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1

Mechanical Effects of a Specific Neurodynamic Mobilization of the Superficial Fibular 1 

Nerve: A Cadaveric Study 2 

Abstract 3 

Context: A specific neurodynamic mobilization for the superficial fibular nerve (SFN) has been 4 

suggested in the reference literature for manual therapists to evaluate nerve mechanosensitivity 5 

in patients. However, no biomechanical studies examined the ability of this technique to produce 6 

nerve strain. Therefore, mechanical specificity of this technique is not yet established.  7 

Objective: The aim of our study was to test whether this examination and treatment technique 8 

was producing nerve strain in the fresh frozen cadaver and the contribution of each motion to 9 

total longitudinal strain.  10 

Design: Quantitative original research, controlled laboratory study  11 

Methods: A differential variable reluctance transducer was inserted in ten SFN from six fresh 12 

cadavers to measure strain during the mobilization. A specific sequence of plantar flexion (PF), 13 

ankle inversion (INV), straight leg raise (SLR) position and 30{degree sign} of hip adduction 14 

(ADD) was applied to the lower limb. The mobilization was repeated at 0°, 30°, 60° and 90° of 15 

Straight Leg Raise (SLR) position to measure the impact of hip flexion position. 16 

Findings: Compared to a resting position, this neurodynamic mobilization produced a significant 17 

amount of strain in the SFN (7.93%  0.51 P < 0.001). PF (59.34%  25.82) and INV (32.80%  18 

21.41) accounted for the biggest proportion of total strain during the mobilization. No significant 19 

difference was reported between different hip flexion positions. Hip ADD did not significantly 20 

contribute to final strain (0.39%  10.42 P> 0,05) although high subject variability exists.  21 

Conclusion: Ankle motions should be considered the most important during neurodynamic 22 

assessment of the SFN for distal entrapment. These results suggest that this technique produces 23 
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2

sufficient strain in the SFN and could therefore be evaluated In Vivo for correlation with 24 

mechanosensitivity 25 

Introduction 26 

Neurodynamic mobilizations are a range of different techniques clinically used to test a 27 

patient’s nerves mechanical and symptomatic response to movement.1 Passive mobilizations and 28 

sensitizing movements2, 3 are used to induce strain in nerves using to assess the relevant nerve 29 

mechanosensitivity to these induced forces. Mechanosensitivity refers to the relative sensitivity 30 

of the nerve of interest when exposed to external force/loads and is thought to be a protective 31 

mechanism from mechanical stress of the nerve2 that may demonstrate pathological changes 32 

within its tissue.4 Heightened mechanosensitivity is considered an abnormal response during 33 

neurodynamic evaluation by clinicians.5, 6 34 

Superficial fibular nerve (SFN) entrapment neuropathy is a condition where the SFN 35 

experiences a prolonged mechanical compression at the subcutaneous exit point by the crural 36 

fascia.7 Emerging from the lumbo-sacral L4 through S3, the sciatic nerve courses along the 37 

posterior aspect of the thigh and splits at the popliteal level to form the tibial (medial) and 38 

common fibular nerve (lateral). The SFN (roots L4-S1) originates from the common fibular 39 

nerve along the proximal insertions of the fibularis longus muscle and exits the crural fascia at 40 

the distal 1/3 of the lower leg. Symptoms of SFN entrapment include pain and/or paresthesia on 41 

the antero-lateral aspect of the leg and to the latero-dorsal aspect of the foot,8, 9 except between 42 

the two first toes. A prevalence of 3.5% of SFN entrapment neuropathy at the exit from the 43 

crural fascia in patients with chronic leg pain was previously reported.10Additionally, Falciglia et 44 

al. reported SFN entrapment neuropathy in 4.1% of severe ankle sprains in children and 45 

adolescents.11 Conservative options in the management of peripheral neuropathies, such as 46 
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physical rehabilitation, are often recommended before referral to physicians who specialize in 47 

pain managment.12, 13 Within the modalities used by manual therapists, neurodynamic 48 

mobilizations (NDM) were reported as effective in the management of peripheral neuropathies,14,49 

15, 16 cervical radiculopathies, and low back pain although more robust evidence is yet to be 50 

published.17 51 

Previously, authors reported that neural tissue responds to movement by strain and 52 

excursion2, 5. Changes in nerve strain are known to be influenced by joint position,17,18 surgery19 53 

and injury.20 Moreover, many authors have reported the contribution of lower limb movement on 54 

tibial and sciatic nerve strain during the Straight Leg Raise (SLR) test combined with ankle 55 

dorsiflexion.18, 21, 22 Çelebi et al23 conducted a sonoelastographic investigation and showed an 56 

increase in sciatic nerve stiffness at the gluteal region in patients with lumbar disc herniation. 57 

Additionally, Neto et al24 has also shown a reduction in nerve stiffness immediately following 58 

NDM in a static slump position in patients affected by sciatica.24 These results are however 59 

contradictory compared to a previous study using a long-sitting slump position. This suggests 60 

clinicians must investigate neuropathic pain with different techniques to find the most 61 

appropriate type of mobilization for the patient.24 62 

Additionally, due to the poor efficiency of the lymphatic system for drainage, chronic 63 

local oedema and intra-neural fluid accumulation within the nerve may lead to fibrosis impairing 64 

the ability of nerve to glide freely25, 26 thereby impairing the stretch response of the nerve and its 65 

normal physiological functions.25, 27, 28 Strain can play a role in nerve physiology. Following their 66 

investigation, authors found that strain of 15.7% or more applied to a nerve in the rabbit sciatic 67 

nerve was enough to cause an interruption of the neural vascularization.29 Brown et al30 studied 68 

in-vitro the mobilizations impact on intra-neural fluid dispersion at the tibial nerve and reported 69 
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that a mechanical influence in the form of passive mobilization of the ankle would provide a 70 

dispersion effect on intra-neural fluid. Moreover, Boudier-Revéret et al31 stated that strain and 71 

fluid dispersion may not strongly correlate after they demonstrated that sliding and tensioning 72 

neural mobilization techniques did not show a significant difference in intra-neural fluid 73 

dispersion between the two techniques. The finding could demonstrate this importance of general 74 

movement and mobilization techniques on fluid dispersion 75 

Although NDM are commonly used by manual therapists, lack of standardization in the 76 

application of neurodynamic tests makes the clinical effects of NDM hard to evaluate.32 Specific 77 

NDM with SFN bias is, for the moment, based on neurodynamics reference books33 (Butler, 78 

1991) and anecdotal evidence.34 There is no evidence emerging from the literature as to whether 79 

these proposed techniques produce nerve elongation and the magnitude of it. This could have a 80 

significant clinical impact as the sequence used to evaluate neural mechanosensitivity may not be 81 

the most efficient at eliciting or reproducing patient’s symptoms thereby leading to inconclusive 82 

findings from the test. Previous authors have identified hip flexion as an important influencer of 83 

strain measured at the tibial nerve.18 This could indicate an important impact of hip position 84 

during NDM with SFN bias as a sensitizing motion. There is, to our best knowledge, no authors 85 

that have studied the biomechanical influence of hip position in the frontal plane on lower limb 86 

neurodynamics for the SFN. 87 

Therefore, the purpose of this study was to examine if NDM with SFN bias33 produces 88 

longitudinal strain at the exit of the SFN from the crural fascia and quantify the strain behavior 89 

of the SFN throughout the mobilization. The first objective was to compare the effect of four 90 

different hip positions (as used during a SLR test) on total strain following a complete 91 

mobilization. We hypothesized that applying a neurodynamic test at 90° of hip flexion during the 92 
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SLR would produce the most strain at the SFN. The second objective was to describe the 93 

contribution of each motion comprised in the mobilization sequence to total strain. We 94 

hypothesized that the Adduction (ADD) component of the NDM might lower the strain 95 

experienced by the SFN because of the medial route of the lumbar plexus in regards of the 96 

abduction ABD/ADD axis of the hip. While it has been reported that neighboring joints seem to 97 

have a great influence on nerve strain during NDM, ankle motions may have the biggest 98 

contribution on total nerve strain. The results of this study may help to better understand the 99 

mechanical behavior of the SFN during NDM and could support the use of this NDM for further 100 

in vivo studies. 101 

1. Materials and methods102 

Specimens 103 

Six fresh frozen cadavers from XXX anatomy laboratory were selected for this study, 104 

four females and two males were selected for this study (mean age of 84 ± 4.33 years, body mass 105 

index 21.6 ± 1.67 Kg/m2). Due to acquired local lesions, two lower limbs from two cadavers 106 

were not included in this study leading to a sample of 10 lower limbs tested. The project received 107 

approval from the anatomy department subcommittee’s ethic board from the XXX. 108 

Specimen preparation 109 

Cadavers were positioned lying supine on an experimental frame. Prior to data collection, 110 

Cadavers were thawed 48 hours. Abdomen palpation looking for soft end feel and abdominal 111 

temperature control was performed to confirm the bodies were fully thawed. All joints of the 112 

lower limbs were mobilized to ensure all joints had maximal range of motion in their anatomical 113 

planes. 114 
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The skin was incised longitudinally over eight centimeters at the antero-lateral aspect of 115 

the distal third of the leg allowing to reach the SFN (Figure 1.). Care was taken to maintain the 116 

integrity of the crural fascia where the SFN exits, preserving the moving plane of the nerve. No 117 

crural fascia were incised during the dissection. The surrounding superficial adipose tissue was 118 

cleaned using a 23-blade scalpel to obtain adequate nerve visualization. 119 

Segmental SFN linear elongation was measured using a differential variable reluctance 120 

transducer (DVRT) with six mm stroke length (Parker LORD MircroStrain Sensing System, 121 

Williston VT). DVRT was inserted in the nerve via two barbed pegs 2 cm inferior to the exit of 122 

the SFN. The non-moving part of the sensor was sutured around the nerve’s axis (figure 2) by an 123 

anatomist with over 15 years of cadaveric research experience to the nerve to ensure DVRT 124 

stability.  125 

The communicating wire and wireless transmitter were secured to the proximo-lateral 126 

aspect of the leg using zinc-oxide tape to make sure they did not interfere with any soft tissue of 127 

the lower leg. Node Commander software (Parker LORD MircroStrain Sensing system, 128 

Williston VT) was used for data collection. The cadaver’s pelvis and thorax were then secured to 129 

the experimental frame using a ratchet tie-down strap to stabilize the specimen throughout the 130 

mobilizations. 131 

Experimental set-up and data collection 132 

To ensure reliability and accuracy of hip movements during testing, an opto-electronic 133 

motion capture system (PrimeX22, Optitrack, NaturalPoint Inc., Corvallis, OR) was used. Two 134 

intracortical pins, mounted on top by one cluster of four reflective markers were introduced in 135 

the diaphysis of the femur and in the superior aspect of the anterior superior iliac spine.  136 
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Mobilization was executed by a physical therapy technologist licensed in Québec, 137 

Canada. The motion sequence constantly followed the specific order described in the reference 138 

literature:33 1. Maximal available ankle plantar flexion, 2. Maximal available ankle inversion, 3. 139 

Hip flexion (part of the SLR mobilization) 4. 30° of hip adduction. 140 

The hip flexion position of the mobilization was randomized for every limb using Matlab 141 

(MathWorks, Version: R2020b, Natik, Massachusetts) to make sure nerve creep was not a 142 

confounding factor. Ankle inversion was considered a motion in the frontal plane as described by 143 

Brockett et al.35 Each mobilization was repeated 3 times and replicated at different randomized 144 

hip flexion positions (0°/30°/60°/90°) of the SLR. Every position was maintained for a duration 145 

of two seconds to ensure stable measurements were obtained. Between trials, the limbs were then 146 

brought back to the resting position and maintained during for 1 minute to limit the possible 147 

impact of creep within the nerve. The examiner was blinded to strain data during the NDM. 148 

During all the procedures, nerve and surrounding tissues were kept hydrated by physiologic 149 

saline solution (Water and NaCl at 0.9%). 150 

Continuous electro-mechanical measures were obtained in volts, and manufacturer’s 151 

conversion curve was used to calculate displacement in mm. Elongation was then used to 152 

calculate strain of the nerve tissue. Strain (ε) was expressed as the measure of deformation of the 153 

length variation from the initial length of the nerve tissue. The following equation was used: 154 

Ɛ = ΔL/L0155 

The resulting strain is expressed as a percentage of elongation (positive value) or 156 

shrinkage (negative value). We considered the anatomical reference position as the initial 157 

measure (L0) of length with cadavers lying supine in anatomical position. 158 

Statistical analysis 159 
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  8

 Descriptive statistics of the strain were collected at each position of the mobilization 160 

sequence. Normal distribution of data was confirmed using Shapiro-Wilk test of normality (sig = 161 

0.330). A one-way Analysis Of Variance (ANOVA) was then conducted on the strain measured 162 

in percentage. Post hoc Tukey test was applied for multiple comparisons. Statistical tests were 163 

performed using SPSS (Version 24., IBM, Armonk, NY) and data was extracted using 164 

MATLAB (MathWorks, Version: R2020b, Natik, Massachusetts).  Independent variables were 165 

the technique sequence and hip flexion range of motion, and the dependent factor was the strain 166 

measured in the nerve tissue.  A test-retest intra-rater reliability analysis of strain was conducted 167 

on two different cadavers with one hour interval between mobilisations, repeated twice following 168 

a protocol of randomization. Intra-rater reliability was measured with a two-way random effect 169 

absolute agreement intraclass correlation coefficient (ICC). 170 

3. Results 171 

3.1 Reliability  172 

Mean intra-class correlation coefficient (Table 1) with absolute agreement was 0.86 in 173 

this study for the measure of strain at the end of mobilization. 174 

3.2 Strain 175 

Final strain measured in the SFN at the end of the mobilization with all motions 176 

combined are presented in Table 2. Compared to the anatomical resting position, significant 177 

differences in strain were produced at the nerve (7.93  0.51% p<0.001).  178 

With all motions combined at the end of mobilization, we did not observe any significant 179 

difference in strain between the different SLR hip flexion positions (Table 2) (p= 0.851).  180 

A general view of the strain behaviors throughout the entire mobilization are presented in Figure 181 

3. Peak strain percentage was reached following the hip flexion position during every 182 
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mobilization (after INV at 0° of hip flexion). PF and INV were the main motions inducing nerve 183 

elongation at 4.66 ± 0.53% and 2.54 ± 0.18% respectively. 184 

3.3 Motion contribution to total strain 185 

Motion contribution to total strain is defined as the percentage a specific motion 186 

contributes to a scale of 100% which represents total strain attained at the end of mobilization 187 

(Figure 3 & 4.). Figure 3 regroups the mean contribution percentage of motions of every hip 188 

flexion level. Globally, within mobilization, PF (59.34 ± 25.82%) and INV (32.80 ± 21.41%) 189 

were consistently the highest contributors to strain noted. Nevertheless, their contribution 190 

steadily decreased as hip flexion became increasingly important as a contributor (Figure 4). 191 

Figure 4 regroups this data by motion at different hip flexion positions. No statistical 192 

difference was found within PF (p= 0.695), INV (p= 0.643) and ADD (p= 0.202). Therefore, 193 

there is no significant contribution difference within these three specific motions whether 194 

performed at 0°, 30°, 60° or 90°.  As seen in Figure 4, a significant difference was demonstrated 195 

between different hip flexion positions contribution on total strain (0°/30°/60°/90°) (p= 0.003).  196 

We averaged contribution values from each different position (Table 3). A one-way 197 

ANOVA was conducted to compare every different motion against the other to conclude whether 198 

a statistical difference was present. The ANOVA showed a statistically significant difference 199 

between global motions (F= 84.104. p<0.001). Post hoc Tukey analysis showed PF had a 200 

significantly higher contribution to strain than INV (p<0.001), hip flexion (p< 0.001) and ADD 201 

(p< 0.001). INV also had higher contribution than hip flexion (p< 0.001) and ADD (p< 0.001). 202 

However, no statistical difference was found between hip flexion (6.96  10.56%) and ADD 203 

(0,39  10.42%) (p=0.381). 204 

4. Discussion205 
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To our knowledge, this is the first study investigating the mechanical effect of a specific 206 

neurodynamic test of the SFN composed of hip and ankle movements on fresh cadavers. The aim 207 

of our study was to investigate the ability of a specific neurodynamic test to produce strain at the 208 

superficial fibular nerve at the exit of the crural fascia. We observed that strain is indeed 209 

produced during a neurodynamic mobilization with SFN bias (7.12-8.23%). This finding is 210 

unsurprising as other authors have described the impact of SLR mobilizations on sciatic, tibial, 211 

and plantar nerves21 and at lumbar roots L4 through S1.22 212 

Although testing of the SFN mechanosensitivity using neurodynamic has been described 213 

previously,36 no biomechanical studies have been performed regarding nerve strain. Despite the 214 

fact the specific order of mobilization produced a significant amount of strain on the SFN, we 215 

did not find a significant difference between distinct levels of hip flexion used during the SLR 216 

component on final absolute strain (Table 2.). A previous study37 on tibial and sciatic nerves also 217 

found that the order of mobilization may not influence final strain during SLR testing on 218 

cadavers. This implies that another order may have yielded similar results. Our findings showed 219 

that hip flexion positions during SLR might not influence final strain.  220 

Additionally, we observed that hip flexion and ADD consistently seemed to have a lesser 221 

influence on total strain while ankle movements (PF and INV) were the main relative 222 

contributors to SFN strain (59.34%-32.80% of the total strain). This is consistent with previous 223 

studies38 where neighboring joints to the tested nerve were elicited a greater mechanical 224 

influence. Plantar flexion was consistently the highest contributor to total strain of the SFN. This 225 

finding is supported when considering the normal anatomy of the SFN as it passes on the dorsal 226 

aspect of the foot anteriorly to the transverse axis of the ankle. 227 
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The findings in our article could also demonstrate the critical implication of the ankle 228 

motions on the testing of mechanosensitivity in the superficial fibular nerve and reinforce their 229 

impact on SFN deformation. Although hip flexion position did not cause the most strain in the 230 

evaluated segment of the SFN, it is generally used in a clinical setting as a differentiation 231 

maneuver. It’s increasing contribution to strain during the mobilization is a reason why it should 232 

be used clinically for pain differentiation. However, the amount of strain found to be clinically 233 

significant in the living population has yet to be examined. We therefore cannot confirm the 234 

meaningfulness of different hip flexion levels as a differentiation maneuver as the lack of 235 

statistical difference may or may not be clinically significant. As the SLR is a test usually 236 

performed with the ankle dorsiflexed, the initial motions of this specific test could be lowering 237 

the innate neural tension at the proximal sciatic nerve, explaining why hip flexion may have a 238 

lesser influence on SFN elongation.   239 

Previous authors39 have studied the impact of ankle inversion as a single motion with 240 

simulated talo-fibular ligament tear in a cadaveric setting on SFN strain and excursion. They 241 

measured comparable amount of strain (3.0% to 11.6%) with an in vitro simulated ankle sprain 242 

relative to our study (4.15% to 10.80%). Interestingly, our results do not indicate strain over 243 

10.80% which is far lower than the 15.7% reported previously to be detrimental to neural 244 

vascularization.32 This SFN mobilization technique could then be considered safe to execute In 245 

Vivo.  246 

Our hypothesis that hip ADD would lower the amount of strain was not confirmed across 247 

all conditions as it did not significantly change the elongation of the SFN across all 248 

mobilizations. We noted a slight reduction at 60° and 90° of SLR while having no significant 249 

effect at 0° and 30°. This reduction could indicate that a more proximal phenomenon may be 250 
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happening at the gluteal region where an anchor of the sciatic nerve would change its response 251 

when mobilizing over 30° of hip ADD. We hypothesize that the lumbar plexus, passing medially 252 

to the coronal axis of the hip, may be the reason why strain seems mainly unaffected at the SFN 253 

in an adducted position of the hip. Additionally, cadaveric tissue’s stress response may differ to 254 

living tissue. Comparative studies in the living should be conducted to compare different stress 255 

responses using shear wave elastography. 256 

 257 

5. Study limitations 258 

While this study provides new insights on neurodynamic mobilizations at the lower 259 

extremity, certain limitations arose. First, this study only considered longitudinal stresses. Other 260 

biomechanical forces such as shear and compressive forces were not studied. Secondly, during 261 

testing, the tester tried to maintain movements in the perfect anatomical planes with infrared 262 

tracking but could have induced a small amount of hip internal rotation during the ADD part of 263 

the mobilization. This could have a minimal influence on the strain on the SFN. This study is a 264 

cadaveric investigation, involving a certain amount of dissection, although minimal, which could 265 

have modified the moving plane of the nerve. The cadaver’s age group included in this study 266 

does not represent the typical Athletic Trainer’s population. As peripheral nerve tissue ages, 267 

stiffness increases which could change strain values compared to a younger and more active 268 

population. This could also impact the variability in strain where a younger population may 269 

present more variability emphasizing the need for the clinician to apply different movement 270 

combinations. The results are obtained in a cadaveric setting; therefore, applicability could be 271 

different in a clinical population. Our results can however be a starting point for in vivo studies 272 

using non-invasive measurement techniques such as shear wave elastography. 273 
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6. Conclusion274 

This study demonstrates that a specific NDM significantly increases longitudinal strain of 275 

the SFN. Different hip flexion position during the SLR maneuver did not seem to have an impact 276 

on final longitudinal strain, although they became a more significant contributor as the range of 277 

motion increased. Clinicians should consider ankle motions crucial to produce strain in the SFN 278 

to evaluate mechanosensitivity in patients. Our results also showed that clinicians must 279 

investigate different positions at the hip to evaluate SFN mechanosensitivity as ADD showed a 280 

significant inter-subject variable effect on strain. It is interesting to note that the ‘’optimal’’ 281 

amount of strain during mobilization for clinical results are yet to be established. Future clinical 282 

studies are recommended to investigate the effect of ankle and hip movements on the symptoms 283 

expected to be originated from the SFN. 284 
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