Rapid and efficient colony-PCR for high throughput screening of genetically transformed chlamydomonas reinhardtii

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Nouemssi, Serge Basile, Ghribi, Manel, Beauchemin, Rémy, Meddeb-Mouelhi, Fatma, Germain, Hugo et Desgagné-Penix, Isabel (2020). Rapid and efficient colony-PCR for high throughput screening of genetically transformed chlamydomonas reinhardtii. Life, 10 (9). ISSN 2075-1729 DOI 10.3390/life10090186

[thumbnail of GERMAIN_H_120_ED.pdf]
Prévisualisation
PDF
Télécharger (1MB) | Prévisualisation

Résumé

Microalgae biotechnologies are rapidly developing into new commercial settings. Several high value products already exist on the market, and biotechnological development is focused on genetic engineering of microalgae to open up future economic opportunities for food, fuel and pharmacological production. Colony-polymerase chain reaction (colony-PCR or cPCR) is a critical method for screening genetically transformed microalgae cells. However, the ability to rapidly screen thousands of transformants using the current colony-PCR method, becomes a very laborious and time-consuming process. Herein, the non-homologous transformation of Chlamydomonas reinhardtii using the electroporation and glass beads methods generated more than seven thousand transformants. In order to manage this impressive number of clones efficiently, we developed a high-throughput screening (HTS) cPCR method to rapidly maximize the detection and selection of positively transformed clones. For this, we optimized the Chlamydomonas transformed cell layout on the culture media to improve genomic DNA extraction and cPCR in 96-well plate. The application of this optimized HTS cPCR method offers a rapid, less expensive and reliable method for the detection and selection of microalgae transformants. Our method, which saves up to 80% of the experimental time, holds promise for evaluating genetically transformed cells and selection for microalgae-based biotechnological applications such as synthetic biology and metabolic engineering.

Type de document: Article
Mots-clés libres: high-throughput screening microalgae colony-PCR method genetic transformation Chlamydomonas reinhardtii synthetic biology
Date de dépôt: 28 sept. 2020 13:48
Dernière modification: 28 sept. 2020 13:48
Version du document déposé: Version officielle de l'éditeur
URI: https://depot-e.uqtr.ca/id/eprint/9254

Actions (administrateurs uniquement)

Éditer la notice Éditer la notice