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1  Introduction
Sixth-generation (6G) wireless systems are expected to enable greater levels of auton-
omy, improve human–machine interfacing, and achieve deep connectivity in more 
diverse environments. To assist 6G in managing a wide variety of services, ranging from 
mission-critical services (e.g., autonomous driving) to safety-critical tasks (e.g., remote 
surgery), key enabling physical layer technologies (PHY) such as ultra-massive multiple-
input multiple-output (MIMO) systems, millimeter wave and Tera-Hertz communica-
tions, and reconfigurable intelligent surfaces (RISs), need to be carefully designed [1]. 
Unfortunately, current network design practices conform to a hypothesis that regard the 
wireless environment between communicating devices to be unmodified and which can 
be only overcome through the design of advanced transmission and reception schemes. 
Breaking free from such a hypothesis by programming the environment is expected 
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to enable major performance gains. As such, RIS-aided communication has received 
increasing interest from the research community due to its potential in extending the 
coverage, enhancing link quality and capacity, and mitigating interference and security 
breaches [2]. RISs enable the reconfiguration of the wireless propagation environment 
by intelligently controlling the signal reflections via their massive low-cost elements. By 
jointly adapting the reflected signal amplitude and/or phase shift at each RIS element 
based on the wireless channels, the signals reflected by the RIS can be constructively 
combined at the intended receiver. Unlike traditional active relaying/beamforming tech-
niques, RIS is designed to be totally or nearly passive, thus enjoying lower hardware 
cost and energy consumption [1]. So far, RIS has been adopted in various scenarios. In 
[3], the error performance of an RIS-aided single-input single-output (SISO) system is 
examined; meanwhile, RISs are also used for multi-user systems to maximize the signal-
to-interference-plus-noise ratio [4] or to enhance energy efficiency [5]. Unfortunately, 
due to the additional channel links between the RIS and its associated transmitter and 
intended receivers, the large gain is achieved at the expense of increased overhead for 
channel estimation [6]. Early works focus on the design of reflection beamforming coef-
ficients under the assumption of perfect channel state information [7], which helps in 
deriving the system performance bounds, but the underlying optimal techniques are 
unfortunately algorithm-deficient. Obtaining this channel knowledge, in practice, may 
require large and possibly prohibitive training overhead, which represents the main 
challenge for real-time RIS operation. The authors in [6] have acknowledged the main 
practical issues in RIS-aided wireless communications, wherein the acquisition of accu-
rate channel state information (CSI) is vital but turns out to be practically challenging 
due to the lack of active components for baseband signal processing, in addition to the 
fact that an RIS is typically composed of a huge number of passive elements that poten-
tially have different channel coefficients to be acquired. As such, a substantial increase 
in the system overhead for RIS channel estimation is expected, unless low complexity 
signal processing methods such as least square (LS) and linear minimum mean square 
error (LMMSE) algorithms are used [8]. Under the constraint of limited training time, 
the authors in [9] has resorted to a joint design of the RIS reflection beamforming vector 
and transmit pilot sequence. Moreover, the idea of grouping RIS elements to reduce the 
complexity of the channel estimation process is also introduced in [10] whereas exploit-
ing the quasi-static RIS-Transmitter can further aid in efficiently estimating the dynamic 
RIS-receiver channel1 [11]. It is also recognized that a hybrid channel estimation method 
over a semi-passive RIS architecture, has the potential of reducing the real-time train-
ing overhead more, as compared to their separate approaches used in fully passive RIS 
architectures [12].

Nevertheless, implementing the RIS using discrete (and possibly non-accurate) phase 
shifters makes it difficult to analytically model such behavior in a tractable manner, mak-
ing the overall end-to-end model-deficient. Furthermore, due to several practical aspects 
such as channel aging and limited feedback overhead, it is hard to obtain perfect CSI in 
practice [6].

1  Herein, the transmitter mimics the base-transceiver station while the receiver mimics the user equipment.
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Under such deficiencies, machine learning is introduced and has started to be exten-
sively used to enhance the implementation of various components within the 5G 
radio access network (RAN) [13]. In addition to the smart radio environment concept, 
embracing a vision wherein 6G is designed in a way that ML could modify parts of the 
physical (PHY) and medium access control (MAC) layers is proposed [13]. Deep Learn-
ing (DL) has also been used for devising computationally efficient approaches for physi-
cal layer communication receiver modules. Under the supervised learning approach, the 
authors in [14] present a DL framework for MIMO symbol detection. It has been able to 
achieve near-optimal detection performance with an even faster real-time implementa-
tion. A recurrent neural network (RNN)-based detection scheme is introduced in [15] 
for MIMO orthogonal frequency division multiplexing (OFDM) systems and is shown 
to outperform traditional detection techniques under channel impairments and hard-
ware nonlinearities. Convolutional neural network (CNN)-based supervised learning 
techniques can also be utilized for channel estimation problems, providing improved 
generalization abilities and robustness to channel alterations [16]. A DL-based beam 
prediction method was proposed for distributed mmWave MIMO systems to cope with 
highly mobile users with negligible training overhead and high data rate gains [17].

Machine learning approaches for RIS have attracted considerable attention for chan-
nel estimation [18–20], resource management [21–23], signal detection [24], joint active 
and passive beamforming [25] and RIS’s reflection beamforming [26–29]. An up-to-date 
survey is found in [30]. The authors in [25] addressed the phase shift design from joint 
active and passive beamforming optimization problems for secure beamforming for 
MISO systems, MISO uplink communication networks and computation offloading in 
IoT networks use cases. They have provided a review of the current optimization and 
artificial-intelligence-based methods for handling the constraints imposed by RISs. So 
far, most works rely on the unity amplitude assumption, whereas the authors in [31] con-
sidered a practical phase-dependent amplitude model in which the RIS reflection ampli-
tudes vary with the discrete phase-shifts. Therefore, to solve the complicated problem 
of joint relay selection and RIS reflection coefficient optimization, a deep reinforcement 
learning (DRL) model is used to learn from the environment how to obtain the solution 
and reduce the computational complexity.

The authors in [8] proposed a novel design of the reflection pattern to aid the channel 
estimation at the access point (AP) formulated as a non-convex problem P1. The estimated 
channel is used to optimize the reflection coefficient formulated as problem P2. The success 
of the method is attributed to overcoming the semi-definite relaxation (SDR) complexity 
by exploiting the strongest signal path in the time domain. The simulation results demon-
strated the effectiveness of the method in frequency selective Rician fading channels. Later 
in the same year, the authors in [32] proposed a new transmission protocol for wideband 
RIS-assisted single-input multiple-output (SIMO) OFDM communication systems. In [32], 
each transmission frame is divided into multiple sub-frames where the associated channel 
state information over consecutive sub-frames is progressively estimated, based on which 
the passive beamforming at the RIS is fine-tuned to improve the achievable rate. Even if 
these works did not consider a deep learning-based approach, they open a new perspective 
for progressive data collection and online training in the event the new transmission frame-
work is adopted. This aspect is considered as future work as for our simulation purposes, 
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the ray tracing scenario “O1” in [33] is used. This scenario is publicly available in [33] and 
widely adopted [18, 26, 27, 29].

On the other hand, the authors in [26] present a novel semi-passive RIS hardware archi-
tecture where fewer active elements are used to assist in estimating the uplink and downlink 
CSI associated to these active elements like in a traditional MIMO system. Two solutions 
based on compressive sensing and deep reinforcement learning with very negligible training 
overhead have been proposed. The DL approach avoids resorting to explicit CSI estimation 
for the overall RIS-related channels while directly learning the RIS reflection beamforming 
vectors. Such an end-to-end RIS has recently been proposed to further alleviate the burden 
in learning directly all the channel parameters [34, 35]. Deep reinforcement learning (DRL) 
has also been applied for designing efficient spectrum access [36] and scheduling strategies 
[37] for cellular networks. Automatic cell-sectorization for cellular network coverage maxi-
mization is another area where DRL has shown tremendous potential [38].

In this paper, we focus on a semi-active RIS architecture with a very small number of 
active elements and we propose two efficient reinforcement learning-based schemes where 
the main contributions are as follows:

•	 We propose an adversarial bandit approach based on exponential-weight algorithm for 
exploration and exploitation (EXP3). To show the merits of the proposed scheme, we 
conduct extensive simulation using the publicly available accurate ray tracing-based 
DeepMIMO dataset [39] with the ’O1’ scenario. The novelty stems from using the train-
ing dataset build from the combined channel and the pull-probability of the reflection 
beamforming vector (elements of the codebook). The proposed EXP3-based scheme 
requires substantially less data as compared to the DL reflection beamforming tech-
nique, owing to the optimal selection of the dataset which stresses that less likely reflec-
tion beams are given lower probability, excluding them during the exploitation phase of 
the EXP3 algorithm. As such, the proposed scheme requires less training dataset size, 
lower number of active elements, etc.

•	 To improve upon the computational complexity, the Follow the Perturbed Leader (FPL) 
scheme is discussed.

•	 To compare the quality of the state-action deep neural network models used with the 
reference methods in [26] and with the prosed ones (EXP3 and FPL), we leverage state-
of-the-art techniques such as the power low (PL) exponents [40].

The paper is organized as follows: The system model and problem formulation are pre-
sented in Section II. Section II also discusses the proposed adversarial bandit approaches. 
Section III is devoted to discussing the results in terms of achievable rate and energy effi-
ciency while considering a low complexity alternative using a FPL algorithm. The associated 
DL models’ quality is also analyzed using PL exponents. Finally, the conclusions are made 
and future research directions are outlined in Section V.

2 � Methods
The independent and identically distributed Rayleigh fading channel is not physically 
present when using RIS with a rectangular arrangement. Therefore, an alternative physi-
cally feasible model for evaluating RIS-aided communications is required [41]. To enable 
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practical implementations of RIS-aided communication systems, new path loss models 
[2, 41], and open-source channel models [2, 39] have been developed. As such to repro-
duce the results and perform a fair comparison, we will adopt the system and channel 
model in [26].2

2.1 � System model

As depicted in Fig. 1, transmitter–receiver communication is aided by an RIS having M 
reconfigurable elements. For the sake of simplicity, we assume that both the transmitter 
and receiver are equipped with a single antenna. For generalization, one can adopt the 
signal model from [2]. An OFDM-based transmission with K subcarriers is adopted. The 
links via the RIS are represented by M × 1 complex valued vectors hT ,k ,hR,k ∈ C

M×1 . By 
neglecting the direct path,3 the received signal can be written as

where � ∈ C
M×M is the RIS interaction diagonal matrix, sk and nk are the transmitted 

symbol per subcarrier k and the receive noise with zero mean and variance of σn . With 
PT being the total transmit power, the follow power constraint per subcarrier is enforced 
E |sk |

2 = PT K  . Herein (·)T and E(·) denote the transpose and the expectation opera-
tions, respectively. If we re-arrange the diagonal elements of the interaction matrix � in 
an M × 1 column vector ψ , we refer to it as the reflection beamforming (BF) vector, such 
that � = diag(ψ) , Eq. (1), can also be expressed in more convenient way as

(1)yk = hTR,k�hT,ksk + nk

(2)yk =
(

hR,k ⊙ hT,k
)T

ψsk + nk

Fig. 1  The system model in which transmitter–receiver communication is aided by a RIS having an M×M 
interaction matrix where M = Ny · Nz

2  When using DL tools, it is hard to evaluate the merits and the performance of the proposed methods in comparison 
with reference methods unless similar models and datasets are used. Otherwise, any performance gain may be attributed 
to system and channel model and dataset differences.
3  The benefit of RIS is mostly harnessed when the direct path is blocked or simply very weak. Such an assumption helps 
in simplifying the analysis of the algorithm [1 2 26 39].
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where ⊙ denotes the Hadamard product. Imposing few practical implementation con-
straints of a nearly passive RIS where the phase shifters apply the same phase shift over 
all subcarriers, the m-th element of ψ is modeled as [ψ]m = ejφm.4

2.2 � Channel model and RIS design objective

As for the channel model, a wideband geometric channel model for hT,k and hR,k is used 
[2 26, 41]. Therefore, hT,k and hR,k is expressed as a function of the azimuth and elevation 
angles of arrival/departure of the ℓth path from a total of L paths such that the array vec-
tor of the RIS is defined as a(θℓ , ϕℓ) ∈ C

M×1 where θℓ ∈
[

0 2π
)

 and ϕℓ ∈
[

0 π
)

 (see
Fig. 1). For the sake of brevity, we refer the reader to [2] and [26] for detailed modeling.

The RIS design objective is therefore to find out the reflection BF vector ψ that maxi-
mizes the achievable rate at the receiver

where the signal-to-noise ratio is ρ = PT
/

Kσn . The maximization is done over a dis-
crete pre-defined codebook P due to the fact that a practical radio frequency (RF) phase 
shifter uses quantized phase values. Unfortunately, maximizing (3) entails an exhaustive 
search over the codebook P . Fortunately, the authors in [26] have proposed a novel hard-
ware architecture along with a compressive sensing and DL-based framework to tackle 
the issue with low training overhead. However, there is still a large room for improve-
ment as we will discuss throughout this paper.

2.3 � Proposed algorithm using Adversarial bandit approach 

via exponential‑weight algorithm for exploration and exploitation

The authors in [26] use a DL-based approach to predict the reflection BF vector. Over 
a channel coherence block size S, the RIS receives two pilots to estimate a sampled 
channel vector h(s) = vec

([

h1(s),h2(s), · · · ,hK (s)
])

 where hk(s) ∈ C
M×1 denotes

the sampled combined channel vector, hk = hR,k ⊙ hT,k , for the k-th subcarrier at s-
th channel coherent block using a fraction number of the RIS elements M ≪ M that 
are assumed to be active elements (i.e., equipped with full RF and baseband process-
ing receiver chain for an effective uplink and downlink channel estimation). During 
beam training, the RIS is configured using one reflection beam ψ(notice that the sub-
script k is removed because one reflection BF vector is available for all subcarriers) from 
the codebook P . Then, a dataset is contracted out of the tuples ϒ ←

(

h(s), r(s)
)

 where
r(s) = [R1(s),R2(s), · · · ,RN (s)]

T and Rn(s) is the measured rate using the n-th codebook 
(N is the cardinality of the codebook P ). Finally, a deep neural network is trained using 
the dataset ϒ.

(3)R =
1

K

K
∑

k=1

log2

(

1+ ρ

∣

∣

∣

(

hR,k ⊙ hT,k
)T

ψ

∣

∣

∣

2
)

4  So far only discrete phase variation is considered. To achieve better achievable rate both the phase and the amplitudes 
of the RIS’ elements shall be controlled at the expense of increasing the search space for the optimal solution.
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2.4 � Adversarial bandit approach via exponential‑weight algorithm for exploration 

and exploitation

Despite the novel architecture that suggests the use of a few active elements to sample 
the uplink and downlink channel vectors, the proposed algorithm can be substantially 
improved. As such, we propose an approach based on adversarial bandit scheme wherein 
instead of spanning equally every element of the codebook P , we adopt a scheme that 
favors the more likely optimal beams. Therefore, the dataset  ϒ will have more useful 
data to train with. Table  1 shows the proposed adversarial bandit based on exponen-
tial-weight algorithm for exploration and exploitation (EXP3) [42]. The adversarial ban-
dit scheme is a variant of the multi-armed bandit problem where a fixed limited set of 
resources (phase shifters) must be assigned among alternative choices (reflection beam-
forming) in a way that maximizes their expected gain (achievable rate), when the prop-
erties of each choice are only partly known at the time of assignment and may become 
better comprehended as time passes. This is one of the strongest generalizations of the 

Table 1  Adversarial bandit-based scheme for reflection beamforming vector perdition



Page 8 of 18Ahmed Ouameur et al. J Wireless Com Network        (2022) 2022:111 

bandit problem as it disregards all assumptions of the distribution. In its basic form [43], 
EXP3 chooses a reflection beamforming vector  ψn (steps 4 and 5 in Table 1) from the 
codebook P at random with probability (1− γ ) where it prefers choices with higher 
weights (exploit), or it selects with probability γ to uniformly randomly explore. After 
receiving the rewards (steps 6 and 7), the weights are updated (steps 9 and 10). The 
exponential growth significantly increases the weight of good reflection beamforming 
vectors.

2.4.1 � A note on the training overhead

Over one coherent block s, steps 4 to 10 are repeated T times where T is the number 
of the EXP algorithm iterations which set to the size of the codebook N = |P| (future 
considered works are to study the optimal number of iterations subject to varying 
system parameters). In every iteration one reflection beamforming vector is selected 
from a codebook based on EXP algorithm (step 5). This is used in the subsequent 
pilot transmission where the receiver computes the corresponding achievable rate 
(3). The achievable rate is used to compute the reward (steps 7–9) and then updates 
the associated weight (step 10). These weights are in turn used to compute the prob-
ability pn(t) of the selected reflection beamforming vector (step 4). After T iterations 
the dataset is updated as ϒ ←

(

h(s),p(s)
)

 where p(s) = [p1(T ), p2(T ), . . . , pN (T )]T 
which depicts the probability of every element of the codebook for the coherent 
block s. The process is repeated over S coherent blocks which corresponds to 54,300 
possible positions from the ray tracing scenario ‘O1’ (see Fig. 2) used in our simula-
tions. 80% of the training dataset ϒ is used to train a deep neural network (DNN) to 
learn the mapping between the combined channel vector and the probability of the 
elements of the codebook. During the detection phase (normal operation), only two 
pilots are transmitted per coherent block s′ . The combined channel vector h

(

s′
)

 is 
computed using the low number of active elements and fed to the DNN to infer the 

Receivers 

x-y grid

Building

R1000

Transmitter

R1300

Building

RIS

BS#3

BS#4

Fig. 2  The ray tracing scenario ‘O1’ from [33]. The BS#3 is selected to be the RIS while the transmitter is fixed 
at the position of raw R850 and column 90. The receiver can be positioned at any 54,300 points within the 
x–y grid between raw R1000 and R1300. These points constitute the dataset which is split into 80% training 
set and 20% test set
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probability of the elements of the codebook p
(

s′
)

= [p1, p2, . . . , pN ]
T  . Finally, the RIS 

uses the codebook ψn∗ where n∗ = arg max
n

[

p
(

s′
)]

n
.

The key advantage of the proposed scheme is that instead of using the 
rates as the deep neural network outputs, we use the pull-probability vector 
p(s) = [p1(T ), p2(T ), . . . , pN (T )]T  computed at step 4 using the updated weights 
which are in turn computed using the normalized reward (step 7). The normalized 
reward rnt is computed using the received rate Rnt (s) as rnt = Rnt (s)

/

Rmax , where 
Rmax is the maximum achievable rate or a large number to make sure that rnt ∈ [0, 1].

2.4.2 � Note on the complexity in comparison with the base method in [26]

The computation complexity of the learning phase of the proposed scheme in 
Table 1, is divided into two parts. The first part comprises steps 3–10 while the sec-
ond part consists of step 12 which entails training a DL model. The main differences 
between the proposed method and the reference method [26] are as follows: During 
part 1, the proposed method involves extra T (where T is the number of the EXP 
algorithm iteration which is set to the size of the codebook N = |P| ) basic scalar 
operations (such as multiplications, division, and exponentiation) whereas the refer-
ence method does not involve any operation at this stage. However, in part 2 where 
a DL model is trained, the reference method requires an order of magnitude (more 
than 10 times) larger dataset to reach similar achievable rate (c.f. Fig. 3). The train-
ing of a DL model is by far the most dominant computation burden compared to the 
first part.

Fig. 3  The achievable rate versus the number of training data of the proposed EXP3-based scheme in 
comparison with the reference DL reflection beamforming [26] and the reference genie-aided method (that 
assumes perfect knowledge of the channel) where M = 4
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2.4.3 � Note on the EXP algorithm’s hyperparameters values

So far γ ∈ (0, 1] and the number of iteration T are set manually to 0.1 and N = |P| where 
we have noticed a substantial gain in the required training dataset size. However, further 
investigation is required to infer the optimal values of these hyperparameters over varying 
system parameters. One approach is to perform an exhaustive grid search over all possible 
values. The optimal values would be the ones that provide the best achievable rate and/or 
spectral energy efficiency at the constrain of an order of magnitude smaller training dataset. 
Another very appealing approach is to resort to meta-learning to learn these hyperparam-
eters using for instance model-agnostic meta-learning (MAML) algorithm [44, 45].

3 � Results and discussion
The proposed EXP3-based learning scheme is evaluated using the outdoor ray tracing sce-
nario O1 from the deep-MIMO dataset that is publicly available at [39]. For the sake of 
facilitating the comparison, a similar setup is used in [26] as well (see Fig. 2). The results 
herein are also validated using channel data generated using SimRIS tool [2]. The adopted 
RIS employs a uniform planar array (UPA) with 16-by-16 (M = 256) antenna elements with 
3 dBi gain at the 28 GHz mmWave setup. The transmit power is set to 10 dBW while the 
receiver’s noise figure is 5 dB. The codebook P is constructed using a 2D discrete Fourier 
transform (DFT) matrix.

The number of subcarriers involved in h(s) is 
(

K = 64
)

≪ (K = 512) , which sets the 
input of the DL model equal to 2KM . The sampled channel vector is normalized prior to 
the training phase. The DL models consists of four layers similar to the one used in [26] 
where the number of the nodes in the hidden layers is 

(

2KM, 4M, 4M,M
)

 . The regular 
training and optimization parameters are: batch size set to 500 samples, dropout rate is 0.5, 
and L2 regularization factor is 0.0001. Of course, we do not attempt to optimize the DL 
model but we will discuss its quality using state-of-the-art techniques such as the power 
low exponents [40] in section IV.

Figure 3 shows the achievable rate as a function of the number of training samples. The 
proposed EXP3-based scheme requires substantially less data as compared to the DL 
reflection beamforming technique [26], owing to the optimal selection of the dataset which 
stresses that less likely reflection beams are given lower probability, excluding them during 
the exploitation phase of the EXP3 algorithm (Table 1, Step 5). The reference DL reflec-
tion beamforming requires more active elements M to sustain competitive performance as 
shown in Fig. 4 where EXP3-based learning schemes achieves 96% of the optimal achiev-
able rate compared to 88% using the reference method in [26]. However, this will come at 
the expense of higher power consumption. Nevertheless, it seems that as far as the number 
of active elements is higher than 4, all methods are showing close to the performance of the 
genie-aided method.

We reformulate the energy efficiency as η = W × R
/

Pc measured in Mbit/J, where W  
is the transmission bandwidth and Pc is the RIS power consumption which can be broken 
down to

(4)Pc = MPPS +M
(

PLNA + PRF + 2FOMWfFS2
b
)
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where the term 2FOMWfFS2
b is the power consumption of a b-bits ADC with fFS 

being the Nyquist sampling frequency and FOMW is the Walden’s figure of merit [46]. 
PPS , PLNA and PRF are, respectively, the power consumptions of the phase-shifter in the 
passive RF path, and the low-noise amplifier (LNA) and the rest of the RF chain along 
the active paths. As per the state-of-the-art RF parts’ specifications, these variables 
are set to PPS = 10 mW , PLNA = 20 mW , PRF = 40 mW and the baseband process-
ing power of 200 mW is assumed. Assuming similar values like the ones in [26] and [47], 
FOMW = 46.1 f J/conversion at W = 100MHz and b = 4 bits . As such, Fig. 5 depicts the 
energy efficiency η as a function of the number of active elements M . Like the reference DL 
reflection BF [26], the proposed method shows optimal but higher energy efficiency perfor-
mance using four active elements only.

In light of these results, the EXP3-based adversarial bandit method demonstrates out-
standing performance gains compared to other state-of-the-art methods. So far, the 
adopted deep neural network architecture is similar to the one used in [26]. The reason 
being that one would be keen to see the effect of using a new learning scheme rather than 
proposing a new DL model. The other reason, which we discuss in the next section, is 
that one will also be interested to compare the quality of the two networks trained using 
ϒ ←

(

h(s), r(s)
)

 for [26] and ϒ ←
(

h(s),p(s)
)

 in the proposed method. However, let us 
first introduce another computationally efficient adversarial bandit-based scheme that uses 
the Follow the Perturbed Leader (FPL) algorithm.

Fig. 4  The achievable rate versus the number of active elements of the proposed EXP3-based scheme in 
comparison with the reference DL reflection beamforming [26] and the reference genie-aided method (that 
assumes perfect knowledge of the channel) where the number of training data is set to 30 K
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4 � Improving and evaluation of the quality of proposed approaches 
Even if the EXP3 algorithm has efficient theoretical guarantees, it is computationally 
expensive due to the calculation of the exponential terms [42]. The FPL algorithm is 
then introduced to alleviate the burden by following the reflection beam that has the 
best performance while adding exponential noise to it to provide exploration [48]. Even 
though the baseline FPL algorithm does not have appreciated theoretical guarantees, it 
is worth evaluating its performance in the scope of the current RIS refection beamform-
ing prediction. Table 2 shows the FPL algorithm where the exponential noise, which can 
be computed offline, is added in step 4 to provide exploration.

Figure  6 shows that the FPL algorithm provides similar performances to the EXP3 
algorithm at the expense of less “explainability” information, such as the pull-proba-
bilities and weights inherent in EXP3. However, how one can decide which algorithm 
is better beyond just comparing the achievable rates (accuracy)? Even if all algorithms 
have different approaches to build the training dataset ϒ , they all share a similar model. 
Figure 75 depicts the DL models used with the EXP3/FPL algorithms and the reference 
method [26]. The slit differences are in using the dropout layers to improve the regulari-
zation of the reference method and the use of the softmax activation for the model used 
with EXP3 to generate the pull-probabilities. Nevertheless, in the end, these models are 
considered as black boxes that need to be compared.

Fig. 5  The energy efficiency η versus the number of active elements M of the proposed EXP3-based scheme 
in comparison with the reference DL reflection beamforming [26] and the reference genie-aided method 
where the number of training data is set to 30 K

5  Netron is used to generate Fig. 7. It is a visualizer for neural network, deep learning, and machine learning models. It 
can be acquired from https://​www.​elect​ronjs.​org/​apps/​netron.

https://www.electronjs.org/apps/netron
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It is beyond the scope of this paper to dig into explainability of DL models which can 
be found in [49]. We will rather use state-of-the-art tools from [40] and mainly power 
low (PL) exponents to compare the quality of the DL models. Figure 8 depicts the PL 
exponents for the four layers. Indeed, we expect that a poorly trained model will lack 
good (i.e., small exponents α) PL behavior in some layers, whereas the EXP3 has, on 
average, smaller α values than the reference method, with all α ≤ 6 and with smaller 
mean/median α. It also has far fewer unusually large outlying α values than the reference 
method. The model used with FPL algorithm is rather showing the best training quality 
at the expense of less theoretical guarantees. The exponent values are obtained using the 
WeightWatcher tool from [50]. For future investigation, this should also be contrasted 
with the behavior displayed by scale-dependent metrics such as the Frobenius norm and 
the Spectral norm [40].

Table 2  Follow the perturbed leader (FPL) scheme for reflection beamforming perdition
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5 � Conclusion
RIS-aided communication has received increasing interest from the research com-
munity, with discussions not just about its unprecedented potential but also about the 
stumbling blocks with regard to feasible real-time operation. Among others, channel 
estimation overhead is regarded as a serious issue, which makes the adoption of DL tools 
an attractive alternative to solve the problem. As such, we have discussed two adversarial 
bandit-based schemes that provide substantial spectral and energy efficiency gains. We 
have also discussed the associated DL models’ quality using the PL exponents to show 
the training quality using the dataset generated from the proposed schemes. Our work 
contributes to shedding light on the potential improvements that can be made in explor-
ing the interplay between ML and RISs. For future research, one could investigate the 
proposed schemes under different channel and system parameters while adopting meta-
learning approach [33, 51], to improve the online training performance. Different DL 
models can also be used along with these schemes wherein explainability shall be given a 
considerable attention [49] to improve the trustworthiness of the DL-enabled solutions. 
Last but not least, at the hardware level, one can use low power root-mean-square and 
envelop detectors to capture the high dimensional received signal features along space 
(over RIS geometry) and time so that more advanced DL models such as long short-term 
memory (LSTM) model can be leveraged.

Fig. 6  The spectral energy efficiency versus the number of training samples and the number of active 
elements M for the proposed FPL-based scheme
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Fig. 7  The DL models used with a EXP3/FTPL algorithm and with b the reference method [26] generated 
using Netron
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