RECHERCHE DE PROTÉINES EXPORTÉES CHEZ LA BACTÉRIE
ACTINOBACILLUS PLEUROPNEUMONIAE: IDENTIFICATION D'UN
LOCUS DE FIMBRIAE

JUIN 2003
L’auteur de ce mémoire ou de cette thèse a autorisé l’Université du Québec à Trois-Rivières à diffuser, à des fins non lucratives, une copie de son mémoire ou de sa thèse.

Cette diffusion n’entraîne pas une renonciation de la part de l’auteur à ses droits de propriété intellectuelle, incluant le droit d’auteur, sur ce mémoire ou cette thèse. Notamment, la reproduction ou la publication de la totalité ou d’une partie importante de ce mémoire ou de cette thèse requiert son autorisation.
TABLE DES MATIÈRES

TABLE DES MATIÈRES ...II
LISTE DES FIGURES ... V
LISTE DES TABLEAUX .. VI
RÉSUMÉ .. VII
LISTE DES ABRÉVIATIONS ... VIII

INTRODUCTION ... 1

CHAPITRE 1 ACTINOBACILLUS PLEUROPNEUMONIAE ... 3
 1.1 HISTORIQUE ... 3
 1.2 GÉNÉRALITÉS ... 3
 1.3 PLEUROPNEUMONIE PORCINE ... 4
 1.3.1 Transmission de la maladie .. 4
 1.3.2 Période d'incubation de la maladie ... 5
 1.3.3 Formes cliniques .. 5
 1.3.4 Lésions macroscopiques ... 6
 1.4 FACTEURS DE VIRULENCE ET IMMUNOGÈNES .. 6
 1.4.1 Capsule .. 8
 1.4.2 Lipopolysaccharides .. 9
 1.4.3 Toxines Apx ... 10
 1.4.4 Protéases ... 14
 1.4.5 Uréase .. 14
 1.4.6 Superoxide dismutase ... 16
 1.4.7 Facteur de perméabilité ... 17
 1.4.8 Protéines de la membrane externe ... 17
 1.4.9 Protéines liant la transferrine ... 18
 1.5 ADHÉRENCE D'A. PLEUROPNEUMONIAE ... 20
1.5.1 Adhérence au tractus respiratoire du porc ... 20
1.5.2 Rôle des lipopolysaccharides dans l’adhérence ... 22
1.5.2.1 Lipopolysaccharides et capsule ... 23
1.5.2.2 Récepteurs des lipopolysaccharides ... 23
1.5.3 Rôle des fimbriae dans l’adhérence ... 24

CHAPITRE 2 EXPORTATION DES PROTÉINES .. 25

2.1 ENVELOPPE DES BACTÉRIES GRAM-NÉGATIVES .. 25
2.2 EXPORTATION DES PROTÉINES .. 26
2.2.1 Séquence signal ... 27
2.2.1.1 Domaine N ... 28
2.2.1.2 Domaine H ... 28
2.2.1.3 Domaine C ... 28
2.2.1.4 Domaine mature ... 29
2.2.2 Systèmes d’exportation des pré-protéines ... 29
2.2.2.1 Appareil de translocation ... 30
2.2.2.2 Ciblage SecB-dépendant .. 30
2.2.2.3 Ciblage SecB-indépendant ... 30
2.2.2.4 Signal peptidase ... 31
2.3 TECHNOLOGIE PHoA .. 32
2.3.1 Phosphatase alcaline (PhoA) .. 32
2.3.2 Système de fusion de gènes PhoA .. 32

CHAPITRE 3 LES FIMBRIAE .. 35

3.1 MORPHOLOGIE .. 35
3.2 FONCTIONS ... 36
3.3 CLASSIFICATION ... 36
3.3.1 Fimbriae de classe 1 ... 36
3.3.2 Fimbriae de type IV .. 37
3.3.2.1 Propriétés d’adhérence ... 37
3.3.3.2 Structure ... 37
3.3.3.3 Sécrétion des pilines de type IV ... 38
3.3.3.4 Caractéristiques des prépilines de type IV ... 38
3.3.3.5 Identification de fimbriae de type IV chez A. pleuropneumoniae 40
3.4 Revue des connaissances actuelles à propos des locus de fimbriae FLP-RCP-TAD .. 40

CHAPITRE 4 ARTICLE ... 43
Contribution de chacun des auteurs dans l’article scientifique 44
Abstract .. 45
1. Introduction ... 45
2. Materials and methods ... 47
3. Results .. 49
4. Discussion ... 51
5. Tables .. 54
6. Figure .. 57
7. References ... 60

CHAPITRE 5 DISCUSSION LOCUS FLP-RCP-TAD CHEZ ACTINOBACILLUS PLEUROPNEUMONIAE ... 62
5.1 Clonage du locus FLP-RCP-TAD .. 63
5.2 Organisation du locus chez A. pleuropneumoniae 64
5.3 Rôle des différents gènes ... 65
5.4 Expression de FLP1 ... 66
5.5 Analyse de FLP-I .. 68
5.6 Classification .. 69

CHAPITRE 6 CONCLUSION .. 71

BIBLIOGRAPHIE.. 74
LISTE DES FIGURES

FIGURE 1.1 : Schématisation de l'organisation des gènes impliqués dans la synthèse de la capsule chez *A. pleuropneumoniae* sérotype 5..............9

FIGURE 1.2 : Schématisation de la structure d'une molécule de LPS.............11

FIGURE 1.3 : Organisation de l'opéron *apxFICABD* chez *A. pleuropneumoniae*.....12

FIGURE 1.4 : Schématisation de l'organisation des gènes de l'uréase chez *A. pleuropneumoniae*..16

FIGURE 1.5 : Photographie de fimbriae d' *A. pleuropneumoniae* en microscopie électronique...24

FIGURE 2.1 : Photographie en microscopie électronique de l'enveloppe cellulaire d'*Escherichia coli*...25

FIGURE 2.2 : Schématisation d'une séquence signal..27

FIGURE 2.3 : Système d'exportation des pré-protéines..................................29

FIGURE 2.4 : Technologie PhoA..34

FIGURE 2.5 : Colonies PhoA+..34

FIGURE 3.1 : Photographie de fimbriae...35

FIGURE 4.1 : Nucleotide and derived amino acid sequences of *rcpA* of *A. pleuropneumoniae* ...57

FIGURE 5.1 : Organisation des locus *flp-rcp-tad* chez diverses bactéries........63

FIGURE 5.2 : Organisation des gènes du locus *flp-rcp-tad* chez *A. pleuropneumoniae* ...64

FIGURE 5.3 : Schématisation de la séquence nucléotidique et de la séquence traduite du clone F2..67

FIGURE 5.4 : Expression de la protéine Flp1 (gel coloré au bleu de Coomassie)......68

FIGURE 5.5 : Caractéristiques des prépilines Flp1 et Flp2 d' *A. pleuropneumoniae*...70
LISTE DES TABLEAUX

TABLEAU 1: Signal peptides obtained with the PhoA+ fusions 54
TABLEAU 2: Homology of 17 clones PhoA+ with proteins of known
 or putative function .. 55
TABLEAU 3: Homology of 9 clones PhoA+ with non-characterized or
 hypothetical proteins .. 56
RÉSUMÉ

<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>FRANÇAIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADN</td>
<td>acide ribonucléique</td>
</tr>
<tr>
<td>ARN</td>
<td>acide désoxyribonucléique</td>
</tr>
<tr>
<td>ATP</td>
<td>adénosine trinucléotide phosphate</td>
</tr>
<tr>
<td>b</td>
<td>base</td>
</tr>
<tr>
<td>CO₂</td>
<td>dioxyde de carbone</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>et al.</td>
<td>utilisé lorsqu'il y a plus de deux auteurs dans un ouvrage</td>
</tr>
<tr>
<td>ex.</td>
<td>exemple</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>ions ferreux</td>
</tr>
<tr>
<td>IgA</td>
<td>immunoglobuline A</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobuline G</td>
</tr>
<tr>
<td>k</td>
<td>kilo</td>
</tr>
<tr>
<td>KDO</td>
<td>acide 2-keto-3-deoxyoctulosonique</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>NAD</td>
<td>nicotinamide-adénine-dinucléotide</td>
</tr>
<tr>
<td>NH₃</td>
<td>ammoniac</td>
</tr>
<tr>
<td>O₂</td>
<td>oxygène moléculaire</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>pb</td>
<td>paire de bases</td>
</tr>
<tr>
<td>PC</td>
<td>polysaccharides capsulaires</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PhoA</td>
<td>phosphatase alcaline</td>
</tr>
<tr>
<td>RBS</td>
<td>ribosome binding site</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcriptase-PCR</td>
</tr>
<tr>
<td>°C</td>
<td>degré Celsius</td>
</tr>
<tr>
<td>%</td>
<td>pourcentage</td>
</tr>
</tbody>
</table>
INTRODUCTION

Actinobacillus pleuropneumoniae est une bactérie Gram-négative de la famille des *Pasteurellaceae*. C’est l’agent causal de la pleuropneumonie porcine, une maladie hautement contagieuse et responsable de pertes économiques importantes dans l’industrie porcine. Les vaccins présentement sur le marché n’apportent qu’une protection partielle et sérotype-spécifique. Les recherches devront permettre la détection de nouveaux antigènes dans le but de développer des vaccins plus efficaces. Il est aussi essentiel d’identifier les facteurs de virulence d’*A. pleuropneumoniae* pour espérer combattre adéquatement la bactérie. Les antigènes et les facteurs de virulence sont habituellement des protéines que l’on retrouve à la surface des bactéries ou sécrétées dans le milieu extra-cellulaire.

Mon mandat était donc de trouver de nouvelles protéines exportées. Pour ce faire, nous avons fait appel à une technique de fusion de gènes, la technologie PhoA. Cette technologie a été utilisée avec succès chez plusieurs bactéries (Williams et *al.*, 2000; Bina et *al.*, 1997; Mintz et Fives-Taylor, 1999; Ward et *al.*, 2001; Blanco et *al.*, 1991) pour identifier des gènes avec une séquence permettant l’exportation des protéines à travers la membrane interne.

Parmi les gènes identifiés, le gène *rcpA* a servi à cloner un locus de 14 cadres de lecture ouverts fortement homologue au locus de sécrétion de fimbriae *flp-rcp-tad* d’*Actinobacillus actinomycetemcomitans* et *Pasteurella multocida*, deux autres espèces bactériennes pathogènes de la famille des *Pasteurellaceae*.

Le présent mémoire est divisé en six chapitres. Le premier chapitre est dédié à la bactérie *Actinobacillus pleuropneumoniae* : ce qu’elle est, ce qu’elle cause et les astuces qu’elle utilise pour coloniser l’hôte. Le chapitre suivant traite de l’exportation des protéines des bactéries Gram-négatives et d’une méthode, la technologie PhoA, pour les identifier rapidement. Le chapitre 3 renseigne sur des appendices protéiques filamentueux qui font saillie à la surface des bactéries et jouent un rôle dans leur adhérence, les fimbriae. Cette section est suivie par l’article intitulé « Identification of DNA sequences encoding exported proteins including a
RcpA-homologue by using *phoA* gene fusions in *Actinobacillus pleuropneumoniae*, qui fait état de l'identification de nouvelles protéines exportées. La discussion contient les résultats substantiels obtenus sur l'étude du locus de fimbriae chez *A. pleuropneumoniae*, résultats qui serviront de base à de nouvelles recherches. Finalement, la conclusion apporte une synthèse des résultats ainsi que les perspectives d'avenir.
CHAPITRE 1

Actinobacillus pleuropneumoniae

1.1 Historique

1.2 Généralités

A. pleuropneumoniae est un parasite obligatoire et il est très fragile, ne survivant que brièvement dans l’environnement (Nicolet et al., 1986). Il vit au niveau du système respiratoire supérieur des porcs, plus particulièrement dans le pharynx et les amygdales. Il est spécifique à l’espèce porcine, n’ayant été qu’exceptionnellement isolé chez d’autres espèces animales. Expérimentalement, le cobaye est sensible par voie intra-nasale, intra-péritonéale et intra-trachéale et la souris est réceptive après inoculation par voie intra-péritonéale ou intra-nasale (Sebunya et Saunders, 1982).

1.3 Pleuropneumonnie porcine

1.3.1 Transmission de la maladie

Les porcs susceptibles acquièrent l’infection par inhalation de la bactérie. Celle-ci est introduite dans les élevages par des sujets qui, malgré l’absence de signes cliniques, sont porteurs du germe (Nicolet, 1979). Un contact assez étroit entre les animaux semble nécessaire pour qu’il y ait transmission. Toutefois, les porcs malades rejettent des millions de bactéries dans l’air ambiant et il n’est pas exclu que cet air contaminé puisse déclencher la condition dans les locaux adjacents. La transmission par les vêtements ou les bottes fraîchement contaminés, bien que peu probable, demeure plausible.
1.3.2 Période d’incubation de la maladie

Le laps de temps entre le moment de l’infection et l’apparition des symptômes est variable. Pour des porcs qui n’ont jamais été en contact avec le germe ou qui ne possèdent aucune immunité vis-à-vis celui-ci, la période d’incubation peut-être aussi courte que 8 à 12 heures. Dans d’autres cas, cette période d’incubation variera de quelques jours à quelques semaines (Higgins et al., 1982).

1.3.3 Formes cliniques

Les manifestations cliniques de la pleuropneumonie porcine varient selon plusieurs facteurs : la virulence de la souche bactérienne, l’état immunitaire des animaux, leur résistance naturelle et les conditions d’élevage. Ces facteurs coordonnent l’aspect clinique de la maladie qui pourra être suraiguë, aiguë, chronique ou même subclinique (i.e. détectable uniquement par l’augmentation des anticorps).

Dans les cas suraigus, des sujets peuvent être retrouvés morts alors que tout paraissait normal quelques heures auparavant. La toux, l’hyperthermie (40,5-42,0°C), l’abattement, la dyspnée et l’anorexie font partie des signes cliniques usuels. La mort survient dans les 24 heures (Mylrea et al., 1974).

La forme aiguë présente une évolution moins rapide et peut déboucher sur une forme chronique. Les animaux ont une température rectale de 40,5 à 41°C. Ils sont abattus, anorexiques et présentent un syndrôme respiratoire grave avec dyspnée et toux. L’évolution clinique est variable, la mort survient dans les deux à quatre jours et les porcs qui survivent demeurent porteurs et excréteurs du germe (Mylrea et al., 1974).

Les formes plus chroniques se manifestent en général par des retards de croissance et de la toux occasionnelle. La bactérie est présente dans des lésions pulmonaires nécrotiques et peut envahir les voies respiratoires antérieures et les amygdales (Harrison et al., 1978).
La morbidité et la mortalité varient mais peuvent atteindre 100%. Le plus souvent, toutefois, la mortalité sera de l'ordre de 5 à 15%, si un traitement efficace n'est pas institué. Il n'est pas rare de constater l'apparition de cette condition à la suite d'un stress quelconque (manque d'eau ou de moulée, transport récent, variations brusques de température ou panne d'électricité) (Sanford et Josephson, 1981). Il agit en diminuant l'efficacité des moyens de défense de l'hôte, permettant ainsi l'envahissement des poumons.

1.3.4 Lésions macroscopiques

Les zones pulmonaires affectées sont de couleur rouge-noir, très fermes et non affaissées, avec des zones hémorragiques jusqu'à six centimètres de diamètre (Sanford et Josephson, 1981). La présence d'adhérences fibrineuses entre les plèvres est manifeste. Les lésions, unilatérales ou bilatérales, sont plus fréquentes au niveau des lobes caudaux. À la coupe, l'aspect nécro-hémorragique du tissu lésé de même que l'œdème interlobulaire sont évidents. L'inflammation du péricarde, avec présence de fibrine, n'est pas rare. Les ganglions bronchiques et médiastinaux sont augmentés de volume et oedématueux. Dans les formes suraiguës, la trachée et les bronches sont remplies d'un exsudat mousseux et sanguinolent. Dans les formes chroniques, des nodules entourés d'une épaisse capsule de tissu conjonctif et des foyers de nécrose sont visibles notamment sur les lobes diaphragmatiques. Les lésions nécrotiques peuvent héberger des bactéries durant plusieurs mois et les animaux peuvent transmettre l'infection. Des lésions de pleurésie fibrineuse se développent et, lors de guérison, elles sont souvent les seules lésions visibles à l'abattoir si bien que la mise en évidence d'un pourcentage de lésions de pleurésie chronique à l'abattage doit faire soupçonner l'infection de l'élevage par A. pleuropneumoniae (Mylrea et al., 1974; Sanford et Josephson, 1981; Nielsen, 1976; Rosendal et al., 1985).

1.4 Facteurs de virulence et immunogènes

Les gènes de virulence permettent aux bactéries pathogènes de s'adapter à leur hôte eucaryote et causer la maladie. La plupart des bactéries pathogènes expriment certains de leurs gènes de virulence seulement lorsqu'en contact avec leur l'hôte. Les conditions qu'on y retrouve
permettent d’induire l’expression de ces gènes. Des mutations qui inactivent les gènes de virulence rendent la bactérie non (ou moins) pathogène mais n’affectent pas sa croissance à l’extérieur de l’hôte.

Il existe des variabilités antigéniques, autres que les antigènes capsulaires, parmi les différents sérotypes d’*A. pleuropneumoniae*. Cette variété est responsable de l’incapacité des vaccins actuels à conférer une protection croisée. On pourrait possiblement obtenir une réponse immunitaire protectrice croisée en utilisant un mélange d’antigènes sérotype-spéfiques reconnus par du sérum de porcs convalescents.

Un antigène doit posséder certains critères pour espérer apporter une protection croisée contre *A. pleuropneumoniae*. Premièrement, l’antigène doit être présent chez toutes les souches d’*A. pleuropneumoniae*, indépendamment du sérotype. Deuxièmement, il doit être immunogénique chez le porc infecté, prouvant qu’il est bel et bien exprimé durant l’infection. Finalement, il doit être exposé à la surface et dès lors, constituer une cible aussi bien pour l’action bactéricide du sérum que pour l’opsophagocytose.
La section 1.4 passe en revue différents facteurs associés à la virulence chez *A. pleuropneumoniae* ainsi que leur aptitude immunogénique.

1.4.1 Capsule

Toutes les souches d' *A. pleuropneumoniae* sont revêtues d’une capsule dont la structure chimique consiste principalement en dérivés d’oligosaccharides répétés (Perry et al., 1990). La capsule protège *A. pleuropneumoniae* contre la phagocytose et la lyse par le complément (Inzana et al., 1988). Elle est requise pour la virulence bactérienne puisque les mutants non capsulés ne causent pas de symptômes cliniques ni de lésions pulmonaires chez le porc (Inzana et al., 1993).

Les gènes impliqués dans la synthèse et l’exportation des polysaccharides capsulaires (PC) ont été identifiés pour *A. pleuropneumoniae* sérotype 5. L’organisation de ces gènes est similaire à celle d’ *Haemophilus influenzae* type b et de *Neisseria meningitidis* groupe B, ce qui incite à penser qu’ *A. pleuropneumoniae* synthétise aussi une capsule de groupe II (Frosch et al., 1991). Pour chacune de ces espèces, un segment d’ADN sérotype-spécifique indispensable à la synthèse des PC est flanqué par de l’ADN encodant les protéines nécessaires à leur exportation.

Quatre gènes, *cps5ABCD* (pour *capsular polysaccharide synthesis serotype 5*), servent à la synthèse des PC chez *A. pleuropneumoniae* sérotype 5 (Ward et al., 1998). La proximité de *cps5ABC*, l’identification d’un promoteur potentiel en amont de *cps5A* et l’absence de séquence de terminaison entre *cps5ABC* portent à croire que ces ORFs (pour *open reading frame*) sont co-transcrits. L’espace intergénique plus long entre *cps5C* et *cps5D* et la présence de séquences promotrices en amont de *cps5D* suggèrent que ce gène puisse être transcrit indépendamment de *cps5ABC*.

La région d’ADN nécessaire à l’exportation des PC est composée de quatre gènes désignés *cpxDcBA* (pour *capsular polysaccharide export*). Ils sont situés en amont du gène de synthèse *cps5A* et sont transcrits dans le sens inverse du locus *cps*. *CpxD* semble être une lipoprotéine
de la membrane externe impliquée dans le transport des PC à travers celle-ci. CpxA contient des séquences consensus caractéristiques des protéines liant l'ATP. CpxC, CpxB et CpxA pourraient être impliquées dans le transport des PC à travers la membrane interne (Ward et Inzana, 1997).

Les anticorps dirigés contre la capsule opsonisent la bactérie (la rendent plus susceptible à la phagocytose) et peuvent jouer un rôle dans la protection partielle sérotype-spécifique induite par la vaccination par des bactérines (Inzana et al., 1988).

\[\text{FIGURE 1.1: Schématisation de l'organisation des gènes impliqués dans la synthèse de la capsule chez } A. \text{ pleuropneumoniae } \text{sérotype 5.} \]

1.4.2 Lipopolysaccharides

Les lipopolysaccharides (LPS) sont des constituants majeurs de la membrane externe des bactéries Gram-négatives. La molécule de LPS est composée de trois régions bien définies : le lipide A, le core et l'antigène O (figure 1.2). Le core est un oligosaccharide qui contient l'acide 2-keto-3-deoxyoctulosonique (KDO). L'antigène O est un polysaccharide fait d'unités répétées (Hitchcock et Morrison, 1986). Dépendamment de la présence et du nombre d'unités répétées de l'antigène O, le LPS sera rugueux, semi-rugueux (ex. chez le sérotype 1) ou lisse (ex. chez le sérotype 2) (Bélanger et al., 1992). La synthèse des LPS est un processus complexe. Pour l'assemblage des antigènes O, les monomères ne sont pas transférés directement à une molécule croissante de LPS. Les antigènes O sont plutôt synthétisés séparément par des enzymes encodés par les gènes \(rfb \). Une fois complété, l'antigène O est transféré et lié au lipide A-core préformé du côté périplasmique de la membrane interne. Après cette liaison, le LPS complet est transféré à la surface par des mécanismes encore inconnus (Whitfield, 1995).
Le lipide A est un composé toxique. Il constitue une endotoxine, c’est-à-dire une toxine retenue dans la cellule bactérienne et libérée au moment de la lyse. L’activité endotoxique du LPS est similaire à celle des autres bactéries Gram-négatives. Par le biais d’une activation de la voie alterne du complément et de la stimulation de la synthèse de cytokines par les macrophages, le LPS provoque une inflammation avec infiltration cellulaire (Udeze et al., 1987). Bien que le LPS purifié d’A. pleuropneumoniae ait le potentiel de causer des dommages aux tissus, les lésions induites par le LPS dans les poumons de porcs ne sont ni hémorragiques ni nécrotiques. Il n’est donc pas responsable des lésions typiques d’A. pleuropneumoniae mais peut contribuer à leur formation (Fenwick et Osburn, 1986). Le LPS peut amplifier les effets des toxines Apx sur les phagocytes (Fenwick, 1994). Il a aussi été impliqué dans l’adhérence d’A. pleuropneumoniae au mucus, à la trachée et aux sections de poumons congelés (Paradis et al., 1994).

Les porcs immunisés avec le LPS ne sont que partiellement protégés contre une infection avec un sérotype homologue d’A. pleuropneumoniae (Inzana et al., 1988). Ainsi, le LPS peut jouer un rôle dans la protection partielle sérotype-spécifique induite par la vaccination avec des bactérines.

![Schématisation de la structure d’une molécule de LPS.](image)

FIGURE 1.2: Schématisation de la structure d’une molécule de LPS. La molécule de LPS est composée de trois régions : le lipide A, le core et l’antigène O.
Tiré de Madigan, M.T. et al. (2000)

1.4.3 Toxines Apx

A. pleuropneumoniae produit diverses protéines à action hémolytique actives sur les érythrocytes de différentes espèces d’animaux et des cytotoxines actives sur les cellules endothéliales, les cellules épithéliales des alvéoles, les macrophages et les neutrophiles du

Typiquement, les opérons codant pour les toxines RTX sont constitués de quatre gènes contigus, dans l'ordre CABD. Le gène A code pour une protoxine, le gène C code pour un activateur transformant la protoxine en toxine active, les gènes B et D codent pour des protéines associées à la membrane et qui permettent l'excrétion de la toxine (Issartel et al., 1991; Welch, 1991).

Quatre toxines Apx (pour Actinobacillus pleuropneumoniae RTX-toxin) ont été identifiées chez A. pleuropneumoniae. ApxI est une puissante hémolysine, doublée d'une puissante cytotoxine (Kamp et al., 1991). Elle est produite par les sérotypes 1, 5, 9, 10 et 11. Les déterminants génétiques qui encodent ApxI se retrouvent dans un unique opéron comprenant le gène de l'activateur post-transcriptionnel apxIC, le gène de la protéine structurale apxIA et les gènes de sécrétion apxIB et apxID, arrangés dans l'ordre apxICABD (Gygi et al., 1992). Chaque gène est précédé par un RBS. Le point d'initiation de la transcription (+1) de l'opéron apxI est situé 133 paires de bases (pb) en avant du codon de début de la traduction. Le +1 est précédé par des séquences promotrices potentielles à -35 (ACGAGA) et -10 (TAAAAT) (Frey et al., 1994). Le premier gène de l'opéron, apxIC, code pour une protéine de 19,9 kDa. Le gène suivant, apxIA, code pour une protéine de 1 023 acides aminés avec un poids moléculaire calculé de 110 kDa. Le gène apxIB encode les 707 acides aminés de la protéine ApxIB de 79,7 kDa. ApxID est une protéine de 478 acides aminés avec un poids moléculaire de 54,9 kDa. On retrouve une séquence de terminaison de la transcription Rho-indépendante entre apxIA et apxIB. L'opéron apxI est transcrit en deux ARN messagers différents (figure 1.3): un de 3,5 kb qui contient les gènes apxIC et apxIA, un de 7,5 kb qui contient l'opéron apxICABD en entier (Gygi et al., 1992). La comparaison des séquences en acides aminés de différentes toxines démontre qu'ApxIA d'A. pleuropneumoniae sérotype 1 a 56%
d'homologie avec HlyA d'*E. coli* et 52% avec la leucotoxine d'*A. actinomycetemcomitans* (Frey et al., 1991). La structure d'ApxIA présente trois régions hydrophobes dans sa partie N-terminale, 13 domaines riches en glycine dans la seconde moitié de la protéine, et une partie C-terminale hydrophile. Toutes ces régions représentent des éléments typiques des toxines de la famille RTX.

La toxine ApxII est faiblement hémolytique et cytotoxique. Cette protéine de 103 kDa est produite par toutes les souches de référence sauf celle du sérotype 10 (Kamp et al., 1991). L'organisation génétique de l'opéron d'ApxII est différente de celle des autres opérons des toxines RTX. Il ne contient que l'activateur et le gène de la protoxine (*apxIIC* et *apxIIA*). Il ne possède pas les gènes de sécrétion contigus au gène de la protoxine. La séquence suivant *apxIIA* (en aval) est un pseudogène (Chang et al., 1991). Il est probable que durant l'évolution, l'opéron ancestral d'ApxII s'est recombiné avec d'autres séquences d'ADN. Les gènes
apxIIBD ont ainsi été perdus. La sécrétion d’ApxII est dépendante des protéines de sécrétion ApxIBD de l’opéron d’ApxI.

ApxIII est dépourvue d’activité hémolytique mais est fortement cytotoxique (Kamp et al., 1991). Elle a un poids moléculaire calculé de 112,8 kDa et contient 13 séquences répétées riches en glycine (Jansen et al., 1993). Les gènes apxIIIICABD du sérotype 8 ont été séquencés. ApxIIIB et apxIIID démontrent 86% et 43% de similarité avec apxIB et apxID respectivement. L’opéron apxIIIICABD est présent dans les sérotypes 2, 3, 4, 6 et 8 et les séquences présentent très peu de différences spécifiques au sérotype (Jansen et al., 1994).

ApxIV possède une faible activité hémolytique et une synergie co-hémolytique avec la β-toxine de Staphylococcus aureus (effet CAMP). La toxine est exprimée exclusivement in vivo (Schaller et al., 1999). Le gène apxIVA possède une séquence RBS consensus huit pb devant l’ATG de départ. Il encode une protéine de 1 805 acides aminés avec un poids moléculaire calculé de 202 kDa et contenant 24 répétitions riches en glycine. ApxIVA est précédé par un ORF de 474 pb, ORF1. ORF1 encode une protéine de 157 acides aminés avec un poids moléculaire calculé de 19 kDa. ORF1 est précédé par un RBS et par des séquences promotrices potentielles. ORF1 n’a aucune homologie avec apxIC, ni avec aucun autre homologue de hlyC, que l’on retrouve habituellement devant le gène de la protoxine. Il semble être impliqué dans l’activation d’ApxIVA et est requis pour l’activité hémolytique et l’effet CAMP.

Les toxines Apx jouent un rôle déterminant dans la pathogenèse de la pleuropneumonie. Elles permettent d’échapper à la première ligne de défense de l’hôte. A forte dose (2U hémolytique), ces toxines stimulent la production des radicaux oxygénés par les macrophages alvéolaires et les neutrophiles. Ensuite, elles forment des pores de 2,4 μm (Maier et al., 1996) dans la membrane des phagocytes (et d’autres cellules cibles) provoquant un appel d’eau, un gonflement puis un éclatement des cellules. A faible dose (0,016U hémolytique), ces toxines provoquent une altération morphologique (gonflement réversible après élimination de la toxine) des macrophages alvéolaires, une perte de leur propriété chimiotactique, une perte de leur propriété d’adhérence et une diminution de la phagocytose.

1.4.4 Protéases

A. pleuropneumoniae sécrète des protéases qui dégradent la gélatine porcine, les IgA et l’hémoglobine (Negrete-Abascal et *al.*, 1994). Il est suggéré que le clivage des IgA puisse faciliter l’envahissement des muqueuses par *A. pleuropneumoniae* et que le clivage de l’hémoglobine puisse être un mécanisme d’acquisition de fer. L’IgA protéase est active sur les IgA du porc mais non sur les IgA de l’homme. Sa spécificité serait un des facteurs expliquant que la bactérie n’est naturellement pathogène que pour le porc. Le rôle exact des protéases dans la pathogénicité de la pleuropneumonie porcine n’est pas encore clair.

1.4.5 Uréase

Bien que la contribution de l'ammoniac libérée par les organismes uréase positifs à la dysfonction de l'épithélium ciliaire du tractus respiratoire n'a pas été étudiée, Stalheim et Gallagher (1977) ont démontré que le NH₃ généré par l'hydrolyse de l'urée par *Ureaplasma urealyticum* peut causer une diminution du mouvement et la perte des cils de l'épithélium oviductale. De plus, la dégradation de l'urée, constamment disponible dans le sérum et les sécrétions des muqueuses, procure une excellente source d'azote pour les microorganismes.

Les gènes requis pour l'activité uréase de diverses espèces bactériennes regroupent les gènes qui encodent les sous-unités de structure et ceux qui encodent les protéines accessoires impliquées dans l'insertion de deux ions nickel à l'intérieur du site catalytique (Mobley et al., 1995). Chez *A. pleuropneumoniae*, il s'agit de huit gènes transcrits dans la même direction (Bossé et MacInnes, 1997). Les gènes de structure, *ureABC*, sont séparés des gènes accessoires, *ureEFGD*, par un ORF de 615 pb de fonction inconnue, *ureX*. Un RBS semble précéder l'ATG de départ de chacun des gènes. Des séquences promotrices potentielles se retrouvent en avant des gènes *ureA*, *ureX* et *ureE*.

L'activité uréase chez *A. pleuropneumoniae* requiert cinq autres ORF, *cbiKLMQO*, situés en amont des gènes précédents (Bossé et al., 2001). Ils sont transcrits dans la même direction que les gènes de l'uréase desquels ils ne sont séparés que par l'ORF *utp*. Les produits de ces ORF montrent 42 à 63% d'identité avec un groupe de gènes de fonction inconnue chez *H. influenzae* (Fleischmann et al., 1995). Des séquences promotrices potentielles sont présentes devant *cbiK* et *utp*. *CbiKLMQO* constitue possiblement un opéron de la famille des transporteurs ABC (pour *ATP-binding cassette*) employé pour le transport du nickel. La séquence de *CbiK* contient six résidus d'histidine, huit d'aspartate et vingt de glutamate qui pourraient jouer un rôle dans la liaison au nickel (Wu, 1992). *CbiM* et *CbiQ* pourraient se combiner pour former la portion membrane intégrale du système de transport. *CbiO* contient des séquences consensus caractéristiques des protéines liant l'ATP.

Le fait qu'autant de gènes soient dévoués à la conservation de l'activité uréase renforce l'hypothèse que cette activité est importante dans la pathogenèse de la pleuropneumonie (Bossé et al., 2000).
1.4.6 Superoxyde dismutase

A. pleuropneumoniae forme deux types de superoxyde dismutases (SOD), Mn SOD (SodA) et Cu,Zn SOD (SodC). L’expression de sodA est régulée par les concentrations de O₂ et Fe²⁺ (Langford et al., 1996). Le gène sodC est un petit ORF de 570 pb précédé par des séquences promotrices à -35 (TATT) et -10 (TACAAT). Une séquence de terminaison de la transcription Rho-indépendante de 31 nucléotides suivant le codon stop TAA. SodC possède un peptide signal de 23 acides aminés et la localisation finale de la protéine mature de 18 kDa est le périplasme (Langford et al., 1996). Dans ce compartiment, elle a le pouvoir de moduler le cours des interactions hôte-pathogène en dismutant les superoxydes exogènes.

La capacité de détruire les superoxydes peut théoriquement apporter plusieurs avantages aux bactéries. L’enzyme pourrait conférer un avantage pour la survie bactérienne en accélérant la dismutation des superoxydes dérivés des neutrophiles. Le produit de la dismutation du superoxyde, le peroxyde d’hydrogène, pourrait interférer avec la clearance muco-ciliaire des bactéries dans le tractus respiratoire supérieur. Toutefois, les travaux de Sheehan et al. (2000) ont démontré que des mutants superoxyde dismutase négatifs conservaient toute leur virulence suite aux infections chez le porc. L’enzyme ne serait donc pas essentielle à la virulence. Les résultats des immunoblots indiquent que Cu,Zn SOD est exposée au système immunitaire durant l’infection (Langford et al., 1996). Il est cependant peu probable qu’un anticorps dirigé contre une protéine périplasmique puisse avoir un rôle préventif significatif, en partie à cause du problème d’accessibilité à l’antigène par les anticorps.
1.4.7 Facteur de perméabilité

Les sérotypes 1 et 5 d’*A. pleuropneumoniae* élaborent une substance appelée PF (pour *permeability factor*) capable de provoquer une zone œdème supérieure à 0,5 mm dans la peau du lapin. Cette substance, instable à 37°C, différente du LPS et différente des cytotoxines, n’est ni hémolytique ni protéolytique et n’est pas neutralisée par des anticorps obtenus après injection de la bactérie (Lallier et *al.*, 1987). Ce facteur n’a pas été étudié plus en détails.

1.4.8 Protéines de la membrane externe

De nombreuses protéines de la membrane externe d’*A. pleuropneumoniae* sont reconnues par des sérums de porcs convalescents. De plus, des protéines de la membrane externe spécifiques peuvent être induites sous des conditions de privation en fer ou d’addition de maltose (Deneer et Potter, 1989). L’immunisation avec un extrait ou une préparation grossière de membrane externe confère une protection limitée contre une infection à *A. pleuropneumoniae*.

Bien que le profil des protéines de la membrane externe diffère pour la plupart des sérotypes d’*A. pleuropneumoniae*, les isolats de tous les sérotypes contiennent plusieurs protéines communes telles que AopA, OmlA et PalA.

Le gène *aopA* d’*A. pleuropneumoniae* sérotype 5 est défini par un ORF de 1 347 pb encodant une protéine de 449 acides aminés avec un poids moléculaire calculé de 48 kDa. La séquence AAGTAG située en amont de l’ATG de départ pourrait constituer un RBS. AopA semble ne posséder aucune séquence signal N-terminale pour son exportation (Cruz et *al.*, 1995). Elle est immunogénique après vaccination du porc avec des extraits de membrane externe, mais ne l’est que faiblement après vaccination par des bactériennes (Mulks et Thacker, 1988).

Le gène *omlA* d’*A. pleuropneumoniae* sérotype 1 montre un ORF de 1 083 pb précédé par un RBS (AAGGAA) huit pb en amont de l’ATG de départ. Les 19 premiers acides aminés de la protéine de 39 780 Da possèdent les caractéristiques d’un peptide signal de lipoprotéine avec un site de clivage devant une cystéine en position 20. Le second acide aminé de la protéine
mature est une sérine, ce qui permet le ciblage de la protéine dans la membrane externe. Une séquence de terminaison inversée répétée de 26 nucléotides a été identifiée 19 pb après le codon d’arrêt de la traduction. La protéine OmlA est présente chez tous les sérotypes d’A. pleuropneumoniae et elle est hautement immunogénique. Les porcs immunisés démontrent un taux de mortalité réduit et des signes cliniques limités, bien qu’elle n’empêche pas l’apparition de lésions pulmonaires (Gerlach et al., 1993). Cela indique que les anticorps contre OmlA peuvent contribuer, sans être suffisants, à la protection des porcs contre une infection à A. pleuropneumoniae.

Le gène palA d’A. pleuropneumoniae sérotype 2 est défini par un ORF de 456 pb précédé par un RBS six pb en amont de l’ATG de départ. Il encode une protéine avec un poids moléculaire calculé de 16 kDa. Les 20 acides aminés N-terminaux de PalA constitue un peptide signal caractéristique des lipoprotéines de procaryotes, avec une cystéine en position 20 suivie par une sérine. La protéine réagit fortement avec le sérum de porcs convalescents provenant de tous les sérotypes d’A. pleuropneumoniae. PalA est très immunogénique et constitue un candidat valable pour un vaccin (Frey et al., 1996).

1.4.9 Protéines liant la transferrine

Le fer est essentiel pour la croissance bactérienne. Cependant, il n’est pas directement disponible dans l’environnement extra-cellulaire de l’hôte; il forme des complexes avec la transferrine et la lactotransferrine. Plusieurs espèces d’Actinobacillus, d’Haemophilus et de Pasteurella possèdent un mécanisme d’acquisition du fer impliquant la liaison directe de la transferrine de l’hôte par des récepteurs protéiques de surface. Ces récepteurs sont exprimés en conditions de carence en fer. Il s’agit des deux protéines Tbp1 et Tbp2 (pour transferrin binding protein). Tbp1 est une protéine transmembranaire qui sert ultimement de canal pour le transport du fer à travers la membrane externe. Tbp2 est une lipoprotéine ancrée à la membrane externe par des résidus d’acides gras N-terminaux. La voie de l’acquisition de fer suggérée par Kirby et al. (1985) implique la liaison et le retrait du fer de la transferrine à la surface bactérienne par l’action coordonnée de Tbp1 et Tbp2, suivie par le transport du fer à travers la membrane externe via Tbp1 et la liaison du fer par une protéine périplasmique.
Les gènes \textit{tbpA} et \textit{tbpB} encodent les protéines Tbp1 et Tbp2, respectivement. Le gène \textit{tbpB} d’\textit{A. pleuropneumoniae} sérotype 1 code pour une protéine de 65 kDa. L’ORF de 1 779 pb contient plusieurs codons rarement utilisés par \textit{A. pleuropneumoniae}. Sept codons CGA et trois AGG sont utilisés pour l’arginine et neuf ATA pour l’isoleucine, avec notamment un bloc de trois codons rares (ATA CGA CGA).

Le gène \textit{tbpB} d’\textit{A. pleuropneumoniae} sérotype 7 code pour une protéine de 60 kDa. Une séquence RBS (GGAGG) est située quatre pb en avant de l’ATG de départ de l’ORF de 1 641 pb. \textit{TbpB} du sérotype 7 ne contient aucun codon CGA ou AGG et seulement quatre ATA. Les gènes \textit{tbpB} d’\textit{A. pleuropneumoniae} des sérotypes 1 et 7 ont 65% d’identité. Cette différence dans les séquences se transpose par des différences antigéniques, tel que démontré par des tests ELISA. Les 19 premiers acides aminés de Tbp2 présentent les caractéristiques des peptides signaux des lipoprotéines. Le deuxième résidu après le site de clivage est une sérine, ce qui est un indice de la localisation de la protéine dans la membrane externe (Gerlach et \textit{al.}, 1992). Les sérotypes 2, 3, 4, 8, 9, 10 et 11 ont des Tbp2 hautement homologues à celle du sérotype 7; les sérotypes 6 et 12 ont des Tbp2 hautement homologues à celle du sérotype 1 (Gerlach et \textit{al.}, 1992).

Le gène \textit{tbpA} possède un ORF de 2 796 pb précédé par un RBS potentiel (GGAA). Le codon de départ de \textit{tbpA} est localisé 13 pb après le codon stop de \textit{tbpB}. Il n’y a pas de séquences promotrices potentielles entre \textit{tbpB} et \textit{tbpA}. Une séquence inversée répétée de 22 pb, retrouvée en aval de \textit{tbpA}, est possiblement une séquence de terminaison de la transcription. Ces deux gènes sont vraisemblablement co-transcrits, comme chez \textit{tbpA/tbpB} d’\textit{H. influenzae} (Gray-Owen et \textit{al.}, 1995) et \textit{tbp2/tbp1} de \textit{N. meningitidis} (Legrain et \textit{al.}, 1995). Tbp1 est une protéine de 106 kDa comportant 931 acides aminés dont un peptide signal de 22 acides aminés (Duban et \textit{al.}, 1996).

Les protéines Tbp d’\textit{A. pleuropneumoniae} sont spécifiques aux transferrines porcines et peuvent jouer un rôle dans la spécificité d’hôte de la bactérie. Trois différentes Tbp2 de 60, 62 et 65 kDa ont été identifiées parmi les sérotypes d’\textit{A. pleuropneumoniae}. L’immunisation des porcs avec la Tbp de 60 kDa confère une protection limitée contre une infection expérimentale.
avec les souches homologues (Gerlach et al., 1992; Rossi-Campos et al., 1992). Cela indique que les Tbp contribuent, mais ne sont pas suffisantes, pour la protection des porcs contre une infection à *A. pleuropneumoniae*.

1.5 Adhérence d’*A. pleuropneumoniae*

1.5.1 Adhérence au tractus respiratoire du porc

L’adhérence aux cellules de l’hôte constitue un facteur de virulence chez plusieurs pathogènes bactériens. Ceci est particulièrement vrai pour les organismes qui colonisent les surfaces épithéliales d’organes ayant un mécanisme de clearance mécanique (non-phagocytaire) tels que le petit intestin et le conduit trachéo-bronchique. Dans ces deux systèmes, la clearance continue des bactéries non-attachées est réalisée par le mouvement péristaltique et l’appareil muco-ciliaire, respectivement. Les pathogènes de ces systèmes ont des capacités d’attachement bien définies. L’attachement peut s’effectuer via différents facteurs dont des protéines solubles excrétées, le glycocalyx, des fimbriae, etc. (Arp, 1988).

Ainsi, l’événement initial dans la pathogenèse de la majorité des infections pulmonaires d’origine bactérienne est l’établissement du microorganisme dans le tractus respiratoire supérieur. L’adhérence aux cellules du tractus respiratoire supérieur n’apparaît cependant pas de première importance pour *A. pleuropneumoniae*. En effet, il a été démontré que les sérotypes 1 et 5, considérés virulents et retrouvés dans les infections aiguës, n’adhèrent qu’en faible quantité aux anneaux de trachée en culture. À l’opposé, les sérotypes 2 et 7, habituellement considérés moins virulents, adhèrent à un fort degré, ce qui pourrait expliquer leur persistance dans l’hôte et leur association avec une forme plus chronique de l’infection (Bélanger et *al.*, 1990).

Dom et *al.* (1994) ont démontré qu’*A. pleuropneumoniae* sérotype 2 adhérait *in vivo* aux cellules alvéolaires de type I et II et aux cils des bronchioles terminales du porc. Les coupes histologiques, obtenues après inoculation intra-nasale, montraient les bactéries à l’état isolé, en petits groupes ou en agrégats de 20 à plus de 100 bactéries, avec leur côté le plus long parallèle à la membrane cellulaire des cellules alvéolaires et des cils des bronchioles terminales. Les bactéries n’étaient que sporadiquement associées à l’épithélium des bronches et de la trachée et aucune bactérie ne fut observée aux niveaux du nasopharynx. À la vue des ces résultats, on suppose que l’adhérence d’*A. pleuropneumoniae* au tractus respiratoire inférieur, menant possiblement à une forte concentration locale de toxines Apx, constitue une étape initiale importante dans la pathogenèse.

L’habilité des bactéries à interagir avec les cellules de l’hôte peut conduire à la libération de grandes concentrations de produits toxiques (ex. exotoxines) à la surface des cellules eucaryotes, avec comme résultat la destruction des cellules cibles (Lagergard et *al.*, 1993). Les toxines produites par les bactéries adhérentes sont ciblées plus efficacement et deviennent relativement inaccessibles à la neutralisation par les inhibiteurs de toxines (Ofek et *al.*, 1990). On dispose de peu d’information sur le rôle de l’adhérence dans la pathogenèse de la pleuropneumonie porcine.
1.5.2 Rôle des lipopolysaccharides dans l’adhérence

L’adhérence du LPS à la trachée du porc est en relation avec le profil des LPS. Les isolats avec un LPS lisse adhèrent en plus grand nombre que les isolats avec un LPS semi-rugueux. Les chaînes O plus longues des LPS lisses, possiblement à cause de leur conformation, sont plus aptes à inhiber efficacement l’adhérence (Paradis et *al.*, 1994).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
1.5.2.1 Lipopolysaccharides et capsule

Toute adhésine doit nécessairement être exposée à la surface bactérienne. L’exposition du LPS d’*A. pleuropneumoniae* a été démontrée pour des isolats de sérotypes 1 et 2 (Paradis et al., 1994) malgré leur capsule de 220 et 85 nm respectivement (Jacques et al., 1988). Le LPS est exposé à la surface de la bactérie notamment au niveau de résidus de membrane externe faisant saillie à travers la capsule. L’accès du LPS à la surface a aussi été rapporté pour d’autres organismes fortement capsulés, tel que *Klebsiella pneumoniae* (Tomàs et al., 1991). On n’a établi aucune corrélation entre l’épaisseur de la capsule d’un isolat d’*A. pleuropneumoniae* et son adhérence aux anneaux trachéaux (Bélanger et al., 1990), ce qui témoigne que la capsule n’est pas impliquée dans l’adhérence d’*A. pleuropneumoniae* à ces organes. On note cependant une corrélation entre l’épaisseur de la capsule et l’adhérence au mucus du tractus respiratoire. Les isolats qui adhèrent le plus fermement au mucus sont ceux avec la capsule la plus mince. La capsule d’*A. pleuropneumoniae* masque donc un composant de la membrane externe important pour l’adhérence au mucus, vraisemblablement la région core-lipide A (Bélanger et al., 1990).

Aucune corrélation n’a été remarquée entre l’adhérence d’*A. pleuropneumoniae* et la présence de plasmide, la virulence chez la souris, l’hémagglutination ou le profil protéique des cellules entières (Bélanger et al., 1990).

1.5.2.2 Récepteurs des lipopolysaccharides

Une classe de protéines de 38 500 Da, présentes dans les cellules du tractus respiratoire du porc, a été identifiée comme récepteurs potentiels des LPS d’*A. pleuropneumoniae* (Paradis et al., 1999). Deux protéines de faible poids moléculaire (10 et 11 kDa), isolées des sécrétions du tractus respiratoire, peuvent également lier les LPS (Bélanger et al., 1994). Ces protéines sont les chaînes α et β de l’hémoglobine porcine (Bélanger et al., 1995).

Des spécificités de liaison aux carbohydrates existent chez divers pathogènes microbiens (Karlsson, 1998). La partie polysaccharidique, probablement l’antigène O, du LPS d’*A.
pleuropneumoniae sérotypes 1 et 2, reconnaît des séquences variées de différents glycosphingolipides (Abul-Milh et al., 1999).

1.5.3 Rôle des fimbriae dans l’adhérence

Des fimbriae ont été observés à la surface d’A. pleuropneumoniae sérotype 2 (Dom et al., 1994). Ils se présentent sous l’aspect de nombreux appendices filamentueux distribués de manière péritriche, de 100 à 300 nm de longueur et d’environ 1 nm de largeur (figure 1.5). La présence de fimbriae a aussi été observée chez des isolats d’A. pleuropneumoniae par microscopie électronique de transmission (Zhang et al., 2000). Après purification et séquençage N-terminal, ils furent classés parmi les fimbriae de type IV. La sous-unité constituant ces fimbriae est une protéine de 17 kDa nommée ApfA. Bien que des fimbriae aient été démontrés à la surface d’A. pleuropneumoniae, leur rôle dans l’adhésion n’est pas encore clair. Les composants génétiques requis pour l’expression des fimbriae n’ont pas encore été décrits.

FIGURE 1.5: Photographie de fimbriae d’A. pleuropneumoniae en microscopie électronique.
+Tiré de Dom et al., 1994
CHAPITRE 2

EXPORTATION DES PROTÉINES

2.1 Enveloppe des bactéries Gram-négatives

L’enveloppe des bactéries Gram-négatives est composée de la membrane interne (ou cytoplasmique), du périplasme et de la membrane externe (figure 2.1).

+Tiré de Madigan, M.T. et al. (2000)

La membrane interne est une bicouche de phospholipides qui sépare l’intérieur de la cellule (cytoplasme) de son environnement. C’est une barrière hautement sélective, qui permet à la cellule de concentrer des métabolites spécifiques et d’excéter ses déchets.
Le périplasme est l'espace situé entre la membrane interne et la membrane externe. Il occupe une largeur de 12 à 15 nm chez *Escherichia coli*. Il a une consistance gélatineuse, probablement due à l'abondance des protéines périplasmiques. Ces protéines incluent des enzymes hydrolytiques, qui servent à la dégradation des nutriments, des protéines de liaison (*binding proteins*), qui débutent les processus de transport des substrats, et des chimiorécepteurs, qui sont des protéines impliquées dans la réponse chimiotactique. Les systèmes de transport faisant appel à des protéines périplasmiques ont aussi une portion dans la membrane interne et une ATPase pour fournir l'énergie au système. On désigne ces systèmes des transporteurs ABC (pour *ATP-binding cassette*).

Les bactéries Gram-négatives possèdent une membrane externe. Cette membrane est une seconde bicouche lipidique mais n'est pas constituée que de phospholipides. Elle contient des polysaccharides et des protéines. Les lipides et les polysaccharides sont intimement liés et forment les lipopolysaccharides. Contrairement à la membrane interne, la membrane externe est relativement perméable aux petites molécules. Des protéines, appelées *porines*, y sont présentes et constituent des canaux pour l'entrée et la sortie des substances hydrophiles de faible poids moléculaire. Cependant, la membrane externe n'est pas perméable aux enzymes et autres grosses molécules. En fait, une des fonctions majeures de la membrane externe est d'empêcher certaines enzymes, qui sont présentes dans le périplasme, de diffuser à l'extérieur de la bactérie.

2.2 Exportation des protéines

L'exportation de protéines permet aux bactéries de construire leur enveloppe. Elle leur permet aussi de sécréter une panoplie de toxines, d'adhésines et d'enzymes hydrolytiques. Les protéines exportées sont d'une grande importance dans la pathogénicité bactérienne. Elles sont en mesure d'engendrer des interactions entre les pathogènes et la surface des cellules eucaryotes. Elles servent souvent de cibles pour les vaccins et les tests diagnostiques. Enfin, presque tous les facteurs de virulence sont localisés sur la membrane externe ou sécrétés dans le milieu extra-cellulaire.
Les protéines bactériennes exportées par la voie générale de sécrétion (ou GSP pour *general secretory pathway*) sont dotées d'une extension N-terminale appelée *séquence signal*. La séquence signal permet le transport des pré-protéines à travers la membrane interne. On donne parfois le nom de *peptide signal* à une séquence signal qui est clivée par une signal peptidase (Pugsley, 1993).

2.2.1 Séquence signal

Une séquence signal se compose de 18 à 30 acides aminés et peut être divisée en trois domaines (figure 2.2) (von Heijne, 1985):

- **Domaine N** : région N-terminale, chargé positivement et composé de un à cinq acides aminés

- **Domaine H** : région centrale, hydrophobe et composé de 7 à 15 acides aminés

- **Domaine C** : région C-terminale, polaire mais neutre, composé de trois à sept acides aminés

Les séquences signal partagent peu d'homologie entre elles mais leurs propriétés physico-chimiques sont conservées (Izard et Kendall, 1994).

FIGURE 2.2 : Schématisation d'une séquence signal.
La séquence signal est une extension N-terminale composée de trois domaines (N, H et C). Le domaine C peut contenir un site de clivage.
2.2.1.1 Domaine N

Le domaine N contient la méthionine N-terminale. La charge nette positive est souvent introduite par la lysine ou l’arginine. Cette région est probablement impliquée dans le ciblage de la préprotéine à la translocase, un complexe qui permet la translocation des protéines à travers la membrane interne (Akita et al., 1990).

2.2.1.2 Domaine H

Le domaine H est responsable de la conformation en hélice-α et serait, lui aussi, impliqué dans le ciblage de la préprotéine à la translocase. Les résidus de leucine et d’alanine y sont prédominants, avec souvent une série de 8 à 10 leucines chez *E. coli.* (von Heijne, 1990).

2.2.1.3 Domaine C

Cette région peut contenir un site de clivage. C’est la seule partie du peptide signal qui demande une séquence primaire spécifique. Les positions –3 et –1 par rapport au site de clivage sont particulièrement importantes pour que le clivage ait lieu correctement (von Heijne, 1985). Les bactéries Gram-négatives possèdent le site de clivage avec le patron le plus fort, donc le plus facile à prédire. La règle du (-3, -1) de von Heijne stipule que les acides aminés en position –1 par rapport au site de clivage doivent être petits, c’est-à-dire Ala, Ser, Gly, Cys, Thr ou Gln; les acides aminés en position –3 ne doivent pas être aromatiques (Phe, His, Tyr, Trp), chargés (Asp, Glu, Lys, Arg) ou larges et polaires (Asn, Gln). La contrainte pour les peptides signaux des procaryotes est encore plus sévère. Ceux-ci acceptent presque exclusivement Ala, Gly, Ser et Thr en –1 et Ala, Gly, Leu, Ser, Thr et Val en –3 (von Heijne, 1986).
2.2.1.4 Domaine mature

Dans les premières positions de la protéine mature (en aval du site de clivage), les procaryotes ont une préférence pour l’alanine, les acides aminés chargés négativement (aspartate ou glutamate) et les acides aminés hydroxy (sérine et thréonine) (Nielsen et al., 1997). Les acides aminés chargés positivement, en aval du peptide signal, peuvent bloquer la translocation des protéines.

L’information de ciblage peut aussi être localisée dans la partie mature des préprotéines. En effet, certaines protéines peuvent être transloquées même si elles ne possèdent pas de peptide signal. Les toxines Apx sont des exemples bien documentés où les signaux d’exportation sont situés au niveau des acides aminés en C-terminal.

2.2.2 Systèmes d’exportation des pré-protéines

Des mutations dans les séquences signal empêchent l’exportation des protéines. L’exportation peut aussi être supprimée par des mutations dans d’autres gènes qui sont alors identifiés comme des composants du système d’exportation. Plusieurs gènes, regroupés sous l’appellation générale sec (pour secretion) ont été identifiés comme encodant certains composants du système de sécrétion. La translocation des protéines passe par les étapes résumées dans la figure 2.3(a). I) Une chaperonne se fixe à une protéine naissante pour contrôler son repliement. II) La protéine s’associe ensuite avec le système de sécrétion. III) une peptidase coupe la séquence de tête des protéines qui possèdent une extrémité N-terminale susceptible d’être clivée. La protéine est libérée.

FIGURE 2.3: Système d’exportation des pré-protéines
+Tiré de Economou, 1999.
2.2.2.1 Appareil de translocation

L’appareil de translocation de E. coli, désigné translocase, est un complexe enzymatique composé de protéines membranaires intégrales (SecY, SecE et SecG) et d’une ATPase membranaire périphérique, SecA (figure 2.3). À cela s’ajoutent deux protéines membranaires, SecD et SecF, qui stabilisent SecA dans sa conformation active (Duong et Wickner, 1997). L’utilisation des chaperonnes SecB ou Ffh permet de diviser la sécrétion des préprotéines en deux voies distinctes : le ciblage SecB-dépendant et SecB-indépendant.

2.2.2.2 Ciblage SecB-dépendant

Le ciblage SecB-dépendant est un mécanisme post-traductionnel qui implique la fixation d’une chaperonne, SecB, au niveau du domaine mature d’une préprotéine pourvue d’une séquence signal. SecB retarde le repliement de la préprotéine, la maintenant ainsi dans une conformation adéquate pour la translocation. Dans une seconde étape, SecB transfère la protéine à SecA et la translocation s’effectue à travers la translocase (Fekkes et al., 1998). SecA reconnaît à la fois SecB et la préprotéine à laquelle elle sert de chaperonne. Des éléments de la séquence de la protéine mature ainsi que de la séquence signal sont sans doute nécessaires à la reconnaissance.

2.2.2.3 Ciblage SecB-indépendant

Le ciblage SecB-indépendant est un mécanisme co-traductionnel; il s’effectue alors que la protéine est encore attachée au ribosome. À la différence de SecB qui lie la partie mature de la préprotéine, la protéine Ffh, homologue au SRP (pour signal recognition particule) des eucaryotes, reconnaît le peptide signal (Randall et al., 1998). Dès que la séquence signal émerge du ribosome, elle est prise en charge par Ffh. Cette liaison amène une pause dans la traduction. Le complexe va se lier à un récepteur du Ffh, FtsY, situé sur la membrane interne. Il y a alors formation d’un complexe entre le ribosome et le pore de translocation transmembranaire. La séquence signal est coupée, la traduction reprend et il y a translocation de la chaîne naissante à mesure que la chaîne s’allonge (Bernstein, 1998).
Le ciblage Sec-indépendant est particulièrement important pour le ciblage des protéines membranaires polytopiques, c'est-à-dire qui possèdent de multiples régions transmembranaires (Valent et al., 1995). Ce processus est similaire au processus de translocation de protéines dans la membrane du réticulum endoplasmique des eucaryotes.

2.2.2.4 Signal peptidase

Une séquence signal qui possède un site de clivage reconnu par une signal peptidase est coupée à la membrane interne et la protéine mature est libérée dans le périplasme. Cette protéine peut demeurer dans le périplasme, s’insérer dans la membrane externe ou être sécrétée dans le milieu extra-cellulaire. L’information pour la localisation au-delà de la membrane interne ne semble pas résider dans le peptide signal en dépit de légères différences entre le peptide signal des protéines périplasmiques par rapport aux protéines de la membrane externe (Pugsley, 1993). Les protéines qui contiennent des séquences signal non-clivables demeurent associées avec la membrane interne.
2.3 Technologie PhoA

2.3.1 Phosphatase alcaline (PhoA)

La phosphatase alcaline (PhoA) de *E. coli* est une phosphomonoésterase non-spécifique retrouvée normalement dans le périplasme en condition de carence en phosphate. L’activité enzymatique de PhoA dépend de sa localisation cellulaire. Inactive dans le cytoplasme, elle devient active quand elle est exportée à travers la membrane interne pour se retrouver dans le périplasme. Cette propriété de PhoA est à la base de la stratégie pour l’identification des protéines transportées au niveau de la membrane interne et au-delà.

Phoa est une métalloenzyme faite de deux sous-unités identiques (Chang et al., 1986). Chacune des sous-unités contient deux ponts disulfures intra-moléculaires. Ces ponts doivent nécessairement être formés pour que PhoA atteigne sa conformation active. Elle est maintenue à l’état réduit dans le cytoplasme par, entre autre, la thioredoxine réductase, ce qui l’empêche de former des ponts disulfures.

Dans le périplasme, la partie mature de PhoA est oxidée, les ponts disulfures sont formés et cela permet le repliement correct de PhoA. Le processus de repliement est complété par la formation du dimère, et l’enzyme est alors active (Akiyama et Ito, 1993). Chez *E. coli*, les protéines Dsb facilitent la formation des ponts disulfures (Bardwell et Beckwith, 1993).

Derman et Beckwith (1995) ont démontré chez *E. coli* que PhoA localisée dans le cytoplasme acquiert lentement son activité enzymatique lorsque la croissance des cellules est arrêtée. Ceci constitue un risque expérimental qui entre en ligne de compte lors de l’interprétation des résultats.

2.3.2 Système de fusion de gènes PhoA

La technologie PhoA est un système de fusion de gènes dans un vecteur plasmidique. Des séquences du génome de la bactérie à l’étude sont clonées en amont du gène *phoA* tronqué,
c'est-à-dire délesté de son promoteur et de sa séquence signal (figure 2.4). Le vecteur peut aussi posséder un promoteur. L'ajout d'un promoteur permet l'expression de fusions dans lesquelles l'insert cloné contient une séquence signal mais pas de promoteur. Un promoteur fort tel que Plac est utile pour exprimer des gènes qui sont normalement exprimés que faiblement dans l'hôte. Il est utile d'utiliser une famille de trois vecteurs puisque l'expression correcte de la protéine de fusion est importante pour le phénotype. Les vecteurs, par exemple la série pJDT1, 2 et 3 (Mdluli et al., 1995) que nous avons utilisés, ont un nucléotide de décalé par rapport au site de clonage BamHI pour permettre de cloner un fragment donné dans le bon cadre de lecture (en phase avec phoa). Les fusions qui possèdent une séquence signal complète, dans la bonne orientation et le bon cadre de lecture vont mener au transfert de l'enzyme à travers la membrane interne. L'activité enzymatique résultante est détectable par le phénotype de colonies bleues sur milieu de culture contenant le substrat approprié. PhoA dégrade un substrat incolore, le 5-bromo-4-chloro-3-indolylphosphate (XP) en un composé de couleur bleue (figure 2.5).

La technologie PhoA a été utilisée avec succès pour identifier des gènes de protéines exportées chez des bactéries aussi variées que Staphylococcus aureus (Williams et al., 2000), Helicobacter pylori (Bina et al., 1997), Actinobacillus actinomycetemcomitans (Mintz et Fives-Taylor, 1999; Ward et al., 2001) et Treponema pallidum (Blanco et al., 1991). À titre d'exemple, la technologie PhoA a permis à Williams et al. (2000) d'identifier un locus qui contient cinq séquences similaires à celles d'exotoxines chez S. aureus. Ce genre de réussite démontre les grandes possibilités de cette technologie.
FIGURE 2.4: Technologie PhoA

FIGURE 2.5: Colonies PhoA+ (bleues) suite à la dégradation du substrat 5-bromo-4-chloro-3-indolylphosphate (XP) par la phosphatase alcaline.
CHAPITRE 3

LES FIMBRIAE

3.1 Morphologie

Les fimbriae, aussi connus sous l’appellation de pili, sont des filaments ressemblant à des poils (en latin, pilus signifie poil) que l’on retrouve à la surface de nombreuses bactéries Gram-négatives (figure 3.1). Le nombre de fimbriae d’une bactérie peut atteindre 1000; leur épaisseur est habituellement de 3 à 20 nm et leur longueur varie entre 0,2 et 5 μm. À cause de leur taille, ces fimbriae ne sont pas visibles en microscopie optique. Les fimbriae sont constitués d’une protéine appelée piline.

3.2 Fonctions

Plusieurs fonctions sont attribuées aux pili : fonctions sexuelles, sites de fixation pour virus et structures d’adhérence aux cellules eucaryotes (Soto et Hultgren, 1999; Clewell et al., 1993). Certains auteurs distinguent les pili sexuels des autres pili auxquels ils donnent le nom de fimbiae. Les premiers seraient plus longs mais peu nombreux tandis que les seconds seraient présents en grand nombre et plus courts. Les pili dotés de fonctions sexuelles participent aux processus de conjugaison (échanges de matériel génétique d’une bactérie à l’autre) en établissant des ponts cytoplasmiques inter-cellulaires (Clewell et al., 1993).

3.3 Classification

Les fimbiae peuvent être classés en fonction de leurs propriétés physiques, leur caractéristiques d’adhérence ou sur la base de similarité des séquences en acides aminés de leur pilines majeures (Low et al., 1996). Les fimbiae de classe I et de type IV sont les mieux caractérisés et ont une présence ubiquitaire parmi les pathogènes Gram-négatifs importants.

3.3.1 Fimbriae de classe I

3.3.2 Fimbriae de type IV

Les fimbriae d’un large éventail de bactéries Gram-négatives sont classés parmi les fimbriae de type IV sur la base de similarité de séquence en acides aminés parmi leur piline majeure. Ce groupe de fimbriae a été largement étudié puisqu’il sert à l’adhérence des bactéries aux tissus de l’hôte chez plusieurs pathogènes importants, tel que Vibrio cholerae, Pseudomonas aeruginosa, E. coli entéropathogène et entérotoxique (EPEC et ETEC), Neisseria gonorrhoeae, Neisseria meningitidis et Moraxella bovis (Strom et Lory, 1993).

3.3.2.1 Propriétés d’adhérence

Les fimbriae permettent l’adhérence de la bactérie par interaction directe des sous-unités de piline assemblées avec un récepteur tissulaire. Les fimbriae peuvent incorporer des sous-unités de pilines mineures à leur extrémité qui sont alors responsables de la reconnaissance et de la liaison aux récepteurs. Jusqu’à présent, seulement deux pilines mineures ont été identifiés parmi les fimbriae de type IV : PilC de N. gonorrhoeae et N. meningitidis (Rudel et al., 1995; Ryll et al., 1997). Donc, bien que de tels pilines puissent exister dans les fimbriae de type IV, il est clair que les pilines majeures peuvent aussi participer directement dans l’adhérence aux tissus de l’hôte. Le récepteur des fimbriae est la partie glucidique de glycoprotéines ou de glycolipides situés dans les cellules épithéliales de l’hôte eucaryote.

La contribution des fimbriae à la virulence a été démontrée in vivo dans plusieurs cas. La plupart des évidences de leur rôle dans l’adhérence ont été obtenues par des études in vitro où des organes et des cellules en culture étaient utilisés. Cependant, puisque la majorité des pathogènes expriment de multiples adhésines, fimbriae ou autre, la contribution d’un fimbriae donné à la virulence est difficile à tester et à démontrer (Strom et Lory, 1993).

3.3.3.2 Structure

Des évidences immunologiques aussi bien que cristallographiques ont fourni un modèle pour la structure de la piline dans les fimbriae de type IV. Dans ce modèle, la portion C-terminale
de la piline est exposée à la surface du filament tandis que le domaine hydrophobe N-terminal forme le cœur interne du pilus. Ces deux domaines sont interconnectés par une région en hélice-α (Forest et Tainer; 1997; Parge et al., 1995). La plupart des fimbriae de type IV sont des filaments flexibles ressemblant à des tiges, d'environ 5-6 nm de diamètre et 1-2 μm de longueur, dans lesquels les sous-unités de pilines sont arrangées en hélice. Les pilines des TCP (pour toxic co-regulated pili) de V. cholerae (Taylor et al., 1987) et des BFP (pour bundle-forming pili) de EPEC (Girón et al., 1991) s'assemblent en fibrilles raides de longueur variable avec une forte tendance à agréger, in vivo et in vitro, amenant la formation de microcolonies importantes pour la virulence de ces souches particulières (Bieber et al., 1998).

3.3.3.3 Sécrétion des pilines de type IV

Tous les fimbriae de type IV utilisent une machinerie d’assemblage et de sécrétion semblable, fait d’au moins une douzaine de polypeptides différents (Fernandez et Berenguer, 2000). Les pilines appartenant aux fimbriae de type IV sont synthétisées sous forme de prépilines. Ces précurseurs sont clivés par une prépiline peptidase de la membrane interne. Avant de polymériser en fimbriae, la piline est ancrée transitoirement dans la membrane interne par son domaine conservé hydrophobe localisé en N-terminal, immédiatement après le peptide signal. La prépiline peptidase forme un complexe avec une dizaine d’autres protéines localisées dans le cytoplasme et la membrane interne (Nunn et Lory, 1991). L’assemblage du fimbriae survient au site de ce complexe protéique. Une sécrétine, stabilisée par une autre protéine, forme un large pore dans la membrane externe à travers lequel le fimbriae est sécrété dans le milieu extra-cellulaire (Drake et al., 1997). Outre la sécrétine et la protéine stabilisatrice, les composants spécifiques du système de sécrétion sont des protéines cytoplasmiques ou de la membrane interne.

3.3.3.4 Caractéristiques des prépilines de type IV

Les fimbriae de type IV sont composés de 500 à 1000 petites sous-unités, les pilines. Les pilines sont d’abord synthétisées sous forme de prépilines, avec un peptide signal à l’extrémité
N-terminale. Les prépilines de type IV possèdent un grand nombre de propriétés communes (Strom et Lory, 1993) dont :

1. Un peptide signal chargé positivement qui est supprimé par une prépiline peptidase spécifique avant l’assemblage du filament;
2. La N-méthylation du premier acide aminé de la protéine mature;
3. Une région N-terminale hautement hydrophobe d’environ 30 acides aminés, qui contient un résidu d’acide glutamique en position +5. Cette région hydrophobe conservée pourrait participer aux interactions entre les sous-unités, facilitant l’assemblage des sous-unités individuelles en un long filament (Parge et al., 1995) et ;
4. La région immunogénique C-terminale (de séquence variable) contient un pont disulfure intra-chaîne entre deux cystéines conservées, qui confère la stabilité à la protéine (Sun et al., 1997; Zhang et Donneberg, 1996) et contient un domaine de liaison pour les cellules épithéliales (Sun et al., 1997; Hahn, 1997).

La famille des fimbriae de type IV peut être sous-divisée en deux groupes selon la longueur du peptide signal, l’identité du premier résidu de la protéine mature et l’organisation génomique des gènes codant pour des composants requis pour leur assemblage (McNamara et Donnenberg, 2000). Les prépilines de groupe IVA ont un peptide signal court (6 à 7 acides aminés) qui est clivé entre une glycine et une phénylalanine. Donc, les pilines de type IVA débutent par une N-méthyl-phénylalanine. Les gènes requis pour l’assemblage des pilines de type IVA sont dispersés à plusieurs endroits différents du génome. Les prépilines du groupe IVB possèdent un peptide signal plus long (13 à 30 acides aminés) qui est clivé entre une glycine et un acide aminé variable. Par exemple, le premier acide aminé de la piline mature TcpA (*V. cholerae*) est la méthionine et celui de BfpA (EPEC) est la leucine. La N-méthylation du premier résidu des pilines de type VIB n’a jusqu’à présent été déterminée que pour TcpA (Shaw et Taylor, 1990). Les gènes requis pour l’assemblage des pilines sont regroupés dans un même locus. Les séquences en acides aminés des prépilines de ce groupe présentent beaucoup plus de diversité que celles du groupe VIA.
3.3.3.5 Identification de fimbriae de type IV chez *A. pleuropneumoniae*

La présence de fimbriae de type IV a été observée chez des isolats d’*Actinobacillus pleuropneumoniae* par microscopie électronique de transmission (Zhang et al., 2000). Le séquençage N-terminal de la sous-unité de fimbriae de 17 kDa nommée ApfA a révélé la séquence (X)TLIELMIVIAI. Les analyses d’alignement de séquences ont montré que cette séquence est identique à celles des sous-unités de fimbriae de type IV déjà identifiées chez *Haemophilus influenzae* (piline), *M. bovis* (β piline), *Moraxella nonliquefaciens* (TfpA), *Eikenella corrodens* (Ecp), *N. gonorrhoeae* (PilE), *N. meningitidis* (PilE), *Aeromonas hydrophila* (TapA), *P. aeruginosa* (PilA) et *Dichelobacter nodosus* (FimA). Le premier acide aminé n’a pas pu être identifié, vraisemblablement parce qu’il s’agit d’une phénylalanine N-méthylée.

3.4 Revue des connaissances actuelles à propos des locus de fimbriae *flp-rcp-tad*

Le locus des gènes *flp-rcp-tad* encode un système de sécrétion pour la synthèse et l’assemblage de fimbriae de type IV. Tout d’abord découvert chez *Actinobacillus actinomycetemcomitans*, des gènes homologues furent découverts par la suite chez diverses autres bactéries (Kachlany et al., 2001b).

La morphologie des colonies bactériennes est le reflet des différences dans l’expression des composants de la surface des bactéries. Certains de ces composants de surface sont vraisemblablement des adhésines impliquées dans la colonisation de l’hôte. Haase et al. (1999) ont établi une corrélation directe, chez *A. actinomycetemcomitans*, entre la morphologie colonie-rugueuse et la présence de fimbriae. Les variants provenant de colonies rugueuses arborent des fimbriae périrriches abondants et rassemblés en paquets; les variants de colonies lisses ne montrent que peu ou pas de fimbriae. Les variants de colonies rugueuses adhèrent à l’hydroxyapatite mieux que les variants lisses. Donc, l’adhérence d’*A. actinomycetemcomitans* est due, au moins en partie, aux fimbriae. À ce jour, seulement les fimbriae avaient été associés avec le phénotype de colonies rugueuses. L’équipe de Haase a
identifié deux protéines de la membrane externe qui sont uniques aux variants de colonies rugueuses chez *A. actinomycetemcomitans*, soit RcpA et RcpB.

A. pleuropneumoniae forme aussi communément des colonies adhérentes et collantes desquelles des colonies lisses peuvent être dérivées. Rycroft et Taylor (1987) ont utilisé la souche 6664 du sérotype 3 dans une étude sur les protéines de l’enveloppe bactérienne. Cette souche se présente sous la forme adhérente et lisse. En milieu liquide, la forme adhérente croît en agrégats, autant en suspension que collée aux parois du récipient. Aucune différence entre les deux formes ne fut observée lors du SDS-PAGE.

Ishihara et al. (1997) ont identifié un gène associé à l’expression de fimbriae. Ils ont analysé le gène *fap* (pour *fimbrial-associated protein*, maintenant appelé *flp-l*) de la bactérie *A. actinomycetemcomitans* 310a. L’ORF de 228 pb encodait une protéine de 76 acides aminés avec un poids moléculaire calculé de 7 970 Da. Le poids moléculaire calculé de la protéine mature est de 5 090 Da. Le gène est précédé par des séquences promotrices à -35 (TTGCAT) et -10 (TATAAT) et possède un RBS (AGGAG). Une séquence inversée répétée de 27 pb située après le gène pourrait constituer une séquence de terminaisons. Le contenu G + C du gène est de 35,7%. L’amplification de *fap* par RT-PCR effectuée sur des souches avec fimbriae, et la non amplification sur des souches sans fimbriae, démontrent que *fap* est associé à l’expression de fimbriae. Un IgG dirigé contre la protéine Fap inhibe l'adhérence d'*A. actinomycetemcomitans* à l’épithélium buccal de l’homme. Les antigènes de fimbriae sont donc des candidats appropriés pour le développement de vaccin pour induire des anticorps qui pourraient inhiber la colonisation par ce microorganisme.

La protéine Flp, d’un poids moléculaire apparent de 6,5 kDa, a été identifiée dans une préparation de fimbriae d’*A. actinomycetemcomitans* par Inoue et al. (1998). La microscopie électronique a permis de localiser Flp au niveau des fimbriae. Kachlany et al. (2001a) ont étudié la structure des fibrilles d’une souche adhérente d’*A. actinomycetemcomitans* par microscopie électronique à haute-résolution. Les fibrilles sont composées de larges arrangements de fimbriae parallèles de 5 à 7 nm de diamètre. Leurs sous-unités sont arrangées en hélices similaires à celles des fimbriae de type IV. Ils ont fait la preuve que *flp-l* est
nécessaire pour la production des fibrilles et l’adhérence non spécifique. Les mutants avec des
insertions dans *flp-1* ne produisent pas de fibrilles et n’adhèrent pas aux surfaces.

Kachlany *et al.* (2000) ont également identifié un locus de sept gènes (*tadABCDEFG*) requis
pour l’adhérence non spécifique d’*A. actinomycetemcomitans*. Les mutants Tad négatifs
adhèrent pauvrement aux surfaces, sont incapables de former de gros auto-agrégats et sont
dépourvus des longs paquets de fimbriae (ou fibrilles) retrouvés chez les souches sauvages.
L’examen des génomes bactériens révèle que plusieurs d’entre eux contiennent des séquences
apparentées aux gènes *tad*. Ils proposent que les gènes *tad*, et leurs homologues chez différents
microorganismes, jouent un rôle significatif dans la colonisation bactérienne. Le produit du
gène *tadA* contient les motifs conservés caractéristiques des NTPases Walker A, Walker B et
Asp (Walker *et al.*, 1982). Bhattacharjee *et al.* (2001) apportent la preuve expérimentale que le
gène *tadA* code pour une NTPase capable de fixer et d’hydrolyser l’ATP. L’activité
ATPasique de TadA pourrait servir à fournir l’énergie nécessaire à l’assemblage ou la
sécrétion des fimbriae Flp d’*A. actinomycetemcomitans*.
Identification of DNA sequences encoding exported proteins including an RcpA-homologue by using phoA gene fusions in Actinobacillus pleuropneumoniae

Nancy Perreault, Julie Provencher, Luc Gagnon, Marc Beauregard, John Nash, and Marc Sirois*

Laboratoire de recherche en génomique microbienne, Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada
Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada

*Corresponding author
Marc Sirois
Département de Chimie-Biologie
Université du Québec à Trois-Rivières
3351 boul des Forges
Trois-Rivières, Québec, Canada
G9A 5H7
Phone: 819-376-5011 ext 3999
Fax: 819-376-5084
Email: siroism@uqtr.ca
Contribution de chacun des auteurs dans l’article scientifique

Nancy Perreault : j’ai réalisé l’ensemble des expériences (mis à part le séquencage, offert en sous-traitance à l’université Laval). J’ai également réalisé les premières ébauches du manuscrit en incluant la recherche bibliographique.

Julie Provencher : à titre d’étudiante de M.Sc., Julie a travaillé sur un projet similaire. C’est ainsi que Julie a participé à l’ébauche de certains protocoles expérimentaux concernant l’isolement des clones et la stratégie de séquençage.

Luc Gagnon : Luc a procédé aux analyses bioinformatiques préliminaires à titre de stagiaire post-doctoral dans le laboratoire. Il a également supervisé le projet de façon ponctuelle.

Marc Beauregard : a participé, au départ, avec M. Sirois, à l’élaboration de la stratégie d’expression des protéines de fusion avec la phosphatase alcaline et les souches bactériennes productrices.

John Nash : il a construit une banque de séquences d’ADN d’Actinobacillus pleuropneumoniae (CNRC-Ottawa) à laquelle il nous a donné accès pour des comparaisons et des recherches d’homologies génétiques.

Abstract

We used the phoA gene fusion strategy to detect putative exported proteins from the swine bacterial pathogen Actinobacillus pleuropneumoniae (type strain 4074, serotype 1). DNA sequences analyses of 34 PhoA+ clones have revealed some homologies with proteins of known function. A number of these genes encode putative antigens and/or virulence factors, including HtrA, AcrB homologues and a lipoprotein. Three clones are significantly homologue to the fimbria-associated proteins PilC, RcpA and TadG from Actinobacillus actinomycetemcomitans. The complete rcpA gene was cloned from a bacteriophage genomic library. Sequencing result of the 5,75-kb rcpA-containing DNA fragment is indicative of the presence of a gene locus involved in the biosynthesis and assembly of fimbriae in A. pleuropneumoniae.

Keyword: Actinobacillus pleuropneumoniae; phoA fusion; exported protein; signal peptide; fimbriae associated protein; rcpA; virulence factors; antigenic proteins.

1. Introduction

Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, a highly contagious disease distributed worldwide and resulting in substantial losses in the pig industry. This gram negative bacterium is a member of the Pasteurellaceae family, which consist of the genus Actinobacillus, Haemophilus, Pasteurella, and the most recent Mannheimia. Several bacterial components have been suggested as important virulence factors of A. pleuropneumoniae including capsule, lipopolysaccharides (LPS), the haemolytic and
cytotoxic Apx toxins, transferrin-binding proteins (Tbp1 and Tbp2) and hydrolytic proteases. The pathogenesis of porcine pleuropneumonia is complex, related to its multifactorial virulence, and still not completely elucidated.

Control of the disease by vaccination has been unsuccessful. Whole-cell bacterins do not induce immunity towards heterologous serotypes of *A. pleuropneumoniae* nor prevent chronic forms of the disease and development of the subclinical carrier state\(^2\)-\(^3\).

Research works should therefore lead to the identification of new virulence factors and antigens in *A. pleuropneumoniae*, which are mainly exported proteins found on the bacterial outer membrane or secreted in the extracellular environment.

In gram negative bacteria, most periplasmic and outer membrane proteins have a signal sequence in the N-terminus (also called *signal peptide*) which is cleaved-off after the translocation of the protein across the inner membrane. Some of the inner membrane proteins also have cleavable signal sequences but some N-terminal signal sequences in the inner membrane proteins are not cleaved off, and remains as transmembrane segments\(^4\).

This paper reports the identification of novel exported proteins from *A. pleuropneumoniae*. We used a gene fusion strategy based on the generation of translational fusions to a truncated *E. coli* alkaline phosphatase (PhoA) gene lacking its signal sequence\(^5\). PhoA becomes active only when the enzyme is translocated across the inner membrane, into the oxidizing environment of the periplasm. Thus, for the secretion of functional PhoA activity, genes encoding signal sequences or transmembrane spanning sequences must be cloned in frame with the *phoA* gene.

We also report the complete cloning of the *rcpA* gene homologue in *A. pleuropneumoniae*. In *Actinobacillus actinomycetemcomitans*, RcpA is a fimbria-associated protein. Fimbriae (or pili) are surface appendages that are closely associated with the ability of
these bacteria to colonize various types of tissues by mediating interaction of bacteria with surfaces of eucaryotic cells. Many infectious diseases, including pulmonary infections, begin with the attachment of bacteria to host epithelial cells.

2. Materials and methods

2.1 Bacterial strain, medias and plasmids

A. pleuropneumoniae type strain 4074 (serotype 1) was grown on TSA (Tryptic Soy Agar, Difco) supplemented with 1% IsoVitaleX (BBL Microbiological Systems). *Escherichia coli* DH5α was used for the construction of the *A. pleuropneumoniae* PhoA fusion libraries. Plasmid vectors pJDT1, pJDT2, and pJDT3 containing a truncated version of the *E. coli* phoA gene have been previously described.

2.2 Construction and screening of *A. pleuropneumoniae* DNA PhoA fusion libraries

Chromosomal DNA of *A. pleuropneumoniae* was prepared using the Aquapure Kit (Bio-Rad Laboratories). Purified DNA was partially digested with Sau3A1 and separated by agarose gel electrophoresis. DNA fragments ranging from 0.75 to 1.5 kbp were extracted using the DNA gel extraction kit (Qiagen) and ligated to plasmids pJDT1-3, pJDT2 and pJDT3 which had been linearized with BamH1. The ligations were transformed by electroporation into *E. coli* DH5α. Transformants exhibiting PhoA+ (alkaline phosphatase) activity were detected after overnight growth at 37°C on LB (Luria-Bertani) agar containing 100 μg/ml of ampicillin and 50 μg/ml of 5-bromo-4-chloro-3-indolylphosphate (BCIP or XP), a colorimetric substrate for
PhoA. Intense blue colonies were streaked onto fresh plate to obtain individual colonies and confirm the PhoA activity.

2.3 DNA sequencing of *A. pleuropneumoniae* PhoA+ clones

Plasmid DNA from PhoA+ clones was isolated using the High pure plasmid isolation kit (Roche Diagnostics). The phoasecfus primer (5′-CACCCGTTAAACGGCGAGCA-3′) specific to the 5′ end of the truncated *phoA* gene in pJDT vectors was used to determine the nucleotide sequence of the *A. pleuropneumoniae* DNA inserts. Double-stranded plasmid DNA was sequenced using ABI Prism Dye Terminator Cycle sequencing (Applied Biosystem) at University Laval.

2.4 Homology analysis of PhoA+ clones

The derived amino acid sequences from the DNA sequences in frame with 'phoA' were obtained using the Translate program (http://www.expasy.ch/tools) and submitted to homology searches using the Tfasta algorithm from the Genetics Computer Group (GCG) and the National Center for Biotechnology Information (NCBI) database using the BLASTp algorithm.

2.5 Prediction of signal peptides and transmembrane domains

The SignalP V1.1 program (http://ww.expasy.ch/tools) was used to identify signal peptides. The transmembrane protein sequence analysis program DAS (*Dense Alignment Surface*) was used for the proteins that were negative on the SignalP program.
2.6 Cloning of rcpA gene homologue

The rcpA probe was PCR amplified using recombinant plasmid D1 as target-template and the primer pair PJDT2-3 (5'-GCG GCC GCA CTA GTG ATG-3') and PJDTX (5'-AGT AAT ATC GCC CTG AGC-3'). Labelling of the DNA probe with digoxigenin-dUTP (DIG-dUTP), hybridization, and immunological detection were carried out as specified by the manufacturer (Roche Diagnostics Ltd.). For the construction of the bacteriophage genomic library, chromosomal DNA of A. pleuropneumoniae was digested with Tsp509I and fragments ranging from 5 to 10 kbp were ligated with EcoRI digested λSCREEN-l (Novagen). The library was screened using the rcpA DIG-labelled probe and yielded several positive hybridizing clones. The clone pScreen/D1C1, which had a 5.75-kb insert, was purified and completely sequenced in both directions by primer walking.

3. Results

3.1 Screening of A. pleuropneumoniae PhoA fusion libraries

About 60,000 colonies, derived from the three fusion libraries, were screened for PhoA+ activity. Considering the 3 libraries, an average of 2% of the colonies showed blue color with varying intensity. Forty-eight colonies with intense or diffusible blue phenotype were selected and their plasmids were isolated.

3.2 Prediction of signal peptides and transmembrane domains

Twenty signal peptides from the DNA PhoA fusion libraries were identified by the SignalP program (Table 1). All signal peptides had between 15 and 27 amino acids for which the
(-3,-1) rule enounced by von Heijne\(^7\) was respected. Only Ala and Thr have been found in position -1, and only Ala, Leu, Ser, Thr and Val were found in position -3. Clone 2-P had the characteristics of a lipoprotein signal peptide. No signal sequence was identified for the 10 remaining clones but the DAS program identified transmembrane domains, suggesting that these proteins were potentially inner membrane proteins. No signal peptide or transmembrane domains were found in the sequence of clone 24.

3.3 Homology analysis of PhoA+ clones

The 48 \textit{A. pleuropneumoniae} PhoA+ fusion library clones were sequenced. Each clone was subjected to a single pass DNA sequencing reaction. Thirty-four PhoA+ clones contained unique insert DNA (non-redundant). Of the 34 clones, 17 showed homology to proteins of known or putative function (Table 2). Nine clones had homology with non-characterized or hypothetic proteins (Table 3). Finally, eight clones did not produce alignment with any sequences in the databases.

3.4 Cloning of complete \textit{rcpA} gene homologue

The clone D1 contained an 887-pb DNA insert encoding the N-terminal 183 amino acids of an exported protein fused to \textit{phoA} gene. Comparison of the deduced amino acid sequence revealed homology (57\% identities and 74\% positives) to the \textit{rcpA} gene from \textit{A. actinomycetemcomitans} and (58\% identities and 71\% positives) with the \textit{rcpA} gene from \textit{Pasteurella multocida}. This DNA insert served as matrix for the construction of a probe to clone the complete \textit{rcpA} gene in an \textit{A. pleuropneumoniae} bacteriophage DNA library. One of the positive clones obtained from the bacteriophage library, pScreen/D1C1, had a 5,75-kb insert containing the complete \textit{rcpA} gene. The nucleotide sequence analysis of pScreen/D1C1
revealed six complete and two partial ORFs. The rcpA gene consist of an ORF of 1, 389 pb coding for a protein of 462 amino acids (figure 1) with a predicted molecular mass of 50 365 Da. It was preceded by a RBS consensus sequence AGGAAA five pb upstream of the ATG codon. The first 27 amino acids have the characteristics of a signal peptide and accordingly RcpA is predicted to be localized in the bacterial outer membrane. No consensus promoter sequences or termination sequence have been identified upstream and downstream the rcpA ORF, respectively. The next ORF begins with its ATG start codon overlapping the TGA stop codon from rcpA (ATGA). The deduced amino acids sequence of this ORF has 32 % identity with RcpB from A. actinomycetemcomitans.

4. Discussion

As expected, we have found that A. pleuropneumoniae DNA inserts that lead to expression of fusion proteins with PhoA activity had N-terminal signal sequences or hydrophobic membrane-spanning sequences. However, neither signal peptide nor transmembrane domain could be found in the predicted amino acid sequence of clone 24, even if the DNA/protein fusion resulted in a blue colony phenotype. This clone presented high homology (81% identity) with SrmB protein from H. influenzae. SrmB is a RNA-helicase located in the bacterial cytoplasm. Also, it could correspond to artefact fusion or an unknown secretion sequence.

The phoA gene fusion strategy has yielded 34 different A. pleuropneumoniae genes. The gene tbpA, encoding a transferrin-binding protein, has already been characterized in A. pleuropneumoniae. It encodes the outer membrane protein Tbp1, which is antigenic and...
considered as a virulence factor9-10. Our results did strongly confirm the validity of the PhoA technology to trap leader peptides in \textit{A. pleuropneumoniae}.

The HtrA, AcrB, RcpA, PilC and TadG protein homologues represent potential virulence factors. Because of their location at the outer membrane level, RcpA and Hlp homologues must be considered as potential antigens for the development of new vaccines and antimicrobial agents.

The HtrA protein has been identified as a virulence factor in \textit{Salmonella typhimurium}11, \textit{Yersinia enterocolitica}12 and \textit{Brucella abortus}13. HtrA is a stress response protein and expression of the \textit{Haemophilus influenzae htrA} gene is inducible by high temperature. HtrA has been found to be immunogenic and partially protective during testing on animals14.

It has been demonstrated in \textit{E. coli} that AcrB is part of a system that brings an intrinsic resistance to a wide range of toxic compounds by pumping them out directly outside of the cell. When overexpressed, the system generates significant levels of resistance to many commonly used antibiotics, such as tetracycline and chloramphenicol15.

The \textit{hlp} gene of \textit{H. ducreyi} encodes an outer membrane lipoprotein. The protein is an antigen that reacts with the serum of patients infected by the bacteria16. The first 19 amino acids of clone 2-P Hlp-homologue have the characteristics of a lipoprotein signal peptide. It shows an amino acid consensus cleavage site for a signal peptidase II (LTA/CD). The aspartate (D) at position +2 is indicative of a probable localization in the outer membrane17.

Various bacteria display hair-like surface appendages designated fimbriae or pili. Although fimbriae were demonstrated in \textit{A. pleuropneumoniae} by electronic microscopy18, no fimbriae gene has been reported and their role in adherence is not yet clear.
Type IV fimbriae are expressed by many species of gram negative pathogens. They contribute to virulence by promoting bacterial attachment to various types of receptors during tissue colonization. In contrast, bacterial attachment to phagocytic cells, mediated by fimbriae or through antipilin opsonic antibody, is an important host-defense mechanism.

The *pilABCD* gene locus is implicated in the biosynthesis and assemblage of type IVA fimbriae in bacteria such as *A. actinomycetemcomitans* and *Pseudomonas* aeruginosa. *P. aeruginosa* containing mutations in *pilC* are pilus-deficient. PilC may be an integral cytoplasmic membrane protein resulting from the presence of potential membrane-spanning domains and absence of a typical signal peptide.

RcpA and tadG are part of a widespread cluster composed of the *flp-rcp-tad* genes in *A. actinomycetemcomitans*. This cluster encodes a complete secretion system for the biosynthesis and assemblage of type IVB fimbriae. RcpA is an outer membrane protein potentially antigenic, while TadG would instead be found in the inner membrane. The complete *rcpA* gene in *A. pleuropneumoniae* has been cloned from a bacteriophage genomic library and the 5.75-kb *rcpA*-containing DNA fragment from plasmid pScreen/D1C1 has been sequenced. The deduced amino acid sequence of the *rcpA* gene from *A. pleuropneumoniae* shows 57% and 58% identity to *rcpA* from *A. actinomycetemcomitans* and *P. multocida*, respectively.

The nucleotide sequence analysis of pScreen/D1C1 revealed six complete and two partial ORFs. All but the first N-terminal incomplete ORF present high homology to the *flp-rcp-tad* fimbriae gene cluster from *A. actinomycetemcomitans* and *P. multocida*. Sequencing and characterization of the full-length cluster in *A. pleuropneumoniae* is in progress.
5. Tables

Table 1: Signal peptides obtained with the PhoA+ fusions

<table>
<thead>
<tr>
<th>Clone</th>
<th>Signal peptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-4</td>
<td>MKKCLTLFTAISSFSLFLIANVNA</td>
</tr>
<tr>
<td>1-9</td>
<td>MKKSILALGLGLGLFSTPATT</td>
</tr>
<tr>
<td>2-9</td>
<td>MKLTKISLSMAACLVNTQLYA</td>
</tr>
<tr>
<td>2-10</td>
<td>MKLTKMAVTVATLVSAFSVAGTLTA</td>
</tr>
<tr>
<td>2-12</td>
<td>MNKKSFRVIFSKTLQCLVVSALA</td>
</tr>
<tr>
<td>2-14</td>
<td>MIVKKIFFTACILLSVQAQA</td>
</tr>
<tr>
<td>2-7</td>
<td>MRKFSVVKLISIFTSLMLLIPLFTWA</td>
</tr>
<tr>
<td>2-8</td>
<td>MATIALMGCLSSAAWA</td>
</tr>
<tr>
<td>2-C</td>
<td>MKSVWLLGVSSLTFCSASFA</td>
</tr>
<tr>
<td>2-G</td>
<td>MKKFLTTLTLLAISTSLA</td>
</tr>
<tr>
<td>2-I</td>
<td>MNKLTYLLGALVATPVTQA</td>
</tr>
<tr>
<td>2-J</td>
<td>MKNKLNISLLSLFAVQSYA</td>
</tr>
<tr>
<td>2-L</td>
<td>MKKLIKQSSLGFALSMTGAAFA</td>
</tr>
<tr>
<td>2-N</td>
<td>MKLIKFAFLCIFIALSFAQVAA</td>
</tr>
<tr>
<td>2-O</td>
<td>MLKRFIFLLVGLTLSAHA</td>
</tr>
<tr>
<td>2-P</td>
<td>MTKFTKISATALFALFLTA</td>
</tr>
<tr>
<td>3-19</td>
<td>MKRTLKSVSLCALA</td>
</tr>
<tr>
<td>3-3</td>
<td>MKKLTFSITLTLMLAA</td>
</tr>
<tr>
<td>D1</td>
<td>MQINKFSKTLSSALLGLLALSAMA</td>
</tr>
<tr>
<td>V2S</td>
<td>MKKLALKSVLVALSTFFAVNSTAIA</td>
</tr>
</tbody>
</table>
Table 2: Homology of 17 clones PhoA+ with proteins of known or putative function

<table>
<thead>
<tr>
<th>Clone</th>
<th>Protein</th>
<th>Organism</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-J</td>
<td>Tbp1</td>
<td>A. pleuropneumoniae</td>
<td>100%</td>
</tr>
<tr>
<td>24</td>
<td>SrmB</td>
<td>H. influenzae</td>
<td>81%</td>
</tr>
<tr>
<td>1-3</td>
<td>ABC transporter</td>
<td>H. ducreyi</td>
<td>76%</td>
</tr>
<tr>
<td>18</td>
<td>BisC</td>
<td>H. influenzae</td>
<td>75%</td>
</tr>
<tr>
<td>3-7</td>
<td>NapH</td>
<td>H. influenzae</td>
<td>68%</td>
</tr>
<tr>
<td>2-P</td>
<td>Hlp</td>
<td>H. ducreyi</td>
<td>67%</td>
</tr>
<tr>
<td>2-14</td>
<td>Sbp</td>
<td>E. coli</td>
<td>63%</td>
</tr>
<tr>
<td>15</td>
<td>AcrB</td>
<td>H. influenzae</td>
<td>60%</td>
</tr>
<tr>
<td>D1</td>
<td>RcpA</td>
<td>A. actinomycetemcomitans</td>
<td>57%</td>
</tr>
<tr>
<td>41</td>
<td>NapB</td>
<td>H. influenzae</td>
<td>50%</td>
</tr>
<tr>
<td>1-9</td>
<td>HtrA</td>
<td>H. influenzae</td>
<td>49%</td>
</tr>
<tr>
<td>2-12</td>
<td>PspA</td>
<td>N. meningitidis</td>
<td>45%</td>
</tr>
<tr>
<td>V1</td>
<td>TadG</td>
<td>A. actinomycetemcomitans</td>
<td>41%</td>
</tr>
<tr>
<td>2-O</td>
<td>DsbD</td>
<td>P. multocida</td>
<td>37%</td>
</tr>
<tr>
<td>2-8</td>
<td>NrfA</td>
<td>P. multocida</td>
<td>32%</td>
</tr>
<tr>
<td>1-4</td>
<td>PyrC</td>
<td>E. coli</td>
<td>29%</td>
</tr>
<tr>
<td>3-2</td>
<td>PilC</td>
<td>A. actinomycetemcomitans</td>
<td>22%</td>
</tr>
</tbody>
</table>
Table 3: Homology of 9 clones PhoA+ with non-characterized or hypothetical proteins

<table>
<thead>
<tr>
<th>Clone</th>
<th>Protein</th>
<th>Organism</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-7</td>
<td>HI1333</td>
<td>H. influenzae</td>
<td>80%</td>
</tr>
<tr>
<td>3-4</td>
<td>Conserved hypothetical protein</td>
<td>H. influenzae</td>
<td>68%</td>
</tr>
<tr>
<td>1</td>
<td>Conserved hypothetical protein</td>
<td>H. influenzae</td>
<td>61%</td>
</tr>
<tr>
<td>20</td>
<td>Conserved hypothetical protein</td>
<td>H. influenzae</td>
<td>57%</td>
</tr>
<tr>
<td>2-13</td>
<td>Unknown protein</td>
<td>N. meningitidis</td>
<td>56%</td>
</tr>
<tr>
<td>2-C</td>
<td>PM1792</td>
<td>P. multocida</td>
<td>51%</td>
</tr>
<tr>
<td>1-2</td>
<td>HI0911</td>
<td>H. influenzae</td>
<td>44%</td>
</tr>
<tr>
<td>3-5</td>
<td>Conserved hypothetical protein</td>
<td>H. influenzae</td>
<td>42%</td>
</tr>
<tr>
<td>2-10</td>
<td>HI1681</td>
<td>H. influenzae</td>
<td>36%</td>
</tr>
</tbody>
</table>
6. Figure

Figure 1. Nucleotide and derived amino acid sequences of rcpA of A. pleuropneumoniae. The signal peptide is underlined.

```
1 atgc aaattataaatctcaaaaaacattacttagctgcgcattataggacatttttagcg 60
1 M Q I N K F S K T L L S A L L G L L A 20

61 ttatgcattcggctatggcaaaaaacatttaccttgagcaagcagagaacacattatc 120
21 L S H S A M A K T F T L E Q G Q S Q L I 40

121 aaaaaaattgcaaaaatcagatcgattttgcttctcatcgcgaacgactatgaa 180
41 K T N A K I D T I F V S S S E V A D Y E 60

181 attttgcagcataaagattttgattgatgcagcgaagctggctcgcagatgatt 240
61 I L D D N S F M L Y A K A E G R S E V I 80

241 gctttcgatgcagaacggctacgcaacattacggaagattttgtaaaccgtaataatgcgatt 300
81 A F D A N G T P L T E D F V N V N N A I 100

301 aaaaaatattgccaagcaccataaaccaaaatctcagcagtcgttcggaagttatcgaacg 360
101 N N I A A T N Q Q l Q T R F P N S N L T 120

361 gttaaaaaataggctgtaagggctttatgtattttcaggaagcgggcaagccgttcccgaatgtaacctgacg 420
121 V K K V G K A Y V L E G K A K N A A E S 140

421 gatgaaatcatcgaattgtggcgaatcgctcgtcggcggcagaaaaagttatatcggac 480
141 D E I N R I V G E S L G A G K K V I E T 160

481 aaactgaaacataacgacgcggcgaagaaacgtccccgttttagataaatcacaatgtgaa 540
161 K L K H N D G E E N V P F L D K Y Q Y E 180

541 ggctgtcataaatgtccactgaatggcaaaagttatatcatttggtttaacccgtttt 600
181 G V I N N A N E E N A T Q I N V K L T V 200

601 ggccagaatcataaaaaaccttttcggatgaaatcggtatattactggagcaacttaagcgg 660
201 A E V N K T F S D E I G I N W S N L S G 220
```
7. References

CHAPITRE 5

DISCUSSION

Locus flp-rcp-tad chez Actinobacillus pleuropneumoniae

5.1 Clonage du locus flp-rcp-tad

Nous avons utilisé le fragment \textit{rcpA} (provenant du clone PhoA+ D1 du tableau 2, p.55) comme sonde pour cloner le locus \textit{flp-rcp-tad} chez \textit{A. pleuropneumoniae}. Nous avons criblé une banque génomique construite dans le vecteur \textit{\lambda}SCREEN-1 (Novagen), contenant des fragments de 5 à 8 kpb.
5.2 Organisation du locus chez *A. pleuropneumoniae*

Les séquences nucléotidiques des fragments obtenus ont été séparées en différents ORFs en sachant que les ORFs de bactéries débutent presque toujours par un ATG (méthionine) et se terminent par un des trois codons STOP (TAG, TAA, TGA). Les ORFs d'*A. pleuropneumoniae* ont été nommés selon la nomenclature des ORFs homologues chez *A. actinomycetemcomitans* et *P. multocida*. Le locus chez *A. pleuropneumoniae* possède la même organisation que ceux d'*A. actinomycetemcomitans* et *P. multocida*, c'est-à-dire les mêmes ORFs dans le même ordre. Les 14 ORFs sont tous transcrits dans la même orientation. Ce sont dans l'ordre : *flp*-1, *flp*-2, *orfB*, *rcpC*, *rcpA*, *rcpB*, *tadZ*, *tadA*, *tadB*, *tadC*, *tadD*, *tadE*, *tadF* et *tadG* (figure 5.2).

Afin de trouver les promoteurs des 14 gènes précédents, nous nous sommes basés sur l'alignement des régions promotrices de 12 gènes d'*A. pleuropneumoniae* (Doree et Mulks, 2001). La région –10 est habituellement positionnée 5 à 12 pb en amont du site de début de la transcription. La séquence consensus de cette région est TATAAT. L'espace entre les régions –10 et –35 se situe entre 13 et 16 pb. La séquence consensus de la région –35 est TTRAA, où R peut être soit G ou A. Le site d’initiation de la transcription est habituellement un A ou un T. La séquence consensus du site de fixation au ribosome ou RBS (pour *ribosome-binding site*) est AGGAGG. Les données recueillies dans cette étude ont servi à identifier de façon présomptive les séquences promotrices et les RBS des gènes du locus *flp-rcp-tad*.

FIGURE 5.2 : Organisation des gènes du locus *flp-rcp-tad* chez *A. pleuropneumoniae*

Des séquences promotrices potentielles à –35 (TTGTT) et –10 (TTAAAT) sont retrouvées 41 et 19 nucléotides en amont de l’ATG de départ de *flp*-1. L’espace entre
ces régions est de 16 pb. Un RBS potentiel (AGGAGA) est présent 7 pb devant cet ATG. Il n'y a pas de séquences promotrices potentielles en aval de flp-1 mais la majorité des ORFs sont précédés par des RBS potentiels. Le locus est vraisemblablement un opéron, où tous les gènes sont transcrits en un même ARNm.

Une séquence répétée inversée de 32 nucléotides (TAATTCTTAT ACATATTTTA GTATAAGAAT TA) entre flp-1 et flp-2 pourrait être une séquence de terminaison de la transcription Rho-indépendante. D'autres opérons de facteurs de colonisation présentent aussi des séquences de terminaison en aval du gène qui code la piline majeure. Il s'agirait d'un mécanisme de régulation pour la surexpression du gène de la piline majeure relativement aux autres gènes de l'opéron. Les séquences de terminaison Rho-indépendantes sont des séquences répétées inversées de longueur variable qui forment des boucles en épingles à cheveux dans l'ARN messager, ce qui amène la dissociation de l'ARN polymérase de l'ADN matrice. La boucle en épingle à cheveux est formée par l'appariement des séquences inversées répétées (qui forment la tige), séparées par une courte séquence non-appariée (qui forme la boucle).

5.3 Rôle des différents gènes

Le rôle potentiel de certains gènes du locus peut être déduit à partir du rôle du gène homologue identifié chez

1) le gène flp-1 encode la prépiline;
2) OrfB encode la prépiline peptidase, l'enzyme qui coupe la prépiline en piline;
3) le produit du gène rcpA d'A. pleuropneumoniae présente de fortes homologies avec les protéines GspD, PuID et pIV. Ces protéines font partie de la famille des sécrétines (Nouwen et al., 1999). Les sécrétines sont requises pour la sécrétion extra-cellulaire, l'assemblage des phages filamentueux et la biogenèse des pili. Elles forment des canaux dans la membrane externe des bactéries. Le canal formé par RcpA pourrait permettre la sécrétion des fimbriae;
4) TadA est une ATPase qui sert à fournir de l'énergie au système.
La fonction exacte des autres gènes du locus est encore inconnue. La fonction de *flp-2* est intrigante. La phylogénie des membres de la famille *flp* montre une tendance à la multiplication et le maintien des allèles multiples *flp*. Ainsi, plusieurs organismes arborent plus d’une copie du gène *flp*, et ces copies ne sont pas toujours homologues entre elles. Plusieurs hypothèses peuvent être avancées sur la fonction biologique et la signification des allèles dupliquées. Certaines bactéries comme *Kingella denitrificans* (Weir et al., 1996) possèdent de multiples copies de gènes de pilines auxquelles il manque des portions N-terminales les empêchant d’être transcriées. Ces copies silencieuses contribuent à la différence de séquences en faisant des recombinations avec la copie exprimée pour produire des pilines antigéniquement distinctes. *A. pleuropneumoniae* pourrait aussi exprimer différemment les deux allèles *flp* pour varier les déterminants antigéniques. Flp2 pourrait aussi permettre l’interaction d’*A. pleuropneumoniae* avec des surfaces différentes de celles de Flp1, ce qui permettrait à *A. pleuropneumoniae* de s’adapter aux différentes conditions de l’hôte. Il resterait à déterminer si le gène *flp-2* est effectivement exprimé dans certaines conditions, en fonction des différents éléments de régulation qui entrent en action. Les travaux préliminaires effectués sur *flp-2* d’*A. actinomycetemcomitans* suggèrent que le gène pourrait ne pas être exprimé (Kachlany et al., 2001a). Cependant, la protéine est exprimée chez *E. coli* lorsque la région du début de *flp-1*, qui contient le RBS, est fusionnée à *flp-2*.

5.4 Expression de Flp1

Nous avons cloné le gène *flp-1* complet (avec sa séquence signal) dans le vecteur d’expression pET30a (Novagen) et la protéine Flp1 a été exprimée dans *E. coli* BL21(DE3). La construction a été appelée F2. Les détails de la construction et le résultat de l’expression sont montrés aux figures 5.3 et 5.4 respectivement. La taille estimée de la protéine clonée dans le vecteur pET30a, en tenant compte des parties inhérentes au vecteur (séquences His-Tag, S-Tag et thrombine) est de 14,4 kDa. La visualisation de la protéine exprimée s’est fait sur gel de polyacrylamide 15% coloré au bleu de Coomassie.
Légende

- Séquence du vecteur pET30a
- Amplicon flp-I (228 pb)
- Amplicon hors du gène flp-I (167 pb)

Début de la transcription ATGCACCACATCATCATCATCATCTTTCTTCTCTGGTCTTGTCGCCACCGGTCTCTGTATGAAAGAAACCGCTGCTGCTAAATTGAACGACCCAGCACATGGAGCCAGACATCTGGTACCGACGACGACGACAAGCCATGCTGATATCGGATCCGQAGATTATTACATGTTATCTAACTTAACAACCAACAGCTGACTGAATACGGTTTGATCGCTGTAGCGGTAGCCATTCTAATTGTGTGCTGTTCTTAACGAGCAAAAGGTTTTCATTCAAAATTTTTAAATATATTTTCCGATCAACTTACAAAACATGACAAACGTGAATGCTTAACTATTAAGCAATATGTTATCTTATATCATATTATATTAGATAGATAGAAATATATTTCATATGAAAATAAAATACAGTTTTATCGGCAACAACAAGGTATTTCTCTCTGTACGTTAAGCTTAACTATTAAG

Longueur de l’amplicon cloné dans pET30a = 395 pb

Traduction

Séquence : 131 acides aminés
Poids moléculaire calculé : 14,4 kDa

FIGURE 5.3: Schématisation de la séquence nucléotidique et de la séquence traduite du clone F2.
5.5 Analyse de *flp-1*

Des études bio-informatiques ont révélées que *flp-1* d’*A. pleuropneumoniae* possède un ORF de 228 pb qui encode une protéine de 77 acides aminés avec un poids moléculaire calculé de 8,5 kDa. La protéine Flp1 mature possède 51 acides aminés après clivage de la séquence signal de 26 acides aminés. Le poids moléculaire de Flp1 mature est estimé à 5,4 kDa (analyses sur www.expasy.ch/tools). D’après des observations en microscopie électronique à haute résolution chez *A. actinomycetemcomitans*, les fimbriae sont en amas, intimement associés avec les bactéries. Cependant, ils ne semblent pas ancrés dans la membrane ou localisés à une position particulière de la bactérie, comme aux pôles. Aucun site potentiel d’insertion n’a été détecté, tels que des indentations ou des contractions de la membrane aux points de contact bactéries-fimbriae. Il est possible que les bactéries libèrent les fimbriae dans le milieu extra-cellulaire et qu’ensuite elles se lient à eux (Kachlany et *al.*, 2001b).
5.6 Classification

Les prépilines Flp1 et Flp2 d’*A. pleuropneumoniae* peuvent être assignées à la classe des prépilines de fimbriae de type IVB. Selon nos prédictions, les prépilines Flp1 et Flp2 possèdent une séquence signal de 26 et 15 acides aminés respectivement. La séquence signal est clivée entre une glycine (G) et un acide aminé variable. Le premier acide aminé de Flp1 mature est vraisemblablement une valine (V) et celui de Flp2, une isoleucine (I). Les deux prépilines possèdent un glutamate (E) en position +5 par rapport au site de clivage. Il est logique de penser, par comparaison avec les locus similaires, que tous les gènes requis pour l’assemblage des pilines sont réunis dans le locus *flp-rcp-tad*. L’alignement des prépilines des locus analogues à *flp-rcp-tad* chez différentes bactéries permet de mettre en relief des caractéristiques communes qui les distinguent des autres prépilines de type IVB (Kachlany et al., 2001a). On peut en dégager quatre caractéristiques : 1. les prépilines Flp ont toutes entre 50 et 90 acides aminés, alors que les autres prépilines de type IV excèdent généralement 120 acides aminés; 2. elles possèdent un motif partagé, le motif *Flp*; il s’agit du glutamate (E) en position +5 immédiatement suivi par une tyrosine (Y), inclus à l’intérieur d’une série d’environ 20 acides aminés hydrophobes; 3. on note fréquemment une phénylalanine (F) près du milieu du domaine hydrophile C-terminal; 4. le domaine C-terminal est plus court que celui des autres prépilines de type IV.

Les caractéristiques des prépilines Flp ont mené à la création d’une sous-famille de type IVB. Les prépilines Flp1 et Flp2 d’*A. pleuropneumoniae* exhibent ces caractéristiques. La prépiline Flp1 a 77 acides aminés et Flp2 en a 65. Le motif *Flp* est présent et retrouvé dans une séquence de 20 acides aminés hydrophobes. On retrouve une phénylalanine (F) en position +35 et +27 de Flp1 et Flp2 respectivement (figure 5.4). Les séquences de Flp1 et Flp2 ont 35,1% d’identité.
<table>
<thead>
<tr>
<th>Flp1</th>
<th>Flp2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLSNLTKAYISVTGIRRFKENOQG</td>
<td>VTAIEYGLIAVAAILIVAVFYND</td>
</tr>
<tr>
<td>KGFIQQLKLFDQLTKTVQGANGLTKQ</td>
<td>KQLSELVTSALVSTS</td>
</tr>
</tbody>
</table>

FIGURE 5.5: Caractéristiques des prépilines Flp1 et Flp2 d'*A. pleuropneumoniae* : la séquence signal (soulignée), le motif Flp avec le EY et la phénylalanine (F) en position +35 et +27 respectivement.

En conclusion, le locus *flp-rcp-tad* complet a été séquencé et les séquences seront bientôt soumises. *Les résultats rapportés dans cette section nous incitent à en poursuivre l'étude.*
CHAPITRE 6

CONCLUSION

La technologie PhoA a permis d'identifier plusieurs protéines exportées chez la bactérie *Actinobacillus pleuropneumoniae*. En général, les protéines exportées ont une séquence signal N-terminale pour les transporter à travers la membrane interne. Les analyses bio-informatiques des séquences obtenues ont permis d'identifier des protéines intéressantes du point de vue de leur potentiel en tant qu’antigène ou facteur de virulence.

Nous avons identifié 20 peptides signaux typiques lors des fusions PhoA+ chez *A. pleuropneumoniae*. Leur longueur varie entre 15 et 27 acides aminés. La règle du (-3, -1) de von Heijne est respectée. Cette règle stipule que : les acides aminés en position -1 par rapport au site de clivage doivent être petits, c'est-à-dire Ala, Ser, Gly, Cys, Thr ou Gln; les acides aminés en position -3 ne doivent pas être aromatiques (Phe, His, Tyr, Trp), chargés (Asp, Glu, Lys, Arg) ou larges et polaires (Asn, Gln). La contrainte pour les peptides signaux des procaryotes est encore plus sévère. Ceux-ci ne sont composés qu’exclusivement de Ala, Gly, Ser et Thr en -1 et Ala, Gly, Leu, Ser, Thr et Val en -3 (von Heijne, 1986). Les peptides signaux d’*A. pleuropneumoniae* compilés lors de l’analyse ont tous Ala en position -1, à l’exception d’un seul qui se termine par Thr. Les acides aminés que l’on retrouve en -3 sont Ala, Leu, Ser, Thr et Val.

HtrA est une protéine de choc thermique qui constitue un facteur de virulence chez Salmonella typhimurium, Yersinia enterocolitica et Brucella abortus (Elzer et al., 1996; Johnson et al., 1991; Li et al., 1996). HtrA d’H. influenzae est un puissant immunogène et s’avère partiellement protectrice lors des essais dans les modèles animaux (Loosmore et al., 1998). Chez E. coli, la protéine AcrB fait partie d’un système qui confère une résistance significative aux antibiotiques couramment utilisés (Okusu et al., 1996). Hlp d’Haemophilus ducreyi (pathogène humain) est un antigène (Hiltke et al., 1996). Le peptide signal prédit du clone 2-P (homologue de Hlp) contient un site consensus de clivage par une signal peptidase II (Pugsley, 1993).

RcpA, PilC et TadG sont des protéines associées aux fimbriae. Les fimbriae, aussi connus sous l’appellation de pili, sont des filaments ressemblant à des poils que l’on retrouve à la surface de nombreuses bactéries. Les fimbriae de type IV sont retrouvés chez plusieurs pathogènes Gram-négatifs. Leur contribution à la virulence est surtout due à leur capacité à promouvoir l’attachement des bactéries à des récepteurs des cellules de l’hôte durant la colonisation des tissus.

Le locus des gènes pilABCD est impliqué dans la synthèse et l’assemblage de fimbriae de type IVA chez des bactéries telles qu’A. actinomycetemcomitans et Pseudomonas aeruginosa. Le rôle de PilC est encore inconnu; toutefois des mutations dans pilC de P. aeruginosa empêche la production de fimbriae mais la bactérie exprime tout de même des pilines non-assemblées qui demeurent localisées principalement dans la membrane interne (Nunn et al., 1990). Les sous-unités de piline exprimées par les mutants pilC apparaissent sous leur forme complète, avec leur peptide signal clivé. Ainsi, la défectuosité chez ces mutants affecte l’assemblage des pilines, après l’interaction des sous-unités avec la membrane interne.

Il est agréable de penser que le développement futur d’un «anti-piline anti-Flp1» pourrait permettre une protection totale des porcs contre la bactérie, le but ultime de nos recherches chez *A. pleuropneumoniae*.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
BIBLIOGRAPHIE

