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Abstract: In this paper, power-sharing management control on an AC islanded microgrid is investi-
gated to achieve accurate reactive power sharing. The droop control method is primarily used to
manage the active and reactive power sharing among the DGs in the microgrid. However, the line
impedance mismatch causes unbalanced reactive power sharing. As a solution a consensus-based
adaptive virtual impedance controller is proposed, where the consensus algorithm is used to set
the reactive power mismatch; then a virtual impedance correction term is generated through a
proportional-integral controller to eliminate the line impedance mismatch. Thus, reactive power
sharing is achieved without knowledge of the line impedances or using a central controller. Moreover,
the consensus algorithm is used to restore the AC bus voltage to the nominal value by estimating the
DGs average voltage using neighbor communication to compensate for the decreased magnitude of
the voltage reference. Matlab/Simulink is used to validate the accuracy of reactive power sharing and
voltage restauration achievement of the proposed solution through simulation of different scenarios.
In addition, a dSPACE DS1104 is used within a developed experimental testbench based on two
parallel DGs to validate the effectiveness of the proposed solution in the real world.

Keywords: consensus control; virtual impedance; microgrids; distributed generation; dSPACE
controller; droop control

1. Introduction

The world energy demand is increasing quickly, and it is expected to reach 50% by
2050 [1]. This is due to the increase in the population of the world and the rapid develop-
ment of technologies. To accommodate this growth in energy demand, the development
of new power generation and massive integration of renewable energy become a prior-
ity respecting the agreements on the emission reduction of CO,. Recently, several new
technologies have been contributing to power generation plants such as the Distributed
Generation (DG) using renewable energy sources, Electrolyzers (Ely) and fuel cells (FC),
Electric Vehicles (EVs), and Energy Storage Systems (ESSs). Connected to a common bus
with a centralized or decentralized controller and power management system with com-
munication, they establish a new power generation system called a microgrid (MG). A MG
can operate in both connected mode when it is coupled to the main grid, or autonomous
mode when it is islanded [2,3].

The massive integration of Renewable Energy Resources (RES) in MGs can reduce the
operation cost, increase the benefits on the environment by reducing the CO, emissions,
and create new power sources [4]. However, the nature of these sources and sudden
variations in the weather cause perturbation and instability to the MG, resulting in voltage
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and frequency deviations. MGs are considered to have a low system inertia due to the low
capacity of the DGs supplied by RES. Furthermore, the sudden changes in the connected
loads may lead to critical frequency deviations and power flow management issues during
the MG operation [5-7].

In autonomous microgrids, the connected DGs share the load power according to their
power ratings for the profitability and to ensure the stability of the MG. The commonly
adopted method in power sharing is the droop control approach. Active power sharing
between DGs can be easily achieved using the frequency droop control method, whereas
the reactive power sharing cannot be achieved easily due to the impedance mismatch
between DGs which leads to voltage deviation and system instability [8,9]. To solve the
inaccurate reactive power sharing issue, other ameliorated control methods have been
developed [10-13]. In [10], a decentralized self-changing control was proposed using the
adaptive droop control method. To increase the accuracy of reactive power sharing, an
inductive virtual impedance (VI) loop was introduced; however, this method was not
examined for a wide scope of working points. In [11], an adaptive droop controller was
proposed to ensure dynamic stability of power sharing, where derivatives of active and
reactive power are added to the traditional droop controller. Then, droop control gains
were tuned adaptively conforming to the output power variations. However, the reactive
power sharing was not as expected [12]. A modified Q-V droop control method was
introduced in [13] to improve the power sharing accuracy. However, the reactive power
sharing difference cannot be completely removed.

Other methods based on improved hierarchical control strategies have been pro-
posed [14,15]. A secondary controller with a primary droop controller was presented in [14]
to achieve accurate reactive power sharing in islanded MGs. However, a communication
link between the central controller (CC) and DG’s local controller is needed, increasing
the response time and the total cost. In [15], virtual impedance control was applied in
islanding MGs at different levels according to transient variations in the active power. A
transient control term was used in the traditional droop control by injecting frequency
disturbances. However, this approach could result in lower reliability and instability of the
MG because of their reliance on the central controller. Moreover, the reactive power sharing
was not addressed. Nonetheless, in these methods, power-sharing accuracy, especially
reactive power can be influenced by communication congestion or delays regarding the
number of connected DGs [16,17]. VI-based methods were widely used to improve reactive
power sharing [18-20]. The VI is used to eliminate the impedance mismatch between lines
and then improve reactive power sharing as well system stability. Based on injection of
disturbances, online impedance estimation, or using MGCC, this approach can flexibly
deal with the impedance mismatch between lines as well as the variation in load power, im-
proving the dynamic performance of the MG. In order to enhance accurate reactive power
sharing between parallel DGs, a complex VI approach including resistive and inductive
factors systems was introduced [21,22] where the reactive power sharing was significantly
enhanced. Furthermore, the result can be better with communication-based complex VI [23].
However, the communication delays can result in less reactive power sharing accuracy and
degraded performance.

Recently, consensus algorithms were combined with the adaptive VI approach in
order to guarantee accurate power sharing and current harmonics sharing. In addition,
the voltage and the frequency value restoration can be achieved using these algorithms.
Based on the information from neighbor communication or MGCC systems, the consensus
approach is used to guarantee accurate reactive power distribution. The virtual impedance
of DGs is tuned by the consensus approach to move towards a common objective in terms of
reactive power sharing [24-26]. However, the communication system should be optimized
to enhance the MG stability and improve the MG performance.

When only the neighbor communication system is used, the MG cost and communica-
tion time will be reduced. This kind of communication can be used in one or two directions,
depending on the system specifications. Reactive current information can be used in order
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to have accurate reactive power sharing. On the other hand, the active current information
is used for active power sharing accuracy [27]. Moreover, to compensate for the voltage
deviations and drop caused by the VI, DG output voltage restoration was introduced
using a consensus algorithm [23]. The approach uses a communication system between
adjacent DGs to exchange information on reactive power sharing and voltage restoration.
However, this approach is dependent on communication system reliability. Microgrid
reliability and efficiency are related to several parameters such as communication links and
control strategy. MGCC presents a very sturdy and efficient control strategy. However, the
complex communication system may increase the total cost as well as the impact of com-
munication time delays. Therefore, decentralized control strategies are favored especially
in autonomous MG where DGs, loads, and storage systems are from multiple customers.
In this case, complex central communication systems should be avoided in order to reduce
the information dependency on each DG.

Encouraged by this aspect, several attempts have been made by this work. Since the
reactive power sharing issue is directly related to the DGs voltage and their behaviors, it
can be solved based on information exchange between adjacent DGs and local information
through a progressive process. The line impedance can be first estimated and tuned by each
DG using the consensus algorithm; then this value can be shared with the neighbors. The
Vlis adaptively adjusted by the consensus algorithm to remove the mismatch between line
impedance, ensuring accurate reactive power sharing without line impedance knowledge.
Furthermore, the consensus control is used to compensate and restore the output voltage
of each DG to the MG voltage. Therefore, the developed control contributions from this
work are summarized as follows:

Adaptive virtual impedance control combined with a consensus algorithm is pro-
posed for reactive power-sharing accuracy and parallel DGs voltage restoration with line
impedance mismatch in autonomous MGs.

To achieve accurate reactive power sharing, neighbor information through a uni-
directional communication link is used to estimate the VI, reducing the cost and the
time delay impact of communication. Additionally, this approach cancels out the line
impedance knowledge.

The proposed control approach was confirmed by experimental validation using a
small-scale laboratory test bench based on MGs with two DGs.

The rest of the paper is arranged as follows: Section 2 presents the power sharing
using conventional droop, the microgrid configuration, control, and modeling. Section 3
explores the proposed approach based on adaptive VI and consensus algorithms used
to have accurate reactive power sharing and system voltage restoration. Then, Section 4
shows the simulation verification and Section 5 presents the experimental validation results
of the proposed control approach. Finally, summary and main findings of this paper are
presented in Section 6.

2. Droop Control and Reactive Power Sharing Theory

Droop control is the most used classical approach to control parallel DGs in power
systems. This method presents high flexibility with good reliability and redundancy. It
does not require a central controller or communication system and is mostly used in the
primary control of MGs.

2.1. Droop Control

To analyze the power flow in steady state, it is assumed that the inverter is a controlled
voltage source; then the dynamics of the inner control loop can be neglected. Figure 1
illustrates an inverter connected to the point of common coupling (PCC) through a line
impedance Z.
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2.3. DGs Modeling and Global Control Strategy

The control strategy at the primary control level is based on proportional-integral
(PI) controllers. Figure 3 shows the global control scheme of inverters for each DG. Sec-
ondary control level includes the droop controller, power calculation, the adaptive virtual
impedance, and the consensus algorithm with the communication network. References
of voltage and adaptive VI value are generated and sent to the primary control level. Af-
terward, inverter control signals are generated based on these references. An LCL filter is
used to connect the inverter to the AC bus, where Lf is the inverter side inductor of the
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and Vs« are the voltage references calculated by the droop controller. The adaptive VI

control is as follows:
|: Vcdref* :| _ [ Vc_refd - Vvi_d (14)
chre fx Vc_re fq — Vvi?q

where V; 4, Vi, represent the references from the adaptive VI controller and V. e, Ve _repy
the references of the droop controller.

3. Adaptive Virtual Impedance and Consensus Algorithm

In a MG, the active and reactive power are coupled and depend on the output fre-
quency and voltage due to the nature of the line impedance, which can be resistive inductive
or both. The use of VI in combination with the physical impedance can modify the total
output impedance of the DG. In this section, the proposed approach based on adaptive VI
and consensus algorithms is explored.

3.1. Adaptive Virtual Impedance

VI has been used for many applications recently, such as reactive power sharing
by ensuring a consistent and equivalent output impedance for all parallel DGs in the
autonomous MGs [2,25-27]. This VI can be adjusted adaptively in order to calculate the
total impedance and then the voltage reference. Thus, the total output impedance of a DG
can be written as follows [27]:

Zi = Zline,i + Zv,i + Zadp,i (15)

Z; represents the total output impedance of the DG; and the line impedance can be
represented by Zj;,, ;. The virtual impedance can be divided into two terms, Z,; which
represents the static virtual impedance value used to ensure an inductive total impedance.
The other term, Z,4,; represents the adaptive VI. Equation (15) shows that the output
impedance of each DG is increased by the adaptive term in order to match with other DG
impedances and eliminate the mismatch. Then, reactive power sharing can be improved
using droop control relations.

3.2. Consensus Algorithm

In order to have a similar output impedance between different DGs, in this work,
the adaptive VI in Equation (14) is calculated and adjusted using a consensus algorithm.
To have an accurate reactive power sharing, consensus control is used to reach a general
agreement among all MG agents. Thus, the droop control and reactive power coefficients
must be designed to be inversely proportional, according to the following equation [26-29]:

no1Q1 = ngQr = ... = nonQN (16)

By replacing (7) in (5), the reactive power flow of each DG can be written as follows:
V(Eg—V)

1,;Q; =
ql 1 %_’_V

(17)

Therefore, to satisfy Equation (16), the term Xi/ni of each DG must be the same in
Equation (17), from which the following equation can be written:
XX XN

o 18
n n3 nN (1%
From Equation (18), it can be noticed that the term n; must be proportional to the line
reactance X;. Considering Equation (16), in order to obtain accurate reactive power sharing
the reactance of the line must be designed to be inversely proportional to the reactive power,
then the following equation can be written [23,25,26]:
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The consensus control of the reactive power can be treated as a synchronization
problem of a first-order linear agent system [26-28]. Then, Equation (20) is obtained from
the linearization of Equation (15):

ug, = ngiQi = —Cugenioi (20)

where, ug, is the auxiliary control, e,;o; represents the reactive power error between the
local DG and its neighbor, and C,,g is the coupling gain. The local neighbor’s reactive
power sharing error is represented by:

enigi = 3, 4ij(n0iQi — ng;Q;) (21)

j=N

where a;; represents the changes in connection between DGs from the adjacency matrix.
The whole consensus system can be written in matrix representation as:
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3.3. Bus Voltage Restoration

3.3. Bso{aiteso ReYoptifdate the voltage drop caused by the droop control and the VI, a
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PhtvasenddE s dltageoot ¢hehpblicraiidve derfimol] andhensueragretiahpeld potte gernval tiecof/ A,
Mie bXesdge, voltde of each DG can be defined as the average output voltage value of all

MG DGs [23,26,27]: NV
V= N] (25)
B (25)
V = —
Lu N
j=1

where V is the average voltage, Vj is the output voltage of DGj, and N is the total number
of DGs connected to the MG. Using the consensus based adaptive VI control, once the
virtual impedance is adaptivelyv set and the reactive power sharing is achieved, the droop
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between VLGS, improve the power Ilow control, and ensure a reliable operatuon or the MG.
The average voltage of each DG can be defined as the average output voltage value of all
MG DGs [23,26,27]:

25)
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where Viis the voltage of DGi and Cv is a coupling gain. Then, the dynamics of the voltage
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consensus control can be expressed as follows:
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4. Simulation Vexificatigh

In srder 6 verify the effectiveness of the stssgsé EORtr8 Mépafsash simtation tests
were nducied g X MG%%M SOftware: T gUre 3 Was

modeled in Simu composed of three DGs connected to renewable energy
sources (solar or wind) with different rated powers and a battery storage system. All DGs
are connected to the AC bus through an LCL filter and an impedance. Moreover, different
loads are connected to the AC bus. All DGs are connected to a communication link in
order to change information between neighbors. The sharing power ratio is 1:1:0.5 for DG1,
DG2, and DGS3, respectively. Table 1 shows the parameters used in this simulation. The
simulation is divided into three parts. In the first one, reactive power sharing accuracy
was verified using the proposed control approach. In the second one, the robustness of the
control approach under load changes is explored, and finally, in the third one, the voltage
restoration performance was investigated.

Table 1. Simulation parameters.

Parameters Value

Inverter power rating 5 KVA

Line voltage 208V

Bus frequency 60 Hz

Dc bus voltage 400V

Line impedances
line 1 75mH, 0.6 Q)
line 2 45mH, 050
line 3 7.5mH, 0.6 O
Proportional gain in PI current controller Kpi 50

Integral gain in PI current controller Kii 0.5
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Table 1. Cont.

Parameters Value
Proportional gain in PI voltage controller Kpv 2
Integral gain in PI voltage controller Kiv 0.5
Droop coefficient
mP1, mP2 2x107%
mP3 4 x 1074
nQ1, nQ2 5x 1074
nQ3 75 x 1074
Load 1 4 kW, 1.1 kVAR
Load 2 2.2 kW, 0.6 kVAR
Load 3,4

1 kW, 0.25 kVAR

4.1. Case Study #1

Figure 6 represents the active power sharing between the three DGs. The active power

Enercies 2 1 as well shared before and after applying the proposed strategy. The reactive power
ﬁnéggzes %%2 % Iggﬁ{l’lﬁl!}lﬁqugé]\;]':“gg(armg is shown in Figure 7, where 1t is not ach1eved usmg the conventional method.

power sharing in the desired ratio without attectmg the active power sharing. The virtual
regjsfance and reactance of each DG are illustrated in Figures 8 and 9.
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After activating the consensus algorithm control, DG1 and 2 resistance and reactance

Mll@ﬁéﬁ%ﬂf‘#@l This is due to their equal power-sharing ratios. While the resistance

and reactance values for DG3 are larger because the sharing ratio of this DG is lower
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4R Case Study #2
| In the second

htions, the performance of the system was tested during
the renewable resources are operated under deloaded
~their maximum output power is between t = 5 s and t = 7.5. Otherwise, they are
eperated under deloaded mode. [nitially, the system load is (2.2 kW, 0.6 kVAR), after
t=25s the load was increased to|(3.2 kW, 0.85 kVAR), then after t = 5 s, the load was
incteaseck to (42 kW,61.1 kVAR). Finally, at t = 7.5 s the load was reduced to (3.2 kW,
0.85 kVAR). The Sintilation results are shown in Figures 11-14. For active and reactive

Figpoandr AttaverpowadobhGgnoring transient periods as shown in Figures 11 and 12, the
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4.3. Case Study #3

The third simulation case was dedicated to voltage restoration contro
ning, one load was connected to the AC bus, then at time t = 1.5 s the rest
was activated. To verify the effectiveness of the voltage restoration contrc
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