourly time steps and then 

aggregated to daily values first. Then, the daily surface energy fluxes calculated for 

days with snow depths less than 5 cm (i.e., snow cover fraction less than 0.5) were 

omitted because of the high uncertainty involved with a very thin snowpack. Mean 

weekly values were then calculated from daily values to simplify the presentation and 

interpretation of the results. 
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 Radiation Fluxes 

𝑄𝑆𝑊 and 𝑄𝐿𝑊 were measured directly at each site using CNR4 sensors (Table 4.1) and 

were corrected as described in sections 4.3.1.1 and 4.3.1.2. 

 Turbulent Sensible and Latent Heat Flux 

The turbulent fluxes were calculated using the bulk aerodynamic method (Oke, 1987; 

Price and Dunne, 1976). 

 𝑄𝑆 = 𝜌𝑎𝑐𝑝𝐶ℎ𝑢𝑎(𝑇𝑎 − 𝑇𝑠)    Equation 4.6 

 𝑄𝐿 =  0.622 𝜌𝑎𝐿𝐶𝑒𝑢𝑎(𝑒𝑎 − 𝑒𝑠) 𝑃𝑎⁄      Equation 4.7 

Where 𝐶ℎ and 𝐶𝑒 are the bulk exchange coefficients for the sensible and latent heat 

fluxes, respectively, 𝜌𝑎 is the density of air (kg m-3), 𝑐𝑝 is the specific heat of air at 

constant pressure (1005 J kg-1 K-1), 𝑢𝑎  is the wind speed (m s-1), 𝑇𝑎  is the air 

temperature (K), 𝑇𝑠 is the snow surface temperature (K), which was measured using 

the outgoing (𝑄𝐿𝑊𝑜𝑢𝑡) and incoming (𝑄𝐿𝑊𝑖𝑛) longwave radiation measurements and 

rearranging the longwave radiation balance, Equation 4.3 (Helgason and Pomeroy, 

2012a; Steiner et al., 2018). 𝐿 is the latent heat of vaporization (2.501x106 J kg-1) when 

𝑇𝑠 = 0 °C or sublimation (2.835x106 J kg-1) when 𝑇𝑠 < 0 °C,  𝑒𝑎 is the atmospheric 

vapor pressure (Pa), 𝑒𝑠 is the vapor pressure at the snow surface (Pa) which is estimated 

for ice surface when 𝑇𝑠 < 0 °C or liquid water surface when 𝑇𝑠 = 0 °C, and 𝑃𝑎 is the 

atmospheric pressure (Pa). 

Both bulk exchange coefficients for sensible and latent heat under neutral atmospheric 

conditions, 𝐶𝑛, was estimated using Equation 4.8 (Conway and Cullen, 2013). 

 
𝐶𝑛 =

𝑘2

[𝑙𝑛(𝑧𝑎 𝑧0⁄ )]2
 

    Equation 4.8 
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Where the von Karman constant 𝑘 is 0.4, 𝑧𝑎 is the height of the wind measurement 

from the snow surface and 𝑧0  is the snow roughness. 𝑧0  reported in the literature 

generally varies from 0.0002 m to 0.02 m for smooth to rough snowpack conditions 

(Dewalle and Rango, 2008). Some studies assumes scaler roughness lengths for snow 

surface , i.e., 1/10 th of the average height of roughness obstacles (Dewalle and Rango, 

2008). However, given the sensitivity and uncertainity involved with this parameter for 

estimating turbulent fluxes (Armstrong and Brun, 2008), 𝑧0  was assumed to be at 

0.0005 m, which is similar to that used by Paquotte and Baraer (2021) in the same study 

area. In situations of non-neutral atmospheric conditions, 𝐶𝑛  should be corrected 

according to the relevant atmospheric stability to obtain 𝐶ℎ  and 𝐶𝑒 . Atmospheric 

stability can generally be assessed by the Richardson number, 𝑅𝑖𝐵 (Oke, 1987; Boike 

et al., 2003; Mas et al., 2018).  

 𝑅𝑖𝐵 = 𝑔 𝑧𝑎(𝑇𝑎 − 𝑇𝑠) 𝑇𝑚𝑢𝑎
2⁄      Equation 4.9 

Where 𝑔 is the acceleration of gravity (9.8 m s-2) and  𝑇𝑚 is ( 𝑇𝑎+ 𝑇𝑠)/2.  

If the conditions are stable (𝑅𝑖𝐵 > 0), the bulk exchange coefficient is (Boike et al., 

2003; Price and Dunne, 1976): 

  
𝐶𝑒 = 𝐶ℎ =

𝐶𝑛

(1 + 10𝑅𝑖𝐵)
 

 

    Equation 4.10 

and for unstable conditions: 

 𝐶𝑒 = 𝐶ℎ = 𝐶𝑛 (1 − 10𝑅𝑖𝐵)     Equation 4.11 

As mentioned in section 4.3.1.4, a minimum of 0.3 m s-1 was imposed on 𝑢𝑎 to avoid 

suppressing turbulent fluxes completely at low wind speeds (Martin and Lejeune, 

1998). In addition, a sensitivity analysis was carried out for the turbulent flux 

calculation using four different wind threshold values, a windless coefficient, and two 

other stability correction methods to check the sensitivity of the residual energy balance, 
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𝑄𝑀 +
𝑑𝑈

𝑑𝑡
, to the different calculation methods (Supplement Table S4.1 and Figure S4.3). 

Error statistics for the different methods did not vary considerably, except when 

including a windless coefficient (Supplement Table S4.2 and Table S4.3).  

 Rainfall Energy Flux 

Heat flux due to rain-on-snow was calculated in two stages (Dewalle and Rango, 2008) 

as:  

 𝑄𝑅 = 𝑄𝑟1 + 𝑄𝑟2     Equation 4.12 

The first source of energy input by rain is the sensible heat brought to the snow surface 

and used to bring it to the freezing point, 0 °C: 

 𝑄𝑟1 = 𝑃𝑟𝑐𝑤𝜌𝑤(𝑇𝑟 − 0)     Equation 4.13 

Where 𝑃𝑟 is the rainfall intensity (m s-1), 𝑐𝑤 is the specific heat of liquid water (4187 J 

kg-1 °C-1), 𝜌𝑤 is the density of liquid water (1000 kg m-3),  𝑇𝑟 is the temperature of rain 

(°C), which is assumed to be equal to 𝑇𝑎 in this study.  

The second source of energy input is the release of latent heat of fusion when rain 

freezes on a subfreezing snowpack (< 0 °C). 

 𝑄𝑟2 = 𝑃𝑟𝜌𝑤𝐿𝑓     Equation 4.14 

Where 𝐿𝑓 is the latent heat of fusion (0.334x106 J kg-1).  

 Snowfall Energy Flux 

The sensible heat flux advected by snowfall was calculated as: 

 𝑄𝑆𝐹 = 𝑃𝑆𝐹𝑐𝑖𝜌𝑤(𝑇𝑆𝐹 − 0)     Equation 4.15 
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Where 𝑃𝑆𝐹 is the snowfall intensity (m s-1), 𝑐𝑖 is the specific heat of ice (2100 J kg-1 °C-

1), 𝜌𝑤 is the density of liquid water (1000 kg m-3),  𝑇𝑆𝐹 is the temperature of snowfall 

(°C), which is assumed here to be equal to 𝑇𝑎. 

 Ground Heat Flux 

The ground heat conduction to the base of the snowpack was be computed as (Dewalle 

and Rango, 2008): 

 
𝑄𝑔 = 𝑘𝑔

𝑑𝑇𝑔

𝑑𝑧
≈

𝑘𝑔(𝑇10 − 𝑇0) 

10
100

 

 

    Equation 4.16 

Where 𝑘𝑔 denotes the thermal conductivity of soil (W m-1 °C-1), 𝑇10 is the temperature 

measured 10 cm below the ground surface, and 𝑇0 is the temperature measured at the 

ground surface (base of the snowpack). We used the temperature gradient between the 

base of the snowpack and the 10 cm depth (𝑑𝑇𝑔

𝑑𝑧
 , °C m-1) for the ground heat calculation, 

as it was observed from the measurements that the ground temperature did not fluctuate 

much below 10 cm. 𝑘𝑔 generally varies with the moisture and organic matter content 

of the soil, typically between 0.2 and 2.2 W m-1 °C-1 (Oke, 1987). In this study, 𝑘𝑔 was 

calculated using the porosity (φ) of the soil at each site. The maximum measured 

volumetric water content in the spring was used to estimate the soil porosity, assuming 

the pores were saturated by the beginning of spring with snowmelt. Then, by taking a 

typical thermal conductivity of the dry soil (𝑘𝑑𝑟𝑦) for each site (Oke, 1987) and ice 

(𝑘𝑖𝑐𝑒 = 2.24) , 𝑘𝑔 is given by: 

 𝑘𝑔 = 𝑘𝑑𝑟𝑦(1 − φ) + 𝑘𝑖𝑐𝑒φ     Equation 4.17 

Table 4.2 shows the 𝑘𝑔 values obtained using respective φ and 𝑘𝑑𝑟𝑦 values at each site. 

Soil types at each site were obtained from the Institute for Agri-Environments (IRDA). 
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Table 4.2. Soil types, parameters, and thermal conductivity of soil (𝑘𝑔) at each site 

 Open Gap Forest 
Soil type Clay Sandy loam Sandy loam 
φ 0.40 0.45 0.45 
𝑘𝑑𝑟𝑦 (W m-1 °C-1) 0.25 0.30 0.30 
𝑘𝑔 (W m-1 °C-1) 1.05 1.17 1.17 

 Residual Energy Flux 

The residual energy flux, or net energy balance, is a combination of melt energy (𝑄𝑀) 

and change of internal energy (cold content) of the snowpack (𝑑𝑈

𝑑𝑡
). 𝑄𝑀 is equal to 0 

when the right hand side of the energy balance equation (Equation 4.5) is negative 

(snowpack cooling). Otherwise, 𝑄𝑀 +
𝑑𝑈

𝑑𝑡
 is equal to the right member of the energy 

balance equation, whose value represents the minimum melt estimate, i.e., snowpack 

melting given that the available energy is large enough to eliminate the cold content 

and induce melt, else only warming of the snowpack occurs. 𝑑𝑈

𝑑𝑡
  was not calculated 

separately in this study due to the absence of continuous snow pit or SWE 

measurements and the high uncertainty involved with the calculation process (Dewalle 

and Rango, 2008; Helgason and Pomeroy, 2012a; Jennings et al., 2018a). More often, 
𝑑𝑈

𝑑𝑡
 is modeled with a multilayer snowpack assumption (Conway et al., 2018; Helgason 

and Pomeroy, 2012a; Jennings et al., 2018a; Parajuli et al., 2021). However, by keeping 
𝑑𝑈

𝑑𝑡
  at the left side of Equation 4.5, we are still able to explain the different snowpack 

behaviors observed at each site by the changes of the right members of the energy 

balance equation.  
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 Blowing Snow Analysis at Open Site 

Mean hourly blowing snow fluxes measured by the two FlowCapt sensors 

(measurements along the height 0–1 m and 1–2 m) were summed and analyzed from 

mid-January 2021 to March 2021 when a stable snow cover was present and before 

significant snowmelt began at the study site (Accumulation period in Figure 4.2). For 

the analysis, snow flux measurements higher than the lower detection limit of the 

FlowCapt (0.002 g m-2 s-1 considering both sensors) were considered as blowing snow 

events. First, we examined and analyzed the general trends/observations in blowing 

snow measurements. Blowing snow events with and without concurrent snowfall were 

compared against hourly meteorological measurements such as wind speed, air 

temperature, and relative humidity to assess the relationship between blowing snow 

events and meteorological conditions. Then, we examined the weather conditions 

associated with the blowing snow events and the thermodynamic feedback effects of 

blowing snow on energy balance in the open under snowfall-free conditions. The 

former was investigated by comparing relative humidity, air temperature, atmospheric 

pressure, wind speed, and wind direction between blowing snow and no-blowing snow 

events in the open. The latter was achieved by comparing the changes in energy fluxes 

and associated meteorological parameters between the open and gap sites during 

blowing snow and no-blowing snow time steps recorded by the FlowCapt. Given the 

proximity of the sites, the weather conditions triggering blowing snow fluxes would 

have similar influences on these differences between open and gap, and hence are 

expected to reflect the feedback effect of blowing snow on energy fluxes and associated 

meteorological variables at the open site. We specifically tested the hypothesis that 

blowing snow events under snowfall-free conditions modify the snowpack latent heat 

and sensible heat exchanges calculated by the bulk aerodynamic method, which was 

shown by previous modeling studies (e.g., Déry et al., 1998; Le Toumelin et al., 2021; 

Vionnet et al., 2014). Radiative feedbacks were also investigated for incoming 

longwave radiation but not for incoming shortwave radiation, as the reference gap site 
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is largely shaded by surrounding trees which precludes meaningful comparisons with 

the open site using hourly data. Absolute (AE) and relative (RE) effects of blowing 

snow on these fluxes and associated meteorological variables were calculated as 

follows. 

 𝐴𝐸 = (𝑜𝑝𝑒𝑛 − 𝑔𝑎𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝐵𝑆 − (𝑜𝑝𝑒𝑛 − 𝑔𝑎𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑁𝑜 𝐵𝑆 
 

    Equation 4.18 

Where (𝑜𝑝𝑒𝑛 − 𝑔𝑎𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝐵𝑆  indicates the mean difference between open and gap 

measurements during blowing snow periods and (𝑜𝑝𝑒𝑛 − 𝑔𝑎𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑁𝑜 𝐵𝑆  indicates the 

mean difference between open and gap measurements during no-blowing snow periods. 

AE should be near zero if blowing snow has no thermodynamic impacts at the open 

site. 

 𝑅𝐸 = (𝐴𝐸 (𝑜𝑝𝑒𝑛𝐵𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐴𝐸)⁄ ) ∗ 100 
 

    Equation 4.19 

Where 𝑜𝑝𝑒𝑛𝐵𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅ indicates the mean observed meteorological variable or energy flux 

during blowing snow periods. 

 Results 

 Measured Meteorological Variables  

During the observation period, the highest maximum snow depth of 0.68 m was found 

in the gap, and the lowest maximum snow depth of 0.52 m was found in the open site, 

with an intermediate snow depth of 0.60 m being found in the forest site (Figure 4.2a). 

Similarly, the highest average snow depth was observed in the gap (0.27 m), lowest in 

the open (0.19 m), and intermediate in the forest (0.22 m). The snowpack disappeared 

on the same date (26/03/2021) in the open and forest and lasted longer in the gap 

(29/03/2021). Based on the evolution of the snow depth, the study period could be 

characterized into three periods: a first “Early winter period” from December to mid-
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January when the snowpack is thin (<10 cm) and transient, a second “Accumulation 

period” from mid-January to February 28th (starting date of ablation) when the 

snowpack is thickening, and a third “Ablation period” from February 28th onward with 

sustained ablation of the snowpack. High air temperature throughout the winter at the 

forest site compared to the gap and open sites indicates a comparatively warmer climate 

in the forest (Figure 4.2b). The mean air temperature was –3.3 °C at the open site, –

3.0 °C in the gap, and –1.9 °C in the forest throughout the observation period. The 

mean snowpack temperature shows a substantial variation in the open compared to the 

forest and gap (Figure 4.2c). The snowpack at the open site was the coldest among the 

sites, the forest snowpack the warmest, and the gap snowpack falling in between. 

Similarly, the ground surface (snowpack base) temperature was colder and more 

variable at the open site, compared to the forest site while the gap showed an 

intermediate behavior (Figure 4.2d). The ground surface temperature at the forest and 

gap sites displayed freezing events in early winter, while a prolonged zero-curtain 

effect (near-zero temperature) is observed during the accumulation and ablation period. 

The open site stands out with a near-continuous frozen state throughout winter. 

Significant rainfall events are observed in the early winter and ablation periods, but not 

in the accumulation period (Figure 4.2e). Specific humidity did not vary much between 

the sites indicating almost similar moisture contents in all the sites (Figure 4.2f). Wind 

speed was substantially higher in the open compared to forest and gap. Being sheltered 

by trees, the forest shows the lowest wind speeds during the study period (Figure 4.2g).  
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Figure 4.2. Meteorological conditions and snowpack characteristics at the three study 
sites during winter 2020–2021 with a) daily snow depth, with the start (red) and end 
(brown, blue, green) of the ablation period indicated by stippled vertical lines and 
corresponding dates; b) daily air temperature; c) daily mean snowpack temperature; d) 
daily ground (snowpack base) temperature; e) snowfall and rainfall; f) specific 
humidity; and g) wind speed. Early winter, accumulation, and ablation periods are 
demarcated by yellow, blue, and red colors and are further explained in the text.  
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With the absence of SWE data, snowpack evolution was analyzed using the changes in 

snow depth. During the ablation period, negative snow depths estimated using the 

measured snow depths were used to compare the snowpack evolution between the sites 

(Figure 4.3). Despite having a considerable difference in snow depths (Figure 4.2a), 

almost similar negative snow depth changes were observed between the sites (Figure 

4.3).  

  
Figure 4.3. Negative snow depth changes in the three sites 

 Energy balance components 

The weekly variation of energy flux components and associated mean energy fluxes 

are portrayed in Figure 4.4 and Table 4.3 for the early winter, accumulation, and 

ablation periods between the sites. Table 4.4 shows the partial correlation coefficient 

values between energy terms and the residual energy flux, or net energy balance (𝑄𝑀 +

𝑑𝑈

𝑑𝑡
). In Figure 4.4, the energy balance components were plotted by moving all the 

energy terms to the right side of Equation 4.5, so that the sum of all terms is zero. In 

other words, when the right-hand side of Equation 4.5 is negative, the plotted  𝑄𝑀 +
𝑑𝑈

𝑑𝑡
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(grey color bar) is positive and vice versa. Therefore, in Figure 4.4, a positive 𝑄𝑀 +
𝑑𝑈

𝑑𝑡
 

indicates the accumulation of a cold content (heat loss) in the snowpack. Conversely, 

a negative 𝑄𝑀 +
𝑑𝑈

𝑑𝑡
 indicates an energy surplus and snowmelt, except at subfreezing 

temperatures, then the excess energy should indicate a warming of the snowpack.  

 

Figure 4.4. Mean weekly variation of energy fluxes and mean snowpack temperatures 
(black lines) at the three study sites: a) open; b) gap; c) forest 

Table 4.3. Mean values and standard deviation of the energy balance components, and 
their contribution (%) for the total energy budget in the three periods. QSW: Mean net 
shortwave radiation, QLW: Mean net longwave radiation, QS: Mean sensible heat flux, 
QL: Mean latent heat flux, QR: Mean rainfall energy flux, QSF: Mean snowfall energy 
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flux, QG: Mean ground heat flux, and QM+dU/dt: Mean net energy balance. 

  Open Gap Forest 
  W m-2 % of 

total 
energy 
budget1 

W m-2 % of 
total 
energy 
budget1 

W m-2 % of 
total 
energy 
budget1 

Early winter period   
QSW 5.72 ± 9.51 9.1 5.72 ±.16 5.24 17.9 3.04 ± 2.03 14.7 
QLW –24.11 ± 12.63 38.5 –15.44 ± 8.87 48.3 –2.47 ± 9.90 11.9 
Mean net 
radiation 

–18.39 ± 10.98 47.7 –9.72 ± 5.21 66.2 0.57 ± 8.69 26.6 

QS 6.28 ± 4.84 10.0 1.07 ± 0.47 3.3 0.64 ± 0.17 3.1 
QL –6.53 ± 5.49 10.4 –0.47 ± 0.36 1.5 –0.46 ± 0.27 2.2 
QR 3.71 ± 7.41 5.9 3.58 ± 7.16 11.2 6.66 ± 11.54 32.2 
QSF –0. 09 ± 0.14 0.1 –0.07 ± 0.09 0.2 –0.13 ± 0.16 0.7 
QG 15.57 ± 10.84 24.9 3.04 ± 0.84 9.5 –0.98 ± 0.99 4.7 
QM+dU/dt 0.54 ± 14.06  –2.57 ± 11.97  6.30 ± 17.95  
Accumulation period 
QSW 19.18 ± 8.23 27.3 17.98 ± 5.86 39.4 7.72 ± 4.73 44.7 
QLW –28.59 ± 8.97 40.7 –21.95 ± 6.27 48.1 –2.08 ± 5.64 12.1 
Mean net 
radiation 

–9.41 ± 7.86 68.1 –3.97 ± 3.57 87.5 5.63 ± 5.29 56.8 

QS 10.28 ± 5.63 14.7 2.26 ± 1.63 5.0 0.91 ± 0.51 5.3 
QL –6.36 ± 2.72 9.1 –0.70 ± 0.78 1.5 –0.62 ± 0.32 3.6 
QR 0.00 ± 0.00 0.0 0.00 ± 0.00 0.0 0.00 ± 0.00 0.0 
QSF –0.15 ± 0.09 0.2 –0.16 ± 0.09 0.3 –0.10 ± 0.12 0.6 
QG 2.75 ± 2.54 3.9 1.02 ± 0.42 2.2 –0.61 ± 0.37 3.5 
QM+dU/dt –2.88 ± 5.93  –1.54 ± 2.33  5.23 ± 5.37  
Ablation period 
QSW 84.41 ± 34.00 44.4 61.70 ± 16.20 46.7 41.57 ± 10.57 47.7 
QLW –46.41 ± 10.21 24.4 –29.13 ± 19.54 22.1 –6.08 ± 16.29 7.0 
Mean net 
radiation 

37.99 ± 30.85 68.9 32.57 ± 22.31 68.8 35.49 ± 21.39 54.6 

QS 10.31 ± 4.84 5.4 1.74 ± 1.97 1.3 0.72 ± 0.66 0.8 
QL –15.35 ± 10.20 8.1 –4.21 ± 4.49 3.2 –3.03 ± 2.02 3.5 
QR 0.23 ± 0.43 0.1 2.51 ± 4.10 1.9 1.30 ± 1.20 1.5 
QSF –0.01 ± 0.03 0.0 –0.01 ± 0.04 0.0 –0.01 ± 0.03 0.0 
QG –1.02 ± 1.96 0.5 0.09 ± 0.33 0.1 –3.30 ± 0.42 3.8 
QM+dU/dt 32.14 ± 37.80 

 
32.69 ± 31.54 

 
31.17 ± 24.32 
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1 The % contribution of each energy flux to the total energy budget was calculated by dividing 
the absolute value of the energy flux by the sum of the absolute value of all the energy fluxes. 
Net radiation is the sum of shortwave and longwave radiation. 
 

Table 4.4. Partial correlation coefficients between individual energy terms and net 
energy balance (QM+dU/dt). EW = Early winter period, Acc. = Accumulation period, 
and Abl. = Ablation period. 

 Open Gap Forest 
 EW Acc. Abl. EW Acc. Abl. EW Acc. Abl. 
QSW 0.57 0.81 0.75 0.78 0.86 0.62 0.72 0.80 0.75 
QLW 0.59 0.92 0.75 0.95 0.93 0.42 0.96 0.93 0.68 
QS –0.08 0.62 0.71 0.50 0.48 0.28 –0.49 0.22 0.38 
QL 0.37 0.44 0.85 0.20 0.21 0.77 0.22 0.22 0.69 
QR 0.24 0.43 0.28 –0.42 0.07 0.22 0.32 0.28 0.55 
QSF –0.12 0.34 0.42 –0.53 0.13 0.26 –0.52 0.31 0.03 
QG 0.49 0.67 –0.30 0.45 0.15 –0.11 0.70 –0.13 –0.13 

 
During the entire winter period, energy exchanges were highest in the open and lowest 

in the forest (Table 4.3). Similarly, the weekly variation of the energy fluxes was most 

pronounced in the open and more subdued in the forest (Figure 4.4). The gap site 

displayed an intermediate amount and variation of the weekly energy fluxes (Figure 

4.4 and Table 4.3). The partitioning of the energy flux components between the sites 

during the three periods is of particular interest and is presented in the subsequent 

sections. 

 Early Winter Period 

Throughout the early winter period, net longwave radiation was the most important 

energy flux in open and gap (with an average contribution of 38.5 % and 48.3 % at the 

open and gap respectively, from Table 4.3). Sensible heat fluxes were always positive 

except for week 2, during which it was slightly negative at the open. Latent heat fluxes 

were always negative at all sites. Snowpacks at all sites received a negligible amount 

of energy from rainfall, except during week 1 as a result of the 30 mm rainfall event 
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that occurred in the early winter period (see Figure 4.2e). Energy advected due to 

snowfall was insignificant at all sites. Nevertheless, the most striking difference in 

energy fluxes during the early winter period compared to the later periods is the 

significant ground heat fluxes at all sites (4.7–24.9 %), though more pronounced at the 

open and gap (Figure 4.4 and Table 4.3). The net energy balance at all sites was 

generally negative (positive bar in Figure 4.4), hence reflecting cooling of the 

snowpack. The highest partial correlation coefficient between individual fluxes and the 

net energy balance at all sites was for net longwave radiation (Table 4.4). This indicates 

that the most significant control of the net energy balance came from longwave 

radiation. However, the application of the energy balance equation in the early winter 

period when the snowpack is thin (less than 10 cm), comes with some limitations and 

a higher degree of uncertainty, which will be commented in the discussion section. 

 Accumulation Period 

Net radiation (both shortwave and longwave components) was the most important 

energy balance component at all sites, while turbulent fluxes (sensible and latent 

components) were only substantial at the open site (Figure 4.4 and Table 4.3). During 

the study period, the net radiation component accounted for 68.1 %, 87.5 %, and 56.8 % 

of the total energy budget in the open, gap, and forest respectively (Table 4.3). 

Turbulent flux contributions to the energy budget were 23.7 %, 6.5 %, and 8.9 % in the 

open, gap, and forest respectively. Net radiation was negative at the open and gap, but 

positive in the forest (both weekly and on average). As seen in Figure 4.4, negative net 

radiations at open and gap were often associated with smaller positive net shortwave 

and larger negative net longwave radiations throughout the accumulation period 

whereas, at the forest, positive net radiations were associated with slightly larger net 

shortwave radiations and smaller negative or sometimes even positive (in weeks 6 and 

9) net longwave radiations. At all sites, although more prominent at open, sensible heat 

fluxes were always positive, and latent heat fluxes always negative. The ground heat 
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flux and the energy advected by precipitation (both rainfall and snowfall) were 

negligible throughout the accumulation period. The net energy balance was negative 

(positive bar in Figure 4.4) throughout the accumulation period at the open and gap 

indicating cooling of the snowpack, but became positive during the last two weeks of 

the period (weeks 9 and 10). In contrast, the net energy balance was slightly positive 

(negative bar in Figure 4.4) throughout the accumulation period in the forest, indicating 

warming/and or melting of the snowpack. Similar to the early winter period, the net 

longwave radiation exerted the greatest control on the net energy balance (Table 4.4). 

 Ablation Period 

The transition from the accumulation to the ablation period was accompanied by a clear 

increase in net shortwave radiation at all sites (Figure 4.4 and Table 4.3). Net radiation 

remained positive throughout the ablation period. Sensible heat fluxes were still 

positive, indicating an energy source for snowpacks at all sites. There was an increase 

in latent heat fluxes during the ablation period at all sites. However, net radiation still 

had the highest contribution to the total energy budget (68.9 % at open, 68.8 % at gap, 

and 54.6 % at forest). There was negligible ground heat flux and energy advected by 

precipitation (both rainfall and snowfall) at all sites. However, the forest snowpack 

shows a comparatively higher ground heat transfer from the snowpack base to the 

ground compared to the other two sites throughout the ablation period (Figure 4.4c). 

The net energy balance was generally positive (negative bars in Figure 4.4) at all sites, 

indicating a warm and melting snowpack. In the forest, net longwave radiation also 

contributed to snowmelt in week 14. However, latent heat fluxes had the greatest 

control over the net energy balance at the sites, except in the forest, where shortwave 

radiation correlated slightly better with the net energy balance (Table 4.4). 
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 Blowing Snow  

Hourly blowing snow measurements varied from 0.002–8.6 g m-2 s-1 in the 

accumulation period (presented on a log-scale for better interpretability in Figure 4.5). 

Most events with concurrent snowfall had higher intensity fluxes (Figure 4.5a–c) while 

most events under snowfall-free conditions are clustered in low-intensity snow fluxes, 

except for a few events (Figure 4.5d–f). Irrespective of snowfall or snowfall-free 

conditions, the intensity of blowing snow fluxes increases with increasing wind speeds 

(Figure 4.5a and d). The relationship is more linear for snowfall events (Figure 4.5a), 

which may reflect the fact that a large part of the blown snow comes from snowfall, 

whose flux would increase proportionally with wind speed. In contrast, under snowfall 

free conditions, higher fluxes only begin above wind speeds of 4 m s-1, whereas the 

blowing snow flux measurements below this wind speed are very small in magnitude. 

No simple relationships emerge between blowing snow fluxes and air temperature and 

humidity. However most blowing snow events, especially the high-intensity ones, 

appear to occur between –10 °C and 0 °C (Figure 4.5b and e), while both the frequency 

and intensity of blowing snow fluxes tend to increase with increasing relative humidity 

(Figure 4.5c and f). Of all the hourly blowing snow events, 75 % occurred during 

snowfall-free conditions. Blowing snow with concurrent snowfall does not show a 

clear trend towards either increase (deposition) or decrease (erosion) in snow depth 

measured by SR50. However, in contrast to expected erosion, deposition (increasing 

snow depth) predominated over erosion at the AWS location for high-intensity blowing 

snow fluxes under snowfall-free conditions. As such, at the end of the study period, 

snow depth showed a net gain of 0.16 m (total gain of 0.99 m and total loss of 0.83 m 

from the AWS snow depth measurements) at the AWS location due to blowing snow 

fluxes under snowfall-free conditions. This corresponds to 29 % of the maximum 

hourly snow depth of 0.55 m during the study period. 
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Figure 4.5. Relationship between hourly blowing snow fluxes and meteorological 
conditions. Blue (red) dots indicate events with an increase (decrease) in snow depth 
recorded by SR50. Top row: events with concurrent snowfall; bottom row; snowfall-
free conditions. a, d) wind speed at 10 m height from snow surface (extrapolated using 
wind logarithmic profile); b, e) air temperature; c, f) relative humidity. All y-axes are 
displayed in log scale for better visibility of the data distribution.  

 Weather Conditions Associated with Blowing Snow Events 

Blowing snow fluxes under snowfall-free conditions occurred during periods with 

colder air temperature and lower relative humidity (Figure 4.6a, b), and higher 

atmospheric pressure and wind speed (Figure 4.6c, d) compared to periods with no 

blowing snow fluxes. Wind directions were generally similar in both scenarios, i.e., 

predominantly from the West (Figure 4.6e). 
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Figure 4.6. Meteorological conditions during no-blowing snow (red) versus blowing 
snow (blue) under snowfall-free conditions. a)  relative humidity; b) air temperature; 
c) atmospheric pressure; d) wind speed; e) relative frequency of wind direction in 30-
degree bins. 

 Feedback Effects of Blowing Snow on Energy Balance 

Nonparametric Wilcoxon rank-sum test (Wilcoxon, 1945) showed that the difference 

between no bowing snow (No BS) and blowing snow (BS) were statistically significant, 

reflecting the feedback effects of blowing snow on meteorological variables and energy 

fluxes in the open site. Compared to no-blowing snow periods, blowing snow periods 

under snowfall-free conditions show higher snowpack latent heat losses (more negative 

QL, Figure 4.7a), lower sensible heat gains (less positive QS, Figure 4.7b), and a 

decrease in incoming longwave radiation (QLWin, Figure 4.7c). Increased relative 

humidity (Figure 4.7d) and air vapor pressure (ea, Figure 4.7e), a cooling of air 

temperature (Ta, Figure 4.7f), an increase in wind speed (Figure 4.7g), and a decrease 

in vapor pressure difference (ea-es, Figure 4.7h) and temperature difference (Ta-Ts, 

Figure 4.7i) are also observed in the open relative to gap. Both latent and sensible heat 

fluxes are higher in the open than in the gap and are on average negative and positive, 

respectively (Figure 4.4, Table 4.3, and Supplement Figure S4.4). Hence, the negative 

increase in Δ latent heat flux and decrease in Δ sensible heat flux in Figure 4.7 suggest 

that snowpack latent heat losses are accentuated, and sensible heat gains attenuated, in 

the open during blowing snow periods. On average, incoming longwave radiation, 

relative humidity, and air vapor pressure are higher in the gap than that in open 

(Supplement Figure S4.4 and negative averages in Figure 4.7c, d, and e). Therefore, 
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the negative increase in Δ incoming longwave radiation indicates reduced incoming 

longwave radiation in the open during blowing snow events. Similarly, the negative 

decreases in Δ relative humidity and Δ air vapor pressure suggest that blowing snow 

results in an increase in relative humidity and air vapor pressure in the open. This 

increase in vapor pressure is driving a reduction of the vapor pressure difference 

between the air and snowpack (i.e., less negative ea-es). The vapor pressure difference 

is mostly positive in the gap and negative in the open (Supplement Figure S4.4). While 

air temperature is slightly cooler in the open than in the gap during no-blowing snow 

conditions (Supplement Figure S4.4), this difference accentuates during blowing snow, 

indicating a cooling effect of blowing snow in the open. The temperature difference 

between the air and snowpack is mostly positive in open and gap (thereby driving 

positive sensible heat fluxes, Supplement Figure S4.4). Hence the cooling effect of 

blowing snow sublimation results in a reduced positive temperature gradient in the 

open. The increase in Δ wind speed shows that wind speeds increase more in the open 

than at the gap during blowing snow events, due to the sheltered conditions at the gap 

(Figure 4.2g and Supplement Figure S4.4).  

 
Figure 4.7. Feedback effects of blowing snow in terms of the difference between open 
and gap in a) latent heat flux; b) sensible heat flux; c) incoming longwave radiation; d) 
relative humidity; e) air vapor pressure; f) air temperature; g) wind speed; h) vapor 
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pressure difference between air and snowpack surface; i) temperature difference 
between air and snowpack surface. Mean differences are reported in each panel. 

To discard the effect of the notable different wind regimes between the open and gap 

on snowpack latent and sensible heat fluxes, the latent and sensible heat fluxes at the 

gap were recalculated using wind speed at the open. Under the same wind regime, and 

despite the reduced vapor pressure gradient (Figure 4.7h) the snowpack latent fluxes 

were still slightly greater (more negative) in the open during blowing snow periods 

compared to no-blowing snow periods (Figure 4.8a). The sensible heat gains were still 

lower during blowing snow (Figure 4.8b, Supplement Figure S4.5), in accordance with 

the reduced positive temperature gradient in the open (Figure 4.7i). To further 

investigate the other possible causes for the altered latent and sensible heat fluxes due 

to blowing snow, we also compared changes in air stability (Richardson number RiB: 

Figure 4.8c), bulk exchange coefficient (Ce: Figure 4.8d), and air density and 

atmospheric pressure between open and gap as these fluxes also depend on these factors 

(Equation 4.6, 4.7) (Table 4.5). Results show that blowing snow resulted in an average 

4 % increase in snowpack latent heat loss, 42 % decrease in sensible heat gain, 47 % 

decrease in air stability (RiB), 23 % increase in Ce, 8 % decrease in vapor pressure 

gradient, and 33 % decrease in temperature gradient due to blowing snow fluxes (Table 

4.5). Changes in air density and atmospheric pressure due to blowing snow were 

negligible (Table 4.5), hence not presented in Figure 4.8. 

 
Figure 4.8. Under open wind speeds, differences between the open and gap in a) latent 
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heat flux; b) sensible heat flux; c) Richardson number; d) bulk exchange coefficient. 
Mean differences are reported in each panel. 

Table 4.5. Absolute and relative effects of blowing snow on meteorological conditions 
and associated energy fluxes 

Energy flux/variable Absolute effect Relative effect (%) 
QL (W m-2) –0.40 (W m-2) 4 
QS (W m-2) –6.00 (W m-2) –42 
RiB –0.08 (-) –47 
Ce 0.0004 (-) 23 
ea-es (Pa) 4.00 (Pa) –8 
Ta-Ts (°C) –0.70 (°C) –33 
Air density (kg m-3) 0.0006 (kg m-3) 0.04 
Atmospheric pressure (Pa) 0.00 (Pa) 0 

 Discussion 

 Snowpack Behavior Between Sites 

The variation and evolution of the snow depth substantially differed between the sites 

over the study winter. The snowpack at the gap is characterized by comparatively 

higher snow depths and later snow disappearance date, which is in contrast to what 

Pomeroy and Granger (1997) observed in a clear-cut in Saskatchewan, Canada. 

However, the size of the gap plays an important role in snow accumulation and ablation 

in a gap, compared to the adjacent forest (Golding and Swanson, 1986; Pomeroy et al., 

2002). Large gaps that are exposed to wind erosion reduce the overall snow 

accumulation compared to small gaps sheltered by trees, while small gaps (2–5 times 

the tree height diameter) are expected to accumulate a larger amount of snow (Pomeroy 

and Gray, 1994; Pomeroy et al., 2002; Swanson, 1988; Troendle and Leaf, 1980; 

Woods et al., 2006; Ellis et al., 2013). Similarly, our gap site, with a size of 

approximately 2–3 times the typical tree height in the adjacent forest (13 m), 

accumulated more snow, due to sheltering from the wind (Figure 4.2g). Conversely, 
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the snowpack at the open site had lower snow depths and an earlier snow disappearance 

date. Although forest snow depths were consistently higher than that at the open site, 

the snow disappearance date was the same for both sites. The comparison of the snow 

depth variation with wind speed (Figure 4.2a and g) suggests that the higher wind 

speeds played a significant role in shaping the snowpack at the open site. For instance, 

higher wind speeds generally promote snow erosion, higher sublimation losses due to 

increased latent heat fluxes (Figure 4.6 and 4.7), and densification of snow by wind 

compaction (Jenicek et al., 2017; Mott et al., 2018; Pomeroy and Gray, 1995; Pomeroy 

et al., 1998a; Vionnet et al., 2013). This resulted in lower snow depths at the open site. 

Although snow pit measurements were unfortunately not available in the study year 

due to logistical reasons, snow pits measurements carried out in early February 2020 

reported a density of 440 kg m-3 in the open site with a ~10 cm basal ice layer, and a 

density of 300 kg m-3 in the forest with no visible basal ice layers. These measurements 

suggest the mechanisms described above were present during the winter of 2020. In 

contrast, the dampened wind speeds in the forest and the gap (Figure 4.2g) would have 

suppressed blowing snow transport and wind compaction. The comparatively lower 

snow depths in the forest compared to the gap could be due to the canopy interception 

losses in the forest. Reba et al.(2012) previously observed similar patterns in air 

temperature and wind speed in open versus sheltered environments in mountainous 

environment in western USA, i.e., comparatively colder air temperatures and higher 

wind speeds over open snowpack. Our results show that large differences in energy 

transfers occurred whether the ground was fully or partially snow-covered at all the 

sites. The subsequent sections discuss in detail the difference in this energy partitioning 

between the sites during the three main periods of the winter: early winter, 

accumulation, and ablation. 
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 Early Winter Period 

The early winter period was characterized by a patchy snowpack less than 10 cm deep 

at all sites. The more variable mean snowpack temperatures in the open and 

comparatively steady variation in the gap, and even more in the forest, (Figure 4.2c) is 

reflected by similar variations of energy fluxes at the sites (Figure 4.4). Indeed, the 

more variable energy fluxes in the open resulted in more variable mean snowpack 

temperature, while steadier variations of energy fluxes in the forest resulted in more 

stable snowpack temperatures, with the gap site falling in between these two behaviors. 

Snowpack temperatures were more strongly correlated with air temperature under a 

thin snowpack, due to the reduced insulation, which is particularly prominent at the 

open site (Figure 4.2b). Although forest and gap ground surface temperatures showed 

some freezing events early in the winter, the prolonged near-zero temperatures 

afterward indicate that even a thin layer of snow (< 10 cm) was sufficient to insulate 

the ground from freezing at these sites, despite the cold air temperatures (Figure 4.2d). 

But in the open, more than 10 cm of snow layer was required to insulate the ground 

and stabilize its temperature. The energy partitioning shows a substantial ground heat 

influx received by the snowpack during early winter (Figure 4.4), which is more 

pronounced in the open and the gap. For instance, the highest ground heat flux was 

reported during week 2 in the open. During this week, the sensible heat flux did not 

compensate for the radiative cooling (negative net longwave radiation); heat transfer 

from the soil to the snowpack and net shortwave radiation compensated the radiative 

cooling in the open, whereas, in the forest and gap, ground heat influxes were 

insufficient to fill the energy deficit. However, estimating energy fluxes during the 

early winter period is associated with higher uncertainties. One of the uncertainties 

comes from the possibility of shortwave penetration through a thin snowpack 

(Armstrong and Brun, 2008; Dewalle and Rango, 2008; Helgason and Pomeroy, 2012a; 

Oke, 1987). Significant solar energy can penetrate up to 10 cm depth in the snowpack, 

and can even warm the underlying surface (e.g., soil), which can bias the temperatures 
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measured within and below a thin snowpack (Armstrong and Brun, 2008; Oke, 1987). 

High absorption of shortwave radiation in the surface layers of the snowpack can also 

increase the snow surface temperature (Dewalle and Rango, 2008). For a snowpack 

less than 10 cm like in early winter in our study, this could cause erroneous snowpack 

temperature measurements due to warming by direct solar radiation and associated 

inaccurate energy estimates. Moreover, Pomeroy and Granger (1997) and Armstrong 

and Brun (2008) reported that in the presence of a patchy snowpack, the snowpack 

could receive energy by advection through the overlaying air mass as a result of the 

radiant energy absorbed by the ground patches. This turbulent transfer of energy would 

neither be detected by the energy balance instrumentation nor in bulk approach 

calculations. This implies the challenges in the application of the energy balance 

equation for patchy, thin snowpacks. Despite our effort to correct for a patchy 

snowpack by implementing the snow cover fraction approach and discarding energy 

estimates for very shallow daily snow depths (< 5 cm), the energy components 

calculated for the remaining days with thin snow depth (5–10 cm) might still suffer 

from these unaccounted processes. 

 Accumulation Period  

Throughout the accumulation period the snowpack was stable (> 10 cm), and so were 

the ground surface (snowpack base) temperatures (Figure 4.2d). Snowpack base 

temperatures at gap and forest were consistently at 0 °C, indicating melting at the base, 

while temperatures at open were consistently lower than 0 °C most of the time. This 

suggests more frequent freezing at the base of the shallower snowpack and restricted 

infiltration in the open. A small ground heat influx received by the snowpack base 

throughout the accumulation period (Figure 4.4a) indicates that the snowpack base was 

consistently colder than the soil beneath in the open. More variable energy flux 

exchanges resulted in more variable mean snowpack temperatures at the open (Figure 

4.4 and Figure 4.2c). In contrast, energy exchanges were more attenuated within the 
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forest, which resulted in more stable snowpack temperatures than in the open, with the 

gap snowpack falling in between. Radiative cooling due to longwave radiation losses 

was highest in the open. This, and the consistent negative net energy balance (positive 

grey bars in Figure 4.4a) suggests a high cold content in the open, hence requiring more 

energy to warm the snowpack to 0 °C. Radiative cooling was lowest in the forest, and 

during weeks 6 and 9 the net longwave radiation even became an energy source for the 

forest snowpack (positive net longwave radiation in Figure 4.4c), indicating more 

incoming longwave radiation within the forest. This and the continuously positive net 

energy balance (negative grey bars in week 5–10 in Figure 4.4c) in the forest suggest 

much lower cold content for the forest snowpack, hence requiring less energy to trigger 

melting. The gap snowpack shows an intermediate behavior between the open and 

forest. It received and lost more energy than the forest, but less than the open hence 

requiring more energy than the forest and less energy than the open to bring the 

snowpack to 0 °C. The high correlation between net longwave radiation and the net 

energy balance (Table 4.4) suggests that radiative cooling was the most influential and 

crucial energy component during the accumulation period, i.e., determining how cold 

or warm the snowpack would be. Large temperature gradients between the atmosphere 

and snow surface and high wind speeds produced large sensible heat fluxes in the open 

that partly compensated for the radiative cooling during the accumulation period. The 

large negative latent heat fluxes suggest high sublimation rates at the open. Not 

surprisingly, dampened wind speeds suppressed the turbulent fluxes at the forest and 

gap. Similar observations in radiation and turbulent fluxes were previously reported in 

open versus forested environments (e.g., Pomeroy and Granger, 1997; Reba et al., 2012; 

Roth and Nolin, 2017).  

Collectively, energy exchanges resulted in the coldest snowpack in the open, a 

comparatively warmer snowpack in the forest, and intermediate conditions at the gap, 

a conclusion also supported by the mean snowpack temperature variations (Figure 4.4 

and Figure 4.2c). 
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 Ablation Period 

From the beginning of the ablation period, the noticeable increase in net shortwave 

radiation and latent heat fluxes as the ablation period progressed at all sites suggests 

the increasing importance of these energy components for snowpack melting. The 

decrease in cold content and the warming and melting of the snowpack are reflected by 

the decline of longwave radiation losses and the positive net energy balance (negative 

grey bars in Figure 4.4). In turn, the snowpack temperature gradually increased. The 

influence of net longwave radiation gradually diminished during the transition of the 

snowpack from the accumulation period to the ablation period and onward. However, 

during the last week of the ablation (week 14), net longwave radiation was positive in 

the forest, implying higher incoming longwave radiation within the forest, while it was 

slightly negative in the gap and markedly more negative in the open. Incoming 

longwave radiation is generally high within the forest due to longwave emittance by 

trees (Lundquist et al., 2013; Pomeroy and Granger, 1997). We hypothesize that the 

increase of incoming longwave radiation by the warming of trees and the decrease of 

outgoing longwave radiation due to the melting snowpack would be the reason for this 

positive net longwave radiation in week 14. Similar to the accumulation period, the 

sensible heat flux acted as an energy source during the ablation period. Latent heat 

fluxes were negative, implying a continuous sublimation flux. Many studies 

documented the importance of net radiation for snowmelt in clear-cuts and forests 

(Armstrong and Brun, 2008; Lundquist et al., 2013; Pomeroy and Granger, 1997). 

Several studies also showed that the contribution of turbulent fluxes becomes 

particularly important late in the melt period (Reba et al., 2012; Harder et al., 2017; 

Mott et al., 2011a; Mott et al., 2017). Despite the high contribution of net shortwave 

radiation to the energy budget, our results show that the correlation between net 

shortwave radiation and net energy balance was secondary to that of latent heat fluxes 

at the open and gap. However, the opposite occurred in the forest, where shortwave 

radiation acted as the primary factor driving net energy balance, while the latent heat 
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flux was secondary. Collectively, this thus implies that it is the difference in both 

shortwave radiation and latent heat flux that governs the daily ablation between these 

sites. Another interesting finding in the ablation period is that despite the dissimilar 

snow depths and dissimilar energy budgets between open, forest, and gap sites, almost 

similar negative snow depth changes were observed (Figure 4.3).  

 Blowing Snow 

Hourly blowing snow fluxes measured at our site (0.002–8.6 g m-2 s-1) are rather small 

compared to the measurements made elsewhere with the FlowCapt sensor, e.g. in the 

Swiss and French Alps (up to 90 g m-2 s-1: Lehning and Fierz, 2008; Trouvilliez et al., 

2015), Indian Himalayas (up to 40 g m-2 s-1: Das et al., 2012), Central Asia (up to 192 

g m-2 s-1: Zhang et al., 2022), the Arctic region (up to 200 g m-1 s-1: Jaedicke, 2001), 

and in Antarctica (up to 1200 g m-2 s-1: Amory, 2020; Trouvilliez et al., 2014). Despite 

its relatively small magnitude, blowing snow events under snowfall-free conditions at 

our open site still account for substantial changes in snow depth over the course of 

accumulation period (deposition of 0.99 m and erosion of 0.83 m), with a net snow 

depth gain of 0.16 m equal to 29 % of the peak winter snow depth at the AWS site. 

This highlights the significance of blowing snow fluxes in altering snow-mass in the 

open fields of agro-forested landscapes with a cold-continental climate type. 

 Weather Conditions Associated with Blowing Snow 

Our analysis shows that at an hourly scale, blowing snow fluxes have a substantial and 

rapid impact on changing the snow depths and modifying the energy budget in the open. 

At our open site, the occurrence of blowing snow was found to be associated with cold 

dry air, elevated atmospheric pressure together with gusty weather, all typical of a 

passing cold front (Figure 4.6). Our analysis shows a shift from negligible to a 

substantial increase in blowing snow fluxes above ~4 m s-1 wind speed (Figure 4.5), 
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which is in agreement with the threshold wind speed of 4–11 m s-1 found by Li and 

Pomeroy (1997) for dry snow transport in the Canadian prairies. They further noted 

that low temperatures produce snow covers with low cohesion and low transport 

threshold wind speeds which in turn increase the frequency of blowing snow events. 

Our blowing snow measurements in the open generally showed increasing blowing 

snow flux transport with increasing wind speeds and increasing relative humidity 

(Figure 4.5d-f) which is in agreement with previous findings in the Canadian prairies 

(Pomeroy and Gray, 1995; Pomeroy and Gray, 1994), but showed no correlation with 

air temperature. Our analysis shows that when sufficient snow is available on the 

ground, such as in the present case, the occurrence of blowing snow flux transport 

depends more on whether the snowpack is exposed to high wind speeds, low 

temperatures, and high relative humidity (Figure 4.5d-f) rather than to snowfall. 

However, the occurrence of blowing snow events can also be closely related to the state 

of the snowpack, such as surface layer density, snow grain shape and size, and surface 

hardness (Dewalle and Rango, 2008; Doorschot et al., 2004; Mott et al., 2018; Vionnet 

et al., 2014), which were not measured in this study. 

 Feedback Effects of Blowing Snow 

Similar to previous studies (Barral et al., 2014; Bintanja, 2001a; Déry et al., 1998; 

Groot Zwaaftink et al., 2011; Le Toumelin et al., 2021; Vionnet et al., 2014; Yang et 

al., 2010) our analysis demonstrates thermodynamic feedback effects of blowing snow 

-wetting and cooling of the air above the snowpack due to blowing snow sublimation- 

which led to increased relative humidity, decreased vapor pressure gradient, and colder 

air temperature (Figure 4.7). However, contrary to the aforementioned studies and the 

negative feedback observed on the vapor pressure gradient, the snowpack latent heat 

losses (surface sublimation) estimated by the bulk aerodynamic method still increased 

slightly during blowing snow events under no snowfall, even after correcting for the 

differences in wind speed between the two sites (Figure 4.8). This happened because 
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the cooling effect of blowing snow decreased the temperature gradient between the 

atmosphere and the snow surface, thereby decreasing air stability (RiB). This led to an 

increase in the latent heat transfer coefficient (Ce: 23 %) which surpassed the decrease 

in vapor pressure gradient (–8 %) during blowing snow periods in the open (Table 4.5). 

Our analysis showed that the reduced temperature gradient during blowing snow 

periods also decreased the sensible heat gains to the snowpack during blowing snow 

events. Here the reduction in temperature gradient (–33 %) surpassed the increase in 

Ce (23 %), which led to reduced sensible flux gains. The reduced incoming longwave 

radiation reported during blowing snow periods can be ascribed to the cooling feedback 

of blowing snow sublimation, since the wetting feedback of blowing snow would rather 

increase the emissivity of the air and longwave radiation; and also because incoming 

longwave radiation is very sensitive to air temperature (Dewalle and Rango, 2008; Oke, 

1987). Collectively, our analyses show that blowing snow is an important element in 

energy exchanges during the accumulation season in wind-exposed open areas of agro-

forested landscapes with humid continental climates. 

 Limitations and Way Forward 

One strong limitation of this study is the availability of a single measurement year. 

While the original design included two monitoring years, the data from the first winter 

suffered from large data gaps due to a power failure of the stations and the malfunction 

of some sensors. Future analyses would be useful to assess if the same patterns of 

energy partitioning persist over several years and to establish long-term trends between 

the open, forest, and gap snowpacks in agro-forested environments. Also, continuous 

SWE monitoring at the open and forest sites failed due to sensor malfunction. 

Concurrent snow depth and SWE measurements, also providing the snowpack density, 

would be useful to obtain a more complete understanding of the snowpack mass 

balance between the sites. For instance, even though a significant difference in snow 

depth was observed between the open and forest, both sites might have had the same 
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SWE considering the wind-compacted denser snow at the open site. Therefore, 

deploying new passive SWE measuring sensors and snow pit measurements would be 

an added value in the future. 

Another limitation in this study stems from the parameter uncertainty. For instance, the 

roughness length (z0) has a significant influence on turbulent flux estimations by bulk 

aerodynamic method. A future study that explores the sensitivity of this parameter 

across open, gap, and forest snowpacks would be deemed to obtain optimum z0 values 

for the sites. Since we only investigated the sensitivity of stability correction methods 

by Richardson number, a comparison of them with Monin Obhukhov similarity theory 

would provide more insights into the uncertainties involved in different methods.  

 Conclusions 

Our results show that there are considerable differences in energy fluxes between open, 

forest, and forest gap in an agro-forested landscape with a humid continental climate. 

Large variations in energy fluxes throughout the analyzed period caused more variation 

in snowpack and ground temperatures in the open, whereas the opposite occurred in 

the forest and the gap exhibited an intermediate behavior. Net radiation dominated the 

snow surface energy balance in varying quantities between the sites, while turbulent 

fluxes were only significant at the wind-exposed open site. During the accumulation 

period, longwave radiation exerted a greater control on the variability of the net energy 

through radiative cooling. However, during the ablation period, latent heat fluxes and 

the absorption of solar radiation dominated the variability of the energy balance and 

snowpack melting.  

Our analysis demonstrates that blowing snow fluxes have a substantial influence on 

changing snowpack dynamics in the open site at hourly scales. Blowing snow events 

under snowfall-free conditions outnumbered the events with concurrent snowfall by 
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75 %, resulting in a net snow depth gain equal to 29 % of the peak winter snow depth 

at the AWS location in the open site. Our results suggest that when sufficient snow is 

available on the ground, the occurrence of blowing snow events depends more on the 

intensity of wind speed, cold air temperature, and relative humidity rather than on 

concurrent snowfall. In addition to influencing the mass changes of the snowpack by 

accumulation and erosion processes, blowing snow modified the energy budget in the 

open through negative feedback effects. The observed increase in relative humidity and 

related decrease in vapor pressure gradient, and cooling of air temperature suggest a 

decrease in snowpack sublimation during blowing snow events. However, contrary to 

modelling (Bintanja, 2001a; Déry et al., 1998; Groot Zwaaftink et al., 2011; Le 

Toumelin et al., 2021; Vionnet et al., 2014; Yang et al., 2010) and observational 

(Bintanja, 2001b) studies that showed reduced snowpack sublimation during blowing 

snow events, our results rather showed that the decreased air stability in response to the 

decreased temperature gradient between the atmosphere and snowpack 

counterbalanced the reduced vapor pressure gradient and resulted in slightly increased 

latent heat (sublimation) losses from the snowpack during blowing snow. This shows 

the feedback of blowing snow on snowpack sublimation is contingent on the choice of 

stability function in the bulk aerodynamic method. Furthermore, our analysis showed 

reduced influxes of sensible heat and longwave radiation to the snowpack in response 

to the blowing snow cooling feedback on the atmosphere. These results emphasize the 

significant role of blowing snow for the energy exchanges in large wind-exposed open 

areas in humid continental agro-forested landscapes.  

Our study also highlights how dissimilar energy budgets can lead to comparable 

ablation patterns in open, forest, and forest gap environments. The ablation mainly 

differed between the sites due to the difference in latent heat fluxes and changes in 

shortwave radiation. The different snowpack and energy balance conditions between 

the open and forested patches of agro-forested landscapes highlighted in this study 

could have important implications for snowmelt infiltration patterns (Lundberg et al., 
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2016) and resulting catchment-scale hydrology (Aygün et al., 2020). For instance, our 

results show that the snowpack in the open was conductive to ground freezing and ice 

layer formation, while the forest snowpack and ground were warmer and devoid of ice 

layers. This has a great implication for infiltration patterns and thus the partition of 

meltwater between recharge and runoff in the region. As such, open agricultural areas 

are expected to produce more runoff, while forested areas would favor groundwater 

recharge, thereby influencing regional hydrology and flood regimes in the region. 

While these results are focused on southern Québec where such environments prevail, 

they have a broader implication for other cold agro-forested environments and they 

underscore the importance of incorporating blowing snow in physically based snow 

cover and hydrological models to correctly represent snow dynamics in such 

landscapes. 
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Figure S4.1. Albedo vs snow depth for the period of December 2020 to April 2021 in 
a) Open; b) gap; c) forest 

 
Figure S4.2. Cumulative precipitation YUL and gap stations with gap SWE for the 
hydrological year 2020–2021. YUL shows precipitation data extracted from Pierre-
Elliott-Trudeau station and WS700-UMB is the precipitation from the deployed sensor 
at the gap. WS700-UMB snowfall and rainfall shows the automatic separation of 
snowfall and rainfall by the sensor and suffix _2 °C threshold indicates the precipitation 
separated with 2 °C threshold. 

Sensitivity of turbulent flux calculation using different methods 
 



204 

Turbulent fluxes were calculated using seven methods and the ultimate effect on each 

method on the cumulative residual energy (𝑄𝑀 +
𝑑𝑈

𝑑𝑡
) were investigated. Methods used 

include four different wind thresholds, a windless coefficient, and three stability 

correction methods. 

Stability correction methods: 
 
Method 1: 
Here, the method described in the main text was used to calculate the bulk transfer 

coefficient (using Equation 4.10 and 4.11 in the main text). 

Method 2: 
Bulk transfer coefficient was calculated using equations based on Oke (1987) and 

(Dewalle and Rango, 2008). If the conditions are stable (𝑅𝑖𝐵 > 0):  

 𝐶𝑒 = 𝐶ℎ = 𝐶𝑛(1 − 5𝑅𝑖𝐵)2      Equation S4.1 

 
and for unstable conditions (𝑅𝑖𝐵 ≤ 0):  

 𝐶𝑒 = 𝐶ℎ = 𝐶𝑛(1 − 16𝑅𝑖𝐵)0.75 
 

     Equation S4.2 

 
This method has upper limit of 𝑅𝑖𝐵 = 0.2. i.e., at 𝑅𝑖𝐵 = 0.2,  𝐶𝑒= 𝐶ℎ= 0 and suppress 

the turbulent flux transfers. Mas et al. (2018) 

Method 3: 
Stability correction described in was used here. They introduced an approach to 

account for the heat exchange between the air and the snowpack surface when the 

atmospheric conditions are stable (even when 𝑅𝑖𝐵 ≥ 0.2). 

If  𝑅𝑖𝐵 ≤ 0: 
 𝐶𝑒 = 𝐶ℎ = 𝐶𝑛(1 − 16𝑅𝑖𝐵)0.75      Equation S4.3 
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If  0 <  𝑅𝑖𝐵 ≤ 0.2: 
 

𝐶𝑒 = 𝐶ℎ =
𝐶𝑛

1 + 𝑘𝑡𝑢𝑟
𝑅𝑖𝐵

0.2

      Equation S4.4 

 
If   𝑅𝑖𝐵 > 0.2: 
 

𝐶𝑒 = 𝐶ℎ =
𝐶𝑛

1 + 𝑘𝑡𝑢𝑟
      Equation S4.5 

 
Where 𝑘𝑡𝑢𝑟 is 4.  

Wind thresholds: 
Wind thresholds tested were 0.1 m s-1, 0.3 m s-1, 0.45 m s-1, and 1 m s-1.  

Windless coefficient: 
A windless coefficient of 1 W m-2 K-1 used (Jordan, 1991) to calculate turbulent fluxes. 

Then the updated equations of sensible and latent heat fluxes are:  

 𝑄𝑆 = 1 + 𝜌𝑎𝑐𝑝𝐶ℎ𝑢𝑎(𝑇𝑎 − 𝑇𝑠)      Equation S4.6 

 𝑄𝐿 =  1 + 0.622 𝜌𝑎𝐿𝐶𝑒𝑢𝑎(𝑒𝑎 − 𝑒𝑠) 𝑃𝑎⁄       Equation S4.7 

Following table outlines the seven options used to calculate turbulent fluxes. 

Table S4.1. Details of the different calculation methods 

Option Stability correction 
method 

Wind threshold (m s-1) Windless coefficient 
(W m-2 K-1) 

1 Method 1 0.3 - 
2 Method 2 0.3 - 
3 Method 3 0.3 - 
4 Method 1 0.1 - 
5 Method 1 0.45 - 
6 Method 1 1 - 
7 Method 1 - 1 
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Figure S4.3 illustrates the effect of different calculation methods on the cumulative 

residual flux. Table S4.2 and S4.3 show the error statistics of each method. In Table 

S4.3, relative error was calculated with relative to the option 1.  

 
Figure S4.3. Cumulative residual fluxes for different calculation method 

Table S4.2. Error statistics of different calculation methods 
 
 Option 

1 
Option 
2 

Option 
3 

Option 
4 

Option 
5 

Option 
6 

Option 
7 

mean 3.42 1.60 1.73 3.25 3.52 4.03 –36.04 
Standard 
deviation 

67.42 65.18 64.18 68.16 67.22 66.61 143.78 

RMS 67.51 65.20 64.20 68.24 67.31 66.73 148.23 
 
Table S4.3. Mean relative error of different methods compared to Option 1  

Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 
–0.53 –0.49 –0.05 0.03 0.18 –11.53 
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Figure S4.4. Energy fluxes and other variables in open and gap during periods of no 
blowing snow (no BS) and blowing snow (BS). a) latent heat flux; b) sensible heat flux; 
c) incoming longwave radiation; d) relative humidity; e) air vapor pressure; f) air 
temperature; g) wind speed; h) vapor pressure difference between air and snowpack 
surface; i) temperature difference between air and snowpack surface 

 
Figure S4.5. Energy fluxes and other variables in open and gap during periods of no 
blowing snow (no BS) and blowing snow (BS) under open wind conditions. a) latent 
heat flux; b) sensible heat flux; c) Richardson number; d) bulk exchange coefficient.
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CONCLUSIONS 

Synthesis and Concluding Discussions 

This chapter presents a synthesis of this thesis’s contribution to the research on the 

impact of landscape heterogeneity on snow cover. In view of utilizing UAV lidar in 

snow depth monitoring, this dissertation provided a comprehensive overview of the 

accuracy assessment of lidar-derived snow depths within and between agro-forested 

and boreal environments in eastern Canada and recommendations for future 

applications. This research characterized and assessed the small-scale variability of 

lidar-derived snow depths within and between the aforementioned landscapes and 

discussed the landscape-induced impacts on the snow depths. The work in this thesis 

also shed light on resolving the likely overestimation of snow depths in coniferous 

forests due to under-sampling under the thick canopies by UAV lidar and proposed a 

new method to mitigate it. Moreover, this dissertation provides an analysis of how 

snow depths respond to meteorological factors in agro-forested environments by a 

measurement-based approach in eastern Canada.  

Subsequent sections present the main conclusions obtained for the specific objectives 

proposed in Introduction to fulfill the main objective of this thesis; “exploring how 

landscape heterogeneity modulates the snow cover at the microscale (< 100 m) level 

by combining high-resolution lidar and detailed meteorological and energy flux 

measurements”.  

Objective 1: Investigate how accurate the lidar-derived snow depths are in open versus 

forested environments with different canopy covers. 
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UAV lidar data acquired in two agro-forested sites (Sainte-Marthe and Saint-Maurice) 

and a boreal forested site (Montmorency) in eastern Canada in 2019 and 2020 were 

assessed for point clouds and subsequent snow depth accuracies (Chapter I). An 

automatic strip alignment algorithm was tested on lidar data to assess whether it can 

improve upon the manual boresight calibration procedure. The accuracy of lidar-

derived snow depths was assessed by the discrepancy between the lidar and manual 

snow depths in the open (field) and forest at each site.  

The validation of lidar-derived snow depths with ground-based measurements showed 

a good agreement, however with higher uncertainties observed in forested areas 

compared with open areas. Results show that the deterioration of the absolute accuracy 

of the point cloud by the strip alignment method caused large errors in strip-aligned 

snow depths compared with ground-based measurements. RMSE values for lidar-

derived snow depths found in this study were less than 0.16 m in open environments 

(including a basal ice layer), less than 0.08 m in the deciduous forested environment, 

and less than 0.19 m in the coniferous environment which is comparable to previous 

efforts in open and forested environments by ALS and UAV. Nevertheless, in 

Montmorency, the higher RMSE values had a relatively smaller impact due to the 

deeper snowpack observed at the site. 

Overall, the results show that careful boresight calibration provides centimeter-level 

accuracy of lidar data without strip alignment enhancement, therefore, should receive 

paramount attention in the data processing workflow. A well-formulated flight plan 

that addresses IMU tuning and favorable weather conditions (i.e., wind speed) plays a 

critical role in reducing system errors. Furthermore, the deployment of ground control 

points can ensure an absolute check of data in situations where no distinct structures 

are visible from airborne sensors. The final accuracy of the snow depths also depends 

on successful ground point classification, hence should be given utmost importance in 

the data processing. 
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Objective 2: Characterize the small-scale variability of snow depth between and within 

the forested and open environments using lidar-derived data. 

UAV lidar-derived snow depths in two agro-forested sites (Sainte-Marthe and Saint-

Maurice) and the boreal forested site (Montmorency) in Chapter I were analyzed in 

Chapter II for inter (agro-forested versus coniferous) and intra (open versus forest) site 

variability of snow depths. The scaling behavior of snow depths was explored by semi-

variogram analysis. To investigate the effect of vegetation and topographic variables 

on the spatial variability of snow depth, random forest (RF) regression models were 

applied on rasters derived from lidar data. In addition, RF model performance at each 

site was compared to traditional multiple linear regression (MLR) model performances. 

Results in two agro-forested sites show that canals/streams in the field and the forest 

edges trap snow blown from the open field and correspond to the highest snow depths 

at those sites. When these elements are discarded open areas in two agro-forested sites 

showed slightly lower snow accumulation than the adjacent forest. In the boreal 

forested site, the snow depth difference between the open field and the forest was not 

significant. 

Semi-variogram analysis shows more variable snow depths in the forest than in open 

snow depths at all sites. Snow depths are more variable in coniferous forests than in 

deciduous and mixed forests. Snow depth in forested areas at all three sites shows a 

typical multi-scaling behavior with a scale break located at distances less than 10 m. 

Open areas show larger scale break distances (11–14 m) at all sites. Directional semi-

variograms suggest an influence of blowing snow on the snow distribution patterns in 

the forest, and hence a possible penetration of blowing snow from field to forest in 

agro-forested sites. The scale break distances found in this study suggest that the scale 

selected for modeling or sampling in similar environments should be well below these 

values, in order to fully resolve the small-scale variability of the snow depth. 
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Significantly better performances of RF models compared to MLRs at all sites suggest 

the deficiency of MLR models in capturing the underlying processes at these sites. 

Moreover, almost all variables have a nonlinear relationship with snow depth, which 

linear models are unable to capture. Results of RF models show that the underlying 

topography and the wind-redistribution of snow along forest edges (windward forest 

edge matrices) govern the snow depth variability at agro-forested sites, while forest 

structure variability dominates snow depth variability in the coniferous environment.  

Objective 3: Develop an interpolation method to resolve the effects of under-sampling 

under the canopy in coniferous environments by UAV lidar. 

A 100 m x 100 m area extracted from processed, classified lidar data of the boreal 

forested site, Montmorency in Chapter I was used in this chapter. Snow depth for the 

selected area was derived at 0.1 m resolution to take into account the variability within 

the canopy. Then, tree segmentation and canopy (tree polygon) delineation were 

implemented on the classified point cloud. Four interpolation methods were tested. The 

first method only considered the landscape trend of the snow depths. The second 

method considered landscape trend and the canopy versus gap snow depth trend. The 

third method considered the landscape trend and the intra-canopy trend in snow depths. 

The fourth method considered the landscape trend, canopy versus gap snow depth trend, 

and intra-canopy trend in snow depths. Each method was completed by spatial 

interpolation of residuals using inverse distance weighting (IDW) and ordinary kriging 

(OK) methods (altogether giving eight scenarios). The performance of interpolation 

methods was evaluated by cross-validation. 

When the distance between unsampled and sampled points is < 1 m, (i.e., ground 

surface point density is > 1 pt m-2), all methods show similar RMSEs, indicating that 

spatial interpolation techniques like OK and IDW have sufficient information to 

resolve and reconstruct small-scale patterns of data. When the sampled and unsampled 
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points are sparser than 2.5–3 m (i.e., ground surface point density is < 0.33–0.40 pt m-

2), snow depth estimates by spatial interpolation techniques cause high uncertainties. 

This limiting distance of 2.5–3 m is in the same order of magnitude as half of the 

maximum canopy diameter (7 m) found in Montmorency, and half of the scale break 

distance (4.5 m in DSM and 6.5 m in snow depth) found for Montmorency forest in 

Chapter II, suggesting that beyond this distance we risk interpolating data points with 

no spatial correlation. Between these limiting distances, the fourth method yields the 

most accurate estimates of snow depths at unsampled locations. 

Objective 4: Analyze snow energy partitioning between forested and open 

environments. 

Automatic weather station measurements from an open agricultural area, a mixed wood 

forest (mostly deciduous), and a forest clearing in Sainte-Marthe were used to estimate 

energy budget components for the 2020–2021 winter in this chapter. The energy 

balance for snowpacks in three sites was calculated using the energy balance equation 

developed by Anderson (1976). Snow energy partitioning between sites was compared 

and analyzed for early winter, accumulation, and ablation periods in the 2020–2021 

winter. Changes in latent, sensible, and incoming longwave radiation fluxes in the open 

agricultural area compared to forest clearing during measured blowing snow events 

without concurrent snowfall were analyzed to investigate the effect of blowing snow 

fluxes on the energy budget. 

The results show that a high variation of energy fluxes throughout the analyzed period 

caused more variation in snowpack and ground temperatures in the open environment 

whereas the opposite occurred in the forest. Snowpack in forest clearing exhibited an 

intermediate behavior. Net radiation dominated the snow surface energy balance in 

varying quantities between the sites. Turbulent fluxes are only significant in the wind-

exposed open site. During the accumulation period, longwave radiation exerts greater 
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control of the net energy balance through radiative cooling at all sites. However, during 

the ablation period, latent heat fluxes and the absorption of solar radiation dominate 

the energy balance, and snowpack melting. Blowing snow demonstrated 

thermodynamic feedback effects leading to increased relative humidity, decreased 

vapor pressure gradient, and colder air temperature at the open site similar to previous 

studies. However, a slight increase in latent heat losses was found due to decreasing air 

stability (RiB) (thereby increasing bulk exchange coefficient, Ce: 23 %) surpassing the 

decrease in vapor pressure gradient (–8 %) during blowing snow periods. Moreover, 

the reduction in temperature gradient (–33 %) that surpassed the increase in Ce led to 

reduced sensible flux gains during blowing snow periods. Cooling feedback of blowing 

snow also reduced the incoming longwave radiation reported during blowing snow 

periods. Collectively, our analysis shows that blowing snow is an important element in 

energy exchanges during the accumulation season in wind-exposed open areas. 

Concluding Remarks 

This research used UAV lidar measurements and meteorological and snow energy flux 

measurements to assess the impact of landscape heterogeneity on snow cover in agro-

forested and boreal environments. Results revealed that landscape settings have a 

significant influence in modifying the snow accumulation and distribution patterns 

between and within these landscapes. 

It was found that in agro-forested environments, the assemblage of agricultural and 

forested areas drives the differential snow accumulation between open fields and 

forested areas. Such that, the snow depth variability in open fields is governed by 

preferential snow accumulation in canals and streams and the microtopography of the 

underlying terrain, and within deciduous/mixed forests it is rather governed by the 

underlying topography and/or the forest edges. The results show that blowing snow 

redistributed from the open fields gets trapped in canals and streams and accumulates 
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along the forest edges accounting for the highest local snow accumulation in agro-

forested landscapes. Apart from snow accumulation and distribution by blowing snow, 

results from blowing snow measurements at the open agricultural site showed that they 

influence the energy budget by modifying the energy exchanges between snowpack, 

ground, and atmosphere. These results highlight the importance of considering blowing 

snow in modeling efforts in such landscapes. They also suggest the better 

representation of canals and streams and the use of distinct spatial units such as HRUs 

to represent preferential snow accumulation along the forest edges in distributed 

hydrological models of such landscapes. Furthermore, the different snowpack and 

energy balance conditions between open fields and forest patches of agro-forested 

landscapes highlighted in this research have important implications for snowmelt 

infiltration patterns (Lundberg et al., 2016) and resulting catchment-scale hydrology 

(Aygün et al., 2020). For example, our results show that ground freezing and ice layer 

formation in the open agricultural areas would likely generate more runoff while 

warmer ground in the forested areas would encourage groundwater recharge, thereby 

influencing regional hydrology and flood regimes in cold agro-forested environments.  

Landscape in boreal forested environments acts differently on snow cover than that in 

agro-forested environments. Our results show that snow depth variability in these 

environments mainly comes from forest structure variability. Such that, the canopy 

interception and unloading of snow from the canopies govern the snow accumulation 

and distribution patterns in boreal forested environments. Our results demonstrate that 

UAV lidar can successfully be used to monitor this forest structure variability. 

However, UAV lidar-derived snow depths in the boreal forested site highlight the 

prevailing observation gaps due to the occlusion of airborne measurements by the thick 

canopy cover. To mitigate the effect of likely overestimation of snow depths under 

canopies due to this under-sampling and to obtain more representative intra-canopy 

snow depth variability, the new interpolation method introduced in this research can be 

used. Taken together, our results emphasize that a better representation of snow depth 



225 

variability and associated forest structure variability would be beneficial in obtaining 

more accurate snowmelt estimates in these landscapes. 

Collectively, the findings of this research have important implications for snowmelt 

modeling, flood forecasting, water management strategies, and land management 

practices (e.g., agriculture, regeneration of forests, and clear cuttings) in cold agro-

forested and boreal landscapes. In events where high-resolution data is not affordable, 

our results provide opportunities for sub-grid parameterization, upscaling, and 

validating modeling efforts in these landscapes. 

Outlook 

This thesis provides insight into how different land use types (e.g., forested versus open, 

deciduous versus coniferous) modulates the snow cover distribution. However, there 

are potential limitations with some of the methods presented in this study.  

For instance, despite our efforts to incorporate processes and variables influencing the 

spatial distribution of snow depths with available data, the comparatively lower 

performance of RF models in Saint-Maurice and Montmorency indicates that there 

could still be some processes/variables that were unable to accounted for (e.g., soil 

parameters, snowpack state, and meteorological variables). Furthermore, the 

unexplained snow depth variability that is within the UAV lidar system detection limit 

(especially in Montmorency) also affected the accuracy of snow depth and ground 

surface rasters and derived landscape descriptors. For instance, the observation gaps in 

ground returns in Montmorency by UAV lidar suggest that airborne remote sensing 

techniques alone may not be sufficient to retrieve a comprehensive snow depth 

distribution pattern under a coniferous canopy. Therefore, a combination of UAV lidar 

and ground-based manual measurement or under-and-above canopy UAV lidar 

(Hyyppä et al., 2020) would be beneficial to obtain more representative and extensive 
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snow depth measurements, however at the cost of increased manual labor. In the event 

that observational gaps are unavoidable, the interpolation method introduced in 

Chapter III of this thesis shows significant improvements in the gap-filling of snow 

depths while considering the spatial variability within canopies in forested 

environments.  

The timing of the UAV lidar survey date also posed another limitation in the study. 

The dominant predictors identified in this study during near-peak accumulation might 

differ from those acting during mid-winter, or the melt period. Hence, repeated surveys 

with UAV lidar to track the temporal evolution of the snowpack would be required to 

fully address this question in the future. The statistical framework used in this study 

only provides identification and ranking of predictors associated with driving processes 

in agro-forested and boreal forested landscapes. Obtaining a complete understanding 

of the processes would require physically-based modeling. 

Another limitation of this study is the availability of a single measurement year for 

meteorological variables and associated energy fluxes. The original design included 

two monitoring years, but data gaps from the first winter due to power failure and 

dysfunctional sensors led to the use of data from only one year. Future analyses are 

needed to determine if energy partitioning patterns persist over several years and to 

establish long-term trends in agro-forested environments. During the study period, 

continuous SWE monitoring at the open and forest sites failed due to sensor 

malfunction. Concurrent snow depth and SWE measurements (by deploying new 

passive SWE measuring sensors and snow pit measurements), also providing the 

snowpack density, would be essential in obtaining a more comprehensive 

understanding of the snowpack mass balance between the sites in the future. 
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