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LISTE DES ABREVIATIONS

DL : apprentissage profond (Deep Learning)
ECT : Electroconvulsivothérapie

EEG : 1'¢lectroencéphalogramme

CNN : Réseau neuronal convolutif

LSTM : Les réseaux de mémoire a long terme

FFT : Transforme de Fourier rapide

Inférence causale : En général, I'inférence causale est le processus d'inférence de la relation causale
entre différentes variables ou événements [1]. Cela implique d'identifier l'effet d'une intervention
ou d'un traitement [1] sur le résultat d'intérét tout en contrélant les variables confondantes[1] qui
peuvent influencer le résultat. Par exemple, le tabagisme cause-t-il le cancer ? La plupart des
chercheurs dans le domaine de I'intelligence artificielle utilisent le modéle causal de Pearl et/ou de
Rubin [2]. En bref, dans la théorie de Pearl pour trouver les causes des événements, le modéle
coupe la relation entre le traitement et ses parents confondants. Le modéle fixe ensuite la valeur du
traitement a zéro et un. Enfin, le mode¢le utilise des théories de probabilité pour calculer la ou les
causes des événements.

Logique floue : La logique floue est une logique non classique qui peut gérer le flou et I’incertitude
des événements (c’est-a-dire un peu). Pour ce faire, la logique floue traduit les subtilités et les
nuances en langage humain tels qu’un peu aux valeurs entre zéros et un afin que la machine puisse
les comprendre. Par exemple, un peu peut traduire a une valeur de 0,2. Faghihi et al. [3] ont
récemment créé un modele causal en utilisant la logique floue. Dans la théorie de Faghihi, au lieu
de couper les relations entre le traitement et ses parents confondants, le mode¢le attribue des valeurs
floues telles que tres faible, faible, moyen et élevé au traitement. Ensuite, en utilisant des théories
de logique floue probabiliste comme [3], le mod¢le calcule les causes des événements. Dans notre
deuxiéme publication (voir ci-dessous), nous avons montré que le mod¢le de Faghihi est plus concis
que celui de Pearl.

Régles causales floues : Nous expliquons les régles causales floues avec l'exemple suivant : par
exemple, max(a,1 — b). Soient a et b deux variables. La régle trouve la valeur maximale de la
variable a etde 1 — b [4].

Autoencodeur : Un autoencodeur (AE) est un type de réseau de neurones artificiels génératif qui
apprend des représentations pour un ensemble de données de maniére non supervisée [5].
Autoencodeur variationnel : Un autoencodeur variationnel (VAE) est un type de réseau de
neurones génératif qui apprend a encoder et a décoder des données en les représentant dans un
espace latent de dimension inférieure. La partie encodeur du VAE mappe les données d'entrée a
une distribution de probabilité dans I'espace latent, et la partie décodeur génére des données a partir
des échantillons tirés de la distribution de I'espace latent. Le VAE est utilisé pour des taches telles
que la génération d'images, la détection d'anomalies et la compression de données [5].
Autoencodeur variationnel doté a des régles causales (CEVAE) : CEVAE est un type de VAE
qui integre des régles causales telles que celles de Pearl [1] et/ou Faghihi [3]. Dans notre deuxi¢me
publication, nous proposons un CEVAE équipé a des régles de la logique floue. L'architecture
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proposée démontre des résultats prometteurs dans l'extraction de relations causales a partir de
données d'observationnels [6].
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Résumé et Etat de 1I'Art

Publication 1. Le trouble dépressif majeur (TDM) [7] est un gros probléme dans notre société. Le
TDM peut provoquer des suicides et briser des familles. Plus de 51 milliards' de dollars par an sont
dépensés dans le secteur de la santé mentale aux Etats-Unis. Lorsque les traitements
médicamenteux échouent, les professionnels de la sant¢ mentale ont recours a
1'¢lectroconvulsivothérapie (ECT) [8] pour traiter les patients atteints du TDM. Au cours d'une
séance d'ECT, les signaux de 1'¢lectroencéphalogramme (EEG) sont enregistrés a partir des
activités cérébrales des patients, ce qui permet de décider si le traitement a réussi. Cependant, il
n'existe pas de méthode standard pour savoir comment et avec quelle intensité un professionnel de
la santé¢ mentale doit appliquer les €lectrochocs pour traiter les patients souffrant de TDM [8].

Les chercheurs ont utilis¢ des techniques d’imagerie par résonance magnétique (IRM)
multiparamétrique combinées a des méthodes statistiques et/ou a des algorithmes d’apprentissage
automatique linéaires pour découvrir la ou les raisons du succes et de I’échec des séances
d’¢lectrochocs. Cependant, ces méthodes sont tres coliteuses et prennent beaucoup de temps sans
produire de bons résultats [9-14].

Au cours de mon mémoire de maitrise et comme premiere étape de ce projet, nous nous sommes
intéressés a trouver des moyens de classifier les succes ou les échecs des séances d’ECT.

Afin de trouver des caractéristiques et des modeles prédictifs possibles pour la réussite et 1’échec
des séances d'¢lectrochocs, pour la premicre fois, nous avons utilis¢ les EEG recueillis sur le cuir
chevelu de patients souffrant de dépression majeure avec des algorithmes hybrides d'apprentissage
profond tels que le réseau neuronal convolutif (CNN) et les réseaux de mémoire a long terme
(LSTM) (voir premiére publication ci-dessous). Cependant, les EEG sont complexes et les
algorithmes d'apprentissage profond ne peuvent pas les utiliser directement [15]. Par conséquent,
des techniques de prétraitement des données sont utilisées pour permettre aux algorithmes
d'apprentissage profond de les traiter. Pour ce faire, nous avons utilisé I'algorithme de Transforme
de Fourier rapide (FFT) qui calcule la transformée de Fourier discréte (DFT) d'une séquence. La
DFT convertit un signal de son domaine d'origine (souvent temporel ou spatial) en une
représentation dans le domaine fréquentiel et vice versa.

D’autres techniques que nous avons utilisées c’était la suppression des artefacts [8]. Par exemple,
les mouvements oculaires des patients produisent une fréquence indésirable. Une fois les données
prétes nous avons utilisé les algorithmes d’apprentissage profond hybrides tels que les réseaux de
neurones convolutifs (CNN) et les réseaux de mémoire a long terme (LSTM). Le réseau CNN-
LSTM a obtenu une précision de 83 % pour la classification de la réussite et I’échec des séances
d'¢lectrochocs.

1 https://link.springer.com/article/10.1007/s40273-021-01019-4
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Publication 2. L’architecture hybride d’apprentissage profond CNN-LSTM [16] (DL) que nous
avons utilisé dans notre étude précédente n’a pas réussi a prédire avec quelle intensité les charges
électriques (le dosage de I’ECT) doivent étre appliquées au crane du patient.

Le dosage des ECT est crucial pour rendre le traitement individualisé. L'une des raisons de cet
échec est que I'architecture CNN-LSTM ne peut pas faire du raisonnement. Selon Faghihi et ses
collegues [3], le raisonnement est un outil puissant pour doter les algorithmes d'apprentissage
profond afin qu’ils puissent faire la généralisation.

Dans cette ¢tude, pour la premicre fois, nous avons intégré des régles causales floues [3] a
l'architecture CEVAE (Causal Effect Variational Autoencoder) [10] afin d'extraire les relations
causales entre les caractéristiques de 1'ensemble de données.

Pour ce faire nous avons ajouté des régles causales floues a la fonction de perte de CEVAE. En
comparaison, notre architecture fuzzy CEVAE ou FCEV AE surpasse le CEVAE original et 1’outil
de raisonnement Dowhy [17] développé par Microsoft en termes d'inférence causale. FCEVAE est
capables de prédire l'intensité des impulsions électriques des ECTs (le dosage des ECT).

Mes contributions dans cette thése : J'ai travaillé sur l'optimisation des sé€ances de thérapie
I'¢lectroconvulsivothérapie (ECT) a l'aide des algorithmes d'apprentissage profond doté a des
régles causales [3]. Pour ce faire, nous avons collaboré avec le Dr Frangois-Xavier Roucaut,
psychiatre a I'hdpital St-Marie de Trois Rivieres. Voici mes contributions lors de mon mémoire de
maitrise:

1- J'ai créé un ensemble de données a partir des données recueillies pendant des séances d’ECT
par le Dr Frangois-Xavier Roucaut, psychiatre a 1'hopital St-Marie de Trois-Rivieres en
collaboration avec 1'Institut universitaire en sant¢ mentale du Québec et I'hopital Saint-
Jérome. Nous avons présenté ci-dessous les étapes que nous avons suivies jusqu'a présent.

2- Pour chaque patient, chaque séance d’ECT a un fichier EEG et un fichier contenant des
informations personnelles sur les patients telles que l'age, le sexe et les réponses
rétrospectives a la séance d’ECT qui sont remplies manuellement. J’ai écrit un code de
Python qui lit automatiquement les fichiers, et les nettoie, et les anonymise (GitHub).

3- Etant donné que les données EEG contiennent des artefacts et des fonctionnalités que les
algorithmes d'apprentissage profond ne peuvent pas traiter directement [4, 5], j'ai utilisé
différentes techniques telle que Fast Fourrier Transform (voir ci-dessus pour une bréve
description).

4- Pour détecter les réussis ou les échecs des séances d’ECT, j'ai utilis€é une architecture
d’apprentissage profond hybride contentant les réseaux de neurones convolutionnels plus un
réseau de neurones a mémoire a long terme (CNN-LSTM). Le modele CNN-LSTM a atteint
une précision de 83% pour la classification des EGGS réussis et non réussis.

5- Cependant, le CNN-LSTM ne peut pas trouver pourquoi certaines séances de ECT
réussissent tandis que d'autres non. Néanmoins, trouver les causes profondes des tracées
d’ECT réussie et non- réussies est essentiel car cela permettra de créer des traitements
individualisés pour les TDM. Par conséquent, j’ai doté les algorithmes d'apprentissage
profonds a des capacités de raisonnement, en ajoutant les régles floues causales de Faghihi
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https://github.com/joseffaghihi/Causal-fuzzy-CEVAE/tree/main/ECT

et al. [3] a I'Autoencodeur Variationnel a Effet Causal (CEVAE) ce que nous avons appelé
FCEVAE [4]. En ajoutant le raisonnement a CEVAE, nous avons obtenu : 1) les causes sous-
jacentes du succes et de I'échec des EEGs, 2-) la prédiction de dose de ECT individualisée
avec une précision de 91 % uniquement en utilisant les données pré-choc.

6- A notre connaissance, c'est la premiere méthode permettant de prédire la charge
thérapeutique a appliquer au crane du patient (GitHub).
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Abstract

Publication 1. Major Depression Disorder (MDD) is a big problem in our society. MDD can cause
suicide and take families apart. More than $51 billion' a year is spent annually in the mental health
sector in US.

So far, researchers have used costly and time-consuming multi-parametric Magnetic Resonance
Imaging (MRI) techniques with statistical methods and linear machine learning algorithms to predict
ECT outcomes with limited accuracy [11].

In this paper, we utilize a deep learning (DL) method to classify electroconvulsive therapy (ECT)
outcomes as the first step toward digitalizing and then optimizing ECT. While there is no standard
method for applying ECT to treat MDD, we classify the success or failure of ECT sessions using
deep learning algorithms such as convolutional neural networks (CNN) and long short-term
memory networks (LSTM). To make this possible, the researchers used electroencephalogram
(EEG) data collected from MDD patients and preprocessed it with techniques such as fast Fourier
transform (FFT) and artifact removal. The employed CNN-LSTM model achieved an accuracy of
83% in classifying the success and failure of ECT sessions.

By using EEG data, our approach is less expensive and more time-efficient than using MRI family
techniques, and we believe it can help mental healthcare professionals achieve better treatment
outcomes for patients suffering from MDD.

Our second paper introduces several key terms and concepts that the reader needs to understand
them before going through details. In this short introduction, we provided a very brief explanation
of the key concepts that we used to explain our work.

Causal inference: Generally speaking, causal inference is the process of inferring the causal
relationship between different variables or events [1]. It involves identifying the effect of an
intervention or treatment on the outcome of interest while controlling for confounding variables
[1] that can influence the outcome. For instance, would smoking causes cancer? Most of the
researchers in the domain of Artificial intelligence use Pearl’s and/or Rubin’s causal model [2]. In
short, in Pearl’s theory to find the causes of the events, the model cuts the relationship between the
Treatment and its confounding parents. The model then, fixes the Treatment value to zero and one.
Finally, the model using probability theories calculates the cause(s) of the events.

Fuzzy logic: Fuzzy logic is a non-classical logic that can handle the vagueness and uncertainty
(i.e., a little) of events. Faghihi et al [3] recently created a causal model using fuzzy logic. In
Faghihi’s theory, instead of cutting the relationships between the treatment and its confounding
parents, the model assigns fuzzy values such as very low, low, medium and high to the Treatment.
Then, using probabilistic fuzzy logic theories such as [1] the model calculates the causes of the
events. In our second publication, we showed that Faghihi’s model is more concise that Pearl’s.
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Autoencoder: Autoencoder (AE) is a type of generative artificial neural network that learns
representations for a set of data in an unsupervised manner [5].

Variational Autoencoder: A variational autoencoder (VAE) is a type of generative neural
network that learns to encode and decode data by representing it in a lower-dimensional latent
space. The encoder part of the VAE maps the input data to a probability distribution in the latent
space, and the decoder part generates data from a sample drawn from that distribution. The key
innovation of the VAE is the introduction of a probabilistic component that allows the model to
learn a more robust and interpretable latent representation. During training, the model optimizes
the trade-off between minimizing the reconstruction error of the decoded data and maximizing the
similarity between the learned distribution in the latent space and a known prior distribution. The
resulting VAE can be used for tasks such as image generation, anomaly detection, and data
compression [5].

Causal Effect Variational Autoencoder: Causal Effect Variational Autoencoder (CEVAE) is a
type of VAE that integrates causal rules such as Pearl or Rubin [2] to estimates individual and
average treatment effects for unobserved confounders [6].

In our second publications, we propose CEVAE equipped with fuzzy logic rules. The proposed
architecture demonstrates promising results in extracting causal relationships from observational
data.

Fuzzy causal rules: We explain fuzzy causal rules with the following example. For instance, max
(a, 1-b). Let a and b be two variables. The rule finds the maximum value of variable a and 1-b [3].

Fuzzy rules are a set of if-then statements to describe causal relationships between input and output
variables. Each statement consists of a condition (the "if" part) and a conclusion (the "then" part).

The condition part of the rule specifies the input variables and their degree of membership to the
fuzzy sets. The conclusion part of the rule specifies the output variable and its degree of
membership to a fuzzy set.

Fuzzy causal rules are used in various fields such as control systems, expert systems, and decision-
making systems. They are particularly useful when dealing with complex and uncertain systems
where precise information is not available.

My Contributions. During my master’s program, I have been working on the optimization of
Electroconvulsive therapy (ECT) sessions using Deep Learning algorithms [3]. To do so, we have
been collaborating with Dr. Francois- Xavier Roucaut who is a psychiatrist at the St-Marie
Hospital at Trois-Rivieres in collaboration with the University Institute in Mental Health of
Québec and St-Jerome Hospital.

My contributions are the followings:

I created a dataset by gathering anonymized ECT sessions’ data from the above three hospitals.
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For every patient, each ECT session has an EEG file and a file having patients’ personal information
such as age, sex and retrospective ECT responses which is filled manually. I wrote a Python code
that automatically reads, cleans, matches EEG files with their corresponding above patient’s
information file, evaluates the information correctness in files (e.g., whether the file is corrupted),
and builds a custom train-test set from the raw data (GitHub).

Since, EEG data contains artefacts and features and information that Deep Learning algorithms
cannot process directly [4, 5], I tried different techniques (Moving average [6], Fast Fourier
Transform (FFT) [6], Cross-frequency analysis [6] and wavelet transforms [6], and among the
mentioned techniques, FFT [6] gave us the best result.

To detect successful and unsuccessful ECT sessions, I used a Convolutional Neural Network and
Long Short-term neural network (CNN-LSTM). The CNN-LSTM model achieved 83% accuracy
for classification of good and bad ECT sessions.

However, the CNN-LSTM cannot explain why some ECT sessions are successful while others no.
However, finding the root causes of successful and unsuccessful ECTs are essential as it will result
in creating individualized treatments for MDDs. The

ore, to equip DLs with reasoning capabilities, | added causal fuzzy rules from Faghihi et al [1] to
the Causal Effect Variational Autoencoder (CEVAE) [10] and created the FCEVAE architecture
[4]. Adding reasoning to CEVAE, we achieved:

1) Possible causal patterns recognition in pre — shock EEGs,

2) Individualized ECT dose prediction with 91% accuracy which is not included here but can
be found in in the following publications. To see the result the reader is referred to (GitHub)
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Abstract

Major Depression Disorder (MDD) is a big problem in our
society. MDD can cause suicide and take familics apart. When
treatment  with medications fail, mental healthcare
professionals, use Electroconvulsive Therapy (ECT) to treat
patients with MDD. During an LCT  session,
clectroencephalogram (EEG) signals Iet the mental healthcare
professionals record patients' brain activities which are helpful
to decide whether the treatment was successful. However, there
1s no standard way to know how and with what intensity a
healthcare professional needs to apply electroshock to treat
patients with MDD. So far, to our knowledge, researchers have
used multi-parameltric magnetic resonance imaging (MRI)
techniques combined with statistical methods and/or linear
machine learning algorithms to predict patients’ responses to
LCT. llowever, the aforementioned methods are very
expensive and time-consuming. In this study, we will be using
Deep learning algorithms to detect the effectiveness ol ECT
sessions based on the EEG.

1 Introduction

Major Depression Disorder (MDD) is the cause of more
than onc million suicide per year (Sun ct al. 2020).
Electroconvulsive (ECT) therapy has been used by
mental hcalthcare professionals since 1930 to treat
patients with MDD (Tsuchiyama ct al. 2005). Yet, there
is no methodological technique to individualize ECT in
order to obtain successful results. So far, most of the
researchers used multi-parametric magnetic resonance
imaging (MRI), functional magnetic resonance imaging
(fMRI), and/or resting state-fMRI techniques combined
with statistical methods and/or support vector regression
model (Gong et al. 2020, Girtner et al. 2020, Van
Waarde et al. 2015), to categorize and predict the success
or failure of the ECT method with 67-70% accuracy (Sun
et al. 2020). Furthermore, most of the aforementioned
sludies suggest [rontal and temporal networks of the
brain as good predictors for the success or failure of ECT

Copynight © 2020, by the authors. All rights reserved.
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treatments. In another study, (Min et al. 2020), limited
their experience (0o MDD patients sullering [rom
schizophrenia. They used a random-forest algorithm
with fMRI for their predictions. Their results suggest
higher connectivity in the patient’s frontal area with 82%
accuracy of predicting successful and unsuccessful
ECTs. Another limitation with this study is that the
authors only used patients with schizophrenia.

Furthermore, using MRI/ fMRI/rs-fMRI with ECT is
very expensive and time consuming. In this study, we
suggest the use of Deep learning algorithms to predict
the result of the ECT from patient pre-during-post shock
EEGs. Comparing to MRI family techniques mentioned
above our technique uses patients' brain EEGs pre-shock
to predict the success or failure of the ECT techniques.
This makes our approach less expensive and timely
efficient comparing to the above techniques. Deep
learning algorithms arc capable of learning unscen
patterns (Faghihi ct al. 2020, Robert ct al. 2020). We
believe that DLs can help us to individualize ECT
techniques for patients suffering from MDDs.

Among others, they are used for detecting different types
of cancers (Cruz-Roa el al. 2013), sentiment analysis
(Baziotis, Pelekis and Doulkeridis 2017), detecting
cataract (Yu et al. 2019).

However, to our knowledge, so far, there is no study used
deep learning algorithms for predicting the success or
failure of the ECT technique only based on EEG data.
One reason is that EEGs are very complex and DLs
cannot use EEGs directly (Hu and Zhang 2019).
Furthcrmore, while some of the mental health
professionals may usc latcral regions of the brain for the
ECT shocks, others may use lateral and frontal regions.
This will result in DLs behave differently when the
nature of data changes (Chen ct al. 2020).

Thus, before applying DLs (o data, one needs to do
preprocessing and adapting the data in a way that DLs
can process them.
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In what follows, we will first very briefly explain EEGs
preprocessing techniques. We will also explain how one
can distinguish between a good and bad ECT using EEG
traces. We then, very briefly explain DL architecture we
used in this study. Finally, we will compare different
DLs performance for ECT outcome prediction.

2 Pre-Processing EEGs

This section is divided into two subsections 1) using
correlation technique to find whether there are
correlations between Hyperpolarization, Depolarization,
and Repolarization phases and post-shock phases; 2)
Using noise reduction techniques to prepare our data for
deep learning algorithms.

2.1 Correlation

In the first phase of this study, we wanted to test whether
there are correlations between EEGs segments using
cross-correlation technique (explained below). Another
technique that is widely used in the field of channel
processing is Fourier transform (Hu and Zhang 2019).
Roughly speaking, Fourier transform breaks a channel
into an alternative representation that is characterized by
sinus and cosines. However, using Fourier transform
may result in losing an important portion ol data.

Belore explaining cross-correlation technique, we will
explain very brielly EEG records of an ECT experiment.
An EEG signal can be divided into pre-during-post shock
phases.

Figure 1, shows the during shocking phase of an EEG
channel after applying electroshock to an MDD patient’s
scalp. The during shocking phase starts with a
hyperpolarization phase, followed by repolarization and,

50
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Figure 1. Hyperpolarization, Depolarization, and
Repolarization phases.

! The human brain has about 100 billion neurons and an area of 1,200
square centimeters. Given that the area of an electrode is about one
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then depolarization phases. In Figure 1, the x-axis
corresponds to time and the y-axis corresponds to the
amplitude of the EEG channel. The depolarization phase
finishes by oscillation around zero on the x-axis. It is
worth mentioning that the trace in Figure 1 is the average
output of about one hundred million neurons' activities
after applying an ECT shock to the patient’s brain.

Figure 2, demonstrates the last part of two complete EEG
channels gathered from two patients' scalps during the
clectroshock procedure. The EEGs contain a patient’s
pre-during-post shock phases. To distinguish the good
and bad ECTs, healthcare professionals use different
criterion such as the quality of the pattern of the crisis,
and/or the length of the crisis and/or the smoothness of
the end of the EEG channcl. If the end of the channcls
becomes smooth as demonstrated in Figure 2.A, the ECT
session is considered success[ul.

However, if the end of the channel is not smooth (Figure
2B), the clectroshock procedurc is considered
unsuccessful. In this article, for convenience, the EEG
associated with a good ECT test is called a good EEG

and vice versa.

50
0 M’ St e n
-50 v )

0 250 500 750 1000 1250 1500 1750 2000

50
; e |0
-50 4 -’ =]

0 250 500 750 1000 1250 1500 1750 2000

Figure2: The horizontal axis is time, and its length equals 2
scconds (2000ms). The vertical axis is amplitude. The last
segment (which is underlined by an orange arrow) determines
to what extent the trace is good or bad.

Postulated by one of our mental healthcare professional
colleagues, the first hypothesis in our work was that there
should be some type of correlation between EEGs’
Hyperpolarization,  Depolarization,  Repolarization
phases (Figure 1), and final phase of the EEG (Figure 2,
the interval between 1500-2000). In our EEG database,
cach EEG file contains up to 4 channels. That is, to apply
the ECT, our healthcare professional used two clectrodes
on the frontal lobe, and two on the temporal lobe,
symmetrically.

square centimeter. Therefore each electrode records the electrical
activity of approximately 83 million neurons.
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To verify our above hypothesis, we used the cross-
correlation technique. The cross-correlation between
two EEG channels measures the level of dependency
between hyperpolarizations (HP), depolarizations (DP),
and the repolarizations (RP) phases of the channels.

More specifically, If the cross-correlation of two EEG
channels is 1 at a time ty, the EEGs are either
hyperpolarized or depolarized, or repolarized. That is,
the amplitudes for the two channels are equal.

Similarly, il the cross-correlation between two EEG
channels is 0.8 at time G, then the EEGs are
hyperpolarized, depolarized, or repolarized at the t; and
the amplitudes of their HP or RP or DP are equal to 80%.

Any negative correlation means the channels are
correlated but their behavior is the opposite. That is if the
HP value is increasing the RP or DP values are
decreasing. Furthermore, the values around zero means
EEG channels are acting independently (Dowdy,
Wearden, & Chilko, 2011).

The EEGs we used in this study are gathered on a daily
basis at the St-Maric hospital at Trois-Rivicres (QC) by
mental health professionals and then anonymized for
rescarch usage. So far, we have 290 EEGs traces. The
gathering of EEGs by mental health professionals at the
St-Maric hospital continucs as the morec EEG we have,
the better results we obtain from our ncural network
(cxplained below). We applied cross-correlation
technique to the above 290 EEG traces.

Every EEG has an  average length of 75,000
milliseconds (75sec) in total. However, according to our
hypothesis, we need to extract the HP , RP and DP parts
of the EEGs. Once extracted, we apply cross-correlation
technique to the aforementioned parts of the EEGs and
the last part of the EEGs which contain the successful or
failed ECT (Figure 2).

Because the total average of EEG files' length is 75
scconds, we need to divide them into smaller segments.
In this article, we split the EEG files into two-seconds
segments.

Therefore, we have (75+2=37)x(75+2~37)%202 cross-
correlation plots. That s, after applying cross-correlation
technique to the segmented EEGs, we will obtain
202x37x37 plots. As an example, Figure 3, shows the
plot of two EEG segments with the length of two seconds
(Figure 3. A and Figure 3. B).

Instead of 2 scconds, onc can divide the EEGs into larger
or smaller segments. Choosing smaller numbers than the
number 2, makes cross-correlations comparison
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meaningless. That is, the segment has very little
information that decreases the cross-correlation
technique’s performance. On the other hand, choosing
larger numbers make comparisons difficult as every
segment contains too much information. Afler dividing
EEG channels into segments of two seconds, we: 1)
compared all segments of the good and bad EEGs; 2)
extracted the HPs, RPs, DPs, and the last segment of the
good and bad EEGs.

EEG no:12 from 142000 to 144000 time_step. Channel No: 0

50
0] MWW A
=50

0 250 500 7S50 1000 1250 1500 1750 2000
EEG no:12 from 138000 to 140000 time_step, Channel No: 0

50
07 B
-50

0 250 500 750 1000 1250 1500 1750 2000
The correlation of above EEGs

1
04 M\/\/\A—\,\N’\/\ c
1

T T v
] 250 500 750 1000 1250 1500 1750 2000

Tigure 3: The red subplot (Figure 3.C) demonstrates the cross-
correlation of two segments (Figure 3.A, Figure 3.B) from
the twelfth EEG signal of our dataset. The horizontal axis is
time (ms). In Figure 3.A and Figure 3.B, the vertical axis is
EEG amplitude and m Figure 3.C is correlation value.

2.1.1 Comparing two seconds segments

In this subsection, using cross-correlation technique, we
compared all the 2-seconds segments we extracled from
the entire data set. One problem with the Cross-
correlation technique is it compares every segment with
themselves which causes redundancy in comparison.

So, in order to avoid calculating duplicate cross-
correlations, we filtered the extracted segments so it only
considered the unique combination of 2-second
segments.

Figure 4: In Figure 4.A and B, the Y-axis shows computed
averages of the cross-correlations of different segments for
the first channel of the good EEGs (Figure 4.A) and bad
EEGs (Figure 4.B). The X-axis shows the EEG segment pair
numbers.
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We then, averaged the cross-correlations of every 2-
second segments for the entire data set. In our case every
comparisons produced one single point which is
demonstrated in Figure 4.A,B. Figure 4.A, B shows the
result of the filtering process and averaging of the whole
data set which resulted in more than 5000 points (each
considered a point in the Figure 4).

It must be noted that according to the differences
between channel size (Figure 4.A B good EEGs with
5000 and bad EEG with 6000 length), we obtain different
data points on the x-axis.

In Figure 4, the average correlation for the good EEGs is
equal to 0.6 and 0.25 for the bad EEGs ( maximum
should be equal to 1).

In Figure 5, we see the average cross-correlation for the
second channel of the good EEGs and bad EEGs which
arc cqual to 0.6 and 0.4 rcspectively. We obtained
similar results for the third and fourth channels. Our
results show that there are some correlations in general
between EEGs segments. However, we would like lo
remind you that so far, we have not extracted HPs, RPs
and DPs from two seconds segments (sec below).

) 1000 2000 3000 acoo BT sooo

Figure 5: In Figure 5.A and B, The Y-axis shows computed
averages of the cross-correlations of different segments for
the second channel of the good EEGs (Figure 5.A) and bad
EEGs (Figure 5.B). The X-axis shows the EEG scgment pair
numbers.

It is also worth mentioning that in Figures 4 and 5, at
some points the spikes' values arc almost one which are
considered as outlicrs in our casc. This is because the
number of spikes is less than 10, while the total number
of calculated cross- correlations is more than 5,000,

In the next subsection, we will analyze the possible
correlations of HPs, RPs, DPs with ECT outcome.

2.1.2 HPs, RPs, DPs cross-correlation with ECT
results

In this subsection, we will test our mental healthcare
professional colleagues’ hypothesis which postulates

13| Page

that there should be a logical connection between the
HPs, DPs, RPs, and the ECT outcomes.

To do so, we extracled, concalenaled, and averaged (he
HPs, RPs, and DPs segments from the entire EEGs data
sct.

Since, we obtained very similar results for the cross-
correlation of HPs, DPs, RPs, here we will briefly
explain RPs (Figure 6).

It must be noted that every EEG contains many HPs,
DPs, RPs phases. We extracted and concatenated all RPs
from the entire data sct and obtained more than 100000
points (Figure 6). Wec then, calculated the cross-
corrclation of all RPs and the end of the good and bad
EEGs.

Most of the average cross-correlation values in Figure 6
varies between -0.25 and 0.25, which is very low.
However, there are some specific points that demonstrate

1004
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Figure 6: The Y-axis shows computed averages of the cross-
correlations of RPs. The X-axis shows the EEG segment pair
numbers.

good correlations. The number of these specific points
are small comparing to the whole data set. Consequently,
they cannot be considered as a solid indicator for the
predictions of successful versus unsuccessful ECTs.

We obtained similar results for HPs and DPs. That is,
HPs, RPs, DPs cannol be considered as the good
predictors of the successful and unsuccessful of ECTs
(see the link to the code).

Our next hypothesis was the use of Deep Learning
algorithms (DLs) that uses patients” EEGs pre-shock and
during the shock phase in order to predict the successful
and unsuccessful ECTs.

However, EEGs contain noises which degrade
substantially DLs performance. Thus, we must ideally
delete or reduce the noises. For instance, patients’ fast or
low winking results in different EEGs (Hu and Zhang
2019). The noises directly affect DLs performance. In a
preliminary experiment, we directly applied Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber
1997) to anonymized EEGs, without obtaining good
results.
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Consequently, one crucial problem when processing the
EEGs gathered during ECT sessions is how to separate
the useful data and noises. Therefore, before we use the
DLs to predict the ECTs results, we must
reduce/suppress the noises. In the next section, we
explain the noise reduction method we used in this study.

2.2 Noise Reduction (NR)

In order to do Noise Reduction (NR) in our data, we
used Moving Averages (MAs) or Moving Mean (MM)
technique (Booth, Mount and Viers 2006). MA takes as
_ X(e-1)en +X((k—l)~rl+1) + X((k—:l)-rr+2) R
B k

Formula 1: The Simple Moving average formula

MA,

input a dataset and creates many subsets of it. It then,
returns the average of the subsets by smoothing subsets’
variations. This technique can be seen as noise reduction.
Researchers use different versions of MA for noise
reduction (Booth ct al. 2006). We used a simplc version
of'it (Figure 7):

‘Where:
X,= The average of input signal amplitudes in ith-period.

n= The nth point of output signal.
k= Length of the periods.

0502

0498

0496

EEG amplitude [0,1]

0493

Time

Figure 7: The blue signal is the EEG traces from our dataset
and the orange signal is moving average of the blue signal.
The x axis is time, and the y axis is EEG amplitude which is
between (0, 1)

After applying the noise reduction (SMA), the data is
ready to be fed into the Deep Learning algorithms (DLs).
In the next section, we will create our DL.

3 Deep Learning algorithms

3.1 Predictor Neural Network Architecture

In this section, we will examine another hypothesis. That
is, there is a strong logical relationship between the pre-
shock segment of the EEGs and the success or failure of
the ECT results.
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To do so, we need to design and implement a hybrid
architecture that is capable of detecting the temporal
features of the EEGs and the relationships between
different phases of the EEGs.

Our hybride DL architecture (Figure 8) uses Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber
1997), Convolutiona Neural Networks (CNN) (Sainath
et al. 2020), and Multi-layer Perceptron (Gardner and
Dorling 1998).

In this step, we used the same 2-second segments we
used in subsection 2.1.1. Out of 290 EEG traces divided
into 2-second segments, we considered 70% for training
and 30% for test.

Keras Neural Model

Model: Sequential

Preprocessing: Moving Average

Five epochs training Via lesta K80

Train accuracy: 78.62%

Test accuracy: 73.41%

Figure 8: The Predictor CNN- Neural Architecture

In Figure 8, the denoised and averaged data (sec
previous section) is first fed into a one dimensional CNN
(32 neurons and a kernel with size 3). It then fed into two
LSTMs-first having 512 neurons and the second 236
NEeurons.

Table 1 shows different configurations for our hybrid DL
architecture. We obtained the best performance (82%)
using the configuration in the first line in Table 1.



The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-19)

Train Test

Number
o
Accursey Aceuracy

No  Medel  Optmizer Demsclayers  LSTM layers
eporhs

1 Sepenisl  ADAM  # D

2 Sepenial  ADAM

o Denss(l0) o
Seential  ADAM | » Demse(l)

CoaviDIny)
o LSTM(S6) ' CoaviDI643)

Tablel: Different configurations of our DL architecture

4 Conclusion

Currently, mental healthcare professionals (MHP) use
trial and error method for the Electroconvulsive Therapy
(ECTs) scssions. Consequently, a patient may
experience many ECTs before noticing some results.
This is a waste of time and resources. In this study, using
only EEG traces gathered from MDD patients’ scalps,
we used hybrid Deep learning algorithms to predict
successful and unsuccessful ECTs. This is the first
attempt toward creating methodological technique [or
individualized ECTs.

It must be noted that we did not used expensive
techniques such as MR/ fMRI/rs-fMRI that are used in
previous studies. Deep learning algorithms are capable
of learning unseen patterns. Although, our data set was
small, we obtained 82% precision for detecting good and
bad ECTs. Thus, we believe DLs can help us to create a
methodological approach to individualize ECT
tlechniques [or patients sullering [rom MDDs.

At this point, we demonstrated our results to other mental
healthcare professionals who offered their support to this
project by giving us more EEG traces gathered from
MDD patients” scalps. Having more EEG traces will
improve our DLs precision and prediction capability.

One problem with our current EEG files is that they do
not have the degree to which ECTs are applied (o the
MDD patients’ scalps. Our [uture work will be to change
our current DL’s architecture so by merely having the
MDD patients pre-shock data it can assist MHPs to what
degree they need Lo apply ECTs in order (o get success(ul
results.
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Abstract. Researchers and engineers may use inferential logic and/or fuzzy logic
to solve real-world causal problems. Inferential logic uses probability theories,
while fuzzy logic uses its membership functions and set theories to process uncer-
tainty and fuzziness of the events. To benefit from both logics, some researchers in
the past tried to create probabilistic fuzzy logic (PFL). Deep Learning algorithms
(DLs) with their incredible achievements such as very high precision results in
some specific tasks are at the center of the weak Al. However, DLs fail when
it comes to causal reasoning. In order to equip Deep Learning algorithms (DLs)
with reasoning capabilities, one solution would be to integrate non-classical log-
ics such as PFL with DLs. In this paper, we will demonstrate the first step toward
creating a deep causal probabilistic fuzzy logic architecture capable of reasoning
with missing or noisy datasets. To do so, the architecture uses fuzzy theories, prob-
abilistic theories, and deep learning algorithms such as causal effect variational
autoencoders.

Keywords: Deep learning - Probabilistic fuzzy logic - Causal reasoning -
Autoencoders

1 Introduction

As human beings, we are always in the search for the causes of events around us. For
instance, was it the spicy food I had for my lunch that caused my abdominal discomfort?
In causal reasoning, one uses previous information about an event or situation to predict
its future state. However, discovering the real causes of events is usually difficult.

In order to solve the problem of causality, some researchers use inferential logic,
which uses probability theory, while others use fuzzy logic, which outperforms inferen-
tial logic [3]. Probability theories deal with the uncertainty of human knowledge about
an event. However, there is no gradient possible with probability theories [3]. Fuzzy
logic makes it possible to take into account the vagueness of events. The ideal would be
to use both inferential and fuzzy logic theories together and create probabilistic fuzzy
logic [3]. In [3], Faghihi et al. used causal fuzzy rules belonging to fuzzy rule sets to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Arai (Ed.): SAT 2022, LNNS 507, pp. 190-202, 2022.
https://doi.org/10.1007/978-3-031-10464-0_12
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find the influences of confounders on other variables. A confounder variable influences
both dependent and independent variables causing fake correlations between variables.
However, Faghihi et al.’s model does not have learning capabilities [3]. To equip PFL
with learning capabilities, one must integrate them into the DLs [4]. One powerful gen-
erative deep learning algorithm that is widely used to deal with different real-world
problems is Variational Autoencoders architectures families [2, 5]. In the following, we
briefly explain Autoencoders, Variational autoencoders, and Causal Effect Variational
Autoencoders [2].

Autoencoder (AE) is a specific type of generative artificial neural network that learns
representation for a set of data in an unsupervised manner. An AE [2] has 1) Encoder
module (inference network in causality context) which encodes or compresses the input
data into a latent space representation (areduced version of the original data); 2) Decoder
module which tries to reconstruct the original input data from the latent encoded space.

Variational Autoencoders (VAEs) are similar to the AEs, except they consider a fam-
ily of Gaussian distributions while sampling from the input data. VAEs work with both
continuous and discrete data. Recently, researchers created Causal Variational Autoen-
coders (CEVAE) [2], which estimate the individual and average treatment effects (ITE,
and ATE respectively) for unobserved confounders using proxy variables which are
replacements for confounders [3].

In this paper, we first discuss the related works on causality using different DLs
such as variational autoencoder families. In order to extract causal relationships from
observational data, we then discuss two architectures that use PFL and causal effect
variational autoencoders (CEVAEs) architecture [2] which we call FCEVAE-V1 and
V2. The first architecture is called FCEVAE -V 1: in this architecture PFL and CEVAE
each separately applied to the dataset. That is, we cluster and fuzzify the data set, and
then, it is feed-forwarded to the CEVAE architecture (Fig. 1). The second architecture is
called FCEVAE -V2: we integrated association and causal rules from [3] to the CEVAE
loss function (Fig. 2). That is, in the second architecture, we equipped CEVAE with
a modified loss function that implements causal fuzzy logic rules from [3]. It must be
noted that the initial CEVAE architecture developed by Amsterdam lab! uses TensorFlow
and Edward (deprecated). In this study, we used a CEVAE version equipped with Pyro
library?. Pyro is faster than Eward.

Finally, we compare the performance of our architecture with similar architectures
and discuss the results and limitations of our work.

2 Related Works

Recently, learning causal relationships from observational data received lots of attention
in the field of Artificial Intelligence [6, 7]. Moreover, some researchers try to address
the identifiability? issue using neural networks [8]. However, the observational data may
contain hidden confounder variables that may not or very difficult to be measured [2].

! https://github.com/AMLab-Amsterdam/CEVAE.

2 https://github.com/pyro-ppl/pyro.

3 If the true parameters of a statistical model can be learned after observing sufficient number of
observations, the model is said to be identifiable. Wikipedia.
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Take a study in which we are interested in individualized medicine and where we have
to figure out the best medication for a patient from observed data [2]. In this example, the
socio-economic status of the patient can influence the type of medication the patient has
access to and her general health [2]. That is, the socio-economic status is a confounder,
and we cannot compute its value [2]. It is worth mentioning that once we can estimate or
calculate the confounder’s value, another hurdle to overcome is to find which element(s)
it influences the most.

Let’s suppose we cannot measure the confounder which is the socioeconomic status
of the patient. Roughly speaking, there are two main approaches to calculating con-
founders. The first one is a tree-based approach [9], wherein the authors use Bayesian
Additive Regression Trees (BART) [10] to estimate average causal effects for solv-
ing causal inference problems such as individual treatment effects (ITE). The second
approach uses Directed Acyclic Graphs (DAGs) as a causal structure and a Bayesian
approach for reasoning.

TARnet [11] is one of the first architectures that is used for causal inference. It is
based on weighting optimizations and using the feed-forward neural networks. However,
TARnet is not robust enough to deal with noisy datasets [2, 12]. In 2017, Louizos etal. [2]
created Causal Effect Variational Autoencoders (CEVAE) which estimates the individual
and average treatment effects (ITE and ATE) for unobserved confounders using proxy
variables. A confounder variable that can be hidden and/or have missing data, influences
both dependent and independent variables, causing fake correlations between variables.
The model suggested by the authors in [2] outperformed Tree-based approaches such as
BART [2]. However, the model in [2] has problems with processing missing data.

Toimprove CEVAE, the authors in [ 12] created Identifiable VAE (iVAE) architecture.
This architecture postulates that different model parameters must lead to the different
marginal densities for the data. In 2021, the authors suggested Intact VAE [13], an
improved version of iVAE. Intact VAE estimates ATE by using a modified version of
propensity score (the probability of a subject receiving treatment) and B-score (The
conditional distribution for the covariates receiving or not receiving treatment is the
same). However, this study ignores computing confounders. As opposed to current DLs
which can only process either noisy or missing data, a robust DL needs to be both
tolerant to both noisy and missing data with hidden confounders. We will achieve this
by integrating Non-Classical Logics such as probabilistic fuzzy logic rules with DLs.

Faghihi et al. [1] argued that in most real-life problems, the communication between
nodes is two-way, something DAG does not support. In other words, the mere Bayesian
approach to causation cannot answer the following problem: what is the probability that
socio-economic status influences the type of medication the patient has access to and
her general health, and to what degree?

Probabilistic Fuzzy logic (PFL), on the other hand, excels at reasoning with degrees
of certainty and in real-life problems [14]. Importantly, this allows for degrees of depen-
dency and membership. In PFL, Zadeh [14] proposes that a given set of elements always
has a degree of membership and fits into an interval between [0,1]. PFL processes three
types of uncertainty: randomness, probabilistic uncertainty, and fuzziness.

PFL can both manage the uncertainty of our knowledge (by the use of probabilities)
and the vagueness inherent to the world’s complexity (by data fuzzification) [14]. PFL
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has been used to solve many engineering problems, such as security intrusion detection
[15, 16] and finding the causes of the events. However, PFL cannot learn by itself and
needs experts to define intervals before applying fuzzification [3]. In [3], the authors
used more than ten PFL rules to discover the causal relationship between variables
from observational data. However, logic cannot learn a representation of the data [3].
One solution would be to integrate PFL with Deep Learning algorithms or use them in
parallel. In the next section we explain how we used CEVAE architecture [2] with PFLs.

3 Fuzzy Cevae

We designed and implemented two versions of the CEVAE architecture [2] which we
call FCEVAE: 1) FCEVAE-V1: in this architecture PFL and CEVAE separately applied
to the dataset. That is, we clustered and fuzzified the dataset using PFL and then feed
forwarded it to the CEVAE architecture (Fig. 1); and 2) FCEVAE-V2: in this architecture,
we integrated clustering and causal rules with the CEVAE architecture (Fig. 2). That is,
in the second architecture, we equipped CEVAE with a modified loss function that
implements causal fuzzy logic rules from [3].

3.1 Fuzzy Causal Effect Variational Autoencoder (FCEVAE-V1) First
Architecture

To cluster the dataset into “Low”, “Average”, and “High” clusters, we used the fuzzy
c-mean algorithm [1] (Fig. 1A). It is worth mentioning that depending on the problem,
one can use more than three clusters if needed.

However, the C-mean clustering only gives us the membership belongingness of
the dataset elements to every clusters. Thus, C-mean’s output does not include any
information about the nature of the dataset. Consequently, we multiplied the clustered

Membership Vecter_low

Membership
Vector_average

Fuzzy C-Mean

|t

Membership Vector_high

Fig. 1. Part A is a membership vector extractor according to the fuzzy C-mean algorithm [1]. It
applies fuzzy c-mean on the dataset and computes memberships vectors for the elements of the
dataset. Then, the red circle, which in our context is a ‘switch neuron’, selectively multiplies the
memberships vectors calculated in the previous step to the original dataset. Part B is the original
CEVAE proposed in [2].
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data with the original dataset. This gave us a weighted fuzzy representation of the dataset
elements describing how well each element belongs to the fuzzy clusters.

To justify our above multiplication, we briefly explain our Simple Probabilistic Fuzzy
Logic Theory (SPFL) theory [17], a classical probability theory mainly useful for the
problems with fuzzy concepts in their nature. For instance, the following problem could
be solved by using the SPFL theory.

Question. Suppose the fuzzy attribute Large for the set X = (1,...,20). In an
experiment, what is the probability of randomly selecting 17 from X as Large?”.

To answer the question, one can define random variable &x rarge 50 that P (5x zarge =
17). Hence, here the distribution of £x 7 4rge matters. Randomly selecting the elements of
X comes from the nature of the distribution on X, while selecting as Large comes from
a two steps procedure consisting of fuzzifying data by some fuzzy attributes including
Large, and then the distribution determining the chance of being selected as Large.

Another example follows:

Question. Suppose the fuzzy attribute Large for the set X = (1,...,20). In an
experiment, we are given X = 17. What is the probability of selecting 17 as Large?

The answer to this question is P(xisLarge), and it comes from a distribution. Now,
a binary random variable is considered as follows:

x, [P(xisLarge)

Ex,Large = {(}3 1 — P(xisLarge)

That is, E(&x Large) = xP(x is Large), and it is interpreted as the quantity of x as
being Large. Note that, in this paper we use a model with P(x is Large) = ppagge ().

To calculate Fuzzy Average Treatment Effect (FATE) which will be used in our
below FCEVAE (second architecture), we perform as follows: Suppose X, 7 and Y are
the covariate, the treatment and the outcome of an experiment, respectively. Let A be a
fuzzy attribute of X . We define the fuzzy individual treatment effect of any X = x with
respect to A as: FITE4(x) = ITE(E(&x 4)).

It follows that:

FITEA(x) = E(Y|X = x4 (x),do(T = 1)) — E(Y| = xpa (x),do(T = 0)).

Now, we define FATE of X with respect to A as AFTE4(X ) = Ex (FITEA (X)).

Going back to the FCEVAE-V1 architecture (Fig. 1), by multiplying the clustered
data with the original dataset, we obtain a weighted fuzzy representation of the dataset
elements describing how well each element belongs to fuzzy clusters. As a result,
FCEVAE-V 1 produces three different average treatment effects values [18] each describ-
ing the fuzzy average treatment effect corresponding to the clusters such as “low”, “av-
erage”, and “high”. Table 1 shows that FCEVAE-V1 outperforms Microsoft’s DoWhy*
project that implements Pearl’s causal architecture [19] on Infant Health and Develop-
ment Program (IHDP) [9] dataset. IHDP dataset contains information about the effect
of specialists’ home visits on premature infants” cognitive test scores [6]. In addition,
the average number of ATEs obtained by FCEVAE-V1 is 4.006. This value is closer to
the real IHDP’s ATE of 4.021 [19]. It is worth noting that in the DoWhy project, the

4 https://microsoft.github.io/dowhy/dowhy_ihdp_data_example html.
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ATE value for the IHDP dataset was calculated by subtracting the mean of the treated
and controlled groups.

Table 1. Comparison of FCEVAE-v1 and DoWhy.

Cluster Low Average High
FCEVAE-v1 [3.812 |4.015 4.192
Microsoft DoWhy | 3.928

However, our first architecture has two flaws: 1) similar to the original CEVAE
architecture [2], to select the treatment and outcome columns, the architecture needs a
human expert. However, in a real-world problem, humans may have no idea about the
Treatment and Outcome columns; 2) because we fuzzify the dataset before feeding it to
the CEVAE architecture, it cannot tolerate noisy data. We fixed the first architecture’s
flaws in our second architecture.

Unlike the first architecture that uses fuzzy weighted versions of datasets to create
fuzzy-probabilistic-based CEVAE architecture (without using fuzzy rules), the second
architecture incorporates fuzzy causal rules from [3, 20] in its loss function. This helps
the CEVAE architecture discover the causal relationships between the dataset’s elements.

3.2 Fuzzy Causal Effect Variational Autoencoder (FCEVAE-V2) Second
Architecture

In order to create an architecture capable of dealing with noisy and missing data, we cre-
ated FCEVAE-V?2 architecture by integrating our fuzzy rules from [3] into the CEVAE’s
loss function. Our architecture is divided into two main components:

Figure 2, Part A: a conditional autoencoder that randomly generates equally
unbiased samples from a dataset.

Figure 2, Part B: it takes the input from the previous step and uses fuzzy causal
rules integrated into CEVAE'’s loss function to extract causal relationships.

We will briefly explain our architecture steps in the following:

Figure 2, Part A: Before explaining Part A in detail, we briefly explain the difference
between Variational Autoencoders (VAE) and the conditional variational autoencoder
(CVAE) we used in Fig. 2. Part A. Whereas the VAE architecture does not apply any
condition during sampling from datasets, CVAE uses the conditioning method for the
sampling process [21, 22].

The main goal behind the step A is to generate unbiased equal samples without
missing data. To do so, Conditional VAE (Fig. 2A) takes a dataset with missing data
and generates equal amount of sampling from conditional distribution of the dataset’s
columns. That is, we create a condition matrix (for which its columns are the output of
the Conditional VAE that generates un-biased samples) so that it removes the missing
data’s bias ratio. For example, assume that for a given dataset D = (X, ...,X;), where
X; s are the columns with length /(X;). We have M = (my,...,mp) where m; s are the
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corresponding missing data ratio. We generate a condition matrix C = (Co,...,Cy), such
that C; s are binary vectors with length /(X;). If the corresponding dataset’s element is
missing, each element of C;, such as c;;, equals 0. Otherwise the value is equal to 1.

Eflog(X|z,C)]-DkL[Q(z[X,C) [ P(z|C)] (M

Equation (1)is the CVAE’s objective function. Q and P are the conditional distribution
of CVAE’s encoder and decoder respectively. KL is the KL divergence. The model learns
P and Q given the condition matrix C [21, 22].

m

Fuzzy C-mean
Fuzzification

Fuzzy Rule Set

Feedback

Fig. 2. FCEVAE-V2 where probabilistic fuzzy logic rules are integrated with the CEVAE loss
function.

Figure 2, Part B: Part A’s output is an unbiased sample § with no missing values. In
Part B, we create a matrix W such that its columns will show possible causal relationships
in the dataset D‘s columns (see Table 4). That is, once we calculate W, a higher value
in a column (i.e., gestat10 in Table 4) shows a higher influence of the column on the
outcome (see Table 4). We must emphasize that contrary to the previous works that used
gestat10 as the cause, we used all columns to calculate possible causes.

To do so, we first initialized the randomly generated matrix W with size (n x n)
where n is the number of the D columns. An important note is that since the matrix W *s
values are randomly generated, for different executions we get slightly different values
for ITE, ATE and the values in Table 4. We then multiply W (see our above SPFL theory
[17]) by the output from Part A. The result of the previous step feedforward into the
CEVAE (Fig. 2, Part B).

After encoding the data in Fig. 2, Part B’s encoder section, the resulting data is parti-
tioned using the Fuzzy-C mean [1] algorithm. This partitioning is done to automatically
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find fuzzy membership intervals without the need for an expert to define them. We then
use fuzzy rules from [3] to fuzzify the result. The next step is to add fuzzy rules to the
CEVAE loss function (Eq. (2)):

|[x —X]| \2 + KL(N(u,0).N(0,1)) + « Var(Fuzzy Ruleset) ' (2)

In the above equation, the first term is the reconstruction error. The second term is
KL divergence. The third term calculates the variance of the fuzzy rule set according to
the association and causal fuzzy rules from [1]. o € [0, 1] is the training hyper-parameter.
It helps the model include the influences of the fuzzy ruleset from [3] to the loss function.
For an a = 0, we have the original CEVAE architecture.

The above loss function’s output is passed to the back-propagation algorithm to
update the W (Fig. 2 Part B, red rectangle).

Table 2. FCEVAE-V2 performance on the noisy IHDP dataset.

Noise N~N(0.10,0.5) N~N(0.15,0.5) N~N(0.20,0.5)
ATEFCEVAE—v2 3.27542 2.65458 1.76581
ATECEVAE 3.35354 2.61252 1.91257
ATEDowhy 1.99664 1.37661 1.28898

The updated Ws are multiplied by the output from Part A. Again, the result are passed
to the FCEVAE-V2 where the model applies C-mean and fuzzification and calculates
fuzzy loss function before using back-propagation algorithm. FCEVAE-V?2 continues
the above steps until the result converges to a minimum value for the loss function.

3.3 Second Architecture’s Experiments

Similar to the CEVAE project [2], and the DoWhy project [19], we tried FCEVAE-V2
with the THDP [9] and TWINS [2] datasets. With the TWINS dataset, the goal is to find
the possible causal relationships between the weight of twins and their death rate. The
main difference between FCEVAE-V2, CEVAE, and DoWhy architectures is that while
other architectures add noise to one specific column (gestat10 column), we added noises
to the whole dataset. We did this to show that DLs equipped with non-classical logic
rules are tolerant to multiple noise source.

After applying FCEVAE-V2 to the IHDP dataset, we obtained similar ATE and ITE
values to the CEVAE and Dowhy’s project’s outputs (see GitHub). To try FCEVAE-
V2 with noisy data, similar to [2], we applied the Gaussian noise N N(u,0.5) where
@ € (0.10,0.15,0.20) on the IHDP dataset and passed it to FCEVAE-V2 in order to
measure the network’s noise tolerance level. Table 2 shows that compared to other
architectures, our architecture is more tolerant to noises (a lower ATE is better).

We also applied the noise to the TWINS dataset and passed the noisy data to
FCEVAE-V2. Table 3 shows that comparing to CEVAE and DoWhy, our model gives
lower ATE values.
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Table 3. FCEVAE_V?2 Performance on Noisy TWINS Dataset

Noise [N~N (.10, 0.5) N~N(0.15, 0.5) | N~N(0.20, 0.5)
AT rpig. | —0.02616 —0.02711 —0.05121
ATE Doy —0.06901 —0.11760 —0.17351
ATE prvae | ~0.02720 —0.02931 —0.06245

Similarly to the CEVAE [2] and DoWhy projects, we used the TWINS dataset with
FCEVAE-V2. It must be noted that in the previous works the authors only used gestat10
column to calculate the possible cause of the twins’ death rate. In this study we used
all columns with FCEVAE-V?2. Table 4 shows the most important relationships between
columns (to see the full result, the reader is referred to®). We would like to remind the
reader that although we used a heatmap to show the values in Table 4, these values are not
correlations and/or covariance matrices. These values are the final values of the matrix W
(see above), and they were obtained after using CEVAE’s probability approach and many
iterations of the c-mean clustering algorithm, fuzzification, and fuzzy rule integration to
the CEVAE cost function.

In Table 4, all values belong to the [0, 1] interval. The higher value shows the stronger
possible cause between columns. For instance, similar to [2], our model revealed a strong
relationship (0.52%) between GESTAT 10 and outcome which is one of the highest values
in the outcome row. That is, the GESTAT 10 column influences many other columns such
as adequacy (adequacy of care) and incervix (risk factor, Incompetent cervix).

Limitations: Similar to previous work, FCEVAE-V?2 is capable of finding the causal
relationships between the TWINS dataset columns (TWINS’ description). Since our
model uses all columns in TWINS, it also found other possible causal relationships
between columns that were not mentioned in previous works (Table 5).

We have found some health-related papers that could potentially suggest a scientific
foundation for the results generated by our model. For instance:

However, this is only the very surface of what needs to be done next. Given that
FCEVAE-V2 uses both probability and fuzzy approaches to calculate the casual rela-
tionship between columns in the dataset, at this point, we cannot provide an explanation
for how these values are calculated precisely. We aim to do so in our future work. We
also encourage the readers to contact us, should they find any explanation for our result
(the code is on GitHub (see footnote 5)).

3 https://github.com/joseftaghihi/Causal-fuzzy-CEVAE/blob/main/2021-12-14/Arch2/ARC2_F
inal_2021_12_14.ipynb.
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Table 4. Partial FCEVAE-V?2 output for TWINS Dataset. Each Element €[0, 1] Interval is the
causality level of the associated columns and rows from matrix W. The dark blue color shows
possible causal relationships. to see the full result, the reader is referred t0®.

pidel 0.083956
birattnd
brstate 0.077812
stoccfipb 0.083477
mager8 0.490378
ormoth 0.082689
mrace 0.08223
meducé 0.135758
dmar 0.082715
mplbir 0.077774
mpre5
adequacy 0.91776
orfath 0.080428
frace 0.080537
birmon 0.076525
gestatl0
csex 0.081649
anemia 0.112826
cardiac 0.323684
lung 0.380819
diabetes 0.127854
herpes 0.110825
hydra 0.138176
hemo 0.082113
chyper 0.176568
phyper 0.151857
eclamp 0.174859
incervix 0.942312
pre4000
preterm

(continued)

6 https://github.com/joseffaghihi/Causal-fuzzy-CEVAE/blob/main/2021-12-14/Arch2/ARC2_F
inal_2021_12_14.ipynb.
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Table 4. (continued)

renal 0.083556
rh 0.080052
uterine 0.082438
othermr 0.07918
tobacco 0.309554
alcohol 0.345166
cigaré 0.258615
drink5 0.323664
crace 0.081194
data_year 0.077217
nprevistq
dfageq 0.080462
feducé 0.080072
infant_id 0.078493
dlivord_min
dtotord_min 0.424431
bord 0.075763
brstate_reg 0.078398
stoccfipb_reg 0.07851
mplbir_reg 0.080129
wt 0.083445
treatment :
outcome

Table 5. TWINS data set columns and their description according to TWINS® Description

TWINS dataset Column name and description

mpre5 (trimester prenatal care begun) adequacy (adequacy of care) [23]

mpre5 (trimester prenatal care begun) Eclamp (risk factor, Eclampsia) [24]

mpre5 (trimester prenatal care begun) Incervix (risk factor, Incompetent cervix) [25]
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4 Conclusion

In this paper, we have shown that Deep Learning algorithms (DLs) equipped with non-
classical logics such as PFLs are capable of reasoning with multiple sources of missing
data or noise. This had not been done in previous works; only one source of noise was
previously used.

To do so, we created two architectures: 1) First, after applying probabilistic fuzzy
logic association and causal rules (PFLs) to the dataset, the architecture feedforwarded
the output to the Causal Variational Autoencoders (CEVAE) architecture [2]; 2) Second,
we integrated PFLs into the CEVAE’s loss function. Compared to the Microsoft DoWhy,
and the original CEVAE architecture, our FCEVAE-V2 is more tolerant to datasets with
missing data and multiple sources of noise.

In contrast to the original CEVAE architecture which relies heavily on the treatment
column to be determined by human experts, our FCEVAE-V?2 does it automatically. That
is, in order to reveal possible causal relationships between columns, our model applies
causal rules to all columns. To prevent combinatorial problems when selecting treatment
FCEVAE-V2 uses the CEVAE compression technique.

Much work remains to be done. An important limitation of our work is explaining
the calculations of the causal relationships between columns, and their interpretation in
real-life scientific contexts.

Acknowledgments. We thank Sioui Maldonado Bouchard for kindly proofreading this paper.
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