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ABSTRACT 52 

• “Least-cost theory” posits that C3 plants should balance rates of photosynthetic water 53 

loss and carboxylation in relation to the relative acquisition and maintenance costs of 54 

resources required for these activities. Here we investigated the dependency of 55 

photosynthetic traits on climate and soil properties using a new Australia-wide trait 56 

dataset spanning 528 species from 67 sites.  57 

• We tested the hypotheses that plants on relatively cold or dry sites, or on relatively 58 

more fertile sites, would typically operate at greater CO2 drawdown (lower ratio of 59 

leaf internal to ambient CO2, Ci:Ca) during light-saturated photosynthesis, and at 60 

higher leaf N per area (Narea) and higher carboxylation capacity (Vcmax 25) for a given 61 

rate of stomatal conductance to water, gsw. These results would be indicative of plants 62 

having relatively higher water costs than nutrient costs.  63 

• In general, our hypotheses were supported. Soil total phosphorus (P) concentration 64 

and (more weakly) soil pH exerted positive effects on the Narea-gsw and Vcmax 25-gsw 65 

slopes, and negative effects on Ci:Ca. The P effect strengthened when the effect of 66 

climate was removed via partial regression. We observed similar trends with 67 

increasing soil cation exchange capacity and clay content, which affect soil nutrient 68 

availability, and found that soil properties explained similar amounts of variation in 69 

the focal traits as climate did. Although climate typically explained more trait 70 

variation than soil did, together they explained up to 52% of variation in the slope 71 

relationships and soil properties explained up to 30% of the variation in individual 72 

traits.  73 

• Soils influenced photosynthetic traits as well as their coordination. In particular, the 74 

influence of soil P likely reflects the Australia’s geologically ancient low-relief 75 

landscapes with highly leached soils. Least-cost theory provides a valuable 76 

framework for understanding trade-offs between resource costs and use in plants, 77 

including limiting soil nutrients.  78 

KEYWORDS   Australia; least-cost theory of photosynthesis; nutrient-use efficiency; 79 

optimality theory; plant functional traits; soil nutrients; soil phosphorus; trait coordination; 80 

water-use efficiency 81 

 82 
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INTRODUCTION 83 

Photosynthesis is a fundamental process in the global carbon cycle, governing flows of 84 

energy (Friend et al., 2009; Smith & Dukes, 2013). Broad-scale influences of site climate on 85 

photosynthesis and associated traits have been widely reported. For example, leaf nitrogen 86 

concentration on an area basis (Narea) and area-based rates of light-saturated photosynthesis, 87 

Asat, are typically higher on relatively arid sites (Wright et al., 2005). Central to determining 88 

rates of photosynthesis is the internal concentration of CO2 within leaves (Ci), as the ratio of 89 

intercellular to atmospheric CO2 concentration (Ci:Ca) represents the balance between CO2 90 

demand (from the photosynthetic carboxylating enzyme, Rubisco) and supply (via stomata) 91 

during photosynthesis. Typically, Ci:Ca corresponding with Asat shows clear patterning with a 92 

variety of climate variables, being generally lower at arid, high-altitude and cold sites 93 

(Cornwell et al., 2018; Dong et al., 2020; Prentice et al., 2014; Prentice et al., 2011). 94 

Carboxylation capacity (Vcmax) considered at ambient temperatures tends to be higher at 95 

warmer sites (Dong et al., 2022) and, at least within-species, is generally higher in summer 96 

than in winter (Bloomfield et al., 2018). Conversely, Vcmax normalized to a standard 97 

temperature (commonly 25°C) tends to be lower in summer than in winter (Bloomfield et al., 98 

2018; Hikosaka et al., 2007; Lin et al., 2013) and declines with increasing growth 99 

temperature (Dong et al., 2017; Scafaro et al., 2017; Togashi et al., 2018). Finally, stomatal 100 

conductance to water, gsw, shows little patterning with site climate, at least at a global scale: 101 

individually or together, site temperature and precipitation explain < 1% variation in gsw in 102 

the global trait dataset of Wright et al. (2004b). Within C3 woody angiosperms measured 103 

across major terrestrial biomes, there is no relationship between gsw and either mean annual 104 

temperature (MAT), photosynthetically active radiation (PAR) or atmospheric vapor pressure 105 

deficit (VPD) (Murray et al., 2019; Murray et al., 2020).  106 

Broad-scale influences of soil properties on photosynthetic traits are less well 107 

documented but this area of research is growing. Maire et al. (2015) found that Asat increased 108 

with increasing soil pH and decreased weakly with increasing soil organic C concentration 109 

but had no relationship with soil N or available P concentration. Narea is higher on sites with 110 

high soil pH (Dong et al., 2020; Maire et al., 2015) and negatively correlated with soil 111 

organic C and soil total N concentrations, albeit weakly (Maire et al., 2015). Ordoñez et al. 112 

(2009) reported higher mass-based nitrogen concentrations at sites with faster N-113 

mineralization rates (argued to be a more relevant index of plant available N than soil total N 114 

concentration) but found no relationship between Narea and N-mineralization rate due to a 115 

concomitant increase in leaf area per unit mass (specific leaf area, SLA), where Narea is Nmass 116 
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divided by SLA. Dong et al. (2020) reported lower Ci:Ca on high-pH soils, as did Cornwell et 117 

al. (2018) and Paillassa et al. (2020). Paillassa et al. (2020) explored the role of soil textural 118 

properties and reported higher Vcmax coupled with higher gsw on sites with high soil silt 119 

content, lower Ci:Ca on deeper soils, and higher Ci:Ca in areas of high soil silt content, the last 120 

of which was also reported by Cornwell et al. (2018). gsw is higher on soils with low plant-121 

available P concentration (Maire et al., 2015), although studies on soil P effects are scarce.  122 

Soil pH, often described as a “master soil variable”, has emerged as an important 123 

explanatory variable in several studies of plant trait variation. Globally, soil pH tends to be 124 

higher at more arid than at mesic sites (Slessarev et al., 2016), although in Australia acid soils 125 

also occur at arid sites, likely owing to its low-relief landscape and the predominance of 126 

highly leached, ancient soils (Kooyman et al., 2017). Previous studies have worked to 127 

decouple the effects of pH and aridity. Presumably, the effect of pH on photosynthetic traits 128 

relates to its influence on soil nutrient availability: broadly speaking, nutrient availabilities 129 

are highest at mid-range pH values and lowest on extremely alkaline or acid soils. This can 130 

occur via changes in solubility and oxidation states (Lambers & Oliveira, 2019), enzymatic 131 

activity (Sinsabaugh & Follstad Shah, 2012; Sinsabaugh et al., 2008) and shifts in the activity 132 

and diversity of soil micro-organisms involved in nutrient cycling (Fierer & Jackson, 2006; 133 

Lauber et al., 2008). Hence, N and P availability are generally highest at intermediate levels 134 

of soil pH, driving shifts in key plant functions, including photosynthesis. 135 

“Least-cost” theory (Wright et al., 2003) is a framework for understanding the 136 

coordination of water and nutrient use during photosynthesis, and how it varies with site 137 

climate and soil properties. Under this theory, photosynthesis is conceptualized as a 138 

production process with two key inputs, N and water, which are associated with Vcmax and the 139 

transpiration pathway, respectively. Based on standard microeconomics theory for a two-140 

factor production process, the optimal balance of these inputs – indicating the lowest total 141 

cost for a given level of production – is set by the ratio of the unit-costs of the two resources. 142 

A key concept of the theory is substitutability: in principle, plants can economise on water 143 

use by “spending” more on leaf N (i.e., all else being equal, higher Narea at a given gsw results 144 

in higher Vcmax and hence lower Ci:Ca), or economise on N use by operating at a higher gsw or 145 

transpiration rate. Thus, the approach integrates the single-resource concepts of 146 

photosynthetic nitrogen-use efficiency and water-use efficiency (Field et al., 1983; Lambers 147 

& Oliveira, 2019; Smith et al., 1997). 148 

Briefly summarizing, the following are key assumptions from least-cost theory 149 

(Wright et al., 2003; Prentice et al., 2014; Wang et al., 2017): (1) the unit-cost for 150 
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carboxylation or Narea is set by the combined costs of acquiring soil nutrients needed for 151 

photosynthetic enzymes and the respiratory costs of building and maintaining enzyme 152 

function (e.g., protein turnover); (2) soil nutrients are more expensive to acquire when at 153 

lower availability (e.g., from higher root construction costs; more carbon traded for nutrients 154 

with mycorrhizas; higher costs associated with producing root exudates, such as carboxylates 155 

or phosphatases); (3) the unit-cost for transpiration is set by the cost of acquiring soil water 156 

and the respiratory costs of maintaining functional sapwood; (4) available soil water and 157 

VPD affect plant water costs but also plant water demands, as transpiration is the product of 158 

gsw and VPD; (5) temperature affects Rubisco kinetics, which influences carboxylation costs 159 

(as described above), and also the viscosity of water which influences water costs; and 160 

finally, (6) elevation affects the saturated vapor pressure of water and hence VPD 161 

(influencing water costs), and also gas partial pressures (Körner et al., 1991), ultimately 162 

influencing the use of CO2 versus O2 by Rubisco and therefore carboxylation. Taken 163 

together, the optimum balance between resource investments in transpiration and carbon 164 

assimilation should thus depend both on soil properties and climate.  165 

Assuming that site properties are the first-order controls on resource unit costs, typical 166 

Vcmax 25-gsw and Narea-gsw ratios –and also Ci:Ca– should vary predictably across 167 

environmental gradients (and, conversely, there should be convergence in these traits among 168 

co-occurring species). With successive iterations of least-cost theory, the predictions have 169 

shifted from qualitative to quantitative (at least in regards to climate), with support 170 

accumulating at regional and global scales. Wright et al. (2003) and Prentice et al. (2014) 171 

observed, as predicted, that species from more arid or cooler sites in eastern Australia 172 

typically operate with higher Narea and Vcmax 25 at a given gsw, and at lower Ci:Ca. Wang et al. 173 

(2017) generated quantitative predictions for the independent effects of site temperature, 174 

aridity (VPD) and elevation on Ci:Ca which were confirmed using a global dataset derived 175 

from leaf δ13C values (Cornwell et al., 2018). Dong et al. (2017) and Smith et al. (2019) have 176 

successfully used least-cost theory combined with “photosynthetic coordination” theory 177 

(Chen et al., 1993; Maire et al., 2012; Von Caemmerer & Farquhar, 1981) to predict climate-178 

driven patterns in Vcmax 25.   179 

Here, we further investigate the effects of soil properties, primarily pH and total 180 

phosphorus (hereafter, P) concentration but also additional proxies for fertility, in driving 181 

photosynthetic coordination at a continental scale. In a global study (Paillassa et al., 2020), 182 

we reported that plants on neutral to moderately alkaline soils (pH up to 8) had higher Vcmax 183 

25-gsw, higher Narea-gsw and lower Ci:Ca than plants on relatively acidic soils (pH as low as 4), 184 
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and that plants on deeper soils and soils with greater silt content had lower Vcmax 25-gsw, lower 185 

Narea-gsw and higher Ci:Ca than plants on shallow soils with little silt. These results were 186 

interpreted as most likely reflecting lower unit-costs for acquiring water on silt-rich and deep 187 

soils, and lower unit-costs for acquiring N on higher pH soils. Few studies have investigated 188 

the role of soil pH in driving trait coordination, despite its importance for regulating nutrient 189 

availability. In that previous study, climate and soil data were derived from global gridded 190 

datasets. In the present study, we instead use a combination of measured and gridded soil data 191 

and, importantly, we purposefully shift the focus to the soil P supply of a key limiting 192 

nutrient for photosynthesis (Domingues et al., 2010; Peng et al., 2021; Reich et al., 2009).  193 

Phosphorus plays a key role in leaf function in relation to P-rich bioenergetic 194 

molecules (ATP, NADP etc), Calvin-Benson cycle intermediates (e.g., ribulose-1,5-195 

bisphosphate), membrane lipids, and nucleic acids. On deeply weathered and infertile soils, 196 

including those in Australia but also the tropics, P is a key limiting nutrient for plant 197 

productivity, and geographic variation in soil P delineates native vegetation communities 198 

(Beadle, 1954, 1966; Kooyman et al., 2017; Laliberté et al., 2014; Vitousek, 1984). Here we 199 

address the aforementioned knowledge gaps, combining published and unpublished datasets 200 

with de novo photosynthetic measurements, building a comprehensive photosynthetic trait 201 

database for Australian native plants (536 species from 67 sites, Fig. S1).  202 

Our aims were to understand the manner in which soils—and to a lesser extent 203 

climate—have driven the coordination of photosynthetic traits, and to characterize trait-204 

environment relationships, focusing on soil pH, soil total P concentration, mean annual 205 

precipitation (MAP), and mean annual temperature (MAT) for the Australian flora. Better 206 

regional and global understanding of photosynthetic trait-environment relationships has the 207 

potential to improving existing global vegetation models by expanding on the environmental 208 

dependencies of traits. We focused on the effects of soil fertility via soil total P concentration 209 

and soil pH, both of which presumably influence the unit-costs of N and carboxylation more 210 

so than water costs, and we tested a number of key predictions (Fig. 1a). First, assuming—all 211 

else equal—that the unit-costs of soil nutrients are lower on higher-P soils or higher pH soils, 212 

we predicted that plants would increase their investment in Narea or Vcmax relative to gsw in 213 

these situations, and operate at lower Ci:Ca. We note that while extremely high pH soils 214 

reduce soil nutrient availability (Lambers & Oliveira, 2019), Australian soils are 215 

predominantly acidic compared with other arid regions of the world (Slessarev et al., 2016). 216 

Second, we predicted the same trait-shifts (higher Vcmax-gsw, higher Narea-gsw, lower Ci:Ca) in 217 

arid compared with wetter sites and on relatively colder compared with warmer sites. These 218 
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predictions arise from the assumption that the unit cost of water is greater at low rainfall and 219 

high VPD, and that temperature affects the unit costs of both carboxylation and 220 

photosynthetic water use (Prentice et al., 2014), as described above. The results from this 221 

study will be of global significance, as they will clarify whether trait coordination patterns 222 

observed at a global scale are consistent at a continental scale, in the context of locally 223 

relevant soil properties. 224 

 225 

MATERIALS AND METHODS 226 

Study system 227 

Australia is highly suited for this line of inquiry as there is wide environmental variation in 228 

both soils and climate. The central portion of the continent (ca. 70% by land area) is arid to 229 

semi-arid, while coastal regions vary from Mediterranean in the south to southwest, cool-230 

temperate in the south, temperate to tropical in the east, and wet-dry tropics in the far north. 231 

Although Australian soils are on the whole ancient and nutrient-poor (He et al., 2021; 232 

Kooyman et al., 2017; Viscarra Rossel & Bui, 2016), higher-nutrient soils punctuate the 233 

landscape (de Caritat et al., 2011; Viscarra Rossel & Bui, 2016) and the Great Dividing 234 

Range, which runs 3500 km north to south, approximately parallel to the east coast of 235 

Australia, divides the mesic coastal regions from the arid interior. Furthermore, although 236 

much of Australia has acidic soil, calcareous soils with high pH are also present across wide 237 

areas (de Caritat et al., 2011), for example in southern Australia, resulting from repeated 238 

marine incursions beginning in the Miocene era (Northcote & Wright, 1982; Taylor, 1994). 239 

In this study, the majority of the sites were on acidic soils with low soil nutrient availability 240 

(Table S1), which is representative of Australia but also relevant to other, similarly-leached 241 

regions of the world.  242 

 243 

Field data collection 244 

Leaf trait data were collected on woody and non-woody plant species at three sites between 245 

December 2018 and March 2019: Kidman Springs Research Station (tropical savanna, 246 

sampled during the wet season; Northern Territory), Royal National Park (subtropical 247 

rainforest; New South Wales), and Mount Keira (subtropical rainforest; New South Wales). 248 

Latitude, longitude and climate data for these sites can be found in Table S1. These sites were 249 

chosen to increase the number of samples within sites of moderately high total soil P 250 
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concentrations and moderately high soil pH (Fig. S2), compared with site coverage in our 251 

compilation of literature data, described below. Ten soil samples (to 30 cm depth) were 252 

collected at each site and air-dried prior to laboratory analyses (CSPB laboratory in Bibra 253 

Lake WA, Australia) of soil pH in CaCl2 solution (Rayment & Lyons, 2011) and total soil P 254 

concentration via colorimetry, following Kjeldahl digestion (Rayment and Lyons Method 255 

9A3b) . 256 

We sampled seven to 28 species per site, randomly selecting three to eight individuals 257 

per species and focusing on dominant woody and non-woody species (excluding C4 plants). 258 

Photosynthetic traits were measured using a Li-6800 gas exchange system (Li-Cor 259 

Biosciences, Lincoln, NE, USA). Survey-style gas exchange measurements were made 260 

between 0800 and 1400 hours on one leaf per plant. Young but fully expanded, undamaged 261 

leaves were sampled from the most sun-exposed portion of each canopy. We measured light-262 

saturated (photosynthetic photon flux density of 1800 µmol m-2 s-1) photosynthesis per unit 263 

area (Aarea, μmol CO2 m-2 s-1) at an atmospheric CO2 concentration of 400 µmol mol-1, 264 

allowing leaves to remain in the chamber for several minutes. Leaf temperatures were 265 

initially set to 25°C, although in many cases the temperature had to be increased above this to 266 

prevent condensation in the cuvette. Mean leaf temperature was 29°C with 95% of 267 

measurements made between 25°C and 35°C; relative humidity varied between 40 and 80%. 268 

We also recorded stomatal conductance to water vapor (gsw, mmol m-2 s-1) associated with 269 

light-saturated photosynthesis, and the ratio of internal to ambient CO2 concentration (Ci:Ca, 270 

unitless). We note that gas exchange rates are sensitive to plant water status and can exhibit 271 

pronounced temporal (e.g., diurnal, seasonal) variation. By measuring photosynthesis and 272 

stomatal conductance in light-saturated leaves at a controlled temperature and humidity, we 273 

reduced the amount of variation in the data by selecting favorable conditions for 274 

photosynthesis inside the cuvette.  275 

We also collected five or more outer canopy leaves per plant, sampling from multiple 276 

branches up to 10 m above the ground, using an extendable pole pruner. Leaves were scanned 277 

to estimate leaf area, dried at 60°C for a minimum of 72 hours and weighed to calculate leaf 278 

mass per area (LMA, g m-2). Samples were analysed for leaf N concentration (% mass basis) 279 

by the Stable Isotope Core Laboratory at Washington State University, USA using an 280 

elemental analyzer (ECS 4010, Costech Analytical, Valencia, CA). Leaf N per area (Narea; g 281 

m-2) was calculated as Narea = Nmass × SLA-1.  282 

 283 

Data compilation 284 
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Trait data 285 

We compiled field-measured photosynthetic trait data from published and unpublished 286 

studies that employed similar standard methods to those described above, i.e. light-saturated 287 

photosynthesis measured on young but fully-expanded, undamaged “sun” leaves at ambient 288 

atmospheric CO2 concentration, and relative humidity between 40 and 80%. See Table S2 for 289 

a full list of source publications, noting that some of the trait data included herein are not 290 

published. Further details regarding our field methods can be found below. For inclusion, a 291 

dataset had to contain field-measured Asat, gsw, and Ci; where available we also extracted data 292 

for leaf temperature (Tleaf), LMA, and Narea. We estimated carboxylation capacity at a 293 

standardized temperature of 25°C (Vcmax 25) following the one-point method (De Kauwe et 294 

al., 2016), which utilises Tleaf, Asat, and Ci. We consulted the original publication or contacted 295 

the data owners to determine the appropriate leaf temperature for studies where Tleaf was not 296 

reported. If Vcmax 25 from a CO2-response (A-Ci) curve was provided, we used these data 297 

rather than estimating Vcmax 25 via the “one-point method” (De Kauwe et al., 2016); 179 298 

measurements, or 6% of the original dataset. To ensure consistency in approach to estimating 299 

Vcmax, Rday (CO2 evolution from mitochondria in the light) was estimated as 1.5% of Vcmax, 300 

following De Kauwe et al. (2016), rather than from reported estimates of field-measured leaf 301 

“dark” respiration (Rd, which were relatively scarce among the compiled datasets).  302 

We visually inspected the data to find obvious errors (e.g., trait values < 0; Ci:Ca >1) 303 

and outliers, conservatively excluding from the analyses any observations with Vcmax 25 > 500 304 

µmol CO2 m-2 s-1,  and gsw > 3000 mmol m-2 s-1 . This resulted in the exclusion of nine 305 

observations (seven for Vcmax 25, two for gsw). These cut-offs were based on previously 306 

published studies (Smith et al., 2019; Wright et al., 2004b).  307 

In combination with the de novo field measurements described above, we amassed a 308 

trait dataset for 3765 individuals of 528 species (85 families), sampled from 67 study sites 309 

(Fig. S1 and Table S1). 152 species occurred at more than one site. On average, 11 species 310 

were sampled per site, although this varied widely (Table S1). Species-mean trait values were 311 

calculated at each site, although subspecies were kept separate, when reported. Taxonomy 312 

followed The Plant List (accessed via http://www.plantminer.com/). 13 individuals could not 313 

be identified beyond the genus level but were still included, and 20 species had names that 314 

are taxonomically unresolved in The Plant List. The final dataset included a variety of growth 315 

forms (mostly trees and shrubs but 28 herbaceous species, or 4.5% of the dataset), primarily 316 

evergreen species, no winter-deciduous species, some drought deciduous species such as 317 

Toona ciliata and Melia azedarach, and a mixture of N2-fixing species (mostly Fabaceae but 318 

http://www.plantminer.com/
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also Casuarinaceae and Zamiaceae) and non-N2-fixing species (84% of the dataset). There 319 

were ten gymnosperm species, distributed among five families (Araucariaceae, Cupressaceae, 320 

Zamiaceae, Podocarpaceae, Pinaceae). The original data compilation included five C4 species 321 

from the genus Atriplex and Triodia (Amaranthaceae and Poaceae, respectively) but these 322 

were excluded from calculations of Vcmax as the one-point method is based on the Farquhar et 323 

al. (1980) model of C3 photosynthesis.  324 

 325 

Climate and soil data 326 

Long-term averages (1982 - 2002) of climate data (Table S3) were obtained for each site 327 

from the ANUClimate model (Hutchinson et al., 2009) and TERN Ecosystem Modelling and 328 

Scaling Infrastructure (eMAST) data products (Hutchinson et al., 2009; Xu et al., 2015), both 329 

of which provide Australia-wide coverage at 0.01° spatial resolution, 1970-2012) 330 

(https://www.tern.org.au/). We include a total of 21 soil and climate properties. Across the 68 331 

study sites, MAT varied from 9.25 to 27.6°C, and MAP from 260 to 4390 mm (Fig. S2).  332 

We had field-measured data for soil total P concentrations from 34 sites and for soil 333 

pH (CaCl2) from 28 sites.  Otherwise we extracted modelled estimates of soil total P 334 

concentration and pH (CaCl2) from the TERN Soil and Landscape Grid of Australia (Grundy 335 

et al., 2015; Viscarra Rossel et al., 2014) (https://data.csiro.au/), which offers Australia-wide 336 

gridded data at a resolution of 3 arc sec (ca. 90 × 90 m pixels). We also extracted additional 337 

soil properties known to influence soil fertility, including soil texture, soil organic matter 338 

concentration and cation exchange capacity (Table S3). In the combined dataset, soil total P 339 

concentration varied from 28.8 to 3790 ppm (mg kg-1), and pH from 3 to 9. There were two 340 

sites with exceptionally high (measured) soil P concentrations (Dorrigo National Park, NSW 341 

and Curtain Fig National Park, QLD); without these sites, maximum soil P concentration was 342 

1786 ppm. 343 

 344 

Statistical analyses 345 

We report results from all models with P < 0.1, noting those with 0.05 < P < 0.10 as 346 

“marginally significant”. All statistical analyses were carried out in R version 3.5.3 (R 347 

Development Core Team, 2017).  348 

 349 

Testing predictions from least-cost theory 350 

Vcmax 25-gsw and Narea-gsw relationships at each site were summarized as standardized major 351 

axis (SMA) slopes fitted with no intercept term (i.e., “forced” through the origin), using 352 

http://www.tern.org.au/Ecosystem-Modelling-and-Scaling-Infrastructure-e-MAST-pg17734.html
http://www.tern.org.au/Ecosystem-Modelling-and-Scaling-Infrastructure-e-MAST-pg17734.html
https://www.tern.org.au/
https://data.csiro.au/
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untransformed data. These slopes, therefore, represent the average ratios of Vcmax 25-gsw and 353 

Narea-gsw at each site (Wright et al., 2003). We conducted a slope heterogeneity test to assess 354 

site differences, using ‘SMATR’ for R (Warton et al., 2006). Sites with low replication (<3 355 

species per site) were left out from this analysis (two sites for Vcmax 25 and three sites for 356 

Narea), resulting in 58 Vcmax 25-gsw slopes and 39 Narea-gsw slopes.  357 

Next, bivariate and multiple linear regression analyses were used to quantify the 358 

influence of soil and climate properties on Ci:Ca as well as the Vcmax 25-gsw and Narea-gsw 359 

slopes. We tested how these traits varied in response to a total of 21 abiotic variables using 360 

bivariate regressions but were unable to include the full suite of predictors in the multiple 361 

regression due to multicollinearity and a lack of statistical power. For example, while VPD is 362 

often considered an important variable driving photosynthetic trait coordination (Paillassa et 363 

al. 2020), in this study it was highly correlated with both MAP and MAT. Similarly, soil pH 364 

was correlated with soil N concentration, and soil P and N concentrations were correlated 365 

with one another (Fig. S3). Therefore, we reduced the set of predictors in the multiple 366 

regression to focus on soil pH and soil P concentration, which were not correlated (Fig. S3), 367 

and also MAP and MAT, which were only weakly (positively) correlated (Fig. S2). We 368 

selected soil P rather than soil N because soil P is a more strongly limiting soil nutrient for 369 

plants within Australia (Beadle 1954, 1966). Soil pH and soil P were independently 370 

correlated with MAT and MAP in opposing directions: soil P concentration was negatively 371 

(albeit weakly) correlated with MAT and positively correlated with MAP, whereas soil pH 372 

was positively correlated with MAT and negatively correlated with MAP. In other words, 373 

relatively colder sites and sites with higher mean annual precipitation had a lower soil pH and 374 

higher soil total P concentration, on average (Fig. S2). With the exception of Ci:Ca in the 375 

multiple regression, the dependent and independent variables were log10-transformed prior to 376 

analyses to meet assumptions of normality. 377 

From multiple regression analyses, we report the beta values for each predictor, i.e. 378 

the regression weights for standardized variables, representing the change in the response 379 

variable (in standard deviations) associated with a change of one standard deviation in a 380 

given predictor, other predictors being held constant (Courville & Thompson, 2001; 381 

Pedhazur, 1997). These partial effects were visualised with “added variable” (partial 382 

regression) plots, created using the avPlots function in the ‘car’ package. Beta weight values 383 

(hereafter, β) were calculated using the regr function in the ‘yhat’ package.  384 

We also ran the above analyses after excluding species that were presumed to fix N2 385 

(Fabaceae, Casuarinaceae, Zamiaceae) as, on average, these species had notably higher leaf 386 
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Nmass and Narea than non-fixing species (P < 0.001, Fig. S4). However, the results (Fig. S5) 387 

changed little compared with those from main analyses, the key difference being that soil P 388 

exerted a stronger, positive effect the Narea-gsw relationship. Our overall conclusions were not 389 

affected therefore these results are not discussed further.  390 

 391 

Quantifying climate and soil effects on photosynthetic traits 392 

Climate and soil effects on individual photosynthetic traits were quantified via ordinary least 393 

squares (OLS) linear regressions, implemented using the lm function in base R. We 394 

investigated relationships between the four focal plant traits (Ci:Ca, gsw, Vcmax 25, Narea) and all 395 

21 soil and climate variables. For this analysis, and for the subsequent partial regression 396 

analysis, we included additional traits known to covary with Narea, including Parea, LMA, and 397 

Aarea. We also included photosynthetic phosphorus and nitrogen use efficiency, PPUE and 398 

PNUE, respectively. In preliminary analyses, we tested quadratic fits between the focal traits 399 

and soil pH, finding that the quadratic models for Ci:Ca, Narea, and Vcmax 25 had lower AIC (> 400 

2) than the linear models but added very little explanatory power: R2 values of quadratic 401 

models ranged from 0.04 to 0.17, with a relative increase in R2 ≤ 0.02 for all traits. There was 402 

no improvement in the model fit for gsw. Because our study sites were dominated by acidic 403 

soils (pH < 7) we had no a priori reason to expect non-linear relationships between soil pH 404 

and nutrient availability, as typically occurs when comparing strongly acidic to strongly 405 

alkaline soils (Maire et al. 2015). Therefore, we did not expect non-linear relationships 406 

between soil pH and the focal traits and retained linear fits for all relationships. Leaf traits 407 

and abiotic variables were log10-transformed prior to the statistical analyses to satisfy 408 

assumptions of normality and homoscedasticity of the residuals.  409 

We also evaluated trait-environment relationships using partial regression analyses on 410 

models that included either the four key predictors above (soil P, soil pH, MAP, MAT) or 411 

seven predictors (soil P, soil pH, soil N, MAP, MAT, VPD, and radiation), which were 412 

selected because they are known to influence photosynthetic traits. Correlations between 413 

abiotic variables were visualised using the corrmat function in the ‘corrmat’ package. 414 

 415 

RESULTS 416 

Trait variation 417 

In the species-mean dataset, Vcmax 25 varied ca. 27-fold (from 5.8 to 156 μmol m-2 s-1, n = 418 

636), gsw varied ca. 150-fold (from 11.1 to 1670 mmol m-2 s-1; n = 664), Narea ca. 19-fold 419 

(0.55 to 10.6 g m-2; n = 430), and Ci:Ca varied ca. four-fold (from 0.22 to 0.96; n = 665). The 420 
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notably wider range in gsw was due to one exceptionally high value for Eucalyptus miniata 421 

from Eamus and Prichard (1998). Excluding this gsw would have resulted in a 90-fold 422 

variation; however, we had no basis on which to exclude this value. If variation in traits was 423 

compared in terms of the ratio of 97.5th to 2.5th percentiles, rather than maximum/minimum, 424 

variation in gsw was comparable to that in other traits (approx. 22-fold). By comparison, the 425 

ratio of 97.5th to 2.5th percentiles for gsw was ~23 in the global photosynthetic trait dataset of 426 

Maire et al. (2015).  427 

 428 

Bivariate tests of least-cost theory 429 

Narea-gsw and Vcmax 25-gsw slopes varied widely across sites (slope heterogeneity P < 0.001, 430 

Fig. 1b,c) where steeper slopes indicate that species are operating with higher Vcmax 25 or Narea 431 

at a given rate of stomatal conductance to water vapor (Fig. 1a). Contrary to our expectation, 432 

variations in these slopes were not associated with soil P concentration or soil pH in the 433 

bivariate regressions (Fig. 2), and typically, the soil variables explained less than 5% of the 434 

variation in the slopes. Similarly, we found no association between the slope relationships 435 

and soil nitrogen (Soil N), bulk density of whole earth (BDW), soil organic carbon (SOC) 436 

and the soil textural properties. The only variable that significantly influenced the slope 437 

relationships was ECE, which exerted a positive effect on the slopes (Table S4), suggesting 438 

that higher ECE increased nutrient availability and reduced nutrient costs relative to water 439 

costs.  440 

Ci:Ca varied with both soil pH and soil P concentration in the expected manner, being 441 

lower on average at sites with high soil P concentrations (Fig. 2i) or high pH (Fig. 2j). Ci:Ca 442 

also decreased with increasing ECE, increasing SOC, and increasing clay content (and 443 

increased with increasing silt and sand content) (Table S4), supporting our predictions (Fig. 444 

1a).  445 

With regards to climate, the Narea-gsw and Vcmax 25-gsw slopes were generally steeper at 446 

drier sites (Fig. 2c,g) and at colder sites (Fig. 2d,h), as predicted. For example, Narea-gsw 447 

slopes were ca. six-fold steeper at 300 mm MAP than at 3000 mm MAP (0.04 vs 0.007, 448 

respectively), and Vcmax 25-gsw slopes were ca. three-fold steeper (0.52 vs 0.19, respectively). 449 

From the bivariate regressions, MAP explained 32% and 23% of the variation in Narea-gsw and 450 

Vcmax 25-gsw slopes, respectively (Table S4, Fig. 2c,d). MAT explained 28% and 12% of the 451 

variation in Narea-gsw and Vcmax 25-gsw slopes, respectively (Fig. 2d,h).  452 
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Also as predicted, species at drier sites and at relatively colder sites operated at lower 453 

Ci:Ca (Fig. 2k,l). Using a standard moisture index, the ratio of MAP to potential 454 

evapotranspiration (Thornthwaite, 1948), gave similar results to using MAP alone (Table S4). 455 

In general, climate variables explained a significantly greater percentage of the 456 

variation in the Narea-gsw and Vcmax 25-gsw slopes (0.005 ≤ R2 ≤ 0.64) than did the soil variables 457 

(0.004 ≤ R2 ≤ 0.24). Similarly, a greater amount of variation in Ci:Ca was explained by 458 

climate (max R2 = 0.12) than by soil (max R2 = 0.08). 459 

 460 

Multiple regression tests of least-cost theory 461 

Multiple regression analyses revealed some distinct patterns from the bivariate regressions 462 

(Fig. 3). Together, the four environmental variables explained 52% of variation in Narea-gsw 463 

slopes, 36% of variation in Vcmax 25-gsw slopes, and 14% of variation in Ci:Ca. Comparing 464 

standardized regression coefficients (β values in Fig. 3), MAP affected photosynthetic trait 465 

coordination more strongly than the three other environmental variables. The effect sizes for 466 

soil P concentration were of similar or slightly stronger magnitude to those for MAT, and 467 

notably weaker than the precipitation effects. 468 

After controlling for variation in other predictors via partial regression, the effect of 469 

soil P concentration on the Narea-gsw and Vcmax 25-gsw relationship slopes became stronger than 470 

what we observed in the OLS regression (i.e., 0.05 < P < 0.10; Fig. 3a,e). The soil P 471 

concentration effect on Ci:Ca (Fig. 3i) was again negative, even when controlling for variation 472 

in MAT, MAP and soil pH. These effects of soil P concentration were all in the predicted 473 

direction (Fig. 1a). After controlling for variation in other predictors, soil pH still showed no 474 

association with Narea-gsw and Vcmax 25-gsw relationship slopes (Fig. 3b,f) or Ci:Ca (Fig. 3j).  475 

 For both sets of slopes, models including all four predictors indicated that the MAP 476 

effect was strongly negative (in terms of β), and was stronger than that of MAT, soil P 477 

concentration and soil pH (Fig. 3). That is, at a given MAT, soil P concentration or soil pH, 478 

species at drier sites typically operated with higher Vcmax 25 or Narea at a given gsw (Fig. 3c,g), 479 

and also typically had lower Ci:Ca (Fig. 3k) –all trends consistent with the expectation that 480 

savings on photosynthetic water use can be achieved via increased investment in the N-rich 481 

carboxylating enzyme, Rubisco. The MAT effects on the Narea-gsw and Vcmax 25-gsw slopes in 482 

the bivariate regressions were no longer apparent once other environmental variables were 483 

controlled (Fig. 3d,h). By contrast, a positive MAT effect on Ci:Ca was observed when 484 

controlling for other variables, as was the case in the bivariate analysis (Fig. 3l). 485 
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  486 

Trait-environment relationships 487 

We quantified relationships between environmental variables and plant photosynthetic traits 488 

including gsw, Vcmax 25 and Narea, but also additional traits known to co-vary with the focal 489 

variables (for the full suite of relationships, see Table S4). Species on low-P and on low-N 490 

soils tended to have higher gsw, Narea, and Vcmax 25 (Fig. 4), whereas species on high pH soils 491 

(which in this dataset are expected to have higher soil nutrient availability) had higher Vcmax 492 

25 and higher Narea but exhibited no difference in gsw (Fig. 4b). The higher Vcmax 25 and Narea 493 

on low-P soils were likely driven by higher LMA on low-P soils (Table S4), as Narea was 494 

positively correlated with both LMA 25 (r = 0.75, P < 0.001) and Vcmax 25 (r = 0.37, P < 495 

0.001). Soil P concentration explained the highest percentage of the variation in Vcmax 25 (R2 = 496 

0.16) whereas soil N concentration explained the highest percentage of the variation in Narea 497 

(R2 = 0.24). On average, for a 10-fold decrease in soil P concentration, Vcmax 25 increased 1.5-498 

fold and gsw two-fold. Narea showed a significant association with soil P concentration but 499 

with little explanatory power (R2 = 0.02; Fig. 4g).  500 

Species at low-MAP sites (especially at MAP < 1000 mm) tended to have higher Narea 501 

(R2 = 0.38; Fig. 5g), which was by far the strongest correlation in this part of our analysis. 502 

The higher Narea at low rainfall corresponded (as expected) to higher Vcmax 25 (R2 = 0.11; Fig. 503 

5d). By contrast, gsw showed no relationship with MAP (Fig. 5a). The Narea-MAP scaling 504 

slope of -0.39 indicates that for a 10-fold decrease in MAP, Narea increased nearly 2.5-fold, on 505 

average. On average, there was a 1.5-fold increase in Vcmax 25 over this same interval in MAP 506 

(log-log slope = -0.27). Species at warmer sites typically had higher gsw but lower Narea (Fig. 507 

5b,h), consistent with the predicted and observed MAT effect on Narea-gsw slopes (Fig. 1, Fig. 508 

3). That said, there was pronounced scatter in these relationships (0.05 ≤ R2 ≤ 0.07). Vcmax 25 509 

showed a marginally significant relationship with MAT (Fig. 5f) but with < 1% explanatory 510 

power.  511 

Of the remaining soil variables (Table S4), BDW (0.10 ≤ R2 ≤ 0.21), SOC (0.01 ≤ R2 512 

≤ 0.23), and sand content (0.01 ≤ R2 ≤ 0.19) explained the most variation in the focal traits. 513 

Of the remaining climate variables, the results were idiosyncratic but VPD explained a 514 

significant proportion of the trait variation (0.06 ≤ R2 ≤ 0.15), as expected.  515 

The partial regression analysis on the trait-environment relationships (Table S5) were 516 

largely similar to the OLS regression with a few exceptions. First, the effect of soil P on Narea 517 

was positive (rather than negative) when we accounted for the other abiotic variables. 518 
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Second, there was a significant negative effect of soil pH on gsw and on Ci:Ca, where 519 

previously these relationships were not statistically significant.  520 

 521 

DISCUSSION  522 

Despite the critical role of photosynthesis in driving the carbon cycle of terrestrial 523 

ecosystems, we understand relatively little about how soil fertility influences the coordination 524 

of photosynthetic traits, and the relative effects of soil versus climate. Here, we report the 525 

effects of a globally-relevant, limiting soil nutrient, phosphorus (P), on photosynthetic trait 526 

coordination. Previously, for four sites in Australia, we reported trait-shifts in relation to site 527 

temperature and aridity that were consistent with predictions from least-cost theory (Prentice 528 

et al., 2014; Wright et al., 2003). In a global study (Paillassa et al., 2020), we then examined 529 

the interactive effects of soil and climate, focusing on pH and soil texture as indices of 530 

fertility. Here we expand on the Australian study, including hundreds more species from 531 

many more sites (67), a much wider range of climate variables and, very importantly, we 532 

extend the analyses to soil nutrients also.   533 

 534 

Climate effects 535 

Using the largest Australian photosynthetic trait dataset to date, we generally observed that 536 

climate effects were stronger than soil effects. We report strong climate-driven trait shifts in 537 

line with previous studies and in line with our predictions. Most notably, with lower MAP we 538 

observed higher Narea and Vcmax 25 at a given gsw, higher Narea and Vcmax 25 overall, and lower 539 

Ci:Ca. Although gsw was not influenced by site precipitation, higher Narea and Vcmax 25 drove 540 

the steeper Narea-gsw and Vcmax 25-gsw slope relationships across the precipitation gradient. 541 

Steeper Vcmax 25-gsw and Narea-gsw relationships at drier sites underlie the lower Ci:Ca in these 542 

places, the higher carboxylation capacity (at a given gsw) drawing leaf-internal CO2 down to 543 

lower concentrations. The lack of patterning of gsw with respect to MAP accords with 544 

“global” results from Wright et al. (2004b) and Murray et al. (2019; 2020). The uncoupling of 545 

gsw from MAP is interesting, as VPD is typically higher on more arid sites and gsw increased 546 

with VPD (Table S4), indicating higher transpiration rates when stomata are open. Similar to 547 

the present study, global (Paillassa et al., 2020; Wang et al., 2017) and regional studies 548 

(Bloomfield et al., 2019; Cernusak et al., 2011a; Cochrane et al., 2016; Wright et al., 2001) 549 

have reported lower Ci:Ca, higher Vcmax 25 and higher leaf nutrient concentrations (especially 550 

per unit area) in drier habitats.  551 
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Least-cost theory predicts that MAT affects both water and carboxylation costs. In 552 

this study MAT effects matched our predictions but were weaker than those of MAP. Both 553 

the MAT and MAP effects were stronger than soil effects—at least in the bivariate 554 

relationships (see Soil effects). These findings suggest that environmental variables that solely 555 

affect the unit-costs of N (and carboxylation) exert weaker effects on photosynthetic trait 556 

coordination than do environmental variables that influence the unit-costs of water (i.e., 557 

MAP) or influence the costs of both water and carboxylation (i.e., MAT). Interestingly, we 558 

also observed weaker effects of MAT relative to MAP on the Vcmax 25-gsw and Narea-gsw 559 

relationships—but not Ci:Ca—when considered in a multiple regression framework. The 560 

weaker effect size of MAT in the multiple regression likely resulted from collinearity 561 

between MAT and either soil pH (r = 0.22) or MAP (r = 0.25), the latter of which are often 562 

confounded, and can have compounding effects on plant functional traits. For example, 563 

globally, species growing on relatively dry sites tend to have small leaves when the mean 564 

temperature of the warmest month (TWM) is high, whereas species on wetter sites typically 565 

have larger leaves when TWM is high (Wright et al., 2017). From bivariate regressions, we 566 

also found that seasonality in temperature strongly (positively) influenced the Narea-gsw and 567 

Vcmax 25-gsw slope relationships (Table S4), perhaps suggesting that more seasonal 568 

environments have higher water costs.  569 

 570 

Soil effects 571 

Plants have various strategies that enhance their ability to cope with drought and nutrient-572 

deficiency, two properties that characterize much of the Australian continent. Indeed, a 573 

significant proportion of Australian plants possess scleromorphic long-lived leaves with low 574 

mass-based nutrient concentrations (Beadle, 1966; Lambers et al., 2010; Lamont, 1982; 575 

Specht, 1969; Wright et al., 2004a; Wright et al., 2002) and highly-proficient nutrient 576 

resorption (Wright & Westoby, 2003). That is, most Australian plant species are generally 577 

positioned towards the ‘slow’ end of the leaf economics spectrum (Wright et al., 2004b).  578 

In this study we considered the effects of soil fertility via soil total P concentration 579 

and soil pH, both of which presumably influence the unit-costs of N and carboxylation more 580 

so than water costs. Soil P concentration is a long-term site property that is strongly 581 

determined by parent material and is widely used as an indicator of soil P status in Australian 582 

ecology (Beadle, 1954, 1966; Fonseca et al., 2000; Kooyman et al., 2017). In contrast to soil 583 

total N concentration, which is quite stable across time, soil N and P availability can vary 584 

seasonally and also with plant nutrient-acquisition strategies, often reflecting root 585 
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morphology, the tendency for carboxylate release and associations with mycorrhizal fungi 586 

(Lambers & Oliveira, 2019; Richardson et al., 2005; Turner, 2008). In the bivariate analyses 587 

(Fig. 2), Vcmax 25 and gsw showed clear negative relationships with soil P concentration (R2 = 588 

0.13-0.16) and the soil P effect was far greater than the soil pH effect overall. Because all of 589 

gsw, Narea and Vcmax 25 increased as soil P decreased, it makes sense that their ratios (the Narea-590 

gsw and Vcmax 25-gsw slopes) show little pattern over soil P gradients. The negative relationship 591 

between Narea and soil P in the OLS regression resulted from LMA being typically higher on 592 

low-P soils (Table S4) and in this study, there was a positive relationship between LMA and 593 

Narea (r = 0.75, P < 0.001, results not shown) and between Narea and Vcmax 25 (r = 0.37, P < 594 

0.001, results not shown). We note, however, that the relationship between Narea and soil P 595 

became positive when we accounted for the effects of soil pH, MAP, and MAT (Table S5), 596 

which likely reflects the strong, negative effect of MAP on LMA and therefore Narea. A 597 

positive relationship between Narea and soil P was also observed in partial residual plots 598 

generated by (Peng et al., 2021), which utilized a global dataset that included Australia.  599 

The high Vcmax 25 at low soil P concentration is novel and unexpected, whereas the 600 

negative relationship between soil P and Ci:Ca matched predictions from least-cost theory 601 

(Table S4 and S5). Least cost theory also predicts that all else equal, Ci:Ca and Vcmax 25 should 602 

be inversely related (Wright et al. 2003), which we observed in the present study (r = -0.15, P 603 

= <0.001, results not shown). In contrast to the Vcmax 25-soil P relationship, the gsw effect was 604 

in line with our expectations: Maire et al. (2015) reported a negative association between 605 

plant-available soil P concentration and gsw, arguing that nutrient deficiency promotes greater 606 

root production, increasing plant-available water and increasing gsw and Ci:Ca. The authors 607 

also suggested that stimulation of transpiration (and gsw) on nutrient-deficient sites may 608 

increase mass flow of soil nutrients to roots, ultimately enhancing leaf N and ultimately, 609 

Vcmax 25 [i.e. the mass-flow hypothesis (Cernusak et al., 2011b; Cramer et al., 2009; Edwards 610 

et al., 1998)]. Because the mobility of P is low compared with that of N, mass flow is more 611 

likely to increase N uptake than P uptake and may only increase P supply on P-impoverished, 612 

sandy soils with low P buffering capacity (Cernusak et al., 2011b; Huang et al., 2017).  613 

Considering the importance of P for leaf metabolism, environmental properties that 614 

affect the per-unit cost of P acquisition from the soil arguably also affect the unit cost of 615 

carboxylation, vis-à-vis least-cost theory. The chief way that soil P is more expensive to 616 

acquire on low-P soils is in terms of higher belowground expenditure, e.g., greater fine root 617 

production, greater expenditure supporting mycorrhizal symbionts, greater expenditure on 618 

root exudates that enhance access to recalcitrant pools of soil P (e.g., phosphatases; organic 619 
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acids released by cluster toots), and greater expenditure on cluster roots (Raven et al., 2018). 620 

The latter are especially common in the Australian flora, particularly in the Proteaceae which 621 

exhibit very high photosynthetic phosphorus-use efficiency (PPUE) (Denton et al., 2007; 622 

Guilherme Pereira et al., 2019), i.e. rapid photosynthetic rates at low leaf P concentrations 623 

(Lambers et al., 2012; Yan et al., 2019). In this study, we observed higher PPUE and higher 624 

PNUE for plants growing on low-P soils (Table S4) and higher Vcmax 25 on low-P soils. High 625 

PPUE may be accomplished by shifting allocation away from phospholipids towards 626 

galactolipids (the latter being a key component of chloroplast membranes) and sulfolipids 627 

that do not contain P (Lambers et al., 2012; Yan et al., 2019) with the transition from young 628 

to mature leaves. Interestingly, Australian Proteaceae growing on P-deficient soils have been 629 

shown to have low Rubisco activity but high levels of photosynthesis at low leaf P compared 630 

to Arabidopsis (Sulpice et al., 2014). The reduction in Rubisco activity likely resulted from a 631 

lower abundance of ribosomes and therefore lower rRNA levels, which may constrain the 632 

synthesis of proteins, including Rubisco. Thus, Australian plants appear to be well-adapted to 633 

low-P soils, as they maintain high levels of photosynthesis, high rates of carboxylation, and 634 

high photosynthetic nutrient use efficiency in these environments.   635 

Soil pH alters the solubility of soil minerals and causes shifts in community 636 

composition of soil bacteria (Lauber et al., 2008), which in turn affects nutrient availability. 637 

We thus included soil pH alongside soil total P concentration, due to its potential effects on 638 

the unit cost of carboxylation. Against expectation, variation in soil pH had negligible effects 639 

on the Narea-gsw and Vcmax 25-gsw relationships but Ci:Ca did decrease with increasing pH, 640 

albeit weakly (R2 = 0.03), as predicted. While the pH effects were weak to negligible, the 641 

pattern in Ci:Ca matched global studies that showed strong modulation of Narea-gsw and Vcmax 642 

25-gsw relationships, Ci:Ca and Δ13C via soil pH (Cornwell et al., 2018; Paillassa et al., 2020; 643 

Wang et al., 2017). Ci:Ca is tightly determined by the balance between Vcmax 25 and gsw, such 644 

that the Vcmax 25-gsw relationship is a function of the optimal Ci:Ca, which is itself a function 645 

of water and N costs (Prentice et al., 2014). Therefore, it is possible that Ci:Ca better reflects 646 

costs associated with soil and climate properties than do the slopes, as it more directly 647 

integrates N and water costs. This is evidenced by the observation that Ci:Ca was sensitive 648 

(statistically significant) to all four of the chosen environmental variables whether analyzed 649 

in bivariate regressions or multiple regression. Although Narea was strongly influenced by soil 650 

pH (R2 = 0.15), gsw was not (Fig. 4) and Vcmax 25 was only weakly affected (R2 = 0.02). The 651 

positive effect of pH on leaf N concentration suggests moderately higher soil nutrient 652 

availability in less acidic soils, despite the negligible effect of soil pH on the Vcmax 25-gsw and 653 
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Narea-gsw slopes.  Maire et al. (2015) also found no relationship between gsw and soil pH in a 654 

global study and in general, the soil pH effects in this study were considerably weaker than 655 

those reported at global scale (cf. Paillassa et al. 2020).  656 

While the weak pH effects in the present study were unexpected, this suggests that 657 

soil pH may not be an especially useful index of nutrient-acquisition costs in low-fertility 658 

landscapes. We note that the partial regression analyses resulted in a statistically significant 659 

negative effect of soil pH on gsw and Ci:Ca, the latter of which matched our predictions, 660 

indicating strong collinearities among the predictors. Nevertheless, soil pH does not underlie 661 

variation in photosynthetic traits within this system to the extent that soil P does. The finding 662 

that climate has a greater role in photosynthetic trait coordination than soil pH contrasts with 663 

the findings of our companion study (Paillassa et al., 2020), and may reflect the 664 

predominance of low pH/low nutrient sites in our Australian dataset (only 4 of 67 sites with 665 

pH > 7). 666 

 667 

Implications for global studies 668 

By improving our understanding of photosynthetic trait-environment relationships at the 669 

regional and global scale, there is the potential to enhance the conceptual basis and 670 

parameterization of global vegetation models. For example, dynamic global vegetation 671 

models (DGVMs) rarely incorporate variation in ecophysiological traits within Plant 672 

Functional Types (e.g., across species or populations) or include environmental dependencies 673 

of traits (Grimm et al., 2017; Scheiter et al., 2013; Verheijen et al., 2013; Yang et al., 2015). 674 

We have now demonstrated that soil properties, namely soil P concentration and soil pH 675 

(Maire et al., 2015; Paillassa et al., 2020), influence the coordination of ecophysiological 676 

traits at a continental scale. These findings support increasing calls for soil properties to be 677 

included in vegetation models (Norby et al., 2017) and could be further developed using 678 

least-cost theory. 679 

Within the least-cost theory framework, the first-order costs are set by site properties, 680 

whole-plant respiration rates, and tissue chemistry (e.g., leaf N or Rubisco concentration). In 681 

the formulation of least-cost theory by Prentice et al. (2014), optimal Ci:Ca is proportional to 682 

the ratio of two dimensionless parameters, a and b, which reflect the maintenance respiration 683 

costs of transpiration and carboxylation, respectively. Paillassa et al. (2020) re-expressed the 684 

cost functions to incorporate the effects of soil N and water supply, surmising that 685 

maintenance respiration costs at a given transpiration rate or carboxylation rate should 686 

increase when soil water or nutrients are scarce. But, of course, these are necessary 687 
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simplifications that do not account for all relevant costs. Most importantly, water and nutrient 688 

unit-costs are presumably also affected by species life history traits. For example, information 689 

regarding inter- and intraspecific variation in the ability to acquire soil water or nutrients via 690 

alternative allocation or acquisition strategies, including root activity and depth, nutrient-691 

acquisition strategies (e.g., cluster roots vs. N2-fixation vs mycorrhizal symbioses; Lambers 692 

et al., 2008), and wood permeability (Wright et al., 2003), would likely help in the 693 

interpretation of within-site variation in photosynthetic traits. For example, mycorrhizal 694 

species may have lower N costs than non-mycorrhizal species, which would result in higher 695 

Narea for a given gsw in the mycorrhizal species. Regions dominated by mycorrhizal species 696 

are thus expected to have species with higher Narea-gsw slopes than regions where such species 697 

are absent, even when these occur at similar soil nutrient levels.  698 

Additional considerations are needed before we can quantitatively integrate the effects 699 

of concentrations of soil P (or other metrics of fertility) in DGVMs. For example, one can 700 

make assumptions about the extent to which different nutrients are substitutable [e.g. whether 701 

species can “spend” more N belowground by investing in phosphatase enzymes to obtain 702 

more soil P (Olander & Vitousek, 2000; Schleuss et al., 2020; Treseder & Vitousek, 2001)], 703 

or simply coordinated, and specify nutrient exchange rates in a currency that can also be 704 

applied to water costs. It is also worth considering how additional soil properties influence 705 

soil nutrient costs, as soil texture, which influences both the availability of nutrients and 706 

water, seems also important for understanding geographic variation in photosynthetic trait 707 

coordination (Paillassa et al., 2020). For example, soils with higher silt content can hold more 708 

water than sandy soils, reducing water costs, such that plants typically have higher gsw 709 

coupled with higher Vcmax 25 on silty soils (Paillassa et al., 2020). In this study, we found that 710 

plants growing on silt-rich soils had higher gsw and higher Narea and Vcmax 25, but similar slope 711 

relationships (Table S4), indicating a proportionate increase in these traits, which cancelled 712 

out. We also found a positive relationship between soil effective cation exchange capacity 713 

(ECE) and the slope relationships, indicating that nutrient costs were lower with increasing 714 

ECE, which is positively associated with soil nutrient availability. Lastly, we acknowledge 715 

the important role of soil N in other regions of the world, which significantly influenced 716 

individual photosynthetic traits (with the exception of Ci:Ca) but not trait coordination in this 717 

study system. The negative relationship between leaf N and soil total N, which was also 718 

reported by Maire et al. (2015), may result from low plant-available N if the soil organic 719 

matter has a high C:N ratio (Parton et al., 1988). Further consideration of long- versus short-720 

term indices of soil resources is also warranted. Here we focused on evolutionary adaptations 721 
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to soil nutrient pools rather than on acclimation to soil nutrient availabilities that can vary 722 

tremendously over relatively short timescales. Future studies could consider the relative 723 

strengths of short- and long-term controls on photosynthetic trait coordination, as this would 724 

be useful for quantifying within-species variation in trait relationships. 725 

 726 

Conclusions 727 

Rainfall and temperature are expected to change considerably over the coming decades, 728 

regionally and globally, altering the availabilities of soil nutrients. While much is known 729 

regarding how climate drives variation in photosynthesis, few studies have investigated soil 730 

effects, although this is changing. Among our findings, the coordination of photosynthetic 731 

traits in response to soil P concentration is especially novel, as it suggests a unique 732 

contribution of a limiting soil nutrient that is independent of climate and soil pH. The simple 733 

theoretical framework known as least-cost theory can thus be applied to low-nutrient regions 734 

globally, e.g., highly weathered soils and tropical regions, where P limits productivity. By 735 

considering the dependencies of plant traits on both climate and soils, we will better 736 

understand the proximate and long-term controls of photosynthesis.  737 
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Figure legends 1037 

 1038 

Figure 1. An approach based on least-cost theory for understanding the co-optimisation of 1039 
photosynthetic traits in relation to site properties. (a) The theory predicts that the optimal 1040 
ratio of water and nitrogen (N) use during light-saturated photosynthesis (Asat) depends on 1041 
their relative costs of acquisition and use. Nitrogen use is represented by leaf N content per 1042 
unit area (Narea) and carboxylation capacity (Vcmax 25). Water use is represented by stomatal 1043 
conductance (gsw). Blue dots represent site conditions where water costs are relatively greater 1044 
than N costs, or alternatively, where N costs are relatively lower than water costs. Ci:Ca is the 1045 
ratio of leaf-internal to ambient CO2 concentration and mediates the relationship between N 1046 
use (and carboxylation) and water use. In this study, we found significant site-level variation 1047 
in (b) photosynthetic N use versus water use, and (c) carboxylation versus water use, which 1048 
we quantified using a slope fitted to a set of co-occurring species at each site, where each 1049 
point represents a species-site mean. Each line was “forced” through the origin. Blue and 1050 
purple tones represent sites with higher water costs and simultaneously lower N costs, while 1051 
orange and red tones represent lower water costs and simultaneously higher N costs. Circles 1052 
are non-N2-fixing species and triangles are N2-fixing species.  1053 

 1054 
Figure 2. Linear regression plots of soil and climate effects on the (a)-(d) slope relationship 1055 
between leaf nitrogen concentration (N) on an area basis, Narea, and stomatal conductance, 1056 
gsw, and the (e)-(h) slope relationship between photosynthetic carboxylation, Vcmax 25, and gsw. 1057 
(i)-(l) Relationship between Ci:Ca and environmental variables. (a), (e), (i) Soil total 1058 
phosphorus (Soil P, mg kg-1) concentration, (b), (f), (j) Soil pH, (c), (g), (k) Mean annual 1059 
precipitation (MAP, mm), and (d), (h), (l) Mean annual temperature (MAT, °C). Red lines 1060 
represent trend lines with 95% confidence intervals in grey and are only shown for 1061 
statistically significant (P-values < 0.05) relationships. Notice the logarithmic scale to the 1062 
axes. See Figure 3 for partial regressions. 1063 
 1064 
Figure 3. Partial regression plots from multiple linear regression of soil and climate effects 1065 
on the (a)-(d) slope relationship between leaf nitrogen concentration (N) on an area basis, 1066 
Narea, and stomatal conductance, gsw, and the (e)-(h) slope relationship between 1067 
photosynthetic carboxylation, Vcmax 25, and gsw. (i)-(l) Relationship between Ci:Ca and 1068 
environmental variables. (a), (e), (i) Soil total phosphorus (Soil P, mg kg-1) concentration, (b), 1069 
(f), (j) Soil pH, (c), (g), (k) Mean annual precipitation (MAP, mm), and (d), (h), (l) Mean 1070 
annual temperature (MAT, °C). Points in grey represent partial regressions with standard 1071 
errors in grey and dark red lines are shown only for statistically significant relationships, 1072 
where solid lines have P < 0.05 and dashed lines are marginally significant (0.05 < P < 0.10). 1073 
P-values above each panel indicate the statistical significance of each variable in the multiple 1074 
regression. Higher β values indicate a stronger effect size, where β values are the regression 1075 
weights for standardized variables and represent the change in the slope value (in standard 1076 
deviations) associated with a change of one standard deviation in a predictor while holding 1077 
constant the value(s) of the other predictor(s). 1078 
 1079 
 1080 
 1081 
  1082 
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Figure 4. Trait-soil relationships from bivariate linear regression analysis. Points represent 1083 
species-site means. All axes (except soil pH) have been log10-scaled. Abbreviations follow 1084 
those in Table S1 and Figure 3. Red lines represent trend lines with 95% confidence intervals 1085 
in grey and are only shown for statistically significant (P-values < 0.05, solid line). In panel 1086 
(b), the slope coefficient was |<0.005|. 1087 

 1088 
Figure 5. Trait-climate relationships from bivariate linear regression analysis. Points 1089 
represent species-site means. All axes (except soil pH) have been log10-scaled. Abbreviations 1090 
follow those in Table S1 and Figure 3. Red lines represent trend lines with 95% confidence 1091 
intervals in grey and are only shown for statistically significant (P < 0.05, solid line, 0.05 < P 1092 
< 0.10, dashed line). In panel (a), the slope coefficient was |<0.005|. 1093 
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