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Abstract-- The usage of multi-objective cost functions (MOCFs) 

in sizing and energy management strategy (EMS) of fuel cell 
hybrid electric vehicles (FCHEVs) has expanded due to the 
participation of multiple technological and economic disciplines. 
To better understand the impact of price fluctuation on the 
component size and EMS of an FCHEV, this article proposed a 
sensitivity analysis methodology. First, a two-step optimization 
approach that considers hydrogen consumption, system 
degradation, and trip cost is used to minimize a MOCF of the Can-
Am Spyder electric motorcycle simulator. Then, an effect analysis 
is carried out for the cost-optimal results under two driving 
profiles to understand the link between cost variation and system 
performance. These simulations indicate that each might result in 
different system sizes and EMS compromise. After that, an online 
optimization EMS based on sequential quadratic programming is 
used on a reduced-scale hardware-in-the-loop configuration to 
evaluate the simulation results with varied weights. Experimental 
results indicate that when an adequate size is used for each pair of 
weights, the EMS results in a 6 % decrease in the trip cost. 
 

Index Terms— Electric vehicles, fuel cells, genetic algorithms, 
multi-objective programming, optimal control 

NOMENCLATURES 
DP    Dynamic programming 
EE   Elementary effects 
EMR  Energetic macroscopic representation 
EMS   Energy management strategy 
FC   Fuel cell 
FCHEV  Fuel cell hybrid electric vehicle 
GA    Genetic algorithm 
HIL   Hardware-in-the-loop 
MOCF  Multi-objective cost function 
SA   Sensitivity analysis 
SC   Supercapacitor 
SQP   Sequential quadratic programming 
WMTC  World motorcycle test cycle 
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I.  INTRODUCTION 
 fuel cell hybrid electric vehicle (FCHEV) is composed 

of a proton exchange membrane fuel cell (FC), as the 
principal power source, and a battery and/or supercapacitor 
(SC), as the energy storage system [1]. This hybrid structure can 
supply the dynamic power demand, absorb the regenerative 
braking energy, and handle cold start issues provided that 
proper component sizing and energy management strategy 
(EMS) are designed [2]. An appropriate component sizing 
declines the overall ownership cost of a FCHEV while 
maintaining the expected performance. In [3], it is shown that 
determining the optimal battery and SC capacity according to 
the recuperation potential and FC dynamics can lead to small-
sized battery and more stable FC operation. The use of an EMS 
is also necessary since the involved power/energy sources have 
different energetic characteristics in this hybrid powertrain. 
This strategy is supposed to distribute the power flow between 
the sources with the aim of minimizing the hydrogen 
consumption and maximizing the lifetime of the components. 
The presence of several objectives (technical, economic, 
environmental, and socio-political) in the design of a proper 
sizing and EMS makes the definition of a suitable cost function 
vital. Hence, the use of a multi-objective cost function (MOCF), 
based on an economic and system dimensions point of view, 
has been practiced in [4, 5]. A MOCF attempts to reach a 
compromise among the defined goals using the given 
importance or weights to each of the objectives. In [6], an 
economic comparison of a multi-objective hierarchical EMS 
against single objective ones is presented. The results shows 
that an equivalent consumption minimization strategy will 
regulate the FC to work in the optimal efficiency region, while 
the MOCF controls the output current of the FC to achieve an 
optimal balance between the FC degradation and hydrogen 
consumption. In [7], an economic assessment of a convex 
multicriteria optimization approach is implemented in a FC 
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hybrid bus. The resulted pareto plots show that a balance 
between the FC lifetime and hydrogen consumption is 
necessary to reach the maximum benefits of the hybrid 
powertrains. In [8], a multi-objective design exploration shows 
that the FC size has a considerable effect on the overall vehicle 
performance and system degradation. However, these weights 
are normally specified based on the prices of components which 
are variable owing to different policies and technological 
advancement [9]. In this regard, sensitivity analysis (SA) has 
been successfully utilized in other research areas to clarify such 
interactions. The SA approaches can be mainly divided into two 
groups of local and global [10]. Local SA techniques 
investigate the effect of small perturbations around one point 
while the global ones consider a wider variation range of the 
inputs and analyze their influence over the whole feature space 
[11]. The performed SA approaches in the area of FCHEVs 
have mainly focused on the one-at-a-time method to identify 
the parameters or strategies that lead to the best result. In [12], 
a convex programming problem is formulated to optimize the 
power distribution and sizing of a plug-in FC urban logistics 
vehicle. In order to define the battery and FC sizes which in turn 
minimize the energy and power sources cost, a one-at-a-time 
SA is done based on different driving cycles and hydrogen 
prices. However, the authors have mainly focused on the 
performance of the EMS without paying attention to the real 
influence of the component prices. In [13], a multi-objective 
optimal problem, considering the decay of an electrochemical 
surface area model, fuel consumption and battery degradation,  
is developed using different weight factors. The obtained results 
show that assigning different factors to the FC degradation can 
change its operating function from a load-following to a more 
constant profile, which dramatically affects its lifetime. 
However as underlined in the article, future changes in the cost 
or degradation rates may yield different results. In [14], a sizing 
approach is implemented for FC electrified heavy-duty trucks 
and tested under different cost scenarios by defining total cost 
of ownership. The obtained results suggest that a FC powertrain 
will be more attractive than a pure battery one in 10 years 
according to current projections for the cost of FC system, 
battery pack, fuel storage, hydrogen, and electricity. In [15], a 
SA is performed for different initial battery SOC and energy 
prices to assess the effect of a multi-scheme EMS for a driven 
passenger ship. Another example is given in [16], where the 
influence of the modeling parameters on the dynamical 
performance of PEMFC is investigated. This study shows that 
the most sensitive parameters can mislead the polarization 
curve estimation from the real behavior. 

So far, several methods have been proposed for determining 
the most appropriate combination of component sizes based on 
the hydrogen consumption, FC degradation or MOCFs. 
However, these works do not ponder the effect of weight 
variations on the cost function. Therefore, this paper proposed 
a methodology to scrutinize the impact of component price 
variation on the sizing and energy management of a FCHEV. 
The Morris or elementary effects (EE) method is used in this 
work due to its low computational within the feasible parameter 
space; the performance of this screening technique has already 

been validated in other engineering problems [17]. This global 
SA is suitable for the systemic analysis of FCHEVs, mainly due 
to its ability to cope with complex systems (multiple criteria) 
with a low computational complexity compared with variance-
based methods. However, special attention needs to be paid to 
selecting the EMS and sizing method to avoid misleading 
conclusions. In fact, the performance of an EMS depends on the 
system size because this size will define the operating range and 
the possible combination of the system states [18]. Therefore, 
in this work, a two-step optimization method with a nested 
structure is utilized to reach the global optima and remove any 
influence on the EMS or system size results during the SA. The 
nested or bi-level method is one of the most used methods to 
solve this coupled optimization problem in recently published 
papers since it reaches a system-level optimal solution by 
making a tradeoff between the two problems [19, 20]. This 
work employs genetic algorithm (GA) and dynamic 
programming (DP) to reach near-optimal sizing and optimal 
power splitting, respectively, in a multi-objective system-level 
optimization. Several simulations and experiments are carried 
out to verify the outcomes of this study.  

The rest of the paper is organized as follows. First, the 
followed methodology is discussed in Section II. Then, the 
obtained results are discussed in Section III. Finally, the 
conclusion is given in Section IV. 

II.  METHODOLOGY 
 In this work, the vehicle under study is the Can-Am Spyder 
electric motorcycle, which has an electric motor (permanent 
magnet synchronous: 28 kW, 96 V) directly linked to the rear 
wheel. It is utilized as an experimental test bench in e-TESC 
laboratory at the University of Sherbrooke [21]. In this 
manuscript, the performance of this electric motorcycle is 
evaluated for a FC-SC semi-active architecture. To do so, a 
simulation stage and an experimental stage validation are 
considered. In the simulation stage, an experimental based 
vehicle, FC and SC models are utilized to develop a coupled 
sizing and EMS problem and conduct a SA on the price 
variation of the power supply system. Consequently, in the 
experimental stage, a reduced-scale hardware-in-the-loop 
(HIL) set-up is utilized to evaluate with a real-time EMS the 
sizing achieved in the simulation stage. Hereinafter, the 
modeling procedure of each stage is briefly explained. 

A.  Studied vehicle - powertrain model and simulation 
FCHEVs are multi-physical systems that can be 

conveniently represented by energy-flow modeling approaches, 
such as energetic macroscopic representation (EMR). EMR 
uses causal graphic descriptions to show how energy is 
converted and exchanged in multi-energy domain systems. It 
has basic coupling elements that correspond to the multi-energy 
components and control elements that allow inversed model-
based control loops to be deduced. Different colors and blocks 
reflect the interactions in the subsystems differently in EMR’s 
graphical elements. Energy source, accumulation, conversion, 
and distribution are the four key elements employed in EMR to 
emphasize the system’s energetic properties. The formalism of 
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EMR was initially presented in [22] and used in several other 
papers for FCHEVs [23]. Fig. 1 presents the forces acting on 
the vehicle alongside its moving direction (Fig. 1a) and the 
utilized FC-SC semi-active powertrain configuration (Fig. 1b).  
The vehicle dynamics and forces, shown in Fig. 1a, are divided 
into the mechanical transmission, chassis and environment 
interaction, shown in Fig. 1b. This was calculated using 
Newton’s laws, as:  
𝑑𝑑𝑉𝑉𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑

= (𝐹𝐹𝑡𝑡𝑡𝑡−𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒)
𝑚𝑚𝑒𝑒𝑒𝑒 sin 𝜃𝜃

                 (1) 

𝐹𝐹𝑑𝑑𝑡𝑡 = �𝐺𝐺𝑔𝑔𝑏𝑏 𝑟𝑟⁄ �𝑇𝑇𝑒𝑒𝑚𝑚𝜂𝜂𝑔𝑔𝑏𝑏
𝛽𝛽                (2) 

𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐹𝐹𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐹𝐹𝑔𝑔𝑡𝑡𝑔𝑔𝑑𝑑𝑒𝑒 + 𝐹𝐹𝑔𝑔𝑎𝑎𝑡𝑡             (3) 

𝐹𝐹𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑚𝑚𝑚𝑚𝜇𝜇𝑓𝑓𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃               (4) 

𝐹𝐹𝑔𝑔𝑎𝑎𝑡𝑡 = 0.5𝜌𝜌𝑔𝑔𝑎𝑎𝑡𝑡𝐴𝐴𝑔𝑔𝑒𝑒𝑡𝑡𝑟𝑟𝐶𝐶𝑑𝑑𝑉𝑉𝐸𝐸𝑉𝑉2            (5) 

𝐹𝐹𝑔𝑔𝑡𝑡𝑔𝑔𝑑𝑑𝑒𝑒 = 𝑚𝑚𝑚𝑚 sin𝜃𝜃                (6) 

𝛺𝛺𝑚𝑚 = �𝐺𝐺𝑔𝑔𝑏𝑏 𝑟𝑟⁄ �𝑉𝑉𝐸𝐸𝑉𝑉                (7) 

 
Fig. 1 The studied vehicle, a) Can-Am Spyder electric motorcycle, and b) 
powertrain configuration modeling using EMR. 
 
where 𝑉𝑉𝐸𝐸𝑉𝑉 is the vehicle velocity, 𝐹𝐹𝑑𝑑𝑡𝑡 is the traction force, 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 
is the vehicle traction force resistance, 𝑚𝑚 is the vehicle mass, 
𝐺𝐺𝑔𝑔𝑏𝑏 is the gearbox transmission ratio, 𝑟𝑟 is the wheel radius, 𝑇𝑇𝑒𝑒𝑚𝑚 
is the electric machine torque, 𝜂𝜂𝑔𝑔𝑏𝑏 is the gearbox transmission 
efficiency, 𝑚𝑚 is the gravitational acceleration, 𝜌𝜌𝑔𝑔𝑎𝑎𝑡𝑡  is the air 
density, 𝛽𝛽 is 1 in traction mode and -1 in braking mode, and Ω𝑚𝑚 
is the rotor rotation speed. It is worth mentioning that the 
vehicle mass includes an approximation of the mass of the 
chassis, passenger, powertrain and the energy sources. The 
mass of the energy/power sources are calculated based on the 
number of cells for the FC and SC arrangement [24].  

 The requested power (𝑃𝑃𝑡𝑡𝑒𝑒𝑟𝑟), represented with a multi-physic 
conversion element, is calculated based on the torque and drive 
efficiency (𝜂𝜂𝑚𝑚) that considers the inverter and motor efficiency 
by: 

𝑃𝑃𝑡𝑡𝑒𝑒𝑟𝑟 = 𝑇𝑇𝑒𝑒𝑚𝑚Ω𝑚𝑚𝜂𝜂m
𝛽𝛽                  (8) 

The relationship of 𝑃𝑃𝑡𝑡𝑒𝑒𝑟𝑟 , effective FC power (𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑏𝑏𝑏𝑏𝑏𝑏), and 
SC power (𝑃𝑃𝑆𝑆𝐹𝐹) observed in the DC bus can be defined by: 

 𝑃𝑃𝑡𝑡𝑒𝑒𝑟𝑟 = 𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑃𝑃𝑆𝑆𝐹𝐹                 (9) 

The FC stack performance is modeled by an electrochemical 
model proposed by Amphlett et al., [25] which was successfully 
implemented with experimental data in several papers [26]. In 
this work, the FCvelocity-9SSL from Ballard Power Systems 
has been chosen as the main power supply system due to the 
different available sizes, from 3.8 kW to 27.3 kW. The cell 
voltage (𝑢𝑢𝐹𝐹𝐹𝐹) of a proton exchange membrane type FC is 
approximated as (10-14): 

𝑢𝑢𝐹𝐹𝐹𝐹 = 𝑁𝑁𝐹𝐹𝐹𝐹(𝐸𝐸𝑁𝑁𝑒𝑒𝑡𝑡𝑒𝑒𝑏𝑏𝑑𝑑 + 𝑢𝑢𝑔𝑔𝑎𝑎𝑑𝑑 + 𝑢𝑢𝑟𝑟ℎ𝑚𝑚𝑎𝑎𝑎𝑎 + 𝑢𝑢𝑎𝑎𝑟𝑟𝑒𝑒)     (10) 

𝐸𝐸𝑁𝑁𝑒𝑒𝑡𝑡𝑒𝑒𝑏𝑏𝑑𝑑 = 1.229 − 0.85 × 10−3(𝑇𝑇𝐹𝐹𝐹𝐹 − 298.15) + 4.3085 ×
10−5𝑇𝑇𝐹𝐹𝐹𝐹[ln(𝑝𝑝𝐻𝐻2) + 0.5 ln(𝑝𝑝𝑂𝑂2)]         (11) 

�
𝑢𝑢𝑔𝑔𝑎𝑎𝑑𝑑 = 𝜉𝜉1 + 𝜉𝜉2𝑇𝑇𝐹𝐹𝐹𝐹 + 𝜉𝜉3𝑇𝑇𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙(𝐶𝐶𝐶𝐶2) + 𝜉𝜉4𝑇𝑇𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙(𝑖𝑖𝐹𝐹𝐹𝐹)

𝐶𝐶𝑂𝑂2
∗ = 𝑃𝑃𝑂𝑂2

5.08×106 𝑒𝑒𝑒𝑒𝑒𝑒(−498 𝑇𝑇𝐹𝐹𝐹𝐹⁄ )
                              (12) 

𝑢𝑢𝑟𝑟ℎ𝑚𝑚𝑎𝑎𝑎𝑎 = −𝑖𝑖𝐹𝐹𝐹𝐹𝑅𝑅𝑎𝑎𝑒𝑒𝑑𝑑𝑒𝑒𝑡𝑡𝑒𝑒𝑔𝑔𝑟𝑟 = −𝑖𝑖𝐹𝐹𝐹𝐹(𝜁𝜁1 + 𝜁𝜁2𝑇𝑇𝐹𝐹𝐹𝐹 + 𝜁𝜁3𝑖𝑖𝐹𝐹𝐹𝐹) (13) 

𝑢𝑢𝑎𝑎𝑟𝑟𝑒𝑒 = 𝛼𝛼𝑙𝑙𝑙𝑙(1 −  𝑖𝑖𝐹𝐹𝐹𝐹 𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑚𝑚𝑔𝑔𝑒𝑒⁄ )          (14) 

where 𝑢𝑢𝐹𝐹𝐹𝐹  is calculated with the number of cells (𝑁𝑁𝐹𝐹𝐹𝐹), the 
reversible voltage (𝐸𝐸𝑁𝑁𝑒𝑒𝑡𝑡𝑒𝑒𝑏𝑏𝑑𝑑), and the irreversible voltage losses 
composed of the activation loss (𝑢𝑢𝑔𝑔𝑎𝑎𝑑𝑑), ohmic loss (𝑢𝑢𝑟𝑟ℎ𝑚𝑚𝑎𝑎𝑎𝑎), and 
concentration loss (𝑢𝑢𝑎𝑎𝑟𝑟𝑒𝑒). The voltage components are in 
function of the operating current (𝑖𝑖𝐹𝐹𝐹𝐹), stack temperature (𝑇𝑇𝐹𝐹𝐹𝐹), 
hydrogen partial pressure (𝑝𝑝𝐻𝐻2),  oxygen partial pressure (𝑝𝑝𝑂𝑂2), 
activation empirical coefficients (𝜉𝜉𝑒𝑒), oxygen concentration 
(𝐶𝐶𝑂𝑂2

∗ ), internal resistor (𝑅𝑅𝑎𝑎𝑒𝑒𝑑𝑑𝑒𝑒𝑡𝑡𝑒𝑒𝑔𝑔𝑟𝑟) defined by the three 
parametric coefficients 𝜁𝜁𝑒𝑒 (n = 1 … 3), a semi-empirical 
parameter related to the diffusion mechanism (𝛼𝛼), and the 
maximum current (𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑚𝑚𝑔𝑔𝑒𝑒). More information about each of 
these parameters can be found in [20].  

The effective power of the FC system in the DC bus is 
calculated by using the efficiency ratio (𝜂𝜂𝐷𝐷𝐹𝐹−𝐷𝐷𝐹𝐹) of the DC-DC 
converter and the consumed power by the auxiliaries; 
composed of the fan cooling system (𝑃𝑃𝑓𝑓𝑔𝑔𝑒𝑒) and the power of the 
compressor (𝑃𝑃𝑎𝑎𝑟𝑟𝑚𝑚𝑒𝑒), as follow: 

𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑏𝑏𝑏𝑏𝑏𝑏 =  (𝑖𝑖𝐹𝐹𝐹𝐹 ∙ 𝑢𝑢𝐹𝐹𝐹𝐹) 𝜂𝜂𝐷𝐷𝐹𝐹−𝐷𝐷𝐹𝐹 − 𝑃𝑃𝑎𝑎𝑟𝑟𝑚𝑚𝑒𝑒 − 𝑃𝑃𝑓𝑓𝑔𝑔𝑒𝑒       (21) 

Moreover, the hydrogen flow (𝑊𝑊𝐻𝐻2) is approximated based 
on a linear function of the requested FC current as follow: 

𝑊𝑊𝐻𝐻2 = 0.00696 𝑖𝑖𝐹𝐹𝐹𝐹  𝑁𝑁𝐹𝐹𝐹𝐹               (18) 

A classical RC model represents the SC energy block due to 
the ease of calculation and a good approximation of the system 
behavior [27]. The electrical behavior is calculated as: 
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𝑢𝑢𝑆𝑆𝐹𝐹(𝑡𝑡) = 𝑢𝑢𝑎𝑎(0) + 1
𝐹𝐹𝑆𝑆𝐹𝐹

∫ 𝑖𝑖𝑆𝑆𝐹𝐹𝑑𝑑𝑡𝑡 − 𝑖𝑖𝑆𝑆𝐹𝐹𝑅𝑅𝑆𝑆𝐹𝐹        (19) 

where the SC voltage (𝑢𝑢𝑆𝑆𝐹𝐹(𝑡𝑡)) is a function of the initial open-
circuit voltage (𝑢𝑢𝑎𝑎(0)) and the current across the SC (𝑖𝑖𝑆𝑆𝐹𝐹). The 
values of equivalent capacitance (𝐶𝐶𝑆𝑆𝐹𝐹), and the equivalent 
resistor of the SC (𝑅𝑅𝑆𝑆𝐹𝐹) are reported in the Maxwell 
Technologies manufacturer datasheet. The remaining energy in 
the SC is estimated by the formula of Coulomb counting, where 
𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹(0) represents the initial level of charge, and 𝑄𝑄𝑚𝑚𝑔𝑔𝑒𝑒 is the 
maximum capacity [28]. 

𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹(𝑡𝑡) = 𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹(0) + ∫ 𝑎𝑎𝑆𝑆𝐹𝐹 𝑑𝑑𝑑𝑑
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

           (20) 

B.  Hardware-in-the-loop set-up 
Compared to real-vehicle tests, HIL is an attested, cost-

effective procedure for designing an EMS. Moreover, the 
repeatability of the same case studies is a real plus to HIL 
simulation against on-road test facilities [29]. The developed 
HIL set-up for evaluating the performance of the vehicle model 
using different online EMSs is presented in Fig. 2. This HIL test 
bench is exactly based on the explained vehicle model in Fig. 
1, in which the FC model has been replaced with an open 
cathode proton exchange membrane FC H-500 from Horizon 
company. 

 

 
Fig. 2 The developed HIL set-up for evaluating the vehicle performance. 
 

The FC controller handles the affixed axial fan, hydrogen 
valve, and purge valve. The axial fan has a dual role of cooling 
down the stack temperature and providing the required oxygen 
for the reactions. The information between the CompactRIO 
and the PC is transferred by an Ethernet connection with a rate 
of 10 Hz. A DC Electronic Load (8514 BK Precision) is 
employed to demand the imposed load profile by the DC-DC 
converter from the FC stack.  

C.  Nested optimization method 
The utilized optimization method has two nested loops. The 

first (outer) one uses GA to minimize the cost function by 
finding the right decision variables (size of powertrain 
components). The second (inner) employs DP to optimally 
distribute the power using the obtained sizes in the first loop. 

GA is appropriate for optimization problems in which the 
cost function is nonlinear, discontinuous, nondifferentiable, or 
stochastic. Two important components of the GA are the 
decision variables and the cost function. The decision variables 
in the sizing problem of this work are limited to the number of 
cells forming the FC stack (𝑁𝑁𝐹𝐹𝐹𝐹), the capacitance of a single SC 
(𝐶𝐶𝑆𝑆𝐹𝐹,𝑏𝑏), the number of SC connected in series (𝑁𝑁𝑆𝑆𝐹𝐹,𝑏𝑏), and the 
number of SC series banks in parallel (𝑁𝑁𝑆𝑆𝐹𝐹,𝑒𝑒). GA is expected 
to minimize the following MOCF by tuning the mentioned 
variables. The trip cost is in terms of USD and comprises the 
costs of fuel consumption and wear of the system. The FC 
portion is linked to the system degradation, which is considered 
as the percentage of reduction in the maximum power. A 
dynamic operation of the FC significantly affects its durability 
and performance by corroding its key components resulting in 
the degradation of platinum catalyst and increment of the mass 
transfer resistance [30]. The SC and DC-DC converter, 
however, are predicted to last for thousands of cycles under 
typical circumstances [31]. Hence, their costs are only 
correlated with the trip time to increase their impact on the 
optimization process. 

$𝑇𝑇𝑟𝑟𝑖𝑖𝑝𝑝 = $𝐹𝐹𝐶𝐶𝑏𝑏𝑠𝑠𝑏𝑏∆𝐹𝐹𝐹𝐹 + $𝐻𝐻2 ∫𝑊𝑊𝐻𝐻2dt + $𝑆𝑆𝐶𝐶∆𝑑𝑑𝑡𝑡𝑎𝑎𝑒𝑒 +
$𝐷𝐷𝐶𝐶𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒∆𝑑𝑑𝑡𝑡𝑎𝑎𝑒𝑒                   (22) 

where the trip cost ($𝑇𝑇𝑟𝑟𝑖𝑖𝑝𝑝) in USD is composed of the FC 
system degradation cost ($𝐹𝐹𝐶𝐶𝑏𝑏𝑠𝑠𝑏𝑏: FC system cost based on its 
maximum power, ∆𝐹𝐹𝐹𝐹 : FC power degradation), the hydrogen 
consumption cost ($𝐻𝐻2: Hydrogen cost per kilogram, 𝑊𝑊𝐻𝐻2: 
hydrogen flow in SLPM), SC operational cost ($𝑆𝑆𝐶𝐶: SC cost 
based on the total capacity, ∆𝑑𝑑𝑡𝑡𝑎𝑎𝑒𝑒: trip time), and DC-DC 
converter operational cost ($𝐷𝐷𝐶𝐶𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒: DC-DC converter cost 
based on the FC maximum power). However, the direct 
measurement of some internal parameters to monitor the FC/SC 
degradation are very challenging in real-time applications. In 
this respect, an indirect estimation can be done with 
mathematical models approaches, mainly group in white-box, 
black-box, and grey-box methods [32]. In [33], it is explained 
that the FC degradation is normally estimated with a semi-
empirical model that consider the voltage drop at the stack level 
and extrapolate it by the number of cells. A similar approach 
has been done in [8, 34], where a stochastic dynamic 
programming strategy quantifies the FC degradation rates in 
terms of volts to compare different sizes in a common ground. 
In order to have a direct comparison of FC degradation between 
different FC sizes, it has been opted to translate the percentage 
of FC degradation to its equivalent in power decay caused by 
degradation. In the presented work, the power decay (∆𝐹𝐹𝐹𝐹) is 
calculated as a sum of effect from the different load conditions 
based on the empirical coefficients of a percentage FC 
performance degradation [35, 36]. 

∆𝐹𝐹𝐹𝐹= 𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑚𝑚𝑔𝑔𝑒𝑒(𝑘𝑘1𝑡𝑡1 + 𝑘𝑘2𝑙𝑙1 + 𝑘𝑘3𝑙𝑙2 + 𝑘𝑘4𝑡𝑡2 + 𝑘𝑘5𝑡𝑡3)    (23) 

where 𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑚𝑚𝑔𝑔𝑒𝑒  is the FC maximum power, 𝑘𝑘1 
(0.00126 % ℎ⁄ ) is the degradation rate due to low-power 
operation (less than 5 % of FC maximum power), 𝑘𝑘2 
(0.00196 % 𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑒𝑒⁄ ) is the degradation rate of one on/off cycle, 
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𝑘𝑘3 (5.93 × 10−5 % 𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑒𝑒⁄ ) is the degradation rate of transient 
load changes, 𝑘𝑘4 is the degradation rate of high-power 
operation (more than 90 % of FC maximum power), and 𝑘𝑘5 
(0.002 % ℎ⁄ ) is the natural performance decay rate. 𝑡𝑡1, 𝑡𝑡2, and 
𝑡𝑡3 are the operation time in low-power, high-power, and FC on 
conditions respectively while 𝑙𝑙1 is the number of on/off cycles 
and 𝑙𝑙2 is the number of transient load changes [33]. According 
to the US Department of Energy (DOE), FC end of life (EOL) 
is defined as a 10 % decline in the maximum power with an 
operational objective of 5000 hours [37]. However, the SC and 
power components are expected to last around thousands of 
cycles in normal conditions [31]. Therefore, their cost is linked 
to the above-defined trip time (∆𝑑𝑑𝑡𝑡𝑎𝑎𝑒𝑒) to increase their 
importance in the optimization process, which is the total time 
divided by the operational objective of 5000 hours. It should be 
noted that the price of the system cost components ($𝐹𝐹𝐶𝐶𝑏𝑏𝑠𝑠𝑏𝑏, 
$𝐻𝐻2, $𝑆𝑆𝐶𝐶, and $𝐷𝐷𝐶𝐶𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒) is variable in the market.  

The decision variables used for the optimization problem are 
defined as discrete values based on the commercial capacitance 
of Maxwell SC and the size of the Ballard FC. This work 
focuses on the FCvelocity-9SSL model in which the number of 
cells defines the maximum power 𝑁𝑁𝐹𝐹𝐹𝐹 . Table I shows the search 
space formed by the decision variable ranges. Regarding the 
GA, the available function in the Optimization Tool of 
MATLAB is utilized while considering the following setting: 
Population size 200, maximum generations 200, Elite count 10, 
Selection function: “selectionstochunif”, and Crossover 
fraction: 0.8. 
 

TABLE I DISCRETE DECISION VARIABLES RANGE 
Variable Search space 
𝑁𝑁𝐹𝐹𝐹𝐹  [55,71,75,80,90,110,115,135] 
𝐶𝐶𝑆𝑆𝐹𝐹 ,𝑏𝑏 [100,150,310,325,350,360,450,650,1200,1500,2000,3000,340] 
𝑁𝑁𝑆𝑆𝐹𝐹 ,𝑏𝑏 ∈ 𝑍𝑍 ≥ 1,≤ 60 
𝑁𝑁𝑆𝑆𝐹𝐹 ,𝑒𝑒 ∈ 𝑍𝑍 ≥ 1,≤ 60 

 
The FCHEV model is a nonlinear state-space model which 

DP can solve as one of the most well-known optimal control 
methods for nonlinear, time-variant, constrained, discrete-time 
models. DP solves an optimization problem by breaking it 
down into simpler subproblems assuming that the optimal 
solution to the overall problem is achieved by calculating the 
optimal solution to its subproblems. In this work, a DP function 
introduced in [38, 39] is used, which has been proposed for 
optimal energy management of FCHEVs. This method works 
based on calculating the boundary range of the state variable, 
dividing the state variables space into four operational modes, 
determining the minimum cost of each grid point forward, and 
calculating the minimum optimal control decision sequence 
backward. By doing so, this method shows less computational 
time and better calculation accuracy. The state-space for the 
current variable in this work is divided with a grid size of 0.5 A 
and the SOC space is divided with a grid size of 0.05 %. Using 
this DP function, the unified state-space equation of the vehicle 
under study can be described by the following four states: 

⎩
⎪
⎨

⎪
⎧ 𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹(𝑘𝑘 + 1) = 𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹(𝑘𝑘) + ∫ 𝑎𝑎𝑆𝑆𝐹𝐹(𝑘𝑘) 𝑑𝑑𝑘𝑘

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

𝑢𝑢𝑆𝑆𝐹𝐹(𝑘𝑘 + 1) = 𝑢𝑢𝑎𝑎(𝑘𝑘) + 1
𝐹𝐹𝑆𝑆𝐹𝐹

∫ 𝑖𝑖𝑆𝑆𝐹𝐹(𝑘𝑘)𝑑𝑑𝑘𝑘 − 𝑖𝑖𝑆𝑆𝐹𝐹(𝑘𝑘)𝑅𝑅𝑆𝑆𝐹𝐹
𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑏𝑏(𝑘𝑘 + 1) = 𝑢𝑢𝐹𝐹𝐹𝐹(𝑘𝑘) ∗ 𝑖𝑖𝐹𝐹𝐹𝐹(𝑘𝑘)
𝑀𝑀(𝑘𝑘 + 1) = 𝜓𝜓�𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑏𝑏, 𝑖𝑖𝐹𝐹𝐹𝐹 , 𝑘𝑘�

  (24) 

where 𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹  is the SC SOC, 𝑢𝑢𝑆𝑆𝐹𝐹 is the SC voltage, 𝑃𝑃𝐹𝐹𝐹𝐹,𝑏𝑏 is the 
FC power, and 𝑀𝑀 is the operational work mode. The considered 
control variable is the FC current (𝑖𝑖𝐹𝐹𝐹𝐹) whose optimal trajectory 
is given by DP. It should be noted DP uses the defined cost 
function in (22) to solve this optimization problem. The defined 
work mode is a function of the control variable (FC current) and 
the FC power which is a state variable. Definition of the work 
mode results in the reduction of the computational burden by 
avoiding the extra calculation for the infeasible areas.  

To ensure that the system operates in the desired conditions, 
some limitations need to be imposed on the state and control 
variables as: 

⎩
⎪
⎨

⎪
⎧

50 % ≤ 𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹 ≤ 90 %
0𝐴𝐴 ≤ 𝑖𝑖𝐹𝐹𝐹𝐹 ≤ 300 𝐴𝐴

−300 𝐴𝐴 ≤ 𝑖𝑖𝑆𝑆𝐹𝐹 ≤ 300 𝐴𝐴
80 𝑉𝑉 ≤ 𝑢𝑢𝐷𝐷𝐹𝐹 ≤ 120 𝑉𝑉

−0.1 𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑚𝑚𝑔𝑔𝑒𝑒 ≤ ∆𝑃𝑃𝐹𝐹𝐹𝐹 ≤ 0.1 𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑚𝑚𝑔𝑔𝑒𝑒

        (25) 

where 𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹  range is selected based on the requirements of the 
installed electric motor on Spyder vehicle. Since SC SOC has a 
direct relationship with voltage, the minimum and maximum 
ranges have been defined by considering the input voltage range 
of the motor driver (80 V – 120 V) in the optimization process. 
The current limits are based on the manufacturer’s manual, the 
𝑢𝑢𝐷𝐷𝐹𝐹 range is defined based on the motor driver operating 
voltage, and the ∆𝑃𝑃𝐹𝐹𝐹𝐹  is the slew rate of the FC power given by: 

∆𝑃𝑃𝐹𝐹𝐹𝐹 = 𝑃𝑃𝐹𝐹𝐹𝐹(𝑘𝑘) − 𝑃𝑃𝐹𝐹𝐹𝐹(𝑘𝑘 − 1)            (26) 

D.  Sensitivity Analysis 
SA studies how uncertainty in the input parameters of a 

model affects the output response, identify the parameters with 
a significant influence on the model output and their interaction 
level. The literature review shows that the EE method is a good 
representation of the total sensitivity index because it evaluates 
the influence and interaction effect of each independent input 
parameter [11]. The calculation of the EE starts by discretizing 
the input variable space Ω of the model 𝑐𝑐 = 𝑓𝑓(𝑿𝑿) in 𝑝𝑝 levels. 
𝑿𝑿 represents the independent input parameters 𝑋𝑋𝑎𝑎 , 𝑖𝑖 = 1, … , 𝑘𝑘 
with 𝑘𝑘 dimensions. The EE of the 𝑖𝑖th parameter is defined as: 

𝐸𝐸𝑎𝑎 = [𝑓𝑓(𝑋𝑋1,𝑋𝑋2,… ,𝑋𝑋𝑖𝑖+∆,… ,𝑋𝑋𝑘𝑘)−𝑓𝑓(𝑋𝑋1,𝑋𝑋2,… ,𝑋𝑋𝑘𝑘)]
∆

         (27) 

where ∆= 𝑝𝑝 [2(𝑝𝑝 − 1)]⁄  is the sampling step between {0,1} that 
assures an equal probability of the 𝑝𝑝 samples. It is 
recommended to set an even value for 𝑝𝑝. The number of points 
in the input space to evaluate is (𝑘𝑘 + 1) because a based value 
𝑿𝑿∗is included, which is defined as the initial coordinate to 
generate all the trajectory points. Therefore, the EE is calculated 
by two consecutive sets of input variables whose relative 
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distance in the coordinate 𝑋𝑋𝑎𝑎 is ∆.  
From the calculated EE, two sensitivity indices can be 

obtained: 

𝜇𝜇𝑎𝑎∗ = 1
𝑡𝑡
∑ �𝐸𝐸𝑎𝑎

𝑗𝑗�𝑡𝑡
𝑗𝑗=1                  (28) 

where 𝑟𝑟 denotes the number of trajectories with a recommended 
value between {4,10}, 𝜇𝜇𝑎𝑎∗ is the mean of the absolute values that 
represents the influence of the variable on the output. 

In order to improve the scanning of the input domain, the 
trajectories need to be spread in all the variable space Ω. In this 
sense, the design of trajectories can be done randomly, as 
follow: 

𝐵𝐵∗ = �𝐽𝐽𝑘𝑘+1,1𝑋𝑋∗ + (∆ 2⁄ )��2𝐵𝐵 − 𝐽𝐽𝑘𝑘+1,𝑘𝑘�𝐷𝐷∗ + 𝐽𝐽𝑘𝑘+1,𝑘𝑘��𝑃𝑃∗ (29) 

where 𝑿𝑿∗ is the base vector randomly selected, 𝐵𝐵 is a lower 
triangular matrix of ones whose dimension is (𝑘𝑘 + 1) × 𝑘𝑘, 
𝐽𝐽𝑘𝑘+1,𝑘𝑘 is a (𝑘𝑘 + 1) × 𝑘𝑘 matrix of 1’s, 𝐷𝐷∗ is a 𝑘𝑘-dimensional 
diagonal matrix in which each element is either +1 or −1 with 
equal probability, 𝑃𝑃∗ is a 𝑘𝑘-by-𝑘𝑘 random permutation matrix of 
zeros in which each row contains one element equal to 1, and 
no two columns have 1’s in the same position. 𝑃𝑃∗ gives the 
order in which factors are moved and 𝑃𝑃∗ sets whether the factors 
will increase or decrease their value along the trajectory. 
Moreover, the scanning can be improved by maximizing the 
distance between the trajectories, which is calculated in this 
way: 

𝑑𝑑𝑚𝑚𝑟𝑟 = ∑ ∑ �∑ �𝑋𝑋𝑧𝑧
(𝑎𝑎)(𝑚𝑚) − 𝑋𝑋𝑧𝑧

(𝑗𝑗)(𝑙𝑙)�
2

𝑘𝑘
𝑧𝑧=1

𝑘𝑘+1
𝑗𝑗=1

𝑘𝑘+1
𝑎𝑎=1      (30) 

where 𝑑𝑑𝑚𝑚𝑟𝑟  is the sum of the geometrical distance between all 
the pairs of points of two different trajectories 𝑚𝑚 and 𝑙𝑙.  

III.  RESULTS AND DISCUSSION 
In this section, several scenarios through two phases of 

simulation and experiments are considered to examine the 
performance of the presented Can-Am Spyder electric vehicle. 
In the simulation phase, the introduced MOCF is used to 
determine the right dimension of the powertrain components 
with the help of the two-step nested optimization. Since each 
element of the MOCF is influenced by a range of prices, a SA 
using the explained EE method is performed. Lastly, in the 
experiment phase, the HIL set-up is utilized to carry out an 
experimental test with the aim of examining the influence of a 
component price on a MOCF with an online EMS 

A.  Numerical simulation 
In the numerical simulation stage, the introduced MOCF is 

first compared with two single-objective ones to realize their 
operational differences. Subsequently, the SA is performed. As 
mentioned earlier, the price of hydrogen, FC, and energy 
storage are the factors that can affect the system dimensions and 
operation strategy. In addition, these parameters vary 
depending on the retail, acquisition volume, and technology 
readiness level. Therefore, different existing prices in the 
literature are collected, as reported in Table II, to investigate the 
influence of the price range variation over the component sizing 

process [9, 40]. 
 

TABLE II COST RANGE OF THE POWERTRAIN COMPONENTS 
Variable Range 
$𝐹𝐹𝐶𝐶𝑆𝑆𝑠𝑠𝑏𝑏 40 $/kW to 210 $/kW 

$𝐻𝐻2 2 $/kg to 15 $/kg 
$𝑆𝑆𝐶𝐶 15 $/Wh to 30 $/Wh 

$𝐷𝐷𝐶𝐶𝑎𝑎𝑟𝑟𝑒𝑒 50 $/kW to 150$/kW 
 
To perform the numerical simulation, the standard World 

Motorcycle Test Cycle (WMTC) and an on-road driving test are 
utilized, as shown in Fig. 3 

 

 
Fig. 3 Utilized driving profiles: (a) WMTC cycle, (b) on-road test. 
 

WMTC represents daily motorcycle driving cycles in 
Europe, Japan, and the USA [41]. The real on-road driving test 
is about 49 minutes, reaching a top speed of 110 km/h. The 
vehicle operates mainly in the high-speed region in this driving 
profile. The average calculation time of the DP optimization 
step is 247 s for the WMTC profile, and for the on-road driving 
cycle is 342 s. 
    1)  Cost function comparison 

The utilized MOCF (22) in this study has four elements: FC 
degradation (23), hydrogen consumption (18), the operational 
cost of SC, and the operational cost of the DC-DC converter 
that are related to the (∆𝑑𝑑𝑡𝑡𝑎𝑎𝑒𝑒) trip time. The MOFC tries to reach 
a compromise among the objectives using a weighted sum 
approach [20]. Therefore, the price of each element defines the 
importance of each objective in terms of $USD. In the first 
attempt, the MOCF is compared with two single-objective ones 
(hydrogen minimization: 𝐻𝐻2,𝑚𝑚𝑎𝑎𝑒𝑒 = ∫𝑊𝑊𝐻𝐻2𝑑𝑑𝑡𝑡  and FC 
degradation minimization: 𝐹𝐹𝐶𝐶𝑑𝑑𝑒𝑒𝑔𝑔,𝑚𝑚𝑎𝑎𝑒𝑒 = ∫∆𝐹𝐹𝐹𝐹𝑑𝑑𝑡𝑡), which 
represent the optimal limits of hydrogen and FC degradation 
minimization. In this regard, the extreme component prices, 
minimum and maximum from Table II, are considered for the 
MOCF. The maximum prices correspond to the actual 
component cost, and the minimum prices represent the 
objective values in the mid-term. In this way, the influence of 
the minimum and maximum prices over the size of the 
components will be appreciated. Regarding the single-objective 
cost functions, the inclusion of prices does not affect their 
performance as they pursue only one objective. Fig. 4 shows the 
optimization surfaces and pareto frontiers formed by different 
cost functions under WMTC driving cycle. This figure 
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represents trip cost (22) as the MOCF, and two single-objective: 
hydrogen consumption (18), and FC degradation (23). Fig. 4a 
shows the optimization surfaces of the MOCF with the extreme 
component prices, highest in orange at the top and lowest in 
blue at the bottom. The single points in each plot signify the GA 
population evaluated during the two-step optimization. 
Moreover, the surfaces show the pareto frontier with a 
continuous line, and the markers locate the best result 
coordinate in each case. The orange circle marker shows the 
minimum possible answer using the MOCF with the highest 
prices of the elements. The blue square marker presents the 
minimum result for the case of MOCF with the lowest prices 
for the elements. The single-objective functions were evaluated 
with the lowest component price and represented with a yellow 
hexagram marker for the best result obtained by the FC 
degradation minimization cost function, and the green diamond 
marker indicates the minimum result achieved by the hydrogen 
minimization cost function. From the next two subplots, Fig. 4b 
and Fig. 4c, it can be observed that although both MOCFs have 
different component prices, their pareto frontier converges to a 
pareto optimal point in the same optimal system size. 
 

 
Fig. 4 Electric Spyder performance under WMTC driving cycle through two-
step optimization method, a) multi-objective, b) Pareto frontier based on SC 

size and c) Pareto frontier based on FC size 

This result shows that further analysis is required to 
comprehend the effect and interaction of price variation on the 

sizing and operational cost. Therefore, a more detail analysis of 
the MOCF is presented next in Fig. 5 where special attention is 
paid on the hydrogen consumption and FC degradation 
component. 

 

 
Fig. 5 Single-objective perspective of MOCF under WMTC driving cycle, a) 
hydrogen use vs SC size, b) FC deg. vs SC size, c) hydrogen use vs FC size 

and, d) FC deg vs FC size 

The performance of the cost functions in terms of hydrogen 
consumption based on the SC and FC size are shown in Fig. 5a 
and Fig. 5c in terms of FC degradation and in terms of FC 
degradation in Fig. 5b and Fig. 5d. At first glance it is observed 
that the presented case is a nontrivial multi-objective 
optimization problem, where no single solution exists that 
simultaneously optimizes each single objective. This means 
that the components of the MOCF are in conflict, and none of 
them can be improved in value without declining some of the 
other objective values. From these plots, it can be observed that 
the single objective cost functions converge to the optimal 
solutions in their corresponded spaces while giving low-
performance results in the other aspects. However, the optimal 
solutions obtained by the MOCF are near to the minimum 
results in both cases. To better interpret the performance of the 
explained cost functions in Fig. 4 and Fig. 5, the optimal results 
of each cost function are summarized in Table III. In addition, 
three MOCF with different components cost are included to 
highlight the influence of different set of weight in the cost 
function calculation. The extreme MOCF presents an increment 
of 3 % in terms of hydrogen consumption and 8% in terms of 
FC degradation, compared to the optimal results obtained by 
𝐻𝐻2,𝑚𝑚𝑎𝑎𝑒𝑒 and 𝐹𝐹𝐶𝐶𝑑𝑑𝑒𝑒𝑔𝑔,𝑚𝑚𝑎𝑎𝑒𝑒 cost functions, respectively. In addition, 
to reach a balance between both objectives, Table III shows that 
hydrogen minimization strategy will opt to use the highest FC 
size since the maximum efficiency power point will be higher, 
contrary to the FC degradation minimization that selects a 
smaller size to reduce the power decay caused by degradation. 
It should be noted that the FC degradation function has the 
biggest SC size because the bigger the filter the less the 
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degradation in the FC. At this point the obtained sizes and prices 
for the two price scenarios of MOCFs are similar. These results 
could mislead to conclude that the prices don’t affect the system 
size, for this reason three weight sets with a minimum cost in 
one of the components is included in the Table III. When one 
of the components has a low cost, the system tends to operate 
as a single cost function, e.g., the MOCF with a low FC price 
has similar fuel performance as the 𝐻𝐻2,𝑚𝑚𝑎𝑎𝑒𝑒 function, which 
represents the optimal consumption. The MOCF is able to reach 
a balance although the weights are in the high or low extremes. 
 

TABLE III COST FUNCTIONS COMPARISON UNDER WMTC DRIVING CYCLE 

Cost function H2 cons. FC deg. FC size 
SC size 

(S-series and P-
Parallel) 

𝐻𝐻2,𝑚𝑚𝑎𝑎𝑒𝑒 182.85 gr 496.8 W 
(0.0182 %) 27.3 kW 65.38 F 

(52S1P) 
𝐹𝐹𝐶𝐶𝑑𝑑𝑒𝑒𝑔𝑔,𝑚𝑚𝑎𝑎𝑒𝑒 208.54 gr 61.5 W 

(0.0029 %) 21.2 kW 325 F 
(59S59P) 

MOCF 
(lowest prices) 188.69 gr 66.6 W 

(0.003 %) 22.2 kW 59.6 F 
(49S9P) 

MOCF 
(highest prices) 188.68 gr 66.6 W 

(0.003 %) 22.2 kW 59.6 F 
(49S9P) 

MOCF 
(H2 cheap) 191.40 gr 63.6 W 

(0.003 %) 21.2 kW 122.7 F 
(48S19P) 

MOCF 
(FC cheap) 185.16 gr 81.9 W 

(0.003 %) 27.3 kW 65 F 
(50S10P) 

MOCF 
(SC cheap) 190.93 gr 63.6 W 

(0.003 %) 21.2 kW 103.3 F 
(16S48P) 

 
From a wider perspective, a deeper analysis on the ratio of 

the FC and hydrogen price shows that the highest and lowest 
prices have similar weighting ratio.  Under the low-cost 
conditions, the ratio of the hydrogen cost (2 $/kg) to FC cost 
(40 $/kW) is 1:20, while in the high-price conditions, the ratio 
of hydrogen cost (15 $/kg) to FC cost (210 $/kW) is 1:14. In 
case of the lowest prices scenario, the hydrogen cost is $0.377 
and the FC degradation cost is $0.266, and in case of the highest 
cost scenario, the prices are $2.83 and $1.39, respectively. 
Based on the obtained trip cost, the ratio of the hydrogen to the 
FC degradation is 1.4:1 for the lowest price and 2:1 for the 
highest price. Under the tested driving cycle, it can be observed 
that although the FC has a higher ratio than the hydrogen, the 
hydrogen has a more considerable impact on the trip cost. 
Moreover, this analysis presents a very interesting perspective 
regarding the impact on the technology development and 
maturity where both technologies could reach similar trip cost 
influence at one instant. 

Regarding the on-road driving cycle, sizing outcomes of two 
single-objective and three price sets (highest price, H2 cheap, 
and FC cheap) are analyzed and summarized in Table IV. The 
single objective functions set the baseline reference of the FC 
degradation and hydrogen consumption. The highest price 
shows the optimal dimension of the components for the highest 
reported prices in Table II. H2 cheap represents the optimal 
sizes using the highest prices for 𝐻𝐻2, 𝑆𝑆𝐶𝐶, and 𝐷𝐷𝐶𝐶𝑎𝑎𝑟𝑟𝑒𝑒, and the 
lowest price for 𝐹𝐹𝐶𝐶𝑆𝑆𝑠𝑠𝑏𝑏. FC cheap illustrates the optimal 
dimensions for the highest prices of 𝐹𝐹𝐶𝐶𝑆𝑆𝑠𝑠𝑏𝑏, 𝑆𝑆𝐶𝐶, and 𝐷𝐷𝐶𝐶𝑎𝑎𝑟𝑟𝑒𝑒, and 
the lowest price of 𝐻𝐻2. In fact, H2 cheap, and FC cheap cases 
simulate the situation in which one technology becomes 
cheaper faster than the others. From Table IV, when merely one 
weight is in the lowest extreme, the power distribution tends to 

exploit its corresponding resource more (consume more 
hydrogen or degrade more the FC). These outcomes show that 
a SA is required to check each component’s price change effect 
on the sizing and operating cost of the whole system. Since the 
technology evolution might not be at the same rate for all the 
components, they will take different values. 

 
TABLE IV MULTI-OBJECTIVE COST FUNCTIONS COMPARISON UNDER ON-

ROAD DRIVING CYCLE 

MOCF H2 cons. FC deg. FC size 
SC size 

(S-series and P-
Parallel) 

𝐻𝐻2,𝑚𝑚𝑎𝑎𝑒𝑒 337.38 gr 513.2 W 
(0.0188 %) 27.3 kW 75.5 F 

(45S1P) 
𝐹𝐹𝐶𝐶𝑑𝑑𝑒𝑒𝑔𝑔,𝑚𝑚𝑎𝑎𝑒𝑒 398.16 gr 62.28 W 

(0.0036 %) 17.3 kW 364 F 
(50S28P) 

MOCF 
(highest prices) 348.69 gr 76.3 W 

(0.0036 %) 21.2 kW 85.8 F 
(53S14P) 

MOCF 
(highest prices) 347.25 gr 76.3 W 

(0.0036 %) 21.2 kW 88 F 
(48S13P) 

MOCF 
(H2 cheap) 347.56 gr 76.3 W 

(0.0036 %) 21.2 kW 94.8 F 
(48S14P) 

MOCF 
(FC cheap) 343.71 gr 124.3 W 

(0.0056 %) 22.2 kW 63.5 F 
(46S9P) 

MOCF 
(SC cheap) 347.56 gr 76.3 W 

(0.0036 %) 21.2 kW 94.7 F 
(48S14P) 

 
    2)  Sensitivity analysis 

To clarify the effect of the price variation on the component 
sizing, the results of the EEs SA under WMTC and road-test 
driving cycles are discussed in this section. Fig. 6 presents the 
rank of each parameter in the center of the sub-square. The rank 
is defined using the mean of the absolute EEs values of the 
component prices. In this regard, the system performance in 
terms of hydrogen consumption (𝑊𝑊𝐻𝐻2), FC system degradation 
(∆𝐹𝐹𝐹𝐹), FC size (𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑚𝑚𝑔𝑔𝑒𝑒), SC size (𝐶𝐶𝑆𝑆𝐹𝐹), System mass  
(𝑚𝑚𝑒𝑒𝑟𝑟𝑝𝑝_𝑏𝑏𝑠𝑠𝑏𝑏), and total trip cost ($𝑇𝑇𝑟𝑟𝑖𝑖𝑝𝑝) is considered. From 
Fig. 6, the hydrogen and FC prices are the most influential 
parameters that almost overwhelm all other factors in both 
cases. In other words, a slight variation of these two parameters 
will have a considerable effect on the outputs. From the 
presented results in Fig. 6a, hydrogen is the most important 
parameter, and FC is the second most important one in the case 
of fuel efficiency for the WMTC driving cycle. This follows the 
results presented in Table III, where a low price of hydrogen 
generates an increment of 5 % in the fuel consumption. 
Moreover, the EE shows that the hydrogen price has a strong 
influence at defining the sizes of FC and SC. This point is also 
well represented in Table III, where it is shown that a low price 
in the FC will push the algorithm to choose the biggest FC size. 
Fig. 6b represents the obtained results regarding the SA under 
the road-test driving cycle. From this figure, the influence of the 
FC system cost increased compared to the WMTC driving 
cycle. The long-time operation reduces the percentage of fuel 
difference between the extreme cost function shown in Table 
IV, this means there is a change of importance due to the high 
speed and duration of the profile. However, it is observed that 
in both cases the hydrogen cost is the most influential parameter 
in term of trip cost. 
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Fig. 6 Elementary effects of component price variation on system performance 
under (a) WMTC and (b) on-road driving cycle 

B.  Experimental test 
Finally, the effect of component price variation is 

investigated using a HIL by comparing the performance of an 
EMS for three sets of weight and their corresponding optimal 
sizes obtained by the numerical simulation. The utilized EMS 
is based on online sequential quadratic programming (SQP) and 
the sizes are based on the reported values in Table IV. This test 
is deployed in a HIL setup, previously explained in Fig. 2. In 
this setup, the SC is a mathematical model, and the FC system 
is the real component. The FC output power in the HIL test 
bench is scaled up after the DC-DC converter to satisfy the 
demanded power. The EMS has been coded in LabVIEW 
environment and implemented in the real-time module of 
Compact-RIO by means of the block “Constrained Nonlinear 
Optimization virtual instrument VI”. Hereinafter, the 
implemented strategy is explained first. Subsequently, the 
obtained results are widely discussed.    

 
    1)  Real-time instantaneous optimization 

The energy management problem in a FCHEV is in principle 
a nonlinear optimization problem. It can be solved by SQP, 
which has gained optimal/sub-optimal results for a wide range 
of engineering problems, such as EMSs [42]. SQP is an iterative 
technique that solves nonlinear optimization problems by a QP 
subproblem at a given estimated solution. The application of 
SQP to the proposed multi-objective EMS at each step is 
considered in the following form: 

𝑀𝑀𝑖𝑖𝑙𝑙:    $𝑇𝑇𝑟𝑟𝑖𝑖𝑝𝑝𝑗𝑗 = $𝐹𝐹𝐶𝐶𝑏𝑏𝑠𝑠𝑏𝑏 ∆𝐹𝐹𝐹𝐹 ,𝑗𝑗 + $𝐻𝐻2 𝑊𝑊𝐻𝐻2,𝑗𝑗    𝑗𝑗 = 0, 1,2 … (31) 

Subject to: 

⎩
⎪
⎨

⎪
⎧ 50 % ≤ 𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹,𝑗𝑗 ≤ 90 %

0 𝐴𝐴 ≤ 𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑗𝑗 ≤ 42 𝐴𝐴
−300 𝐴𝐴 ≤ 𝑖𝑖𝑆𝑆𝐹𝐹 ,𝑗𝑗 ≤ 300 𝐴𝐴

−0.1𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑚𝑚𝑔𝑔𝑒𝑒 ≤ ∆𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑗𝑗 ≤ 0.1𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑚𝑚𝑔𝑔𝑒𝑒

         (32) 

The terms $𝑆𝑆𝐶𝐶 ∆𝑑𝑑𝑡𝑡𝑎𝑎𝑒𝑒,𝑗𝑗 and $𝐷𝐷𝐶𝐶𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒  ∆𝑑𝑑𝑡𝑡𝑎𝑎𝑒𝑒,𝑗𝑗, presented in the 
optimal optimization cost function in (22), are excluded for the 
online implementation. This is because they are the operational 
cost of SC and DC-DC converter and are calculated based on 
the driving profile time. If the vehicle is running, $𝑆𝑆𝐶𝐶 ∆𝑑𝑑𝑡𝑡𝑎𝑎𝑒𝑒,𝑗𝑗 
and $𝐷𝐷𝐶𝐶𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒 ∆𝑑𝑑𝑡𝑡𝑎𝑎𝑒𝑒,𝑗𝑗 can be calculated and added to the total trip 
cost without participating in the optimization process. In the 
formulated problem, the optimization process is done for the 
defined MOCF (22). 
    2)  Results 

As presented in Table IV, the optimal sizes of components 
while using the MOCF with the highest price weights 
(𝐹𝐹𝐶𝐶𝑆𝑆𝑠𝑠𝑏𝑏: 210 $

kW
,𝐻𝐻2: 15 $

kg
, 𝑆𝑆𝐶𝐶: 30 $

Wh
,𝐷𝐷𝐶𝐶𝑎𝑎𝑟𝑟𝑒𝑒 : 150$

kW
) are 21.2 

kW for FC and 85.8 F for SC. In this section, these sizes are 
considered as the baseline. Then, using these baseline sizes, the 
online EMS based on SQP is employed to minimize the 
previously defined MOCF (31) for different cases:  

1) “Highest price𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒”: It uses the highest reported 
prices of the components in Table II with the baseline 
size, as shown in Table IV (FC: 21.2 kW, SC: 85.8 F). 

2) “FC cheap𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒”: It utilizes the highest prices for 
𝐻𝐻2, 𝑆𝑆𝐶𝐶, and 𝐷𝐷𝐶𝐶𝑎𝑎𝑟𝑟𝑒𝑒 ,  and the lowest price for 𝐹𝐹𝐶𝐶𝑆𝑆𝑠𝑠𝑏𝑏 with 
the baseline sizes. This case study denotes an extreme 
price drop solely on the FC system. 

3) “H2 cheap𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒”: It employs the highest prices 
for 𝐹𝐹𝐶𝐶𝑆𝑆𝑠𝑠𝑏𝑏, 𝑆𝑆𝐶𝐶, and 𝐷𝐷𝐶𝐶𝑎𝑎𝑟𝑟𝑒𝑒 , and the lowest price for 𝐻𝐻2 
with the baseline sizes. In practice, this case study shows 
an extreme price drop down the hydrogen.  

4) “FC cheap𝑟𝑟𝑒𝑒𝑑𝑑𝑎𝑎𝑚𝑚𝑔𝑔𝑟𝑟 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒”: It uses the same prices as 
FC cheap𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒 but with the optimal sizes reported 
in Table IV (FC: 22.2 kW, SC: 63.5 F).   

5) “H2 cheap𝑟𝑟𝑒𝑒𝑑𝑑𝑎𝑎𝑚𝑚𝑔𝑔𝑟𝑟 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒”: It utilizes the same prices as 
H2 cheap𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒 but with the optimal sizes reported 
in Table IV (FC: 21.2 kW, SC: 94.8 F).     

Fig. 7 shows a zoom on two time periods (from 1300 s to 
1800 s and from 2300 s to 2800 s) of the drawn current from 
the FC system (𝑖𝑖𝐹𝐹𝐹𝐹) by the online EMS (Fig. 7a), the complete 
FC current profile (Fig. 7b), SOC variation of the SC (𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹) 
(Fig. 7c), and the distribution of the 𝑖𝑖𝐹𝐹𝐹𝐹  (Fig. 7d) under 
Highest price𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒 , FC cheap𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒, and 
H2 cheap𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒 cases. 
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Fig. 7 HIL measurements during the on-road test, (a) a zoom on applied FC 
current from 1300 s to 1800 s range and 2300 s to 2800 s range, (b) the complete 
FC profile (c) SC SOC, (d) FC current distribution 
 

As is seen in Fig. 7d, the H2 cheap𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒 case tends to 
avoid operating the FC in the low power region (𝑘𝑘1) most of the 
time. However, it has to turn off the FC at around 1544 s, as 
shown in Fig. 7a,  since the SC has reached the maximum SOC 
level (90 %), as shown in Fig. 7c. FC cheap𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒 case 
leads to the minimum power operation, as is seen after 2570 s 
in Fig. 7a. Contrary to the mentioned cases, the highest price 
case balances the FC degradation and hydrogen consumption 
by sustaining the SC charge around 50 % and switching to the 
low degradation region when the requested power is below the 
minimum, as observed in Fig. 7a around 2570 s. In this 
condition, SC absorbs this extra energy.  The FC degradation 
distribution of each case is presented in Fig. 8. This 
representation corroborates that H2 cheap𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒 case 
minimizes the degradation due to low power operation at the 
cost of doubling the on/off cycle degradation (𝑘𝑘2).  

 

 

Fig. 8 FC degradation for each set of weights. 
 

The system size, trip cost, total hydrogen consumption, and 
FC degradation of the five above-discussed cases are presented 
in Table V. The trip cost of each pair is comparable because 
they use the same component prices. From this table, the higher 
capacity of SC size in FC cheap𝑟𝑟𝑒𝑒𝑑𝑑𝑎𝑎𝑚𝑚𝑔𝑔𝑟𝑟 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒 has led to less 
hydrogen consumption than FC cheap𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒. Moreover, 
H2 cheap𝑟𝑟𝑒𝑒𝑑𝑑𝑎𝑎𝑚𝑚𝑔𝑔𝑟𝑟 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒 has resulted in a lower trip compared to 
H2 cheap𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒 while having the same percentage of 
degradation. In fact, the lower system capacity in the latter has 
led to lower trip cost. It should be noted that the experimental 
case uses a H-500 low-power FC from Horizon which has a 
different polarization curve compared to the FCvelocity-9SSL 
from Ballard Power Systems. However, the optimized sizes 
obtained in previous section are still relevant. In the FC cheap 
case, the FC operates as a power following with a higher power 
FC, and in hydrogen cheap case, the FC operates with a more 
constant trend due to the higher SC low-pass filter effect.               

 
TABLE V MULTI-OBJECTIVE COST FUNCTIONS COMPARISON 
Cost function weights Trips cost H2 cons. FC deg. 

Highest price𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒 $8.091 6.72 gr 0.0039 % 
FC cheap𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒 $7.065 6.73 gr 0.0040 % 
H2 cheap𝑏𝑏𝑔𝑔𝑏𝑏𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒  $5.008 6.63 gr 0.0055 % 
FC cheap𝑟𝑟𝑒𝑒𝑑𝑑𝑎𝑎𝑚𝑚𝑔𝑔𝑟𝑟 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒  $6.668 6.65 gr 0.0040 % 
H2 cheap𝑟𝑟𝑒𝑒𝑑𝑑𝑎𝑎𝑚𝑚𝑔𝑔𝑟𝑟 𝑏𝑏𝑎𝑎𝑧𝑧𝑒𝑒  $4.809 6.62 gr 0.0055 % 

IV.  CONCLUSIONS 
This paper puts forward a SA to investigate the impact of 

price variation on the component sizing and energy 
management of a FCHEV. Since sizing and energy 
management problems have interdependencies, a two-step 
optimization method with a nested structure is utilized in this 
paper. The studied MOCF, composed of hydrogen cost, FC 
degradation cost, and operational costs of SC and DC-DC 
converter, is defined to optimize the trip cost. However, the 
performance of the MOCF relies on the defined weights that are 
based on the price range of the components. Therefore, this 
article puts forward a methodology for a SA to clarify the 
influence of the price range fluctuation over the sizing and total 
cost of the system. Therefore, this paper proposed a 
methodology to scrutinize the impact of component price 
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variation on the sizing and energy management of a FCHEV. 
The Morris or elementary effects (EE) method is used in this 
work due to its low computational within So, to analyze the 
results of this work, two phases of numerical simulation and 
experiments are considered. In the simulation phase, 
considering the use of the two-step optimization (GA for sizing 
and DP for power distribution) in the SA, it is realized that the 
FC and hydrogen prices are the dominant factors in sizing and 
the total price of the system. Hence, special attention needs to 
be paid to selecting those prices to avoid negative impacts on 
the sizing and EMS performance. It should be noted that the 
implemented methodology to study the SA and the two-step 
sizing optimization can be implemented in other engineering 
problems. In the experimental phase, the performance of an 
online EMS is investigated with the defined MOCF but with 
different price weights and sizes. To do so, a reduced-scale HIL 
set-up is used to deploy the strategy. The obtained results show 
that changing the price weights in a MOCF can result in more 
degradation and fuel consumption while using the same size. 
However, finding an optimal size for each price change on the 
MOCF can enhance the performance of the FCHEV up to 6 % 
in terms of the trip cost. This research demonstrates the impact 
of basic variation on FCHEV, which might help guide the 
automobile industry’s future development and market strategy. 
Moreover, the presented sizing methodology could be 
implemented at early design phases to appropriately size the 
propulsion system of any electric vehicle as a function of actual 
or forecasted cost parameters. In future works, the developed 
SA methodology could be implemented to analyze the 
influence of external variables such as driving cycle average 
speed, maximum speed, ambient temperature, and FC 
temperature, on the fuel consumption and total trip cost. In 
addition, a more detailed study on the variation of the mass of 
the vehicle powertrain as well as different energy source 
combinations is required to provide an optimal power-source 
size map. Furthermore, future work could focus on increasing 
the FCHEV model accuracy in terms of hydrogen consumption 
and system degradation. Finally, the computing time could be 
reduced by implementing more recent optimization-based 
sizing methods. 

VARIABLES 
$𝐷𝐷𝐶𝐶𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒     DC converter cost 
$𝐹𝐹𝐶𝐶𝑏𝑏𝑠𝑠𝑏𝑏    FC system cost 
$𝐻𝐻2     Hydrogen cost 
$𝑆𝑆𝐶𝐶     SC cost 
$𝑇𝑇𝑟𝑟𝑖𝑖𝑝𝑝    Trip cost 
∆𝐹𝐹𝐹𝐹      FC degradation percentage 
∆𝑃𝑃𝐹𝐹𝐹𝐹     FC slew rate 
∆𝑑𝑑𝑡𝑡𝑎𝑎𝑒𝑒    Normalized trip time 
Ω𝑚𝑚     Rotor rotation speed 
𝐴𝐴𝑔𝑔𝑒𝑒𝑡𝑡𝑟𝑟    Vehicle front area 
𝐵𝐵∗     Random trajectory 
𝐶𝐶𝑂𝑂2
∗      Oxygen concentration 

𝐶𝐶𝑆𝑆𝐹𝐹,𝑏𝑏     Single SC capacitance 
𝐶𝐶𝑆𝑆𝐹𝐹     SC equivalent capacitance 

𝐶𝐶𝑑𝑑     Typical aerodynamic drag coefficient 
𝐷𝐷∗     𝑘𝑘-dimensional diagonal matrix 
𝐸𝐸𝑁𝑁𝑒𝑒𝑡𝑡𝑒𝑒𝑏𝑏𝑑𝑑     Reversible voltage 
𝐸𝐸𝑎𝑎      Elementary effect of the 𝑖𝑖th parameter 
𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒     Vehicle traction force resistance 
𝐹𝐹𝑑𝑑𝑡𝑡     Traction force 
𝐺𝐺𝑔𝑔𝑏𝑏     Gearbox transmission ratio 
𝐻𝐻𝐹𝐹𝐹𝐹      Heat transfer coefficient 
𝑀𝑀𝑂𝑂2      Oxygen molar mass 
𝑁𝑁𝐹𝐹𝐹𝐹      Number of cells 
𝑁𝑁𝑆𝑆𝐹𝐹,𝑒𝑒    SC parallel branches 
𝑁𝑁𝑆𝑆𝐹𝐹,𝑏𝑏     SC connected in series 
𝑃𝑃∗      𝑘𝑘-by-𝑘𝑘 random permutation matrix  
𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑏𝑏𝑏𝑏𝑏𝑏    Effective FC power in the DC bus 
𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑚𝑚𝑔𝑔𝑒𝑒    FC maximum power 
𝑃𝑃𝐹𝐹𝐹𝐹 ,𝑏𝑏𝑠𝑠𝑏𝑏    Fuel cell system power 
𝑃𝑃𝐹𝐹𝐹𝐹      Fuel cell power 
𝑃𝑃𝑆𝑆𝐹𝐹      Supercapacitor power 
𝑃𝑃𝑎𝑎𝑟𝑟𝑚𝑚𝑒𝑒    Compressor power 
𝑃𝑃𝑓𝑓𝑔𝑔𝑒𝑒      Fan electric power 
𝑃𝑃𝑡𝑡𝑒𝑒𝑟𝑟      Requested power 
𝑄𝑄ℎ𝑒𝑒𝑔𝑔𝑑𝑑     Residual energy 
𝑄𝑄𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒    Heat dissipated due to convection 
𝑄𝑄𝑚𝑚𝑔𝑔𝑒𝑒    SC maximum capacity 
𝑅𝑅𝐷𝐷     Equivalent diode resistance 
𝑅𝑅𝑆𝑆𝐹𝐹     SC equivalent resistor 
𝑅𝑅𝑎𝑎𝑒𝑒𝑑𝑑𝑒𝑒𝑡𝑡𝑒𝑒𝑔𝑔𝑟𝑟     Internal PEMFC resistor 
𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐹𝐹     SC level of charge 
𝑇𝑇𝐹𝐹𝐹𝐹      PEMFC stack temperature 
𝑇𝑇𝑔𝑔𝑚𝑚𝑏𝑏     Ambient temperature 
𝑇𝑇𝑒𝑒𝑚𝑚,𝑡𝑡     Reference torque 
𝑇𝑇𝑒𝑒𝑚𝑚     Electric machine torque 
𝑉𝑉𝐸𝐸𝑉𝑉     Vehicle velocity 
𝑊𝑊𝐻𝐻2     Consumed hydrogen flow  
𝑋𝑋∗     Base vector randomly selected 
𝑋𝑋𝑎𝑎      Independent input parameters 
𝑑𝑑𝑚𝑚𝑟𝑟      Geometrical distance between all pairs of points 
𝑖𝑖𝐹𝐹𝐹𝐹 ,𝑚𝑚𝑔𝑔𝑒𝑒    Maximum FC current 
𝑖𝑖𝑆𝑆𝐹𝐹      SC current 
𝑘𝑘𝑎𝑎      Semi-empirical FC degradation coefficient 
𝑡𝑡𝑎𝑎      Operational time 
𝑢𝑢𝐷𝐷𝐹𝐹     DC bus voltage 
𝑢𝑢𝐹𝐹𝐹𝐹      Cell voltage of a proton exchange membrane 
𝑢𝑢𝑆𝑆𝐹𝐹     Supercapacitor voltage 
𝑢𝑢𝑔𝑔𝑎𝑎𝑑𝑑     Activation loss 
𝑢𝑢𝑎𝑎      Capacitance element OCV 
𝑢𝑢𝑎𝑎𝑟𝑟𝑒𝑒     Concentration loss 
𝑢𝑢𝑟𝑟ℎ𝑚𝑚𝑎𝑎𝑎𝑎     Ohmic loss 
𝜁𝜁𝑒𝑒      Semi-empirical PEMFC resistor parameters 
𝜂𝜂𝐹𝐹𝐹𝐹      System efficiency 
𝜂𝜂𝑎𝑎𝑟𝑟𝑚𝑚𝑒𝑒    Compressor efficiency 
𝜂𝜂𝑔𝑔𝑏𝑏     Gearbox transmission efficiency 
𝜂𝜂𝑚𝑚     Torque and drive efficiency 
𝜇𝜇𝑓𝑓𝑡𝑡     Typical rolling resistance coefficient 
𝜇𝜇𝑎𝑎∗      Influence of the variable on the output 
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𝜉𝜉𝑒𝑒      Semi-empirical activation coefficients 
𝜌𝜌𝑔𝑔𝑎𝑎𝑡𝑡      Air density 
𝐵𝐵       Lower triangular matrix of ones 
𝐹𝐹      Faraday constant 
𝑚𝑚      Gravitational acceleration 
𝑚𝑚      Vehicle mass 
𝑟𝑟      Wheel radius 
𝑥𝑥      DP state variable 
𝛼𝛼      Semi-empirical diffusion mechanism parameter 
𝛽𝛽      Discrete braking mode value 
𝛾𝛾      Specific heat ratio of the air 
𝜆𝜆      Oxygen excess ratio constant 
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